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Abstract. The Cauchy–Born rule provides a crucial link between continuum theories of elasticity
and the atomistic nature of matter. In its strongest form it says that application of affine displace-
ment boundary conditions to a monatomic crystal will lead to an affine deformation of the whole
crystal lattice. We give a general condition in arbitrary dimensions which ensures the validity of the
Cauchy–Born rule for boundary deformations which are close to rigid motions.

This generalizes results of Friesecke and Theil [J. Nonlin. Sci.12 (2002), 445–478] for a two-
dimensional model. As in their work, the key idea is to use a discrete version of polyconvexity
(ordinary convexity of the elastic energy as a function of the atomic positions is ruled out by frame
indifference). The main point is the construction of a suitable discrete null Lagrangian which allows
one to separate rigid motions. To do so we observe a simple identity for the determinant function
on SO(n) and use interpolation to convert ordinary null Lagrangians into discrete ones.

Keywords. Cauchy–Born rule, atomistic models, null Lagrangian

1. Introduction

The continuum theory of elasticity has been very successful in the study of crystalline
microstructure [BJ87, CK88, M̈u99, JH00, Bh03, Do03]. The link between the continuum
theory and the atomistic nature of matter is usually made by an appeal to the Cauchy–
Born rule (also called Cauchy–Born hypothesis or Born rule; see, e.g., the discussion in
[Er82, PZ03]). It states, loosely speaking, that a macroscopic affine deformationx 7→ Fx

corresponds to an affine deformation of the individual atomic positions. In the context
of solid-solid phase transformations there is an extensive literature on the validity and
relevance of the Cauchy–Born rule (see [Pa80, Er82, Za92, Er97, FT02, PZ03, CZ04,
BCZZ04] and the references therein), mostly based on symmetry considerations. Until
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very recently, however, there has been no analysis of the validity of the Cauchy–Born
rule starting from a suitable atomistic theory. In this context we interpret the Cauchy–
Born rule in the spirit of [FT02] in the following way. Consider a Bravais latticeL ⊂ Rn.
To a subset3 ⊂ L and a deformationy : 3 → Rn we associate an elastic energyE3(y).
We say that the Cauchy–Born rule holds for a matrixF if for all bounded3 the minimizer
of E3(y) subject to the affine boundary condition

y(x) = Fx for x ∈ ∂3 (1.1)

is given by the affine deformationy(x) = Fx, for all x ∈ 3 (see (2.1) and (2.2) below for
the precise definition of the boundary∂3). In the case of multilattices, this corresponds
to focussing on the skeletal lattice, with an energyE3 which has already been minimized
over the motif (i.e., the displacements of the atoms inside the unit cell).

Friesecke and Theil [FT02] studied a two-dimensional mass-spring model with near-
est and next nearest neighbour interactions and showed that the Cauchy–Born rule holds
(in the above sense) for a suitable range of parameters and forF which are close to a ro-
tationR ∈ SO(2). Such a stability result is remarkable since a realistic atomistic energy
cannot be a convex function ofy, in view of frame indifference (i.e., invariance under
rotations). The main point is to show that if the energy of a single cell is minimized at the
identity and is positive definite transversal to rigid motions then the Cauchy–Born rule
holds for allF near the identity.

Here we extend these results to general dimensions and to general finite range mass-
spring models (see Theorems 4.2 and 5.1 below). As in [FT02] the main point is, roughly
speaking, to construct a suitable discrete null Lagrangian, i.e., a discrete energyN(y)

which depends only on the boundary values, such thatE + N always lies above a con-
vex functionH and equalsH if y(x) = Fx (by discrete energy we mean an energy
defined on the discrete space, in contrast to the continuum energy which is defined on
vector fields). Our construction relies on two ingredients: first, a systematic way to obtain
discrete null Lagrangians from ordinary ones by interpolation (see Theorem 3.2 below),
and secondly, a simple, yet powerful identity to separate points on SO(n) by a continuous
null Lagrangian (see (H5′) in Section 4 below). Then one can easily conclude by a per-
turbation and compactness argument. In this way one also obtains a slightly streamlined
version of the original proof in [FT02].

Finally, we briefly comment on the interpretation of the Cauchy–Born rule discussed
above and the relevance of mass-spring models. The above form of the Cauchy–Born
rule is rather stringent. Since we require the affine map to be the unique minimizer for
affine boundary conditions for arbitrarily large subsets3 we effectively exclude both
atomistic and mesoscopic oscillations (e.g., twinning). A weaker requirement would be
obtained by restricting the condition to sets3 which are small multiples of the lattice unit
cell. However, there does not seem to be a natural choice of the cut-off length. This is
related to the question of whether a certain nonaffine minimizing arrangement should be
considered a phase (i.e., an atomistic pattern with a possibly large unit cell) or whether it
should be considered a microstructure (i.e., a mesoscopic mixture of different phases).

