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Abstract. We present a large class of homogeneous 2-nondegenerate CR-mamifolidgh of
hypersurface type and of arbitrarily high CR-codimension, with the following property: Every CR-
equivalence between domaitis V in M extends to a global real-analytic CR-automorphismvof

We show that this class contaiGsorbits in Hermitian symmetric spac&sof compact type, where

G is a real form of the complex Lie grouffénut(Z)O and G has an open orbit that is a bounded
symmetric domain of tube type.

Keywords. Hermitian symmetric spaces, tube domains, Jordan algebras, CR-equivalence prob-
lems, 2-nondegenerate CR-manifolds

1. Introduction

Let S be a real-analytic hypersurface @ or, more generally, a CR-submanifold in a
complex manifoldZ. This paper addresses the question when a local biholomorphic map
between open sets in sending an open piece §finto S extends to a global biholomor-
phic self-map ofZ preservingS. This question has been treated by various authors when
S is a compact hypersurface and its Levi form is nondegenerate at least at some points
[26], [1], [29]. [21], [28], [3], [11], [24].

However, if S is not compact or is of higher codimension or its Levi form is every-
where degenerate, the question seems to be widely open, even for a basic example such

as the tube
M = [z e(C?’:xg:,/x%—i—x% > O}

over the 2-dimensional future light cone, where- (z1, z2, z3) andx; = Re(zx). Here
M is the smooth boundary part of the associated tube domain (the interior of the convex

hull of M)
H = {z eC3:ix3> ‘/xf+x§}
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over the corresponding future cone, whose holomorphic structure in connection with the
Cauchy—Riemann structure of the boundary pérhas been studied by various authors
(also in higher dimensions, see elg./[23}).is the simplest known real hypersurface in

C3 with everywhere degenerate Levi form that cannot be even locally biholomorphically
straightened, i.e. it is not locally CR-equivalent to a direct produetC with S any real
hypersurface irC? (cf. [8], [6]). M is homogeneous as a CR-manifold since the group
of all affine transformations of2 fixing M acts transitively onV (and H). Actually,

it can be seen that this group coincides with the gréup(M) of all real-analytic CR-
automorphisms o#/. By the homogeneity o#f all local CR-equivalences (always under-
stood to be real-analytic in the following) between domain&iare known as soon as for
some (and hence every)e M the automorphism grouput(M, a) of the CR-manifold

germ (M, a) is known. Now, not every germ iAut(M, a) is affine. This is due to the

fact that every transformation in the 10-dimensional biholomorphic automorphism group
Aut(H) of H extends to a birational (but not necessarily biholomorphic) transformation
of C3 and hence induces local (but not necessarily global) CR-equivalencis Gur

main result, specialized to this example, states that actually all local CR-equivalences of
M occur in this way and tha¥ can be enlarged to a homogeneous CR-manifolcbn-
taining M as a dense domain, such that all local CR-equivalencés ektend to global
CR-automorphisms of. In particular, evenAut(M, a) turns out to be a solvable real Lie
group of dimension 5 (compare the end of Sedfipn 6 for an explicit description).

In this paper we present a large class of further homogeneous Levi degenerate CR-
manifoldsM of arbitrary high codimension which have properties similar to the 5-dimen-
sional hypersurface above: LEtbe a real vector space of finite dimension with complex-
ification £ := V @iV and letQ c V be an open convex cone such that the associated
tube domainH := Q + iV C E is symmetric (i.e. biholomorphically equivalent to a
bounded symmetric domain). For simplicity and without essential loss of generality we
always assume that the cofees irreducible. The grougL($2) of all linear transforma-
tions inGL(V) leaving invariant has a finite number of orbits Wy let C # {0} be one
of them (a typical example is the spaEe= C™" of all complexrxr-matricesV C E the
R-linear subspace of all hermitian matrice€sC V the open cone of positive definite ma-
trices andC C V the cone of all hermitian matrices wighpositive and; negative eigen-
values). The tub&/ := C®iV over the con€ is alocally closed Levi degenerate generic
CR-submanifold ofF, on which the affine groupff(H) := {g € Aff(E) : g(H) = H}
acts transitively. It turns out that in cage # £+ the global CR-automorphism group
Aut(M) is justAff(H) (see Proposition 619; in cagé= —C the groupAff(H) has to be
extended by the transformatian— —z).

On the other hand, the grodyff(H) is a subgroup of codimension dii) in Aut(H),
the biholomorphic automorphism group of the tube donfaiT his group is a simple Lie
group and is explicitly known in every case. Eveyye Aut(H) extends to a birational
transformation ofC" and induces local CR-transformations &h Actually, the follow-
ing more precise statement is known from the theory of symmetric Hermitian spaces (see
[Q]): E can be compactified to a homogeneous rational complex mardfétide compact
dual of H) in such a way that every € Aut(H) extends to a biholomorphic transforma-
tion of Z. In fact, this way the simple real Lie grodut(H) is realized as a real form of
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the simple complex Lie grouput(Z) (recall that we assumed and hence alsé to be
irreducible). Now, there exists akut(H)-orbit S in Z with M = EN S. This S is a non-
compact locally closed CR-submanifold Bfthat containsM as an open dense subset.
Our main result, Theorefn 4.7 together with Theofen 4.5, implies that, int#&saot
openinZ, every CR-equivalence between domains§ extends to a biholomorphic trans-
formation ofZ respectings. A consequence (Propositipn B.4) is that for every M, the
germ automorphism grouput(M, a) is canonically isomorphic to the isotropy subgroup
Aut(H), ‘= {g € Aut(H) : g(a) = a} (again, in cas&€ = —C the groupAut(H) has

to be extended by the transformatipr> —z). An important step in the proof is th&t
although Levi degenerate, is 2-nondegenerate and minimal as a CR-manifold.

We also consider arbitrary Hermitian symmetric spageand orbitsS c Z with
respect to arbitrary real forms of the connected identity compoketitZ)°. But, in con-
trast to the more special tube case discussed above, we have to assufe(dim)
< oo for somea € S in order to obtain similar extension results for CR-equivalences
between domains of (see Theorern 4.5).

2. Preliminaries

Let X be a complex manifold antf c X a connected (locally-closed) real-analytic sub-
manifold. For every: € M the tangent spacg M is anR-linear subspace of the complex
vector spacé, X. Recall thatV is a (real-analyticlCR-(sub)manifoldf the holomorphic
tangent spacé, M = T,M NiT,M C T,X has the same complex dimension for all
a € M. The CR-manifoldM is calledgenericin X if the tangent spac&,M spans
T,X overC for everya € M, thatis, ifT,X = T,M + iT,M. In an abstract setting, a
real-analyticCR-manifoldis a real-analytic manifold with a real-analytic vector subbun-
dle HM c TM and a real-analytic bundle endomorphidm HM — H M satisfying
J? = —id and the integrability conditior{>*, #%1] c 1% (see the Appendix). Given
two CR-manifoldsM andM’, a smooth magf : M — M’ is called aCR-mapf the dif-
ferentialdf : TM — TM’ mapsHM into HM’' and commutes with the corresponding
complex structures andJ' on HM and HM'.

Denote byhol(M) the real Lie algebra of all (globally defined) real-analytic vector
fields onM whose local flows consist of CR-maps (these vector fields are also aalled
finitesimal CR-transformationsf M). In particular, if M is a complex manifoldyol(M)
consists of all holomorphic vector fields a#. The value of the vector field € hol(M)
at the pointa € M will be denoted by, € T, M. FurthermoreAut(M) is the group of
all bi-analytic transformations o¥f that are CR in both directions.

For everya € M denote byAut(M, a) the group of all germs at of real-analytic
CR-isomorphismg : U — V with g(a) = a, whereU, V are arbitrary open neigh-
bourhoods ot:. For everyk € N let Auty(M, a) C Aut(M, a) be the normal subgroup
of all germs that have the samget ata as the identity. Denote blyol(M, a) the real
Lie algebra of all germs at of vector fieldsé € hol(U) with U being an arbitrary
open neighbourhood af. Furthermore, for every integér auty (M, a) C hol(M, a) de-
notes the Lie subalgebra of all germs vanishing of otdérata, i.e. having zerd-jets
at a. For shorter notation we also writeit(M, a) ‘= autg(M, a) for the Lie subalge-
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bra of all germs imol(M, a) that vanish at:. There exists a canonical exponential map
exp :aut(M,a) — Aut(M, a) sending evenaut,(M, a) into Auty(M, a). In case the

Lie algebranut(M, a) has finite dimension, there exists a unique Lie group structure on
Aut(M, a) such that the exponential map is locally bi-analytic in a neighbourhood of the
origin in aut(M, a). Throughout, the dependeng¥ ) refers to global objects ol while

(M, a) refers to germs at the poiate M.

