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Abstract. The purpose of this paper is to investigate efficient representations of the residue classes
moduloq, by performing sum and product set operations starting from a given subsetA of Zq . We
consider the case of very small setsA and compositeq for which not much seemed known (non-
trivial results were recently obtained whenq is prime or when log|A| ∼ logq). Roughly speaking
we show that all residue classes are obtained from ak-fold sum of anr-fold product set ofA, where
r � logq and logk � logq, provided the residue setsπq ′(A) are large for all large divisorsq ′

of q. Even in the special case of prime modulusq, some results are new, when considering large
but bounded setsA. It follows for instance from our estimates that one can obtainr as small as
r ∼ logq/ log |A| with similar restriction onk, something not covered by earlier work of Konya-
gin and Shparlinski. On the technical side, essential use is made of Freiman’s structural theorem on
sets with small doubling constant. Taking forA = H a possibly very small multiplicative subgroup,
bounds on exponential sums and lower bounds on mina∈Z∗

q
maxx∈H ‖ax/q‖ are obtained. This is

an extension to the results obtained by Konyagin, Shparlinski and Robinson on the distribution of
solutions ofxm = a (modq) to composite modulusq.

0. Introduction

In this paper, we consider the following problem. Consider a subsetH ⊂ Z∗
q (q ∈ N ar-

bitrary) such that|πp(H)| > 1 for all prime divisorsp | q, whereπp denotes the quotient
map modp. Let kH be thek-fold sum set, andH r the r-fold product set ofH . Then
kH = Zq for somek ∈ N. One may for instance takek = q3 (see proof of Theorem 2).
Assume now we allow both addition and multiplication and seek for a representation
Zq = kH r ; how small may we takek andr? In this context, we show the following:

Theorem A. There is a functionκ ′
= κ ′(κ,M) such thatκ ′

→ 0 if κ → 0 andM → ∞,
with the following property. Letq ∈ N be odd andH ⊂ Z∗

q such that

|πp(H)| > 1 for all prime divisorsp of q, (0.1)

|πq ′(H)| > M for all divisorsq ′
| q with q ′ > qκ . (0.2)

Then
Zq = kH r with k < qκ

′

andr < κ ′ logq. (0.3)

(This will be proved in §6.)
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The main motivation for this work comes from a recent line of reseach in combina-
torial number theory and its applications to exponential sums in finite fields and residue
classes (cf. [BKT], [BGK], [BC], [B]).

If we consider in particular a subsetA ⊂ Fp, p prime, such that|A| > pε for some
fixed (and arbitrary)ε > 0, thenkAk = Fp providedk > k(ε) and also

max
(a,p)=1

∣∣∣ ∑
x1,...,xk∈A

ep(ax1 · · · xk)

∣∣∣ < p−δ(ε)
|A|

k

for someδ(ε) > 0. This and related estimates had very significant applications to the the-
ory of Gauss sums and various issues related to pseudo-randomness (see [B], [BKSSW],
[BIW] for instance). One of the main shortcomings of the results that are presently avail-
able is the break-down of the method, starting from the sum-product theorem in [BKT], if
we letε = ε(p) be small. The boundary of the assumption here isε & 1/log logp, which
is likely much stronger than necessary for such results to hold. More precisely, letting
H < F∗

p, one could expect an equidistribution result of the form

max
(a,p)=1

∣∣∣ ∑
x∈H

ep(ax)

∣∣∣ < o(|H |) (∗)

to hold whenever log|H | � log logp, which at this stage we can only establish if
log |H | > logp/(log logp)ε (see [BGK]).

It became apparently clear that the underlying ideas as developed in [BKT], [BGK]
are insufficient to reach this goal (in particular they seem unable to produce a result such
as the theorem stated above). Our purpose here is to explore the use of Freiman’s theorem
in sum-product problems (which was not used in [BKT]). Freiman’s theorem (see [N]
for instance) is one of the deepest result in additive number theory, providing a very
specific description of subsetsA of a torsion-free Abelian group with small sumset, i.e.
|2A| = |A+ A| < K|A|, withK not too large.

The results of this paper are new and based on a new approach. They do not provide
the answers to the primary questions we are interested in, such as understanding when(∗)

holds, but bring new techniques into play through related and more modest aims.
Our bound in (0.3) is essentially optimal. Consider a compositeq = p1p2, wherep1

andp2 are prime. Letp1 ≈
1
2q
κ . Define

H = {1, θ} + p1{0,1, . . . , p2 − 1}

whereθ is of multiplicative order 2(modp1). HenceH ⊂ Z∗
q . Obviously (0.1), (0.2)

hold. Since

kH r
= kH ⊂ {x + yθ : x, y ∈ N, x + y = k} + p1{0,1, . . . , p2 − 1},

(0.3) requiresk ≥ p1 ∼
1
2q
κ , henceκ ′

≥ κ.
The argument used to prove Theorem A has the following interesting consequence for

subsetsA ⊂ Zp, p prime.
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Theorem B. GivenK > 1, there isK ′
= K ′(K) → ∞ asK → ∞ such that the

following holds. Letθ ∈ Zp be such thatθ is not a root of any polynomial inZp[x] of
degree at mostK and coefficients bounded byK (as integers). Then, ifA ⊂ Zp is an
arbitrary set andK < |A| < p/K, we have

|A+ θA| > K ′
|A|.

Remark. For a similar result over characteristic 0, by Konyagin and Łaba, see [KL].

Returning to exponential sums with prime modulus (see (6.20)), we do obtain the
following extension for composite modulus:

Theorem C. LetH < Z∗
q (q arbitrary) and assume|H | ≥ M > 1. Then

max
(a,q)=1

∣∣∣ ∑
x∈H

eq(ax)

∣∣∣ < |H | − cq−δ(M) (0.4)

whereδ(M) → 0 asM → ∞ (independently ofq).

This theorem will be proved in §8.
In the proof, two cases are distinguished. IfH contains an elementθ of large multi-

plicative order, it turns out that one may proceed by a slight modification of the proof of
(6.20) (Theorem 4.2 in [KS] forq prime). If all elements ofH are of low order, we use
the sum-product type results developed earlier in the paper.

In the caseq is a prime, Theorems A and C may be obtained by combining a theorem
by Konyagin and a theorem in the book by Konyagin and Shparlinski [KS], except that
the bound onr is slightly weaker. (See Remark 6.2.) Konyagin’s theorem uses deep re-
sults in algebraic number theory such as Lehmer’s conjecture on the heights of algebraic
integers which are not roots of unity. There are several motivations to consider this type
of problems. Konyagin’s motivation was to prove the Heilbronn conjecture on the Waring
problem and certain partial cases of the Stechkin conjecture on Gauss sums for composite
moduli (see [KS, §6]). This is also related to the work of Robinson on the distribution of
the solutions ofxm ≡ a in residue classes (see [R]).

The method we use here is totally different from Konyagin’s. The main ingredients of
the proof are Freiman’s theorem and certain geometric techniques from Bilu’s proof of
Freiman’s theorem (see [Bi]).

1

Notation.

1. Forq ∈ N, Zq = Z/qZ.

2. Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd . ThenxyT =
∑
i xiyi , whereyT is the

transpose of the matrixy. If x ∈ Zd andy ∈ Zdq , then the matrix multiplication is done
overZq .
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3. Let ξ = (ξ1, . . . , ξd) ∈ Zdq , P =
∏d
i=1[Ai, Bi ] ⊂ Rd , andP = P ∩Zd . A generalized

arithmetic progressionis P = {xξT : x ∈ P}. When a progressionP is given,P and
P are used with the above meaning. Sometimes we refer to a progression by(ξ, P ), or
(ξ,P).

4. A progressionP given byξ, P =
∏d
i=1[1, Js ] is proper if |P| = |P|. We sayP is

proper with respect to Lif {
xξT : x ∈

d∏
i=1

[1, LJs ] ∩ Zd
}

is proper.

