

Laurent Bonavero · Cinzia Casagrande · Stéphane Druel

On covering and quasi-unsplit families of curves

Received September 8, 2005 and in revised form October 18, 2005

Abstract. Given a covering family *V* of effective 1-cycles on a complex projective variety *X*, we find conditions allowing one to construct a geometric quotient $q : X \to Y$, with *q* regular on the whole of *X*, such that every fiber of *q* is an equivalence class for the equivalence relation naturally defined by *V*. Among other results, we show that on a normal and \mathbb{Q} -factorial projective variety *X* with canonical singularities and dim $X \leq 4$, every covering and quasi-unsplit family *V* of rational curves generates a geometric extremal ray of the Mori cone $\overline{NE}(X)$ of classes of effective 1-cycles and that the associated Mori contraction yields a geometric quotient for *V*.

Keywords. Covering families of curves, extremal curves, quotient

1. Introduction

Let *X* be a normal complex projective variety. Let *V* be an irreducible and closed subset of Chow(X) such that any element of *V* is a 1-cycle, and such that for any point $x \in X$, there exists an element of *V* passing through *x*. We call *V* a *covering family of* 1-*cycles* on *X*.

The framework is Campana's notion of *V*-equivalence, and the construction of the related rational map defined on *X*: two points x, x' are said to be *V*-equivalent if there exist $v_1, \ldots, v_m \in V$ such that some connected component of $C_{v_1} \cup \cdots \cup C_{v_m}$ contains *x* and *x'*, where $C_v \subset X$ is the curve corresponding to $v \in V$. By Campana's results (see Section 2), there exists a dominant almost holomorphic map $q: X \dashrightarrow Y$, *Y* a normal projective variety, whose general fibers are *V*-equivalence classes. Let $f_V := \dim X - \dim Y$.

A morphism $q': X \to Y'$ onto a normal projective variety Y' will be called a *geometric quotient* for V if *every* fiber of q' is a V-equivalence class. If such a quotient exists, then it is clearly unique up to isomorphism. On the other hand, even if X is smooth, a

C. Casagrande: Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy; e-mail: casagrande@dm.unipi.it

Mathematics Subject Classification (2000): 14E30, 14J99, 14M99

L. Bonavero, S. Druel: Institut Fourier, UFR de Mathématiques, Université de Grenoble 1, UMR 5582, BP 74, 38402 Saint Martin d'Hères, France; e-mail: bonavero@ujf-grenoble.fr, druel@ujf-grenoble.fr

geometric quotient for V does not necessarily exist (see Example 2). We refer to [KS02] for a general introduction to this question and related ones.

The main problem is to find sufficient conditions on X and V for the geometric quotient to exist.

Let $\mathcal{N}_1(X)_{\mathbb{R}}$ (respectively $\mathcal{N}_1(X)_{\mathbb{Q}}$) be the vector space of 1-cycles in *X* with real (respectively rational) coefficients, modulo numerical equivalence. In $\mathcal{N}_1(X)_{\mathbb{R}}$, let $\overline{NE}(X)$ be the closure of the convex cone generated by classes of effective 1-cycles in *X*.

We say that *V* is *quasi-unsplit* if there exists a half-line $R_V \subseteq \overline{NE}(X)$ such that the numerical class of every irreducible component of every cycle in *V* belongs to R_V [CO04, Definition 2.13]. Equivalently, *V* is quasi-unsplit if all irreducible components of the cycles parametrized by *V* are numerically proportional.

The first result is the following theorem.

Theorem 1. Let X be a normal and \mathbb{Q} -factorial complex projective variety of dimension n and let V be a covering and quasi-unsplit family of 1-cycles on X. If $f_V \ge n - 2$, then there exists a geometric quotient for V.

Next, we specialize to rational 1-cycles on *X*, that is, cycles whose irreducible components are rational curves, and look at related questions.

A geometric extremal ray of the Mori cone $\overline{NE}(X)$ is a half-line $R \subseteq \overline{NE}(X)$ such that if $\gamma_1 + \gamma_2 \in R$ for some $\gamma_1, \gamma_2 \in \overline{NE}(X)$, then $\gamma_1, \gamma_2 \in R$.

Let *V* be a covering and quasi-unsplit family of rational 1-cycles on *X*. Is R_V a geometric extremal ray of $\overline{NE}(X)$?

Note that this question is natural, since any family of rational 1-cycles such that the general member generates a geometric extremal ray of $\overline{NE}(X)$ is quasi-unsplit. If *V* is not assumed to be covering, the preceding statement is not true by looking at a smooth blow-down of a smooth projective variety to a nonprojective one: contracted curves do not define a geometric extremal ray.

Theorem 2. Let X be a normal and \mathbb{Q} -factorial complex projective variety of dimension n with canonical singularities. Let V be a covering and quasi-unsplit family of rational 1-cycles on X, and let f_V be the dimension of a general V-equivalence class. If $f_V \ge n - 3$, then R_V is extremal in the sense of Mori theory and the associated contraction yields a geometric quotient for V.

We then immediately get the following corollary.

Corollary 1. Let X be a normal and \mathbb{Q} -factorial complex projective variety of dimension ≤ 4 with canonical singularities and let V be a covering and quasi-unsplit family of rational 1-cycles on X. Then R_V is extremal in the sense of Mori theory and the associated contraction yields a geometric quotient for V.

