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Abstract. We present a large class of homogeneous 2-nondegenerate CR-manifoldsM, both of
hypersurface type and of arbitrarily high CR-codimension, with the following property: Every CR-
equivalence between domainsU,V inM extends to a global real-analytic CR-automorphism ofM.
We show that this class containsG-orbits in Hermitian symmetric spacesZ of compact type, where
G is a real form of the complex Lie groupAut(Z)0 andG has an open orbit that is a bounded
symmetric domain of tube type.
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lems, 2-nondegenerate CR-manifolds

1. Introduction

Let S be a real-analytic hypersurface inCn or, more generally, a CR-submanifold in a
complex manifoldZ. This paper addresses the question when a local biholomorphic map
between open sets inZ sending an open piece ofS into S extends to a global biholomor-
phic self-map ofZ preservingS. This question has been treated by various authors when
S is a compact hypersurface and its Levi form is nondegenerate at least at some points
[26], [1], [29], [21], [28], [5], [11], [24].

However, ifS is not compact or is of higher codimension or its Levi form is every-
where degenerate, the question seems to be widely open, even for a basic example such
as the tube

M :=
{
z ∈ C3 : x3 =

√
x2

1 + x2
2 > 0

}
over the 2-dimensional future light cone, wherez = (z1, z2, z3) andxk = Re(zk). Here
M is the smooth boundary part of the associated tube domain (the interior of the convex
hull of M)

H :=
{
z ∈ C3 : x3 >

√
x2

1 + x2
2

}
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over the corresponding future cone, whose holomorphic structure in connection with the
Cauchy–Riemann structure of the boundary partM has been studied by various authors
(also in higher dimensions, see e.g. [23]).M is the simplest known real hypersurface in
C3 with everywhere degenerate Levi form that cannot be even locally biholomorphically
straightened, i.e. it is not locally CR-equivalent to a direct productS × C with S any real
hypersurface inC2 (cf. [8], [6]). M is homogeneous as a CR-manifold since the group
of all affine transformations ofC3 fixing M acts transitively onM (andH ). Actually,
it can be seen that this group coincides with the groupAut(M) of all real-analytic CR-
automorphisms ofM. By the homogeneity ofM all local CR-equivalences (always under-
stood to be real-analytic in the following) between domains inM are known as soon as for
some (and hence every)a ∈ M the automorphism groupAut(M, a) of the CR-manifold
germ(M, a) is known. Now, not every germ inAut(M, a) is affine. This is due to the
fact that every transformation in the 10-dimensional biholomorphic automorphism group
Aut(H) of H extends to a birational (but not necessarily biholomorphic) transformation
of C3 and hence induces local (but not necessarily global) CR-equivalences onM. Our
main result, specialized to this example, states that actually all local CR-equivalences of
M occur in this way and thatM can be enlarged to a homogeneous CR-manifoldS, con-
tainingM as a dense domain, such that all local CR-equivalences ofM extend to global
CR-automorphisms ofS. In particular, everyAut(M, a) turns out to be a solvable real Lie
group of dimension 5 (compare the end of Section 6 for an explicit description).

In this paper we present a large class of further homogeneous Levi degenerate CR-
manifoldsM of arbitrary high codimension which have properties similar to the 5-dimen-
sional hypersurface above: LetV be a real vector space of finite dimension with complex-
ificationE := V ⊕ iV and let� ⊂ V be an open convex cone such that the associated
tube domainH := � + iV ⊂ E is symmetric (i.e. biholomorphically equivalent to a
bounded symmetric domain). For simplicity and without essential loss of generality we
always assume that the cone� is irreducible. The groupGL(�) of all linear transforma-
tions inGL(V ) leaving� invariant has a finite number of orbits inV ; letC 6= {0} be one
of them (a typical example is the spaceE = Cr×r of all complexr×r-matrices,V ⊂ E the
R-linear subspace of all hermitian matrices,� ⊂ V the open cone of positive definite ma-
trices andC ⊂ V the cone of all hermitian matrices withp positive andq negative eigen-
values). The tubeM := C⊕iV over the coneC is a locally closed Levi degenerate generic
CR-submanifold ofE, on which the affine groupAff(H) := {g ∈ Aff(E) : g(H) = H }

acts transitively. It turns out that in caseC 6= ±� the global CR-automorphism group
Aut(M) is justAff(H) (see Proposition 6.9; in caseC = −C the groupAff(H) has to be
extended by the transformationz 7→ −z).

On the other hand, the groupAff(H) is a subgroup of codimension dim(V ) inAut(H),
the biholomorphic automorphism group of the tube domainH . This group is a simple Lie
group and is explicitly known in every case. Everyg ∈ Aut(H) extends to a birational
transformation ofCn and induces local CR-transformations onM. Actually, the follow-
ing more precise statement is known from the theory of symmetric Hermitian spaces (see
[9]): E can be compactified to a homogeneous rational complex manifoldZ (the compact
dual ofH ) in such a way that everyg ∈ Aut(H) extends to a biholomorphic transforma-
tion ofZ. In fact, this way the simple real Lie groupAut(H) is realized as a real form of
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the simple complex Lie groupAut(Z) (recall that we assumed� and hence alsoH to be
irreducible). Now, there exists anAut(H)-orbit S in Z withM = E ∩ S. ThisS is a non-
compact locally closed CR-submanifold ofZ that containsM as an open dense subset.
Our main result, Theorem 4.7 together with Theorem 4.5, implies that, in caseS is not
open inZ, every CR-equivalence between domains inS extends to a biholomorphic trans-
formation ofZ respectingS. A consequence (Proposition 6.4) is that for everya ∈ M, the
germ automorphism groupAut(M, a) is canonically isomorphic to the isotropy subgroup
Aut(H)a := {g ∈ Aut(H) : g(a) = a} (again, in caseC = −C the groupAut(H) has
to be extended by the transformationz 7→ −z). An important step in the proof is thatS,
although Levi degenerate, is 2-nondegenerate and minimal as a CR-manifold.

We also consider arbitrary Hermitian symmetric spacesZ and orbitsS ⊂ Z with
respect to arbitrary real forms of the connected identity componentAut(Z)0. But, in con-
trast to the more special tube case discussed above, we have to assume dimAut(S, a)
< ∞ for somea ∈ S in order to obtain similar extension results for CR-equivalences
between domains ofS (see Theorem 4.5).

2. Preliminaries

LetX be a complex manifold andM ⊂ X a connected (locally-closed) real-analytic sub-
manifold. For everya ∈ M the tangent spaceTaM is anR-linear subspace of the complex
vector spaceTaX. Recall thatM is a (real-analytic)CR-(sub)manifoldif the holomorphic
tangent spaceHaM := TaM ∩ iTaM ⊂ TaX has the same complex dimension for all
a ∈ M. The CR-manifoldM is calledgeneric in X if the tangent spaceTaM spans
TaX overC for everya ∈ M, that is, ifTaX = TaM + iTaM. In an abstract setting, a
real-analyticCR-manifoldis a real-analytic manifold with a real-analytic vector subbun-
dleHM ⊂ TM and a real-analytic bundle endomorphismJ : HM → HM satisfying
J 2

= − id and the integrability condition [H0,1,H0,1] ⊂ H0,1 (see the Appendix). Given
two CR-manifoldsM andM ′, a smooth mapf : M → M ′ is called aCR-mapif the dif-
ferentialdf : TM → TM ′ mapsHM intoHM ′ and commutes with the corresponding
complex structuresJ andJ ′ onHM andHM ′.

Denote byhol(M) the real Lie algebra of all (globally defined) real-analytic vector
fields onM whose local flows consist of CR-maps (these vector fields are also calledin-
finitesimal CR-transformationsof M). In particular, ifM is a complex manifold,hol(M)
consists of all holomorphic vector fields onM. The value of the vector fieldξ ∈ hol(M)
at the pointa ∈ M will be denoted byξa ∈ TaM. Furthermore,Aut(M) is the group of
all bi-analytic transformations ofM that are CR in both directions.

For everya ∈ M denote byAut(M, a) the group of all germs ata of real-analytic
CR-isomorphismsg : U → V with g(a) = a, whereU , V are arbitrary open neigh-
bourhoods ofa. For everyk ∈ N let Autk(M, a) ⊂ Aut(M, a) be the normal subgroup
of all germs that have the samek-jet at a as the identity. Denote byhol(M, a) the real
Lie algebra of all germs ata of vector fieldsξ ∈ hol(U) with U being an arbitrary
open neighbourhood ofa. Furthermore, for every integerk, autk(M, a) ⊂ hol(M, a) de-
notes the Lie subalgebra of all germs vanishing of order> k at a, i.e. having zerok-jets
at a. For shorter notation we also writeaut(M, a) := aut0(M, a) for the Lie subalge-
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bra of all germs inhol(M, a) that vanish ata. There exists a canonical exponential map
exp : aut(M, a) → Aut(M, a) sending everyautk(M, a) into Autk(M, a). In case the
Lie algebraaut(M, a) has finite dimension, there exists a unique Lie group structure on
Aut(M, a) such that the exponential map is locally bi-analytic in a neighbourhood of the
origin in aut(M, a). Throughout, the dependence(M) refers to global objects onM while
(M, a) refers to germs at the pointa ∈ M.

In caseE is a complex vector space of finite dimension andU ⊂ E is an open subset,
we always identify for everya ∈ U the tangent spaceTaU with E in the canonical
way. In this sense every holomorphic vector fieldξ ∈ hol(U) is given by a holomorphic
function f : U → E and vice versa. But since both objects have to be distinguished
we write symbolicallyξ = f (z) ∂

∂z
(wherez is meant as avariable in E). Actually, we

considerξ as a holomorphic differential operator acting on the space of holomorphic
functions onU . More generally, for every complex vector spaceF of finite dimension
and every holomorphic mappingh : U → F , theF -valued holomorphic functionξh on
U is defined byz 7→ h′(z)(f (z)), whereh′ : U → L(E, F ) is the derivative ofh and
L(E, F ) is the vector space of all linear operatorsE → F . In particular, ifι : U ↪→ E is
the canonical embedding, thenξ ι = f .