In caseE is a complex vector space of finite dimension &hd: E is an open subset,
we always identify for every: € U the tangent spac&,U with E in the canonical
way. In this sense every holomorphic vector fieléd hol(U) is given by a holomorphic
function f : U — E and vice versa. But since both objects have to be distinguished
we write symbolicallyt = f(z)% (wherez is meant as @ariablein E). Actually, we
consideré as a holomorphic differential operator acting on the space of holomorphic
functions onU. More generally, for every complex vector spa€eof finite dimension
and every holomorphic mappirig: U — F, the F-valued holomorphic functiogx on
U is defined byz — 1'(z)(f(z)), whereh’ : U — L(E, F) is the derivative of: and
L(E, F) is the vector space of all linear operatdts— F. In particular, ifc : U < E is
the canonical embedding, thén= f.

In caseE = C" the vector fieldt = f(z)f—z € hol(U) can be written as

a d
‘i::fl(z)a_+"+fn(z) k] fz(fl"'~7fn)a
21 3Zn
3 e 3 3
wherey is interpreted as the cqun(rg;l, e ﬁ)t'

3. Reductive Lie algebras of holomorphic vector fields

Recall that a real or complex Lie algebras calledreductiveif its radical coincides
with its center, or equivalently, Ifis the direct sum of an abelian Lie algebra with a semi-
simple one (cf.[12]). Every (finite-dimensional) linear representation of a semisimple Lie
algebra is completely reducible by Weyl's theorem ([12, p. 28] ar [17, p. 382]), i.e. every
invariant subspace in a representation space has an invariant complement. This property
is crucial in the proof of the next proposition.

We also recall the notion of a nonresonant vector field (cf. elg. [2, p. 177]): A finite
subsetA C C is callednonresonanif ), ., my-A ¢ A for every family of integers
my > 0 with 3", . my > 2. For givens € aut(C", 0) consider its linear part as an
endomorphism of”. Thens is callednonresonanif the spectrum of this endomorphism
(i.e. the set of eigenvalues) is nonresonant.

3.1. Proposition. Let [ C hol(C", 0) be a complex Lie subalgebra of finite dimension
such that

(i) lis reductive,
(ii) Ispans the full tangent space®@ at 0, thatis,C" = {&y: & € [},
(i) [contains a nonresonaite aut(C", 0).

Thenl is semisimple and contains all finite-dimensiokalbmodules ofol(C", 0).
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Proof. LetzAa% be the linear part of wherez = (z1, ..., z,) andA is a complex: x n-
matrix. After a linear change of coordinates we may assumeaAliatupper triangular
and has.y, ..., A, as diagonal entries. Clearly, := {11, ..., A, } is the spectrum oA.

my 9

Denote byE the set of all monomial vector fields = z’l”l T2 g in hol(C", 0).
Then, by restricting the lexicographic order B2 to € — N"*+2 embedded via

o = (m1+"'+mn7mlv"'»mnvj)3

E becomes a well ordered set with minimal eIemgh{ Everyé e hol(C",0) has a
unigue power series expansign= ZﬁeE cp B with complex coefficientsg. For every
a € E denote byF, C hol(C", 0) the linear subspace of all thosesuch thatg = 0 for
all B < « in the above expansion. It is easily verified thdts) (defined ag +— [, £])

leavesF, invariant and that

[6, @] = (mir1+ - +myur, — Aj)a mod Fy (3.2)

my 9
Now leth C ho[f(C”, 0) be an arbitrary finite-dimensionasubmodule, i.el[ h] C b.

Denote by® the restriction ofd(§) to h and consider the direct sum decomposition

h=EPn (3:3)

reC

where eveng” is the larges®-invariant linear subspace on whiéh— 1 id is nilpotent
(the generalized-eigenspace o in caseh* # 0). An immediate consequence 3.2)
is thath* C aut(C", 0) for everyx ¢ —A. Assume on the other hand that there exists a

vector fields =35 cpp #0in
b =Py~

reA

with £ =0. Choosex =z'1”1 _ zn’"” % € E minimal with respect to the property, #0,
sayc, = 1 without loss of generality. Clearly has degred = my + -+ +m,, > 1
because&p = 0. Since[], ., (® + 1id) is nilpotent onh~ we deduce from2) that
—ix = Y_;miA; — A; for somek, a contradiction to the nonresonance/of Therefore
the evaluation map — &g defines a linear injectiosy : h~ — TpC" = C".

We first discuss the special case wheiesemisimple and assumeg [ contrary to
the claim. To get a contradiction we may assumely = 0 without loss of generality,
since by Weyl's theoreni,has arad(l)-invariant complement in themodulel + . But
then(I ® h)~ = [T & h~. Since the evaluation magy is an injection on~— & h~ as
mentioned above angy([™) = C" by assumption (ii), we conclude that all vector fields
in b vanish at 0. On the other handgife b is a nontrivial vector field, taking subsequent
Lie brackets with suitable vector fields framand using (ii) we obtain a vector fielde b
with ng # 0, a contradiction.

In the general case, ffis arbitrary reductive, lefj be the center of From [§,h] =0
we geth C aut(C", 0) since O¢ A. But then, sincé is anl-module, the above argument
impliesh = 0, that is,l is semisimple. O
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Simple examples show that none of the conditions (i)—(iii) in Propodjtign 3.1 can be omit-
ted. For condition (iii) we present the following

3.4. Example. Letn = 2m—1 be an arbitrary odd integer 3 and considef” in the
usual way as an open dense subset of the complex projectiveBpddee standard action
of the complex Lie groupL(2m, C) onP, induces a complex Lie algebra of holomorphic
vector fields onP, whose germs at @ C" form a simple complex Lie subalgebfac
hol(C", 0) isomorphic tosl(2m, C). It is easily verified thah contains (the germ of) the
Euler fieldza%, which is nonresonant sincg = {1} in this case. Now, the symplectic
groupSp(m, C) c SL(2m, C) also acts transitively off,, and induces a proper simple
Lie subalgebrd c b isomorphic tosp(m, C). Therefore the conclusion of Proposition
B does not hold for thig It is not difficult to see that contains a linear vector field
8 € aut(C", 0) with spectrumA = {1, 2}, where the eigenvalue 1 has multiplicity— 1.

3.5. Remark. Sincead(d) is a derivation, for the special cage= [ in Propositior] 3.
the decompositio3.3) actually gives th&-grading

(=@ with [i*, 1] c -+ (3.6)
reC

forall A, u € C ands e Kh°. Furthermore, due to condition (i) the linear subspace
[ =D,cn [~* is isomorphic toC” via the evaluation mapg, and the action ofid(8)
on h~ is equivalent to the endomorphism @f given by the linear part of. Denote
by 8’ € [ the semisimple part of (see [12, p. 29] for basic properties of this concept).
Then the linear part o’ is the semisimple part of the linear part ®find hence also
has A as spectrum. In particular, with alsoé’ is nonresonant. Furthermorgd(s’) is
diagonalizable om, that is,I* = ker(ad(8’) — A id) for all » € C.

Now assume that the linear part &fis the Euler fieldza%, that is,§ = & and
A = {1} (this case will be of special interest in the next sections). Then (3.6) reduces
tol = @2 _; F with * C auty(C", 0) for every integek > —1. But then with standard
arguments for semisimple Lie algebras it follows that actually

(=1 tePelt (3.7)

with abelian Lie algebrag™ of dimensior: and® = [(~1, [}]. Indeed, for every; € [¥

with & > 1 the endomorphismd(&) ad(n) is nilpotent for everyé € [, and hence;

is orthogonal ta with respect to the Killing form of, that is,n is in the radical off,
proving (3.7). That~1, [* have the same dimension follows framiad(8)) = 0 (cf. [12,

p. 28)). Finally,m := "1 & [I71, (1] ® (T andn := CS§ + m are ideals i and hence are
semisimple themselves. Therefare= m & ¢ for some ideak of dimension< 1 inn.
Since alsa is semisimple, only = 0 is possible, that isn = n. Finally, Proposition

[3.1 applied tom in place ofl showsl = m and thus the claim. We mention that the
vector fields is actually linearizable, that is, after a suitable biholomorphic change of
coordinates becomes the Euler vector field. Such a change of coordinates can be obtained
in the following way: There exists an open neighbourhdbdf 0 € C" such that every

£ e "1 can be represented by a vector fieldyiri(U). For a suitable open neighbourhood
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V of 0 e "1 the assignmerit — exp(£)(0) defines a local biholomorphic transformation
V — U doing the job.

There is also a real version of Propositfon]|3.1. ietc C" be a (locally closed)
generic real-analytic CR-submanifold containing the origin 0. We consgigdéM, a) as
a real Lie subalgebra of the complex Lie algebs&C", @) in the obvious way and call
M holomorphically nondegeneratt a € M if hol(M, a) is totally real inhol(C", a),
that is,hol(M, a) Nihol(M, a) = 0. This definition is equivalent to the usual one ([3,
p. 322]). Recall thad/ is calledminimal (in the sense of [27]) if every real submanifold
N c M with H.M c T,N for alla € N is necessarily open iM. In caseM is a real
hypersurface of"” minimality already follows from holomorphic nondegeneracy.

