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Abstract. Inthe theory of elliptic equations, the technique of Schwarz symmetrization is one of the
tools used to obtain a priori bounds for classical and weak solutions in terms of general information
on the data. A basic result says that, in the absence of lower-order terms, the symmetric rearrange-
ment of the solution: of an elliptic equation, that we write*, can be compared pointwise with

the solution of the symmetrized problem. The main question we address here is the modification of
the method to take into account degenerate equations posed in inhomogeneous media. Moreover,
the equations we want to deal with involve weights that make them of non-divergence form, at least
when written in terms of the natural variables. We find comparison results covering the elliptic case
and the corresponding evolution models of parabolic type, with emphasis on equations of porous
medium type. More specifically, we obtain a priori bounds and decay estimates for wide classes of
solutions of those equations.

Keywords. Nonlinear elliptic and parabolic equations, degenerate equations, inhomogeneous me-
dia, symmetrization, concentration comparison

1. Introduction

The technique of Schwarz symmetrization is a well known tool in the theory of elliptic
equations that is used to obtain a priori bounds for classical and weak solutions in terms
of general information on the data. A basic result of symmetrization theory says that,
in the absence of lower-order terms, the symmetric rearrangesienftthe solutionu

of a linear, uniformly elliptic equation with zero boundary data which can be compared
pointwise with the solution of the rearranged (or symmetrized) problem. See Section 2
for the precise definitions.

Combining the classical result with the techniquecohcentration comparisgrit is
proved in the survey [V4] that, if a (possibly nonlinear) zero-order term is present, one can
still get comparison in the sense of concentrations (hence, in the sense bf axyym,

p > 1, or any Orlicz norm in balls, and in the uniform norm) between the rearranged
solution and the solution of the rearranged problem. For this to hold, some restrictions
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on the zero-order term are needed. Fortunately, such restrictions are met by the ellip-
tic problems that arise when solving the evolution problems that interest us by means
of a backwards-in-time difference scheme, i.e., the so-called Crandall-Liggett implicit
scheme. In particular, a wide class of nonlinear, degenerate parabolic equations fall under
the scope of the method, since a simple change of unknown allows hiding the nonlinear-
ity in the elliptic zero-order term. As a result, one can obtain a priori estimates for the
solutions to the Cauchy or Cauchy-Dirichlet problem with zero boundary data for these
evolution equations.

The main question we address here is the modification of the above method to take
into account two aspects of current interest in applications: the equations are degenerate
elliptic or parabolic, and they are posed in inhomogeneous media. Moreover, the equa-
tions we want to deal with involve weights that make them of non-divergence form, at
least when written in terms of the natural variables. We will find comparison results cov-
ering both issues, namely the elliptic equations

1
) Zai(aij(majw = g(x,u) (1.1)
l’]

and the corresponding evolution models of parabolic type

P =Y i(aij(x)dj¢w)) + g(x, 1). (1.2)
LJ
The latter equation has been proposed and studied in connection with filtration of fluids
in inhomogeneous porous media or thermal propagation in plasma_(cfl [KR1]). The main
technical novelty in the proof is the use of symmetrization with respect to the measure
with densityp (x), which we will assume “almost radial” in the sense that there exist a
radially symmetric functiom and a constant & ¢ < 1 such that

CP0 = P = Po

in the domain under consideration. The use of symmetrization techniques allows us to
derive a priori estimates for the solutions of these problems in terms of the norms of the
data. These estimates are the goal of the present work since they represent a main step in
the construction of general weak theories.

The paper is organized as follows: Section 2 is devoted to the main definitions and
facts that we shall be using throughout. Sections 3 and 4 deal with the elliptic problems:
in Section 3 we obtain the pointwise estimate when no zero-order terms are present, while
in Section 4 the proof is adapted so as to keep track of (a special class of) zero-order
terms, and the concentration comparison result is proved. This ends the study of elliptic
symmetrization.

The last part of the paper is devoted to the application of the preceding results to obtain
comparison results and a priori estimates for parabolic problems. In Section 5 we combine
the results of the preceding section and the semigroup approach and prove the correspond-
ing concentration comparison result for parabolic problems. In Section 6 we apply this
comparison result to the Cauchy problem for an inhomogeneous porous medium equa-
tion. A final appendix includes the proof of one important inequality used throughout.
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2. Functional preliminaries

This section collects the main general ideas that we shall be using. We start by a review of
the standard definitions. L&t be a domain irR”, not necessarily bounded, possilRy.
L(Q) is the set of [classes of] Lebesgue measurable real functions defigedgrio a.e.
equivalence. For every functiofi e £(2), we define the distribution functiog, of f
by the formula

¢r(k) = meagx : | f(x)] > k}, (2.1)

where meas means the Lebesgue measuR¥iandk > 0. We denote by p(2) the
space of measurable functions{nsuch thatp (k) is finite for everyk > 0. If Q has
finite measure, thefo(2) = L(Q), otherwisely(2) contains the measurable functions
that tend to zero at infinity in a weak sense. AR (Q2) spaces with 1< p < oo are
contained inCo(£2).

2.1. Rearrangement

A measurable functiorf defined inR” is calledradially symmetriqor radial for short) if
f(x) = f(r), r = |x|. Itis calledrearrangedif it is nonnegative, radially symmetric, and
f is a nonincreasing function of > 0. For definiteness, we also impose tifabe left-
continuous at every jump point. We will often wrifgx) = f(r) by abuse of notation. A
similar definition applies to functions defined on a = Bg(0) = {x € R" : |x| < R}.