We finally consider the toric case, where we can prove both extremality and existence of a geometric quotient for a quasi-unsplit family of 1-cycles in any dimension.

Theorem 3. Let X be a toric and \mathbb{Q} -factorial complex projective variety, and let V be a covering and quasi-unsplit family of 1-cycles in X. Then R_V is an extremal ray of $\overline{NE}(X)$ in the sense of Mori theory and the associated contraction yields an equivariant and equidimensional morphism $q': X \to Y'$ onto a toric and \mathbb{Q} -factorial projective variety Y' which is a geometric quotient for V.

The following is an immediate application of Theorems 2 and 3.

Corollary 2. Let $X \subset \mathbb{P}^N$ be a normal and \mathbb{Q} -factorial variety such that through any point of X there is a line contained in X. Assume that either X is toric, or has canonical singularities and dim $X \leq 4$. Let V be an irreducible family of lines covering X. Then there exists a geometric quotient for V.

Note that if $X \subset \mathbb{P}^N$ has sufficiently small degree then X is covered by lines (see [KNS05] for a precise statement).

Finally, we point out that our results are related to the construction in [BCE⁺02] of the reduction morphism for a nef line bundle $L \in \text{Pic } X$ (see also [Tsu00]). This is an almost holomorphic rational map $f: X \to T$, dominant with connected fibers, such that:

• $L \cdot C = 0$ for any curve *C* contained in a proper fiber *F* of *f* with dim $F = \dim X - \dim Y$;

• $L \cdot C > 0$ for every irreducible curve C passing through a general point of X.

The map f is unique up to birational equivalence of T, and the dimension of T is called the *nef dimension* of L.

It is still quite unclear in which circumstances f can be chosen holomorphic (see [BCE⁺02, §2.4]); it is always so if the nef dimension of L is at most one. Theorem 1 gives a partial answer for nef line bundles with nef dimension two.

Corollary 3. Let X be a normal and \mathbb{Q} -factorial projective variety with dim $X \ge 3$, and $L \in \text{Pic } X$ be a nef line bundle with nef dimension 2. Assume that $\{\gamma \in \overline{\text{NE}}(X) \mid \gamma \cdot L = 0\}$ is a half-line. Then there exists a nef reduction morphism $q \colon X \to Y$ onto a normal projective surface Y such that for any curve $C \subset X$ we have $q(C) = \{pt\}$ if and only if $C \cdot L = 0$.

2. Set-up on families of 1-cycles

Let *X* be a normal, irreducible, *n*-dimensional complex projective variety. For any curve $C \subset X$, we denote by $[C] \in \mathcal{N}_1(X)_{\mathbb{R}}$ its numerical class.

If $R \subset \overline{NE}(X)$ is a half-line and *D* is a divisor in *X*, we write $D \cdot R > 0$, $D \cdot R = 0$, or $D \cdot R < 0$ if respectively $D \cdot \gamma > 0$, $D \cdot \gamma = 0$, or $D \cdot \gamma < 0$ for a nonzero element $\gamma \in R$.

Let V be a covering family of 1-cycles on X. We have a diagram given by the incidence variety C associated to V:

$$\begin{array}{ccc} C & \xrightarrow{F} & X \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

where π and F are proper and surjective. Set $C_v := F(\pi^{-1}(v))$ for any $v \in V$.

The relation of *V*-equivalence on *X* induced by such a family was introduced and studied in [Cam81]; we refer the reader to [Cam04], [Deb01, §5.4], [KMM92] or [Kol96, §IV.4] for more details. By [Deb01, Theorem 5.9] there exists a closed and irreducible subset of Chow(*X*) whose normalization *Y* has the following properties:

(a) if $Z \subset Y \times X$ is the restriction of the universal family,

$$Z \xrightarrow{e} X$$

$$\downarrow_{p} \swarrow_{q} Y$$

$$(2)$$

then *e* is a birational morphism and $q = p \circ e^{-1}$ is almost holomorphic (which means that the exceptional locus of *e* does not dominate *Y*);

- (b) a general fiber of q is a V-equivalence class,
- (c) a general fiber of q, hence of p, is irreducible.

As a consequence of the existence of the map q, a general V-equivalence class is a closed subset of X. We denote by f_V its dimension, so that dim $Y = n - f_V$. Moreover, it is well known that any V-equivalence class is a countable union of closed subsets of X.

Example 1 (see [Kac97, Example 11.1], and references therein). Fix a point x_0 in \mathbb{P}^3 and let

$$P_0 := \{ \Pi \in (\mathbb{P}^3)^* \, | \, x_0 \in \Pi \} \simeq \mathbb{P}^2$$

be the variety of 2-planes in \mathbb{P}^3 containing x_0 . Consider the variety $X \subset \mathbb{P}^3 \times P_0$ defined as

$$X := \{ (x, \Pi) \in \mathbb{P}^3 \times P_0 \, | \, x \in \Pi \}.$$

Then X is a smooth Fano 4-fold, with Picard number 2 and pseudo-index 2. The two elementary extremal contractions are given by the projections on the two factors.

The morphism $X \to P_0$ is a fibration in \mathbb{P}^2 : the fiber over a point is the plane corresponding to that point.