In the mass-spring models the type of interaction between different atoms (e.g., near-
est neighbour, next-nearest neighbour, ...) is determined by the position of the atoms in the
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referencelatticeL. Thus the energy is not invariant under the noncompact group GL(Z,3)
of lattice-preserving linear transformations. If one includes invariance under all elements
in GL(Z,3), then a crystal has no resistance to macroscopic shears, at least in a purely
static variational approach as considered in this paper (for a sharp result in the continuum
setting see [Fo87]). Sheared states do not correspond to energy minimizers but rather to
metastable states. A full analysis of their behaviour (which would have to include a de-
tailed discussion of the nucleation and motion of dislocations and other lattice defects)
seems currently to be out of reach. The mass-spring models stabilize the metastable state
by fixing the neighbourhood relations and imposing suitable growth conditions on the po-
tential (see, e.g., hypothesis (H6) in Section 4 below) which enforce that, given suitable
energy bounds, the local structure of the reference lattice is preserved, at least near most
points. For uniformly small deformation gradients, E and Ming [EM05] have studied the
relation between the time-dependent discrete and continuous equations under suitable el-
lipticity assumptions on the continuous energy density and assumptions on the phonon
spectrum of the discrete model.

2. Notation and assumptions on the cell energy

Throughout this paper we assume that the underlying lattice is given byL = Zn, i.e.,
the lattice is cubic with lattice parameter equal to one (we could equally well consider
a general Bravais lattice, but we prefer the cubic lattice for notational convenience). Let
x1, . . . , x2n be the enumeration of the vertices of the unit cube [0,1]n such that the co-
ordinates ofxi in the standard basis ofRn correspond to the digits in the binary rep-
resentation ofi − 1, i.e., i − 1 =

∑n
j=1(xi)j2

j−1. In particular,x1 corresponds to the

origin. For simplicity we writex = (x1, . . . , x2n) ∈ (Rn)2n ∼ Rn×2n . Finally, it is
convenient to introduce the mappingπ : Rn → Rn×2n by π(c) = (c, . . . , c). Thus
x + π(c) = (x1 + c, . . . , x2n + c) describes a translation of the unit cell by the vectorc.
In our analytical calculations we are basically interested in the orthogonal complement of
the spaceV0 := π(Rn) of all such shift directions.

If A ∈ Mn×n represents a linear mapping fromRn into Rn, then we setAx =

(Ax1, . . . , Axn).
For a subset3 of points inL we define the set of interior points

3◦
= {x ∈ 3 : x − xi ∈ 3 for i = 1, . . . ,2n}. (2.1)

The reason for this particular choice will become clear in the proof of Theorem 3.2. It is
also convenient to consider Dirichlet boundary conditions to be given on

∂3 = L \3◦, (2.2)

i.e., we consider deformations that are local perturbations of a given deformation of the
lattice. Here an elastic deformation of the lattice is a mapy : L → Rn that assigns to
each pointx ∈ L a new positiony(x) in the deformed lattice. We call the vectorD′y(x)

defined by

D′y(x) = (y(x + x1)− y(x), . . . , y(x + x2n)− y(x)) = y − y
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thediscrete gradientof y. Here

y(x) =
1

2n

2n∑
i=1

y(x + xi) and y = π(y(x)).

For affine deformationsy(x) = Fx of the lattice we define

F ′
= D′y = F(x − x).

Notice that the subspace of discrete gradients coincides with the orthogonal complement
of the shift directions inRn×2n .

The energy that is required to deform a unit cell in the lattice by mapping the cor-
nersxi to the new positionsyi is given byEcell(y), whereEcell is a mapping fromRn×2n

into R. Lattice deformations that correspond to rigid rotations will be important in the
proof of the validity of the Cauchy–Born rule, and we define therefore

SO(n)′ =
{
R′

∈ Rn×2n : ∃R ∈ SO(n) such thatR′
= R(x − x)

}
.

We assume thatEcell has the following properties:

(H1) Invariance under rotations and translations:We have

Ecell(Ry) = Ecell(y) for all R ∈ SO(n)

and

Ecell(y − π(c)) = Ecell(y) for all c ∈ Rn.

(H2) Characterization of the ground state:We haveEcell ≥ 0 andEcell(y) = 0 if and
only if y corresponds to a rigid body rotation, i.e., there existR ∈ SO(n) and
c ∈ Rn such thaty = Rx + π(c).