2.2. Symmetrization

For every bounded domain thesymmetrized domais the ball* = B (0) having the
same volume ag, i.e.,
measg?) = w, R", (2.2)

wherew, is the volume of the unit ball ifR". For a functionf € Lo(R2) we define the
spherical rearrangemerdf f (also called the symmetrized function 6§ as the unique
rearranged functiorf* defined inQ* which has the same distribution function Asi.e.,
for everyk > 0,

¢r(k) :=meagx € Q:|f(x)| > k} = meagx € Q" : f*(x) > k}. (2.3)
The quantity is finite for every > 0 by the assumptioif € Lo(€2). Then
ff(x) =inflk > 0:meas$y : | f(y)| > k} < w,|x|"}. (2.4)

A rearranged function coincides with its spherical rearrangement. Sometimes the name
symmetric decreasing rearrangement is used. The following Hardy-Littlewood formula
is well known and illustrates the relation betwegmand f*:

/ frdx = sup{/ |fldx : E C Q, measE) < mea$BR)}. (2.5)
Bg(0) E
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There is also an immediate relation between distribution functiond.&ridtegrals given
by the formulas

/ |fIP dx = _/OO kP do (k) = p/w kP~ Yo (k) dk, (2.6)
Q 0 0
and

f |17 dx = — /OO’”’ do (k) = Pfook”‘lqb(k) dk+aPp@).  (2.7)
QNf| fl=a} a

a

Since the distribution functions of and f* are identical, conservation of integrals
JolfIPdx = [o.(f*)?dx holds for everyp € [1, co). Moreover, for every convex,
nonnegative and symmetrical real functidn

/(D(f)dx:/ O(f*)dx. (2.8)
Q Q*

Note thatf* is continuous iff is.

2.3. Symmetrization with respect to a measure

As a natural generalization of the standard notions, one can intreguu@etrization with
respect to a measuye defined on the domaif2. As the symmetrized domaf;, we take
the ball Bk (0) with Lebesgue measure equal to freneasure of2:

measy,) = 1()
(so that2y, = R" if 1u(2) = o0). Formulas[(2]1) and (2.3) should be replaced by
Or.uk) = p{x € Q| f(x)| > k} = meagy e QZ : f:(y) > k}. (2.9

Observe that we have kept the usual Lebesgue measure on the right-handisidendt

the Lebesgue measure, arearranged function, in the sense defined above, will not coincide
with its u-rearrangement, since an extra contraction/dilation will take place with respect
to the space variable. The equality of Orlicz norfns](2.8) holds in the form

/ O(f)dp = f O(f7)dy. (2.10)
Q QL
The weighted version of the Hardy—Littlewood inequality reads
/ fpdy = sup{/ |fldu: E C Q, u(E) < mea$BR)}. (2.11)
Br(0) E
A proof of this formula under very general assumptions including as a particular case

weighted symmetrization can be foundfin [CRZ]. For the reader’s convenience, we have
devoted a final appendix to a proof of this important inequality in our case.
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2.4. Mass concentration

The comparison of mass concentrations is a basic notion in our approach to getting esti-
mates for elliptic and parabolic equations. The precise definition that was introduced in
[V1] is as follows:

Definition 2.1. Given two radially symmetric functions g Llloc(IR{") we say thatf is
more concentratethang, f > g, if for everyR > 0,

/ f(x)dxzf g(x)dx, (2.12)
Br(0) Br(0)

R R
f frtdr > / grr"tar. (2.13)
0 0

The partial order relationship will be calledcomparison of mass concentratiolige can

also write f > g in the formg < f. A similar definition applies to radially symmetric
and locally integrable functions defined on a ball= Bg(0). In the case of rearranged
functions this notion coincides with the comparison introduced by Hardy and Littlewood
[HLP], which is also used by Bandle in her book [Ba?]; but the present definition does
not require the functions to be rearranged, only radially symmetric, and the difference is
used below. In fact, the natural way of looking at the concept is to view it as a comparison
between two radially symmetric measurég,; = f(x)dx anddu, = g(x)dx. Then

the comparison reads

wr(Br(0)) = g (Br(0)) foreveryR > 0. (2.14)

In this formulation, comparison can be considered for general radially symmetric Radon
measures. Measures are natural data for elliptic and parabolic equations. The compar-
ison of concentrations can be formulated in an equivalent way when the functions are
rearranged, thanks to a powerful equivalence result, which seems to be essentially due to
Hardy and Littlewood. The precise formulation is the following.

Lemma2.2. Let f,g € LY(Q) be rearranged functions defined i2 = Bz(0) and
assume — Oas|x| — R. Thenf > g if and only if for every convex nondecreasing
function® : [0, o) — [0, co) with ®(0) = 0 we have

/ B(f () dx = / ®(g(x)) dox. (2.15)
Q Q

The result is also valid wheR = oo and f, g € L&)C(R”), g — Oas|x| — oo.

We will make use of the following two results, which are adaptations to our case of
Proposition 4.1 (respectively Theorem 4.6)(in [V4].

Theorem 2.3. Let f(r) be a radially symmetric and decreasing functiorLiigc(Q) and
letu(r) be a solution of the equation

—Au+ B = f, (2.16)
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where g is an increasing function ifi0, co) with 8(0) = 0. Letv = B(u). There is an
alternative:

(i) Standard casef > v, and therw andu are nonincreasing;
(ii) Increasing casef > v does not hold, and them is increasing inr in an interval
I = (a, R), v is nondecreasing with > fin I, and

/(v(x) — f(x))dx > 0. (2.17)
Q

Moreover, in this case the function(r) = for s"L(v(s) — f(s))ds is positive and
increasing in/.

The next theorem makes use of the concepts of integral sub- and supersolutasial a
integral subsolutiorof equation ) is a radial functian € Wlﬁcl(sz) with B(u) €
Li (@) and such that

f>—Au+ Bu). (2.18)
Much in the same way we defingadial integral supersolutionby reversing the concen-
tration order in[(2.18). See more details(in [V4, Section 4].

Theorem 2.4. Let f;(r), i = 1, 2, be two radial functions irL,loc(Q), let 8 be an in-
creasing function if0, oo) with 8(0) = 0 and letu1(r) be an integral supersolution and

u2(r) an integral subsolution of the equation
—Au; + Bui) = fi, (2.19)

Putv; = B(u;). If f1 = f>, and eitherv1 or v is nondecreasing, then eith@y v1 > vo,
or (ii) the quantity

V)= /r(vz(S) —v1(s))s" Lds
0

is positive and increasing for all large, v2(r) — v1(r) is nonnegative and, — u1 is
strictly increasing.

