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Abstract. In the theory of elliptic equations, the technique of Schwarz symmetrization is one of the
tools used to obtain a priori bounds for classical and weak solutions in terms of general information
on the data. A basic result says that, in the absence of lower-order terms, the symmetric rearrange-
ment of the solutionu of an elliptic equation, that we writeu∗, can be compared pointwise with
the solution of the symmetrized problem. The main question we address here is the modification of
the method to take into account degenerate equations posed in inhomogeneous media. Moreover,
the equations we want to deal with involve weights that make them of non-divergence form, at least
when written in terms of the natural variables. We find comparison results covering the elliptic case
and the corresponding evolution models of parabolic type, with emphasis on equations of porous
medium type. More specifically, we obtain a priori bounds and decay estimates for wide classes of
solutions of those equations.

Keywords. Nonlinear elliptic and parabolic equations, degenerate equations, inhomogeneous me-
dia, symmetrization, concentration comparison

1. Introduction

The technique of Schwarz symmetrization is a well known tool in the theory of elliptic
equations that is used to obtain a priori bounds for classical and weak solutions in terms
of general information on the data. A basic result of symmetrization theory says that,
in the absence of lower-order terms, the symmetric rearrangementu∗ of the solutionu
of a linear, uniformly elliptic equation with zero boundary data which can be compared
pointwise with the solution of the rearranged (or symmetrized) problem. See Section 2
for the precise definitions.

Combining the classical result with the technique ofconcentration comparison, it is
proved in the survey [V4] that, if a (possibly nonlinear) zero-order term is present, one can
still get comparison in the sense of concentrations (hence, in the sense of anyLp norm,
p ≥ 1, or any Orlicz norm in balls, and in the uniform norm) between the rearranged
solution and the solution of the rearranged problem. For this to hold, some restrictions

G. Reyes: Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain;
e-mail: greyes@math.uc3m.es
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on the zero-order term are needed. Fortunately, such restrictions are met by the ellip-
tic problems that arise when solving the evolution problems that interest us by means
of a backwards-in-time difference scheme, i.e., the so-called Crandall–Liggett implicit
scheme. In particular, a wide class of nonlinear, degenerate parabolic equations fall under
the scope of the method, since a simple change of unknown allows hiding the nonlinear-
ity in the elliptic zero-order term. As a result, one can obtain a priori estimates for the
solutions to the Cauchy or Cauchy–Dirichlet problem with zero boundary data for these
evolution equations.

The main question we address here is the modification of the above method to take
into account two aspects of current interest in applications: the equations are degenerate
elliptic or parabolic, and they are posed in inhomogeneous media. Moreover, the equa-
tions we want to deal with involve weights that make them of non-divergence form, at
least when written in terms of the natural variables. We will find comparison results cov-
ering both issues, namely the elliptic equations

−
1

ρ(x)

∑
i,j

∂i(aij (x)∂ju) = g(x, u) (1.1)

and the corresponding evolution models of parabolic type

ρ(x)ut =

∑
i,j

∂i(aij (x)∂jφ(u))+ g(x, t). (1.2)

The latter equation has been proposed and studied in connection with filtration of fluids
in inhomogeneous porous media or thermal propagation in plasma (cf. [KR1]). The main
technical novelty in the proof is the use of symmetrization with respect to the measure
with densityρ(x), which we will assume “almost radial” in the sense that there exist a
radially symmetric functionρ0 and a constant 0< c ≤ 1 such that

cρ0 ≤ ρ ≤ ρ0

in the domain under consideration. The use of symmetrization techniques allows us to
derive a priori estimates for the solutions of these problems in terms of the norms of the
data. These estimates are the goal of the present work since they represent a main step in
the construction of general weak theories.

The paper is organized as follows: Section 2 is devoted to the main definitions and
facts that we shall be using throughout. Sections 3 and 4 deal with the elliptic problems:
in Section 3 we obtain the pointwise estimate when no zero-order terms are present, while
in Section 4 the proof is adapted so as to keep track of (a special class of) zero-order
terms, and the concentration comparison result is proved. This ends the study of elliptic
symmetrization.

The last part of the paper is devoted to the application of the preceding results to obtain
comparison results and a priori estimates for parabolic problems. In Section 5 we combine
the results of the preceding section and the semigroup approach and prove the correspond-
ing concentration comparison result for parabolic problems. In Section 6 we apply this
comparison result to the Cauchy problem for an inhomogeneous porous medium equa-
tion. A final appendix includes the proof of one important inequality used throughout.
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2. Functional preliminaries

This section collects the main general ideas that we shall be using. We start by a review of
the standard definitions. Let� be a domain inRn, not necessarily bounded, possiblyRn.
L(�) is the set of [classes of] Lebesgue measurable real functions defined in� up to a.e.
equivalence. For every functionf ∈ L(�), we define the distribution functionφf of f
by the formula

φf (k) = meas{x : |f (x)| > k}, (2.1)

where meas means the Lebesgue measure inRn andk > 0. We denote byL0(�) the
space of measurable functions in� such thatφf (k) is finite for everyk > 0. If � has
finite measure, thenL0(�) = L(�), otherwiseL0(�) contains the measurable functions
that tend to zero at infinity in a weak sense. AllLp(�) spaces with 1≤ p < ∞ are
contained inL0(�).

2.1. Rearrangement

A measurable functionf defined inRn is calledradially symmetric(or radial for short) if
f (x) = f̃ (r), r = |x|. It is calledrearrangedif it is nonnegative, radially symmetric, and
f̃ is a nonincreasing function ofr > 0. For definiteness, we also impose thatf̃ be left-
continuous at every jump point. We will often writef (x) = f (r) by abuse of notation. A
similar definition applies to functions defined on a ballB = BR(0) = {x ∈ Rn : |x| < R}.

2.2. Symmetrization

For every bounded domain� thesymmetrized domainis the ball�∗
= BR(0) having the

same volume as�, i.e.,
meas(�) = ωnR

n, (2.2)

whereωn is the volume of the unit ball inRn. For a functionf ∈ L0(�) we define the
spherical rearrangementof f (also called the symmetrized function off ) as the unique
rearranged functionf ∗ defined in�∗ which has the same distribution function asf , i.e.,
for everyk > 0,

φf (k) := meas{x ∈ � : |f (x)| > k} = meas{x ∈ �∗ : f ∗(x) > k}. (2.3)

The quantity is finite for everyk > 0 by the assumptionf ∈ L0(�). Then

f ∗(x) = inf{k > 0 : meas{y : |f (y)| > k} < ωn|x|
n
}. (2.4)

A rearranged function coincides with its spherical rearrangement. Sometimes the name
symmetric decreasing rearrangement is used. The following Hardy–Littlewood formula
is well known and illustrates the relation betweenf andf ∗:∫

BR(0)
f ∗ dx = sup

{∫
E

|f | dx : E ⊂ �, meas(E) ≤ meas(BR)

}
. (2.5)
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There is also an immediate relation between distribution functions andLp integrals given
by the formulas∫

�

|f |
p dx = −

∫
∞

0
kp dφ(k) = p

∫
∞

0
kp−1φ(k) dk, (2.6)

and ∫
�∩{|f |≥a}

|f |
p dx = −

∫
∞

a

kp dφ(k) = p

∫
∞

a

kp−1φ(k) dk + apφ(a). (2.7)

Since the distribution functions off and f ∗ are identical, conservation of integrals∫
�

|f |
p dx =

∫
�∗(f

∗)p dx holds for everyp ∈ [1,∞). Moreover, for every convex,
nonnegative and symmetrical real function8,∫

�

8(f ) dx =

∫
�∗

8(f ∗) dx. (2.8)

Note thatf ∗ is continuous iff is.