In caseE = Cn the vector fieldξ = f (z) ∂
∂z

∈ hol(U) can be written as

ξ = f1(z)
∂

∂z1
+ · · · + fn(z)

∂

∂zn
, f = (f1, . . . , fn),

where ∂
∂z

is interpreted as the column( ∂
∂z1
, . . . , ∂

∂zn
)t .

3. Reductive Lie algebras of holomorphic vector fields

Recall that a real or complex Lie algebral is called reductiveif its radical coincides
with its center, or equivalently, ifl is the direct sum of an abelian Lie algebra with a semi-
simple one (cf. [12]). Every (finite-dimensional) linear representation of a semisimple Lie
algebra is completely reducible by Weyl’s theorem ([12, p. 28] or [17, p. 382]), i.e. every
invariant subspace in a representation space has an invariant complement. This property
is crucial in the proof of the next proposition.

We also recall the notion of a nonresonant vector field (cf. e.g. [2, p. 177]): A finite
subset3 ⊂ C is callednonresonantif

∑
λ∈3mλ·λ /∈ 3 for every family of integers

mλ ≥ 0 with
∑
λ∈3mλ ≥ 2. For givenδ ∈ aut(Cn,0) consider its linear part as an

endomorphism ofCn. Thenδ is callednonresonantif the spectrum of this endomorphism
(i.e. the set of eigenvalues) is nonresonant.

3.1. Proposition. Let l ⊂ hol(Cn,0) be a complex Lie subalgebra of finite dimension
such that

(i) l is reductive,
(ii) l spans the full tangent space toCn at 0, that is,Cn = {ξ0 : ξ ∈ l},

(iii) l contains a nonresonantδ ∈ aut(Cn,0).
Thenl is semisimple and contains all finite-dimensionall-submodules ofhol(Cn,0).
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Proof. Let zA ∂
∂z

be the linear part ofδ wherez = (z1, . . . , zn) andA is a complexn×n-
matrix. After a linear change of coordinates we may assume thatA is upper triangular
and hasλ1, . . . , λn as diagonal entries. Clearly,3 := {λ1, . . . , λn} is the spectrum ofA.

Denote by4 the set of all monomial vector fieldsα = z
m1
1 · · · z

mn
n

∂
∂zj

in hol(Cn,0).
Then, by restricting the lexicographic order onNn+2 to4 ↪→ Nn+2 embedded via

α 7→ (m1 + · · · +mn, m1, . . . , mn, j),

4 becomes a well ordered set with minimal element∂
∂z1

. Every ξ ∈ hol(Cn,0) has a
unique power series expansionξ =

∑
β∈4 cββ with complex coefficientscβ . For every

α ∈ 4 denote byFα ⊂ hol(Cn,0) the linear subspace of all thoseξ such thatcβ = 0 for
all β ≤ α in the above expansion. It is easily verified thatad(δ) (defined asξ 7→ [δ, ξ ])
leavesFα invariant and that

[δ, α] ≡ (m1λ1 + · · · +mnλn − λj )α modFα (3.2)

if α = z
m1
1 · · · z

mn
n

∂
∂zj

.

Now leth ⊂ hol(Cn,0) be an arbitrary finite-dimensionall-submodule, i.e. [l, h] ⊂ h.
Denote by2 the restriction ofad(δ) to h and consider the direct sum decomposition

h =

⊕
λ∈C

hλ, (3.3)

where everyhλ is the largest2-invariant linear subspace on which2 − λ id is nilpotent
(the generalizedλ-eigenspace of2 in casehλ 6= 0). An immediate consequence of (3.2)
is thathλ ⊂ aut(Cn,0) for everyλ /∈ −3. Assume on the other hand that there exists a
vector fieldξ =

∑
β cββ 6= 0 in

h− :=
⊕
λ∈3

h−λ

with ξ0 = 0. Chooseα= z
m1
1 · · · z

mn
n

∂
∂zj

∈4 minimal with respect to the propertycα 6= 0,
saycα = 1 without loss of generality. Clearly,α has degreed = m1 + · · · + mn ≥ 1
becauseξ0 = 0. Since

∏
λ∈3(2 + λ id) is nilpotent onh− we deduce from (3.2) that

−λk =
∑
i miλi − λj for somek, a contradiction to the nonresonance of3. Therefore

the evaluation mapξ 7→ ξ0 defines a linear injectionε0 : h− ↪→ T0Cn = Cn.
We first discuss the special case wherel is semisimple and assumeh 6⊂ l contrary to

the claim. To get a contradiction we may assumel ∩ h = 0 without loss of generality,
since by Weyl’s theorem,l has anad(l)-invariant complement in thel-modulel + h. But
then (l ⊕ h)− = l− ⊕ h−. Since the evaluation mapε0 is an injection onl− ⊕ h− as
mentioned above andε0(l

−) = Cn by assumption (ii), we conclude that all vector fields
in h vanish at 0. On the other hand, ifξ ∈ h is a nontrivial vector field, taking subsequent
Lie brackets with suitable vector fields froml and using (ii) we obtain a vector fieldη ∈ h
with η0 6= 0, a contradiction.

In the general case, ifl is arbitrary reductive, leth be the center ofl. From [δ, h] = 0
we geth ⊂ aut(Cn,0) since 0/∈ 3. But then, sinceh is anl-module, the above argument
impliesh = 0, that is,l is semisimple. ut
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Simple examples show that none of the conditions (i)–(iii) in Proposition 3.1 can be omit-
ted. For condition (iii) we present the following

3.4. Example. Let n = 2m−1 be an arbitrary odd integer≥ 3 and considerCn in the
usual way as an open dense subset of the complex projective spacePn. The standard action
of the complex Lie groupSL(2m,C) onPn induces a complex Lie algebra of holomorphic
vector fields onPn whose germs at 0∈ Cn form a simple complex Lie subalgebrah ⊂

hol(Cn,0) isomorphic tosl(2m,C). It is easily verified thath contains (the germ of) the
Euler fieldz ∂

∂z
, which is nonresonant since3 = {1} in this case. Now, the symplectic

groupSp(m,C) ⊂ SL(2m,C) also acts transitively onPn and induces a proper simple
Lie subalgebral ⊂ h isomorphic tosp(m,C). Therefore the conclusion of Proposition
3.1 does not hold for thisl. It is not difficult to see thatl contains a linear vector field
δ ∈ aut(Cn,0) with spectrum3 = {1,2}, where the eigenvalue 1 has multiplicityn− 1.

3.5. Remark. Sincead(δ) is a derivation, for the special caseh = l in Proposition 3.1
the decomposition(3.3) actually gives theC-grading

l =

⊕
λ∈C

lλ with [lλ, lµ] ⊂ lλ+µ (3.6)

for all λ,µ ∈ C and δ ∈ h0. Furthermore, due to condition (ii) the linear subspace
l− =

⊕
λ∈3 l−λ is isomorphic toCn via the evaluation mapε0, and the action ofad(δ)

on h− is equivalent to the endomorphism ofCn given by the linear part ofδ. Denote
by δ′ ∈ l the semisimple part ofδ (see [12, p. 29] for basic properties of this concept).
Then the linear part ofδ′ is the semisimple part of the linear part ofδ and hence also
has3 as spectrum. In particular, withδ also δ′ is nonresonant. Furthermore,ad(δ′) is
diagonalizable onl, that is,lλ = ker(ad(δ′)− λ id) for all λ ∈ C.

Now assume that the linear part ofδ is the Euler fieldz ∂
∂z

, that is, δ = δ′ and
3 = {1} (this case will be of special interest in the next sections). Then (3.6) reduces
to l =

⊕
∞

k=−1 lk with lk ⊂ autk(Cn,0) for every integerk ≥ −1. But then with standard
arguments for semisimple Lie algebras it follows that actually

l = l−1
⊕ l0 ⊕ l1 (3.7)

with abelian Lie algebrasl±1 of dimensionn andl0 = [l−1, l1]. Indeed, for everyη ∈ lk

with k > 1 the endomorphismad(ξ) ad(η) is nilpotent for everyξ ∈ l, and henceη
is orthogonal tol with respect to the Killing form ofl, that is,η is in the radical ofl,
proving (3.7). Thatl−1, l1 have the same dimension follows fromtr(ad(δ)) = 0 (cf. [12,
p. 28]). Finally,m := l−1

⊕ [l−1, l1] ⊕ l1 andn := Cδ + m are ideals inl and hence are
semisimple themselves. Thereforen = m ⊕ c for some idealc of dimension≤ 1 in n.
Since alsoc is semisimple, onlyc = 0 is possible, that is,m = n. Finally, Proposition
3.1 applied tom in place of l showsl = m and thus the claim. We mention that the
vector fieldδ is actually linearizable, that is, after a suitable biholomorphic change of
coordinates becomes the Euler vector field. Such a change of coordinates can be obtained
in the following way: There exists an open neighbourhoodU of 0 ∈ Cn such that every
ξ ∈ l−1 can be represented by a vector field inhol(U). For a suitable open neighbourhood
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V of 0 ∈ l−1 the assignmentξ 7→ exp(ξ)(0) defines a local biholomorphic transformation
V → U doing the job.

There is also a real version of Proposition 3.1. LetM ⊂ Cn be a (locally closed)
generic real-analytic CR-submanifold containing the origin 0. We considerhol(M, a) as
a real Lie subalgebra of the complex Lie algebrahol(Cn, a) in the obvious way and call
M holomorphically nondegenerateat a ∈ M if hol(M, a) is totally real inhol(Cn, a),
that is,hol(M, a) ∩ ihol(M, a) = 0. This definition is equivalent to the usual one ([3,
p. 322]). Recall thatM is calledminimal (in the sense of [27]) if every real submanifold
N ⊂ M with HaM ⊂ TaN for all a ∈ N is necessarily open inM. In caseM is a real
hypersurface ofCn minimality already follows from holomorphic nondegeneracy.