Roughly speaking, the first result says that, in the standard case, the solution is less con-
centrated than the data, while the second result says that to more concentrated data corre-
spond more concentrated solutions.

3. Symmetrization and comparison. Elliptic problems |

The classical result of symmetrization theory deals with uniformly elliptic equations in

a bounded domain with Dirichlet data, or in the whole space; it says that the symmetric
rearrangement* of a solutionu can be compared pointwise with the solution of a certain
symmetrized problem involving the Laplacian operator and the symmetrized function
of f. We present here the simplest version of the classical symmetrization technique that
applies to elliptic equations posed in a bounded domain or in the whole space. In this last
case they may lose their uniform ellipticity & — oo. Our modification replaces the
standard (Schwarz) rearrangement by rearrangement with respect to a measure.
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3.1. The problem

Let us consider the equation

1

—m;amij(x)aju) = g(x, u) (3.1)
posed in the bal2 = Bg(0), with boundary datax = 0 in 3Q2. Though the reader

may find it natural to move (x) to the right-hand side in order to simplify the notation,

the application to parabolic equations makes the present form preferable. Here are the
assumptions:

(H1) The coefficients;;; are locally bounded measurable functiongirsatisfying the
ellipticity hypothesis
Zaijéiéj > A(x)|E[? (3.2)
iJ

for some functior(x) > 0.
(H2) There is a bounded measurable, radially symmetric fungtjcamd a constant &
¢ < 1 such that
cpo(x) < p(x) < po(x) forx € Q. (3.3)

(H3) The functiong(x, u) is measurable, and
glx,mu < f(x)u fora.ex and allu, (3.4)

where f is a measurable function in some Lebes@despace, 1< p < ooE]

3.2. The symmetrized problem

We need to define the symmetrized problem. We perform symmetrization of the function
f(x), defined in%2, with respect to the measudg. = p(x) dx (cf. the definitions in Sec-
tion@). Thesymmetrized probleris then posed in the baft;, = Bg+(0) with Lebesgue
measuref, p(x) dx. The symmetrized equation will be

—CAyi = fi(y) inQ, (3.5)
where f,; is theu-spherical rearrangement gfandC is the constant described in Theo-
rem[3.]. We take boundary conditions

u(y)=0 o0naQj. (3.6)

3.3. Control of degeneracy and main result

In order to obtain a comparison result we perform a change of variabted (x) with
the property
dzlrx) = po(x) dx = dpo(x), (3.7)

1 Though other spaces also appear in the literature.
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wheredz|r(y) denotes the standard volume element inzttspace at the poirf (x). The
main implication of [(3.F) is that, given any functigi(x) and the corresponding function
in the new variableg (z) = f(x), we have

6 () = b0 (k).

and thereforg.g-symmetrization off is equivalent to standard symmetrization ffin
other words, the change of variabkes: 7'(x) can be seen as a first step towards weighted
symmetrization. We usgg instead ofp at this stage for technical reasons, in particular
because[(3]7) can be achieved by means of a radial transfornfatios., in spherical
coordinatest = (r,0), z = (s, ¥) we will haved = ¢ € S*~1, ands = s(r). Since
the volume elements are given By = s"ds d,_1 anddx = r"tdrdQ,_1P|the
functions(r) is defined by the ODE

ds
" = = po(r)r" Tt (3.8)
dr
plus the initial conditiors (0) = 0.
In order to prove our comparison result, we need to impose some conditions on the
transformatiory = T (x) that are met under the following hypothesis:

(H4) If n > 1, there exists a constait > 0 such that the functiongr), po(r) andi(x)
satisfy

s(r) = Kr(po(r)/A(x)Y2,  ds/dr > K (po(r)/1(x))"/? (3.9)

for x € Q andr = |x|. This double condition can be simplified. With the help of
(3.89), we arrive at the equivalent formulation

r -1
Jo PO 21 _ - oy, (3.10)

K" A n/2 _
(po/M)™* = pry <

If » = 1, we only require the second condition in (3.9), which amount& fo<
POA.

The main result is stated as follows. We use the weighted sgces p) andHol(Q; A)
defined in the standard way.

Theorem 3.1. Assume thalf € L%(Q2; p), f > O and thatu € H}(; 1) is a weak
solution of equatiorf3.1) under the above hypothesg$l)—(H4). Then we can compare
the u-symmetrization of with the solution of the symmetrized probl¢8m8)—{3.6)with
constantC = K2c¢ and obtain the pointwise result

u;i(s) <u(s) foralls e (0, RY). (3.11)

2 dS2,_1 is the surface element on the unit sphgfe?; it will not appear later.
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Condition (H4) may look a bit abstract. We will give more specific sufficient conditions at
the end of this section. These particular conditions also show the sharpness of our result.

Proof of Theorerp 3] Ve follow the outline of the proof of the survey paper[V4] for the
casep = A = 1:

(i) Write equation|(3.]) in variational form as
ou 8v
/Z aij o= =/Qg(x,u>pvdx, (3.12)
l

for test functiona € Hol(sz; A). Sincef > 0 we havex > 0 by the maximum principle.
Let us now writea(Vu, Vv) = " a;;d;ud;v.

(i) Let (k) ={u > k}. We calculate for a.& > 0 the derlvatlve— fsz(k) a(Vu,Vu)dx.
Taking as test function = (v — k) in (3.123) we get

f a(Vu,Vu)dx =/ gx,u)v(x)pdx.
{u>k} {u>k}

It is a classical result that for a.e.c (0, ess supu)) we have

d
— gvpdx = —/ gpdx.
dk Jiusr (=K}

It follows that

d

- a(Vu, Vu)dx = / gx,u)pdx. (3.13)
dk Jiu>rk)

{u>k}

(i) Put Z(k,h) = {x : k < u(x) < k + h} for k,h > 0. We recall that for every
measurable functiofr we have

d 1
_Z F(x)dx = lim —/ F(x)dx (3.14)
dk Jiusp h=0h Jz(k,n)

if the derivative exists. Combining the ellipticity assumption gnd (3.14) we conclude that
d d )
Tk {u>k}a(Vu, Vu)dx > T {u>k}A|Vu| dx > 0.
We transform in this way equality (3.13) into
—i AVul?dx < / glx,u)pdx. (3.15)
dk Jiusry {u=k)

