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Abstract. A survey of recent progress on the multiplicity and stability problems for closed geo-
desics on Finsler 2-spheres is given.
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It is well known that the geodesic, i.e., the shortest curve, connecting two prescribed
points in the Euclidean plane is the line segment connecting them. But the geodesic, es-
pecially the closed geodesic, problem on the earth is very difficult. In fact, the closed
geodesic problem is a very important subject in both dynamical systems and differential
geometry, and has stimulated many creative ideas and new developments in mathematics.
For closed geodesics on spheres with Riemannian or Finsler structures, modern mathe-
matical studies can be traced back at least to the work of J. Hadamard, H. Poincaré, G. D.
Birkhoff, M. Morse, L. Lyusternik, L. Schnirelmann, and many other famous mathemati-
cians. In this short survey, I can only refer to some of the vast literature which is related
to closed geodesics on 2-spheres and to our current interests. This paper is organized as
follows: §1: A partial and certainly incomplete history of the studies of closed geodesics,
mainly on 2-spheres. §2: The multiplicity result obtained by Victor Bangert and the au-
thor, and the stability result obtained by Wei Wang and the author for closed geodesics on
Finsler 2-spheres. §3: Main ideas in the proof of the multiplicity theorem of V. Bangert
and the author. §4: Open problems.

1. A partial history of closed geodesics

First we introduce the concept of Finsler and Riemannian metrics on manifolds.

Definition 1.1 (cf. [BCS], [She]). Let M be a finite-dimensional manifold. A function
F : T M → [0, ∞) is aFinsler metricif it satisfies
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(F1) F is C∞ onT M \ {0},
(F2) F(x, λy) = λF(x, y) for all y ∈ TxM, x ∈ M, andλ > 0,
(F3) for everyy ∈ TxM \ {0}, the quadratic form

gx,y(u, v) ≡
1

2

∂2

∂s∂t
F 2(x, y + su + tv)|t=s=0, ∀u, v ∈ TxM,

is positive definite.

In this case,(M, F ) is called aFinsler manifold.
F is reversibleif F(x, −y) = F(x, y) for all y ∈ TxM andx ∈ M, andRiemannian

if F(x, y)2
=

1
2G(x)y · y for some symmetric positive definite matrix functionG(x) ∈

GL(TxM) depending onx ∈ M smoothly. We denote byF(M) andR(M) the sets of all
Finsler and all Riemannian metrics onM respectively.

Note that one of the major differences between Riemannian and Finsler metrics is the
irreversibility in the condition (F2). For a closed geodesicc in a Finsler manifold(M, F ),
its inverse curvec−1 defined byc−1(t) = c(1 − t) may not be a geodesic. If it is, it is
usually viewed as a closed geodesic different fromc.

For any closed curvef : S1
→ M on a Finsler manifold(M, F ) or a Riemannian

manifold(M, g), the groupS1 or O(2) acts onf by θ ·f (t) = f (t +θ) for everyθ ∈ S1,
respectively by(ε, θ) · f (t) = f (εt + θ) for every(ε, θ) ∈ {±1} × S1 ∼= O(2). For a
closed geodesicc, itsm-th iterate is defined bycm(t) = c(mt). A closed geodesic isprime
if it is not them-th iterate of any other closed geodesics for anym ≥ 2. Two prime closed
geodesicsc1 andc2 on a Finsler manifold(M, F ) (or Riemannian manifold(M, g)) are
distinct if they do not differ by anS1-action (orO(2)-action). We denote the set of all
distinct prime closed geodesics on a Finsler manifold by CG(M, F ), and similarly by
CG(M, g) for Riemannian manifolds.

It is a longstanding conjecture that there exist infinitely many distinct prime closed
geodesics on every compact Riemannian manifold (cf. Problem 81 in [Yau]). J. Hadamard
in 1898 and H. Poincaré in 1905 studied closed geodesics on convex surfaces (cf. [Had]
and [Poi]). Then G. D. Birkhoff proved the following remarkable result:

Theorem 1.2(G. D. Birkhoff [Bir1], 1917, and [Bir2], 1927).
#CG(Sn, g) ≥ 1, ∀g ∈ R(Sn).