(H3) Smoothness and convexity:Ecell is smooth in a neighbourhood of SO(n)′ and the
HessianD2Ecell at the identityI ′ is positive definite on the orthogonal complement
of the subspace spanned by all shift directionsπ(c) and infinitesimal rotationsW ′

(which correspond to skew-symmetric affine deformations,W T
= −W ).

(H4) Growth condition at infinity:We assume that

lim inf
G′∈V⊥

0 ,G
′→∞

Ecell(G
′)

|G′|n
> 0,

whereV0 is the spaceπ(Rn) of shift directions.

Note that in view of (H1) we can defineEcell as a function of the discrete gradient,
Ecell(y) = Ecell(y − y) = Ecell(D

′y).
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3. Discrete null Lagrangians

Null Lagrangians play an important role in the proof of uniqueness of minimizers subject
to affine boundary conditions, and it is not surprising that an analogue of this definition
for lattice functions will prove pivotal in the verification of the Cauchy–Born rule.

Recall that a functionN : Mm×n
→ R is called anull Lagrangianif for all F ∈

Mm×n and for allφ ∈ W
1,∞
0 (�; Rm),∫

�

N(F) dx =

∫
�

N(F +Dφ) dx,

where� is an open and bounded domain. Equivalently, null Lagrangians can be defined
as those functionsN for which bothN and−N are quasiconvex in the sense of Mor-
rey [Mo52]. A classical result states thatN is a null Lagrangian if and only if it is an
affine combination of minors (subdeterminants; see the appendix for further details). The
same characterization holds for null Lagrangians involving higher derivatives but the ar-
gument is much more subtle [BCO81].

We now define the analogue of null Lagrangians for lattice functions.

Definition 3.1. A mappingN ′ : Rn×2n
→ R is called adiscrete null Lagrangianif for

every finite subset3 ⊂ L and everyF ∈ Mn×n,∑
x∈3

N ′(D′y(x)) =

∑
x∈3

N ′(F ′)

whenevery(x) = Fx for all x ∈ L \3◦.

The crucial observation explained below is that any null Lagrangian in the continuous
setting induces in a natural way a discrete null Lagrangian. This will give us sufficiently
many null Lagrangians for our uniqueness result to follow.

It should, however, also be mentioned that not all discrete null Lagrangians can be
found this way. Indeed, forn = 2 the discrete null LagrangianN ′(x1, x2, x3, x4) =

(x2 − x1)1 cannot be obtained by linear interpolation from a null Lagrangian since for
cell deformations withx1 − x2 6= x3 − x4 incompatibilities do occur.

Theorem 3.2. LetN : Mn×n
→ R be a null Lagrangian. Then there exists a discrete

null LagrangianN ′ : Rn×2n
→ R which is invariant under translation and agrees with

N on all Cauchy–Born deformations, i.e.,

N ′(F ′) = N(F), (3.1)

whereF ∈ Mn×n andF ′
= F(x − x) is the discrete gradient. Moreover,N ′ is a polyno-

mial of the same degree asN .
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Proof. The discrete null Lagrangian can be constructed from the given null Lagrangian
N by extending a lattice deformation onL to a deformation defined onRn. A convenient
way to do this is by multilinear interpolation. We describe the construction for the unit
cell of the lattice; the construction on any other cell in the lattice is analogous.

Suppose thatyi = y(xi) are the values of the deformation at the corners of the unit cell
in the lattice. Then we define the extensionỹ as the unique function from the unit cube
[0,1]n into Rn that is affine in each coordinate direction and satisfies the interpolation
conditions̃y(xi) = yi . The mapy 7→ ỹ is linear and one-to-one. Moreover, if the lattice
deformation is compatible with an affine deformation, i.e., if there existF ∈ Mn×n and
c ∈ Rn such thaty = Fx + π(c), thenỹ(x) = Fx + c for all x ∈ Q wereQ = (0,1)n.
Finally, note that the functioñy : Rn → Rn that is obtained by constructing the extension
locally in each cell of the lattice, is globally continuous and locally Lipschitz continuous.
This follows from the fact that the values of the interpolationỹ restricted to one face of
the cube depend only on the valuesyi = y(xi) at the verticesxi contained in this face.

We now define

N ′(y) =

∫
Q

N(∇ỹ(x)) dx.

With this definition, (3.1) follows immediately from the compatibility of the extension
with affine functions. SinceN is a polynomial and the mapy 7→ ∇ỹ is linear,N ′ is a
polynomial with degN ′

≤ degN and in view of (3.1) the degrees must be equal.
To see thatN ′ is a discrete null Lagrangian, consider a lattice functiony : L → Rn

and the associated multilinear extensionỹ : Rn → Rn. Let 3 ⊂ L and suppose that
y(x) = Fx for x ∈ L \3◦. Then∑

x∈3

N ′(D′y) =

∑
x∈3

∫
x+Q

N(∇ỹ) dx =

∫
U

N(∇ỹ) dx

whereU =
⋃
x∈3(x + Q). The boundary ofU consists therefore of facesFj of unit

cubes contained in the lattice, and by definition no vertex in3◦ can be contained in∂U .
Thereforẽy(x) = Fx on ∂U , and sinceN is a null Lagrangian,∫

U

N(∇ỹ) dx =

∫
U

N(F) dx =

∑
x∈3

N(F) =

∑
x∈3

N ′(F ′).