5. ForA,B ⊂ Zq , andk ∈ N,

A+ B = {a + b : a ∈ A, b ∈ B}, kA = (k − 1)A+ A,

AB ={ab : a ∈ A, b ∈ B}, Ak = Ak−1A,

a · B = {a}B (modq) for a ∈ Z,
aB = {a}B for a ∈ Zq .

6. Forq ∈ N, eq(θ) = e2πiθ .

7. ‖x‖ = the distance fromx to the nearest integer.

Lemma 1.0. Let y = (y1, . . . , yd) ∈ Zd with gcd(y1, . . . , yd) = 1. Then there exists
S ∈ SLd(Z) with y as an assigned row or column.

Proof. We do induction ond. Let a = gcd(y2, . . . , yd). The assumption implies that
gcd(a, y1) = 1. Hence there existb, c ∈ Z with |b| ≤ |a| and|c| ≤ |y1| such that

y1b − ac = 1.

Let yi = ay′

i for i = 2, . . . , d, and letS′
= (si,j ) ∈ SLd−1(Z) be given by induction with

(y′

2, . . . , y
′

d) as the first row. Then

S =


y1 y2 · · · yd
c y′

2b · · · y′

db

0 s2,1 · · · s2,d−1
0 · · ·

0 sd−1,1 · · · sd−1,d−1

 ∈ SLd(Z).

Remark 1.0.1. It is clear from our proof thatS(i, j), the(i, j)-cofactor ofS, is bounded
by |y′

1 · · · ŷ′

j · · · y′

d |.

To prove the next lemma, we need Lemma 6.6 and part of the proof of Theorem
1.2 from Bilu’s work [Bi] on Freiman’s theorem. We include them here for the reader’s
convenience.
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B1. Forx ∈ Rm, B ⊂ Rm,

‖x‖B := inf{λ−1 : λx ∈ B}.

B2. Let e1, . . . , em be a basis ofRm, W = 〈e1, . . . , em−1〉, andπ : Rm → W be the
projection. LetB be a symmetric, convex body. Then

volm−1(π(B)) ≤
m

2
‖em‖B volm(B),

where volm(B) is the volume ofB ⊂ Rm.

B3. Let λ1, . . . , λm be consecutive minima related to‖ · ‖B . Then there exists a basis
f1, . . . , fm ∈ Z (called aMahler basis) such that

‖f1‖B ≤ λ1, ‖fi‖B ≤
i

2
λi for i = 2, . . . , m.

B4. Let f1, . . . , fm ∈ Z be the Mahler basis as given in B3 andρi = ‖fi‖B . Then for
x =

∑
i xifi,

‖x‖ρ := max
i
ρi |xi |.

B5. Forx ∈ Rm, we have

m−1
‖x‖B ≤ ‖x‖ρ ≤

m!2

2m−1
‖x‖B .

Lemma 1.1. Let a progressionP be given byξ ∈ Zdq andP =
∏d
i=1[−Ji, Ji ]. Assume

there existsL > 0 such that the progression(ξ,
∏d
i=1[1, LJi ]) is not proper. Then there

existv ∈ N and a progressionP ′ given byξ ′
∈ Zd−1

q , P ′
=

∏d−1
i=1 [−J ′

i , J
′

i ] satisfying

(i) v < Lmini Ji andv | q,

(ii)
d−1∏
i=1

J ′

i < Cd
L

v

d∏
i=1

Ji , whereCd = d

[
(d − 1)!2

2d−2
(d − 1)

]d−1

,

(iii) v · {xξT : x ∈ P} ⊂ {x′ξ ′T : x′
∈ P′

}.

Proof. Let v = gcd(y1, . . . , yd). We may clearly assume thatv | q. Lety′
= (y′

1, . . . , y
′

d)

= (y1/v, . . . , yd/v). Hence gcd(y′

1, . . . , y
′

d) = 1. Let e1, . . . , ed be the standard basis
of Rd , and letS ∈ SLd(Z) with edS = y′ be given by Lemma 1.0. Forx ∈ P, let
x̄ ∈ Zd−1 andξ̄ ∈ Zd−1

q be defined by

xS−1
= (x̄, ∗), (1.1)

vSξT = (ξ̄ ,0)T . (1.2)

Hence
vxξT = (xS−1)(vSξT ) = x̄ξ̄T . (1.3)

Let
B = PS−1. (1.4)
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Then

vol(B) = 2d
d∏
i=1

Ji . (1.5)

Denote byπ the orthonormal projection on [e1, . . . , ed−1]. Let f1, . . . , fd−1 be a Mahler
basis forπ(B) ⊂ [e1, . . . , ed−1]. For x̄ =

∑d−1
i=1 x

′

ifi ∈ π(B), the second inequality in
B5 implies

|x′

i | ≤
(d − 1)!2

2d−2
‖x̄‖

π(B)
ρ−1
i ≤ cdρ

−1
i , ∀i, (1.6)

wherecd = (d − 1)!2/2d−2. Let

J ′

i = cdρ
−1
i , (1.7)

P ′
=

d−1∏
i=1

[−J ′

i , J
′

i ]. (1.8)

Define

x′
= (x′

1, . . . , x
′

d−1), F =

 f1
...

fd−1

 ∈ GLd−1(Z), ξ ′T
= F ξ̄ T .

Thenx̄ξ̄T = (x′F)ξ̄T = x′ξ ′T . Hence (1.3) implies

vxξT = x′ξ ′T . (1.9)

This is property (iii) in our conclusion.
From the choice ofS, we have

ed = y′S−1
=
y

v
S−1

∈
L

v
PS−1

=
L

v
B. (1.10)

Hence (cf. B1)
‖ed‖B ≤ L/v. (1.11)

Combining (1.11), B2, and (1.5) we have

vol(π(B)) <
dL

2v
vol(B) = 2d

dL

2v

d∏
i=1

Ji . (1.12)

On the other hand, the first inequality in B5 onπ(B) gives

{x : |xi | ≤ ρ−1
i } ⊂ {x : ‖x‖π(B) ≤ d − 1}.

Hence

2d−1
d−1∏
i=1

ρ−1
i ≤ (d − 1)d−1 vol(π(B)). (1.13)
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Putting (1.7), (1.13) and (1.12) together, we have

d−1∏
i=1

J ′

i = cd−1
d

∏
ρ−1
i ≤ cd−1

d 2−(d−1)(d − 1)d−1 vol(π(B))

≤ cd−1
d 2−(d−1)(d − 1)d−12d

dL

2v

d∏
i=1

Ji . (1.14)

This is (ii) in the lemma.

Remark 1.1.1. In Lemma 1.1, we takeP =
∏d
i=1[−Ji, Ji ] for the convenient nota-

tion, because we need a symmetric body to use Bilu’s result. Clearly, we can apply the
lemma to the progressionP = (ξ, P ) with P =

∏d
i=1[1, Ji ]. Then P ′ is given by

(ξ ′,
∏d−1
i=1 [1, J ′

i ]).

2

Lemma 2.1. Let P = (ξ, P ) be the progression withξ = (ξ1, . . . , ξd) ∈ Zdq and

P =
∏d
s=1[1, Js ] ⊂ Rd , where the integersJs satisfyJ1 ≥ · · · ≥ Jd > 0. Assume there

existε > 0 anda ∈ Z∗
q satisfying

|P ∩ aP| > ε|P|. (2.1)

Then for any indexi = 1, . . . , d, one of the following alternatives hold.

(i) Ji < 2/ε,
(ii) P is not proper with respect to9/ε,

(iii) there existki ∈ Z andk′
= (k′

1, . . . , k
′

d) ∈ Zd such that

0< ki < 1/ε, |k′
s | < 8/ε2 for all i ≤ s ≤ d, akiξi = k′ξT .