2.3. Symmetrization with respect to a measure

As a natural generalization of the standard notions, one can introducesymmetrization with
respect to a measureµ defined on the domain�. As the symmetrized domain�∗

µ we take
the ballBR(0) with Lebesgue measure equal to theµ-measure of�:

meas(�∗
µ) = µ(�)

(so that�∗
µ = Rn if µ(�) = ∞). Formulas (2.1) and (2.3) should be replaced by

φf ;µ(k) := µ{x ∈ � : |f (x)| > k} = meas{y ∈ �∗
µ : f ∗

µ(y) > k}. (2.9)

Observe that we have kept the usual Lebesgue measure on the right-hand side. Ifµ is not
the Lebesgue measure, a rearranged function, in the sense defined above, will not coincide
with its µ-rearrangement, since an extra contraction/dilation will take place with respect
to the space variable. The equality of Orlicz norms (2.8) holds in the form∫

�

8(f ) dµ =

∫
�∗
µ

8(f ∗
µ) dy. (2.10)

The weighted version of the Hardy–Littlewood inequality reads∫
BR(0)

f ∗
µ dy = sup

{∫
E

|f | dµ : E ⊂ �, µ(E) ≤ meas(BR)

}
. (2.11)

A proof of this formula under very general assumptions including as a particular case
weighted symmetrization can be found in [CRZ]. For the reader’s convenience, we have
devoted a final appendix to a proof of this important inequality in our case.
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2.4. Mass concentration

The comparison of mass concentrations is a basic notion in our approach to getting esti-
mates for elliptic and parabolic equations. The precise definition that was introduced in
[V1] is as follows:

Definition 2.1. Given two radially symmetric functionsf, g ∈ L1
loc(R

n) we say thatf is
more concentratedthang, f � g, if for everyR > 0,∫

BR(0)
f (x) dx ≥

∫
BR(0)

g(x) dx, (2.12)

i.e., ∫ R

0
f (r)rn−1 dr ≥

∫ R

0
g(r)rn−1 dr. (2.13)

The partial order relationship� will be calledcomparison of mass concentrations. We can
also writef � g in the formg ≺ f . A similar definition applies to radially symmetric
and locally integrable functions defined on a ballB = BR(0). In the case of rearranged
functions this notion coincides with the comparison introduced by Hardy and Littlewood
[HLP], which is also used by Bandle in her book [Ba2]; but the present definition does
not require the functions to be rearranged, only radially symmetric, and the difference is
used below. In fact, the natural way of looking at the concept is to view it as a comparison
between two radially symmetric measures,dµf = f (x) dx anddµg = g(x) dx. Then
the comparison reads

µf (BR(0)) ≥ µg(BR(0)) for everyR > 0. (2.14)

In this formulation, comparison can be considered for general radially symmetric Radon
measures. Measures are natural data for elliptic and parabolic equations. The compar-
ison of concentrations can be formulated in an equivalent way when the functions are
rearranged, thanks to a powerful equivalence result, which seems to be essentially due to
Hardy and Littlewood. The precise formulation is the following.

Lemma 2.2. Let f, g ∈ L1(�) be rearranged functions defined in� = BR(0) and
assumeg → 0 as |x| → R. Thenf � g if and only if for every convex nondecreasing
function8 : [0,∞) → [0,∞) with8(0) = 0 we have∫

�

8(f (x)) dx ≥

∫
�

8(g(x)) dx. (2.15)

The result is also valid whenR = ∞ andf, g ∈ L1
loc(R

n), g → 0 as|x| → ∞.

We will make use of the following two results, which are adaptations to our case of
Proposition 4.1 (respectively Theorem 4.6) in [V4].

Theorem 2.3. Letf (r) be a radially symmetric and decreasing function inL1
loc(�) and

let u(r) be a solution of the equation

−1u+ β(u) = f, (2.16)
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whereβ is an increasing function in[0,∞) with β(0) = 0. Let v = β(u). There is an
alternative:

(i) Standard case:f � v, and thenv andu are nonincreasing;
(ii) Increasing case:f � v does not hold, and thenu is increasing inr in an interval

I = (a, R), v is nondecreasing withv > f in I , and∫
�

(v(x)− f (x)) dx > 0. (2.17)

Moreover, in this case the functionX(r) :=
∫ r

0 s
n−1(v(s)− f (s)) ds is positive and

increasing inI .

The next theorem makes use of the concepts of integral sub- and supersolutions: aradial
integral subsolutionof equation (2.16) is a radial functionu ∈ W

1,1
loc (�) with β(u) ∈

L1
loc(�) and such that

f � −1u+ β(u). (2.18)

Much in the same way we define aradial integral supersolution, by reversing the concen-
tration order in (2.18). See more details in [V4, Section 4].

Theorem 2.4. Let fi(r), i = 1,2, be two radial functions inL1
loc(�), let β be an in-

creasing function in[0,∞) with β(0) = 0 and letu1(r) be an integral supersolution and
u2(r) an integral subsolution of the equation

−1ui + β(ui) = fi, (2.19)

Putvi = β(ui). If f1 � f2, and eitherv1 or v2 is nondecreasing, then either(i) v1 � v2,
or (ii) the quantity

V (r) =

∫ r

0
(v2(s)− v1(s))s

n−1 ds

is positive and increasing for all larger, v2(r) − v1(r) is nonnegative andu2 − u1 is
strictly increasing.

Roughly speaking, the first result says that, in the standard case, the solution is less con-
centrated than the data, while the second result says that to more concentrated data corre-
spond more concentrated solutions.