3.8. Proposition. Suppose thatd < C" is holomorphically nondegenerate @Gte M
and thats c hol(M, 0) C hol(C", 0) is a real Lie subalgebra of finite dimension such
that

(i) sis reductive,
(ii) s spans the full tangent space &f at O,
(i) (s +is) N aut(C", 0) contains a nonresonant vector field.

Thens is semisimple and contains every finite-dimensieralibmodule ofjol(M, 0). If,
in addition, M is minimal at0 thenhol(M, 0) = s.

Proof. Leth C hol(M, 0) be anys-submodule of finite dimension. Sinegs totally real

in hol(C", 0), the suml := s+is C hol(C", 0) is direct and hence a complex reductive
Lie subalgebra. Sinc#/ is generic inC", (ii) implies thatl spans the full tangent space
of C" at 0. Therefore, by Propositi¢gn 3.lis semisimple and the finite-dimensiorial
moduleb+ib is contained ir. It follows thats is also semisimple anglis contained in
[N hol(M, 0). But [N hol(M,0) = s sinceM is holomorphically nondegenerate at 0.
The last claim now follows foh = hol(M, 0) since dimhol(M, 0) < oo for any minimal
holomorphically nondegenerate ge(#, 0) of a real-analytic generic submanifold@¥
(see e.g. (12.5.16) in]3]). O

In the following we consider a connected complex Lie graugcting holomorphically
on a complex manifol&. We always assume thhtactsalmost effectivelpn Z, that is,
the subgroug ), L. is discrete inL, wherel, := {g € L : g(a) = a} is theisotropy
subgroupof L ata € Z. Then the Lie algebraof L can be considered in a natural way
to be a subalgebra ¢fol(Z), which in turn can be considered to be a Lie subalgebra of
hol(Z, a) for everya € Z. We denote by, := {§ € [: & = 0} theisotropy subalgebra
of lata € Z.

Recall that areal formof L is any closed connected real Lie subgrdug L with
[ = s & is for their Lie algebras. Then evel§~orbit S C Z may be viewed as an
immersed real-analytic CR-submanifoldf In casel. acts transitively orZ, every such
orbit is generic inZ. The next result together with Propositjon|3.8 will be the key for our
first main result, Theorefn 4.5.



472 Wilhelm Kaup, Dmitri Zaitsev

3.9. Proposition. LetL andL’ be connected complex Lie groups acting holomorphically,
transitively and almost effectively on simply connected complex manifoldsl Z’ re-
spectively. Let furthermoré c Z, S’ C Z’ be orbits with respect to real forns S’ of

L, L" and assuméyol(S,a) = s and hol(S’,a’) = s’ for some (and hence al) ¢ S,

a’ € S', wheres C [ands’ C I’ are the Lie algebras of the real forntsandS’. Then
every real-analytic CR-equivalenge: U — U’ between domaing c S andU’ C &’
extends to a (unique) biholomorphic m@p— Z’ sendingS onto S’.

Proof. Fix a pointa € U and writeZ = L /L, aswellasZ’ = L' /L), fora’ := ¢(a).

The CR-equivalence extends to a biholomorphic map between suitable open neighbour-
hoods ofa anda’ in Z andZ’ respectively (see e.g. Corollary 1.7.13[in [3]). Therefore
induces a Lie algebra isomorphism frdmi(S, a) = s ontohol(S’, @’) = s’ and hence,

by complexification, a complex Lie algebra isomorphigm [ — [' with ¥ (I,) = [/, for

the corresponding isotropy Lie subalgebras. Without loss of generality we assume that
L andL’ are simply connected (otherwise pass to the universal coverings). 3jnce

are simply connected by assumption, the isotropy subgrbpk/, are connected and
hencey induces a biholomorphic group isomorphigm L — L’ with W(L,) = L), and

W (S) = 5. The induced biholomorphic map — Z’ extendspy and mapss onto S/, as
desired. O

4. Real form orbits in Hermitian symmetric spaces

In the following let E be a complex vector space of finite dimension dhdC E a
bounded symmetric domain. Without loss of generality we assuméiligtonvex and
circular (cf. [9] and[[19]). The grouput(D) of all biholomorphic automorphisms @
is a semisimple real Lie group acting analytically and transitivelyDoiThe linear group

GL(D) := {g € GL(E) : g(D) = D}

is the isotropy subgroup @fut(D) at the origin and acts transitively on the Shilov bound-
ary 9, D of D, which in this case coincides with the set of all extremal points of the com-
pact convex body. The Shilov boundary, D is a connected CR-submanifold Bf and

D is calledof tube typdf 9, D is totally real inE. This is equivalent t@ being biholo-
morphically equivalent to a domafd @ iV C V @iV for some real vector spadéand
some opencong C V.

We denote byZ the compact duabf D in the sense of Hermitian symmetric spaces
(cf. e.g.[9]).Z is a simply connected compact homogeneous complex manifold that con-
tainsE in a canonical way as a Zariski-open subset such that every biholomorphic auto-
morphism ofD extends to an automorphism @f i.e.

Aut(D) = {g € Aut(Z) : g(D) = D}. 4.1)

The connected componeht= Aut(Z)° of identity is a semisimple complex Lie group
acting transitively and holomorphically afi whereasG := Aut(D)° is a noncompact
real form ofL. The corresponding Lie algebraandg with | = g @ ig are realized as
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Lie algebras of holomorphic vector fields @ in fact, [ coincides with the Lie algebra
hol(Z) of all holomorphic vector fields o and we have canonical inclusiohsl(Z) C
hol(E) C hol(D) by restriction. In particular, every € [is of the form& = f(z)% for
a certain holomorphic mapping : E — E (see Sectiof|2 for this notation).

SinceD is circular we haves € g for § := Zaa—z € [. Itis clear from the definition that
§ is nonresonant and thus Proposif{ior] 3.8 can be appli€ddtbits. In the decomposition
), (* is the space of all homogeneous vector fields of dekekin [ for k = —1, 0, 1.
In particular,(~1 = {a% t o € E}is the space of all constant holomorphic vector fields
on E (when restricted t&& ¢ Z) and(® @ I = [ is the isotropy subalgebra ofat 0.
The isotropy subalgebrds = {¢ € [ : §, = O} of [ separate points df in the sense that
l. # Il foralla # bin Z. Indeed, in case, b € E, the vector fieldz — a)% isinl, but
not in ;. The general case is reduced to thatpb € E as a consequence of the known
fact that, for any two points i, there exists a transformationlirmapping them intc.

For the Lie algebray of the groupG = Aut(D)° consider the decompositian =
£ @ p into the range and kernel of the projecti@h+(ad i8). Clearlyt = g N (© and
p = gn (1@ ). As a consequence of Cartan’s uniqueness theorem, évery is
uniquely determined by its 1-jet at® D (cf. for instance([15]). Henceis the isotropy
subalgebra of at 0, anct — &g defines aR-linear isomorphisnp — ToFE = E. As a
consequence, there exists a unique mapping

EXEXE—E, (x,y,2) > {xyz}, (4.2)
that is symmetric complex bilinear in the outer variahlesz) such that
p={(a—{zazhL € E}.
Since bothla — {Z“Z})a% and¢ = (ia — {z(ioz)z})aiZ are inp, one has
n = [(a - {zez)Z. izZ] = (o +ifzazh L € p.

Now & andn have the same 1-jet at O and the above unique determination implies that
{xyz} is conjugate linear in the inner variable Consequently,

[12{{ZO!Z}3%:OIGE} and [_l:{aaa—ziaeE}.

In addition, the triple produdixyz} satisfies certain algebraic identities as well as a pos-
itivity condition. It is called theJordan triple producion E given by the bounded sym-
metric domainD (see e.g.[19] and [16] for details).

Let S be areal form of the complex Lie grouf., that is, a closed connected real
subgroup whose Lie algebrasatisfies! = s @ is (for instance,Aut(D)° is such a
real form). LetS be anS-orbit in the compact duak. ThenS is a locally closed con-
nected real-analytic submanifold & and hence a homogeneous CR-manifold. Since
the complex Lie group acts transitively orZ, the CR-manifoldS is generic inZ, i.e.
T.8+iT,S = T,Z for the tangent spaces at every: S. The Lie algebra of S can be
considered as areal Lie subalgebrdaf(S) and hence for every € S also ofhol(S, a)
in a natural way. Note that we have, ia:- € s and hence := (z — a)2 € s+ is.

As a consequence of Proposit[on]3.8 we state
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4.3. Proposition. Suppose thajol(S, a) is of finite dimension for somein the S-orbit
S (for instance, ifS is holomorphically nondegenerate and minimal as a CR-manifold).
Thenhol(S, a) = s for everya € S.