The foregoing two identities imply the assertion of the theorem. ut

4. Validity of the Cauchy–Born rule

In this section we establish the validity of the Cauchy–Born rule for lattice deformations
that are close to deformations that correspond to rigid rotations. The key ingredient is the
existence of a discrete null LagrangianN ′ with the following two properties that will be
important in the proof:
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(H5) There exists a constantc > 0 such that

N ′(H ′)−N ′(G′)− ∇N ′(G′) : (H ′
−G′) ≥ c|H ′

−G′
|
2

for all G′, H ′
∈ SO(n)′.

(H6) We have

lim sup
H ′∈V⊥

0 ,H
′→∞

|N ′(H ′)| + |DN ′(H ′)H ′
|

|H ′|n
< ∞.

It turns out that in fact the determinant of ann × n matrix is sufficient to construct a
discrete null Lagrangian with the foregoing properties.

Proposition 4.1. LetN ′ be the discrete null Lagrangian constructed fromN(F) = detF
for F ∈ Mn×n using Theorem3.2. ThenN ′ satisfies(H5) and(H6).

Proof. First we observe thatN itself satisfies the corresponding identity

(H5′) N(H)−N(G)− ∇N(G) : (H −G) =
1
2|H −G|

2 if G,H ∈ SO(n).

Indeed, since∇N(G) = cofG for all G ∈ Mn×n and cofG = G on SO(n) the left hand
side of (H5′) equals

−G : (H −G) = −
1
2(|H |

2
+ |G|

2
− |H −G|

2)+ |G|
2

=
1
2|H −G|

2

for G,H ∈ SO(n). Because|F(xi − x)|2 = |F |
2/4 for everyi = 1, . . . ,2n if F is

orthogonal, we see thatF 7→ F ′ maps SO(n) into SO(n)′ multiplying all distances by
the factor 2(n−2)/2. Thus (H5′) gives the following more precise version of (H5):

N ′(H ′)−N ′(G′)− ∇N ′(G′) : (H ′
−G′) = 21−n

|H ′
−G′

|
2

for H ′,G′
∈ SO(n)′. Condition (H6) follows from the fact that in view of Theorem 3.2,

N ′ is a polynomial of degreen. ut

The following statement gives a sufficient condition for the validity of the Cauchy–Born
rule.

Theorem 4.2. Suppose that the cell energyEcell satisfies(H1)–(H4)and consider a dis-
crete null LagrangianN ′

∈ C2(Rn×2n)with the properties(H5)–(H6). Then there exists a
convex functionHcell : Rn×2n

→ R, anε > 0, and an open neighbourhoodU ′ of SO(n)′

with the following properties:

(a) The functionHcell is invariant under translations and strictly convex on the subspace
of all discrete gradients (i.e., the orthogonal complement of the shift directions).

(b) We have

Ecell = Hcell − εN ′ in U ′, Ecell ≥ Hcell − εN ′ onRn×2n .
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In particular, for each3 ⊂ L and eachF ∈ Mn×n with F ′
∈ U ′ the variational problem

Minimize
∑
x∈3

Ecell(D
′y(x)) subject to y(x) = Fx for all x ∈ L \3◦

has the unique solutiony(x) = Fx for all x ∈ L.

Proof. We divide the proof into several steps.

Step 1. We first show that the assumptions (H5) and (H6) onN ′ imply that there exist
constantscN > 0 andCN such that

N ′(H ′)−N ′(G′)−DN ′(G′)(H ′
−G′) ≥ cN |H ′

−G′
|
2

− CN (dist2(G′,SO(n)′)+ distn(G′,SO(n)′))

− CN (dist2(H ′,SO(n)′)+ distn(H ′,SO(n)′)) (4.1)

for all G′, H ′
∈ V ⊥

0 , whereV ⊥

0 is the orthogonal complement of the shift directions
π(Rn) in Rn×2n . To see this, denote the left hand side in (4.1) byf (G′, H ′). In view
of (H6), the expression|f (G′, H ′)| is of order |G′

|
n

+ |H ′
|
n near infinity and hence

controlled by distn(G′,SO(n)′)+ distn(H ′,SO(n)′) if the latter becomes large. We may
therefore assume that|G′

|
2
+ |H ′

|
2

≤ 2R2 for a sufficiently largeR. We notice that

f (G′,G′) = 0, Df (G′,G′) = 0. (4.2)

Indeed, the first of these identities is immediate and it implies thatDf (G′,G′)(X′, X′)

= 0. In order to prove the second identity, we observe thatDf (G′,G′)(0′, Y ′) = 0 and
this establishes the assertion. Now chooseḠ′, H̄ ′

∈ SO(n)′ such that

dist(G′,SO(n)′) = |G′
− Ḡ′

|, dist(H ′,SO(n)′) = |H ′
− H̄ ′

|.