3. Symmetrization and comparison. Elliptic problems I

The classical result of symmetrization theory deals with uniformly elliptic equations in
a bounded domain with Dirichlet data, or in the whole space; it says that the symmetric
rearrangementu∗ of a solutionu can be compared pointwise with the solution of a certain
symmetrized problem involving the Laplacian operator and the symmetrized function
of f . We present here the simplest version of the classical symmetrization technique that
applies to elliptic equations posed in a bounded domain or in the whole space. In this last
case they may lose their uniform ellipticity as|x| → ∞. Our modification replaces the
standard (Schwarz) rearrangement by rearrangement with respect to a measure.
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3.1. The problem

Let us consider the equation

−
1

ρ(x)

∑
i,j

∂i(aij (x)∂ju) = g(x, u) (3.1)

posed in the ball� = BR(0), with boundary datau = 0 in ∂�. Though the reader
may find it natural to moveρ(x) to the right-hand side in order to simplify the notation,
the application to parabolic equations makes the present form preferable. Here are the
assumptions:

(H1) The coefficientsaij are locally bounded measurable functions in� satisfying the
ellipticity hypothesis ∑

i,j

aij ξiξj ≥ λ(x)|ξ |2 (3.2)

for some functionλ(x) > 0.
(H2) There is a bounded measurable, radially symmetric functionρ0 and a constant 0<

c ≤ 1 such that
cρ0(x) ≤ ρ(x) ≤ ρ0(x) for x ∈ �. (3.3)

(H3) The functiong(x, u) is measurable, and

g(x, u)u ≤ f (x)u for a.e.x and allu, (3.4)

wheref is a measurable function in some LebesgueLp space, 1≤ p ≤ ∞.1

3.2. The symmetrized problem

We need to define the symmetrized problem. We perform symmetrization of the function
f (x), defined in�, with respect to the measuredµ = ρ(x) dx (cf. the definitions in Sec-
tion 2). Thesymmetrized problemis then posed in the ball�∗

µ = BR∗(0) with Lebesgue
measure

∫
�
ρ(x) dx. The symmetrized equation will be

−C1yu = f ∗
µ(y) in �∗

µ, (3.5)

wheref ∗
µ is theµ-spherical rearrangement off andC is the constant described in Theo-

rem 3.1. We take boundary conditions

u(y) = 0 on∂�∗
µ. (3.6)

3.3. Control of degeneracy and main result

In order to obtain a comparison result we perform a change of variablesz = T (x) with
the property

dz|T (x) = ρ0(x) dx = dµ0(x), (3.7)

1 Though other spaces also appear in the literature.
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wheredz|T (x) denotes the standard volume element in thez-space at the pointT (x). The
main implication of (3.7) is that, given any functionf (x) and the corresponding function
in the new variables̃f (z) = f (x), we have

φ
f̃
(k) = φf ;µ0(k),

and thereforeµ0-symmetrization off is equivalent to standard symmetrization off̃ . In
other words, the change of variablesz = T (x) can be seen as a first step towards weighted
symmetrization. We useρ0 instead ofρ at this stage for technical reasons, in particular
because (3.7) can be achieved by means of a radial transformationT , i.e., in spherical
coordinatesx = (r, θ), z = (s, ψ) we will haveθ = ψ ∈ Sn−1, ands = s(r). Since
the volume elements are given bydz = sn−1ds d�n−1 anddx = rn−1dr d�n−1,2 the
functions(r) is defined by the ODE

sn−1ds

dr
= ρ0(r)r

n−1 (3.8)

plus the initial conditions(0) = 0.
In order to prove our comparison result, we need to impose some conditions on the

transformationz = T (x) that are met under the following hypothesis:

(H4) If n > 1, there exists a constantK > 0 such that the functionss(r), ρ0(r) andλ(x)
satisfy

s(r) ≥ Kr(ρ0(r)/λ(x))
1/2, ds/dr ≥ K(ρ0(r)/λ(x))

1/2 (3.9)

for x ∈ � andr = |x|. This double condition can be simplified. With the help of
(3.8), we arrive at the equivalent formulation

Kn(ρ0/λ)
n/2

≤

∫ r
0 ρ0(t)t

n−1 dt

rn/n
≤ K−n/(n−1)(ρ0λ)

n/2(n−1). (3.10)

If n = 1, we only require the second condition in (3.9), which amounts toK2
≤

ρ0λ.

The main result is stated as follows. We use the weighted spacesL2(�; ρ) andH 1
0 (�; λ)

defined in the standard way.

Theorem 3.1. Assume thatf ∈ L2(�; ρ), f ≥ 0 and thatu ∈ H 1
0 (�; λ) is a weak

solution of equation(3.1)under the above hypotheses(H1)–(H4). Then we can compare
theµ-symmetrization ofu with the solution of the symmetrized problem(3.5)–(3.6)with
constantC = K2c and obtain the pointwise result

u∗
µ(s) ≤ u(s) for all s ∈ (0, R∗). (3.11)

2 d�n−1 is the surface element on the unit sphereSn−1; it will not appear later.
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Condition (H4) may look a bit abstract. We will give more specific sufficient conditions at
the end of this section. These particular conditions also show the sharpness of our result.

Proof of Theorem 3.1.We follow the outline of the proof of the survey paper [V4] for the
caseρ = λ = 1:

(i) Write equation (3.1) in variational form as∫
�

∑
i,j

aij
∂u

∂xi

∂v

∂xj
dx =

∫
�

g(x, u)ρv dx, (3.12)

for test functionsv ∈ H 1
0 (�; λ). Sincef ≥ 0 we haveu ≥ 0 by the maximum principle.

Let us now writea(∇u,∇v) ≡
∑
aij∂iu∂jv.

(ii) Let �(k)={u>k}. We calculate for a.e.k>0 the derivatived
dk

∫
�(k)

a(∇u,∇u) dx.
Taking as test functionv = (u− k)+ in (3.12) we get∫

{u>k}

a(∇u,∇u) dx =

∫
{u>k}

g(x, u)v(x)ρ dx.

It is a classical result that for a.e.k ∈ (0,ess sup(u)) we have

d

dk

∫
{u>k}

gvρ dx = −

∫
{u>k}

gρ dx.

It follows that

−
d

dk

∫
{u>k}

a(∇u,∇u) dx =

∫
{u>k}

g(x, u)ρ dx. (3.13)

(iii) Put Z(k, h) = {x : k < u(x) < k + h} for k, h > 0. We recall that for every
measurable functionF we have

−
d

dk

∫
{u>k}

F(x) dx = lim
h→0

1

h

∫
Z(k,h)

F(x) dx (3.14)

if the derivative exists. Combining the ellipticity assumption and (3.14) we conclude that

−
d

dk

∫
{u>k}

a(∇u,∇u) dx ≥ −
d

dk

∫
{u>k}

λ|∇u|2 dx ≥ 0.

We transform in this way equality (3.13) into

−
d

dk

∫
{u>k}

λ|∇u|2 dx ≤

∫
{u>k}

g(x, u)ρ dx. (3.15)

(iv) We need to transform the left-hand side of the last formula. Using the Cauchy–
Schwarz inequality, we get

1

h

∫
Z(k,h)

λ1/2
|∇u|ρ1/2 dx ≤

(
1

h

∫
Z(k,h)

λ|∇u|2 dx

)1/2(1

h

∫
Z(k,h)

ρ dx

)1/2

.
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The first novelty of the calculation is the use of the weightρ(x). Thus, we can view the
last integral as the measure of the setZ(k, h) with respect to the measuredµ = ρ(x) dx.
We now consider the distribution functionφu;ρ(k) of the functionu with respect to this
measure, as defined in Subsection 2.2, and we get in the limith → 0(

−
d

dk

∫
{u>k}

λ1/2
|∇u|ρ1/2 dx

)2

≤

(
−
d

dk

∫
{u>k}

λ|∇u|2 dx

)
(−φ′

u;ρ(k))

≤ (−φ′

u;ρ(k))

∫
{u>k}

gρ dx (3.16)

by (3.15).