3.8. Proposition. Suppose thatM ⊂ Cn is holomorphically nondegenerate at0 ∈ M

and thats ⊂ hol(M,0) ⊂ hol(Cn,0) is a real Lie subalgebra of finite dimension such
that

(i) s is reductive,
(ii) s spans the full tangent space ofM at 0,

(iii) (s + is) ∩ aut(Cn,0) contains a nonresonant vector field.

Thens is semisimple and contains every finite-dimensionals-submodule ofhol(M,0). If,
in addition,M is minimal at0 thenhol(M,0) = s.

Proof. Let h ⊂ hol(M,0) be anys-submodule of finite dimension. Sinces is totally real
in hol(Cn,0), the suml := s+is ⊂ hol(Cn,0) is direct and hence a complex reductive
Lie subalgebra. SinceM is generic inCn, (ii) implies thatl spans the full tangent space
of Cn at 0. Therefore, by Proposition 3.1,l is semisimple and the finite-dimensionall-
moduleh+ih is contained inl. It follows thats is also semisimple andh is contained in
l ∩ hol(M,0). But l ∩ hol(M,0) = s sinceM is holomorphically nondegenerate at 0.
The last claim now follows forh = hol(M,0) since dimhol(M,0) < ∞ for any minimal
holomorphically nondegenerate germ(M,0) of a real-analytic generic submanifold inCn
(see e.g. (12.5.16) in [3]). ut

In the following we consider a connected complex Lie groupL acting holomorphically
on a complex manifoldZ. We always assume thatL actsalmost effectivelyonZ, that is,
the subgroup

⋂
a∈Z La is discrete inL, whereLa := {g ∈ L : g(a) = a} is the isotropy

subgroupof L at a ∈ Z. Then the Lie algebral of L can be considered in a natural way
to be a subalgebra ofhol(Z), which in turn can be considered to be a Lie subalgebra of
hol(Z, a) for everya ∈ Z. We denote byla := {ξ ∈ l : ξa = 0} the isotropy subalgebra
of l ata ∈ Z.

Recall that areal form of L is any closed connected real Lie subgroupS ⊂ L with
l = s ⊕ is for their Lie algebras. Then everyS-orbit S ⊂ Z may be viewed as an
immersed real-analytic CR-submanifold ofZ. In caseL acts transitively onZ, every such
orbit is generic inZ. The next result together with Proposition 3.8 will be the key for our
first main result, Theorem 4.5.
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3.9. Proposition. LetL andL′ be connected complex Lie groups acting holomorphically,
transitively and almost effectively on simply connected complex manifoldsZ andZ′ re-
spectively. Let furthermoreS ⊂ Z, S′

⊂ Z′ be orbits with respect to real formsS, S′ of
L, L′ and assumehol(S, a) = s and hol(S′, a′) = s′ for some (and hence all)a ∈ S,
a′

∈ S′, wheres ⊂ l and s′
⊂ l′ are the Lie algebras of the real formsS andS′. Then

every real-analytic CR-equivalenceϕ : U → U ′ between domainsU ⊂ S andU ′
⊂ S′

extends to a (unique) biholomorphic mapZ → Z′ sendingS ontoS′.

Proof. Fix a pointa ∈ U and writeZ = L / La as well asZ′
= L′ / L′a′ for a′ := ϕ(a).

The CR-equivalenceϕ extends to a biholomorphic map between suitable open neighbour-
hoods ofa anda′ in Z andZ′ respectively (see e.g. Corollary 1.7.13 in [3]). Thereforeϕ

induces a Lie algebra isomorphism fromhol(S, a) = s ontohol(S′, a′) = s′ and hence,
by complexification, a complex Lie algebra isomorphismψ : l → l′ with ψ(la) = l′

a′ for
the corresponding isotropy Lie subalgebras. Without loss of generality we assume that
L andL′ are simply connected (otherwise pass to the universal coverings). SinceZ, Z′

are simply connected by assumption, the isotropy subgroupsLa , L′a′ are connected and
henceψ induces a biholomorphic group isomorphism9 : L→ L′ with 9(La) = L′a′ and
9(S) = S′. The induced biholomorphic mapZ → Z′ extendsϕ and mapsS ontoS′, as
desired. ut

4. Real form orbits in Hermitian symmetric spaces

In the following letE be a complex vector space of finite dimension andD ⊂ E a
bounded symmetric domain. Without loss of generality we assume thatD is convex and
circular (cf. [9] and [19]). The groupAut(D) of all biholomorphic automorphisms ofD
is a semisimple real Lie group acting analytically and transitively onD. The linear group

GL(D) := {g ∈ GL(E) : g(D) = D}

is the isotropy subgroup ofAut(D) at the origin and acts transitively on the Shilov bound-
ary∂sD of D, which in this case coincides with the set of all extremal points of the com-
pact convex bodyD. The Shilov boundary∂sD is a connected CR-submanifold ofE, and
D is calledof tube typeif ∂sD is totally real inE. This is equivalent toD being biholo-
morphically equivalent to a domain�⊕ iV ⊂ V ⊕ iV for some real vector spaceV and
some open cone� ⊂ V .

We denote byZ thecompact dualof D in the sense of Hermitian symmetric spaces
(cf. e.g. [9]).Z is a simply connected compact homogeneous complex manifold that con-
tainsE in a canonical way as a Zariski-open subset such that every biholomorphic auto-
morphism ofD extends to an automorphism ofZ, i.e.

Aut(D) ∼= {g ∈ Aut(Z) : g(D) = D}. (4.1)

The connected componentL := Aut(Z)0 of identity is a semisimple complex Lie group
acting transitively and holomorphically onZ whereasG := Aut(D)0 is a noncompact
real form ofL. The corresponding Lie algebrasl andg with l = g ⊕ ig are realized as
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Lie algebras of holomorphic vector fields onZ, in fact, l coincides with the Lie algebra
hol(Z) of all holomorphic vector fields onZ and we have canonical inclusionshol(Z) ⊂

hol(E) ⊂ hol(D) by restriction. In particular, everyξ ∈ l is of the formξ = f (z) ∂
∂z

for
a certain holomorphic mappingf : E → E (see Section 2 for this notation).

SinceD is circular we haveiδ ∈ g for δ := z ∂
∂z

∈ l. It is clear from the definition that
δ is nonresonant and thus Proposition 3.8 can be applied toG-orbits. In the decomposition
(3.7),lk is the space of all homogeneous vector fields of degreek+1 in l for k = −1,0,1.
In particular,l−1

= {α ∂
∂z

: α ∈ E} is the space of all constant holomorphic vector fields

onE (when restricted toE ⊂ Z) and l0 ⊕ l1 = l0 is the isotropy subalgebra ofl at 0.
The isotropy subalgebrasla = {ξ ∈ l : ξa = 0} of l separate points ofZ in the sense that
la 6= lb for all a 6= b in Z. Indeed, in casea, b ∈ E, the vector field(z− a) ∂

∂z
is in la but

not in lb. The general case is reduced to that ofa, b ∈ E as a consequence of the known
fact that, for any two points inZ, there exists a transformation inLmapping them intoE.

For the Lie algebrag of the groupG = Aut(D)0 consider the decompositiong =

k ⊕ p into the range and kernel of the projectionid+(ad iδ)2. Clearly k = g ∩ l0 and
p = g ∩ (l−1

⊕ l1). As a consequence of Cartan’s uniqueness theorem, everyξ ∈ g is
uniquely determined by its 1-jet at 0∈ D (cf. for instance [15]). Hencek is the isotropy
subalgebra ofg at 0, andξ 7→ ξ0 defines anR-linear isomorphismp → T0E = E. As a
consequence, there exists a unique mapping

E × E × E → E, (x, y, z) 7→ {xyz}, (4.2)

that is symmetric complex bilinear in the outer variables(x, z) such that

p =
{
(α − {zαz}) ∂

∂z
: α ∈ E

}
.

Since both(α − {zαz}) ∂
∂z

andξ := (iα − {z(iα)z}) ∂
∂z

are inp, one has

η :=
[
(α − {zαz}) ∂

∂z
, iz ∂

∂z

]
= (iα + i{zαz}) ∂

∂z
∈ p.

Now ξ andη have the same 1-jet at 0 and the above unique determination implies that
{xyz} is conjugate linear in the inner variabley. Consequently,

l1 =
{
{zαz} ∂

∂z
: α ∈ E

}
and l−1

=
{
α ∂
∂z

: α ∈ E
}
.

In addition, the triple product{xyz} satisfies certain algebraic identities as well as a pos-
itivity condition. It is called theJordan triple productonE given by the bounded sym-
metric domainD (see e.g. [19] and [16] for details).

Let S be areal form of the complex Lie groupL, that is, a closed connected real
subgroup whose Lie algebras satisfiesl = s ⊕ is (for instance,Aut(D)0 is such a
real form). LetS be anS-orbit in the compact dualZ. ThenS is a locally closed con-
nected real-analytic submanifold ofZ and hence a homogeneous CR-manifold. Since
the complex Lie groupL acts transitively onZ, the CR-manifoldS is generic inZ, i.e.
TaS + i TaS = TaZ for the tangent spaces at everya ∈ S. The Lie algebras of S can be
considered as a real Lie subalgebra ofhol(S) and hence for everya ∈ S also ofhol(S, a)
in a natural way. Note that we haveiz ∂

∂z
, ia ∂

∂z
∈ s and henceδ := (z − a) ∂

∂z
∈ s + is.

As a consequence of Proposition 3.8 we state
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4.3. Proposition. Suppose thathol(S, a) is of finite dimension for somea in theS-orbit
S (for instance, ifS is holomorphically nondegenerate and minimal as a CR-manifold).
Thenhol(S, a) = s for everya ∈ S.