Proof. Define

� = {x ∈ P : axξT ∈ P ∩ aP}. (2.2)

Assume (ii) fails. In particular, the arithmetic progressionP in Zq is proper. It follows
from (2.1) that

|�| > ε|P| = εJ1 · · · Jd . (2.3)

Hence there existx1, . . . , x̂i, . . . , xd ∈ Z such that

|{xi : x = (x1, . . . , xd) ∈ �}| > εJi .

Assume (i) fails as well. ThenεJi ≥ 2 and there iski ∈ Z with

0< ki < 1/ε (2.4)
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andakiξi ∈ P − P. Hence

akiξi = k′ξT with k′
= (k′

1, . . . , k
′

d) ∈

d∏
s=1

[−Js, Js ] ∩ Zd . (2.5)

To show assumption (iii) holds, we need to show|k′
s | < 8/ε2 for i ≤ s ≤ d. We assume

|k′
t | ≥ 8/ε2 for somet ∈ {i, . . . , d}. (2.6)

Let

R = [4/ε], (2.7)

` = 2 min
s
Js/|k

′
s | = 2Jt/k

′
t , (2.8)

S = {xξT + r`kiξi : x ∈ �, r = 1, . . . , R},
(2.9)

S = {x + r`kiei : x ∈ �, r = 1, . . . , R}.

For r ∈ N, 1 ≤ r ≤ R, by (2.7), (2.8), (2.4) and (2.6), we have

r`ki <
4

ε
2
Jt

|k′
t |

1

ε
≤ Jt ≤ Ji . (2.10)

HenceS ⊂ P + [0, Ji ]ei . This inclusion and the assumption thatP is proper with respect
to 9/ε imply

|aS| = |S| = |S| < 2J1 · · · Jd . (2.11)

On the other hand, for anyx ∈ �, by (2.2) we have

axξT = x̄ξT ∈ P (2.12)

for somex̄ = x̄(x) ∈ P. Let �̄ ⊂ P be the set of all such̄x. Then there is a one-to-
one correspondence between� and�̄. Putting (2.5) and (2.12) together, we have (as any
element ina · S) (cf. (2.9))

axξT + ar`kiξi = (x̄ + r`k′)ξT . (2.13)

Since fors ∈ {1, . . . , d},

|r`k′
s | <

4

ε
2
Js

|k′
s |

|k′
s | <

8

ε
Js, (2.14)

we have

x̄ + r`k′
∈

d∏
s=1

[
−

(
1 +

8

ε

)
Js,

(
1 +

8

ε

)
Js

]
. (2.15)

The failure of assumption (ii) and (2.15) imply thata · S is proper.
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Let σ be such thatJσ /|k′
σ | = mins Js/|k′

s |. Then`k′
σ = 2Jσ and the setsP + `k′,

P + 2`k′, . . . ,P +R`k′ are disjoint. Hence the sets�+ `k′, �+ 2`k′, . . . , �+R`k′ are
all disjoint. Therefore,

|aS| =

∣∣∣ R⊔
r=1

(�̄+ r`k′)ξT
∣∣∣ = |�̄|R > εJ1 · · · JdR > 3J1 · · · Jd ,

which contradicts (2.11).

Proof of Theorem B.We will use the notationc(K ′) for various (maybe different) con-
stants depending onK ′.

AssumeA ⊂ Zp is such thatK < |A| < p/K and|A+ θA| < K ′
|A|, whereθ ∈ Z∗

p

satisfies the assumption of Theorem B. By Ruzsa’s inequality

|A− A| ≤
|A+ B|

2

|B|
,

for |A| = |B| we have
|A− A| < (K ′)2|A|.

Identifying Zq ' {0,1, . . . , q − 1}, we apply Freiman’s theorem toA, first considered

as a subset ofZ with doubling constant≤ 2K ′2 andA = −A. It follows from Freiman’s
theorem thatA ⊂ P, whereP is a generalizedd-dimensional progression withd < c(K ′)

and|P|/|A| < c(K ′). Since|A+ θA| < K ′
|A|, there isc ∈ Fp such that

|(c − A) ∩ θA| ≥
|A|

2

|A+ θA|
>

|A|

K ′
,

and thus

|(A− A) ∩ θ(A− A)| >
|A|

K ′
.

Let P̂ = P − P. Then|P̂| = c(K ′)|P|. We get

|P̂ ∩ θP̂| > c(K ′)|P̂|. (2.16)

Our aim is to apply Lemma 2.1 withε = c(K ′) anda = θ. Some simplifications
occur becauseq is prime. We want to rule out alternatives (i) and (ii). If (i) holds for
somei = 1, . . . , d, we may clearly replacêP by a progressionP1 ⊂ P̂ of dimension
d − 1 with (c(K ′)/2)|P̂| ≤ |P1| and still satisfying

|P1 ∩ θP1| > c1(K
′)|P| ≥ c1(K

′)|P1|. (2.17)

If (ii) holds, apply Lemma 1.1 to obtain a reduction fromd to d − 1. Observe that since
the integerv in Lemma 1.1 satisfiesv |p and

v < c(K ′)minJi < c(K ′)|A| < c(K ′)
p

K
< p,
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necessarilyv = 1 (assumingK is large enough). Thus by Lemma 1.1,P ⊂ P1, where
|P1| < c(K ′)|P| andP1 is of dimensiond − 1. In both cases (either (i) or (ii)), we obtain
P1 of dimensiond − 1 such that

c(K ′)|P| < |P1| < c(K ′)|P|

and (2.17) holds.
Continuing the process, we get a progressionP̄ satisfying (2.17) and alternative (iii)

of Lemma 2.1 for alli = 1, . . . , d1, whered1 is the dimension of̄P andε = ε(K ′). Thus

P̄ =

{ d1∑
i=1

xiξi : 0 ≤ x ≤ Ji, xi ∈ Z
}

and for alli = 1, . . . , d1 there areki ∈ Z andk′

i,s ∈ Z (1 ≤ s ≤ d1) satisfying

θkiξi =

d1∑
s=1

k′

i,sξs, (2.18)

0< ki < c(K ′), (2.19)

|k′

i,s | < c(K ′)
Js

Ji
for all s = 1, . . . , d1. (2.20)

For (2.20), we use (2.10) (cf. (2.8)) which is valid for alls = 1, . . . , d1 (rather than (2.6)
which is a consequence).

Returning to (2.18), it follows that the polynomial

p(x) = det
[
(xki − k′

i,i)ei,i −

∑
j 6=i

k′

i,j ei,j

]
∈ Zp[x] (2.21)

hasθ as a root, whereei,j is the matrix with(i, j)-entry 1 and 0 elsewhere. Clearlyp(x)
is of degreed1 ≤ d ≤ c(K ′) with non-vanishingxd1-coefficient by (2.19). By (2.19),
(2.20) all coefficients of (2.21) are bounded by

∑
π∈Sym(d1)

d1∏
i=1

(|ki |δi,π(i) + |k′

i,π(i)|) < c(K ′)d1
∑
π

d1∏
i=1

Jπ(i)

Ji
< c′(K ′).

This contradicts the assumption onθ for K sufficiently large.