(v) We now introduce the second novelty of the calculation, i.e., the change of coordinates
y = T (x) defined at the beginning of the subsection. Our goal is to absorb the factor
ρ1/2λ1/2 on the left-hand side of (3.16), thus obtaining an unweighted integral in the new
variables. Toward this end, we need to transform the gradient with respect tox into a
gradient with respect toz; in spherical coordinates we have

∂u

∂r
=
∂ũ

∂s

ds

dr
= ρ0(r)(r/s)

n−1∂ũ

∂s
(3.17)

and
∂u

r∂θ
=
s

r

∂ũ

s∂θ
if n > 1. (3.18)

Here,θ represents any direction on the unit sphereSn−1 for n > 1. In this case, by (H2)
and (H4), we have

Kc1/2
∫
Z0(k,h)

|∇zu| dz ≤ c1/2
∫
Z0(k,h)

λ1/2
|∇xu|ρ

−1/2
0 dz

≤

∫
Z(k,h)

λ1/2
|∇xu|ρ

1/2 dx,

whereZ0(k, h) = {z : k < ũ(z) < k+ h} and, by abuse of notation, we have denoted the
functionsũ(z) = u(x), λ̃(z) = λ(x), etc. simply byu(z), λ(z) etc. Dividing byh, letting
h → 0 and recalling (3.14), (3.7) and (3.16), we get

K2c

(
−
d

dk

∫
{u>k}

|∇zu| dz

)2

≤ (−φ′

u;ρ(k))

∫
{u>k}

g(x, u(x))ρ(x) dx, (3.19)

where the notation{u > k} on the left-hand side stands for the transformed set{z : ũ(z)
> k}. In the casen = 1, (3.17) and (3.18) reduce to

du

dx
=
dũ

dy

dy

dx
= ρ0(x)

dũ

dy
(3.20)

and we are led to the same conclusion under (H4) forn = 1.
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(vi) We now return to the standard proof and use two pieces of heavy artillery in order to
estimate the left-hand side. First, Fleming-Rishel’s formula says that for a.e.k

P ({u > k}) = −
d

dk

∫
{u>k}

|∇zu| dz, (3.21)

whereP denotes the perimeter and, as before, the set on the left-hand side is understood
in thez-space. Then De Giorgi’s isoperimetric inequality can be written as

P({u > k}) ≥ nω
1/n
n φu(k)

(n−1)/n
= nω

1/n
n φu;ρ0(k)

(n−1)/n, (3.22)

whereφu denotes the standard distribution function in thez-space, whileφu;ρ0 stands
for the distribution function in the originalx-space with respect to the measuredµ0 =

ρ0(x) dx, according to the notation introduced in Subsection 2.3. These functions coin-
cide by the volume-preserving nature of our transformationx 7→ z (note that we always
consider the Lebesgue measure when dealing with functions of thez-variable). If we use
both formulas, (3.19) becomes

Cn2ω
2/n
n φu;ρ0(k)

2−2/n
≤ (−φ′

u;ρ(k))

∫
{u>k}

g(x, u(x))ρ(x) dx, C = K2c. (3.23)

(vii) Moreover, by our assumptions ong,

Cn2ω
2/n
n φu;ρ0(k)

2−2/n
≤ (−φ′

u;ρ(k))

∫
{u>k}

f (x)ρ(x) dx. (3.24)

(viii) We now performρ-symmetrization off . Using Hardy–Littlewood’s inequality
(2.11) we estimate∫

{u>k}

f (x)ρ(x) dx ≤

∫
{u∗
µ>k}

f ∗
µ(y) dy =

∫
Bσ

f ∗
µ(y) dy,

where|Bσ | = meas{y : u∗
µ(y) > k}) = φu;ρ(k), i.e.,ωnσ n = φu;ρ(k). Substituting into

(3.24), we get the inequality

Cn2ω
2/n
n φu;ρ0(k)

2−2/n
≤ (−φ′

u;ρ(k))

∫
Bσ

f ∗
µ(y) dy. (3.25)

(ix) Next, recall that

φu;ρ0(k) = µ0({u > k}) =

∫
{u>k}

ρ0(x) dx ≥

∫
{u>k}

ρ(x) dx = µ({u > k}) = φu;ρ(k),

by assumption (H2). Therefore, (3.25) implies

Cn2ω
2/n
n φu;ρ(k)

2−2/n
≤ (−φ′

u;ρ(k))

∫
Bσ

f ∗
µ(y) dy. (3.26)
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(x) At this stage we recall that (3.26) is satisfied with equality by the solutionu of the
symmetrized problem (3.5)–(3.6). Indeed, we have

−Cnωnσ
n−1u′(σ ) =

∫
Bσ

f ∗
µ(y) dy. (3.27)

The comparison we are looking for follows easily since the equalityφu;ρ(u
∗
µ(σ )) = ωnσ

n

for a.e.σ implies that (3.26) can be written as

−Cnωnσ
n−1(u∗

µ)
′(σ ) ≤

∫
Bσ

f ∗
µ(y) dy. (3.28)

Therefore,(u∗
µ)

′(σ ) ≤ u′(σ ) for σ < R∗. Taking into account the boundary condition
u∗
µ(R

∗) = u(R∗) = 0, we obtain the desired inequality. ut

Practical assumptions.As already remarked, condition (H4) is a bit abstract and we
would like to obtain more specific conditions. When we deal with the Cauchy problem for
equation (1.2), we are led to consider a sequence of problems posed in balls of increasing
radius. If we assume thatρ, λ > 0 in Rn, condition (H4) clearly holds on each fixed ball
BR with someK = K(R) > 0. Therefore, in order to get a symmetrization result for
the problem in the whole space, it is important to have simple conditions under which
(H4) holds for arbitrarily large balls with a universal constantK. The following lemma
deals with the case of power-like densities. It turns out that the result strongly depends on
whetherρ0 ∈ L1(Rn) or not, i.e., on whether the total mass of the medium is finite or not.

Lemma 3.2. Letρ0(x) = A(1 + |x|)−α withA, α > 0 andλ(x) ∼ |x|−β as |x| → ∞.
Then condition(H4) holds onBR(0) for all R > 0 withK independent ofR if either

(i) α < n andα(n− 2) ≥ βn, or
(ii) α = n andβ < n− 2, or

(iii) α > n andα + β ≤ 2(n− 1).

Proof. Boundedness from below ofρ0 nearr = 0 implies thats(r) ≥ s̄(r) for r ∼ 0,
wheres̄(r) is the solution of the IVP

sn−1ds = Crn−1dr, s(0) = 0,

i.e., s̄(r) = C1/nr. Thens/r ≥ C1/n and alsods/dr ≥ C1/n for r ∼ 0. Next, we deal
with r ∼ ∞. From our hypotheses it easily follows that ifα < n then

s/r, ds/dr ∼ r−α/n asr → ∞.