For the formulation of our first main result we introduce the following notation:

4.4. Definition. Denote byC the class of all pairs(S, Z), whereZ is an arbitrary Her-
mitian symmetric space of compact type andS ⊂ Z is anS-orbit with dimhol(S, a) < ∞

for somea ∈ S and some real formS ofAut(Z)0.

4.5. Theorem. Let (S, Z) and(S′, Z′) be arbitrary pairs in the classC and assume that
ϕ : U → U ′ is a real-analytic CR-equivalence whereU ⊂ S andU ′

⊂ S′ are arbitrary
domains. Thenϕ has a unique extension to a biholomorphic transformationZ → Z′

mappingS ontoS′. In particular, there are canonical isomorphisms

Aut(S) ∼= {g ∈ Aut(Z) : g(S) = S},

Aut(S, a) ∼= {g ∈ Aut(S) : g(a) = a}

for everya ∈ S. Everyg ∈ Aut(S, a) is uniquely determined by its2-jet ata.

Proof. We show that the assumptions of Proposition 3.9 are satisfied. By [9, p. 305],Z is
simply connected, and the semisimple complex Lie groupL = Aut(Z)0 acts transitively
onZ. By the definition ofC there is a real formS of L with S = S(a) and dimhol(S, a)
< ∞ for somea ∈ S. Proposition 4.3 giveshol(S, a) = s for the Lie algebras of S. Since
the same properties hold for(S′, Z′) Proposition 3.9 gives the continuation statement. The
last statement about the jet determination follows from the known fact that elements of
Aut(Z) are uniquely determined by their 2-jets at any given pointa ∈ Z. ut

4.6. Corollary. Given any(S, Z) ∈ C, the groupAut(S) of all real-analytic CR-auto-
morphisms is a Lie group with finitely many connected components andS as the identity
component. More precisely,Aut(S) is canonically isomorphic to an open subgroup of
Aut(s), wheres is the Lie algebra ofS.

Proof. The groupAut(S) acts on the real Lie algebrahol(S) = s and hence induces an
injective Lie homomorphismϕ : Aut(S) → Aut(s) ⊂ Aut(l) (the injectivity follows
from the fact that the isotropy subalgebras ofl separate points ofZ, i.e. are different at
different points). SinceAut(S) contains the semisimple subgroupS it follows thatϕ is
open. Furthermore,Aut(s) is an algebraic subgroup ofGL(s) and hence has only finitely
many connected components. ut

The irreducible Hermitian symmetric spaces of compact type come in four series and two
exceptional spaces (see for instance [9]). As an example let us briefly recall the first series.
It consists of all spacesZ for which the automorphism groupL = Aut(Z)0 is of the form
PSL(p,C) := SL(p,C)/center for somep ≥ 2: Fix integersm ≥ n ≥ 1 withm+n = p

and denote byZ := Gn,m the Grassmannian of all linear subspaces of dimensionn in Cp.
ThenGn,m is a connected compact complex manifold of dimensionnm on which the
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complex Lie groupSL(p,C) acts transitively as a holomorphic transformation group and
its center is the kernel of ineffectivity. Up to a positive factor, there exists a uniqueSU(p)-
invariant Hermitian metric onZ making it a Hermitian symmetric space of rankn with
L = Aut(Z)0 = PSL(p,C). The real forms ofSL(p,C) areSL(p,R) and allSU(j, k)
with arbitrary integersj ≥ k ≥ 0 satisfyingj + k = p. Fix such a pair(j, k) with k > 0
and anSU(j, k)-invariant Hermitian form8 on Cp of type (j, k) (i.e.8 hasj positive
and k negative eigenvalues). The orbits of the real formS := PSU(j, k) in Z can be
indexed as

Zp,q = {V ∈ Gn,m : 8 has type(p, q) onV },

wherep, q ≥ 0 are certain integers satisfyingp+ q ≤ n, p ≤ j , q ≤ k and max(p, q) ≥

n− k. The simplest case occurs for rankn = 1, that is, forZ = G1,m = Pm the complex
projective space of dimensionm. ThenS has exactly three orbits:Z1,0, Z0,1 are open in
Pm andZ0,0 is a closed Levi-nondegenerate real hypersurface. Tanaka [26] has shown
that in casem ≥ 2 every CR-equivalence between connected open subsetsU,V ⊂ Z0,0
extends to a biholomorphic transformation ofPm leavingZ0,0 invariant. In particular, (for
every choice ofj ≥ k > 0) the pair(Z0,0,Pm) belongs to the classC and Theorem 4.5
may be considered as an extension of Tanaka’s result to more general situations.

Now the question arises for which real form orbitsS in a Hermitian symmetric space
Z of compact type the pair(S, Z) belongs to the classC and hence has the properties
stated in Theorem 4.5. Since the classC is closed under taking direct products (that is,
together with(Sk, Zk) in C for k = 1,2 also(S1 ×S2, Z1 × Z2) is in C), for the above
question we only have to consider situationsS ⊂ Z whereS is an orbit with respect to a
simple real formS of the complex Lie groupL = Aut(Z)0, that is, where one of the two
following cases holds:

(i) Z is irreducible, or equivalently, the complex Lie groupL is simple.
(ii) Z = Z1×Z2 is the direct product of two irreducible Hermitian symmetric spacesZk

andS = {(g, τg) : g ∈ L1} is the graph of an antiholomorphic group isomorphism
τ : L1 → L2 with Lk := Aut(Zk)0 for k = 1,2.

Our second main result gives a complete answer for the tube case in (i), more precisely:

4.7. Theorem. LetZ be an irreducible Hermitian symmetric space of compact type and
let S be a real form ofL := Aut(Z)0 that has an open orbitD ⊂ Z which is biholomor-
phically equivalent to a bounded symmetric domain of tube type. Let furthermoreS ⊂ Z

be anS-orbit that is neither open nor totally real inZ. ThenS is a minimal2-nondegen-
erate CR-manifold and hence(S, Z) belongs to the classC.

The proof will be given at the end of the next section (see the Appendix for the definition
of 2-nondegeneracy). Locally, everyS in Theorem 4.7 will be realized as a tube manifold
over a suitable cone in some real vector space. As an example, for the Grassmannian
Z = Gn,m the real formG = PSU(n,m) of L = PSL(n+m,C) has a bounded symmetric
domain as an orbit, but this domain is of tube type only ifn = m and then the cone is the
set of all positive definite Hermitiann×n-matrices.
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5. Tube manifolds

Some bounded symmetric domains can be realized as generalized half planes (tube do-
mains). Besides the Lie theoretic approach (cf. [18]), there is also a Jordan algebraic one
that we shall use in the following. It will turn out that all necessary computations become
relatively easy in the Jordan context.

Let V be areal Jordan algebraof finite dimension, that is, a real vector space with
a commutative bilinear product(x, y) 7→ x ◦ y satisfying [L(a), L(a2)] = 0 for every
a ∈ V , a2 := a ◦ a andL(a) the multiplication operatorx 7→ a ◦ x on V (see [4]
for this and the following). Assume in addition thatV is formally real in the sense that
alwaysx2

+ y2
= 0 impliesx = 0. Then the algebraV automatically has a unite and the

open subset of all invertible elements ofV decomposes into a finite number of connected
components. Denote by� the component containinge. Then� is an open convex cone
(i.e. t� = � for all t > 0) in V and the correspondingtube domainH := � ⊕ iV in
the complexified Jordan algebraE := V ⊕ iV is biholomorphically equivalent via the
Cayley transformationz 7→ (z− e)◦ (z+ e)−1 to a (circular) bounded symmetric domain
D ⊂ E whose (totally real) Shilov boundary is the generalized unit circle exp(iV ). (Here
exp(z) =

∑
k≥0 z

k/k! with powerszk defined with respect to the Jordan product.) On the
other hand, every bounded symmetric domain with totally real Shilov boundary occurs
this way and hence is said to be oftube type. The example of lowest possible dimension
occurs forV = R with the usual product, and thenH is the right halfplane inE = C.

The linear group
GL(�) := {g ∈ GL(V ) : g(�) = �}

is a reductive Lie group (cf. also Lemma 5.2) acting transitively on�. The Jordan algebra
automorphism groupAut(V ) is a maximal compact subgroup ofGL(�) and coincides
with the isotropy subgroup{g ∈ GL(�) : g(e) = e} at the identity. Thetrace form
(x|y) := tr(L(x)L(y)) yields anAut(V )-invariant positive definite inner product onV
such that all operatorsL(a), a ∈ V , are self-adjoint. The cone� is self-dual in the sense

� = {x ∈ V : (x|y) > 0 for all y ∈ �}.

For allx, y ∈ V define the linear operators

P(x, y) := L(x)L(y)+ L(y)L(x)− L(x ◦ y),

P (x) := P(x, x) = 2L(x)2 − L(x2).

ThenP(a) is contained inGL(�) and mapse toa2
∈ � for every invertiblea ∈ V (see [4,

p. 325]). Actually,(g, a) 7→ P(a) ◦ g defines a homeomorphismAut(V )×� → GL(�)
and gives a Cartan decomposition

gl(�) = der(V )⊕ L(V ) (5.1)

with L(V ) := {L(a) : a ∈ V }, der(V ) the derivation algebra of the Jordan algebraV and
gl(�) ⊂ gl(V ) the Lie algebra ofGL(�) ⊂ GL(V ). Furthermore forH = � ⊕ iV as
above,

Aff(H) := {z 7→ g(z)+ iv : g ∈ GL(�), v ∈ V } ⊂ Aut(H)
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is the group of all affine holomorphic transformations ofH , where we considerGL(V ) in
the canonical way as a subgroup ofGL(E). SinceGL(�) acts transitively on�, Aff(H)
acts transitively onH .