Remark. Quantitatively speaking, the previous argument will requireK ′ to be at most
sublogarithmic inp, since we do rely on Freiman’s theorem (cf. [C]). Thus we may ask
how large the quantity

min
pε<|A|<p1−ε

|A+ θA|/|A| (2.22)

can be made for someθ ∈ Fp. Considering setsA of the formA = {
∑d
i=1 xiθ

i : 0 ≤

xi ≤ M}, it is easily seen that (2.22) is less than exp(
√

logp).
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3

Lemma 3.1. LetP = (ξ, P ) be a progression withξ = (ξ1, . . . , ξd) ∈ Zdq andP =∏d
s=1[1, Js ] ⊂ Rd , where the integersJs satisfyJ1 ≥ · · · ≥ Jd > 0. Assume

δ0
∏

Ji < |P| < q1−3γ (3.1)

with γ > 0 a constant. Letε,M > 0 (ε small,M large) satisfy

δ−1
0 (1/ε)3

d+10
< M < qγ /2. (3.2)

Assume
|πq ′(P)| > M for all q ′

| q, q ′ > qγ . (3.3)

LetB ⊂ Z∗
q be such that

|πq ′(B)| > M for all q ′
| q, q ′ > qγ /10d . (3.4)

Hereπq ′ : Zq → Zq ′ denotes the quotient map modq ′. Then there isa ∈ B such that

|aP ∩ P| < ε|P|. (3.5)

Lemma 3.1 will be proved by assuming|aP ∩P| > ε|P| for all a ∈ B, applying Lemma
2.1 (on a progression which may have fewer generators) and ruling out alternatives (i)–
(iii) to get a contradiction.

We will first make a possible reduction of the numberd of generators ofP to ensure
properness with respect to some constant, using Lemma 1.1.

The reduction. We take
ε0 = ε. (3.6)

Assume
δ0|P| ≤ |P|, (3.7)

andP is not proper with respect to 9/ε0. Lemma 1.1 then allows a reduction of the
dimension of the progressionP in the following sense: there arev0 ∈ N andξ (1) ∈ Zd−1

q ,

P1 =
∏d−1
i=1 [1, J1,i ] ∩ Zd−1 satisfying

v0 <
9

ε0
minJi, v0 | q,

|P1| <
C

ε0v0
|P|, (3.8)

v0P ⊂ P1. (3.9)

By (3.7)–(3.9),

|P1| ≥ |P1| ≥
|P|

v0
>
δ0

v0
|P| > δ1|P1| (3.10)

with
δ1 = cε0δ0. (3.11)



446 Mei-Chu Chang

Take
ε1 = εδ1. (3.12)

and repeat the preceding.
If P1 is not proper with respect to 9/ε1, apply one more time Lemma 1.1 to obtain

v1 ∈ N andξ (2) ∈ Zd−2
q , P2 =

∏d−2
i=1 [1, J2,i ] ∩ Zd−2 satisfying

v1 <
9

ε1
minJ1,i, v1 | q,

|P2| <
C

ε1v1
|P1|, (3.13)

v1 · P1 ⊂ P2. (3.14)

By (3.14), (3.10) and (3.13),

|P2| ≥ |P2| ≥
|P1|

v1
>
δ1

v1
|P1| > δ2|P2|, (3.15)

with
δ2 = cε1δ1. (3.16)

Notice that
P2 ⊃ v0v1P. (3.17)

Take
εr−1 = εδr−1. (3.18)

After applying Lemma 1.1r times, we havevr−1 ∈ N and ξ (r) ∈ Zd−rq , Pr =∏d−r
i=1 [1, Jr,i ] ∩ Zd−r satisfying

vr−1 <
9

εr−1
minJr−1,i, vr−1 | q, (3.19)

|Pr | <
C

εr−1vr−1
|Pr−1|, (3.20)

vr−1 · Pr−1 ⊂ Pr . (3.21)

Same reasoning as before yields

|Pr | ≥ |Pr | > δr |Pr | (3.22)

with
δr = cεr−1δr−1. (3.23)

Also,
v0v1 · · · vr−1P ⊂ Pr . (3.24)

We have the following:

(1) cε0ε1 · · · εr−1δ0 = δr .
(2) δr = cεδ2

r−1.
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(3) εr−1 = c(εδ0)
2r−1

.
(3′) Assumeδ0 > ε. Thenεr−1 > cε2r > (cε)2

d
.

(3′′) ε0ε1 · · · εr−1 > cεε22
+23

+···+2r > cε2r+1
≥ cε2d+1

.
(4) |P | > c ε0ε1 · · · εr−1v0v1 · · · vr−1|Pr |.

(4′)
C

ε0ε1 · · · εr−1
|P| > v0v1 · · · vr−1.

(5)

(
C

ε

)2d+1

|P| > v0v1 · · · vr−1.

To see the above (in)equalities hold, we note that our notations (3.11), (3.16), . . . ,
(3.23) imply (1); (3.18) and (3.23) imply (2); (3.18) and (2) imply (3); (3.8), (3.13), . . . ,
(3.20) imply (4); (4′) and (3′′) imply (5).

Assumea ∈ Zq and
|P ∩ aP| > ε|P|.

By (3.24), (3.7), (4), (1), and (3.18),

|Pr ∩ aPr | ≥ |(v0v1 · · · vr−1P) ∩ a(v0 · · · vr−1P)|
≥ (v0v1 · · · vr−1)

−1
|P ∩ aP| > (v0 · · · vr−1)

−1εδ0|P|

> cεε0 · · · εr−1δ0|Pr | = cεδr |Pr | = cεr |Pr |, (3.25)

where
εr = εδr . (3.26)

We need the following little fact from algebra to prove Lemma 3.1.

Fact A. LetA ⊂ Zq , k ∈ Z, andq ′
= q/gcd(k, q). Then|πq ′(A)| = |kA|.

Proof of Lemma 3.1.We assume afterr reductionsPr is proper with respect to 9/εr . (If
P is already proper with respect to 9/ε, thenr = 0 andP0 = P.) We apply Lemma 2.1
toP ′

= Pr , replacingε by εr . By our construction, alternative (ii) in Lemma 2.1 is ruled
out.

AssumeJ ′

i := Jr,i are ordered decreasingly,J ′

1 ≥ · · · ≥ J ′

d ′ .

Let ξ ′

i = ξ
(r)
i ∈ {1, . . . , q − 1} ' Zq\{0} and define

q1 = gcd(ξ ′

1, q),

q2 = gcd(ξ ′

1, ξ
′

2, q),

...

qd ′ = gcd(ξ ′

1, . . . , ξ
′

d ′ , q).

Claim. qd ′ ≤ q1−γ .

Proof of Claim. Assumeqd ′ > q1−γ . Let w = q/qd ′ < qγ . Then (5), (3.1) and (3.2)
imply

v0v1 · · · vr−1w ≤ (C/ε)2
d+1

|P| qγ < (C/ε)2
d+1 1

δ0
q1−2γ < q1−γ . (3.27)
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Also,
wξ ′

1 = · · · = wξ ′

d ′ = 0 (modq),

hence, from (3.24),
v0v1 · · · vr−1wP = 0 (modq).

By Fact A,
πq ′(P) = 0 (3.28)

with (by (3.27))
q ′

= q/gcd(q, v0 · · · vr−1w) > qγ .

This contradicts (3.3), proving the Claim.

Therefore, there isi ∈ {1, . . . , d ′
} such that

qi−1

qi
> qγ /d , (3.29)

q

q1
,
q1

q2
, . . . ,

qi−2

qi−1
≤ qγ /d . (3.30)

Apply Lemma 2.1 considering this particular indexi. Alternative (ii) is ruled out by con-
struction.

Claim. Alternative(i) fails.

Proof. If (i) holds, we get

(C/ε)2
d+1

> 2/εr > J ′

i ≥ J ′

i+1 ≥ · · · ≥ J ′

d ′ . (3.31)

Let
v = v0 · · · vr−1q/qi−1.

By (3.30), (5), (3.1) and (3.2),

v ≤ v0 · · · vr−1q
γ < (C/ε)2

d+1
|P| qγ < cq1−3γ+γ /2qγ < q1−γ

Hence, from the definition ofqi−1,

vP = v0v1 · · · vr−1
q

qi−1
P ⊂

q

qi−1
Pr =

q

qi−1

{ ∑
s≥i

xsξ
′
s : xs ≤ J ′

s

}
. (3.32)

(3.31), (3.32) imply

|vP| ≤ J ′

i J
′

i+1 · · · J ′

d ′ < (C/ε)d2d+1
< M.

