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Abstract. The purpose of this paper is to investigate efficient representations of the residue classes
modulog, by performing sum and product set operations starting from a given stilufet,, . We
consider the case of very small setsand composite for which not much seemed known (non-
trivial results were recently obtained whers prime or when logA| ~ logg). Roughly speaking

we show that all residue classes are obtained franficdd sum of anr-fold product set ofd, where

r < logg and logk < logg, provided the residue sets(A) are large for all large divisorg’

of g. Even in the special case of prime modujyssome results are new, when considering large

but bounded setd. It follows for instance from our estimates that one can obta#is small as

r ~ logg/log|A| with similar restriction ork, something not covered by earlier work of Konya-

gin and Shparlinski. On the technical side, essential use is made of Freiman'’s structural theorem on
sets with small doubling constant. Taking #or= H a possibly very small multiplicative subgroup,
bounds on exponential sums and lower bounds oqlg%'?maxxey llax/q|l are obtained. This is

an extension to the results obtained by Konyagin, Shparlinski and Robinson on the distribution of
solutions ofx” = a (modgq) to composite modulug.

0. Introduction

In this paper, we consider the following problem. Consider a sulisetZ; (¢ € N ar-
bitrary) such thatr,(H)| > 1 for all prime divisorsp | ¢, wherer, denotes the quotient
map modp. Let kH be thek-fold sum set, and?” the r-fold product set ofH. Then

kH = Z4 for somek € N. One may for instance take= q° (see proof of Theorem 2).
Assume now we allow both addition and multiplication and seek for a representation
Zq = kH"; how small may we také andr? In this context, we show the following:

Theorem A. Thereis afunctior’ = «'(x, M) suchthat’ — 0if x — 0OandM — oo,
with the following property. Leg € N be odd and{ C Z; such that

|7, (H)| > 1  forall prime divisorsp of g, (0.2)
lmg'(H)| > M forall divisorsq’ | g with g’ > ¢". (0.2)

Then )
Zqs =kH" withk < ¢ andr < «'loggq. (0.3

(This will be proved in §6.)
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The main motivation for this work comes from a recent line of reseach in combina-
torial number theory and its applications to exponential sums in finite fields and residue
classes (cf [BKT],[IBGK],[[BC], [B]).

If we consider in particular a subsatc I, p prime, such thatA| > p® for some
fixed (and arbitrary} > 0, thenk A¥ = F, providedk > k(¢) and also

max‘ ep(axi---xp)| < p2@ A
nax, D eplaxy-x)| < p@A]

for somes(e) > 0. This and related estimates had very significant applications to the the-
ory of Gauss sums and various issues related to pseudo-randomness (see [B], IBKSSW],
[BIW] for instance). One of the main shortcomings of the results that are presently avail-
able is the break-down of the method, starting from the sum-product theorem in [BKT], if
we lete = ¢(p) be small. The boundary of the assumption heee¥s1/log log p, which

is likely much stronger than necessary for such results to hold. More precisely, letting
H <}, one could expect an equidistribution result of the form

max ( 3 ep(ax)‘ < o(|H]) (%)
€eH

(a,p)=11¢

to hold whenever logf| > loglogp, which at this stage we can only establish if
log|H| > log p/(loglog p)¢ (seelBGK]).

It became apparently clear that the underlying ideas as developed in [BKT].|[BGK]
are insufficient to reach this goal (in particular they seem unable to produce a result such
as the theorem stated above). Our purpose here is to explore the use of Freiman’s theorem
in sum-product problems (which was not usedlin [BKT]). Freiman’s theorem [(See [N]
for instance) is one of the deepest result in additive number theory, providing a very
specific description of subsefsof a torsion-free Abelian group with small sumset, i.e.
|2A] = |A + A] < K|A]|, with K not too large.

The results of this paper are new and based on a new approach. They do not provide
the answers to the primary questions we are interested in, such as understandiiig)when
holds, but bring new techniques into play through related and more modest aims.

Our bound in (0.3) is essentially optimal. Consider a compaesie p1 p2, wherep;
andp, are prime. Letp; ~ 1¢*. Define

H={10}+p0,1,..., po— 1}

where¢ is of multiplicative order 2modps). HenceH C Zj. Obviously (0.1), (0.2)
hold. Since

kH =kH C{x+y0:x,yeN, x+y=k}+ p1{0,1,..., pop — 1},
©:3) requires > p1 ~ 3¢*, hencec’ > k.

The argument used to prove Theorem A has the following interesting consequence for
subsetsA C Zj, p prime.



Sum-product representationszy 437

Theorem B. GivenK > 1, there isKk’ = K'(K) — oo as K — oo such that the
following holds. Le¥ € Z, be such tha® is not a root of any polynomial i&,[x] of
degree at mosK and coefficients bounded ki (as integers). Then, il C Z, is an
arbitrary set andk < |A| < p/K, we have

|A+06A| > K'|A|
Remark. For a similar result over characteristic 0, by Konyagin and taba/see [KL].

Returning to exponential sums with prime modulus ($e€e [6.20)), we do obtain the
following extension for composite modulus:

Theorem C. LetH < Zj (q arbitrary) and assumeH| > M > 1. Then

max H| —cqg?™ 0.4
(a’q)zl‘geq(aﬂ‘d |~ cq 04

wheres§(M) — 0asM — oo (independently of).

This theorem will be proved in §8.

In the proof, two cases are distinguishedHlfcontains an elemerdt of large multi-
plicative order, it turns out that one may proceed by a slight modification of the proof of
(6-20) (Theorem 4.2 in [KS] fog prime). If all elements of{ are of low order, we use
the sum-product type results developed earlier in the paper.

In the casey is a prime, Theorems A and C may be obtained by combining a theorem
by Konyagin and a theorem in the book by Konyagin and Shparlinski [KS], except that
the bound onr is slightly weaker. (See Remark 6.2.) Konyagin’s theorem uses deep re-
sults in algebraic number theory such as Lehmer’s conjecture on the heights of algebraic
integers which are not roots of unity. There are several motivations to consider this type
of problems. Konyagin’s motivation was to prove the Heilbronn conjecture on the Waring
problem and certain partial cases of the Stechkin conjecture on Gauss sums for composite
moduli (seel[KS, §6]). This is also related to the work of Robinson on the distribution of
the solutions ok™ = a in residue classes (se€l [R]).

The method we use here is totally different from Konyagin’s. The main ingredients of
the proof are Freiman’s theorem and certain geometric techniques from Bilu’s proof of
Freiman’s theorem (seke [Bi]).

1

Notation.
1. Forq e N, Zy = Z/qZ.