The Lie algebragl(D) of the compact groupGL(D) (for the corresponding bounded
symmetric domainD ⊂ E) is canonically isomorphic tok (as defined in Section 4) and
hence has complexification isomorphic tol0 (see (3.7)). But alsogl(�) has complexifica-
tion isomorphic tol0 (see (6.1)). The centers ofgl(�) andgl(D) have dimension equal to
the number of irreducible factors of the bounded symmetric domainD. In caseD has an
irreducible factor of dimension> 1, der(V ) is a proper maximal compact subalgebra of
the semisimple part ofgl(�). Therefore we can state

5.2. Lemma. The real Lie algebrasgl(�) andgl(D) have isomorphic complexifications.
In caseD is not biholomorphically equivalent to a polydisk, the Lie algebrasgl(�) and
gl(D) are not isomorphic.

For the rest of the section we assume that the formally real Jordan algebraV is simple,that
is, the symmetric tube domainH is irreducible, or equivalently,GL(�) has 1-dimensional
center{x 7→ tx : t > 0}. Then

SL(�) := GL(�) ∩ SL(V )

is the semisimple part ofGL(�) and has codimension 1 inGL(�). EveryGL(�)-orbit C
in V is a connected locally closed cone and the associated tube manifoldC ⊕ iV is a
CR-submanifold ofE, on whichAff(H) acts transitively. Clearly, theGL(�)-orbits inV
and theAff(H)-orbits inE are in 1-1 correspondence to each other.

There exists a uniquely determined integerr ≥ 1, the rank of V , such that every
a ∈ V has a representation

a = λ1e1 + · · · + λrer , (5.3)

wheree1, . . . , er is a framein V (i.e. a sequence of mutually orthogonal minimal idem-
potents inV with e = e1 + · · · + er ) and the coefficientsλk ∈ R (called theeigenval-
uesof a) are uniquely determined up to a permutation. For all integersp, q ≥ 0 with
p + q ≤ r denote byCp,q the set of all elements inV havingp positive andq negative
eigenvalues (multiplicities counted). Then� = Cr,0 andCq,p = −Cp,q for all p, q. It
is well known that the groupAut(V ) acts transitively on the space of all frames inV .
Furthermore, the elementa with representation (5.3) is mapped byP(c) ∈ GL(�) to
t21λ1e1 + · · · + t2r λrer for everyc = t1e1 + · · · + trer ∈ �. This implies that everyCp,q
is contained in aGL(�)-orbit. In casep + q = r actually it is easy to see thatCp,q is an
openGL(�)-orbit in V . But then for arbitraryp, q the closureCp,q =

⋃
p′≤p, q ′≤q Cp′,q ′

isGL(�)-invariant as follows inductively from the formulaCp,q = Cp+1,q ∩ Cp,q+1 for
p + q < r. The next statement now follows from the fact thatCp,q is the complement in
Cp,q of (

⋃
p′<p Cp′,q) ∪ (

⋃
q ′<q Cp,q ′).

5.4. Lemma. There are precisely
(
r+2

2

)
GL(�)-orbits inV . These are the conesCp,q .
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On V there exists a unique homogeneous real polynomialN of degreer (called the
generic normof V ) with N(e) = 1 andN−1(0) = {a ∈ V : a not invertible}. The
valueN(a) is the product of all eigenvalues ofa, thereforeN may be considered a gen-
eralization of the determinant for matrices. The characteristic polynomial

N(T e − x) =

r∑
k=0

Nr−k(x)T
k

determines homogeneous polynomialsNj of degreej for 0 ≤ j ≤ r onV that give local
equations for every coneCp,q , more precisely,

U ∩ Cp,q = {x ∈ U : Nj (x) = 0 for all j > p + q}

for everya ∈ Cp,q and a suitable neighbourhoodU of a in V .
In the following fix aGL(�)-orbit C = Cp,q in V and letM := Mp,q = C ⊕ iV

be the corresponding tube manifold inE. We denote byρ := p + q the commonrank
of all elementsa ∈ C, that is, the number of all nonzero eigenvalues ofa. Obviously,
TaM = TaC ⊕ iV for the tangent spaces at everya ∈ C ⊂ M, and alsoHaM =

TaC⊕ iTaC for the holomorphic tangent space ata. Therefore, every smooth vector field
onC has a unique extension to a smooth vector field in0(M,HM) that is invariant under
all translationsz 7→ z+ iv, v ∈ V .

For fixed a ∈ C choose a representation (5.3) and denote byc :=
∑
λk 6=0 ek the

support idempotentof a, which does not depend on the chosen frame in (5.3). Consider
the correspondingPeirce decompositions(see for instance [4, p. 155]) with respect toc,

V = V1 ⊕ V1/2 ⊕ V0 and E = E1 ⊕ E1/2 ⊕ E0, (5.5)

whereVk andEk = Vk ⊕ iVk are thek-eigenspaces ofL(c) in V andE. ThenV1 andV0
are Jordan subalgebras withV1 ◦ V0 = 0 and with identity elementsc andc′ := e − c

respectively. The operatorsL(ej ) commute and induce ajoint Peirce decomposition

V =

⊕
1≤j≤k≤r

Vjk (5.6)

into pairwise orthogonal (with respect to the trace form) Peirce spaces

Vjk = {x ∈ V : 2L(el)x = (δj l + δlk)x for all l}

satisfying

L(a) =

∑
1≤j≤k≤r

λj + λk

2
πjk, P (a) =

∑
1≤j≤k≤r

λjλkπjk, (5.7)

whereπjk is the orthogonal projection onV with rangeVjk. On the other hand,

V1 =

∑
λj 6=06=λk

Vjk, V1/2 =

∑
λj 6=0=λk

Vjk, V0 =

∑
λj=0=λk

Vjk.
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We haveVjj = Rej for everyj , and allVjk with j 6= k have the same dimension, which
in caser ≥ 3 can only be one of the numbers 1,2,4,8 (see the classification in the next
section). Furthermore,V1 is the range ofP(a) andV1/2 ⊂ L(a)V ⊂ V1⊕V1/2. The same
decompositions and spectral resolutions forL(a) andP(a) also occur forE in place ofV .
For everyz = x + iy ∈ E with x, y ∈ V let z∗ := x − iy (we preferz∗ to z as notation
here since the conjugation bar serves a different purpose later, in Section 6). Thenz 7→ z∗

is a conjugate linear algebra involution of the complex Jordan algebraE that leaves all
Peirce spacesEk invariant. By settingP(z,w) = L(z)L(w)+L(w)L(z)−L(z ◦w) and
P(z) := P(z, z) for z,w ∈ E we extend our previous definition and get complex linear
operators onE satisfying(P (z)w)∗ = P(z∗)w∗.

5.8. Lemma. TaC = V1 ⊕ V1/2 and henceHaM = E1 ⊕ E1/2 for the corresponding
tangent spaces ata ∈ C. In particular,L(z+ z∗)E ⊂ HzM for all z ∈ M. Furthermore,
L(a)E = HaM provided

λj + λk = 0 implies λj = λk = 0. (∗)

Proof. For every givenλ ∈ der(V ) denote byv0 ∈ V0 the component ofλ(a)with respect
to the Peirce decomposition (5.5). Thena ◦ c′ = 0 impliesλ(a) ◦ c′ = −a ◦ λ(c′) and
hencev0 = v0 ◦ c′ ∈ L(a)V ⊂ V1 ⊕ V1/2, that is,v0 = 0 and thusλ(a) ∈ V1 ⊕ V1/2.
Therefore (5.1) andL(V )a = L(a)V imply

L(a)V ⊂ TaC = gl(�)a ⊂ V1 ⊕ V1/2. (∗∗)

In casea satisfies(∗) the spectral resolution forL(a) in (5.7) impliesL(a)V = V1⊕V1/2
and henceTaC = V1 ⊕ V1/2 by (∗∗). Since dim(V1 ⊕ V1/2) does not depend on the
choice ofa ∈ C and since on the other hand ana ∈ C can always be chosen that
satisfies(∗) we conclude that dimTaC = dim(V1 ⊕ V1/2) and henceTaC = V1 ⊕ V1/2
by (∗∗) for every choice ofa ∈ C. Finally, for everyv ∈ V andw := a + iv we have
L(a)E ⊂ HaM = HwM, where the latter identity is obvious from the fact thatz 7→ z+iv

is a CR-automorphism ofM. ut

To simplify our arguments we assume without loss of generality in the following that
a ∈ C always satisfies the condition(∗) above. Then the restriction ofL(a) to HaM =

E1 ⊕ E1/2 is invertible andE0 is the kernel ofL(a) in E. Also we assume for the rank
ρ = p+q of a thatρ > 0 (i.e.M is not totally real inE) and, in addition, thatρ < r (i.e.
M is not open inE). Furthermore we identifyE/HaM in the canonical way withE0.

At this point it is convenient to compare the Jordan algebra productz ◦ w onE with
the Jordan triple product{xyz} associated with the bounded symmetric domainD ⊂ E

that is the image ofH ⊂ E under the Cayley transformationz 7→ (z− e) ◦ (z+ e)−1 (see
the first part of this section). The following identities are well known:

{zwz} = P(z)w∗, z ◦ w = {zew}, z∗ = {eze} for all z,w ∈ E.

For every Peirce spaceVjk = Vkj in (5.6) the inclusion{VjmVmnVnk} ⊂ Vjk holds for all
index pairs, and all triple products of Peirce spaces that cannot be written this way vanish
(after transposing indices in some pairs if necessary).
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An important CR-invariant for everya ∈ M is the (vector-valued)Levi form

3a : HaM ×HaM → E/HaM,

which we define in the following way: For everyx, y ∈ HaM choose smooth sections
ξ, η in HM overM with ξa = x, ηa = y and put

3a(x, y) := ([ξ, η] + i[i ξ, η])a modHaM.

Since [ξ, η] − [iξ, iη], [ξ, iη] + [iξ, η] ∈ HM in view of the integrability condition, it
follows that3a(x, y) is conjugate linear inx, complex linear iny and satisfies3a(v, v) ∈

i TaM/HaM ⊂ E/HaM for all v ∈ HaM.
For everyv ∈ HaM define the smooth vector fieldξv onE by ξvz =

1
2(z + z∗) ◦ v ∈

E ∼= TzE for all z ∈ E. Thenξva = a ◦ v andξvz ∈ HzM for all z ∈ M by Lemma 5.8.
A simple computation shows

3a(ξ
v
a , ξ

w
a ) = (a ◦ v)∗ ◦ w modHaM.