In 1951, L. Lyusternik and A. Fet proved the following important theorem:

Theorem 1.3(L. Lyusternik and A. Fet [LF], 1951). For every compact manifoldM,
#CG(M, g) ≥ 1, ∀g ∈ R(M).

Note that this theorem also holds for Finsler metrics, because the proof of Theorem 1.3
(cf. [Kli1] and [Kli2]) is variational and does not really depend on the special properties
of Riemannian metrics.

Denote by3M the free loop space of a Riemannian manifold(M, g) and by30M the
single point loops onM. For the Finsler case, we choose a Riemannian metric onM, and
define3M similarly. In 1969, D. Gromoll and W. Meyer proved the following important
result:
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Theorem 1.4(D. Gromoll and W. Meyer [GM], 1969). Let (M, g) be a Riemannian
manifold such that the Betti numbers{bi(3M)}i≥1 are unbounded. Then#CG(M, g)

= ∞, wherebi(3M) = rankHi(3M, 30M;K) for all i ∈ N and some fieldK.

Motivated by Theorem 1.4, M. Vigúe-Poirrier and D. Sullivan proved the following re-
markable result:

Theorem 1.5(M. Vigué-Poirrier and D. Sullivan [VS], 1976). For a compact simply
connected Riemannian manifold(M, g), the Betti number sequence{bi(3M)}i≥1 is un-
bounded if and only if the cohomology algebra ofM requires at least two generators.

Note that in 1980, H. Matthias [Mat] generalized Theorem 1.4 to Finsler manifolds.
Therefore by Theorems 1.4 and 1.5, the most interesting unsolved problem on closed
geodesics is for Finsler and Riemannian spheres.

Around 1990, V. Bangert (cf. [Ban1], [Ban2]) and J. Franks (cf. [Fra1], [Fra2]) proved
the following important result for RiemannianS2:

Theorem 1.6(V. Bangert [Ban2], 1993, and J. Franks [Fra1], 1992).

#CG(S2, g) = ∞, ∀g ∈ R(S2).

For the closed geodesic problem on Riemannian (2-dimensional) manifolds, we refer the
readers to the excellent survey papers [Ban1] and [Tai].

On the other hand, in 1973 A. Katok constructed a remarkable Finsler metric onS2

which showed that there is a major difference between Riemannian and general Finsler
metrics:

Theorem 1.7(A. Katok [Kat], 1973). For any irrational numberα ∈ (0, 1), there exists
a Finsler metricFα onS2 which has precisely two distinct prime closed geodesics.

In fact, by [Kat] and W. Ziller’s paper [Zil2], Katok’s metric has the formFα(x) = ‖x‖
∗
g+

αx(V ) for anyx ∈ T ∗S2, where‖ · ‖g is the standard Riemannian metric onS2, andV is
a vector field corresponding to rotations onS2 along the equatorial direction. Locally in
spherical coordinates away from the north and south poles,Fα has the form

Fα(q1, q2, p1, p2) = (p2
1 cos−2 q2 + p2

2)
1/2

+ αp1.

The two closed geodesics on(S2, Fα) are along the equator and are in fact mutually
inverse curvesc andc−1. They have lengths length(c) = 2π/(1 + α) and length(c−1) =

2π/(1 − α). The linearized Poincaré mapPc of c is conjugate to the rotation matrix

R(θc) =

(
cosθc − sinθc

sinθc cosθc

)
(1.1)

with θc = 2π/(1+α). SimilarlyPc−1 is also conjugate toR(θc−1) with θc−1 = 2π/(1−α).
All iterates of c and c−1 are non-degenerate. Then by the precise index iteration for-
mulae of the author proved in [Lon1], 2000, one can show that the Morse index se-
quences of iterates ofc and c−1 counting multiplicity satisfy{i(cm), i(c−m)}m≥1 =

{1, 3, 3, 5, 5, 7, 7, . . .}.
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1.1. Known multiplicity results