Consider the morphism $X \to \mathbb{P}^3$. If $x \neq x_0$, the fiber over x is the \mathbb{P}^1 of planes containing x and x_0 . But the fiber F_0 over x_0 is naturally identified with P_0 , hence it is isomorphic to \mathbb{P}^2 . Let $V \to \mathbb{P}^3$ be the blow-up of x_0 and $\mathcal{C} \to X$ be the blow-up of F_0 :

$$\begin{array}{c} \mathcal{C} \xrightarrow{F=e} X \\ \pi=p \bigg| \begin{array}{c} q \swarrow \\ \downarrow & \downarrow \\ \downarrow & \psi \\ V \xrightarrow{F} \psi \end{array} \right\rangle \mathbb{P}^{3} \end{array}$$

Definition 1. We say that a subset of X is V-connected if it is contained in a V-equivalence class.

Lemma 1. Let X be a normal projective variety and V be a covering family of 1-cycles on X. Consider the diagram (2) above. Then $e(p^{-1}(y))$ is V-connected for any $y \in Y$.

Proof. Let $\mathcal{R} \subset X \times X$ be the graph of the equivalence relation defined by *V*; it is a countable union of closed subvarieties since *V* is proper. The fiber product $Z \times_Y Z$ is irreducible and thus $(e \times e)(Z \times_Y Z) \subset \mathcal{R}$ thanks to properties (a) and (b) above. Therefore, for any $x \in e(p^{-1}(y))$, the cycle $e(p^{-1}(y))$ is contained in the *V*-equivalence class of *x*.

Finally, we will need the following.

Lemma 2. Let X be a normal projective variety and V be a covering and quasi-unsplit family of 1-cycles on X. Then there exists a covering and quasi-unsplit family V' of 1-cycles on X such that:

 \circ the general cycle of V' is reduced and irreducible;

• for any $v' \in V'$ there exists $v \in V$ such that $C_{v'} \subseteq C_v$; in particular $R_V = R_{V'}$.

Proof. Let C be the incidence variety associated to V as in (1). It is well known that every irreducible component of C dominates V; let C'' be an irreducible component of C which also dominates X. Let C' be the normalization of C'' and $C' \to V'$ be the Stein factorization of the composite map $C' \to C'' \to V$. Since $C' \to V'$ has connected fibers and C' is normal, the general fiber of $C' \to V'$ is irreducible. Moreover, the image in X of every fiber of $C' \to V'$ is contained in a cycle of V.

Since V' is normal, there is a holomorphic map $V' \to \text{Chow}(X)$. Then after replacing V' by its image in Chow(X) and C' by its image in $\text{Chow}(X) \times X$, we get the desired family.

3. Properties of the base locus

Let *V* be a covering family of 1-cycles on *X*, and recall the diagram (2) associated to *V*. Let $E \subset Z$ be the exceptional locus of *e*, and $B := e(E) \subset X$. Observe that since *X* is normal, dim $B \le n - 2$.

Proposition 1. Let X be a normal and \mathbb{Q} -factorial projective variety, and V be a covering and quasi-unsplit family of 1-cycles on X. Consider the associated diagram as in (2). *Then:*

(i) e(p⁻¹(y)) is a V-equivalence class of dimension f_V for every y ∈ Y \ p(E);
(ii) B is the union of all V-equivalence classes of dimension greater than f_V.

Proof. Set $X^0 := X \setminus B$ and $Y^0 := Y \setminus p(E) = q(X^0)$. Choose a very ample line bundle H on Y, and let $U \subset |H|$ be the open subset of prime divisors D such that $D \cap Y^0 \neq \emptyset$. For any D in U, we define $\widehat{D} := \overline{q^{-1}(D \cap Y^0)}$, which is a prime Weil divisor in X. Since X is \mathbb{Q} -factorial, some multiple of \widehat{D} defines a line bundle \widehat{H} on X. Observe that as D varies in U, the divisors \widehat{D} are numerically equivalent in X.

Observe also that a general cycle C_v of V is contained in a fiber of q disjoint from \widehat{D} , so $\widehat{D} \cdot C_v = 0$. Since V is quasi-unsplit, this gives $\widehat{D} \cdot R_V = 0$, meaning that for *every* irreducible component C of *every* cycle of V we have $\widehat{D} \cdot C = 0$.

Let now $N := h^0(H)$, and let s_1, \ldots, s_N be general global sections generating H. For each $i = 1, \ldots, N$, let $D_i \in |H|$ be the divisor of zeros of s_i and \widehat{D}_i in X as defined above.

Let us show that $\widehat{D}_1 \cap \cdots \cap \widehat{D}_N = B$. If $x \notin B$, then q is defined at x and there is some $i_0 \in \{1, \ldots, N\}$ such that $q(x) \notin D_{i_0}$, so $x \notin \widehat{D}_{i_0}$. Conversely, let $x \in B$ and fix $i \in \{1, \ldots, N\}$. Then $e^{-1}(x)$ has positive dimension; let $C \subset Z$ be an irreducible curve such that e(C) = x. Recall that $Z \subset Y \times X$, so p(C) is a curve in Y. Then $D_i \cap p(C) \neq \emptyset$ and $p^{-1}(D_i) \cap C \neq \emptyset$. Now observe that $p^{-1}(D_i)$ does not contain any component of E, hence $e(p^{-1}(D_i))$ is a divisor in X which coincides with \widehat{D}_i over $X \setminus B$. Then $\widehat{D}_i = e(p^{-1}(D_i))$ and $x \in \widehat{D}_i$.