Since|G′
|
2
+ |H ′

|
2

≤ 2R2 we deduce by a Taylor expansion that

f (G′, H ′) ≥ f (Ḡ′, H̄ ′)+Df (Ḡ′, H̄ ′)(G′
− Ḡ′, H ′

− H̄ ′)

− C(|G′
− Ḡ′

|
2
+ |H ′

− H̄ ′
|
2)

where the constantC depends only onR. In view of (4.2) and the mean value theorem,

|Df | (Ḡ′, H̄ ′)(G′
− Ḡ′, H ′

− H̄ ′) ≤ C|Ḡ′
− H̄ ′

|(|G′
− Ḡ′

|
2
+ |H ′

− H̄ ′
|
2)1/2.

The assertion (4.1) follows now from (H5), Young’s inequalityab ≤
α
2a

2
+

1
2α b

2 for
α > 0, and the estimate|G′

−H ′
|
2

≤ 3(|Ḡ′
− H̄ ′

|
2
+ |G′

− Ḡ′
|
2
+ |H ′

− H̄ ′
|
2).

Step 2. For ε > 0 we define

g(F ′) = Ecell(F
′)+ εN ′(F ′).
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The parameterε will be chosen below (see (4.4) and (4.6)). We now assert that there exists
a neighbourhoodU ′ of SO(n)′ (which may depend onε) andc(ε) > 0 such that

g(H ′)− g(G′)−Dg(G′) : (H ′
−G′) ≥ c(ε)|H ′

−G′
|
2 (4.3)

for all H ′
∈ V ⊥

0 andG′
∈ V ⊥

0 ∩ U ′. This follows indeed by a standard perturbation and
compactness argument. We first show the assertion forG′

∈ SO(n)′. As in [FT02] we
distinguish two cases.

Case 1: |G′
−H ′

| is small. In this case it suffices to verify thatD2g(G′) is positive defi-
nite (onV ⊥

0 ). FixG ∈ SO(n). We denote byP the orthogonal projection onto the tangent
spaceTG′SO(n)′ and byP⊥ the orthogonal projection onto the orthogonal complement
of TG′SO(n)′ ⊕V0. SinceEcell attains its minimum on SO(n)′ +V0, we haveDEcell = 0
on SO(n)′ + V0, and thus by (H3) and frame indifference,

D2Ecell(G
′)(X′, X′) = D2Ecell(G

′)(P⊥X′, P⊥X′) ≥ cE |P⊥X′
|
2.

On the other hand, (4.1) implies that forX′
∈ V ⊥

0 ,

D2N ′(G′)(X′, X′) ≥ cN |X′
|
2
− CN |P⊥X′

|
2.

If we choose

ε ≤ cE/CN (4.4)

then we conclude that

D2g(G′)(X′, X′) ≥ εcN |X′
|
2

for all X′
∈ V ⊥

0 and allG′
∈ SO(n)′.

Case 2: |G′
−H ′

| is not small. ForG′
∈ SO(n)′ the left hand side in (4.3) reduces to

Ecell(H
′)+ ε(N ′(H ′)−N ′(G′)−DN ′(G′) : (H ′

−G′))

since the elements in SO(n)′ are the minima ofEcell. We assert that forH ′
∈ V ⊥

0 ,

Ecell(H
′) ≥ c̃E(dist2(H ′,SO(n)′)+ distn(H ′,SO(n)′)) (4.5)

for some constant̃cE > 0. Since by (H2) we haveEcell(H
′) > 0 for H ′

6∈ SO(n)′,
we only need to verify this inequality in the limiting cases dist(H ′,SO(n)′) → ∞ and
dist(H ′,SO(n)′) → 0. In the former case the assertion follows from the growth condition
(H4), in the latter case it is implied by the coercivity condition (H3). Now (4.3) follows
(for G′

∈ SO(n)′) from (4.5) and (4.1) as long as

ε ≤ c̃E/CN . (4.6)

To obtain (4.3) in full generality we first chooseε such that (4.4) and (4.6) hold. Then
we conclude from Case 1 thatD2g is positive definite (onV ⊥

0 ) in a neighbourhoodU ′

1 of
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SO(n)′. Hence there existsη > 0 such that (4.3) holds for allG′ in U ′

1 and allH ′ with
|H ′

−G′
| < η. Now suppose|H ′

−G′
| ≥ η. If G′

∈ SO(n)′ the inequality (4.3) holds by
the considerations in Case 2. Hence it continues to hold (with a slightly smaller constant
on the right hand side) forG′ in some neighbourhoodU ′

2 of SO(n)′. The assertion follows
by takingU ′ to be the intersection of the two neighbourhoods.