(iv) We need to transform the left-hand side of the last formula. Using the Cauchy—
Schwarz inequality, we get

1 1 12 ,q 1/2
—/ A2\ Vu|pt?dx < <—f /\|Vu|2dx> (—/ pdx> )
h Jzan h Jzan h Jzk.n)
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The first novelty of the calculation is the use of the weight). Thus, we can view the
last integral as the measure of the B¢t, #) with respect to the measudige = p(x) dx.
We now consider the distribution functiaf. , (k) of the functionu with respect to this
measure, as defined in Subsecfior) 2.2, and we get in theAlirit0

df 172 12\ d 2
I AT ——/ MVl dx ) (=4 (k)
< dk Jy=r dk J k) e

< (=¢y., (k) gpdx (3.16)
r {u>k}

by (3.13).

(v) We now introduce the second novelty of the calculation, i.e., the change of coordinates
y = T(x) defined at the beginning of the subsection. Our goal is to absorb the factor
p1/211/2 on the left-hand side of (3.16), thus obtaining an unweighted integral in the new
variables. Toward this end, we need to transform the gradient with respecinto a
gradient with respect tg; in spherical coordinates we have

ou ou ds

ou
n—1
= = — 3.17
= e o po(r)(r/s) o5 (3.17)
and _
Guo s g (3.18)
roo r s00

Here,0 represents any direction on the unit sph@te! for n > 1. In this case, by (H2)
and (H4), we have

Kcl/Z/ \Vou|dz < c1/2/ W21Vl pg P dz
Zo(k,h) Zo(k,h)
5/ AY2|V ] pV2 dx,
Z(k,h)

whereZok, h) = {z : k <u(z) <k+h} and, by abuse of notation, we have denoted the
functionsii(z) = u(x), A(z) = A(x), etc. simply byu(z), A(z) etc. Dividing by, letting
h — 0 and recalling[(3.14)[ (3,7) and (3]16), we get

d 2
ch(—ﬁ / |vzu|dz) < (¢, (k) / g u(Np()dx,  (3.19)
{u>k} {u>k}

where the notatiou > k} on the left-hand side stands for the transformedseti(z)
> k}. In the caser = 1, (3.11) and[(3.1]8) reduce to

du dud du
a_amay (3.20)
dx dy dx dy

and we are led to the same conclusion under (H4pfor1.
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(vi) We now return to the standard proof and use two pieces of heavy artillery in order to
estimate the left-hand side. First, Fleming-Rishel's formula says that fot a.e.

d
P> k) =~— - |V.u|dz, (3.21)
u>

where P denotes the perimeter and, as before, the set on the left-hand side is understood
in thez-space. Then De Giorgi's isoperimetric inequality can be written as

P({u > k) = ne" gu () "™/ = naoy" by py ()" D1 (3.22)

where¢, denotes the standard distribution function in thspace, whilep,.,, stands

for the distribution function in the original-space with respect to the measuiey =

po(x) dx, according to the notation introduced in Subsection 2.3. These functions coin-
cide by the volume-preserving nature of our transformatien z (note that we always

consider the Lebesgue measure when dealing with functions efthgable). If we use
both formulas,[(3.7]9) becomes

1202 s (022 < (=), () / g ut)pdx, € =K. (3.23)
(vii) Moreover, by our assumptions @n
2" By (072" < (~, (1) / Fp) dx. (3.24)

(viii) We now perform p-symmetrization off. Using Hardy-Littlewood’s inequality

(2.17) we estimate
/ Fp() dx < f Fr)dy = / £Edy,
{u>k} {u},>k} By

where|B,| = measy : uy () > k) = dup(k), i.e.,w,0" = ¢, (k). Substituting into
(3.24), we get the inequality

Cn2wd" sy (* Y™ < (=4, (k) fB [y dy. (3.25)
(iX) Next, recall that

Gu:po (k) = po({u > k}) = /

LCCE / p()dx = u({u > k) = sy (K,

{u>k}

by assumption (H2). Thereforg, (3]25) implies

Cn2w?/" g, N (—¢;;p(k))/B fa)dy. (3.26)
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(x) At this stage we recall thaff (3.p6) is satisfied with equality by the solutiofi the
symmetrized problenj (3.5]-(3.6). Indeed, we have

—annan_lﬂ’(a):/B fi(ydy. (3.27)

The comparison we are looking for follows easily since the equmi;y(uZ(o)) = w,o"
for a.e.o implies that[(3.26) can be written as

—Crono™ 1w (0) < /B FEG) dy. (3.28)

Therefore,(u;)’(a) < u/'(0) for o < R*. Taking into account the boundary condition
uj;(R*) = u(R*) = 0, we obtain the desired inequality. O

Practical assumptions.As already remarked, condition (H4) is a bit abstract and we
would like to obtain more specific conditions. When we deal with the Cauchy problem for
equation[(1.R), we are led to consider a sequence of problems posed in balls of increasing
radius. If we assume that A > 0 inR”, condition (H4) clearly holds on each fixed ball

Bgr with someK = K(R) > 0. Therefore, in order to get a symmetrization result for
the problem in the whole space, it is important to have simple conditions under which
(H4) holds for arbitrarily large balls with a universal const&nhtThe following lemma

deals with the case of power-like densities. It turns out that the result strongly depends on
whetherpg € L1(R") or not, i.e., on whether the total mass of the medium is finite or not.

Lemma 3.2. Let po(x) = A(L+ |x])~® with A, @ > 0andA(x) ~ |x|# as|x| - oo.
Then conditior{H4) holds onBg (0) for all R > 0 with K independent oR if either

() « <nanda(n —2) > Bn, or
(i) a=nandp <n—2,0r
(i) «>nanda+ B <2(n —1).