2. Letx = (x1,...,x3),y = (v1, ..., ya) € RE. Thenxy” = > i Xivi, wherey? is the
transpose of the matrix. If x € Z? andy e ZZ, then the matrix multiplication is done
overZy.
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3. Leté = (&1,.... &) € 24, P =[]_4[A;. B] C RY, andP = P NZ?. A generalized
arithmetic progressiotis P = {x¢” : x € P}. When a progressiof® is given, P and
P are used with the above meaning. Sometimes we refer to a progressignmy, or
¢, P).

4. A progressiorP given byg, P = ]‘[flzl[l, Ji] is properif |P| = |P|. We sayP is
proper with respect to [if

leT :xeli[[l,LJs]ﬂZd]
i=1
is proper.
5. ForA, B C Zg, andk € N,
A+B={a+b:acA beB), kA=((k—-1DA+A,
AB ={ab:ac A,be B}, AF=AF1a,

a-B={a}B (modg) foracZ,
aB ={a}B foracZ,.

6. Forg € N, ¢,(0) = 2.
7. |lx|| = the distance from to the nearest integer.

Lemma 1.0. Lety = (y1,...,yq) € Z¢ withgcd(ys, ..., ys) = 1. Then there exists
S € SLy(Z) with y as an assigned row or column.

Proof. We do induction ord. Leta = gcd(yp, ..., yg). The assumption implies that
gcda, y1) = 1. Hence there exigt, ¢ € Z with |b| < |a| and|c| < |y1| such that

yib —ac = 1.

Lety; =ay/fori =2,...,d,andletS’ = (s; ;) € SLs—1(Z) be given by induction with
(¥, --.» yy) as the first row. Then

y1 Y2 ce Yd
c b - yib
S=10 s21 -+ s24-1 | €SL().
0 ...
0 sg-11 -+ Si-1d-1

Remark 1.01. 1t is clear from our proof thaf (i, j), the(i, j)-cofactor ofS, is bounded
To prove the next lemma, we need Lemma 6.6 and part of the proof of Theorem

1.2 from Bilu’s work [Bi] on Freiman’s theorem. We include them here for the reader’s
convenience.
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B1l. Forx e R", B C R™,
Ixllg :=inf{(A"1: Ax € B).

B2. Letesy,...,e, be a basis oR", W = (e1,...,e,_1), andw : R" — W be the
projection. LetB be a symmetric, convex body. Then

m
VOl —1(7(B)) = > llemlls vol, (B),

where vo}, (B) is the volume ofB Cc R™.

B3. Let A1, ..., A, be consecutive minima related o || g. Then there exists a basis
f1. ..., fn € Z (called aMahler basi$ such that

i .
Ifals <A1 Wfills = 54 fori=2.....m.

B4. Let f1,..., fiu € Z be the Mahler basis as given in B3 apd= || f;| . Then for
x = xfi

1l = maxpilxil.

B5. Forx € R™, we have
1 m!?
m s < llxllp < g lxlls.

Lemma 1.1. Let a progressiorP be given by € Zj andP = ]’[?zl[—Ji, Ji]. Assume
there existd. > 0 such that the progressio(s, ]_[f:l[l, LJ;]) is not proper. Then there
existv € N and a progressiofP’ given by’ € Zj—l, P = ]_[f:_ll[—Ji’, J!] satisfying

(i) v < Lmin; J; andv |q,
d-1 L

i ’ d d —'1ﬂ2 d-1

(i) v-{(xeT:xeP)c (ke x eP}.

Proof. Letv = gcd(y1, ..., y4). We may clearly assume thatq. Lety’ = (1, ..., )

= (y1/v, ..., ya/v). Hence gcdy;. ..., y)) = 1. Letes, ..., e, be the standard basis
of R?, and letS € SLy(Z) with ¢;S = y’ be given by LemmO. For ¢ P, let
% e 2771 andé e Z4~! be defined by

xSt = (%, %), (1.1)
vsel = (£,0)7. (1.2)
Hence
vxél = xS Hwse") = xET. (1.3)
Let

B=rPS L (1.4)
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Then
d
vol(B) = 24 ]‘[ J;. (1.5)
i=1
Denote byr the orthonormal projection orq, ..., es—1]. Let f1, ..., fa—1 be a Mahler
basis forr(B) C [e1, ..., eq—1]. Forx = Zf;llx;f,» € w(B), the second inequality in
B5 implies
d—-11? _ _ _ .
Wl = g Wl 7t < cant Vi (1.6)
wherecy = (d — 1)12/2972. Let
J = cap; Y, (1.7)
d—1
P’ =[]1=4. 71 (1.8)
i=1
Define
f1
=0l ..ox ), F=| @ |eGLia@), &T=FET.
Ja-1
Thenzé? = (x'F)ET = x’&’T. Hence (1.3) implies
vxeT = x'e'", (1.9

This is property (iii) in our conclusion.
From the choice of, we have

L L
ca=yst=2s1eZpst=Zp (1.10)
v v v
Hence (cf. B1)
lleall < L/v. (1.11)

Combining (1.11), B2, and (1.5) we have
dL dL &
I(x (B —vol(B) = 2¢== ;. 1.12
vol(z(B)) < - vol(B) ZUQJ (1.12)

On the other hand, the first inequality in B5 #0B) gives
x| < o7 Clx s lIxllegs) < d — 1)
Hence

d—-1
2 p;t < (d - )¢ tvol(m(B)). (1.13)
i=1
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Putting (1.7), (1.13) and (1.12) together, we have
d—1
[17=c]pt =27 Vi@ -1 tvol((B))
i=1
< 1=y 1)d*12ddL ﬁ J; (1.14)
= Cd 2 11 i .

This is (i) in the lemma.

Remark 1.1.1. In Lemm, we takeP = ]_[le[—J,», J;] for the convenient nota-
tion, because we need a symmetric body to use Bilu’s result. Clearly, we can apply the
lemma to the progressioR = (&, P) with P = ]'[?21[1, Ji]. ThenP’ is given by

@&, [T, J/.

2

Lemma 2.1. LetP = (&, P) be the progression wit§ = (&1,...,&;) € Zg and

P = ]'[;’zl[l, J;] ¢ R, where the integers, satisfyJ; > --- > J; > 0. Assume there
existe > 0 anda € Z satisfying

[P NaP| > e|P|. (2.1)

Then foranyindex =1, ..., d, one of the following alternatives hold.

(i) J;i < 2/e,
(i) P is not proper with respect t8/¢,
(iii) there exisk; € Z andk’ = (k}, ..., k) € Z¢ such that

O<k <1/s, |ki| <8/e? foralli<s<d, aki&=FKEgT.