For the formulation of our first main result we introduce the following notation:

4.4. Definition. Denote bye the class of all pairgS, Z), whereZ is an arbitrary Her-
mitian symmetric space of compact type and Z is anS-orbit with dimbol(S, a) < oo
for someu € S and some real forrs of Aut(Z)°.

4.5. Theorem. Let (S, Z) and(S’, Z’) be arbitrary pairs in the clas€ and assume that
¢ : U — U’ is a real-analytic CR-equivalence whateC S andU’ c S’ are arbitrary
domains. Therw has a unique extension to a biholomorphic transformatibn> Z’
mappings ontoS’. In particular, there are canonical isomorphisms

Aut(S) = {g € Aut(Z) : g(S) = S},
Aut(S, a) = {g € Aut(S) : g(a) = a}

for everya € S. Everyg € Aut(S, a) is uniquely determined by i%jet ata.

Proof. We show that the assumptions of Proposifion 3.9 are satisfied. By [9, p.B@5],
simply connected, and the semisimple complex Lie grbup Aut(Z)? acts transitively

on Z. By the definition of¢ there is a real forn$ of L with S = S(a) and dimhol(S, a)

< oo for someu € S. Propositior 4.3 give§ol(S, a) = s for the Lie algebra of S. Since

the same properties hold fe$’, Z’) Proposition 3.P gives the continuation statement. The
last statement about the jet determination follows from the known fact that elements of
Aut(Z) are uniquely determined by their 2-jets at any given paiatZ. O

4.6. Corollary. Given any(S, Z) € ¢, the groupAut(S) of all real-analytic CR-auto-
morphisms is a Lie group with finitely many connected componentS asdhe identity
component. More preciselput(S) is canonically isomorphic to an open subgroup of
Aut(s), wheres is the Lie algebra o§.

Proof. The groupAut(S) acts on the real Lie algebfm((S) = s and hence induces an
injective Lie homomorphisnp : Aut(S) — Aut(s) C Aut(l) (the injectivity follows
from the fact that the isotropy subalgebrad skparate points dt, i.e. are different at
different points). Sincéut(S) contains the semisimple subgrodpt follows that g is
open. Furthermoreéut(s) is an algebraic subgroup & (s) and hence has only finitely
many connected components. O

The irreducible Hermitian symmetric spaces of compact type come in four series and two
exceptional spaces (see for instance [9]). As an example let us briefly recall the first series.
It consists of all spaces for which the automorphism group= Aut(Z)? is of the form
PSL(p, C) :=SL(p, C)/center for some > 2: Fix integersn > n > 1 withm+n = p

and denote by := G, the Grassmannian of all linear subspaces of dimensiarC?.
ThenG,_,, is a connected compact complex manifold of dimensienon which the
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complex Lie grousL(p, C) acts transitively as a holomorphic transformation group and
its center is the kernel of ineffectivity. Up to a positive factor, there exists a uSigyge)-
invariant Hermitian metric orZ making it a Hermitian symmetric space of ramkvith

L = Aut(Z)® = PSL(p, C). The real forms oSL(p, C) areSL(p, R) and allSU(j, k)
with arbitrary integerg > k > 0 satisfyingj + k = p. Fix such a paixj, k) with k > 0

and anSU(j, k)-invariant Hermitian form® on C? of type (j, k) (i.e. ® has; positive
and k negative eigenvalues). The orbits of the real fdm= PSU(j, k) in Z can be
indexed as

ZI’JI ={Ve Gn,m : ® has tprP’ Q) onvj,

wherep, g > 0 are certain integers satisfyipgt+ g <n, p < j,q < kand maxp, g) >
n — k. The simplest case occurs for raml= 1, that is, forZ = G, = P, the complex
projective space of dimension. ThenS has exactly three orbitZ1 o, Zo 1 are open in
P, andZg is a closed Levi-nondegenerate real hypersurface. Tanaka [26] has shown
that in casen > 2 every CR-equivalence between connected open subsétsc Zg o
extends to a biholomorphic transformatiorfaf leavingZo o invariant. In particular, (for
every choice ofj > k > 0) the pair(Zo,0, P,») belongs to the clasg and Theorerp 4|5
may be considered as an extension of Tanaka’s result to more general situations.
Now the question arises for which real form orb§ten a Hermitian symmetric space
Z of compact type the pai¢S, Z) belongs to the clasé and hence has the properties
stated in Theorern 4.5. Since the cla&sss closed under taking direct products (that is,
together with(Sy, Z;) in € for k = 1,2 also(S1 x S2, Z1 x Z») is in &), for the above
guestion we only have to consider situatighs. Z whereS is an orbit with respect to a
simple real forms of the complex Lie group. = Aut(Z)P, that is, where one of the two
following cases holds:

(i) Zisirreducible, or equivalently, the complex Lie groufs simple.

(i) Z = Z1x Z, is the direct product of two irreducible Hermitian symmetric spaces
andS = {(g, tg) : g € L1} is the graph of an antiholomorphic group isomorphism
7: L1 — Lywith Ly := Aut(Z) fork = 1, 2.

Our second main result gives a complete answer for the tube case in (i), more precisely:

4.7. Theorem. Let Z be an irreducible Hermitian symmetric space of compact type and
let S be a real form ofL := Aut(Z)° that has an open orbib ¢ Z which is biholomor-
phically equivalent to a bounded symmetric domain of tube type. Let furtheSnor&

be anS-orbit that is neither open nor totally real iZ. ThenS is a minimal2-nondegen-
erate CR-manifold and hen¢s, Z) belongs to the class.

The proof will be given at the end of the next section (see the Appendix for the definition
of 2-nondegeneracy). Locally, eve$yin Theorenj 4.7 will be realized as a tube manifold
over a suitable cone in some real vector space. As an example, for the Grassmannian
Z = Gy, the real formG = PSU(n, m) of L = PSL(n+m, C) has a bounded symmetric
domain as an orbit, but this domain is of tube type only £ m and then the cone is the

set of all positive definite Hermitiam x n-matrices.
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5. Tube manifolds

Some bounded symmetric domains can be realized as generalized half planes (tube do-
mains). Besides the Lie theoretic approach (cfl [18]), there is also a Jordan algebraic one
that we shall use in the following. It will turn out that all necessary computations become
relatively easy in the Jordan context.

Let V be areal Jordan algebreof finite dimension, that is, a real vector space with
a commutative bilinear produck, y) — x o y satisfying [L(a), L(a?)] = 0 for every
a € V,a? := aoa andL(a) the multiplication operatox — a o x on V (see [4]
for this and the following). Assume in addition thetis formally realin the sense that
alwaysx? + y? = 0 impliesx = 0. Then the algebr&f automatically has a unitand the
open subset of all invertible elementsiofdecomposes into a finite number of connected
components. Denote kg the component containing Theng is an open convex cone
(i.,e.tQ2 = Qforall + > 0) in V and the correspondinbe domainH := Q & iV in
the complexified Jordan algebf:= V & iV is biholomorphically equivalent via the
Cayley transformation — (z —e) o (z 4+ ¢)~* to a (circular) bounded symmetric domain
D c E whose (totally real) Shilov boundary is the generalized unit circlgiéxp (Here
exp(z) = Y -0 zF/ k! with powerszX defined with respect to the Jordan product.) On the
other hand, every bounded symmetric domain with totally real Shilov boundary occurs
this way and hence is said to betabe type The example of lowest possible dimension
occurs forV = R with the usual product, and thé is the right halfplane irE = C.

The linear group

GL(Q) :={g € GL(V) : g(Q) = Q}

is a reductive Lie group (cf. also Leminas.2) acting transitively2oiThe Jordan algebra
automorphism groupgut(V) is a maximal compact subgroup 6L (2) and coincides
with the isotropy subgrougg € GL(Q2) : g(e) = e} at the identity. Therace form
(x]y) := tr(L(x)L(y)) yields anAut(V)-invariant positive definite inner product dn
such that all operators(a), a € V, are self-adjoint. The cone is self-dual in the sense

Q={xeV:(x]|y) >0forally € Q}.
For allx, y € V define the linear operators
P(x,y) = L(x)L(y)+ L(y)L(x) — L(xoy),
P(x) i= P(x,x) = 2L(x)? — L(x).

ThenP(a) is contained irGL($2) and mapg to a? € 2 for every invertiblez € V (seel4,
p. 325]). Actually,(g, a) — P(a) o g defines a homeomorphisfut(V) x Q@ — GL(RQ)
and gives a Cartan decomposition

gl(Q) = ver(V) @ L(V) (5.1)

with L(V) := {L(a) : a € V}, vex(V) the derivation algebra of the Jordan algebBrand
gl() C gl(V) the Lie algebra ofsL(©2) ¢ GL(V). Furthermore forH = Q @ iV as
above,

Aff(H) :={z+ g(z) +iv:g e GL(Q),v e V} C Aut(H)
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is the group of all affine holomorphic transformationssbfwhere we considegL(V) in
the canonical way as a subgroup@f(E). SinceGL(R2) acts transitively or2, Aff(H)
acts transitively orH.