Proof. Boundedness from below @f nearr = 0 implies thats(r) > 5(r) for r ~ 0O,
wheres(r) is the solution of the IVP

s"Yds = cr"Ydr,  s(0) =0,

i.e.,5(r) = CY"r. Thens/r > CY" and alsads /dr > CY/" for r ~ 0. Next, we deal
with r ~ co. From our hypotheses it easily follows thatif< n then

s/r.ds/dr ~r~%" asr — oo.
Therefore, condition (H4) holds fer~ oo if and only if
a(n —2) > pn.
If « = n, we have

s/r~r~tog"" s, ds/dr ~r~tlog!" " r,  asr — oo.
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Consequently, (H4) holds fer~ oc if and only if
B<n—2

Finally, if « > n, we have

s/r~ r L ds/dr ~ rretn=l o asr — oo,

hence (H4) holds for ~ oo if and only if
a>pB+2 and a+B8<2n-1). O

Remark 3.3. The situation is quite simple in 1D where the transformatiea 7 (x) has
only the radial direction and the necessary condition reduces(ior(x) > K 2. Indeed,
in this case the weighted symmetrization result is not needed. Instead, we can work out
the equivalent equation imvariables. By means efy = p(x) dx, we easily pass from

1
—— (AM®ux)y = f(x)
P

to the divergence equation

—(P(OAX)uy)y = f(y).
Now, if p(x)A(x) > C > 0 the standard symmetrization result applies. This coincides
with the condition above if (H2) holds. In Lemrpa B.2 the condition is 8 < 0, which
also coincides with this analysis in the power-like cage) ~ |x|~*, A(x) ~ |x|~# as
|x] = oo.

Remark 3.4. Observe that, for = 1, a decreasing is allowed only ifA(x) grows at
infinity. Forn = 2, A(x) must be bounded from below. Finally, fer> 3, we may allow
decreasing.(x) on the condition thap decreases at least with a matching rate.

Remark 3.5. In the particular casg = 0 it follows that (H4) holds if and only ift = 2
andO<a <2,0orn>3andO0< o <2(n —1).

4. Symmetrization and comparison. Elliptic problems II

We now deal with the additional consequences of having a lower-order term in the equa-
tion. This is motivated by the parabolic application in the next section. Here, we review
the basic theory since it leads at the end of the section to the presentation of the inter-
action between both techniques. Such interaction needs a different way of looking at the
standard symmetrization inequality in terms of concentration comparison. To be specific,
we consider again the Dirichlet problem in the b@llbut now for the equation with a
more specialized structure

1
—mZai(aij(x)ajqu(x,u) = f. (4.1)
i

Previous assumptions (H1)—(H4) ey and p remain in force. Concerning the function
b(x, u), we assume it is measurable, continuous and nondecreasiniirfixed x, and
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bounded int uniformly for bounded:. Moreover, we assume that
b(x,u)u >0 fora.ex and allu. 4.2)

The right-hand sidg is a measurable function in some Lebesdifespace.

In the preceding section the effect of the zero-order term has been neglected through
the assumptiorj (3/4), which is equivalent[to [4.2) in the particular cafe df (3.1). However,
this leads to a poorer understanding and poorer estimates. This subject has been inves-
tigated by a number of authors. Briefly stated, the problem is that keeping track of this
term changes the last part of the preceding proof and forces us to change the type of com-
parison in the conclusion. We have been first led to keeping track of the term in the study
of parabolic problems by implicit discretization in time (see Sedtion 5). It turns out that,
in the spirit of the end of the previous proof, there is a simple modification that naturally
leads to concentration comparison, which is a weaker result, but enough for our purposes.
In this way we can compare the result of solving and then rearranging with the result of
the reverse procedure, i.e., first rearranging and then solving the symmetrized problem.
This is our main result.

Theorem 4.1. In addition to the assumptions of TheorBrdon f andu, assume
(H5) b(x, w)yw > B(w)w for all w,

whereg is a nondecreasing function wigh(0) = 0. Putv = B(u). Letu(s),0 < s < R*,
be an integral supersolution of the radial problem

—CAl+ B@) = f(s), (4.3)

with boundary condition:(R*) > 0, where f is a radial function inLl(QfL) such that

f > f*. Putu(s) = (). Then the two radial functionsy, (s) andv(s) are ordered in
the sense of concentration:
v <. (4.4)

Proof. We repeat the previous proof wif(x, u) = f — b(x, u). Using (H5), we arrive
at formula [[3.2j4) with right-hand side replaced by

(=}, (k) /{ P =Bl dx < (=4, (1) fB [£2() — Bl dy, (4.5)

where we have used the conservation of integfals (2.8), the Hardy—Littlewood inequality
) and the obvious fact thgt ()], = B(u},). Thus, we arrive at

Cr20f" Gz ()F 4" < (=4, (k) / [ () — B@)]dy.
By
Arguing as in step (ix) of the proof of Theorém 3.1, we conclude that

Cr2od" B p 02" < (=4, (1)) /B LF2() — B] dy.
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As in step (x) of that proof, we observe that this last inequality can be written as
—Crans" ) (o) < /B LFE() — B dy,

which is nothing else than the integrated version of the inequality
—CAu+B) < f. (4.6)
In the terminology of Secti 2, (s) is a radial integral subsolution of the equation
—CAu+Bw) = f;

in the ball2},. By assumption is a solution (hence a radial integral solution) of the
same equation, maybe with more concentrated right-hand side. Comparison is now a con-
sequence of Theorem 2.4. The fact that we are in the standard case is ensured by the
Dirichlet conditionsu = 0 on9d<2 (and hencerj, = 0 ond<2y,) and the nonnegative con-

dition for u. O

The concentration statement can be reformulated in terms of standard norms by means of

Lemmd2.2.