Proof. Define
Q={xeP:axt’ e PNnaP). (2.2)

Assume (ii) fails. In particular, the arithmetic progressirin Z, is proper. It follows
from (2.7) that

Q| > &|P| =eJ1--- Ja. (2.3
Hence there existy, ..., X;, ..., xg € Z such that
Hxi tx =(x1,...,xq9) € Q} > ¢eJ;.

Assume (i) fails as well. TheaJ; > 2 and there i%; € Z with

O<ki <1/e (2.9
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andak;& € P — P. Hence

d
akig = KET with k' = (k... k) e [[[-J. K1 N 27 (2.5)
s=1

§s=

To show assumption (jii) holds, we need to shigi < 8/¢2fori < s < d.We assume

k| > 8/¢2 for somer € {i, ..., d}. (2.6)
Let
R =[4/¢], (2.7)
¢ =2minJ/|kl| = 2J, /K., (2.8)
S ={xtT +rtki& :xeQ, r=1,...,R},
(2.9)
S={x+rtkie; :xeQ, r=1,..., R}
Forr e N, 1 <r < R, by (2.7).[2:8),[(ZB) and (2.6), we have
4_J 1
rlki < —2-2Z < J, < J. (2.10)
e kil e

HenceS c P+ [0, Ji]e;. This inclusion and the assumption tiais proper with respect
to 9/e imply
laS| = |S| =S| <2J1--- Ja. (2.1

On the other hand, for any € 2, by (2:2) we have
ax¢T =xgT ep (2.12)

for somex = x(x) € P. LetQ C P be the set of all suck. Then there is a one-to-
one correspondence betwe@rand2. Putting [2.5) and{2.]12) together, we have (as any
elementinz - S) (cf. (2.9))

ax€T + artki& = (X + rek)eT. (2.13)
Since fors € {1, ..., d},

Js
|k

4 8
rekl| < -2 K| < ~Js. (2.14)

we have
d 8 8
X4tk € H[—(l—i——)]s, (1+—)JS:|. (2.15)
s=1 & &
The failure of assumption (ii) and (2.15) imply that S is proper.
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Let o be such that,/|k | = min, Js/|k;|. Thentk = 2J, and the set® + ¢k’,
P+ 2¢k’, ..., P+ Rek' are disjoint. Hence the seSs+ ¢k/, Q + 2¢k’, ..., Q2+ Rek are
all disjoint. Therefore,

R
jaS| = ||L|(@+rek)6™| = 1QIR > ed1 -+ JaR > B+ g
r=1

which contradicts] (2.71).

Proof of Theorem BWe will use the notatior(K’) for various (maybe different) con-
stants depending oki’.
AssumeA C Z, is such tha < |A| < p/K and|A +6A| < K'|A|, whered € Zy
satisfies the assumption of Theorem B. By Ruzsa’s inequality
A+ BJ?
|A— Al < u’
|B|

for |A| = |B| we have

|A — A| < (KA.

Identifying Z, ~ {0, 1,..., ¢ — 1}, we apply Freiman’s theorem t4, first considered

as a subset df with doubling constank 2K'? andA = —A. It follows from Freiman’s
theoremtha#l C P, whereP is a generalized-dimensional progression with< ¢(K’)
and|P|/|A| < c(K"). Since|A + 0 A| < K'|A], there isc € I, such that

|A|2 |A]

[(c—A)NOA| > — > —,

|[A+0A] = K’
and thus Al
[(A—A)NOA — A)| > X

Let? = P — P. Then|P| = c(K')|P|. We get
[P NOP| > c(K)|P]. (2.16)

Our aim is to apply Lemmp 2.1 with = ¢(K’) anda = 6. Some simplifications
occur becausg is prime. We want to rule out alternatives (i) and (ji). If (i) holds for
somei = 1,...,d, we may clearly replac@ by a progressiorP; C P of dimension
d — 1 with (c(K )/2)|7>| < |P1| and still satisfying

[PLNOP1] > c1(K)IP| = c1(K)IPyl. (2.17)

If (ii) holds, apply Lemma 1]1 to obtain a reduction frafto d — 1. Observe that since
the integen in Lemmg 1.1 satisfies| p and

v <c(K)yminJ; < c(K)IA| < c(K’)% < p,
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necessarily = 1 (assumingk is large enough). Thus by Lemal2,c Py, where
|P1] < ¢(K')|P| andPy is of dimensiond — 1. In both cases (either (i) or (ii)), we obtain
P, of dimensiord — 1 such that

c(KNIP| < |P1| < c(K"|P]
and [2.1}) holds.

Continuing the process, we get a progresgisatisfying (2.17) and alternative (jii)
of Lemmd 2.1 foralf =1, ..., d1, whered is the dimension of ande = ¢(K’). Thus

d
ﬁ:{Zl:xi&ZOSfoi,xl'EZ}
i=1

andforalli =1,...,d; there ar&; € Z andk,f’s € Z (1 <s < dy) satisfying

d1
Okiki = > ki &, (2.18)
s=1
0 <k <c(K'), (2.19)
J
Ik, | < c(K’)Tf foralls =1,...,d;. (2.20)

1

For (2.20), we usé (2.10) (cf. (2.8)) which is valid for ak= 1, . .., d1 (rather than[(216)
which is a consequence).
Returning to[(2.1B), it follows that the polynomial

p(x) = det[(xk,- — K] Jeii — Zk;,je,-,j] € Z,x] (2.21)
J#
has6 as a root, where; ; is the matrix with(i, j)-entry 1 and O elsewhere. Cleanhx)
is of degreed; < d < c¢(K’) with non-vanishingx?:-coefficient by [[2.19). By[(2-19),
(2.20) all coefficients of (2.21) are bounded by

dy dy
J .
> [kildin + K zph < e[ T2 < (K.
T =1 t

meSym(dy) i=1
This contradicts the assumption érfor K sufficiently large.

Remark. Quantitatively speaking, the previous argument will requireto be at most
sublogarithmic inp, since we do rely on Freiman’s theorem (cf! [C]). Thus we may ask
how large the quantity

min A+ 0A|/|A| (2.22)
pe<|Al<pl-s

can be made for sont € IF,. Considering setd of the formA = (XL X6 0 <
x; < M}, itis easily seen thaf (2.22) is less than exjog p).
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3

Lemma 3.1. LetP = (&, P) be a progression wit = (£1,...,&4) € ZZ and P =
]'[;’:1[1, J;] c R4, where the integers; satisfyJ; > --- > J; > 0. Assume

o[ [Ji <Pl <q™¥ (3.1

withy > Oaconstant. Let, M > 0 (¢ small, M large) satisfy

55t/ < M < g2, (3.2)
Assume
lmgy(P) > M forallq'|q, g' > q”. 3.3)
LetB C Z;; be such that
7y (B)| > M forall¢'|q, ¢ > q7/*™. (3.4)

Herer, : Z, — Z, denotes the quotient map mgd Then there is € B such that
laP NPl < g|P|. 3.5

Lemmd 3.1 will be proved by assumingP NP| > ¢|P| for alla € B, applying Lemma
[2.3 (on a progression which may have fewer generators) and ruling out alternatives (i)—
(iii) to get a contradiction.