Hence Fact A implies|πq ′(P)| = |vP| < M with q ′
= q/gcd(q, v) > qγ , again

contradicting (3.3).
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So alternative (iii) holds and there areki, (k′
s)1≤s≤d ′ ∈ Z such that

0 < ki < 1/εr , (3.33)

|k′
s | < 8/ε2

r for i ≤ s ≤ d ′, (3.34)

akiξ
′

i =

d ′∑
s=1

k′
sξ

′
s (modq). (3.35)

Sinceqi−1 = gcd(ξ ′

1, . . . , ξ
′

i−1, q), (3.35) implies

akiξ
′

i =

∑
s≥i

k′
sξ

′
s (modqi−1). (3.36)

By (3.33), (3.34), (3′) and (3.2), the coefficients(ki, k′

i, . . . , k
′

d ′) in (3.36) range in a set

of at most(1/εr)(8/ε2
r )
d ′

< (C/ε)(2d+1)2d+1
< M1/2 elements.

Recalling (3.29) and (3.4) we have

|πqi−1/qi (B)| > M (3.37)

and we may consider elementsB̄ ⊂ B, |B̄| > M, such thatπqi−1/qi |B̄ is one-to-one.
Assuming|P ∩ aP| > ε|P| for all a ∈ B̄, we have for alla ∈ B̄ (cf. (3.25)),

|P ′
∩ aP ′

| > cεr |P ′
| (3.38)

and the preceding applies, providing in particular a representation (3.36).
In view of the bound on the number of coefficients in (3.36), there isB ′

⊂ B̄ with
|B ′

| > M1/2 such that for alla ∈ B ′, (3.36) holds with the same coefficientski, k′
s

(s ≥ i). Taking anya1, a2 in B ′ we obtain

(a1 − a2)kiξ
′

i = 0 (modqi−1),

(a1 − a2)ki = 0 (modqi−1/qi),
(3.39)

implying

1 = |πqi−1/qi (kiB
′)| ≥

1

|ki |
|πqi−1/qi (B

′)| =
|B ′

|

|ki |
> εrM

1/2,

a contradiction.
This proves Lemma 3.1.

Following the same arguments as in Lemma 3.1, we also obtain:

Lemma 3.1′. Under the assumptions of Lemma3.1, there exist elementsa1, . . . , aR in B
withR ∼ M1/10 such that

|asP ∩ as′P| < ε|P| for s 6= s′. (3.40)
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Proof. Let B̄ ⊂ B be the set constructed in the proof of Lemma 3.1. Assumea1, . . . , ar
∈ B̄ are already obtained satisfying (3.40) and suppose

max
1≤s≤r

|asP ∩ aP| > ε|P| for all a ∈ B̄.

Hence, there is somes = 1, . . . , r andB1 ⊂ B̄ with

|B1| >
1

r
|B̄| >

M

R
> M9/10

and such that ∣∣∣∣P ∩
a

as
P

∣∣∣∣ > ε|P| for all a ∈ B1. (3.41)

It follows that all elementsa/as , a ∈ B1, have a representation (3.36). Passing again
to a subsetB ′

1 with |B ′

1| > M9/10−1/2
= M2/5, we may ensure the same coefficients

ki, (k
′
s)s≥i and get a contradiction as before.

4

LetA ⊂ Zq be such that

|A+ A| < K|A|, (4.1)

1 � |A| < q1−4γ . (4.2)

IdentifyingZq ' {0,1, . . . , q − 1}, we apply Freiman’s theorem toA, first considered as
a subset ofZ (with doubling constant≤ 2K).

From [C], we obtain
d ≤ 2K

and a progressionP given byξ = (ξ1, . . . , ξd) ∈ Zd andP =
∏d
i=1[0, Ji ], with J1 ≥

· · · ≥ Jd in N, such that

A ⊂ P = {xξT : x ∈ P}, (4.3)

|P| < CK
3
|A|. (4.4)

Applying πq : Z → Zq , P becomes a progression inZq containingA ⊂ Zq . Assuming

CK
3
< qγ /2, (4.5)

by (4.2)–(4.5), we have

q1−3γ > CK
3
q1−4γ > |P| ≥ |P| ≥ |A| > C−K3

|P|. (4.6)

Thus assumption (3.1) in Lemma 3.1 holds withδ0 = C−K3
.

Let ε,M satisfy (3.2), i.e.

CK
3
(1/ε)10K+5

< M < qγ /2 (4.7)
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and moreover
ε < C−K3

.

AssumeB ⊂ Z∗
q is such that|πq ′(B)| ≤ |πq ′(A)| (e.g.B contained in a translate ofA)

for all q ′
| q andq ′ > qγ . Furthermore, assumeB satisfies

|πq ′(B)| > M if q ′
| q andq ′ > qγ /20K . (4.8)

Since by assumption also

|πq ′(P)| ≥ |πq ′(A)| ≥ |πq ′(B)| > M if q ′
| q andq ′ > qγ ,

conditions (3.3), (3.4) of Lemma 3.1 are satisfied.
Apply Lemma 3.1′.
Let a1, . . . , aR ∈ B satisfy (3.5). (We takeR < M1/10.) Write∣∣∣ ⋃

r≤R

arA

∣∣∣ ≥ R|A| −

∑
r 6=s

|arA ∩ asA| ≥ R|A| −

∑
r 6=s

|arP ∩ asP|

> R|A| − R2εCK
3
|A|. (4.9)

TakingR =
1
2εC

−K3
, (4.9) implies

|AB| ≥

∣∣∣ ⋃
r≤R

arA

∣∣∣ > R

2
|A| >

1

ε
C−K3

|A|. (4.10)

Assume
M > C50K+10

(4.11)

(which implies the first inequality of (4.7), hence it also implies (4.5)) and take

1/ε = M10−K−6
.

From (4.10) and (4.11),
|AB| > M10−K−7

|A|. (4.12)

Replacing 4γ by γ and summarizing, we have proved the following:

Lemma 4.1. LetA ⊂ Zq satisfy

|A| < q1−γ , (4.13)

|A+ A| < K|A|. (4.14)

LetM satisfy

C50K+10
< M < qγ /8. (4.15)

LetB ⊂ Z∗
q be such that

|πq ′(B)| ≤ |πq ′(A)| if q ′
| q andq ′ > qγ ,

|πq ′(B)| > M if q ′
| q andq ′ > qγ /80K . (4.16)

Then
|AB| > M10−K−7

|A|. (4.17)
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5

Proposition 1. Let κ > 0 be a small andM a large constant. LetH ⊂ Z∗
q (q large)

satisfy
|πq ′(H)| > M wheneverq ′

| q, q ′ > qκ . (5.1)

Then there isk, r ∈ N such that

k < qκ
′

, (5.2)

r < log2 q
κ ′

, (5.3)

|kH r
| > q1−κ ′

, (5.4)

where
κ ′

= κ ′(κ,M) → 0 asκ → 0,M → ∞ (independently ofq).

Proof. We describe the construction. Given any

κ1 > κ1/2, (5.5)

set

K = min

{
(log logM)1/2,

κ1

100κ

}
. (5.6)

LetA0 = H andAα = kαH
rα be the set obtained at stageα. Assume|Aα| < q1−κ1.

We distinguish the following cases.

(i) |Aα + Aα| > K|Aα|. Take thenkα+1 = 2kα andrα+1 = rα.
(ii) |Aα + Aα| ≤ K|Aα|. Apply Lemma 4.1 withA = Aα, B = H , γ = κ1. In (5.1)
we can assumeM < qγ /10. Conditions (4.15) and (4.16) clearly hold, because of (5.6).
Hence

|AαH | > M10−K−7
|Aα| > K|Aα|.