Claim. Let C be an irreducible curve in X such that $\widehat{D} \cdot C = 0$ for some $D \in U$. Then either $C \subseteq B$, or $C \cap B = \emptyset$ and $q(C) = \{pt\}$.

In fact, assume that *C* is not contained in *B*. Since $B = \widehat{D}_1 \cap \cdots \cap \widehat{D}_N$, there exists $i \in \{1, \ldots, N\}$ such that *C* is not contained in \widehat{D}_i . Then $C \cap \widehat{D}_i = \emptyset$, because $C \cdot \widehat{D}_i = 0$. Thus $C \cap B = \emptyset$.

Moreover if q(C) is a curve, there exists $D_0 \in U$ such that D_0 intersects q(C) in a finite number of points. Then \hat{D}_0 intersects C without containing it, a contradiction, again because $C \cdot \hat{D}_0 = 0$.

This shows that *B* is closed with respect to *V*-equivalence. In fact, let *C* be an irreducible component of a cycle of *V* such that $C \cap B \neq \emptyset$. We have $C \cdot \widehat{D} = 0$, so the Claim above implies that $C \subseteq B$.

Consider now a V-equivalence class $F \subseteq X$. Since B is closed with respect to V-equivalence, either $F \cap B = \emptyset$, or $F \subseteq B$.

Assume that $F \cap B = \emptyset$, and choose an irreducible component *C* of a cycle of *V* such that $C \subseteq F$. We have $\widehat{D} \cdot C = 0$ for any $D \in U$, hence q(C) is a point by the Claim above. By definition of *V*-equivalence, any two points of *F* can be joined by a chain of components of cycles of *V*, so we have $q(F) = y_0 \in Y$, and $F \subseteq e(p^{-1}(y_0))$. On the other hand, $e(p^{-1}(y))$ is *V*-connected by Lemma 1, so $F = e(p^{-1}(y_0))$. Finally, since $F \cap B = \emptyset$, we must have $y_0 \in Y^0$, so *F* is a proper fiber of *q* of dimension f_V . For any $x \in X$, let $Y_x := p(e^{-1}(x))$ be the family of cycles parametrized by *Y* and

For any $x \in X$, let $Y_x := p(e^{-1}(x))$ be the family of cycles parametrized by Y and passing through x, and Locus $(Y_x) := e(p^{-1}(Y_x))$. Observe that for any $y \in Y_x$, the subset $e(p^{-1}(y))$ contains x and is V-connected by Lemma 1. Hence Locus (Y_x) is V-connected for any $x \in X$.

Since $Z \subset Y \times X$, we have dim $Y_x = \dim e^{-1}(x)$. Thus dim $Y_x > 0$ if and only if $x \in B$, by Zariski's main theorem. If so, Locus(Y_x) has dimension at least $f_V + 1$.

Now let *F* be a *V*-equivalence class contained in *B*, and $x \in F$. Then Locus(Y_x) has dimension at least $f_V + 1$ and is contained in *F*, hence dim $F \ge f_V + 1$.

Let us remark that in general, if V is not quasi-unsplit, B is not closed with respect to V-equivalence.

Example 2. In \mathbb{P}^2 fix two points *x*, *y* and the line $L = \overline{xy}$. Consider $\mathbb{P}^2 \times \mathbb{P}^2$ with the projections π_1, π_2 on the two factors, and fix three curves R_x, R_y, L' such that:

• R_x is a line in $\mathbb{P}^2 \times x$ and R_y is a line in $\mathbb{P}^2 \times y$;

• $\pi_1(R_x) \cap \pi_1(R_y)$ is a point $z \in \mathbb{P}^2$;

• $L' := z \times L$ is the unique line dominating L via π_2 and intersecting both R_x and R_y .

Let $\sigma: W \to \mathbb{P}^2 \times \mathbb{P}^2$ be the blow-up of R_x and R_y . In W, the strict transform of L' is a smooth rational curve with normal bundle $\mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus 3}$. Let X be the variety obtained by "flipping" this curve. Then X is a smooth toric Fano 4-fold with $\rho_X = 4$ (this is Z_2 in Batyrev's list, see [Bat99, Proposition 3.3.5]).

The strict transform of a general line in a fiber of π_2 gives a covering family V of rational curves on X. The birational map $X \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2$ is an isomorphism over $\mathbb{P}^2 \times (\mathbb{P}^2 \setminus L)$; if $U \subset X$ is the corresponding open subset, then U is closed with respect to V-equivalence and every fiber of $q: U \to \mathbb{P}^2 \setminus L$ is a V-equivalence class isomorphic to \mathbb{P}^2 . Thus $f_V = 2$.

Let T_x and T_y be the images in X of the exceptional divisors of σ in W. These two divisors are V-connected, and they cannot be contained in B because dim $B \leq 2$. Moreover, $P := T_x \cap T_y$ is the \mathbb{P}^2 with normal bundle $\mathcal{O}_{\mathbb{P}^2}(-1)^{\oplus 2}$ obtained under the flip. The map $q: X \longrightarrow \mathbb{P}^2$ cannot be defined over P, so $P \cap B \neq \emptyset$. Therefore B cannot be closed with respect to V-equivalence.