We will first make a possible reduction of the numbesf generators of to ensure
properness with respect to some constant, using Lgmra 1.1.

The reduction. We take
g0 = €. (3.6)

Assume
SolP| < |PI, 3.7

and P is not proper with respect to/8. Lemma[ 1.1l then allows a reduction of the
dimension of the progressidnin the following sense: there arg € N andg® e Z¢~1,

Py = [17271. J1.,] N 2%~ satisfying

9
vo < —minJ;, wolg,
£0

C
IP1) < —|P), (3.8)
£0V0

voP C P1. (3.9

By B.1)-{3.9), P s
Py > [P1] > -— > 2 [P| > 61[P1] (3.10)

Vo vo

with

81 = cegdp. (3.11)
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Take
g1 = &61. (3.12

and repeat the preceding.
If P1 is not proper with respect to/8;, apply one more time Lemnja 1.1 to obtain
vi € Nandg®@ e Z4~2, P, = 192211, J2.1] N 2472 satisfying

9
vy < —minJy;, vilg,
€1
C
|Po| < —|P4l, (3.13)
£1V1
v1-P1C Pa. (3.14)

By (8.14). [3.10) and (3.13),

[Pil 81

[P2| > |P2| = — > —|P1| > 62|P2|, (3.15
v1 v1

with

8o = c&181. (3.16)
Notice that

P2 D vourP. (3.17)

Take
&r_1 = &6r_1. (3.18

After applying Lemmd 1]1r times, we havey, 1 € N and¢® e ZI™", B, =
[T¢Z111. Jp,i] N 247 satisfying

Ur—1 < min Jr—1i, vr-11q, (3.19)
Er—1
C
IPr| < ———IPr—-1l, (3.20)
Er—1Vr—1
Vr—1-Pr_1 C P (3.21)
Same reasoning as before yields
IPy| > |Pr| > 6,|P| (322
with
8 = c&r_16,—1. (3.23)
Also,
vov1 - V1P C Py (3.2%

We have the following:

(1) ceoe1---&-180 = 6.
(2) 8 =ced? .
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B) &-1=c(es0)? .

(3) Assumesy > ¢. Thene,_1 > ce2 > (ce)?’.
(3") eos1---&r_1 > ceel Bt o 2 S e
(4) |P|> ceoer---&—1v0v1- - Vr—1|P|.

2d+1

@) ——— Pl > vov1---vp-1.
€01 €&r—1
2d+1

C
%) (;) IP| > vovy - - - vp_1.

To see the above (in)equalities hold, we note that our notations (3.11)] (3.16), ... ,
(3:23) imply (1); [3.IB) and (3.23) imply (2); (3.18) and (2) imply (8); (3.B). (B.13), ... ,
(3:20) imply (4); (4) and (3) imply (5).

Assumen € Z, and

P NaP| > e|P|.

By 3.24). [3.7). (4). (1), and (3.18),
[Py NaPr| = |(vov1---v,—1P) Na(vo - - vy—1P)|
> (vov1- - vr—1) P NaP| > (vo- - v,—1) " 'edo[P|
> ceeg -+ - &r_100|Pr| = &8, |Pr| = c&r|Prl, (3.25)
where
& = &5. (3.26)
We need the following little fact from algebra to prove Lenjmg 3.1.

FactA. LetA C Zy, k € Z, andq’ = q/gcdk, q). Then|z, (A)| = |kA|.

Proof of Lemm@ 3]1We assume after reductionsp, is proper with respect to/3,.. (If
P is already proper with respect t¢g&Q thenr = 0 andPy = P.) We apply Lemmé 2|1
to P’ = P,, replacinge by ¢,. By our construction, alternative (i) in Lemrha R.1 is ruled
out.

AssumeJ; := J,; are ordered decreasingly > --- > J,.

Lets) =& e (1,...,q — 1} =~ Z,\(0} and define

g1 = gcdéy, q),
g2 = gcdé1, &5, q),

g =9cd&q, ... €y, q).
Claim. gz < q*7.
Proof of Claim. Assumeg, > ¢'77. Letw = ¢q/qs < q. Then (5),[(3.1) and (32)
imply

1
vouL - - - vr_1w < (C/e)2 Pl g7 < (C/e>2d“%quy < g (3.27)
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Also,

wéy = -+ = wéy, = 0(modg),
hence, from[(3:24),

vov1 - - - Ur—1wP = 0 (modg).
By Fact A,
with (by (3:27))

q' =q/gcdgq. vo- - vr—1w) > q”.

This contradicts (3]3), proving the Claim.

Therefore, there is € {1, ..., d’} such that

dizt _ vid, (3.29)
qi
g 4im2 v, (3.30)
q1 g2 qi-1 "~

Apply Lemmd 2.1 considering this particular indexAlternative (ji) is ruled out by con-
struction.

Claim. Alternative(i) fails.
Proof. If (i) holds, we get
€102 > 206, > T = 0> = T (3.31)

Let
V=100 VUr_19/qi-1.

By (3.30), (5),[B.1) and (3}2),
v<vo---vr_1q’ < (C/8)2d+1|]P| q’ < cq1_3V+7’/2qV < ql_y

Hence, from the definition af; 1,

q Pc q
qdi—-1 qi—

VP =vouy - vp_1 177r = 6]:’(]—1 { szés’ Txg < J;} (3.32)

s>i
(3.31), [3.3R) imply
WP < J/ T 1 Ty < (Cle) " < M.

Hence Fact A impliegz,(P)| = [vP| < M with ¢’ = g/gcdlg,v) > ¢”, again
contradicting[(3:B).
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So alternative (iii) holds and there atg (k})1<s<4 € Z such that

0<ki <1/er, (3.33)

k|| < 8/2 fori<s<d, (3.34)
d/

akig] = k(& (modg). (3.35)
s=1

Sinceg;—1 = gcdéy, ..., &4, q), (3.38) implies

akil = ki&/ (modg; 1). (3.36)

s>i

By (3.33), [3.3}), (3 and [3.2), the coefficient&;, k., ..., k/,) in (3.38) range in a set
of at most(1/¢,)(8/e2)? < (C/e)@+D2™ — p1/2 elements.