Based upon Katok’s metric, D. Anosov asked the following question on the minimal
number of closed geodesics on Finsler spheres in his 1974 ICM report [Ano]:For then-
dimensional sphereSn, Katok’s example gives an irreversible Finsler metric, arbitrarily
near to the ‘standard’ metric (to the metric of constant curvature) which has2[n/2] closed
geodesics. This number coincides with the lower bound which one naturally expects for
irreversible Finsler metrics onSn and which can be proved for metrics sufficiently near
the ‘standard’ metric. Here [a] = max{k ∈ Z | k ≤ a} for any real numbera. Using our
notations, what Anosov expected is

#CG(Sn, F ) ≥ 2[n/2], ∀F ∈ F(Sn). (1.2)

Note that in [LZ], a similar lower bound [n/2]+1 on the number of closed characteristics
on convex compact hypersurfaces inR2n is proved. We also note that in [Zil2], W. Ziller
made a somewhat different conjecture forSn:

#CG(Sn, F ) ≥ n, ∀F ∈ F(Sn). (1.3)

We are only aware of a few partial answers to these conjectures forS2.

Theorem 1.8(H.-B. Rademacher [Rad1], 1989). LetF be a bumpy Finsler metric onS2,
i.e., all the closed geodesics and their iterations on(S2, F ) are non-degenerate. Then

#CG(S2, F ) ≥ 2.

In the 2003 paper [HWZ2], H. Hofer, K. Wysocki, and E. Zehnder studied Hamiltonian
systems on star-shaped hypersurfaces inR4. Their result can be applied to Finsler 2-
spheres to yield:

Theorem 1.9(H. Hofer, K. Wysocki, and E. Zehnder [HWZ2], 2003). LetF be a bumpy
Finsler metric onS2. Assume that the stable and unstable manifolds at every hyperbolic
closed geodesic intersect transversally. Then

#CG(S2, F ) = 2 or ∞.

In 1993 and 1997, N. Hingston proved two theorems in [Hin1] and [Hin2] respectively
which showed the existence of infinitely many prime closed geodesics on Riemannian
manifolds under certain sufficient conditions. In particular, Hingston’s two theorems can
be adapted to Finsler 2-spheres and yield the following theorem:

Theorem 1.10(N. Hingston [Hin1], 1993, and [Hin2], 1997). LetF be a Finsler metric
onS2 andc is a closed geodesic on(S2, F ) such thatS1

· cm is isolated as a critical orbit
of the energy functionalE on3S2 for all m ≥ 1. Set

kj (c) = rankHj (N
−
c ∪ {c}, N−

c ; Q) for j = 0, 1, 2,

whereNc is a slice inkerE′′(c) transversal toS1
·c, andN−

c = {x ∈ Nc | E(x) < E(c)}.
Suppose that either
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(i) i(cm) = m(i(c) + 1) − 1, ν(cm) = ν(c) for all m ≥ 1 andk0(c) > 0, or
(ii) i(cm)+ν(cm) = m(i(c)+ν(c)−1)+1, ν(cm) = ν(c) for all m ≥ 1 andkν(c)(c) > 0.

Then #CG(S2, F ) = ∞.

Based on the results of W. Klingenberg [Kli1], 1968, and of W. Ballmann, G. Thorbergs-
son, and W. Ziller [BTZ1], 1982, about closed geodesics on Riemannian spheres under
pinching conditions, H.-B. Rademacher generalized those results to Finsler spheres and
proved:

Theorem 1.11(H.-B. Rademacher [Rad3], 2005). For F ∈ F(S2) let λ = max{F(−v) |

F(v) = 1, v ∈ T S2
}. Suppose the flag curvatureK of (S2, F ) satisfiesλ2(λ + 1)−2 <

δ ≤ K ≤ 1. Then
#CG(S2, F ) ≥ 2.

Denote the two closed geodesics byc1 andc2 with length(c1) ≤ length(c2). Then

length(c1) ≤ 2π/
√

δ, length(c2) ≤
π
√

δ

(
λ

√
δ(λ + 1) − λ

+ 3

)
,

andc1 is simple.