Since the operatorL(a) is bijective onHaM we thus get

3a(v,w) = v∗
◦ L(a)−1w modHaM

for all v,w ∈ HaM. In particular,

KaM := {w ∈ HaM : 3a(v,w) = 0 for all v ∈ HaM} = E1 (5.9)

for theLevi kernelata. Indeed,E1 ⊂ KaM follows from the fact that every Peirce space
Ek is invariant underL(z) for everyz ∈ E1. On the other hand, for everyw ∈ E1/2 the
E0-component ofw∗

◦w is {wwc′}, which vanishes only forw = 0 (see [19, p. 10.6]).
This proves the opposite inclusionKaM ⊂ E1.

The Levi kernelKaM = E1 is the image ofE under the operatorP(a) and its restric-
tion to this space is invertible. For everyw ∈ KaM define the vector fieldηw onE by
ηwz =

1
4P(z+ z∗)w. Thenηwa = P(a)w and, by Lemma 5.8 and (5.9),ηwz ∈ KzM for all

z ∈ M, whereKzM is the Levi kernel atz. A simple calculation shows

[ξv, ηw]a = P(a, a ◦ (v + v∗))w −
1

2
(P (a)(w + w∗)) ◦ v ∈ E1/2 (5.10)

for all v ∈ E1/2, w ∈ E1. The part

β(ξva , η
w
a ) := P(a, a ◦ v∗)w

of (5.10) that is antilinear inv and linear inw is the sesquilinear map

β : E1/2 × E1 → E1/2 given by β(v, P (a)w) = P(a, v∗)w (5.11)

for v ∈ E1/2 ∼= HaM/KaM andw ∈ E1 = KaM.

5.12. Lemma. R = 0 for the rightβ-kernel

R := {w ∈ E1 : β(v,w) = 0 for all v ∈ E1/2}.



Local CR-transformations ofG-orbits 481

Proof. Assume on the contraryR 6= 0. SinceR is invariant under the involutionw 7→ w∗

and sinceP(a) is bijective onV1 there exists a vectorw 6= 0 in V1 with P(a)w ∈ R.
ThereforeP(a, v)w = 0 for all v ∈ V1/2, or in triple product notation,{awv} = 0 for all
v ∈ V1/2. Furthermorer ≥ 2 since 0< ρ < r for the rankρ of a.

For everyx ∈ V denote byxjk := πjk(x) ∈ Vjk the corresponding component with
respect to the decomposition (5.6). Asw 6= 0 there existj, k with wjk 6= 0. In particular,
λjλk 6= 0 and there exists an indexn with λn = 0, that is, 06= Vkn ⊂ V1/2. This forces

0 = λ−1
j {awvkn}jn = {ejwjkvkn} = 0 for all v ∈ V.

From Vkk = Rek and 2{ekekvkn} = vkn we derivej 6= k and hencer ≥ 3. As a
consequence,V = Hr(K) for K one of the division algebrasR, C, H andO (see the next
section for the notation). If we realizea ∈ Hr(H) as the diagonal matrix [λ1, . . . , λr ] and
let vkn ∈ Vkn be the matrix that has 1∈ K at positions(k, n), (n, k) and zeros elsewhere
we getwjk = 0, a contradiction. ut

The bilinear mapβ in (5.11) corresponds to the mappingβ2 in (7.2) evaluated ata. In
particular, the rightβ-kernelR can be identified withH2 in Lemma 7.3. ThusM is 2-
nondegenerate by Lemma 5.12 (recall that by (5.9),M is Levi degenerate), and we have
all ingredients for the postponed

Proof of Theorem 4.7.We may assume that there exists inE ⊂ Z a symmetric tube
domainH ⊂ E with S = Aut(H)0. Since theS-orbit S is generic inZ the intersection
M := S ∩ E is not empty. Clearly,M is invariant unter the subgroupAff(H) ⊂ S, and
we claim that actuallyM is anAff(H)-orbit inE. This follows from the well known fact
that in the irreducible Hermitian symmetric spaceZ of rank r the number ofS-orbits is(
r+2

2

)
(see e.g. [13]), which by Lemma 5.4 is also the number ofAff(H)-orbits inE. By

the above discussionM is a 2-nondegenerate CR-manifold, and by homogeneity this is
therefore also true forS. Finally, minimality ofS follows from Theorem 3.6 in [13]. ut

6. Examples and applications

We begin by presenting briefly the classification of all formally real Jordan algebras in
the notation of [16]. From 2x ◦ y = (x + y)2 − x2

− y2 it is clear that the Jordan product
is uniquely determined by the square mapping. For every integern ≥ 1 let Kn be the
vector spaceRn with the following additional structure:(x|y) =

∑
xiyi is the usual

scalar product andx := (x1,−x2, . . . ,−xn) for all x = (x1, . . . , xn) ∈ Rn. The fieldR
is identified with{x ∈ Kn : x = x} via t 7→ te, wheree := (1,0, . . . ,0). In addition,
define the product ofx andx formally asxx := (x|x) ∈ R ⊂ Kn. For every integerr ≥ 1
denote byHr(Kn) ⊂ (Kn)

r×r the linear subspace of all Hermitianr × r-matrices(xij )
overKn, that is,xij ∈ Kn andxij = xji for all 1 ≤ i, j ≤ r. Obviously,Hr(Kn) has real
dimensionr +

(
r
2

)
n.

Our conventions so far suffice to define all squaresx2 for x ∈ H2(Kn) (just formally
as matrix squares). Forr > 2 we need an additional structure on someKn: Identify K2
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with the fieldC, K4 with the (skew) fieldH of quaternions andK8 with the real division
algebraO of octonions in such a way thatx 7→ x is the standard conjugation of these
structures. With these identifications also squares are defined inHr(Kn) for all r and
n = 1,2,4,8 (again in terms of the usual matrix product). Now the simple formally real
Jordan algebras are precisely the following, wherer denotes the rank:

• r = 1 : R,
• r = 2 :H2(Kn), n ≥ 1,
• r = 3 :H3(R),H3(C),H3(H),H3(O),
• r > 3 :Hr(R),Hr(C),Hr(H).

In H2(Kn) the generic norm is given byN
( α x
x β

)
= αβ − xx, and

C1,0 =

{(
α x

x β

)
∈ H2(Kn) : α + β > 0, αβ = xx

}
is the future light cone, which can be written in a more familiar form as

{(t, x0, x1, . . . , xn) ∈ Rn+2 : t > 0, t2 = x2
0 + · · · + x2

n}

viaα = t+x0, β = t−x0. In V = Hr(K) for K = R,C,H the cone� is the subset of all
positive definite matrices. The group of all transformationsx 7→ gxg∗ with g ∈ GL(r,K)
is an open subgroup ofGL(�), in particularP(a) is then the operatorx 7→ axa for every
a ∈ V . The kernel of ineffectivity for the action ofGL(r,K) on� is the group of allλ
in the center ofK with λλ = 1 (that is,{±1} in the casesR andH). The complexified
Jordan algebraE is the matrix algebraCr×r in caseK = C and is the Jordan subalgebra
of all symmetric matrices in caseK = R. The realization ofH as a matrix algebra,

H =

{(
a b

−b a

)
: a, b ∈ C

}
,

gives a canonical embeddingHr(H) ⊂ H2r(C) as a Jordan subalgebra. The usual de-
terminant function onH2r(C) restricted toV = Hr(H) is the square of the generic
norm ofV . In caseK = R,C the generic norm onV = Hr(K) coincides with the de-
terminant. The subgroupSL(r,H) has real codimension 1 inGL(r,H) and Lie algebra
sl(r,H) = {x ∈ gl(r,H) : tr(x) = 0}, wheretr is the reduced (center-valued) trace on
gl(r,H) (see [22, p. 267] or [17] for details).

Now fix a simple formally real Jordan algebraV = Hr(Kn) in the following and
denote as before by� = exp(V ) (= Cr,0) the positive cone inV . There exists a unique
GL(�)-invariant Riemannian metric on� that coincides ate ∈ � with the Aut(V )-
invariant inner product(x|y) = tr(L(x)L(y)) on V = Te�. Sincex 7→ x−1 is an
isometry of� with unique fixed pointe in �, the positive cone is actually an irreducible
Riemannian symmetric space of noncompact type.

As before letE = V⊕iV be the complexification ofV . The tube domainH = �⊕iV

in E is homogeneous under the affine groupAff(H) and it is well known that the full
automorphism groupAut(H) is generated by the subgroupAff(H) and the involutory
transformationz 7→ z−1 whose unique fixed point inH is e. As already mentioned
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before,H is biholomorphically equivalent to a bounded symmetric domainD ⊂ E via
the Cayley transformationγ (z) = (z − e) ◦ (z + e)−1. In fact,D is the interior of the
convex hull of exp(iV ) in E, and also exp(iV ) is a Riemannian symmetric space (the
compact dual of exp(V ) = �).

Let againZ be the compact dual ofD and L := Aut(Z)0 with Lie algebral =

hol(Z) ⊂ hol(E). The Cayley transformationγ is contained inL and has order 4. There-
fore the Lie algebrah of Aut(H) is also a real form ofl. Sincez ∂

∂z
∈ h the Lie algebrah

has aZ-grading (cf. also (3.7))

h = h−1
⊕ h0

⊕ h1

with hk = h ∩ lk a real form of the complex Lie algebralk, more precisely

h−1
=

{
iv ∂
∂z

: v ∈ V
}
, h0

= gl(�) = [h−1, h1], h1
=

{
i{zvz} ∂

∂z
: v ∈ V

}
, (6.1)

where{zvz} = P(z)v is the corresponding Jordan triple product (cf. e.g. [14]). The affine
subalgebraa := h−1

⊕ h0 is the Lie algebra ofAff(H). With (5.1) and the above we see
that the codimension of every Lie algebra from the chainder(V ) ⊂ h0

⊂ a ⊂ h in its
successor is dimV = r +

(
r
2

)
n.