The second inequality is again by (5.6). Hence

|kαH
rα+1

| > K|Aα|.

In this case we takekα+1 = kα andrα+1 = rα + 1. Therefore

|Aα+1| > K|Aα|, (5.7)

with
kα+1 ≤ 2kα, rα+1 ≤ rα+1. (5.8)

To reach sizeq1−κ1, the number of steps is at most logq/logK, because afters steps, by
(5.7),

q ≥ |Aα+1| > Ks
|H | ≥ Ks .

By (5.8), in (5.2) we have

k ≤ 2logq/logK
= qκ2.

Hence

κ2 =
log 2

logK
∼

1

min{log log logM, log 1/κ}
,

by (5.5) and (5.6).
We conclude the proof of Proposition 1 by takingκ = max{κ1, κ2}.
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6

We need the following to prove Theorem A. Letν, ν′ : Zq → R be functions. We recall

F1. ν̂(ξ) =
∑
x∈Zq ν(x)eq(−xξ). If ν is a probability measure, i.e. 0≤ ν(x) ≤ 1, then

|ν̂(ξ)| ≤ 1.
F2. ν ∗ ν′(x) =

∑
y∈Zq ν(x − y)ν′(y).

F3. supp(ν ∗ ν′) ⊂ suppν + suppν′.
F4. ν(x) =

1
q

∑
ξ∈Zq ν̂(ξ)eq(xξ).

F5. ν̂ ∗ ν′(ξ) = ν̂(ξ)ν̂′(ξ).

Let 0 ≤ x ≤ 5π/6. Then

T1. sinx > x
2π . Therefore,|eq(1)− 1| > 1

q
.

T2. cosx < 1 −
x2

4π . Therefore,|eq(1)+ 1| < 2 −
π
2

1
q2 .

T3. |eq(x)− eq(y)| = |2 sin2π
2q (x − y)|.

Proof of Theorem A.Let κ > 0 andM be constants as in Proposition 1. Letq ∈ N be
odd. LetH ⊂ Z∗

q satisfy the following conditions:

|πp(H)| ≥ 2 for all primesp | q, (6.1)

|πq ′(H)| > M for all q ′
| q, q ′ > qκ . (6.2)

We want to show thatk1H
r

= Zq for somek1, r ∈ N satisfying

r < log qκ
′

, (6.3)

k1 < q5κ ′

. (6.4)

By (6.2), Proposition 1 applies. Letk, r satisfy (5.2)–(5.4).
Define

D = {q ′
∈ N : q ′

6= 1 andq ′
| q},

hence
|D| < q1/log logq . (6.5)

Forq ′
∈ D, we have

|πq ′(kH r)| ≥
|kH r

|

q/q ′
>
q1−κ ′

q/q ′
= q ′q−κ ′

, (6.6)

while by (6.1), also
|πq ′(kH r)| ≥ |πq ′(H)| ≥ 2. (6.7)

Take a subset�q ′ ⊂ kH r such thatπq ′ |�q ′ is one-to-one and

|�q ′ | ≥ max{2, q ′q−κ ′

}. (6.8)
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Define the probability measures

µq ′ =
1

|�q ′ |

∑
x∈�q′

δx, (6.9)

δx being the indicator function, and their convolution

µ(x) = *
q ′∈D

µq ′(x)

=

∑
y1,...,y|D|−1

µq
|D|
(x − y1 − · · · − y

|D|−1) · · ·µq2(y2)µq1(y1). (6.10)

Then by F3,
suppµ ⊂

∑
q ′∈D

suppµq ′ ⊂

∑
q ′∈D

�q ′ ⊂ |D|kH r . (6.11)

We estimate the Fourier coefficients

µ̂(a/q) =

∑
x∈Zq

eq(−ax)µ(x)

for 0< a < q. Let a/q = a′/q ′ whereq ′
| q and(a′, q ′) = 1. From (6.10) and F5,∣∣∣∣µ̂(

a

q

)∣∣∣∣ ≤

∣∣∣∣µ̂q ′

(
a′

q ′

)∣∣∣∣ =
1

|�q ′ |

∣∣∣ ∑
x∈�q′

eq ′(a′x)

∣∣∣. (6.12)

Claim 1. |µ̂(a/q)| < 1 −
1
16q

−2κ ′

.

Proof of Claim 1. Assumeµ̂(a/q)| > 1 − τ . We want to find a lower bound onτ .
Squaring both sides of (6.12), we obtain∑

x,y∈�q′

cos
2πa′

q ′
(x − y) > (1 − τ)2|�q ′ |

2. (6.13)

Choose an elementx0 ∈ �q ′ such that∑
y∈�q′

cos
2πa′

q ′
(x0 − y) > (1 − τ)2|�q ′ |. (6.14)

By T3, we write

|eq ′(a′x0)− eq ′(a′y)|2 =

[
2 sin

2πa′

q ′

(x0 − y)

2

]2

= 2 − 2 cos
2πa′

q ′
(x0 − y).

Together with (6.14) this gives∑
y∈�q′

|eq ′(a′x0)− eq ′(a′y)|2 ≤ 2|�q ′ | − 2(1 − τ)2|�q ′ | < 2τ |�q ′ |. (6.15)
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From (6.15),
|{y : |eq ′(a′x0)− eq ′(a′y)| > 2

√
τ }| ≤

1
2|�q ′ |.

So there is a subset�′
⊂ �q ′ with |�′

| > 1
2|�q ′ | such that for ally ∈ �′,

|eq ′(a′x0)− eq ′(a′y)| < 2
√
τ ,

hence T1 implies
‖a′x0/q − a′y/q‖ < 2

√
τ . (6.16)

Therefore
|πq ′(�′)| = |πq ′(a′�′)| ≤ 2

√
τq ′

+ 1.

Sinceπq ′ |�′ is one-to-one, also

1
2q

′q−κ ′

< |�′
| ≤ 2

√
τq ′

+ 1 (6.17)

by (6.8). This gives a lower boundτ > 1
16q

−2κ ′

, proving Claim 1.

Take
` = [q3κ ′

]. (6.18)

Claim 2. Letµ(`) be thè -fold convolution ofµ. Thensuppµ(`) = Zq .

Proof of Claim 2. Forx ∈ Zq , write

µ(`)(x) =
1

q
+

1

q

q∑
a=1

µ̂(`)
(
a

q

)
eq(ax). (6.19)

By Claim 2 and (6.18), the second term in (6.19) is at most

max
1≤a<q

∣∣∣∣µ̂(`)(aq
)∣∣∣∣ = max

1≤a<q

∣∣∣∣µ̂(
a

q

)∣∣∣∣` < (
1 −

1

16q2κ ′

)q3κ′

< e−q
κ′

<
1

q
.

Henceµ(`)(x) > 0, proving Claim 2.

Putting together Claim 2, (6.11), (6.18), (6.5) and (5.2), we have

Zq = ` suppµ = `|D|kH r
= k1H

r

with k1 ≤ q3κ ′

q1/log logqqκ
′

< q5κ ′

, which completes the proof of Theorem A.

Remark 6.1.It is much simpler to prove the weaker bound∣∣∣∣µ̂q ′

(
a′

q ′

)∣∣∣∣ < 1 −
π

2

1

(q ′)3
.

Indeed, since|�q ′ | ≥ 2, there arex1, x2 ∈ �q ′ with πq ′(x1) 6= πq ′(x2). As (a′, q ′) = 1,
alsoπq ′(a′x1) 6= πq ′(a′x2). Therefore, by T2,

|eq ′(a′x1)+ eq ′(a′x2)| ≤ |eq ′(1)+ 1| < 2 −
π

2

1

(q ′)2
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Write ∣∣∣ ∑
x∈�q′

eq ′(a′x)

∣∣∣ ≤ (|�q ′ | − 2)+ |eq ′(a′x1)+ eq ′(a′x2)|

< |�q ′ | −
π

2

1

(q ′)2
.