Corollary 4.2. Let the assumptions of Theor@h hold. Then for every convex nonde-
creasing functiond : [0, co) — [0, co) with ®(0) = O we have

[ eeiondy = [ @ @7)

In particular, for everyl < p < oo we have

IvllLr:p) = lvg ey < I10lLr@s)- (4.8)

5. Symmetrization for parabolic problems

In order to treat nonlinear, possibly degenerate equations like
pC)uy =Y 0i(aij(x)dj ) + fp. (5.1)

L]
the survey papei_[V1] proposes (for = 1 and uniformly elliptic matrixa;;) to use
the technique of Implicit Time Discretization (ITD for short); in this way the original
problem of obtaining a priori estimates for equatipn|(5.1) is reduced to obtaining similar
estimates for elliptic equations of a definite type. In fact, by replacing the time derivative
by an increment quotient and using a partition of the time interval' [Qof the form
ino=0<mr <--- <ty =T, we are reduced to solving a sequence of elliptic problems
with zero-order term of the form

—hi Z di(ai j(X)0jv(te) +pu(ty) = pu(tk—1)+hof (t-1),  v(tx) = @u(t)). (5.2)
i,J
By means of this scheme we compute the valug) of the discretized solution at time
tr in terms of the value of: in the previous stepy(#—1). Here,k runs from 1 toN,
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hy = tr—tr—1 > 0,andf; = fx(x) is a suitable discretization of the functign= f(x, 1)
at the mesh times; the notatiaiz;) meansu(x, 1), seen as a function of for fixed
t = 1, and likewisev (#;); more preciselyy (1) is related ta: () by v(x, t) = @ (u(x, 1))
a.e. inx. Therefore, each step reduces to solving the elliptic equation

—LAw(u) +u=F, (5.3)
p(x)
equivalently,
—LAU+,3(U) =F, (5.4)
p(x)

whereg = ¢~ and F(x) is a different, but known function in each step. For; < ¢
< 1, we make linear interpolation, thus producing an approximate solugi@n, ¢). The
convergencey — u follows from the famous

Theorem 5.1 (Crandall-Liggett Theorem [CL]).et A be anm-accretive operator in the
Banach spaceX with domainD(A). Then, for anyug € D(A),

e "ug = lim (Jy/n)"uo (5.5)
n—oo

exists uniformly on compact subsets[6f co[. Moreover, the family of operatora—'4,
t > 0, is a continuous semigroup of contractive mapping$o# ).

We choose the space = L1(Q; p), and asA a suitably defined differential operator. We
take asD(A) the set of functiong € X such thatp(u) € Wol’l(sz). We then define

Au) = —iA(p(u). (5.6)
p(x)
Under the condition that (x) is positive and bounded defined by formula[(5]6) is:-
accretive; proving this amounts to solvirgh Ap(u) + p(x)u = p(x)F so that the map
F — u is contractive inX (cf. [BrS,[GM,[BGY)).

The theorem above provides the existence of a mild (or semigroup) solution to the
Cauchy problem fof (5]1) witg € X. In the following, by solution to[(5]1) we shall
always mean the mild solution with a definition of the operatothat makes itm-
accretive inX. Combining the Crandall-Liggett generation theorem with Theqrein 4.1
we can prove the following

Theorem 5.2. Letu be the mild solution of the initial-boundary value problem for the
equation(5.1)with dataug € L1(R2; p), u = 0in 3$2, and second membgt e L1(S; p)
under the assumptiorfsl1)—(H5)on p (x) anda;; (x). Letu be the solution of the problem

ur=Ap(u) +g(s, 1), u(y,0) =uo(s), (5.7)
posed in the balk2),, wherep = B~ with radially symmetric dataip € Ll(Ql’j),
uo(s) > 0 and (spatially) radially symmetric right-hand sigés, t) > 0. Assume more-
over that
(i) ug, <o,

(i) frC.0) <gC, 1) foreveryr > 0.
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Then, for every > 0,
u;(~, 1) <u(-, 1. (5.8)

Proof. Using the Crandall-Liggett result we are reduced to comparing the discretization
steps, which consist of elliptic problems as those treated in Se€fions[3 and 4. It is impor-
tant to realize that comparison of concentrations between the discretized versions of the
solutions is inherited in every step of the iteration. We proceed as follows. In the first step,
betweerry = 0 andr; = /N, we start from a datumg and a forcing ternyp, and obtain

a solution of the elliptic problenf (5.2)

—h > 3i(ai (X)) + pu = p(uo + hfo).
L]

which is aform of|(4.[L). Let us call the solutian. We symmetrize itinta] , defined in
27, and it becomes &-subsolution of the symmetric proble@ 3) with rlght hand side
”a,u + hf(’{u. Note that this second member is more concentrated (tham hfo)/’;. We
compare this solution with the radially symmetric solutiarof the homogeneous elliptic
equation appearing in the first iteration step for the symmetrized parabolic pr¢blém (5.7)
with dataiio + hgo. By Theorenj 4]1, we get

uiﬂ < ui.
In the second step we have to solve an elliptic problem three times: the first elliptic equa-
tion with datau1 + i f1 to get the second step of the discretized solutign.the sym-
metrized version with date] ot hff . logeta radial solutiomw,; and the symmetrized
problem [(5.7) withiz1 + hg1 to get a radial solutiom,. The same type of comparison
gives

“3,/1 < w2 < U2.
The process is then continued for all the steps. Therefore, the comparison of concentra-
tions works at all levels. To end the proof, the limit is taken as the time-step length goes
to 0. O

Corollary 5.3. In particular, under the assumptions of Theofer] for every: > 0 and
everyp € [1, co] we have comparison df” norms,

luC, OllLrsp) = lluy, G OllLry < 1uC, D@ (5.9)

Note that the terms of (5.9) can also be infinite for some or all valugs of

6. Smoothing effects for the inhomogeneous porous medium equation

In this section, we denote? (R"; p) simply by L5. As an application of our previous
results, in this section we prove shdtp estimates (includingg = oo) for the solutions
to the Cauchy problem for the inhomogeneous porous medium equation

oXu; = Au™, 6.1)
u(x,0) = uop,
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in the slow diffusion case: > 1, posed foxx € R”, ¢ > 0. The basic theory for problem
) withp € C1(R) and bounded continuous datgis developed in [KR1][[KR2],TE],
[GHP]. A minimal solution is obtained as a monotone limit of solutions to the problems

p(X)u; = Au™,
u(x,0 =ug on{|x| <k}, (6.2)
u(x,t) =0 on{|x| =k},

whereug; 1 ug uniformly on compact subsets &*. Uniqueness of weak solutions for
n = 1,2 is proved in[[KR1] for general boundede C! and bounded smooth data. In
[GHRA], anL})-contractivity result and consequent uniqueness in the natural Lbﬁs
proved, again in dimensions = 1, 2. It should be mentioned that in this last paper no
smoothness g is assumed, but merely € C(R").