1.2. Known stability results

As usual, denote byPc the linearized Poincaré map of a closed geodesicc on a manifold
M and U = {z ∈ C | |z| = 1}. Thenc is hyperbolic if σ(Pc) ∩ U = ∅, elliptic if
σ(Pc) ⊂ U, andnon-degenerateif 1 6∈ σ(Pc). Note thatPcm = P m

c for all m ≥ 1. For a
closed geodesicc on a 2-dimensional surface,c is irrationally elliptic or rationally elliptic
if Pc is conjugate to a rotation matrix (1.1) withθc/π ∈ R \ Q or θc/π ∈ Q respectively,

In 1982–83, W. Ballmann, G. Thorbergsson, and W. Ziller studied the stability of
closed geodesics onSn; specifically, they proved:

Theorem 1.12(W. Ballmann, G. Thorbergsson, and W. Ziller [BTZ2], 1983). For g ∈

R(Sn), if the sectional curvature satisfies4/9 ≤ K ≤ 1, then there exist at least two
elliptic closed geodesics on(Sn, g).

In 1989 and 2005, H.-B. Rademacher studied Finsler spheresSn, and proved

Theorem 1.13(H.-B. Rademacher [Rad1], 1989). LetF ∈ F(Sn) be bumpy and satisfy
#CG(S2, F ) < ∞. Then there exists at least two irrationally elliptic closed geodesics on
(S2, F ).

Theorem 1.14(H.-B. Rademacher [Rad3], 2005). LetF ∈ F(Sn) satisfy

λ < 2,

(
3λ

2(λ + 1)

)2

< δ ≤ K ≤ 1,

whereλ is defined in Theorem1.11. Then there exists at least one elliptic closed geodesic
on (Sn, F ).
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Note that in 2000 the author proved a related stability result for closed characteristics on
convex compact hypersurfaces inR4:

Theorem 1.15(Y. Long [Lon1], 2000). Let 6 be a convex compactC2 hypersurface in
R4 with precisely two closed characteristics on6. Then both of them are elliptic.

2. Main new multiplicity and stability results

Recently, V. Bangert and the author proved the following result which settles Anosov’s
conjecture (1.2) as well as (1.3) forS2 positively. This theorem was first reported in July
2004 at the conference to celebrate Professor I. Ekeland’s 60th birthday.

Theorem 2.1(V. Bangert and Y. Long [BL], 2005).

#CG(Sn, F ) ≥ 2, ∀F ∈ F(S2).

Combining the result in [HWZ1] of H. Hofer, K. Wysocki and E. Zehnder, 1998, with
Theorems 1.9 and 2.1, it is natural to make the following conjecture:

Conjecture 1. We have

#CG(S2, F ) = 2 or ∞, ∀F ∈ F(S2).

Motivated by Theorem 2.1 and those mentioned in Subsections 1.2, recently my Ph.D.
student Wei Wang and myself proved the following result:

Theorem 2.2(Y. Long and W. Wang [LW], 2005). Let F ∈ F(S2) satisfy #CG(S2, F )

< ∞. Then there exists at least two irrationally elliptic closed geodesics on(S2, F ).

As a consequence we obtain

Corollary 2.3 (Y. Long and W. Wang [LW], 2005). Let F ∈ F(S2) satisfy #CG(S2, F )

= 2. Then the two closed geodesicsc1 andc2 on(S2, F ) are both irrationally elliptic with
rotation anglesθ1 = 2π/(1+α) andθ2 = 2π/(1−α) respectively for someα ∈ (0, 1)\Q.

It is rather surprising that if Conjecture 1 holds, then Corollary 2.3 implies that whenever
#CG(S2, F ) is finite, there are precisely two distinct prime irrationally elliptic closed
geodesics and they behave analytically like those two prime closed geodesics of Katok’s
metric, i.e., whose iterations possess the same Morse indices and nullities. Then their
local critical modules are all the same as the two of Katok. Note that here these two prime
closed geodesics may not be inverse curves to each other as are Katok’s.

3. Main ideas in the proof of Theorem 2.1

The conditions (F1)–(F3) for Finsler metrics were introduced by P. Finsler for the local
existence and uniqueness of geodesics connecting two nearby points on a manifold. The
problem of closed geodesics is global. Thus our proof of Theorem 2.1 is naturally topo-
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logical and variational, and does not depend on geometrical properties of each individual
Finsler metric such as curvatures.