Step 3. We are now in a position to prove the assertion of the theorem. We define

h(F ′) = sup
G′∈U ′∩V⊥

0

{g(G′)+Dg(G′) : (F ′
−G′)+

1
2c(ε)|F

′
−G′

|
2
}

for all F ′
∈ V ⊥

0 . Thenh = g onU ′
∩ V ⊥

0 andh ≤ g. Moreover,h is uniformly convex
onV ⊥

0 as a supremum over quadratic functions with fixed positive definite quadratic part.
Extendingh so that it is constant in the shift directionsV0 we obtainHcell.

Uniqueness of the minimizery is easy to see by the following argument. We know
from the definition of the discrete null Lagrangian that

0 ≥

∑
x∈3

Hcell(D
′y(x))−

∑
x∈3

Hcell(F
′)

≥

∑
x∈3

DHcell(F
′)(D′y(x)− F ′) = DHcell(F

′)
( ∑
x∈3

D′y(x)− F ′

)
= 0.

Since we consider discrete gradients only, the second inequality is sharp wheneverD′y(x)

6= F ′. Thus we conclude thatz(x) := y(x) − Fx satisfiesD′z(x) = 0 for everyx ∈ 3.
Forx /∈ 3 we havex + xi /∈ 3

◦ and thus by the boundary conditions

z(x) = z(x + xi) = 0, ∀x ∈ L \3, i = 1, . . . ,2n. (4.7)

HenceD′z(x) = 0 for all x ∈ L. This implies that there existc(x) such thatz(x + xi) =

c(x) for all i. Hencez is constant and by (4.7) we conclude thatz = 0 onL. ut

5. Mass-spring models

We now briefly indicate how mass-spring models fit into the above framework. As a
warm-up consider the situation discussed in [FT02], i.e.,n = m = 2 and an energy
involving nearest and next-nearest neighbour interactions

E(y) =

∑
|x−x′|=1

V1(y(x)− y(x′))+

∑
|x−x′|=

√
2

V2(y(x)− y(x′)). (5.1)

Since each nearest neighbour bond belongs to two unit cells the corresponding cell energy
(which involves the valuesy(x1), . . . , y(x4) of y at the corners of the unit square) is given
by

Ecell(y) =
1

2

∑
|xi−xj |=1

V1(y(xi)− y(xj ))+

∑
|xi−xj |=

√
2

V2(y(xi)− y(xj )). (5.2)
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For general finite-range interactions it is in general not possible to write the total
energy as a sum of contributions each of which only involves values on a single cell. This
difficulty can, however, easily be overcome by passing to larger building blocks. Thus
instead ofEcell : Rn×2n

→ [0,∞) we consider

EA : Rn×A → [0,∞),

whereA ⊂ L is a finite set which satisfies

xi ∈ A for i = 1, . . . ,2n,

where thexi are the vertices of the (cubic) unit cell. We adjust the definition of interior
points accordingly by defining

3◦
= 3◦

A := {z ∈ 3 : z− a ∈ 3 ∀a ∈ A} .

Note that the boundary3 \ 3◦ can now consist of several layers of lattice points—this
is, however, in full accordance with the physical intuition of a finite-range interaction.
As before we define the constant embeddingπ and the subspace of shift directionsV0
(whose orthogonal complement is the space of discrete gradients) by considering vectors
with coordinates inRn but with index setA instead of{1, . . . ,2n}.

For a general mapy : L → Rn we define the discrete gradient at the pointx ∈ L by

(D′

Ay)a(x) = y(x + a)−
1

card(A)

∑
b∈A

y(x + b), a ∈ A.

In particular,

ā =
1

card(A)

∑
a∈A

a, and F ′
a = F(a − ā) for a ∈ A,F ∈ Mn×n

is the discrete gradient of the affine mapx 7→ Fx, constant on all ofL.
The assumptions (H1), . . . ,(H4) then remain completely unchanged, just withEA

substituted forEcell. It has to be observed, however, that the verification of (H3) becomes
more difficult with growing size ofA.