Recalling [3:2P) and (3]4) we have
17 _1/q; (B)| > M (3.37)

and we may consider elemenis C B, |B| > M, such thatr,, /.13 iS one-to-one.
Assuming|P NaP| > ¢|P| for alla € B, we have for alu € B (cf. (3.28)),

P NaP’| > ce |P| (3.39)

and the preceding applies, providing in particular a representétior] (3.36).

In view of the bound on the number of coefficients[in (3.36), therB'is- B with
|B'| > M2 such that for alla € B’, (3.36) holds with the same coefficierits k/
(s > i). Taking anyay, ap in B’ we obtain

(a1 — a2)ki&; = 0 (modg;_1),

(3.39)
(a1 — az)k; = 0 (Modg;—1/q;),
implying
1 |B'|
1= |7T!1i—1/qz' (kiB/)l = _|7Tfii—l/f1i(B/)| = > ngl/Z’
ki kil
a contradiction.
This proves Lemmpa 3 1.
Following the same arguments as in Lenjma 3.1, we also obtain:
Lemma3.7. Under the assumptions of Lem[®4d] there exist elements, ..., ag in B

with R ~ MY/19 such that

lasP NayP| < e|P| fors #s'. (3.40
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Proof. Let B C B be the set constructed in the proof of Lemmd 3.1. Assume. ., a,
€ B are already obtained satisfyirjg (340) and suppose

max |a,P NaP| > ¢|P| foralla € B.

1<s<r

Hence, there is some= 1, ..., r andB; C B with
1. M
|B1| > =|B| > — > M%10
r R

and such that
> ¢|P| foralla € B;. (3.41)

Pnlp
as

It follows that all elementsi/as, a € Bi, have a representatiop (3]36). Passing again
to a subse®] with |Bj| > M¥10-Y/2 = Mm2/5 we may ensure the same coefficients
ki, (k{)s>; and get a contradiction as before.

4

Let A C Z, be such that

|[A+ Al < K|A|, (4.1)
1< |Al < gt (4.2)
IdentifyingZ, ~ {0, 1, ..., ¢ — 1}, we apply Freiman’s theorem 1, first considered as

a subset of (with doubling constank 2K).
From [C], we obtain
d <2K

and a progressioR given by = (&1, ...,&) € Z¢ and P = [[%,[0, Ji], with J; >
-+ > Jgin N, such that

ACP={xel ixeP), (4.3)
IP| < CK°|A). (4.4)

Applying n, : Z — Z,, P becomes a progressionf containingA C Z,. Assuming
ck® < g2, (4.5)

by (4:2){4.5), we have
gt > K S|P = [P = 1Al > CFOpP). (4.6)

Thus assumptiofi(3.1) in Lemia B.1 holds wigh= ¢ ~<°.
Lete, M satisfy [3.2), i.e.

/)% < < g2 (4.7)
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and moreover .

e < CK.
AssumeB C Z;} is such thair,(B)| < |r,/(A)| (e.g.B contained in a translate of)
forall ¢’ | ¢ andq’ > ¢”. Furthermore, assume satisfies

lmg(B)| > M if ¢'| g andg’ > q7/?kK . (4.8
Since by assumption also
[ty (P)| = |7y (A)| = |y (B) > M if ¢’ |qandg’ > q7,

conditions [(3:B) [(3]4) of Lemnja 3.1 are satisfied.
Apply Lemma 3.1
Letay,...,agr € B satisfy [3.5). (We tak® < MY/10.) Write

‘ U arA‘ > RIAI = Y la,ANasAl = RIA| = Y [a,P N a,P)
r<R r#s r#s

> R|A| — R%2:CK°|A). (4.9)
TakingR = 2—18C‘K3, (@39) implies

R 1
|AB| > ‘ U a,A‘ > 1Al > —c KAl (4.10)
g 2 3
Assume 10
M > 5 (4.11)
(which implies the first inequality of (4.7), hence it also implies}(4.5)) and take
1l/e = MO
From [4.19) and(@31),
-7
|AB| > M " 7"|A) (4.12)

Replacing 4 by y and summarizing, we have proved the following:
Lemma4.l. LetA C Z, satisfy

A < g+, (4.13)
|A+ Al < K|A|. (4.14)

Let M satisfy
C50 My < g7/8, (4.15)

LetB C Z;; be such that
Iy (B)| < Iy (A)| if ¢"|q andg’ > g7,
| (B)| > M if g'|gandg’ > q7/8%K. 4.16
q

Then o
|AB| > M0 " Al (4.17)
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5

Proposition 1. Letx > 0be a small and a large constant. Letl C Zj (¢ large)
satisfy

lmg(H) > M  whenevey'|q, ¢' > ¢“. (5.1
Then there i%, r € N such that
k < g, (5.2)
r< |ngq",, (5.3)
kH"| > g*~*, (5.4)

where
k' =K'(k, M) - 0 ask — 0, M — oo (independently of).

Proof. We describe the construction. Given any
Ky > M2, (5.5)
set

K = min {(Iog logM)¥/2, lg—loc} (5.6)

Let Ag = H andA, = k, H* be the set obtained at stageAssume A, | < g1~
We distinguish the following cases.
() |1Ag + Ay| > K|Ay|. Take therky 1 = 2k, andrg 11 = 7.
(i) |Aq + Aol < K|Aql. Apply Lemmd 4.1l withA = Ay, B = H, y = «1. In (5.)
we can assum@/ < ¢"/10, Conditions[(4.15) and (4.16) clearly hold, becausé of (5.6).
Hence
10-K=7
[AcH| > M |[Ae| > K[Aql.
The second inequality is again By (b.6). Hence
ke H' | > K| Aql.
In this case we takk,1 = k, andry11 = ry + 1. Therefore
|Aay1l > K|Aql, (5.7)

with

koz-i—l < 2k, T+l = Fo+1- (5.8)
To reach sizg/1 1, the number of steps is at most lpglog K , because after steps, by

G,
q = |Aat1l > K*|H| = K°.
By (5.9), in [5.2) we have

k< 2logq/logK :q"z,

Hence
log 2 1

- log K - min{logloglogM, log 1/«}’

K2

by (5.8) and[(5]6).

We conclude the proof of Proposition 1 by taking= max{«1, «2}.
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6

We need the following to prove Theorem A. Letv’ : Z, — R be functions. We recall

F1. b(¢) = erzq v(x)ey(—x&). If v is a probability measure, i.e. 8 v(x) < 1, then

()] < 1.
F2. v/ (x) = ZyEZq v(x — y)'(y).
F3. supfv * v') C suppv + suppv’.
F4. v(x) = %dezq D(&)eq(x§).
F5. v V() = D(E)D(£).