Observe that the numerical class of V lies in the interior of $\overline{NE}(X)$, hence the unique morphism, onto a projective variety, which contracts curves in V, is $X \to \{pt\}$.

Proof of Theorem 1. If *B* is not empty, Proposition 1 gives dim $B \ge f_V + 1 \ge n - 1$, which is impossible because *X* is normal. Hence *B* is empty and $q: X \to Y$ is an equidimensional morphism, whose fibers are *V*-equivalence classes.

Proof of Corollary 3. Let V be a covering family of 1-cycles having intersection zero with L. Such a family exists because L has nef dimension two and the dimension of X is at least three.

Since $R := \{\gamma \in \overline{NE}(X) | \gamma \cdot L = 0\}$ is an extremal ray of $\overline{NE}(X)$ and the general 1-cycle of V has numerical class in R, the family V is quasi-unsplit and $R_V = R$.

Consider the nef reduction $f: X \dashrightarrow T$ of L and let F be a general fiber. For any irreducible curve $C \subseteq F$ we have $C \cdot L = 0$, so $[C] \in R$. Using the Claim in the proof of Proposition 1, we see that $C \cap B = \emptyset$ and q(C) is a point. This is true for all curves in F, so $F \cap B = \emptyset$ and q(F) must be point. Then F is contained in a V-equivalence class, hence $f_V \ge \dim F = n - \dim T \ge n - 2$. Now the statement follows from Theorem 1.

4. Extremality for covering families of rational 1-cycles

We now consider extremality properties of R_V for a covering and quasi-unsplit family of rational 1-cycles.

The following well known remark will be of constant use (see [Kol96, Proposition IV.3.13.3], or [ACO04, Corollary 4.2]).

Remark 1. Assume that *V* is a covering family of rational 1-cycles, and let $Z \subset X$ be *V*-connected. Then every curve contained in *Z* is numerically equivalent in *X* to a linear combination with rational coefficients of irreducible components of cycles in *V*. In particular, if *V* is quasi-unsplit and *C* is a curve contained in a *V*-connected subset of *X*, then $[C] \in R_V$.

A key observation is the following.

Proposition 2. Let X be a normal and \mathbb{Q} -factorial projective variety, and V a covering and quasi-unsplit family of rational 1-cycles on X. If every connected component of B is V-connected, then there exists a nef divisor \widehat{D} on X such that for any curve C in X, $\widehat{D} \cdot C = 0$ if and only if $[C] \in R_V$.

Proof. We use the same notation as in the proof of Proposition 1. So *H* is a very ample line bundle on *Y*, $U \subset |H|$ is the open subset of divisors *D* that are irreducible and such that $D \not\subseteq p(E)$, and for any *D* in *U*, we set $\widehat{D} := \overline{q^{-1}(D \setminus p(E))}$. Recall that $\widehat{D} \cdot R_V = 0$, and that $B = \widehat{D}_1 \cap \cdots \cap \widehat{D}_N$ for some $D_1, \ldots, D_N \in U$.

Let us show that \widehat{D} is nef. By contradiction, suppose that there exists an irreducible curve *C* with $C \cdot \widehat{D} < 0$. Then *C* must be contained in $\widehat{D}_1, \ldots, \widehat{D}_N$, hence $C \subseteq B$. But *B* is *V*-connected, so by Remark 1, *C* should be numerically proportional to *V*, which is impossible because $\widehat{D} \cdot R_V = 0$.

Let us finally show that $C \cdot \widehat{D} = 0$ if and only if $[C] \in R_V$: actually, if $C \cdot \widehat{D} = 0$, the Claim in the proof of Proposition 1 shows that either $C \subset B$ or C is contained in a fiber of q, both are V-connected, hence $[C] \in R_V$ by Remark 1.

Unfortunately, B is not V-connected in general as shown by the following example.

Example 3. Let us go back to Example 1. We have $\mathcal{N}_{F_0/X} = \Omega_{\mathbb{P}^2}^1(1)$ and $(-K_X)|_{F_0} = \mathcal{O}_{F_0}(2)$. Observe that *V* is a family of extremal irreducible rational curves of anticanonical degree 2.

If we consider $X \times \mathbb{P}^1$ with the same family of curves, we have dim Y = 4, $f_V = 1$ and $B = F_0 \times \mathbb{P}^1$, which is not *V*-connected.

We finally get the following result: if B has the smallest possible dimension, then it is V-connected.

Lemma 3. Let X be a normal and \mathbb{Q} -factorial projective variety, and V be a covering and quasi-unsplit family of 1-cycles on X. If dim $B = f_V + 1$, then every connected component of B is a V-equivalence class.

Proof. By Proposition 1, we know that *B* is the union of all *V*-equivalence classes whose dimension is $f_V + 1$. Since each of these equivalence classes must contain an irreducible component of *B*, they are in a finite number, and each is contained in a connected component of *B*.

So if B_0 is a connected component of B, we have $B_0 = F_1 \cup \cdots \cup F_r$, where each F_i is a *V*-equivalence class. We want to show that r = 1.