Therefore, condition (H4) holds forr ∼ ∞ if and only if

α(n− 2) ≥ βn.

If α = n, we have

s/r ∼ r−1 log1/n r, ds/dr ∼ r−1 log1/n−1 r, asr → ∞.



Weighted symmetrization for nonlinear equations 543

Consequently, (H4) holds forr ∼ ∞ if and only if

β < n− 2.

Finally, if α > n, we have

s/r ∼ r−1, ds/dr ∼ r−α+n−1, asr → ∞,

hence (H4) holds forr ∼ ∞ if and only if

α ≥ β + 2 and α + β ≤ 2(n− 1). ut

Remark 3.3. The situation is quite simple in 1D where the transformationy = T (x) has
only the radial direction and the necessary condition reduces toρ0(x)λ(x) ≥ K2. Indeed,
in this case the weighted symmetrization result is not needed. Instead, we can work out
the equivalent equation iny variables. By means ofdy = ρ(x) dx, we easily pass from

−
1

ρ
(λ(x)ux)x = f (x)

to the divergence equation
−(ρ(x)λ(x)uy)y = f (y).

Now, if ρ(x)λ(x) ≥ C > 0 the standard symmetrization result applies. This coincides
with the condition above if (H2) holds. In Lemma 3.2 the condition isα + β ≤ 0, which
also coincides with this analysis in the power-like caseρ(x) ∼ |x|−α, λ(x) ∼ |x|−β as
|x| → ∞.

Remark 3.4. Observe that, forn = 1, a decreasingρ is allowed only ifλ(x) grows at
infinity. For n = 2, λ(x) must be bounded from below. Finally, forn ≥ 3, we may allow
decreasingλ(x) on the condition thatρ decreases at least with a matching rate.

Remark 3.5. In the particular caseβ = 0 it follows that (H4) holds if and only ifn = 2
and 0< α < 2, orn ≥ 3 and 0< α ≤ 2(n− 1).

4. Symmetrization and comparison. Elliptic problems II

We now deal with the additional consequences of having a lower-order term in the equa-
tion. This is motivated by the parabolic application in the next section. Here, we review
the basic theory since it leads at the end of the section to the presentation of the inter-
action between both techniques. Such interaction needs a different way of looking at the
standard symmetrization inequality in terms of concentration comparison. To be specific,
we consider again the Dirichlet problem in the ball� but now for the equation with a
more specialized structure

−
1

ρ(x)

∑
i,j

∂i(aij (x)∂ju)+ b(x, u) = f. (4.1)

Previous assumptions (H1)–(H4) onaij andρ remain in force. Concerning the function
b(x, u), we assume it is measurable, continuous and nondecreasing inu for fixed x, and
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bounded inx uniformly for boundedu. Moreover, we assume that

b(x, u)u ≥ 0 for a.e.x and allu. (4.2)

The right-hand sidef is a measurable function in some LebesgueLp space.
In the preceding section the effect of the zero-order term has been neglected through

the assumption (3.4), which is equivalent to (4.2) in the particular case of (3.1). However,
this leads to a poorer understanding and poorer estimates. This subject has been inves-
tigated by a number of authors. Briefly stated, the problem is that keeping track of this
term changes the last part of the preceding proof and forces us to change the type of com-
parison in the conclusion. We have been first led to keeping track of the term in the study
of parabolic problems by implicit discretization in time (see Section 5). It turns out that,
in the spirit of the end of the previous proof, there is a simple modification that naturally
leads to concentration comparison, which is a weaker result, but enough for our purposes.
In this way we can compare the result of solving and then rearranging with the result of
the reverse procedure, i.e., first rearranging and then solving the symmetrized problem.
This is our main result.

Theorem 4.1. In addition to the assumptions of Theorem3.1onf andu, assume

(H5) b(x,w)w ≥ β(w)w for all w,

whereβ is a nondecreasing function withβ(0) = 0. Putv = β(u). Letu(s), 0< s < R∗,
be an integral supersolution of the radial problem

−C1u+ β(u) = f (s), (4.3)

with boundary conditionu(R∗) ≥ 0, wheref is a radial function inL1(�∗
µ) such that

f � f ∗. Put v(s) = β(u). Then the two radial functionsv∗
µ(s) andv(s) are ordered in

the sense of concentration:
v∗
µ ≺ v. (4.4)

Proof. We repeat the previous proof withg(x, u) = f − b(x, u). Using (H5), we arrive
at formula (3.24) with right-hand side replaced by

(−φ′

u;ρ(k))

∫
{u>k}

[f (x)− β(u)]ρ(x) dx ≤ (−φ′

u;ρ(k))

∫
Bσ

[f ∗
µ(y)− β(u∗

µ)] dy, (4.5)

where we have used the conservation of integrals (2.8), the Hardy–Littlewood inequality
(2.11) and the obvious fact that [β(u)]∗µ = β(u∗

µ). Thus, we arrive at

Cn2ω
2/n
n φu;ρ0(k)

2−2/n
≤ (−φ′

u;ρ(k))

∫
Bσ

[f ∗
µ(y)− β(u∗

µ)] dy.

Arguing as in step (ix) of the proof of Theorem 3.1, we conclude that

Cn2ω
2/n
n φu;ρ(k)

2−2/n
≤ (−φ′

u;ρ(k))

∫
Bσ

[f ∗
µ(y)− β(u∗

µ)] dy.
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As in step (x) of that proof, we observe that this last inequality can be written as

−Cnωnσ
n−1(u∗

µ)
′(σ ) ≤

∫
Bσ

[f ∗
µ(y)− β(u∗

µ)] dy,

which is nothing else than the integrated version of the inequality

−C1u+ β(u) ≤ f ∗
µ . (4.6)

In the terminology of Section 2,u∗
µ(s) is a radial integral subsolution of the equation

−C1u+ β(u) = f ∗
µ

in the ball�∗
µ. By assumption,u is a solution (hence a radial integral solution) of the

same equation, maybe with more concentrated right-hand side. Comparison is now a con-
sequence of Theorem 2.4. The fact that we are in the standard case is ensured by the
Dirichlet conditionsu = 0 on∂� (and henceu∗

µ = 0 on∂�∗
µ) and the nonnegative con-

dition for u. ut

The concentration statement can be reformulated in terms of standard norms by means of
Lemma 2.2.