The Lie algebrgl(D) of the compact grougL(D) (for the corresponding bounded
symmetric domairD C E) is canonically isomorphic té (as defined in Sectidr 4) and
hence has complexification isomorphicfdsee )). But als@l(£2) has complexifica-
tion isomorphic td® (see )). The centers gf(2) andgl(D) have dimension equal to
the number of irreducible factors of the bounded symmetric dorbailm caseD has an
irreducible factor of dimensior 1, ver(V) is a proper maximal compact subalgebra of
the semisimple part gfl(Q2). Therefore we can state

5.2. Lemma. The real Lie algebragl(£2) andgl(D) have isomorphic complexifications.
In caseD is not biholomorphically equivalent to a polydisk, the Lie algehy&$2) and
gl(D) are not isomorphic.

For the rest of the section we assume that the formally real Jordan algébsanple that
is, the symmetric tube domat is irreducible, or equivalently;L (€2) has 1-dimensional
center{x — tx : ¢ > 0}. Then

SL(Q) := GL(22) N SL(V)

is the semisimple part diL(2) and has codimension 1 L(2). Every GL(£2)-orbit C
in V is a connected locally closed cone and the associated tube mafiifgldV is a
CR-submanifold ofz, on whichAff(H) acts transitively. Clearly, th&€L(2)-orbits in V
and theAff(H)-orbits in E are in 1-1 correspondence to each other.

There exists a uniquely determined integer 1, therank of V, such that every
a € V has a representation

a=>xe1+ -+ reep, (5.3)

wheree, ..., e, is aframein V (i.e. a sequence of mutually orthogonal minimal idem-
potents inV with e = e1 + --- + ¢,) and the coefficientd; € R (called theeigenval-
uesof @) are uniquely determined up to a permutation. For all integegs > 0 with

p +q < r denote byC, , the set of all elements i having p positive and; negative
eigenvalues (multiplicities counted). Théh= C,o andC, , = —C, , for all p, q. It

is well known that the group\ut(V) acts transitively on the space of all framesVin
Furthermore, the elementwith representatior] (5.3) is mapped B(c) € GL(Q) to
t2h1e1+ - - + t2hre, for everyc = tre1 + - - + tre, € Q. This implies that everg), ,

is contained in &L (2)-orbit. In casep 4 ¢ = r actually it is easy to see thay, , is an
openGL(2)-orbit in V. But then for arbitraryp, ¢ the closureC, , = Up<p.a'=q
is GL(Q)-invariant as follows inductively from the formutd,, ;, = C 41,4 N Cp 441 for
p +q < r. The next statement now follows from the fact tiagt, is the complement in

Cp,q Of Up<p Cpg) U Uy <4 Cp.g)-

Cr.q

5.4. Lemma. There are preciself{zz) GL()-orbits in V. These are the cones, ;.
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On V there exists a unigue homogeneous real polynomiadf degreer (called the
generic normof V) with N(¢) = 1 andN~1(0) = {a € V : anotinvertiblg. The
value N (a) is the product of all eigenvalues af thereforeN may be considered a gen-
eralization of the determinant for matrices. The characteristic polynomial

N(Te —x) = Z N, _i(x)T*F
k=0

determines homogeneous polynomisllsof degreej for 0 < j < r onV that give local
equations for every cong, ,, more precisely,

UNCpy={xeU:Nj(x)=0forallj> p+gq}

for everya € C, , and a suitable neighbourhoadof a in V.

In the following fix aGL(2)-orbit C = C,, in V and letM := M, , = C @iV
be the corresponding tube manifold #h We denote by = p + ¢ the commorrank
of all elementsz € C, that is, the number of all nonzero eigenvalues: 0Dbviously,
.M = T,C @ iV for the tangent spaces at evarye C Cc M, and alsoH,M =
T,C ®iT,C for the holomorphic tangent spacasafTherefore, every smooth vector field
on C has a unique extension to a smooth vector field(w, H M) that is invariant under
all translationg — z +iv,v € V.

For fixeda € C choose a representati.B) and denote by ;. zo¢k the
support idempotertf a, which does not depend on the chosen framéir (5.3). Consider
the correspondingeirce decompositionsee for instance [4, p. 155]) with respectto

V=Vi@Vip®Vo and E =E1® E1/2® Eo, (5.5)

whereV; andE;, = Vi @ iV; are thek-eigenspaces df(c) in V andE. ThenVy and Vg
are Jordan subalgebras with o Vo = 0 and with identity elements and¢’ := ¢ — ¢
respectively. The operatolSe;) commute and inducejaint Peirce decomposition

v= P Vi (5.6)

1<j<k=r
into pairwise orthogonal (with respect to the trace form) Peirce spaces
Vik ={x € V 1 2L(e;)x = (§j; + di)x for all [}

satisfying

Aj + A
L= Y ZZme P@= Y A (5.7)

1<j<k<r 1<j<k=r

wherer;, is the orthogonal projection oV with rangeV;,. On the other hand,

Vi = Z Vie, Vip= Z Vie. o Vo= Z Vik.

Aj #0#£Ag Aj #0=Xg A_/:O:Ak
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We haveV;; = Re; for every j, and allVj; with j # k have the same dimension, which
in caser > 3 can only be one of the numbers21 4, 8 (see the classification in the next
section). Furthermord/; is the range oP (a) andVy2 C L(a)V C V1® V2. The same
decompositions and spectral resolutionsf¢e) and P (a) also occur forE in place ofV.
Foreveryz = x +iy € Ewithx,y € V letz* := x — iy (we preferz* to 7 as notation
here since the conjugation bar serves a different purpose later, in §gction 6}. Fhef

is a conjugate linear algebra involution of the complex Jordan algglfaat leaves all
Peirce spaceg invariant. By settingP (z, w) = L(z) L(w) + L(w)L(z) — L(z o w) and
P(z) := P(z,z) for z, w € E we extend our previous definition and get complex linear
operators orE satisfying(P (z)w)* = P(z*)w*.

5.8.Lemma. T,C = V1 @ V1> and hence[,M = E1 @ Ey, for the corresponding
tangent spaces at € C. In particular, L(z + z*)E C H M for all z € M. Furthermore,
L(a)E = H, M provided

Aj+i=0 implies A; =i =0. (%)

Proof. For every giverk € der(V) denote bywg € Vo the component of (a) with respect
to the Peirce decompositio.S). Ther ¢’ = 0 impliesi(a) o ¢’ = —a o A(¢) and
hencevg = vgoc’ € L(a)V C V1 & V12, that is,vg = 0 and thusi(a) € V1 & Vi/2.

Therefore[(5.1) and.(V)a = L(a)V imply

L)V CT,C =gl(Q)a C V1 ® V2. (%)

In casen satisfieq(x) the spectral resolution fdt(a) in @) impliesL(a)V = V1® V12
and hencel,C = Vi1 @ V2 by (xx). Since dinfVy; @ V1/2) does not depend on the
choice ofa € C and since on the other hand ane C can always be chosen that
satisfies(x) we conclude that dirfi,C = dim(Vy & V1,2) and hencd,C = V1 @ V12
by (xx) for every choice of: € C. Finally, for everyv € V andw := a + iv we have
L(a)E C H,M = H,M, where the latter identity is obvious from the fact that- z+iv
is a CR-automorphism a¥. O

To simplify our arguments we assume without loss of generality in the following that
a € C always satisfies the conditiag) above. Then the restriction @f(a) to H,M =
E1 @ Eq)7 is invertible andEg is the kernel ofL(a) in E. Also we assume for the rank
p = p+gqofathatp > 0 (i.e. M is not totally real inE) and, in addition, thap < r (i.e.
M is not open ink). Furthermore we identiffe / H, M in the canonical way wittEq.
At this point it is convenient to compare the Jordan algebra pradect on E with
the Jordan triple produdtcyz} associated with the bounded symmetric domairc E
that is the image off C E under the Cayley transformatian— (z —e) o (z +¢) 1 (see
the first part of this section). The following identities are well known:

{zwz} = P(Qw*, zow = {zew}, z"={eze} forallz,w eE.

For every Peirce spadg; = Vj; in @) the inclusion Vj,, Viun Vak} C Vi holds for all
index pairs, and all triple products of Peirce spaces that cannot be written this way vanish
(after transposing indices in some pairs if necessary).
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An important CR-invariant for every € M is the (vector-valued)evi form
Ay HoM x H,M — E/H,M,

which we define in the following way: For every y € H,M choose smooth sections
&, nin HM overM with &, = x, n, = y and put

Ag(x,y) = ([éf, 77] + i[ié, 77])11 mod H, M.