For a mapy : A → Rn we consider again its coordinatewise affine extension to [0,1]n

and use this extension as before to transform null Lagrangians for the continuous system
into discrete null Lagrangians on(Rn)A. These discrete null Lagrangians only involve
the values ofy at the vertices of the unit cell (and not at all points ofA) but this turns
out to be enough (essentially, we only need the discrete null Lagrangian to control rigid
motions and these are already determined by their values on the vertices of the unit cell).
The crucial step in the argument is, as before, that for anyx ∈ 3◦ we havex − xi ∈ 3,
i = 1, . . . ,2n, and hence

x ∈ int
(⋃
i

(x − xi)+ [0,1]n
)

⊂ int(3+ [0,1]n).

We also note that (H5) and (H6) are again satisfied for the discrete null LagrangianN ′

obtained from the determinant.
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Theorem 5.1. Suppose that the cell energyEA satisfies(H1)–(H4)and consider a dis-
crete null LagrangianN ′

∈ C2(Rn×A) with the properties(H5)–(H6). Then there exists
a convex functionHA : Rn×A → R, anε > 0, and an open neighbourhoodU ′ of SO(n)′

with the following properties:

(a) The functionHA is invariant under translations (i.e., under adding shift directions)
and strictly convex on the subspace of all discrete gradients.

(b) We have

EA = HA − εN ′ in U ′, EA ≥ HA − εN ′ onRn×A.

In particular, for each3 ⊂ L andF ∈ Mn×n with F ′
∈ U ′ the variational problem

Minimize
∑
x∈3

EA(D
′

Ay)(x) subject to y(x) = Fx for all x ∈ L \3◦

has the unique solutiony(x) = Fx for all x ∈ L.

The proof of the theorem is identical with the one of Theorem 4.2.

6. Appendix

For the convenience of the reader we give a proof for the characterization of null La-
grangians which does not go through the Euler–Lagrange equations (and which is shorter
than the one in [Da89]). For proofs starting from the Euler–Lagrange equations see [La42,
Er62, Ed62, DF64, Ru66, Ru74], where also more general Lagrangians of the form
N(x, u,∇u) are treated.

Theorem 6.1. LetN : Mm×n
→ R be a continuous null Lagrangian. ThenN(F) is the

sum of a constant term and a linear combination of minors (subdeterminants) ofF .

Proof. First, considering essentially one-dimensional test functionsφ of the formφ(x) =

εη(x)ah(x · b/ε), wherea ∈ Rm, b ∈ Rn and whereη is a smooth cut-off function, we
infer thatN is affine along any rank-one line inMm×n, i.e., on all lines of the form
t 7→ F + ta ⊗ b (see, e.g., [Da89]; in fact, if one uses test functions which take only
finitely many gradients, then continuity ofN is not needed to reach the conclusion [Fo88,
Mü99]).

It follows that the second (distributional) derivative ofN in any rank-one directionA
is zero. To see this we writeA⊥ for the subspace ofMm×n perpendicular toA and we
obtain, forϕ ∈ C∞

0 (M
m×n) andψF (t) := ϕ(F + tA),

〈D2N(·)(A,A), ϕ〉 =

∫
Mm×n

N(G)D2ϕ(G)(A,A) dG

=

∫
A⊥

∫
R
N(F + tA)D2ϕ(F + tA)(A,A)|A| dt dHn−1(F ),

=

∫
A⊥

∫
R
N(F + tA)

d2

dt2
ψF (t)|A| dt dHn−1(F ) = 0,

since the inner integral vanishes ast 7→ N(F + tA) is affine.
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Taking further derivatives of the distributionD2N(·)(A,A) we get

DkN(·)(A,A,H3, . . . , Hk) = 0 if rank(A) ≤ 1. (6.1)

The crucial observation is that this implies that

DkN(·)(F, . . . , F ) = 0 if rank(F ) < k. (6.2)

Indeed,F can be written as a sum of at mostk − 1 rank-one matrices,F =
∑k−1
i=1 Ai ,

and by multilinearity the left hand side of (6.2) can be expressed as a sum of terms of
the formDkN(·)(Aj1, . . . , Ajk ). Thus at least two of the indicesj1, . . . , jk must coincide
and by (6.1) and the symmetry of the derivative all these terms must vanish. Applying
this for k = d + 1, whered = min(m, n), we see thatDd+1N(·)(F, . . . , F ) = 0 for all
F ∈ Mm×n. SinceDd+1N(·) is a symmetric multilinear map this implies that it vanishes
identically (see Proposition 6.2 below). HenceN is a polynomial of degree at mostd and
the previous identities hold also pointwise. From Taylor’s formula we obtain

N(F) =

d∑
k=0

Pk(F ) with Pk(F ) =
1

k!
DkN(0)(F, . . . , F ), (6.3)

thePk ’s being homogeneous polynomials of degreek overMm×n.
We want to show thatPk contains only those products of matrix entries that also occur

in the definition of the subdeterminants of sizek. To do so we define for arbitrary subsets
I ⊂ {1, . . . , m} andJ ⊂ {1, . . . , n} the matrixFI,J by

(FI,J )i,j =

{
Fi,j if i ∈ I andj ∈ J,

0 else.