Corollary 4.2. Let the assumptions of Theorem4.1 hold. Then for every convex nonde-
creasing function8 : [0,∞) → [0,∞) with8(0) = 0 we have∫

�∗
µ

8(v∗
µ(y)) dy ≤

∫
�∗
µ

8(v(y)) dy. (4.7)

In particular, for every1 ≤ p ≤ ∞ we have

‖v‖Lp(�;ρ) = ‖v∗
µ‖Lp(�∗

µ)
≤ ‖v‖Lp(�∗

µ)
. (4.8)

5. Symmetrization for parabolic problems

In order to treat nonlinear, possibly degenerate equations like

ρ(x)ut =

∑
i,j

∂i(aij (x)∂jϕ(u))+ fρ, (5.1)

the survey paper [V1] proposes (forρ = 1 and uniformly elliptic matrixaij ) to use
the technique of Implicit Time Discretization (ITD for short); in this way the original
problem of obtaining a priori estimates for equation (5.1) is reduced to obtaining similar
estimates for elliptic equations of a definite type. In fact, by replacing the time derivative
by an increment quotient and using a partition of the time interval [0, T ] of the form
t0 = 0 < t1 < · · · < tN = T , we are reduced to solving a sequence of elliptic problems
with zero-order term of the form

−hk
∑
i,j

∂i(ai,j (x)∂jv(tk))+ρu(tk) = ρu(tk−1)+hρf (tk−1), v(tk) = ϕ(u(tk)). (5.2)

By means of this scheme we compute the valueu(tk) of the discretized solution at time
tk in terms of the value ofu in the previous step,u(tk−1). Here,k runs from 1 toN ,
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hk = tk−tk−1 > 0, andfk = fk(x) is a suitable discretization of the functionf = f (x, t)

at the mesh times; the notationu(tk) meansu(x, tk), seen as a function ofx for fixed
t = tk, and likewisev(tk); more precisely,v(tk) is related tou(tk) byv(x, t) = ϕ(u(x, tk))

a.e. inx. Therefore, each step reduces to solving the elliptic equation

−
h

ρ(x)
1ϕ(u)+ u = F, (5.3)

equivalently,

−
h

ρ(x)
1v + β(v) = F, (5.4)

whereβ = ϕ−1 andF(x) is a different, but known function in each step. Fortk−1 < t

< tk, we make linear interpolation, thus producing an approximate solutionuN (x, t). The
convergenceuN → u follows from the famous

Theorem 5.1 (Crandall–Liggett Theorem [CL]). LetA be anm-accretive operator in the
Banach spaceX with domainD(A). Then, for anyu0 ∈ D(A),

e−tAu0 = lim
n→∞

(Jt/n)
nu0 (5.5)

exists uniformly on compact subsets of[0,∞[. Moreover, the family of operatorse−tA,
t > 0, is a continuous semigroup of contractive mappings ofD(A).

We choose the spaceX = L1(�; ρ), and asA a suitably defined differential operator. We
take asD(A) the set of functionsu ∈ X such thatϕ(u) ∈ W

1,1
0 (�). We then define

A(u) = −
1

ρ(x)
1ϕ(u). (5.6)

Under the condition thatρ(x) is positive and bounded,A defined by formula (5.6) ism-
accretive; proving this amounts to solving−h1ϕ(u) + ρ(x)u = ρ(x)F so that the map
F 7→ u is contractive inX (cf. [BrS, GM, BG]).

The theorem above provides the existence of a mild (or semigroup) solution to the
Cauchy problem for (5.1) withu0 ∈ X. In the following, by solution to (5.1) we shall
always mean the mild solution with a definition of the operatorA that makes itm-
accretive inX. Combining the Crandall–Liggett generation theorem with Theorem 4.1
we can prove the following

Theorem 5.2. Let u be the mild solution of the initial-boundary value problem for the
equation(5.1)with datau0 ∈ L1(�; ρ), u = 0 in ∂�, and second memberf ∈ L1(�; ρ)

under the assumptions(H1)–(H5)onρ(x) andaij (x). Letu be the solution of the problem

ut = 1ϕ(u)+ g(s, t), u(y,0) = u0(s), (5.7)

posed in the ball�∗
µ, whereϕ = Cβ−1 with radially symmetric datau0 ∈ L1(�∗

µ),
u0(s) ≥ 0 and (spatially) radially symmetric right-hand sideg(s, t) ≥ 0. Assume more-
over that

(i) u∗

0,µ ≺ u0,
(ii) f ∗

µ(·, t) ≺ g(·, t) for everyt ≥ 0.
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Then, for everyt ≥ 0,
u∗
µ(·, t) ≺ u(·, t). (5.8)

Proof. Using the Crandall–Liggett result we are reduced to comparing the discretization
steps, which consist of elliptic problems as those treated in Sections 3 and 4. It is impor-
tant to realize that comparison of concentrations between the discretized versions of the
solutions is inherited in every step of the iteration. We proceed as follows. In the first step,
betweent0 = 0 andt1 = t/N , we start from a datumu0 and a forcing termf0, and obtain
a solution of the elliptic problem (5.2)

−h
∑
i,j

∂i(ai,j (x)∂jφ(u))+ ρu = ρ(u0 + hf0),

which is a form of (4.1). Let us call the solutionu1. We symmetrize it intou∗

1,µ, defined in
�∗
µ, and it becomes a≺-subsolution of the symmetric problem (4.3) with right-hand side

u∗

0,µ + hf ∗

0,µ. Note that this second member is more concentrated than(u0 + hf0)
∗
µ. We

compare this solution with the radially symmetric solutionu1 of the homogeneous elliptic
equation appearing in the first iteration step for the symmetrized parabolic problem (5.7)
with datau0 + hg0. By Theorem 4.1, we get

u∗

1,µ ≺ u1.

In the second step we have to solve an elliptic problem three times: the first elliptic equa-
tion with datau1 + hf1 to get the second step of the discretized solution,u2; the sym-
metrized version with datau∗

1,µ + hf ∗

1,µ to get a radial solutionw2; and the symmetrized
problem (5.7) withu1 + hg1 to get a radial solutionu2. The same type of comparison
gives

u∗

2,µ ≺ w2 ≺ u2.

The process is then continued for all the steps. Therefore, the comparison of concentra-
tions works at all levels. To end the proof, the limit is taken as the time-step length goes
to 0. ut

Corollary 5.3. In particular, under the assumptions of Theorem2.4, for everyt ≥ 0 and
everyp ∈ [1,∞] we have comparison ofLp norms,

‖u(·, t)‖Lp(�;ρ) = ‖u∗
µ(·, t)‖Lp(�∗

µ)
≤ ‖u(·, t)‖Lp(�∗

µ)
. (5.9)

Note that the terms of (5.9) can also be infinite for some or all values ofp.

6. Smoothing effects for the inhomogeneous porous medium equation

In this section, we denoteLp(Rn; ρ) simply byLpρ . As an application of our previous
results, in this section we prove sharpLp estimates (includingp = ∞) for the solutions
to the Cauchy problem for the inhomogeneous porous medium equation{

ρ(x)ut = 1um,

u(x,0) = u0,
(6.1)
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in the slow diffusion casem > 1, posed forx ∈ Rn, t > 0. The basic theory for problem
(6.1) withρ ∈ C1(R) and bounded continuous datau0 is developed in [KR1], [KR2], [E],
[GHP]. A minimal solution is obtained as a monotone limit of solutions to the problems

ρ(x)ut = 1um,

u(x,0) = u0k on {|x| ≤ k},

u(x, t) = 0 on{|x| = k},

(6.2)

whereu0k ↑ u0 uniformly on compact subsets ofRn. Uniqueness of weak solutions for
n = 1,2 is proved in [KR1] for general boundedρ ∈ C1 and bounded smooth data. In
[GHP], anL1

ρ-contractivity result and consequent uniqueness in the natural classL1
ρ is

proved, again in dimensionsn = 1,2. It should be mentioned that in this last paper no
smoothness ofρ is assumed, but merelyρ ∈ C(Rn).