We shall call the integre}fRn u(x,)px)dx = ||u(t)||L/1) the energyof the solutioru
attimer. An interesting question is to determine under which conditions the energy is pre-
served in time, which always happened in the homogeneous casexfdt. Theoren 6]1
gives some information in this respect (see Rerpark 6.4).

In what follows, by solution to[(6]1) we always mean the minimal solution in the
above sense.

Theorem 6.1. Letp € C1(R) and
2+ 1xD™ <p) <1+ xD7% c1.c2>0.
Let eithern = 2and0 < o < 2,0orn > 3and0 < a < 2(n — 1). Letu be the weak

solution to) with ug € LY N L N C(R"), ug > 0. Thenu(-, 1) € L*(R") for all
t > 0and we have an estimate of dl,-norms forl < p < co. There are two cases:

(i) If @ < n so that the mass of the medium is infinite, we have the estimates
w(x, 1) < CroOD¥D )l < lluoll s,

whereC = C(IluollL%, c1, €2, m, n).
(i) If « > n so that the mass of the medium is finite, then the energy of the solution
decreases in time and we have the estimates

~1/(m-1) ~1/(m-1)

u(x,1) < Ct lu Dlipg < C't

whereC andC’ depend onj|ug||;1, c1, ¢2, m, andn.
P

Proof. We will apply the results of Theorem 4.1 to the approximate problgmg (6.2), with
f=¢=0,a; = 8;j, p(w) = w" and po(x) = (1L + |x[)~*. Sincep > 0 in Qr, the
operator[(5.6) isn-accretive, thanks to the results in [BrS]. In this case, the mild solution
to (6.2) coincides with the weak solution. Moreover, by Rerpark 3.5, under our hypotheses
ona conditions (H1)—(H5) hold witlK independent of. Therefore,

MZ,[L(.’ t) < ﬁk(‘? t)a



Weighted symmetrization for nonlinear equations 549

whereuy, is the solution to the problem with constant diffusivity
u; = CAu™,
u(y,0) =ug , onfly| < R}, (6.3)
u(y, 1) =0 on{|yl = Ri},

with Ry such that med®Bg, (0)) = w(Bx(0)) and C independent ok. Since{ug} is
increasing, so i$”8k,u}' When passing to the limit — oo, we should distinguish two
cases:

() If p ¢ L1, i.e., ifa <n, we haveR; 1 oc. In this case, we will have
wh- 1) <u(, 1), (6.4)
whereu is the solution of the Cauchy problem
u; = CA U™,
N (6.5)
u(y,0) = uZ‘)M on Q* = R",.

Sinceug , € L1, for problem l b) standard smoothing resultsl[V5] apply. In particular,
we know thatu(r) € L for everyt > 0 and moreover

u(-, 1) < c(C,m,n)uoll 7.t~ (6.6)
with
. n 2y
y_n(m—1)+2’ =

The assertion of the theorem in this case follows now friom (6.4)] (6.6), Lgmrha 2.2 and
2.10).

(i) p € LY, i.e.,a > n. ThenRy 1 R < oo, with meagBr(0)) = w(R"). Therefore,
7, = Bg(0) and the limit problem is

= CAu™,
u(y,0) = ”é,u on 2y, (6.7)
u(y,1)=0 only| =
For this last problem, we know the estimate
u(-, 1) < c(m, n)(Cry~Ym=b (6.8)
(seel[AP], [V3]). Arguing as before, the assertion follows for this case. O

Remark 6.2. Much in the same way, one can give estimatesLﬁﬁor p € [1, ).
Indeed, byL},—Loo interpolation, we obtain(-, 1) € L,’g’ fort > 0 and

-1 1 —
e, Ol < NG DIl DI < Cpt ™2,

whereo, = —n(p —1)/p(n(m —1) +2)if« <nando, =1/(m — 1) if ¢ > n.
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Remark 6.3. Eidus [E] proves decay estimates of solution - (6.1) in the spgdé
fora > n > 3. Our decay rates agree with his, but the constantlin [E] depeniisoiirs,,
while in our case it depends only (HDOIIL%- Also, our estimates far > 2 follow from

the results in[[BrK], actually the results in_[BrK] are sharper in this range. However, our
results are new far < 2. We thank the referee for pointing out these facts.

Remark 6.4. Forn = 2 andug as in the theorem, the energjy(, t)||L% is preserved

in time (see[[GHP]). Forr > 2, this gives rise to isothermalization, hence no decay
takes place. In contrast, far > 3 anda > n (hencep € LY, it is proved in [KK]
that JJu(-, t)||L/1) decays. Theore .1 provides an alternative proof of this fack far

(n, 2(n — 1)], as well as a quantitative estimate of the energy loss.

Remark 6.5. The estimates above are not true for the Barenblatt-type solutions consid-
ered in [KR1], since they solve a problem with singular dengity) = |x|~%. Such a
density modifies the decay rates neat 0.