LetO<x < 57/6. Then
T1. sinx > 5. Thereforele, (1) — 1| > %

T2. cosx <1— %. Therefore/e, (1) + 1] < 2 — %qiz
T3. leg(x) — eg(»)] = 128iNZE (x — y)I.

Proof of Theorem ALetx > 0 andM be constants as in Proposition 1. lget N be
odd. LetH C Zj satisfy the following conditions:

|7, (H)| =2  forall primesp|q, (6.1)
lmy(H) > M forallg'|q, ¢’ > ¢*. (6.2)

We want to show thaty H" = Z, for somek, r € N satisfying

r <log g, (6.3)
k1 < g™ (6.4)
By (6.9), Proposition 1 applies. L&t r satisfy [5.2)-(5.}).
Define
D={q' eN:q'# 1landg’|q},
hence
|D| < gY/109logq (6.5)
Forq’ € D, we have
kH" 1—«’ ,
g ety = L4 e (6.6)
q/q q/q
while by (6.1), also
|y (kH")| > |7y (H)| > 2. (6.7)

Take a subse®, C kH" such thatr, 2, is one-to-one and

12, > max{2, ¢'¢™'). (6.8)
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Define the probability measures

Z e, (6.9

XEQq/
8, being the indicator function, and their convolution

u(x) = q:D Mg (x)

= Y Mgy =YL= = Vo) Mg (g (D). (6.10)
Y1a~'*sy"D|,]_
Then by F3,
suppu C Y suppug € Qq C [DIKH". (6.11)
q'eD q'eD

We estimate the Fourier coefficients

Aajq) = eq(—ax)u(x)

X€Zy

forO <a < q.Leta/qg =a’/q' whereq’ | g and(d’, ¢') = 1. From (6.10) and F5,
a a’ 1
al — g\l = || = = e (a'x)). (6.12)
(q) q(q)‘ 121 XQ: 1 ‘

Claim 1. |(a/q)] < 1— g~

=

2%’

Proof of Claim 1. Assumeji(a/q)| > 1 — . We want to find a lower bound on.
Squaring both sides df (6.]12), we obtain

2rwa’
D cosT——(x—y) > 1-1)%Q % (6.13)
x,yqu/ q

Choose an elemenp € 2, such that

/
3 00sZ% (xo— y) > (1— D219, 1. (6.14)
q

/
yEQq/

By T3, we write

. 2 U _ 2 2 /
legr(a'x0) — g (a'y) 2 = [2 sin 224 (0 y)} —2- 2002 (39— ).
q 2 q’
Together with[(6.14) this gives
D leg(@'x0) — eq @'y < 22| — 2(1 - 1)*Qy| < 27|21. (6.15)

yqu/
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From [6.15),

1y © leg (@'x0) — eg(a'y)| > 24/T}| < 31Qq1-
So there is a subs&t’ C Q, with [Q'| > %|Qq/| such that for ally € @/,

leg (a'x0) — e (a'y)| < 24/7,
hence T1 implies
la'xo/q —a'y/ql < 2/7. (6.16)
Therefore
74(2)] = |7 (a' Q)| < 2J/7q" + 1.
Sincer, |2’ is one-to-one, also

14'¢™ <19 <2J7q +1 (6.17)
by (6.8). This gives a lower bound> 1—16q*2(', proving Claim 1.
Take /
¢=[g>]. (6.18)

Claim 2. Letu® be the¢-fold convolution of. Thensuppu® = Z,,.

Proof of Claim 2. Forx € Zg, write
1 14 —
pO ==+=3 40 (f)eq (ax). (6.19)
9 49 q

By Claim 2 and[(6.18), the second term(in (§.19) is at most

3!
()
q)| 1=a=q| \q

V4
1 q « 1
< <l - —,) <e T < -
1692 q
Henceu® (x) > 0, proving Claim 2.

Putting together Claim 2] (6.111), (6]1d), (6.5) ahd](5.2), we have
Zg = €tsuppu = £|DIkH" = kiH"

max
l<a<q

!

with k1 < g3 g/1091099 4x" — 45’ which completes the proof of Theorem A.

Remark 6.1.1t is much simpler to prove the weaker bound

_{d 1T 1
"\ — <l——=—=.
Hq 6]/ 2 (q/)S

Indeed, sincg2,/| > 2, there arey, x2 € Q, with 7,/ (x1) # 7y (x2). As (@', q') = 1,
alsom, (a'x1) # my (a'x2). Therefore, by T2,

T 1

|€q/(a/x1) + eq/(a/x2)| <leg(D+1<2- 2 W
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Write
| Y @] = 1201 -2) +ley (@x0) + ey (@x2)]
XEQW
<1Qy] - ZL
2(q")?

This yields the stated bound.

Remark 6.2.For g prime, Theorem A has a simpler proof, which gives a slightly weaker
bound onr. In this caseZ; is a cyclic group. The condition off C Zj is simply

|H| > M with M large. It follows thatH contains an elemeiit € H of multiplicative
orders > /M. Assuming (as we may) thatd H, it follows that

{1,6,...,0"y C H".
We distinguish 2 cases.

Case 1t > loggq/(loglogq)Y/2. Takerg > logq(loglogg)?. Using the inequality

ro c
X 1_ -
(aﬂ?ﬁl‘;eq(w )‘ = ro( (Iogq)2>

due to Konyagin (se€ [KS, p. 26]), simple application of the circle method imph&s =
Z, with k < C(logq)®.

Case 2t < logq/(loglogq)Y/2. Definep(r) = |Z¥|. Use Theorem 4.2 from [KS] to get

<t—c(p)g~?P for2<p <e(). (6.20)

t
max ‘ e, (ab®)
(@.q)=1 Xz_l 1

Hence 1
kH' =7, with k < ——(logq)®q?*.
c(p)

Sinceg(t) — oo for M — oo, we may achievé < c(x’)g with (M) — 0 as
M — oo.

7
Corollary 3.

(1) LetH C Zj satisfy assumptiof®.T)) of Propositionl and«’ be as in that proposition.
Letq’ |q,q' > ¢ and(a, ¢’) = 1. Letr € Nwithr > «’logq. Then

max > g%, (7.1

x,yeH"

a
—/(X -y
q



Sum-product representationszy 457

(2) Let H < Zj; be a multiplicative subgroup satisfying assumpt{dil)) of Proposi-
tion 1. Letg’ | ¢, q' > ¢* and(a, ¢’) = 1. Then

max i()c -y > q_z’(/. (7.2
x,yeH | q’
Proof. By (5.4).
ql—/(’ ,
|y (kaH")| = |mg (kH")| > —=4q'q7" > 1 (7.3)
q/q9
Hence there arg, w € kH" such that
a !
?(z —w)| =g ". (7.4

Writing z = x1 + - - - + x¢ andw = y1 + - - - + y, With x;, y; € H", it follows that

1 _. ,
> g% - ,2,(.
_kq q

max
x,yeH"

a
—/(x -y
q

by (5.2).
Corollary 4.