This yields the stated bound.

Remark 6.2.Forq prime, Theorem A has a simpler proof, which gives a slightly weaker
bound onr. In this case,Z∗

q is a cyclic group. The condition onH ⊂ Z∗
q is simply

|H | > M with M large. It follows thatH contains an elementθ ∈ H of multiplicative
ordert >

√
M. Assuming (as we may) that 1∈ H , it follows that

{1, θ, . . . , θ r} ⊂ H r .

We distinguish 2 cases.

Case 1: t ≥ logq/(log logq)1/2. Taker0 & logq(log logq)4. Using the inequality

max
(a,q)=1

∣∣∣ r0∑
x=1

eq(aθ
x)

∣∣∣ < r0

(
1 −

c

(logq)2

)
due to Konyagin (see [KS, p. 26]), simple application of the circle method implieskH r0 =

Zq with k < C(logq)3.

Case 2: t < logq/(log logq)1/2. Defineϕ(t) = |Z∗
t |. Use Theorem 4.2 from [KS] to get

max
(a,q)=1

∣∣∣ t∑
x−1

eq(aθ
x)

∣∣∣ < t − c(ρ)q−2/ρ for 2 ≤ ρ ≤ ϕ(t). (6.20)

Hence

kH t
= Zq with k <

1

c(ρ)
(logq)2q2/ρ .

Sinceϕ(t) → ∞ for M → ∞, we may achievek < c(κ ′)qκ
′

with κ ′(M) → 0 as
M → ∞.

7

Corollary 3.

(1) LetH ⊂ Z∗
q satisfy assumption(5.1)of Proposition1 andκ ′ be as in that proposition.

Letq ′
| q, q ′ > qκ

′

and(a, q ′) = 1. Letr ∈ N with r > κ ′ logq. Then

max
x,y∈H r

∥∥∥∥ aq ′
(x − y)

∥∥∥∥ > q−2κ ′

. (7.1)
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(2) Let H < Z∗
q be a multiplicative subgroup satisfying assumption(5.1) of Proposi-

tion 1. Letq ′
| q, q ′ > qκ

′

and(a, q ′) = 1. Then

max
x,y∈H

∥∥∥∥ aq ′
(x − y)

∥∥∥∥ > q−2κ ′

. (7.2)

Proof. By (5.4),

|πq ′(kaH r)| = |πq ′(kH r)| >
q1−κ ′

q/q ′
= q ′q−κ ′

> 1. (7.3)

Hence there arez,w ∈ kH r such that∥∥∥∥ aq ′
(z− w)

∥∥∥∥ ≥ q−κ ′

. (7.4)

Writing z = x1 + · · · + xk andw = y1 + · · · + yk with xi, yi ∈ H r , it follows that

max
x,y∈H r

∥∥∥∥ aq ′
(x − y)

∥∥∥∥ ≥
1

k
q−κ ′

> q−2κ ′

.

by (5.2).

Corollary 4.

(1) LetH ⊂ Z∗
q satisfy conditions(6.1), (6.2)andκ ′ be as in TheoremA. Let1 ≤ a < q.

Then forr > κ ′ logq,

max
x,y∈H r

∥∥∥∥aq (x − y)

∥∥∥∥ & q−5κ ′

. (7.5)

(2) If moreoverH < Z∗
q is a group, we get

max
x,y∈H

∥∥∥∥aq (x − y)

∥∥∥∥ & q−5κ ′

. (7.6)

Proof. Write a/q = a′/q ′, (a′, q ′) = 1. Sinceπq ′(k1H
r) = Zq ′ , we have

max
z,w∈k1H

r

∥∥∥∥a′

q ′
(z− w)

∥∥∥∥ ≥
1

2
,

hence

max
x,y∈H r

∥∥∥∥a′

q ′
(x − y)

∥∥∥∥ &
1

k1
> q−5κ ′

.
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8. The case of subgroups

The main result of this section is the following (forq prime this issue was considered in
[P]):

Theorem 5. LetH < Z∗
q with |H | > M > 1. Then

min
a∈Z∗

q

max
x,y∈H

∥∥∥∥aq (x − y)

∥∥∥∥ > q−δ (8.1)

whereδ = δ(M) → 0 asM → ∞ (independently ofq).

We first treat the case whenH contains an element of large multiplicative order. The next
result has a simple proof obtained by a straightforward modification of an argument in
[KS] (see §4) for prime modulus.

Lemma 8.1. Let θ ∈ Z∗
q be of ordert (large). Then

min
(a,q)=1

max
j,k

∥∥∥∥aq (θ j − θk)

∥∥∥∥ > c(r)q−1/(r−1) (8.2)

for 1< r < ϕ(t).

Proof. For j = 1, . . . , t , let bj ∈ Z be such that

bj = aθ j (modq) (8.3)

and extend periodically with periodt for j ∈ Z.

Claim. Let c ∈ Z and2 ≤ r < ϕ(t). Thenmaxj |bj − c| > c(r)q(r−2)/(r−1).

Proof of Claim. Let
B = max

1≤j≤t
|bj − c|. (8.4)

Setb = (b1, . . . , br), and1 = (1, . . . ,1). We consider the lattice

L = {` = (`1, . . . , `r) ∈ Zr : b`T = 0, 1`T = 0}

= {` = (`1, . . . , `r) ∈ Zr : (b − c1)`T = 0, 1`T = 0}. (8.5)

We consider all expressions
∑
(bi − c)`i with

∑
`i = 0 and|bi − c| ≤ B. From the

pigeonhole principle and (8.4), there is(`1, . . . , `r) ∈ L \ {0} such that

max
1≤j≤r

| j̀ | < c(r)B1/(r−2). (8.6)

For this vector̀ = (`1, . . . , `r) we haveb1`1 + · · · + br`r = 0. Hence, multiplying
with θ j gives

bj+1`1 + · · · + bj+r`r = 0 (modq)
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for all j . Since alsò 1 + · · · + `r = 0,

(bj+1 − c)`1 + · · · + (bj+r − c)`r = 0 (modq). (8.7)

The left side is bounded by

rBc(r)B1/(r−2) < c(r)B(r−1)/(r−2)

by (8.4) and (8.6).
Assumec(r)B(r−1)/(r−2) < q; hence

B < c(r)q(r−2)/(r−1). (8.8)

It then follows from (8.7) that

(bj+1 − c)`1 + · · · + (bj+r − c)`r = 0,

bj+1`1 + · · · + bj+r`r = 0
(8.9)

for all j . Hence(bj ) is a periodic linearly recurrent sequence of order at mostr and
smallest periodt .

Letψ(x) be the minimal polynomial of(bj ). (See [KS].) Then from (8.9),

ψ(x) | (`1 + `2x + · · · + `rx
r−1)

implying degψ ≤ r − 1. Obviouslyψ(x) | (xt − 1). Assume

ψ(x) |
∏

1≤τ<t

(1 − xτ ).

Sinceψ(θ) = 0 (modq), it would follow thatθ τ ≡ 1 (modq) for someτ < t , contra-
dicting ordq(θ) = t .

Therefore one of the roots ofψ is a primitive t th root andψ is divisible by thet-
cyclotomic polynomial. Henceϕ(t) ≤ degψ < r, a contradiction. Hence (8.8) fails,
proving the Claim.

Suppose (8.2) fails. Lettingc = aθk ∈ Zq = {0,1, . . . , q − 1}, we get

max
j

∥∥∥∥aθ j − c

q

∥∥∥∥ < c(r)q−1/(r−1).

Hence
max
j

dist(aθ j − c, qZ) < c(r)q(r−2)/(r−1). (8.10)

From (8.10), we may for eachj = 1, . . . , t takebj ∈ Z such that

bj = aθ j (modq) and |bj − c| < c(r)q(r−2)/(r−1).