Since E, n] — [i&, in], [, in] + [i&,n] € HM in view of the integrability condition, it
follows thatA, (x, y) is conjugate linear in, complex linear iny and satisfied\, (v, v) €
iT,M/H,M C E/H,M forallve H,M.

For everyv € H,M define the smooth vector field on E by &£ = %(z +z*)ov e
E =T.Eforallz € E.Thent) = aovandt’ € H:M forall z € M by Lemmg 5.B.
A simple computation shows

Ag(E),EX) = (aov) owmodH,M.
Since the operatak () is bijective onH, M we thus get
Ag(v, w) = v* o L(a) " *w mod H,M
forall v, w € H,M. In particular,
KoM ={w e H,M : A,(v,w) =0forallve HiM} = E1 (5.9

for theLevi kernelata. Indeed,E1 C K, M follows from the fact that every Peirce space
E; is invariant undell(z) for everyz € E;. On the other hand, for every € E1/, the
Eo-component ofw*ow is {wwc'}, which vanishes only fow = 0 (see([19, p. 10.6]).
This proves the opposite inclusidq, M C E1.

The Levikernelk,M = E1 is the image of£ under the operataP (a) and its restric-
tion to this space is invertible. For every € K, M define the vector fielg™ on E by
ny = ipz+z9w. Thenn¥ = P(a)w and, by Lemm8 an.9);” € KM for all
z € M, whereK,M is the Levi kernel at. A simple calculation shows

[V, "] = P(a,a o (v+v")w — %(P(a)(w +w*)oveEy (5.10)
forallv € Ey/2, w € E1. The part
B, ng) = P(a,aovw
of (5.I0) that is antilinear irv and linear inw is the sesquilinear map
B:Ei2x E1— Eyp givenby B(v, P(@)w) = P(a,vw (5.11)
forve Eyp = HiM/K,M andw € E1 = K, M.
5.12. Lemma. R = 0O for the right 8-kernel

R:={we Ey:Bv,w)=0forallve Eyp}.
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Proof. Assume on the contra® # 0. SinceRr is invariant under the involutiow +— w*
and sinceP (a) is bijective onVj there exists a vectap # 0 in Vq with P(a)w € R.
ThereforeP (a, vyw = 0 for allv € V2, or in triple product notationawv} = 0 for all
v € Vy/2. Furthermore > 2 since O< p < r for the rankp of a.

For everyx € V denote byx;; := mjx(x) € Vi the corresponding component with
respect to the decompositidn (b.6). As# O there exisyj, k with wj # 0. In particular,
Xjrx # 0 and there exists an indexwith 1, = 0, that is, 0# Vi, C V1. This forces

0= )\j_l{akan}jn = {ejwjkvrn} = 0 forallveV.

From Vi = Rex and Zeregvrn} = vi, We derivej # k and hencer > 3. As a
consequencd/ = H, (K) for K one of the division algebra®, C, H andQ (see the next

section for the notation). If we realizee H, (H) as the diagonal matrixf, ..., A,] and
let vy, € Vi, be the matrix that has & K at positiongk, n), (n, k) and zeros elsewhere
we getw;; = 0, a contradiction. O

The bilinear mags in (5.11) corresponds to the mappifg in (7.4) evaluated ai. In
particular, the righi3-kernel R can be identified with+2 in Lemm. ThusV is 2-
nondegenerate by Lemrpa 512 (recall that[by| (5\®)s Levi degenerate), and we have
all ingredients for the postponed

Proof of Theoreni 4]7We may assume that there existsinC Z a symmetric tube
domainH c E with S = Aut(H)°. Since theS-orbit S is generic inZ the intersection

M = SN E is not empty. ClearlyM is invariant unter the subgroupff(H) C S, and

we claim that actually is anAff(H)-orbit in E. This follows from the well known fact
that in the irreducible Hermitian symmetric spacef rankr the number of-orbits is
(’;2) (see e.g[[13]), which by Lemn@A is also the numbekféfH )-orbits in E. By

the above discussiol is a 2-nondegenerate CR-manifold, and by homogeneity this is
therefore also true faf. Finally, minimality of S follows from Theorem 3.6 i [13]. O

6. Examples and applications

We begin by presenting briefly the classification of all formally real Jordan algebras in
the notation of [16]. From 20 y = (x + y)? — x? — y? itis clear that the Jordan product
is uniquely determined by the square mapping. For every integerl let K, be the
vector space&R” with the following additional structurefx|y) = Y x;y; is the usual
scalar product an@l := (x1, —x2, ..., —x,) forall x = (x1, ..., x,) € R". The fieldR
is identified with{x € K,, : x = x} viat — te, wheree := (1,0, ..., 0). In addition,
define the product of andx formally asxx := (x|x) € R c K,,. For every integer > 1
denote byH, (K,) c (K,)™ the linear subspace of all Hermitianx r-matrices(x'/)
overK,, thatisx/ € K, andx”/ = x/ forall 1 < i, j < r. Obviously,H, (K,) has real
dimension + (5)n.

Our conventions so far suffice to define all squarefor x € H2(K,) (just formally
as matrix squares). Fer> 2 we need an additional structure on sokye Identify Ko
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with the fieldC, K4 with the (skew) fieldH of quaternions an&g with the real division
algebraO of octonions in such a way that — X is the standard conjugation of these
structures. With these identifications also squares are defingf (K,,) for all » and

n =1, 2,4, 8 (again in terms of the usual matrix product). Now the simple formally real
Jordan algebras are precisely the following, whedenotes the rank:

r=1:R,

r=2:Ho(K,),n>1,

r =3 H3[R), H3(C), Ha(H), H3(0),
r> 3. H,R), H,(C), H, (H).

In H2(K,) the generic norm is given by (% ) = o — xx, and

Cro= {(; ;) € Ha(Kp) i + B >0,aﬁ=xf}

is the future light cone, which can be written in a more familiar form as
{(t, X0, X1, ..., xp) €R'2 1 ¢ > O,t2=x§+-~-+x3}

viaa =t+xg, 8 =t—x0.InV = H,(K) for K = R, C, H the cone& is the subset of all
positive definite matrices. The group of all transformatiens gxg* with ¢ € GL(r, K)

is an open subgroup &L (£2), in particularP (a) is then the operator — axa for every

a € V. The kernel of ineffectivity for the action diL(r, K) on € is the group of allx

in the center ofk with A1 = 1 (that is,{£1} in the case®R andH). The complexified
Jordan algebr# is the matrix algebr&™" in caseK = C and is the Jordan subalgebra
of all symmetric matrices in ca®€ = R. The realization ofl as a matrix algebra,

H:{(_“E g) :a,be(C},

gives a canonical embeddirtg, (H) C H>-(C) as a Jordan subalgebra. The usual de-
terminant function ortH,, (C) restricted toV = H, (H) is the square of the generic
norm of V. In caseK = R, C the generic norm ov = H, (K) coincides with the de-
terminant. The subgrou$L(r, H) has real codimension 1 i6GL(r, H) and Lie algebra
sl(r, H) = {x € gl(r, H) : tr(x) = 0}, wheretr is the reduced (center-valued) trace on
gl(r, H) (seell22, p. 267] o [17] for details).

Now fix a simple formally real Jordan algebva = H, (K,) in the following and
denote as before b = exp(V) (= C,0) the positive cone irV. There exists a unique
GL(Q)-invariant Riemannian metric of® that coincides at € Q with the Aut(V)-
invariant inner productx|y) = tr(L(x)L(y)) onV = T,Q. Sincex — x~1is an
isometry ofQ2 with unique fixed point in €, the positive cone is actually an irreducible
Riemannian symmetric space of noncompact type.

As before letE = V@iV be the complexification of . The tube domaill = Q&iV
in E is homogeneous under the affine grodff(H) and it is well known that the full
automorphism group\ut(H) is generated by the subgrodgf(H) and the involutory
transformation; — z~1 whose unique fixed point iH is e. As already mentioned
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before, H is biholomorphically equivalent to a bounded symmetric donfaixc E via
the Cayley transformation(z) = (z — e) o (z + ¢)~L. In fact, D is the interior of the
convex hull of exisi V) in E, and also ex@ V) is a Riemannian symmetric space (the
compact dual of exy/) = Q).

Let againZ be the compact dual ab andL := Aut(Z)° with Lie algebral =
hol(Z) C hol(E). The Cayley transformatiop is contained irL and has order 4. There-
fore the Lie algebrg of Aut(H) is also a real form of. Sinceza% € b the Lie algebra
has aZ-grading (cf. also[(3]7))

h=h"'er’ e
with B¥ = h N [* a real form of the complex Lie algebfa more precisely
hbr={ivi:vev) =g@=0b""p"1 b={ifzvaL:veVv} (61
where{zvz} = P(z)v is the corresponding Jordan triple product (cf. e.gl [14]). The affine
subalgebra := h~1 @ §h° is the Lie algebra oAff(H). With ) and the above we see
that the codimension of every Lie algebra from the chair{V) c 1° c a C hinits
successor is difil = r + (,)n.