Assume by contradiction that r > 1. Observe that the F_i 's are disjoint and B_0 is connected, hence at least one F_i is not a closed subset of X; assume it is F_1 .

Then F_1 is a countable union of closed subsets. Considering the decomposition of B_0 as a union of irreducible components, we find an irreducible component T of B_0 such that

$$T=\bigcup_{m\in\mathbb{N}}K_m$$

where each K_m is a nonempty proper closed subset of T. Since T is an irreducible complex projective variety, this is impossible.

We reformulate in a single result what we proved so far.

Proposition 3. Let X be a normal and \mathbb{Q} -factorial projective variety, and V a covering and quasi-unsplit family of rational 1-cycles on X. Then:

- (i) either $B = \emptyset$ or dim $B \ge f_V + 1$,
- (ii) if $B = \emptyset$ or if dim $B = f_V + 1$ then there exists a nef divisor \widehat{D} on X such that for any curve C in X, $\widehat{D} \cdot C = 0$ if and only if $[C] \in R_V$.

5. Existence of a geometric quotient

Let *V* be a covering and quasi-unsplit family of 1-cycles on *X*. Observe that the geometric quotient $q': X \to Y'$ for *V*, provided it exists, has the following property: *for any irreducible curve C in X*, q'(C) *is a point if and only if* $[C] \in R_V$.

Conversely, we show that a morphism with the property above is quite close to being a geometric quotient.

Proposition 4. Let X be a normal and \mathbb{Q} -factorial projective variety, and V a covering and quasi-unsplit family of 1-cycles on X. Assume that there exists a morphism with connected fibers $q': X \to Y'$ onto a complete and normal algebraic variety Y', such that for any irreducible curve C in X, q'(C) is a point if and only if $[C] \in R_V$. Then there exists a birational morphism $\psi: Y \to Y'$ that fits into the commutative diagram

Moreover, if B' := q'(B)*, we have* $(q')^{-1}(B') = B$ *, and*

$$B' = \{y \in Y' \mid \dim(q')^{-1}(y) > f_V\} = \{y \in Y' \mid \dim \psi^{-1}(y) > 0\}.$$

In particular, every fiber of q' over $Y' \setminus B'$ is a V-equivalence class.

Observe that in Example 1, ψ is not an isomorphism.

Proof. Let $C \subset X$ be an irreducible curve contained in a fiber F of q'. Then $[C] \in R_V$, so the Claim in the proof of Proposition 1 gives that either $C \subseteq B$, or $C \cap B = \emptyset$ and q(C) is a point. Since F is connected, we see that either $F \cap B = \emptyset$, or $F \subseteq B$. This means that $(q')^{-1}(q'(B)) = B$.

The existence of ψ as in (3) follows easily from the normality of Y and the fact that q' contracts all curves in V, hence all V-equivalence classes. Observe that ψ is surjective with connected fibers.

Let us show that p contracts to a point any fiber of $q' \circ e$ over $Y' \setminus B'$.

Let *F* be a fiber of q' over $Y' \setminus B'$; then we have $F \subset X \setminus B$. Choose an irreducible curve $C \subseteq e^{-1}(F)$. Then $e(C) \subseteq F$ and $e(C) \cap B = \emptyset$, so q(e(C)) = p(C) is a point. Since $e^{-1}(F)$ is connected, we have shown that p contracts $e^{-1}(F)$ to a point. Since Y and Y' are normal, this implies that ψ is an isomorphism over $Y' \setminus B'$.

Finally, let $y \in B'$ and let $F' = (q')^{-1}(y)$. Then $F' \subseteq B$, so *e* has positivedimensional fibers on F', and dim $e^{-1}(F') > \dim F' \ge f_V$. Since $e^{-1}(F') = p^{-1}(\psi^{-1}(y))$ and *p* has all fibers of dimension f_V , we must have dim $\psi^{-1}(y) > 0$.

Proof of Theorem 2. If *B* is empty, then the statement is clear. Assume that *B* is not empty. Then Proposition 3 and Lemma 3 show that dim $B = f_V + 1 = n - 2$, every connected component of *B* is a *V*-equivalence class, and there exists a nef divisor \widehat{D} on *X* such that for any curve *C* in *X*, $\widehat{D} \cdot C = 0$ if and only if $[C] \in R_V$.

We have to show that $-K_X \cdot R_V > 0$. Let V' be the covering family of rational 1-cycles on X given by Lemma 2, and consider a resolution of singularities $f: X' \to X$. The family V' determines a covering family V'' of rational 1-cycles in X'. If $C_0 \subset X$ is a general element of the family V', then $C' := \overline{f^{-1}(C_0 \setminus \operatorname{Sing}(X))}$ is a general element of V'', and $C_0 = f_*(C')$.

Since C_0 is reduced and irreducible, so is C'. Moreover V'' is covering, so C' is a free curve in X', and it has positive anticanonical degree.

Let $m \in \mathbb{Z}_{>0}$ be such that mK_X is Cartier. Since X has canonical singularities, we have

$$mK_{X'} = f^*(mK_X) + \sum_i a_i E_i,$$

where E_i are exceptional divisors of f and $a_i \in \mathbb{Z}_{>0}$. Then

$$-mK_X \cdot C_0 = -f^*(mK_X) \cdot C' = -mK_{X'} \cdot C' + \sum_i a_i E_i \cdot C' > 0$$

This gives $-K_X \cdot R_{V'} > 0$ and thus $-K_X \cdot R_V > 0$.