(1) LetH C Z; satisfy condition€6.1)), (6.2)and«’ be as in Theorer. Letl < a < gq.
Then forr > «’loggq,

max
x,yeH"

a ’
Eﬁ—ywzq*ﬂ (7.5)

(2) If moreoverH < Zj is a group, we get

max
x,yeH

a /
5u—ywzq5ﬂ (7.6)

Proof. Writea/q =a'/q’, (¢, q¢") = 1. Sincerr, (kyH") = Z,, we have

a 1
max |[—@z—w)| > =,
zweki H | g’ 2
hence
a/ 1 /
max |—(x —y)| > = > ¢~ >.
x,yeH" q/ k1
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8. The case of subgroups

The main result of this section is the following (fgrprime this issue was considered in

[P):
Theorem 5. LetH < Z with |H| > M > 1. Then

min max >q7° (8.1)

anj; x,yeH

a
—(x -y
q

wheres = §(M) — 0asM — oo (independently of).

We first treat the case wheth contains an element of large multiplicative order. The next
result has a simple proof obtained by a straightforward modification of an argument in
[KS] (see §4) for prime modulus.

Lemma8.1. Let¢ e Z; be of order (large). Then

min max > c(r)g Y= (8.2

(a,9)=1 jk

C_l(gj _ Qk)
q

forl<r < e@).
Proof. Forj =1,...,¢, leth; € Z be such that
bj = ab’ (modgq) 8.3
and extend periodically with periadfor j € Z.
Claim. Letc € Zand2 <r < ¢(t). Thenmax; |b; — c| > c(r)qg"=2/C=D,
Proof of Claim. Let

B = max |bj —c|. (8.4)

l<j<t
Sethb = (b1, ..., b,),andl = (1, ..., 1). We consider the lattice
L={l=(1,....8)€eZ :btT =0, 1" =0}
==, ....6)€eZ :(b-ce’ =0, 10T = 0. (8.5)

We consider all expressions (b; — ¢)¢; with Y ¢; = 0 and|b; — ¢| < B. From the
pigeonhole principle and (§.4), there(i, . .., ¢,) € L \ {0} such that

max [¢;| < c(r)BY =2, (8.6)
1<j<r
For this vectort = (¢4, ...,¢,) we havebi¢1 + --- + b.£, = 0. Hence, multiplying
with 6/ gives

bjt181+ -+ bj;rL, = 0(modg)
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forall j. Since alsd1 +---+ ¢, =0,
(bj41 — )1 + - + (bj4r — )¢, = 0 (Modg). (8.7)
The left side is bounded by
rBe(r)BY"=2 < ¢(r)B—D/=2)

by (8.4) and[(86).

Assumec(r)B"~D/=2 < 4: hence
B < c(r)q(r_z)/(r_l). (8.8)
It then follows from [[8.F) that

(bj+1 - C)El + -+ (bj+r - C)Er = Ov

(8.9
bit1l1+ -+ bjyrl, =0

for all j. Hence(b;) is a periodic linearly recurrent sequence of order at moand
smallest period.
Let v (x) be the minimal polynomial ofb;). (Seel[KS].) Then fron{ (8]9),

Yx)|(lr+Llox + -+ grxrfl)
implying degyr < r — 1. Obviouslyy (x) | (x! — 1). Assume
vy | J] a-xn.

1<t<t

Sincey (0) = 0 (modg), it would follow thaté™ = 1 (modg) for somer < t, contra-
dicting ord, () = 1.

Therefore one of the roots af is a primitive /! root andy is divisible by thez-
cyclotomic polynomial. Hence(r) < degy < r, a contradiction. Hencég (8.8) fails,
proving the Claim.

Suppose[(8]2) fails. Letting= a6* € Z, = {0,1,...,q — 1}, we get

a6’ —c ~1/Gr—1)

max
J

<c(r)g

Hence '
max dist@d’ — ¢, gZ) < c(r)g" =2/, (8.10)
J

From [8.10), we may for each=1, ..., t takeb; € Z such that
bj =af’ (modg) and |bj —c| < c(r)g" =2/,

This contradicts the Claim and proves the lemma.
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Proof of Theorem S5Let H < Zj, |H| > M. Fix« > 0 (small) and 1« M1 <
By Lemmg 8.1, we may assume

ord,(x) < M1 forallx € H.

M©/2,

(8.11)

If |7y, (H)| > My for all g1 | g with q1 > ¢*, then [8.1) holds, sincgé = §(k, M1) — O

ask — 0, M1 — oo (by Corollary 3(2)).
Assume there existg | g with g1 > ¢* and|r,, (H)| < M1. Hence

_ -1
Hi=HNm, (1) < ZZ
satisfieg H1| > M /M. Consider the set

Hi -1
Hi=1{x€Zyy : 14+ q1x € H1} = .

Assume there ig; | 5—1 with g2 > ¢* and|ry,(H1)| < M1. Hencelry, ,(H1)| < M1 and

definingH, = Hy N ”tﬁ}/z(l)' we have

|Hi| M
|Ho| > — > —.
My~ M?
Considering the set
Hy—1
Ho=1{x € Zyjg1q, - 1+ q1g2x € Ho} = ,
q192

we repeat the process. At some stage 1/«, the process has to stop. Thus

Hy=Hnm! (D,
Hy —1
My =(x € Zgjqyq, : 1+q1--gsx € Hy} = — ;
q1---(qs
|Hy| = |Hy| > —— > M"2,
/K
All
|y (Hs)| > My forall q’ | 9 with ¢’ > ¢g*.

N

Define
Qi1=¢q1...qs and Qo =gq/01.

Case 1 0; < ¢V¥. Since|H,| > 2, there are elements # y in H, C Zg,.
ax # ay (modQ») and

— 1

—a(x y) H > — > q_‘/E.
Q2 02

Letx =14 Q1x,y =14 Q1y € Hy < H. Writing

ax—y) _a(Qux - 01y) _ a(@ —7)
0> q qg

(8.12)
(8.13)

(8.14)

(8.15)

Hence
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we obtain

LELT R
q

and hencg (8]1) holds.

Case2Q» > q~/’7. First, note that if there is no ambiguity, we use the notatibnB) =
gcd A, B).