We shall call the integral
∫
Rn u(x, t)ρ(x) dx = ‖u(t)‖L1

ρ
theenergyof the solutionu

at timet . An interesting question is to determine under which conditions the energy is pre-
served in time, which always happened in the homogeneous case form ≥ 1. Theorem 6.1
gives some information in this respect (see Remark 6.4).

In what follows, by solution to (6.1) we always mean the minimal solution in the
above sense.

Theorem 6.1. Letρ ∈ C1(R) and

c2(1 + |x|)−α ≤ ρ(x) ≤ c1(1 + |x|)−α, c1, c2 > 0.

Let eithern = 2 and0 < α < 2, or n ≥ 3 and0 < α ≤ 2(n − 1). Letu be the weak
solution to(6.1) with u0 ∈ L1

ρ ∩ L∞
∩ C(Rn), u0 ≥ 0. Thenu(·, t) ∈ L∞(Rn) for all

t > 0 and we have an estimate of allLpρ -norms for1 ≤ p ≤ ∞. There are two cases:

(i) If α ≤ n so that the mass of the medium is infinite, we have the estimates

u(x, t) ≤ Ct−n/(n(m−1)+2), ‖u(·, t)‖L1
ρ

≤ ‖u0‖L1
ρ
,

whereC = C(‖u0‖L1
ρ
, c1, c2, m, n).

(ii) If α > n so that the mass of the medium is finite, then the energy of the solution
decreases in time and we have the estimates

u(x, t) ≤ Ct−1/(m−1), ‖u(·, t)‖L1
ρ

≤ C′t−1/(m−1),

whereC andC′ depend on‖u0‖L1
ρ
, c1, c2, m, andn.

Proof. We will apply the results of Theorem 4.1 to the approximate problems (6.2), with
f = g = 0, aij = δij , ϕ(w) = wm andρ0(x) = (1 + |x|)−α. Sinceρ > 0 in �k, the
operator (5.6) ism-accretive, thanks to the results in [BrS]. In this case, the mild solution
to (6.2) coincides with the weak solution. Moreover, by Remark 3.5, under our hypotheses
onα conditions (H1)–(H5) hold withK independent ofk. Therefore,

u∗

k,µ(·, t) ≺ uk(·, t),
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whereuk is the solution to the problem with constant diffusivity
ut = C1um,

u(y,0) = u∗

0k,µ on {|y| ≤ Rk},

u(y, t) = 0 on{|y| = Rk},

(6.3)

with Rk such that meas(BRk (0)) = µ(Bk(0)) andC independent ofk. Since{u0k} is
increasing, so is{u∗

0k,µ}. When passing to the limitk → ∞, we should distinguish two
cases:

(i) If ρ /∈ L1, i.e., if α ≤ n, we haveRk ↑ ∞. In this case, we will have

u∗
µ(·, t) ≺ u(·, t), (6.4)

whereu is the solution of the Cauchy problem{
ut = C1yu

m,

u(y,0) = u∗

0,µ on�∗
µ = Rny .

(6.5)

Sinceu∗

0,µ ∈ L1, for problem (6.5) standard smoothing results [V5] apply. In particular,
we know thatu(t) ∈ L∞ for everyt > 0 and moreover

u(·, t) ≤ c(C,m, n)‖u0‖
σ
L1t

−γ (6.6)

with

γ =
n

n(m− 1)+ 2
, σ =

2γ

n
.

The assertion of the theorem in this case follows now from (6.4), (6.6), Lemma 2.2 and
(2.10).

(ii) ρ ∈ L1, i.e.,α > n. ThenRk ↑ R < ∞, with meas(BR(0)) = µ(Rn). Therefore,
�∗
µ = BR(0) and the limit problem is

ut = C1yu
m,

u(y,0) = u∗

0,µ on�∗
µ,

u(y, t) = 0 on|y| = R.

(6.7)

For this last problem, we know the estimate

u(·, t) ≤ c(m, n)(Ct)−1/(m−1) (6.8)

(see [AP], [V3]). Arguing as before, the assertion follows for this case. ut

Remark 6.2. Much in the same way, one can give estimates inL
p
ρ for p ∈ [1,∞).

Indeed, byL1
ρ-L∞ interpolation, we obtainu(·, t) ∈ L

p
ρ for t > 0 and

‖u(·, t)‖Lpρ ≤ ‖u(·, t)‖
(p−1)/p
L∞ ‖u(·, t)‖

1/p
L1
ρ

≤ Cpt
−σp ,

whereσp = −n(p − 1)/p(n(m− 1)+ 2) if α ≤ n andσp = 1/(m− 1) if α > n.
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Remark 6.3. Eidus [E] proves decay estimates of solutions to (6.1) in the spaceLm+1
ρ

for α > n ≥ 3. Our decay rates agree with his, but the constant in [E] depends on‖u0‖∞,
while in our case it depends only on‖u0‖L1

ρ
. Also, our estimates forα > 2 follow from

the results in [BrK], actually the results in [BrK] are sharper in this range. However, our
results are new forα < 2. We thank the referee for pointing out these facts.

Remark 6.4. For n = 2 andu0 as in the theorem, the energy‖u(·, t)‖L1
ρ

is preserved
in time (see [GHP]). Forα > 2, this gives rise to isothermalization, hence no decay
takes place. In contrast, forn ≥ 3 andα > n (henceρ ∈ L1), it is proved in [KK]
that ‖u(·, t)‖L1

ρ
decays. Theorem 6.1 provides an alternative proof of this fact forα ∈

(n,2(n− 1)], as well as a quantitative estimate of the energy loss.

Remark 6.5. The estimates above are not true for the Barenblatt-type solutions consid-
ered in [KR1], since they solve a problem with singular densityρ(x) = |x|−α. Such a
density modifies the decay rates neart = 0.

6.1. Counterexample in one dimension

In this subsection we construct a solution to (6.1) forn = 1 with u0 ∈ L1
ρ andu(·, t) /∈

L∞ for smallt > 0. We assume thatρ ∈ C1(R) and

ρ(x) = ρk := 2−αk on [2k − 2k−2,2k + 2k−2] ∪ [−2k − 2k−2,−2k + 2k−2]

for k = 0,1, . . . and someα > 0 to be chosen later.