Since X has canonical singularities, the cone theorem and the contraction theorem hold for X (see [Deb01, Theorems 7.38 and 7.39]). Moreover, the extremal ray R_V lies in the K_X -negative part of the Mori cone, hence it can be contracted.

Let $q': X \to Y'$ be the extremal contraction; then Y' is a normal, projective variety, and it is \mathbb{Q} -factorial by [Deb01, Proposition 7.44].

Applying Proposition 4, we see that all fibers of q' over $Y' \setminus q'(B)$ are *V*-equivalence classes. Since connected components of *B* are *V*-equivalence classes, they are exactly the fibers of q' over q'(B), and we have the statement.

6. The toric case: proof of Theorem 3

Step 1: the case with Picard number one.

If $\rho_X = 1$, the statement is just that *X* is *V*-connected. This is well known, and can be seen as follows. Consider a divisor \widehat{D} on *X* constructed as in the proof of Proposition 1. This is an effective divisor which cannot be ample because $\widehat{D} \cdot R_V = 0$. Since $\rho_X = 1$, the only possibility is that *Y* is a point and $\widehat{D} = 0$.

Recall the diagram

$$\begin{array}{c} \mathcal{C} \xrightarrow{F} X \\ \downarrow_{\pi} \\ \downarrow_{V} \\ V \end{array}$$

Recall also that if $D \subset X$ is a prime invariant Weil divisor, there is a natural inclusion $i_D : \mathcal{N}_1(D)_{\mathbb{R}} \hookrightarrow \mathcal{N}_1(X)_{\mathbb{R}}$.

Step 2: let $D \subset X$ be a prime invariant Weil divisor such that $D \cdot R_V = 0$. Then there exists a covering and quasi-unsplit family V_D of 1-cycles in D such that $i_D(R_{V_D}) = R_V$.

Choose an irreducible component W of $F^{-1}(D)$ which dominates D. Set $V'_D := \pi(W)$, and let \mathcal{C}'_D be an irreducible component of $\pi^{-1}(V'_D)$ containing W. Consider the normalization \mathcal{C}_D of \mathcal{C}'_D , and let $\pi_D : \mathcal{C}_D \to V_D$ be the Stein factorization of the composite map $\mathcal{C}_D \to \mathcal{C}'_D \to V'_D$. Finally, let $F_D : \mathcal{C}_D \to X$ be the induced map.

For $v \in V_D$, set $G_v := F_D(\pi_D^{-1}(v))$. Then $G_v \cap D \neq \emptyset$, G_v is connected, and $G_v \cdot D = 0$ because V is quasi-unsplit. This implies $G_v \subseteq D$, hence $F_D(\mathcal{C}_D) \subseteq D$. Moreover, since W dominates D, we have $F_D(\mathcal{C}_D) = D$.

Since V_D is normal, there is a holomorphic map $V_D \to \text{Chow}(D)$. Then after replacing V_D by its image in Chow(D) and \mathcal{C}_D by its image in $\text{Chow}(D) \times X$, we get the desired family.

Step 3: if $\rho_X > 1$, then there exists an invariant prime Weil divisor having intersection zero with R_V .

In fact, let $q: X \dashrightarrow Y$ be the rational map associated to *V*. Since $\rho_X > 1$, *Y* is not a point. Let *D* be a prime divisor in *Y* intersecting $q(X^0)$ and set $D' := \overline{q^{-1}(D)}$. Since there are curves of the family *V* disjoint from *D'*, we have $D' \cdot R_V = 0$. Moreover, *D'* is linearly equivalent to $\sum_i a_i D_i$, where $a_i \in \mathbb{Q}_{>0}$ and D_i are invariant prime Weil divisors. Hence the statement.

Step 4: we prove the statement.

Let Σ_X be the fan of X in $N \cong \mathbb{Z}^n$, and let G_X be the set of primitive generators of one-dimensional cones in Σ_X . It is well known that G_X is in bijection with the set of invariant prime divisors of X; for any $x \in G_X$, we denote by D_x the associated divisor. Recall that for any class $\gamma \in \mathcal{N}_1(X)_{\mathbb{Q}}$, we have

$$\sum_{x \in G_X} (\gamma \cdot D_x) x = 0 \quad \text{ in } N \otimes_{\mathbb{Z}} \mathbb{Q},$$

and that the assignment $\gamma \mapsto \sum_{x \in G_X} (\gamma \cdot D_x) x$ gives a canonical identification of $\mathcal{N}_1(X)_{\mathbb{Q}}$ with the \mathbb{Q} -vector space of linear relations with rational coefficients among G_X .

Let $m_1x_1 + \cdots + m_hx_h = 0$ be the relation corresponding to the numerical class of a general cycle of V, with $x_i \in G_X$ and m_i nonzero rational numbers for all *i*. Since V is covering and quasi-unsplit, all m_i 's must be positive.