The Lie algebray = aut(H) is explicitly known in all cases; actually the table be-
low can be verified (cf. e.gL.[7]). In the tablel(D) is the Lie algebra of the compact
groupSL(D) := GL(D) NSL(E) with GL(D) being isomorphic to the isotropy subgroup
Aut(H). ate. The notation used is as in[9, p. 354]. In particular, every exceptional simple

real Lie algebra in the last line is uniquely identified by its character (in parentheses),
which by definition is codim- dim for a maximal compact subalgebra.

|4 oer(V) s[(2) aut(H) sl(D)

R 0 0 s[(2, R) 0
Ho(K,) son+1) so(l,n+1) so0(2,n+2) so(n + 2)
Hr(R) s0(r) sl(r, R) sp(r, R) su(r)
H,(C) su(r) sl(r, C) su(r, r) su(r) x su(r)
H,- (H) sp(r) sl(r, H) 50™(4r) su(2r)
H3(0) fa-52) ¢6(—26) €7(-25) ¢6(~78)

The semisimple Lie algebra§(2) ands((D) have isomorphic complexifications (see
Lemmd5.P) and in particular have the same dimensions. These are easily read off from
the table as

78, V ="Hz3(0),

6.2
n(r?=2)+ (3) +1, otherwise (6:2)

dims((Q) = dimsl((D) = {
Denote bys € Aut(D) C Aut(Z) the symmetry(z) = —z of D. Theng := Ad(s)
satisfiesg(€) = (—1)¥& for all £ e ¥ and hence also leavésc [ invariant. It is obvious
that+ Aut(H) := Aut(H) U (s o Aut(H)) is a group containindut(H) as a subgroup
of index 2. In the same way we also define the subgrabigd () c L+ Aff(H) C
+ Aut(H) C Aut(Z). As an improvement of Corollafy 4.6 we state:
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6.3. Proposition. The groupt+ Aut(H) is isomorphic toAut(h) via Ad. With this identi-
fication
+GL(Q) = {g € Aut(h) : g(8) = 5},

+Aff(H) = {g € Aut(h) : g(a) =a} fora=h"1aKO.

Proof. The antiholomorphic transformatiar{z) = z* of H induces the same Lie algebra
automorphism ofy ass. Therefore the first claim follows from Proposition 4.5 in][13]
(stated for the biholomorphically equivalent doma&ih Suppose (§) = §. Theng leaves
thead(8)-eigenspacg L invariant, thatisg € + Aut(H) is linear and hence it GL(S2).
Next, assumg(a) = a. Sinceg(i V)NiV # ¥ there exist translations, 1> € exp(h~1) C
Aff(H) such that(0) = 0 for i := t1gt>. Buth leavess as well ag)® invariant and hence
induces an invertible endomorphismaf® = h—1. Therefore §(8), g(«)] = —g(a) for
alla € h~Limpliesi(8) = § and hencér € + GL(Q), that is,g € + Aff(H). O

For the rest of the section fix@L (2)-orbit C := C,, 4 in V together with a point € C
and denote by := M,, = C + iV the corresponding tube manifold. As before,
p = p +q < risthe rank ofa. For convenience we call := r — p the corankof a.
The affine groupAff(H) acts transitively onM, in casep = ¢ also the bigger group
+ Aff(H) acts onM (since thenC = —C). From Lemm4 58 it is easily derived that
has CR-dimensiop + (5)n + pp’n and CR-codimensiop’ + (’;)n. In particular,M is
of hypersurface type if and only i’ = 1. Furthermore, b9) the complex dimension
of the Levi kernel at every point o¥/ is p + (Q)n

The isotropy subgroup

(£ Aut(H)), :={g € £ Aut(H) : g(a) = a} C Aut(Z)

can be canonically identified with a subgroupAaft(M, a) and clearly coincides with
the isotropy subgrouput(M), in casep # q.

6.4. Proposition. In caseM is neither totally real nor open ik,
Aut(M, a) = (£ Aut(H)),
for everya € M. In particular,

72+ 8p/, V = H3(0),

dimAut(M, a) = ’
ImAut(M, a) in(r2+(g)_2)+(g)+p’+2, otherwise

wherep’ = r—rank(a) is the corank ofz in V.

Proof. Let S be theAut(H)-orbit of a in Z. ThenM is an open subset ¢f and the pair
(S, Z) belongs to the clags By Theoren) 45 every germ iut(M, a) extends to a trans-
formationg € Aut(Z) with g(S) = S. Thereforeg € Aut(h) = + Aut(H) as a conse-
quence of Propositidn §.3. The dimension formula follows frpm| (6.2),AlitiM, a) =
dimAut(M) — dimM = dimgl(R2) + codimcr and the explicit expression for the last
summand above. O



Local CR-transformations af-orbits 485

As an example, if = 2, p’ = 1 andd := n + 2 > 3, thatis,M c C? is the tube over

the future light condx € R? : x1 = 1/x% +- 4+ x§ > 0} in d-dimensional space time
we have dimAut(M, a) = (4) + 2 for everya € M.
We proceed with the above fixed coe= C, ,. Letf(z)a% € h = aut(H) be an

arbitrary vector field. By[(6]1)f has the formf (z) = A(z) + i({zvz} — w) for suitable
A € gl(R) andv, w € V. For everya € C we then have

6.5. Lemma. (i) f(a) = 0<% A(a) = 0andw = {ava}.
(i) f'(a) =0« A =0andv € Vo, whereVj is the Peirce space according (6.5).

In particular, {i{zvz}% : v € Vp}isthe space of all vector fields émt(H) with vanishing
1-jet ata. The dimension of this space coincides with the CR-codimensigh of

Proof. (i) follows from A(a) € V andi({ava} — w) € i V. Obviously, f'(a)(z) = A(z) +
2i{avz} for all z € E and in particular for alt € V. Thereforef’(a) = 0 is equivalent
tol = 0 and{avz} = O for all z € V. But the latter condition is equivalent toe Vj.
The last claim follows from the fact thag is isomorphic to the normal spaceato M
in E. O

6.6. Corollary. The following conditions are equivalent:

(i) Every¢ € aut(H) is uniquely determined by itsjet ata € M.
(iiy MisopeninE.

Proof. Both conditions are equivalent #¢ = {0}. O

Recall thataut; (M, a) is the space of all germs of vector fieldshal(M, a) that vanish
of order> 2 ataq, that is, which have vanishing 1-jetatLemmg6.5 also immediately
implies

6.7. Corollary. auty(M, a) = {i{zvz}% ;v € Vp} if M is neither totally real nor open
in E.

Denote byaut(M) C hol(M) the subset of all vector fields that axemplete onV, that
is, generate global flows a¥f.

6.8. Lemma. h N aut(M) = b~ @ h° (= a) if M is not open inE.

Proof. The linear span ob = h N aut(M) in hol(M) has finite dimension by [20],
thereforeb C his a Lie subalgebra with C b. Assume there exists a vector figlcE b\a.
Without loss of generality we may assurfie= i{ZUZ}a% e h* for somev € V. There
exist minimal orthogonal idempoterds, . . ., e, in E with v = vie1 +- - -+ v,e,, and we
may assume1 = 1. SinceM is not open inE there exists a point = c1e1 + - - - + ¢, ey
in M with c1 = i. The vector field is tangent to the linear subspagej Cej of E. As
a consequence(t) = exp(t&)(c) has the formg(r) = Zj gj(t)e; with certain real-
analytic functionsg; : R — C. Itis easily verified thag,(r) = i(1+ 1)~1, which has a
singularity att = —1 and thus gives a contradiction. O

Itis easily seen thal = M, , is convex ifandonly ifM = H,M = —~H orM =iV
(thatis, if{p, q} C {0, r}).
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6.9. Proposition. In caseM is not convex irE we have

Aff(H),  p#q.

Aut(M) = Aff(M) = {i AT,

Proof. Case 1M not open inE. Thenhol(M) = h and Lemm& 6]8 implyut(M) = a.
As a consequence, evegye Aut(M) C Aut(h) leavesa invariant, i.e.g € £ Aff(H) by
Propositior 6.3. In particulag, € Aff(M) and alscg € Aff(H) if M # —M.