The Lie algebrah = aut(H) is explicitly known in all cases; actually the table be-
low can be verified (cf. e.g. [7]). In the table,sl(D) is the Lie algebra of the compact
groupSL(D) := GL(D)∩ SL(E) with GL(D) being isomorphic to the isotropy subgroup
Aut(H)e ate. The notation used is as in [9, p. 354]. In particular, every exceptional simple
real Lie algebra in the last line is uniquely identified by its character (in parentheses),
which by definition is codim− dim for a maximal compact subalgebra.

V der(V ) sl(�) aut(H) sl(D)

R 0 0 sl(2,R) 0

H2(Kn) so(n+ 1) so(1, n+ 1) so(2, n+ 2) so(n+ 2)

Hr(R) so(r) sl(r,R) sp(r,R) su(r)

Hr(C) su(r) sl(r,C) su(r, r) su(r)× su(r)

Hr(H) sp(r) sl(r,H) so∗(4r) su(2r)

H3(O) f4(−52) e6(−26) e7(−25) e6(−78)

The semisimple Lie algebrassl(�) andsl(D) have isomorphic complexifications (see
Lemma 5.2) and in particular have the same dimensions. These are easily read off from
the table as

dimsl(�) = dimsl(D) =

{
78, V = H3(O),
n(r2

− 2)+
(
n
2

)
+ 1, otherwise.

(6.2)

Denote bys ∈ Aut(D) ⊂ Aut(Z) the symmetrys(z) ≡ −z of D. Theng := Ad(s)
satisfiesg(ξ) = (−1)kξ for all ξ ∈ lk and hence also leavesh ⊂ l invariant. It is obvious
that±Aut(H) := Aut(H) ∪ (s ◦ Aut(H)) is a group containingAut(H) as a subgroup
of index 2. In the same way we also define the subgroups±GL(�) ⊂ ±Aff(H) ⊂

±Aut(H) ⊂ Aut(Z). As an improvement of Corollary 4.6 we state:
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6.3. Proposition. The group±Aut(H) is isomorphic toAut(h) viaAd. With this identi-
fication

±GL(�) = {g ∈ Aut(h) : g(δ) = δ},

±Aff(H) = {g ∈ Aut(h) : g(a) = a} for a = h−1
⊕ h0.

Proof. The antiholomorphic transformationτ(z) = z∗ ofH induces the same Lie algebra
automorphism ofh ass. Therefore the first claim follows from Proposition 4.5 in [13]
(stated for the biholomorphically equivalent domainD). Supposeg(δ) = δ. Theng leaves
thead(δ)-eigenspaceh−1 invariant, that is,g ∈ ±Aut(H) is linear and hence in±GL(�).
Next, assumeg(a) = a. Sinceg(iV )∩iV 6= ∅ there exist translationst1, t2 ∈ exp(h−1) ⊂

Aff(H) such thath(0) = 0 forh := t1gt2. Buth leavesa as well ash0 invariant and hence
induces an invertible endomorphism ofa/h0 ∼= h−1. Therefore [g(δ), g(α)] = −g(α) for
all α ∈ h−1 impliesh(δ) = δ and henceh ∈ ±GL(�), that is,g ∈ ±Aff(H). ut

For the rest of the section fix aGL(�)-orbitC := Cp,q in V together with a pointa ∈ C

and denote byM := Mp,q = C + iV the corresponding tube manifold. As before,
ρ := p + q ≤ r is the rank ofa. For convenience we callρ′ := r − ρ thecorankof a.
The affine groupAff(H) acts transitively onM, in casep = q also the bigger group
±Aff(H) acts onM (since thenC = −C). From Lemma 5.8 it is easily derived thatM
has CR-dimensionρ +

(
ρ
2

)
n+ ρρ′n and CR-codimensionρ′

+
(
ρ′

2

)
n. In particular,M is

of hypersurface type if and only ifρ′
= 1. Furthermore, by (5.9) the complex dimension

of the Levi kernel at every point ofM is ρ +
(
ρ
2

)
n.

The isotropy subgroup

(±Aut(H))a := {g ∈ ±Aut(H) : g(a) = a} ⊂ Aut(Z)

can be canonically identified with a subgroup ofAut(M, a) and clearly coincides with
the isotropy subgroupAut(M)a in casep 6= q.

6.4. Proposition. In caseM is neither totally real nor open inE,

Aut(M, a) = (±Aut(H))a

for everya ∈ M. In particular,

dimAut(M, a) =

{
72+ 8ρ′, V = H3(O),
n
(
r2

+
(
ρ′

2

)
− 2

)
+

(
n
2

)
+ ρ′

+ 2, otherwise,

whereρ′
= r− rank(a) is the corank ofa in V .

Proof. Let S be theAut(H)-orbit of a in Z. ThenM is an open subset ofS and the pair
(S, Z) belongs to the classC. By Theorem 4.5 every germ inAut(M, a) extends to a trans-
formationg ∈ Aut(Z) with g(S) = S. Thereforeg ∈ Aut(h) ∼= ±Aut(H) as a conse-
quence of Proposition 6.3. The dimension formula follows from (6.2), dimAut(M, a) =

dimAut(M) − dimM = dimgl(�) + codimCR and the explicit expression for the last
summand above. ut
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As an example, ifr = 2, ρ′
= 1 andd := n + 2 ≥ 3, that is,M ⊂ Cd is the tube over

the future light cone{x ∈ Rd : x1 =

√
x2

2 + · · · + x2
d > 0} in d-dimensional space time

we have dimAut(M, a) =
(
d
2

)
+ 2 for everya ∈ M.

We proceed with the above fixed coneC = Cp,q . Let f (z) ∂
∂z

∈ h = aut(H) be an
arbitrary vector field. By (6.1),f has the formf (z) = λ(z) + i({zvz} − w) for suitable
λ ∈ gl(�) andv,w ∈ V . For everya ∈ C we then have

6.5. Lemma. (i) f (a) = 0 ⇔ λ(a) = 0 andw = {ava}.
(ii) f ′(a) = 0 ⇔ λ = 0 andv ∈ V0, whereV0 is the Peirce space according to(5.5).

In particular, {i{zvz} ∂
∂z

: v ∈ V0} is the space of all vector fields inaut(H)with vanishing
1-jet ata. The dimension of this space coincides with the CR-codimension ofM.

Proof. (i) follows from λ(a) ∈ V andi({ava} −w) ∈ iV . Obviously,f ′(a)(z) = λ(z)+

2i{avz} for all z ∈ E and in particular for allz ∈ V . Thereforef ′(a) = 0 is equivalent
to λ = 0 and{avz} = 0 for all z ∈ V . But the latter condition is equivalent tov ∈ V0.
The last claim follows from the fact thatV0 is isomorphic to the normal space ata toM
in E. ut

6.6. Corollary. The following conditions are equivalent:

(i) Everyξ ∈ aut(H) is uniquely determined by its1-jet ata ∈ M.
(ii) M is open inE.

Proof. Both conditions are equivalent toV0 = {0}. ut

Recall thataut1(M, a) is the space of all germs of vector fields inhol(M, a) that vanish
of order≥ 2 ata, that is, which have vanishing 1-jet ata. Lemma 6.5 also immediately
implies

6.7. Corollary. aut1(M, a) = {i{zvz} ∂
∂z

: v ∈ V0} if M is neither totally real nor open
in E.

Denote byaut(M) ⊂ hol(M) the subset of all vector fields that arecomplete onM, that
is, generate global flows onM.

6.8. Lemma. h ∩ aut(M) = h−1
⊕ h0 (= a) if M is not open inE.

Proof. The linear span ofb := h ∩ aut(M) in hol(M) has finite dimension by [20],
thereforeb ⊂ h is a Lie subalgebra witha ⊂ b. Assume there exists a vector fieldξ ∈ b\a.
Without loss of generality we may assumeξ = i{zvz} ∂

∂z
∈ h1 for somev ∈ V . There

exist minimal orthogonal idempotentse1, . . . , er in E with v = v1e1+· · ·+vrer , and we
may assumev1 = 1. SinceM is not open inE there exists a pointc = c1e1 + · · · + crer
in M with c1 = i. The vector fieldξ is tangent to the linear subspace

∑
j Cej of E. As

a consequence,g(t) := exp(tξ)(c) has the formg(t) =
∑
j gj (t)ej with certain real-

analytic functionsgj : R → C. It is easily verified thatg1(t) = i(1 + t)−1, which has a
singularity att = −1 and thus gives a contradiction. ut

It is easily seen thatM = Mp,q is convex if and only ifM = H , M = −H orM = iV

(that is, if{p, q} ⊂ {0, r}).
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6.9. Proposition. In caseM is not convex inE we have

Aut(M) = Aff(M) =

{
Aff(H), p 6= q,

±Aff(H), p = q.

Proof. Case 1:M not open inE. Thenhol(M) = h and Lemma 6.8 implyaut(M) = a.
As a consequence, everyg ∈ Aut(M) ⊂ Aut(h) leavesa invariant, i.e.g ∈ ±Aff(H) by
Proposition 6.3. In particular,g ∈ Aff(M) and alsog ∈ Aff(H) if M 6= −M.