The following two statements are equivalent (see [Rei83, Theorem 2.4] and [Cas03, Theorem 2.2]):

(a) there exists a Q-factorial, projective toric variety Y' and a flat, equivariant morphism $q': X \to Y'$ such that for any curve *C* in *X*, q'(C) is a point if and only if $[C] \in R_V$;

(b) for any $\tau \in \Sigma_X$ such that $x_1, \ldots, x_h \notin \tau$, we have

$$\tau + \langle x_1, \dots, \dot{x}_i, \dots, x_h \rangle \in \Sigma_X \quad \text{for all } i = 1, \dots, h.$$
(4)

Let us show (b) by induction on the dimension of X.

If $\rho_X = 1$, we have already shown (a) and hence (b) in Step 1.

Assume that $\rho_X > 1$. Observe that if $y \in G_X$, we have $D_y \cdot R_V = 0$ if and only if y is different from x_1, \ldots, x_h . So by Step 3, we know that $G_X \setminus \{x_1, \ldots, x_h\}$ is nonempty.

Clearly, it is enough to check (4) for any maximal τ in Σ_X not containing any x_i . Since $\{x_1, \ldots, x_h\} \subsetneq G_X$, such a maximal τ will have positive dimension.

Let $y \in G_X \cap \tau$. We have $D_y \cdot R_V = 0$, so by Step 2 there exists a quasi-unsplit, covering family V_{D_y} in D_y such that $i_{D_y}(R_{V_{D_y}}) = R_V$.

Set $\overline{N} := N/\mathbb{Z} \cdot y$ and for any $z \in N$, write \overline{z} for its image in \overline{N} . The fan Σ_{D_y} of D_y is given by the projections in $\overline{N} \otimes_{\mathbb{Z}} \mathbb{Q}$ of all cones of Σ_X containing y. The relation corresponding to the numerical class of a general cycle of V_{D_y} is $\lambda m_1 \overline{x}_1 + \cdots + \lambda m_h \overline{x}_h = 0$ for some $\lambda \in \mathbb{Q}_{>0}$. By induction, we know that (b) holds for V_{D_y} in D_y . In particular, the projection $\overline{\tau}$ of τ is in Σ_{D_y} , so we have

$$\overline{\tau} + \langle \overline{x}_1, \dots, \dot{\overline{x}}_i, \dots, \overline{x}_h \rangle \in \Sigma_{D_v}$$
 for all $i = 1, \dots, h$.

This yields (4).

Finally, since q' is equidimensional, all fibers must be V-equivalence classes and $B = \emptyset$.

References

- [AC004] Andreatta, M., Chierici, E., Occhetta, G.: Generalized Mukai conjecture for special Fano varieties. Central Europ. J. Math. 2, 272–293 (2004) Zbl 1068.14049 MR 2113552
- [Bat99] Batyrev, V. V.: On the classification of toric Fano 4-folds. J. Math. Sci. (New York) 94, 1021–1050 (1999) Zbl 0929.14024 MR 1703904
- [BCE⁺02] Bauer, T., Campana, F., Eckl, T., Kebekus, S., Peternell, T., Rams, S., Szemberg, T., Wotzlaw, L.: A reduction map for nef line bundles. In: Complex Geometry (Göttingen, 2000), Springer, 27–36 (2002) Zbl 1054.14019 MR 1922095
- [Cam81] Campana, F.: Coréduction algébrique d'un espace analytique faiblement Kählérien compact. Invent. Math. 63, 187–223 (1981) Zbl 0436.32024 MR 0610537

- [Cam04] Campana, F.: Orbifolds, special varieties and classification theory: an appendix. Ann. Inst. Fourier (Grenoble) 54, 631–665 (2004) Zbl 1062.14015 MR 2097417
- [Cas03] Casagrande, C.: Contractible classes in toric varieties. Math. Z. 243, 99–126 (2003) Zbl pre01922488 MR 1953051
- [CO04] Chierici, E., Occhetta, G.: The cone of curves of Fano varieties of coindex four. Preprint math.AG/0401429 (2004)
- [Deb01] Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext, Springer (2001) Zbl 0978.14001 MR 1841091
- [Kac97] Kachi, Y.: Extremal contractions from 4-dimensional manifolds to 3-folds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24, 63–131 (1997) Zbl 0908.14002 MR 1475773
- [KS02] Kachi, Y., Sato, E.: Segre's reflexivity and an inductive characterization of hyperquadrics. Mem. Amer. Math. Soc. 160, no. 763 (2002) Zbl 1039.14016 MR 1938329
- [KNS05] Knutsen, A. L., Novelli, C., Sarti, A.: On varieties which are uniruled by lines. Preprint math.AG/0503161 (2005)
- [Kol96] Kollár, J.: Rational Curves on Algebraic Varieties. Ergeb. Math. Grenzgeb. 32, Springer (1996) Zbl 0877.14012 MR 1440180
- [KMM92] Kollár, J., Miyaoka, Y., Mori, S.: Rational connectedness and boundedness of Fano manifolds. J. Differential Geom. 36, 765–779 (1992) Zbl 0759.14032 MR 1189503
- [Rei83] Reid, M.: Decomposition of toric morphisms. In: Arithmetic and Geometry, vol. II: Geometry, Progr. Math. 36, Birkhäuser, 395–418 (1983) Zbl 0571.14020 MR 0717617
 [The observed of the second se
- [Tsu00] Tsuji, H.: Numerically trivial fibrations. Preprint math.AG/0001023 (2000)