Case 2:M open inE. Thenpg # 0 and it is easily seen thd is the convex hull ofV.
By [10, 2.5.10] every holomorphic function ad has a holomorphic extension K that
is, Aut(M) C Aut(E) by holomorphic extension. Without loss of generality we assume
p < q and fixg € Aut(M). Then eitherg maps the boundary pas,_1 , onto itself or
mapsM,_1, to M, ,_1. The latter case only happensyif= ¢ and then we replacg
by —g implying thatg leavesM,,_, , invariant. By case 1 the restriction gfto M, _1 ,
extends to an affine transformationAff( /), and the claim follows. O

Finally, we come back to the tubes over future light cones: This corresponds to the rank-2
caseV = Hz(K,) withn > 1. Putm := n + 2, identify the future cone i¥ with

Q:{xeRm:x1>,/x%+---+x,%}

and lete := (1,0,...,0) € Q be fixed. ThenGL(Q2) is the special Lorentz group

0(1, m—1)™T, and the isotropy subgroup atis the orthogonal grou@®(m—1) acting

in the canonical way on the orthogonal complementiof R™. In particular, both groups

have two connected components. As beforédet= Q@ @ iR™ c C™ be the correspond-

ing right halfplane. It is known that the realization Bfas a bounded symmetric domain
in C™ is theLie ball

D= {z e C" : (zlz) ++/(z2)%2 — [{z,2)12 < 1}7

where (z|lw) = Y zwg and (z, w) = > zxwi are the standard inner product and
symmetric bilinear form onC™ respectively. It is obvious that the orthogonal group
O(@m) leavesD invariant and also thatl/(1) acts onD by multiplication. Therefore,
the direct product group)(1) x O(m) acts linearly onD, and it is known that actu-
ally GL(D) = (U(1) x O(@m))/{£(1, 1)}. In particular, the groupAut(D) andGL(D)
have two connected componentifis even and are connected otherwise. The compact
dual Z of D is a complex quadric in the complex projective spBge 1.

The boundary ofD is the uniondD = Sp U S1 of two Aut(D)-orbits: The Shilov
boundary

So:={zeC":(zlz) ={z,2)| = 1}

is also aGL(D)-orbit and coincides with the set of extreme points of the closedball
while S7 is the smooth boundary part &f. The CR-manifoldS; is anAut(D)-equivariant
disk bundle, where the fibers are the holomorphic arc componerfisiofthe sense of
[3Q]. For instance, the analytic disk throueth:= (1/2,i/2,0,...,0) € Syis{e1+tes:
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|t| < 1}, wherees := (1/2, —i/2,0, ..., 0). The boundary of each such disk is contained
in the orbitSo.
As before letM := C & iR" be the tube over the future light cone

C={xeRm:x1>0,xf=x§+~-~+x31}.

There is a transformation iAut(Z) (Cayley transformation) mappind biholomorphi-
cally to D and mappingM to a dense open subset 8. In particular,M and S; are
locally equivalent as CR-manifolds.

In the following we specialize tor = 3. R3 andC3 are identified with the spacés
and E of symmetric matrices iiR?*2 andC?*? respectively. In particulag is the cone
of positive definite matrices iy ande € Q becomes the unit 2 2-matrix. The group
Aut(H) is isomorphic to the real symplectic group

Sp(2,R) :={A e R™*: A'JA = J},

whereJ = (f’e ¢). Then the action ofp(2, R) on H is more easily described if we
replace the right halfplan& by Siegel's upper halfplaned = V @ iQ2: Write every
A € Sp(2,R) in block form A = (4 %) with 2 x 2-blocks and put

A(z) = (az+b)(cz+d)~t forallz €iH.

For everys € C the isotropy subgroup dp(2, R) at the pointis € i M is isomorphic
to Aut(M, s) and consists of the 5-dimensional group of all= (¢4) € Sp(2,R)
satisfying the linear equations = sd andb = —scs on R**4. Furthermore, there is a
1-parameter subgroup 8fut(M, s) whose elements all have the same 1-jet atM.

7. Appendix: Nondegeneracy conditions

In the following we recall the notion dinite nondegeneradgee e.gl[3]) and give equiv-
alent descriptions for a certain class that contains in particular all homogeneous CR-
manifolds.

Let M be a smooth (abstract) CR manifold with tangent buritlé and holomor-
phic subbundlegd M c T M. The complex structure on every holomorphic tangent space
H,M C T,M will be denoted by/. ThusJ : HM — HM is a smooth bundle transfor-
mation withJ2 = — id. Denote byCT M := C ® T M the complexified tangent bundle of
M that contains the complexificatidbH M := C® H M in a canonical way as a complex
subbundle. Extend to a complex linear bundle transformation@# M, which is then
the direct sum of two complex subbundIgs-CA and H%1M, the eigenbundles af
corresponding to the eigenvalueand—i.

Consider the subbundlgg®M ¢ CHM of CT M and denote byd°M > A%M
the corresponding annihilator subbundles in the complexified cotangent Khgdé M .

For everyp € M, A,l,’OM consists of all linear forms of©7, M that areJ-linear on
H,M. As shorthand let us also writd® = I'(M, A°M), A0 = T (M, ALOMm),
HLO = r(Mm, HYOM) and HO! := (M, HO1M) for the corresponding spaces of
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smooth sections oveV!. Clearly, all these are in a natural way modules over the ring
F = C*®(M, C) of smooth complex-valued functions a#.

For every vector fieldk € I'(M, CT M) and every compleX-form « on M the
contraction: , w is the (k—1)-form defined by

(xo)(Y2,.... V) =X, Y2,....Yy) k>0 1y,0=0 Iifk=0.

Also, theLie derivativewith respect taX on the space of all complex exterior differential
forms is defined by

Ly =dotx +txod.
Forall X € H%! andw € A° we have ,» = »(X) = 0 and hence

(Lx»)(Y) =dw(X,Y) = Xo(¥) — Yo (X) — o(X, Y]). (7.1)

The integrability condition %1, 7%1] ¢ H%! therefore implies(Lxw)(¥Y) = 0 for
all Y € H%! and X, w as above, that is, the linear subspate® c I'(M,C ® T*M)
is Lx-invariant for everyX e H%1. As a consequence, we can defidét? k > 0,
inductively to be the smallest linear subspace4d®® that contains4* and Ly (AX) for
everyX € H%1. Now M is calledfinitely nondegeneratat p € M if

k. : k 1.0
A, =1{Y, 1Y e A"} = A

for somek, and is calledk-nondegeneratat p if k is minimal with this property. Fur-
thermore we say that/ hasconstant degeneradf/dim Af; does not depend op € M
for everyk. This property is for instance satisfiedpf is locally homogeneoudhat is,
for everyx, y € M there are open neighbourhootisof x andV of y together with a
CR-diffeomorphismp : U — V satisfyingg(x) = y.

For the rest of the section we assume tahas constant degeneracy. For manifolds
of this type we give an equivalent approach to finite nondegeneracy using Lie brackets of
vector fields rather than Lie derivatives (cf. also [8]).

For the ascending cha'(nélk)kzo we have the descending dual chain of kernels

HE =Y e HYO: w(Y) = Oforallw e A}

with HO = 110, It is clear thatM is finitely nondegenerate gt € M if and only if
H* = 0 for somek. The F-modulesH* can also be characterized in a direct way. For
this put~1 := I'(M, CT M) and define for every > 0 the F-bilinear map

BEHOL x HE — HY/(HO Y @ HY) (7.2)

by gX(X,Y) = 7*(X,Y]), wherex* : H1 - H1/(H%! + H*) is the canonical
projection.

7.3. Lemma. For everyk > 0,
HH = (v e HE: gFHOL Y) = 0)

is the rightg*-kernel. In particular,Hll, is the Levi kernel ap € M. Furthermore, in case
k > 1the mapg* takes values in the linear subspace

(HO,l P kal)/(HO,l P Hk) ~ kal/Hk.
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Proof. Fix k > 0 and assumel* (H*) = 0 and [{%1, H*] ¢ HO! + H*~1 as induction
hypothesis. Notice that these assumptions are automatically satisfied ik eaSe For
everyX € H%1, ¥ € H* andw € A* the equality[(7.]l) ane(X) = & (¥) = 0 imply

(Lxw)(Y) = —o([X, Y]).
From the induction hypothesis we therefore get, for every H*,

Y e H! & w(X,Y]) =0forall X e O, w e A
& [X,Y] € (HOY + H*) forall X € HOY
& pAX,Y)=0forall X e HOL.

ThusH**1 is the rightg*-kernel and alsof(®*, H*+1] ¢ H%1 + H*. Finally, the map-
ping
HY'M x HY°M — CT,M, (X,.Y,) — (B°(X.Y))).

is a multiple of the Levi form ap € M, that is,Hll, is the Levi kernel ap. O

Finally, we mention that using the natural isomorphisms betwded, H1°M and
H%'M, we can also regardii M := H? as a complex (that is/-invariant) subspace

of H,M andg) as a mapH,M x HXM — H)}~'M/H}M between real tangent spaces,
given by the part of the Lie bracket whichJsantilinear in the first and-linear in the sec-

ond argument. We used this interpretation in Se¢flon 5 as a criterion for 2-nondegeneracy.
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