The main ideas in the proof of Theorem 2.1 of V. Bangert and the author are contained
in the following four steps, where we explain more on the rationally elliptic case. Here
to make explanations shorter, topics related to the smoothness of the energy functional
E on the free loop space onS2 are all omitted. We concentrate on topological facts and
variational arguments which are related to multiplicity.

Fix anF ∈ F(S2). Assuming that there exists precisely one prime closed geodesicc

on (S2, F ), we proceed as follows to reach a contradiction. In this section we use homo-
logy modules withQ-coefficients only.

〈1〉 By the author’s precise index iteration formulae proved in Section 3 of [Lon1],
2000 (cf. Section 8.1 of [Lon2]), there are nine possibilities for the closed geodesicc de-
pending on the eigenvalues of the linearized Poincaré mapPc which is a 2×2 symplectic
matrix. Here the first three cases are for eigenvalue 1, the next three cases are for eigen-
value−1, the 7th is for the rationally elliptic case, the 8th is for the irrationally elliptic
case, and the 9th is for the hyperbolic case. Note that the closed geodesicc and all of
its iterates are non-degenerate in the last two cases in which two closed geodesics were
found by H.-B. Rademacher [Rad1], 1989. Therefore we only need to study the first seven
degenerate cases.

Here we choose a Riemannian metricg on S2, and define3 = 3S2 to be the free
loop space ofH 1(S1, S2), where a curvec is H 1 if it is absolutely continuous anḋc(t) is
square integrable ing as in Chapter 1 of [Kli2].

DefineE(c) =
∫ 1

0 F 2(ċ(t)) dt and3a
= {γ ∈ 3 | E(γ ) ≤ a} for a ∈ R.

〈2〉 In order to apply Morse theory, using the arguments of W. Ziller [Zil1], 1977, we
obtain the Betti numbers as follows (cf. V. Bangert and Y. Long [BL], 2005):

Hq(3, 30) =

{
0 if q ≤ 0 or q = 2,

Q if q = 1 or q ≥ 3.
(3.1)

bq ≡ rankHq(3, 30) =

{
0 if q ≤ 0 or q = 2,

1 if q = 1 or q ≥ 3.
(3.2)

As usual the Morse type numberMk for all k ≥ 0 is defined by

Mk =

∑
1≤j≤q
m≥1

rankHk(3(cm) ∪ {S1
· cm

}, 3(cm)), ∀k ≥ 0,

where3(cm) = {γ ∈ 3 | E(γ ) < E(cm)}. Then for every integerk ≥ 1, it is well
known that the following Morse inequalities hold:

Mk ≥ bk, (3.3)

Mk − Mk−1 + Mk−2 − · · · + (−1)k−1M1 + (−1)kM0
≥ bk − bk−1 + bk−2 − · · · + (−1)k−1b1. (3.4)

〈3〉 For each of the first six cases, using index iteration formulae of [Lon1] we obtain
precisely all the Morse indices and nullities of all iterationscm of c. Applying also the
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techniques of D. Gromoll and W. Meyer [GM], 1969, we are able to compute all the
local critical modules of the energy functionalE(c) =

∫ 1
0 F 2(ċ(t)) dt nearcm for all

m ≥ 1 in 3. Then we find that either the Morse inequalities already yield a contradiction
which implies the existence of at least two distinct prime closed geodesics on(S2, F ),
or the Morse inequalities lift up the dimension of a certain local homology group. Then
Hingston’s Theorem 1.10 becomes applicable and yields infinitely many distinct prime
closed geodesics on(S2, F ), which completes the proof for this case.

For example, whenPc = −I , by the Morse inequalityM1 ≥ b1, we obtaini(c) = 1
andν(c) = 0. By Theorem 8.1.5 of [Lon2], we obtain

i(cm) = m −
1 + (−1)m

2
, ν(cm) = 1 + (−1)m, ∀m ≥ 1. (3.5)

We set

k̂j (c
m) = rankHj (N

−

cm ∪ {cm
}, N−

cm)Zm for j = 0, 1, . . . , ν(cm).

Note that
k̂j (c

m) ≤ kj (c
m), ∀m ≥ 1.