Takeu0 =
∑

∞

k=1 u0k, whereu0k(x) = Uk(x,1) andUk is the Barenblatt solution of
the homogeneous problem {

ρkut = (um)xx,

u(xk,0) = Mkδ(x − xk),
(6.9)

wherexk = 2k andk = 0,1,2, . . . . The massesMk = Dx
β
k are chosen in such a way

that the supports ofu0k are disjoint. Taking into account that the factorρk in (6.9) can be
absorbed by introducing a new timet ′ = t/ρk and the explicit formulas for the Barenblatt
solutions, we have

suppUk(1) = [xk − CM
(m−1)/(m+1)
k t ′1/(m+1), xk + CM

(m−1)/(m+1)
k t ′1/(m+1)], (6.10)

where t ′ = ρ−1
k andC = C(m). Then we requireCM(m−1)/(m+1)

k t ′1/(m+1)
≤ 2k−3,

which amounts to asking

DC′2k(β(m−1)+α−(m+1))/(m+1)
≤ 1, (6.11)

whereC′
= C′(m, α). For this to hold it is enough to takeD small and

β(m− 1)+ α ≤ m+ 1.
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On the other hand, we want
∫
ρu0 dx < ∞. This requirement is equivalent to

∞∑
k=0

ρkMk < ∞,

i.e.,
∑

2(β−α)k < ∞. Thus, we needβ < α. Finally, we requireu0 /∈ L
∞. This holds if

maxUk(x,1) → ∞ ask → ∞. But

maxUk(x,1) = Uk(xk,1) = C(m)M
2/(m+1)
k = C(m)22kβ/(m+1),

therefore we needβ > 0. The three conditions above onα andβ are met with someβ for
any givenα < m + 1. Our next goal is to show thatu(·, t) /∈ L∞ for t > 0 small. First
we observe that there existτ > 0 such that suppUk(1 + τ) ⊂ (2k − 2k−2,2k + 2k−2)

are disjoint and that maxUk(x,1 + τ) = Uk(xk,1 + τ) → ∞ ask → ∞. Actually,
these two assertions follow exactly as above forτ = 0, once the requirements onα and
β are met. Finally, we observe thatu(x, τ ) =

∑
Uk(x,1 + τ), sinceρ(x) = ρk on

[2k − 2k−2,2k + 2k−2]. This ends the construction.
Note that this solution belongs toC([0, τ ), L1

ρ) and is strong in the sense that

u, ut , (u
m)xx ∈ L1

loc. It is also the mild solution of the problem since each of the com-
ponents is, hence every finite sum is (since they have separate supports), and finally mild
solutions depend continuously on the data in theL1

ρ norm.

7. Appendix

This appendix is devoted to the proof of the weighted Hardy–Littlewood inequality (2.11)
with a nonnegative absolutely continuous measureµ.

Theorem 7.1. Let (�,µ) be a measure space with� ⊂ Rn and µ a nonnegative,
absolutely continuous measure. Letf be aµ-measurable function and letf ∗

µ denote
its µ-symmetrization on the ball�∗

µ, as defined in Subsection2.3. Then for every ball
BR(0) ⊂ �∗

µ we have∫
BR(0)

f ∗
µ dy = sup

{∫
E

|f | dµ : E ⊂ �, µ(E) ≤ meas(BR)

}
.

Proof. Fix a µ-measurableE ⊂ � with µ(E) ≤ meas(�∗
µ). Define�k = {x ∈ � :

|f (x)| > k}. The monotonicity of the distribution function implies that there are two
possibilities.

(a) There existk ≥ 0 and a measurable setC with f = k a.e. onC such thatµ(�k∪C) =

µ(E). Then we have∫
E

|f | dµ =

∫
E∩(�k∪C)

|f | dµ+

∫
E\(�k∪C)

|f | dµ

≤

∫
E∩(�k∪C)

|f | dµ+

∫
(�k∪C)\E

|f | dµ

=

∫
�k∪C

|f | dµ =

∫
BR(0)

f ∗
µ dx (7.1)
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with meas(BR(0)) = µ(�k ∪ C) = µ(E), since|f | ≤ k in E \ (�k ∪ C), |f | ≥ k in
(�k ∪ C) \ E andµ(E \ (�k ∪ C)) = µ((�k ∪ C) \ E). In this case the supremum is
achieved atE = �k∪C. Note thatC is needed to take into account possible sets wheref

is flat, so that the distribution function is discontinuous. Generically, those sets have zero
measure and need not be considered.

(b)µ(�0) < µ(E). Then ∫
E

|f | dµ =

∫
E∩�0

|f | dµ.

SinceE ∩�0 ⊆ �0, there existk ≥ 0 and a measurable setC with f = k a.e. onC such
thatµ(�k ∪ C) = µ(E ∩�0) and we conclude as above:∫

E

|f | dµ ≤

∫
�k∪C

|f | dµ =

∫
B ′
R(0)

f ∗
µ dx ≤

∫
BR(0)

f ∗
µ dx

with meas(B ′

R(0)) = µ(E ∩�0) and meas(BR(0)) = µ(E) (henceR′
≤ R). In this case

the supremum is achieved at any setE′
⊃ �0 with µ(E′) = µ(E), sincef ∗

µ = 0 a.e. in
the annulusR′ < |y| < R. ut

Final comments

The topics of rearrangement and symmetrization are covered in many classical texts; for
more details, we refer e.g. to the books [Ba2], [BS], [Kw], [LL], or the articles [W],
[T1]–[T3]. Symmetrization with weights is studied by several authors, like Talenti [T4].
The concept of symmetrization with respect to a measure that we use is asymmetric with
respect to the spaces, in the sense that we pass from a space with a measure given by a
weight to a space endowed with the plain Lebesgue measure, where the model problem
is posed and solved. This seems to be the best option for the comparison results we were
aiming at. Such a concept has been studied by Vera de Serio in her thesis (see [SVS]).
There are other options for symmetrization with weights in the literature like the ones
using Gaussian measures (on both sides, cf. [BBMP]).

The a priori estimates obtained in this paper are a useful tool in elaborating a theory
of solutions of the inhomogeneous PME (5.1) with data inL1

ρ . This will be the object of
a separate publication [RV].

For n ≥ 3, the following sufficient conditions for the existence and uniqueness of a
minimal solution that tends to zero at infinity in some integral sense has been established
in [EK]: ∫

Rn

ρ(x)u0(x)

|x|n−2
dx < ∞, u0 ∈ L∞

loc(R
n).

In particular, this means that bounded solutions are not unique because the constant is not
the minimal solution for constant initial data if

∫
ρ(x)|x|2−n dx < ∞. The condition is

met for densitiesρ as in our paper ifα > 2. Forα > n, nonuniqueness follows at once
from the energy loss (see Remark 6.4).
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The one-dimensional counterexample of Subsection 6.1 has been constructed for sim-
plicity with a weightρ that is piecewise constant. The calculation with a power function
seems more interesting, but it turned out too lengthy in our version.

There are many possible extensions of these results under different variations of the
assumptions on the data. Thus, we can pose the (elliptic and parabolic) problems in a
bounded domain with a weightρ that either blows up or degenerates at the boundary.
In the latter case, it seems that certain growth conditions have to be imposed for our
technique to work. The case of boundary blow-up is for instance used in proving the
weak local smoothing effect for the planar logarithmic diffusion equation in [V6].

Acknowledgements.Both authors partially supported by Spanish Project BMF2002-04572-C02-02
and ESF Programme “Global and geometric aspects of nonlinear partial differential equations”. We
thank the referee for several helpful suggestions.
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