6.1. Counterexample in one dimension

In this subsection we construct a solution6.1)n‘o& 1withuo € L} andu(-, 1) ¢
L% for smallr > 0. We assume that € C1(R) and

p(x) = pp =279 on[Z —2k2 2k y k2 u[—2k — 22 2k 4 k2
fork =0,1,... and somer > O to be chosen later.
Takeug = Y 324 uok, Whereugi(x) = Uk(x, 1) andUy is the Barenblatt solution of

the homogeneous problem

oktr = U™)xx,

(6.9)
u(xg, 0) = Mipd(x — xp),

wherex; = 28 andk = 0,1, 2, .... The massed/;, = Dxf are chosen in such a way

that the supports afg are disjoint. Taking into account that the factgrin (6.9) can be
absorbed by introducing a new timle= ¢/ o and the explicit formulas for the Barenblatt
solutions, we have

SuppUx (1) = [y — CM "~ DD/l | oy DDt (6,10)

wheret = pk‘l andC = C(@m). Then we requir@M,Em’l)/(m”)t’l/(m“) < 2k=3,
which amounts to asking

DC/'2¥Bm=Dta—(m+1)/m+1) ~ 1 (6.11)

whereC’ = C’(m, a). For this to hold it is enough to take small and

Bm -1 +a<m+1
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On the other hand, we waiftoug dx < co. This requirement is equivalent to

o0
Z oMy < 00,
k=0

e, 26—k - 0. Thus, we nee < «. Finally, we requiraig ¢ L. This holds if
maxUi(x, 1) — oo ask — oo. But

maxUs (x, 1) = Ug(xx, 1) = Com)M "D = € (1m)22#/n+D

therefore we need > 0. The three conditions above arandg are met with some for

any givena < m + 1. Our next goal is to show that(-, r) ¢ L* for ¢t > 0 small. First
we observe that there exist> 0 such that suppUy (1 + 1) C (2K — 2k=2, 2k 4 2k=2)

are disjoint and that mab{;(x, 1 + 1) = Up(xx, 1 + 1) — o0 ask — oo. Actually,

these two assertions follow exactly as aboverfee 0, once the requirements anand
B are met. Finally, we observe thatx, t) = > Ui(x,1+ 1), sincep(x) = pr on
[2k — 2k=2 2k 4 2k=2] This ends the construction.

Note that this solution belongs t6 ([0, 1), L},) and is strong in the sense that

u,ug, (U™)yx € Lﬁ)c' It is also the mild solution of the problem since each of the com-

ponents is, hence every finite sum is (since they have separate supports), and finally mild
solutions depend continuously on the data inltlﬁmorm.

7. Appendix
This appendix is devoted to the proof of the weighted Hardy-Littlewood inequality| (2.11)
with a nonnegative absolutely continuous meagure

Theorem 7.1. Let (2, u) be a measure space with C R" and p a nonnegative,
absolutely continuous measure. Lgtbe a u-measurable function and lef; denote
its u-symmetrization on the bafe* , as defined in Subsecti¢h3. Then for every ball
Br(0) C Q;’; we have

/ f;fdyzsup{/ |fldu: E C , ,u(E)gmea$BR)}.
Br(0) E

Proof. Fix a u-measurableE ¢ Q with w(E) < measssz. DefineQ = {x € Q :
|f(x)] > k}. The monotonicity of the distribution function implies that there are two
possibilities.

(a) There exist > 0 and a measurable sétwith f = k a.e. onC such thau (Q;UC) =
w(E). Then we have

/ Ifldu=/ Ifldu+/ fldu
E EN(QUC) E\(QUC)
5/ Ifldu+/ fldu
EN(QUC) (QUUO\E

=f Ifldu=/ frdx (7.2)
QruC Br(0)
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with meagBr(0)) = u(Q UC) = n(E), since|f| < kin E\ (2 UC), |f| = kin
(UC)\ Eandu(E \ (2 UC)) = u((2 UC) \ E). In this case the supremum is
achieved af = Q;UC. Note thatC is needed to take into account possible sets wiiere

is flat, so that the distribution function is discontinuous. Generically, those sets have zero
measure and need not be considered.

(b) 1(Q0) < 1(E). Then
/ Ifldu=f fldp.
E ENQo

SinceE N Qg C Qo, there exisk > 0 and a measurable s€twith f = k a.e. onC such
thatu (2 U C) = u(E N Qg) and we conclude as above:

[inauns [ ande= [ graxs [ g
E QuC B (0) Br(0)

with meagBj(0)) = w(E N Qo) and measBg(0)) = u(E) (henceR’ < R). In this case
the supremum is achieved at any #tD Qo with w(E’") = u(E), sinceflj‘ =0a.e.in
the annulusk’ < |y| < R. O

Final comments

The topics of rearrangement and symmetrization are covered in many classical texts; for
more details, we refer e.g. to the books [Ba2], [BS], [Kw/], [LL], or the articles [W],
[T1]-[T3]. Symmetrization with weights is studied by several authors, like Talenti [T4].
The concept of symmetrization with respect to a measure that we use is asymmetric with
respect to the spaces, in the sense that we pass from a space with a measure given by a
weight to a space endowed with the plain Lebesgue measure, where the model problem
is posed and solved. This seems to be the best option for the comparison results we were
aiming at. Such a concept has been studied by Vera de Serio in her thes|s (ske [SVS]).
There are other options for symmetrization with weights in the literature like the ones
using Gaussian measures (on both sides, cf. [BBMP]).

The a priori estimates obtained in this paper are a useful tool in elaborating a theory
of solutions of the inhomogeneous P5.1) with dataj;n This will be the object of
a separate publication [RV].

Forn > 3, the following sufficient conditions for the existence and unigqueness of a
minimal solution that tends to zero at infinity in some integral sense has been established
in [EK]:

dx < o0, uge Lg(R").

/ p(x)up(x)

|x|”_2

In particular, this means that bounded solutions are not unique because the constant is not
the minimal solution for constant initial dataffp(x)|x|2*" dx < oo. The condition is

met for densitiep as in our paper itc > 2. Fora > n, nonuniqueness follows at once

from the energy loss (see Remfrk]6.4).
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The one-dimensional counterexample of Subse{tign 6.1 has been constructed for sim-
plicity with a weightp that is piecewise constant. The calculation with a power function
seems more interesting, but it turned out too lengthy in our version.

There are many possible extensions of these results under different variations of the
assumptions on the data. Thus, we can pose the (elliptic and parabolic) problems in a
bounded domain with a weight that either blows up or degenerates at the boundary.

In the latter case, it seems that certain growth conditions have to be imposed for our
technique to work. The case of boundary blow-up is for instance used in proving the
weak local smoothing effect for the planar logarithmic diffusion equation_in [V6].

AcknowledgementsBoth authors partially supported by Spanish Project BMF2002-04572-C02-02
and ESF Programme “Global and geometric aspects of nonlinear partial differential equations”. We
thank the referee for several helpful suggestions.
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