Case 2:M open inE. Thenpq 6= 0 and it is easily seen thatE is the convex hull ofM.
By [10, 2.5.10] every holomorphic function onM has a holomorphic extension toE, that
is, Aut(M) ⊂ Aut(E) by holomorphic extension. Without loss of generality we assume
p ≤ q and fixg ∈ Aut(M). Then eitherg maps the boundary partMp−1,q onto itself or
mapsMp−1,q to Mp,q−1. The latter case only happens ifp = q and then we replaceg
by −g implying thatg leavesMp−1,q invariant. By case 1 the restriction ofg toMp−1,q
extends to an affine transformation inAff(H), and the claim follows. ut

Finally, we come back to the tubes over future light cones: This corresponds to the rank-2
caseV = H2(Kn) with n ≥ 1. Putm := n+ 2, identify the future cone inV with

� =

{
x ∈ Rm : x1 >

√
x2

2 + · · · + x2
m

}
and let e := (1,0, . . . ,0) ∈ � be fixed. ThenGL(�) is the special Lorentz group
O(1, m−1)+, and the isotropy subgroup ate is the orthogonal groupO(m−1) acting
in the canonical way on the orthogonal complement ofe in Rm. In particular, both groups
have two connected components. As before letH := �⊕ iRm ⊂ Cm be the correspond-
ing right halfplane. It is known that the realization ofH as a bounded symmetric domain
in Cm is theLie ball

D =

{
z ∈ Cm : (z|z)+

√
(z|z)2 − |〈z, z〉|2 < 1

}
,

where (z|w) =
∑
zkwk and 〈z,w〉 =

∑
zkwk are the standard inner product and

symmetric bilinear form onCm respectively. It is obvious that the orthogonal group
O(m) leavesD invariant and also thatU(1) acts onD by multiplication. Therefore,
the direct product groupU(1) × O(m) acts linearly onD, and it is known that actu-
ally GL(D) = (U(1) × O(m))/{±(1,1)}. In particular, the groupsAut(D) andGL(D)
have two connected components ifm is even and are connected otherwise. The compact
dualZ of D is a complex quadric in the complex projective spacePm+1.

The boundary ofD is the union∂D = S0 ∪ S1 of two Aut(D)-orbits: The Shilov
boundary

S0 := {z ∈ Cm : (z|z) = |〈z, z〉| = 1}

is also aGL(D)-orbit and coincides with the set of extreme points of the closed ballD,
whileS1 is the smooth boundary part ofD. The CR-manifoldS1 is anAut(D)-equivariant
disk bundle, where the fibers are the holomorphic arc components ofS1 in the sense of
[30]. For instance, the analytic disk throughe1 := (1/2, i/2,0, . . . ,0) ∈ S1 is {e1 + te2 :
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|t | < 1}, wheree2 := (1/2,−i/2,0, . . . ,0). The boundary of each such disk is contained
in the orbitS0.

As before letM := C ⊕ iRn be the tube over the future light cone

C = {x ∈ Rm : x1 > 0, x2
1 = x2

2 + · · · + x2
m}.

There is a transformation inAut(Z) (Cayley transformation) mappingH biholomorphi-
cally to D and mappingM to a dense open subset ofS1. In particular,M andS1 are
locally equivalent as CR-manifolds.

In the following we specialize tom = 3. R3 andC3 are identified with the spacesV
andE of symmetric matrices inR2×2 andC2×2 respectively. In particular,� is the cone
of positive definite matrices inV ande ∈ � becomes the unit 2× 2-matrix. The group
Aut(H) is isomorphic to the real symplectic group

Sp(2,R) := {A ∈ R4×4 : AtJA = J },

whereJ :=
(

0 e
−e 0

)
. Then the action ofSp(2,R) onH is more easily described if we

replace the right halfplaneH by Siegel’s upper halfplaneiH = V ⊕ i�: Write every
A ∈ Sp(2,R) in block formA =

(
a b
c d

)
with 2 × 2-blocks and put

A(z) := (az+ b)(cz+ d)−1 for all z ∈ iH.

For everys ∈ C the isotropy subgroup ofSp(2,R) at the pointis ∈ iM is isomorphic
to Aut(M, s) and consists of the 5-dimensional group of allA =

(
a b
c d

)
∈ Sp(2,R)

satisfying the linear equationsas = sd andb = −scs on R4×4. Furthermore, there is a
1-parameter subgroup ofAut(M, s) whose elements all have the same 1-jet ats ∈ M.

7. Appendix: Nondegeneracy conditions

In the following we recall the notion offinite nondegeneracy(see e.g. [3]) and give equiv-
alent descriptions for a certain class that contains in particular all homogeneous CR-
manifolds.

Let M be a smooth (abstract) CR manifold with tangent bundleTM and holomor-
phic subbundleHM ⊂ TM. The complex structure on every holomorphic tangent space
HpM ⊂ TpM will be denoted byJ . ThusJ : HM → HM is a smooth bundle transfor-
mation withJ 2

= − id. Denote byCTM := C⊗TM the complexified tangent bundle of
M that contains the complexificationCHM := C⊗HM in a canonical way as a complex
subbundle. ExtendJ to a complex linear bundle transformation ofCHM, which is then
the direct sum of two complex subbundlesH 1,0M andH 0,1M, the eigenbundles ofJ
corresponding to the eigenvaluesi and−i.

Consider the subbundlesH 0,1M ⊂ CHM of CTM and denote byA1,0M ⊃ A0M

the corresponding annihilator subbundles in the complexified cotangent bundleC⊗T ∗M.
For everyp ∈ M, A1,0

p M consists of all linear forms onCTpM that areJ -linear on
HpM. As shorthand let us also writeA0 := 0(M,A0M), A1,0 := 0(M,A1,0M),
H1,0 := 0(M,H 1,0M) andH0,1 := 0(M,H 0,1M) for the corresponding spaces of
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smooth sections overM. Clearly, all these are in a natural way modules over the ring
F := C∞(M,C) of smooth complex-valued functions onM.

For every vector fieldX ∈ 0(M,CTM) and every complexk-form ω on M the
contractionıXω is the(k−1)-form defined by

(ıXω)(Y2, . . . , Yk) = ω(X, Y2, . . . , Yk) if k > 0, ıXω = 0 if k = 0.

Also, theLie derivativewith respect toX on the space of all complex exterior differential
forms is defined by

LX := d ◦ ιX + ιX ◦ d.

For allX ∈ H0,1 andω ∈ A1,0 we haveıXω = ω(X) = 0 and hence

(LXω)(Y ) = dω(X, Y ) = Xω(Y )− Yω(X)− ω([X, Y ]). (7.1)

The integrability condition [H0,1,H0,1] ⊂ H0,1 therefore implies(LXω)(Y ) = 0 for
all Y ∈ H0,1 andX, ω as above, that is, the linear subspaceA1,0

⊂ 0(M,C ⊗ T ∗M)

is LX-invariant for everyX ∈ H0,1. As a consequence, we can defineAk+1, k ≥ 0,
inductively to be the smallest linear subspace ofA1,0 that containsAk andLX(Ak) for
everyX ∈ H0,1. NowM is calledfinitely nondegenerateatp ∈ M if

Akp := {Yp : Y ∈ Ak} = A1,0
p

for somek, and is calledk-nondegenerateat p if k is minimal with this property. Fur-
thermore we say thatM hasconstant degeneracyif dimAkp does not depend onp ∈ M

for everyk. This property is for instance satisfied ifM is locally homogeneous, that is,
for everyx, y ∈ M there are open neighbourhoodsU of x andV of y together with a
CR-diffeomorphismϕ : U → V satisfyingϕ(x) = y.

For the rest of the section we assume thatM has constant degeneracy. For manifolds
of this type we give an equivalent approach to finite nondegeneracy using Lie brackets of
vector fields rather than Lie derivatives (cf. also [8]).

For the ascending chain(Ak)k≥0 we have the descending dual chain of kernels

Hk := {Y ∈ H1,0 : ω(Y ) = 0 for allω ∈ Ak}

with H0
= H1,0. It is clear thatM is finitely nondegenerate atp ∈ M if and only if

Hk
= 0 for somek. TheF-modulesHk can also be characterized in a direct way. For

this putH−1 := 0(M,CTM) and define for everyk ≥ 0 theF-bilinear map

βk : H0,1
×Hk

−→ H−1/(H0,1
⊕Hk) (7.2)

by βk(X, Y ) = πk([X, Y ]), whereπk : H−1
→ H−1/(H0,1

+ Hk) is the canonical
projection.

7.3. Lemma. For everyk ≥ 0,

Hk+1
= {Y ∈ Hk : βk(H0,1, Y ) = 0}

is the rightβk-kernel. In particular,H1
p is the Levi kernel atp ∈ M. Furthermore, in case

k ≥ 1 the mapβk takes values in the linear subspace

(H0,1
⊕Hk−1)/(H0,1

⊕Hk) ∼= Hk−1/Hk.
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Proof. Fix k ≥ 0 and assumeAk(Hk) = 0 and [H0,1,Hk] ⊂ H0,1
+Hk−1 as induction

hypothesis. Notice that these assumptions are automatically satisfied in casek = 0. For
everyX ∈ H0,1, Y ∈ Hk andω ∈ Ak the equality (7.1) andω(X) = ω(Y ) = 0 imply

(LXω)(Y ) = −ω([X, Y ]).

From the induction hypothesis we therefore get, for everyY ∈ Hk,

Y ∈ Hk+1
⇔ ω([X, Y ]) = 0 for allX ∈ H0,1, ω ∈ Ak

⇔ [X, Y ] ∈ (H0,1
+Hk) for all X ∈ H0,1

⇔ βk(X, Y ) = 0 for allX ∈ H0,1.

ThusHk+1 is the rightβk-kernel and also [H0,1,Hk+1] ⊂ H0,1
+Hk. Finally, the map-

ping
H 1,0
p M ×H 1,0

p M → CTpM, (Xp, Yp) 7→ (β0(X, Y ))p,

is a multiple of the Levi form atp ∈ M, that is,H1
p is the Levi kernel atp. ut

Finally, we mention that using the natural isomorphisms betweenHM, H 1,0M and
H 0,1M, we can also regardH k

pM := Hk
p as a complex (that is,J -invariant) subspace

of HpM andβkp as a mapHpM ×H k
pM → H k−1

p M/H k
pM between real tangent spaces,

given by the part of the Lie bracket which isJ -antilinear in the first andJ -linear in the sec-
ond argument. We used this interpretation in Section 5 as a criterion for 2-nondegeneracy.
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