Using the method of D. Gromoll and W. Meyer [GM], all the local critical modules can
be computed and we obtain

M0 = 0, M1 = 1+ k̂0(c
2), M2 = 1+ k̂0(c

2) + k̂1(c
2), M3 = 1+ k̂1(c

2) + k̂2(c
2).

Therefore by the Morse inequality we obtain

1 + k2(c
2) ≥ 1 + k̂2(c

2) = M3 − M2 + M1 ≥ b3 − b2 + b1 = 2. (3.6)

Letd =c2. Then (3.5) and (3.6) yield condition (ii) of Theorem 1.10 and thus#CG(S2, F )

= ∞.
〈4〉 For the 7th case,Pc is conjugate to the matrixR(θ) of (1.1) for some rotation

angleθ ∈ (0, 2π) ∩ (πQ \ {π}), i.e.,c is rationally elliptic.
By the Morse inequalityM1 ≥ b1 = 1, we obtaini(c) = 1. Thus by Theorem 8.1.7

of [Lon2],

i(cm) = 2

[
mθ

2π

]
+ 1, ν(cm) = 0, if mθ 6= 0 mod 2π, (3.7)

i(cm) = 2

[
mθ

2π

]
− 1, ν(cm) = 2, if mθ = 0 mod 2π. (3.8)

Therefore there is a unique minimal integern ≥ 3 such thatν(cn) = 2.
By (3.8), both the iteration formulae in (i) and (ii) of Theorem 1.10 hold for the iterates

of cn. Thus we obtain#CG(S2, F ) = ∞ by Theorem 1.10 wheneverk0(c
n)+k2(c

n) > 0.
Therefore we need only study case 7 under the condition

k0(c
n) = k2(c

n) = 0. (3.9)
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Let κm = E(cm) for all m ≥ 1. Thenκm → ∞ asm → ∞ and

0 < κ1 < κ2 < · · · < κi < κi+1 < · · · .

As an example we consider the case ofθ = π/3, n = 6, andk0(c
6) = k1(c

6) =

k2(c
6) = 0. Then we obtainMk = 5 for all k ≥ 1. Thus the left hand side of the

Morse inequality (3.4) is always 5 and the right hand side of (3.4) is at most 2. Therefore
(3.4) always holds and the Morse inequality yields no information. Likewise Hingston’s
Theorem 1.10 does not apply becausek0(c

6) = k2(c
6) = 0. Thus this case requires some

new ideas and a new approach. Here we make the following comparison of long exact
sequences for the triple(3, 3κτ , 30):

0 0 Q Q 0
‖ ‖ ‖ ‖ ‖

H2(3, 30) → H2(3, 3κτ ) → H1(3
κτ , 30) → H1(3, 30) → H1(3, 3κτ )

‖ ‖ ‖ ‖ ‖

0 0 Qτ Q 0

(3.10)

Here the top line gives the case of Katok’s example withτ = 1, which matches up
perfectly. The bottom line is for our sample ofθ = π/3 with τ = 5, which yields a
contradiction. This comparison yields an important idea for dealing with the general case.
Here our crucial observation is that the alternative summation in the Morse inequality
indicates how the higher dimensional local critical groups kill the lower dimensional local
critical groups at the dimension level. This leads to a rather rough understanding of the
mutual relations among these local homology groups. To understand them further we
need to study them more carefully at the homological level.

For the general case, letτ = max{j ≥ 1 | jθ < 2π}. Then we have the following
three important claims:

Claim 1. 2 ≤ τ ≤ n − 1.

Claim 2. H1(3
κτ , 30) =

⊕τ
m=1 H1(3

κm , 3κm−1) = Qτ .

Claim 3. H2(3, 3κτ ) = 0 whenτ < n − 1, while H2(3, 3κτ ) = Qa for somea ∈

[0, n − 3] whenτ = n − 1.

Assuming these three claims for the moment, we continue our study of case 7 under the
condition (3.9). As suggested by (3.10) we consider the long exact sequence for the triple
(3, 3κτ , 30). By (3.2) and Gromoll–Meyer’s technique in [GM] for computing local
homology modules we obtain

H2(3, 30) → H2(3, 3κτ ) → H1(3
κτ , 30) → H1(3, 30) → H1(3, 3κτ )

‖ ‖ ‖ ‖ ‖

0 H2 Qτ Q 0
(3.11)

Whenτ < n − 1, we haveH2 = 0 by Claim 3. Thus (3.11) yields

Qτ
= 0 ⊕ Q = Q.