If I = {α1, . . . , αk} with 1 ≤ α1 < · · · < αk ≤ m andJ = {β1, . . . , βk} with 1 ≤ β1 <

· · · < βk ≤ n then we define detk FI,J as the determinant of thek × k matrixG given by
Gl,m = Fαl ,βm = (FI,J )αl ,βm .

The polynomialPk(F ) is a linear combination of productsFα1,β1Fα2,β2 · · ·Fαk,βk .
We regroup the sum by collecting those terms for which the indicesαi andβi lie in fixed
subsetsI andJ of {1, . . . , m} and{1, . . . n}, respectively. This yields

Pk(F ) =

∑
I⊂{1,...,m}

J⊂{1,...,n}

∑
α=(α1,...,αk)
{α1,...,αk}=I

∑
β=(β1,...,βk)
{β1,...,βk}=J

c̃α,βFα1,β1Fα2,β2 · · ·Fαk,βk .

We next show that if card(I ) < k or card(J ) < k then the inner double sum is zero.
We have rank(FI,J ) < k and in view of (6.2) and (6.3) this yields∑

α=(α1,...,αk)
{α1,...,αk}⊂I

∑
β=(β1,...,βk)
{β1,...,βk}⊂J

c̃α,βFα1,β1Fα2,β2 · · ·Fαk,βk = Pk(FI,J ) = 0
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for all F ∈ Mm×n. From this we conclude, by separate induction on card(I ) and card(J ),
that also ∑

α=(α1,...,αk)
{α1,...,αk}=I

∑
β=(β1,...,βk)
{β1,...,βk}=J

c̃α,βFα1,β1Fα2,β2 · · ·Fαk,βk = 0

if card(I ) < k or card(J ) < k.
Thus we only need to consider index setsI andJ which contain exactlyk elements.

Regrouping terms which are obtained by permutation within a fixed index set we see that

Pk(F ) =

∑
1≤α1<···<αk≤m
1≤β1<···<βk≤n

Pα,β(F ),

with
Pα,β(F ) =

∑
σ∈Sk

cσα,βFα1,βσ1
Fα2,βσ2

· · ·Fαk,βσk ,

where the sum is taken over the groupSk of all permutations of{1, . . . , k}. Herecσα,β =∑
τ∈Sk

c̃τ(α),(τ◦σ)(β), andτ(α)i = ατi .
To conclude we only need to show thatPα,β(F ) is a multiple of detk FI,J . To this end

we consider the multilinear form

Qα,β(v
1, . . . , vk) =

∑
σ∈Sk

cσα,βv
σ1
1 v

σ2
2 · · · v

σk
k

on (Rk)k. Let Fv denote the matrix with columnsv1, . . . , vk, i.e.,Fv =
∑k
i,j=1 v

j
i eαi

⊗ eβj . Then

Qα,β(v
1, . . . , vk) = Pα,β(Fv) = Pk(Fv)

and we see from (6.2) and (6.3) thatQα,β(v
1, . . . , vk) = 0 if dim(span({v1, . . . , vk})) =

rank(Fv) < k. By multilinearity this implies thatQα,β is antisymmetric (indeed we have
0 = Q(v1

+v2, v1
+v2, . . .) = Q(v1, v2, . . .)+Q(v2, v1, . . .)). Now every antisymmetric

multilinear form is a multiple of the determinant, i.e.,

Qα,β(v
1, . . . , vk) = ĉα,β det(v1, . . . , vk) for all v ∈ (Rk)k.

ThusPα,β(F ) = ĉα,β detk(FI,J ) if we chooseI = {α1, . . . , αk} andJ = {β1, . . . , βk},
and the proof is finished. ut

We have used the following well-known fact.

Proposition 6.2. Let V be a finite-dimensional vector space and letM be a symmetric
multilinear map onV k such thatM(F, . . . , F ) = 0 for all F ∈ V . ThenM vanishes
identically.

This is obvious fork = 1. To carry out the induction step fromk to k+1 one fixesG ∈ V ,
defines thek-linear formM ′(F1, . . . , Fk) := M(F1, . . . , Fk,G) and uses the identity

M ′(F, . . . , F ) =
1

k + 1

d

ds |s=0
M(F + sG, . . . , F + sG) = 0.
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