Claim 1. (Q1, Q2) <¢*.

Proof of Claim 1. Observe thatl + Q1x)(1+ Q1y) =1+ Q1(x + y) (monf)_
Hence

(14 Q0101+ Q1y) =1+ Q1(x +y) (ModQ1(Q1, Q2)).
Considerr g, (0;,0, (Hs) < Zy, o, 0,)- It follows from the preceding that

T01(01,00)(Hy) =1+ 018

whereS is an additive subgroup &g, ¢,). Hence

§ < (Z1.00:+) @ 7010100 (Hs) < L, (0,.0,)
are cyclic. By assumptiofi (8.]L1), all elementstf < H are of order< M1, implying

|7TQ1(Q1,Q2) (HY)| < M.

Therefore
701,00 (Hs)| < M1 (8.16)
By construction oft;, (8.18) implies
(01, Q2) < q~, (8.17)

and Claim 1 is proved.

Let 07 = 01/(Q1, Q2) and Q5 = 02/(01, Q2). Hence(Q}, 05) = 1 andQ) >
gV~ by case assumption arfd (8,17).
We want to apply Corollary 3(2) tﬁQ/Z(HS) < ZZ, with 4./ andMy. Letq’ | Q)
2
with ¢" > (Q’z)“*/E > g%, and letg” = q'/(q’, Q1. Q2). Thus by [BIN)g" > ¢*.
Claim 2. |m, (Hy)| > My.

Proof of Claim 2. It follows from (8.1%) that|z,»(H,)| > M. Letx1, ..., x, € Hy,
n > Mz, be such that; — x; # 0 (modg”). Since(¢”, Q7)) = (¢’, 07) = 1and

< , (01, 02) ) .
q bl S A~ - l’
(¢, 01, Q2)

we also have

01

%1 (5 —x) # 0(modg”).
(q/,Ql,Qz)(x 1) 70 (modg’)
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HenceQ1(x; — xj) # 0 (modq’). Since 1+ Q1x; € Hy, it follows that|w, (Hy)| > M1,
proving Claim 2.

Apply Corollary 3(2) to the grouwQ/Z(HS) < Z*Q, . Claim 2 implies that
2
|70q/ (o, (Hs))| = |mq (Hy)| > M1

forallg’| Q5 withg" > (Q’2)4~/’?. Hence for any:’ with (a’, Q%) = 1, there ar&, y € H;
such that
/
a > (Q/Z)_’(/ > q_"/ (8.18)
2

-

wherex’ = «’(4/k, M1) — 0 ask — 0 andM; — oo.
Write X = 14 Q1x andy = 1+ Q1y with x, y € H,. From [8.18),

‘ a' Q1

03
Recalling that(Q’, 0,) = 1, we may choose’ satisfyinga’Q}; = a (modQ5). Then

(8:19) gives

> g~ (8.19)

(x—y)

a(Q1, 02)?
02

/
K

>q .

(x=y)
Hence, by Claim 1,

_K/

a q ' —2%
L
H 02 (01, 02)?
and
a _ _ a kel
H—(x -~ y)H = H—(le — 01| =g .
q q
Therefore
max |2 —y)| > 7%,
x,yeH || g

wherex, k¥’ may be made arbitrarily small by takirg large enough. This proves Theo-
rem 5.

Theorem C is an extension of Theorem 4.2/in [KS] for composite modules and is an
immediate consequence of Theorem 5.

Proof of Theorem CFora < Z;, let{x1, ..., xjm)} = aH, and letax = x1 anday = x»
be given in Theorem 5 such that

X1 — X2
q
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wherex = «(M). Let

Then
$2=|H|+ ZZCOS(M>
[y 1
< |H|+ 2[<|H|> - 1} + 2005(M>
2 q
X1 — X2 2 _
S|H|2—2+2<1—n ><|H|2—27rq 2

References

[BIW] Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few indepen-
dent sources. In: Proc 45th FOCS, 384—-393 (2004)

[BKSSW] Barak, B., Kindler, G., Shaltiel, R., Sudakov, B., Wigderson, A.: Simulating indepen-
dence: new constructions of condensers, Ramsey graphs, dispersers, and extractors.
STOC, to appear

[Bi] Bilu, Y.: Structure of sets with small sumset. In: Structure Theory of Set Addition,
Astérisque258 77-108 (1999)| Zbl 0946.11004 MR 1701189

[B] Bourgain, J.: Mordell’s exponential sum estimate revisited, J. Amer. Math. B)c.
477-499 (2005)| Zbl pre02150882 MR 2137982

[BC] Bourgain, J., Chang, M.: Exponential sum estimates over subgroups and almost sub-
groups ofZ?, whereq is composite with few prime factors. Geom. Funct. Anal., sub-
mitted

[BGK] Bourgain, J., Glibichuk, A., Konyagin, S.: Estimate for the number of sums and products
and for exponential sums in fields of prime order. J. London Math. Soc., submitted

[BKT] Bourgain, J., Katz, N., Tao, T.: A sum-product estimate in finite fields and their appli-
cations. Geom. Funct. Andl4, 27-57 (2004)| Zbl pre02121750 MR 2053599

[C] Chang, M.: A polynomial bound in Freiman’s theorem. Duke Mathl1B 399-419
(2002) [ Zbl 1035.11048 MR 1909605

[KL] Konyagin, S., Laba, |.: Distance sets of well-distributed planar sets for polygonal norms.
Israel J. Math., to appear

[KS] Konyagin, S., Shparlinski, I.: Character Sums with Exponential Functions and
Their Applications. Cambridge Tracts in Math. 136, Cambridge Univ. Press (1999)
Zbl 0933.11001 MR 1725241

[N] Nathanson, M. B.: Additive Number Theory: Inverse Problems and the Geometry of
Sumsets. Springer (1996) Zbl 0859.11003 MR 1477155

[P] Powell, C.: Bounds for multiplicative cosets over fields of prime order. Math. Comp.
66, 807-822 (1997) Zbl 0880.11003 MR 1372008

[R] Robinson, R.: Numbers having smallmth roots modp. Math. Comp.61, 393-413

|H|

S=|Yeqt)
i=1

(1993) | Zbl 0785.11003 MR 1189522


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0946.11004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1701189
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02150882&format=complete
http://www.ams.org/mathscinet-getitem?mr=2137982
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02121750&format=complete
http://www.ams.org/mathscinet-getitem?mr=2053599
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1035.11048&format=complete
http://www.ams.org/mathscinet-getitem?mr=1909605
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0933.11001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1725241
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0859.11003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1477155
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0880.11003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1372008
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0785.11003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1189522

	Introduction
	
	
	
	
	
	
	
	The case of subgroups