This contradicts the fact thatτ ≥ 2 by Claim 1.
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Whenτ = n − 1, we haveH2 = Qa for somea ∈ [0, n − 3] by Claim 3. Thus (3.11)
yields

Qn−1
= Qτ

= Qa
⊕ Q = Qa+1.

This contradicts the fact thata ≤ n − 3.
Therefore we are reduced to proving Claims 1 to 3.
To prove Claim 1, we use the condition (3.9) and an identity satisfied by the mean

indexî(c) ≡ limm→∞ i(cm)/m = θ/π of c, and derive an important estimate 0< θ < π .
It implies Claim 1.

In general the homology groups on different level sets may not be additive. We are
only aware of two papers: R. Bott and H. Samelson [BS], 1958, and W. Ziller [Zil1],
1977, who studied such homological addition properties of level sets in the loop spaces
for compact globally symmetric spaces. But our(S2, F ) is not a globally symmetric space
in general and their techniques do not apply. For the proof of Claim 2, we carry out
precise computations on the connecting homomorphisms between level sets and prove the
following vanishing property in the long exact sequence for the triple(3κm , 3κm−1, 30):

∂2 = 0 : H2(3
κm , 3κm−1) → H1(3

κm−1, 30).

Here the precise relations (3.7) and (3.8) for the Morse indices and nullities ofcm with
1 ≤ m ≤ τ are crucial. This yields

H1(3
κm , 30) = H1(3

κm−1, 30) ⊕ H1(3
κm , 3κm−1), ∀m = 1, . . . , τ,

which yields Claim 2.
Whenτ < n − 1, by direct computation we obtainH2 = 0 in (3.11).
Whenτ = n − 1, together with the mean index identity mentioned above we obtain

2π = nθ = (n−1− k̂1(c
n))π , which impliesk̂1(c

n) = n−3. By the long exact sequence
for the triple(3, 3κτ+1, 3κτ ) we obtain

Qk̂1(c
n)

= H2(3
κτ+1, 3κτ ) → H2(3, 3κτ ) ≡ H2 → H2(3, 3κτ+1) = 0.

Therefore Claim 3 holds.
This completes our study of case 7 and the proof of Theorem 2.1.

4. Open problems

Besides Conjecture 1 mentioned in Section 2 and the Anosov Conjecture (1.2), I believe
that the following further problems are interesting and important for further studies of the
closed geodesic problem on Finsler as well as Riemannian spheres.

Conjecture 2. For everyF ∈ F(Sn), there exist two integers2 ≤ pn ≤ qn such that

{
#CG(Sn, F ) | F ∈ F(Sn)} = {k ∈ N | pn ≤ k ≤ qn} ∪ {∞}.

More specifically, we suspect that
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Conjecture 3. {
#CG(S3, F ) | F ∈ F(S3)} = {2, 3, 4} ∪ {∞}.

For this conjecture, very little is known apart from the case of Katok’s metricF which
satisfies#CG(S3, F ) = 4 (cf. [Kat] and [Zil2]).

Conjecture 4. #CG(Sn, g) = ∞ for everyg ∈ R(Sn) with n ≥ 3.

Note that so far it seems to be unknown whether#CG(Sn, g) ≥ 2 for all g ∈ R(Sn) when
n ≥ 3.

Conjecture 5. There exists at least one elliptic closed geodesic on(Sn, F ) for every
F ∈ F(Sn).

ForS2, by our Theorem 2.2, it is only necessary to study the case when#CG(S2, F ) = ∞

for which it seems unfortunately that there is no effective method available yet without
pinching conditions. On the other hand, in an interesting paper [Grj], 1980, A. Grjuntal’
proved the existence of Riemannian metrics onS2 with positive curvature whose closed
non-selfintersecting geodesics are all hyperbolic.

Because our proofs of Theorems 2.1 and 2.2 are variational, we hope that they may
help at least in the study of some of the above conjectures for Finsler (as well as Rieman-
nian) spheres.
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