This contradicts the Claim and proves the lemma.
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Proof of Theorem 5.LetH < Z∗
q , |H | > M. Fix κ > 0 (small) and 1� M1 < Mκ/2.

By Lemma 8.1, we may assume

ordq(x) < M1 for all x ∈ H. (8.11)

If |πq1(H)| > M1 for all q1 | q with q1 > qκ , then (8.1) holds, sinceδ = δ(κ,M1) → 0
asκ → 0,M1 → ∞ (by Corollary 3(2)).

Assume there existsq1 | q with q1 > qκ and|πq1(H)| ≤ M1. Hence

H1 = H ∩ π−1
q1
(1) < Z∗

q

satisfies|H1| > M/M1. Consider the set

H1 = {x ∈ Zq/q1 : 1 + q1x ∈ H1} =
H1 − 1

q1
.

Assume there isq2 |
q
q1

with q2 > qκ and|πq2(H1)| < M1. Hence|πq1q2(H1)| < M1 and

definingH2 = H1 ∩ π−1
q1q2

(1), we have

|H2| >
|H1|

M1
>
M

M2
1

.

Considering the set

H2 = {x ∈ Zq/q1q2 : 1 + q1q2x ∈ H2} =
H2 − 1

q1q2
,

we repeat the process. At some stages ≤ 1/κ, the process has to stop. Thus

Hs = H ∩ π−1
q1···qs

(1), (8.12)

Hs = {x ∈ Zq/q1···qs : 1 + q1 · · · qsx ∈ Hs} =
Hs − 1

q1 · · · qs
, (8.13)

|Hs | = |Hs | >
M

M
1/κ
1

> M1/2, (8.14)

|πq ′(Hs)| > M1 for all q ′
|

q

q1 · · · qs
with q ′ > qκ . (8.15)

Define
Q1 = q1 . . . qs and Q2 = q/Q1.

Case 1: Q2 < q
√
κ . Since|Hs | ≥ 2, there are elementsx 6= y in Hs ⊂ ZQ2. Hence

ax 6= ay (modQ2) and ∥∥∥∥a(x − y)

Q2

∥∥∥∥ > 1

Q2
> q−

√
κ .

Let x̄ = 1 +Q1x, ȳ = 1 +Q1y ∈ Hs < H . Writing

a(x − y)

Q2
=
a(Q1x −Q1y)

q
=
a(x̄ − ȳ)

q
,
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we obtain ∥∥∥∥a(x̄ − ȳ)

q

∥∥∥∥ > q−
√
κ

and hence (8.1) holds.

Case 2:Q2 ≥ q
√
κ . First, note that if there is no ambiguity, we use the notation(A,B) =

gcd(A,B).

Claim 1. (Q1,Q2) ≤ qκ .

Proof of Claim 1. Observe that(1 +Q1x)(1 +Q1y) = 1 +Q1(x + y) (modQ2
1).

Hence
(1 +Q1x)(1 +Q1y) = 1 +Q1(x + y) (modQ1(Q1,Q2)).

ConsiderπQ1(Q1,Q2)(Hs) < Z∗

Q1(Q1,Q2)
. It follows from the preceding that

πQ1(Q1,Q2)(Hs) = 1 +Q1S

whereS is an additive subgroup ofZ(Q1,Q2). Hence

S < 〈Z(Q1,Q2),+〉 and πQ1(Q1,Q2)(Hs) < Z∗

Q1(Q1,Q2)

are cyclic. By assumption (8.11), all elements ofHs < H are of order≤ M1, implying

|πQ1(Q1,Q2)(Hs)| ≤ M1.

Therefore
|π(Q1,Q2)(Hs)| ≤ M1. (8.16)

By construction ofHs , (8.16) implies

(Q1,Q2) ≤ qκ , (8.17)

and Claim 1 is proved.

LetQ′

1 = Q1/(Q1,Q2) andQ′

2 = Q2/(Q1,Q2). Hence(Q′

1,Q
′

2) = 1 andQ′

2 >

q
√
κ−κ by case assumption and (8.17).
We want to apply Corollary 3(2) toπQ′

2
(Hs) < Z∗

Q′

2
with 4

√
κ andM1. Let q ′

|Q′

2

with q ′ > (Q′

2)
4
√
κ > q2κ , and letq ′′

= q ′/(q ′,Q1,Q2). Thus by (8.17),q ′′ > qκ .

Claim 2. |πq ′(Hs)| > M1.

Proof of Claim 2. It follows from (8.15) that|πq ′′(Hs)| > M1. Let x1, . . . , xn ∈ Hs ,
n > M1, be such thatxi − xj 6= 0 (modq ′′). Since(q ′′,Q′

1) = (q ′,Q′

1) = 1 and(
q ′′,

(Q1,Q2)

(q ′,Q1,Q2)

)
= 1,

we also have
Q1

(q ′,Q1,Q2)
(xi − xj ) 6= 0 (modq ′′).
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HenceQ1(xi − xj ) 6= 0 (modq ′). Since 1+Q1xi ∈ Hs , it follows that|πq ′(Hs)| > M1,
proving Claim 2.

Apply Corollary 3(2) to the groupπQ′

2
(Hs) < Z∗

Q′

2
. Claim 2 implies that

|πq ′(πQ′

2
(Hs))| = |πq ′(Hs)| > M1

for all q ′
|Q′

2 with q ′ > (Q′

2)
4
√
κ .Hence for anya′ with (a′,Q′

2) = 1, there arēx, ȳ ∈ Hs
such that ∥∥∥∥ a′

Q′

2
(x̄ − ȳ)

∥∥∥∥ > (Q′

2)
−κ ′

> q−κ ′

(8.18)

whereκ ′
= κ ′(4

√
κ,M1) → 0 asκ → 0 andM1 → ∞.

Write x̄ = 1 +Q1x andȳ = 1 +Q1y with x, y ∈ Hs . From (8.18),∥∥∥∥a′Q1

Q′

2
(x − y)

∥∥∥∥ > q−κ ′

. (8.19)

Recalling that(Q′

1,Q
′

2) = 1, we may choosea′ satisfyinga′Q′

1 ≡ a (modQ′

2). Then
(8.19) gives ∥∥∥∥a(Q1,Q2)

2

Q2
(x − y)

∥∥∥∥ > q−κ ′

.

Hence, by Claim 1, ∥∥∥∥ a

Q2
(x − y)

∥∥∥∥ > q−κ ′

(Q1,Q2)2
> q−κ ′

−2κ ,

and ∥∥∥∥aq (x̄ − ȳ)

∥∥∥∥ =

∥∥∥∥aq (Q1x −Q1y)

∥∥∥∥ > q−κ ′
−2κ .

Therefore

max
x,y∈H

∥∥∥∥aq (x − y)

∥∥∥∥ > q−κ ′
−2κ ,

whereκ, κ ′ may be made arbitrarily small by takingM large enough. This proves Theo-
rem 5.

Theorem C is an extension of Theorem 4.2 in [KS] for composite modules and is an
immediate consequence of Theorem 5.

Proof of Theorem C.Fora ∈ Z∗
q , let {x1, . . . , x|H |} = aH , and letax = x1 anday = x2

be given in Theorem 5 such that∥∥∥∥x1 − x2

q

∥∥∥∥ > q−κ
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whereκ = κ(M). Let

S =

∣∣∣ |H |∑
i=1

eq(xi)

∣∣∣.
Then

S2
= |H | + 2

∑
i 6=j

cos

(
2π(xi − xj )

q

)

≤ |H | + 2

[(
|H |

2

)
− 1

]
+ 2 cos

(
2π(x1 − x2)

q

)
≤ |H |

2
− 2 + 2

(
1 − π

∥∥∥∥x1 − x2

q

∥∥∥∥2)
< |H |

2
− 2πq−2κ .
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