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Abstract. Given a covering familyV of effective 1-cycles on a complex projective varietyX, we
find conditions allowing one to construct a geometric quotientq : X → Y , with q regular on the
whole ofX, such that every fiber ofq is an equivalence class for the equivalence relation naturally
defined byV . Among other results, we show that on a normal andQ-factorial projective varietyX
with canonical singularities and dimX ≤ 4, every covering and quasi-unsplit familyV of rational
curves generates a geometric extremal ray of the Mori coneNE(X) of classes of effective 1-cycles
and that the associated Mori contraction yields a geometric quotient forV .
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1. Introduction

LetX be a normal complex projective variety. LetV be an irreducible and closed subset
of Chow(X) such that any element ofV is a 1-cycle, and such that for any pointx ∈ X,
there exists an element ofV passing throughx. We callV a covering family of1-cycles
onX.

The framework is Campana’s notion ofV -equivalence, and the construction of the
related rational map defined onX: two pointsx, x′ are said to beV -equivalentif there
existv1, . . . , vm ∈ V such that some connected component ofCv1 ∪ · · · ∪ Cvm contains
x andx′, whereCv ⊂ X is the curve corresponding tov ∈ V . By Campana’s results (see
Section 2), there exists a dominant almost holomorphic mapq : X 99K Y , Y a normal
projective variety, whose general fibers areV -equivalence classes. LetfV := dimX −

dimY .
A morphismq ′ : X → Y ′ onto a normal projective varietyY ′ will be called ageomet-

ric quotient for V if everyfiber of q ′ is aV -equivalence class. If such a quotient exists,
then it is clearly unique up to isomorphism. On the other hand, even ifX is smooth, a
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geometric quotient forV does not necessarily exist (see Example 2). We refer to [KS02]
for a general introduction to this question and related ones.

The main problem is to find sufficient conditions onX andV for the geometric quo-
tient to exist.

Let N1(X)R (respectivelyN1(X)Q) be the vector space of 1-cycles inX with real
(respectively rational) coefficients, modulo numerical equivalence. InN1(X)R, letNE(X)
be the closure of the convex cone generated by classes of effective 1-cycles inX.

We say thatV is quasi-unsplitif there exists a half-lineRV ⊆ NE(X) such that
the numerical class of every irreducible component of every cycle inV belongs toRV
[CO04, Definition 2.13]. Equivalently,V is quasi-unsplit if all irreducible components of
the cycles parametrized byV are numerically proportional.

The first result is the following theorem.

Theorem 1. LetX be a normal andQ-factorial complex projective variety of dimension
n and letV be a covering and quasi-unsplit family of1-cycles onX. If fV ≥ n− 2, then
there exists a geometric quotient forV .

Next, we specialize to rational 1-cycles onX, that is, cycles whose irreducible compo-
nents are rational curves, and look at related questions.

A geometric extremal rayof the Mori coneNE(X) is a half-lineR ⊆ NE(X) such
that if γ1 + γ2 ∈ R for someγ1, γ2 ∈ NE(X), thenγ1, γ2 ∈ R.

Let V be a covering and quasi-unsplit family of rational 1-cycles onX. IsRV a geo-
metric extremal ray ofNE(X)?

Note that this question is natural, since any family of rational 1-cycles such that the
general member generates a geometric extremal ray ofNE(X) is quasi-unsplit. IfV is
not assumed to be covering, the preceding statement is not true by looking at a smooth
blow-down of a smooth projective variety to a nonprojective one: contracted curves do
not define a geometric extremal ray.

Theorem 2. Let X be a normal andQ-factorial complex projective variety of dimen-
sionn with canonical singularities. LetV be a covering and quasi-unsplit family of ra-
tional 1-cycles onX, and letfV be the dimension of a generalV -equivalence class. If
fV ≥ n− 3, thenRV is extremal in the sense of Mori theory and the associated contrac-
tion yields a geometric quotient forV .

We then immediately get the following corollary.

Corollary 1. LetX be a normal andQ-factorial complex projective variety of dimension
≤ 4 with canonical singularities and letV be a covering and quasi-unsplit family of
rational1-cycles onX. ThenRV is extremal in the sense of Mori theory and the associated
contraction yields a geometric quotient forV .

We finally consider the toric case, where we can prove both extremality and existence of
a geometric quotient for a quasi-unsplit family of 1-cycles in any dimension.
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Theorem 3. LetX be a toric andQ-factorial complex projective variety, and letV be a
covering and quasi-unsplit family of1-cycles inX. ThenRV is an extremal ray ofNE(X)
in the sense of Mori theory and the associated contraction yields an equivariant and
equidimensional morphismq ′ : X → Y ′ onto a toric andQ-factorial projective variety
Y ′ which is a geometric quotient forV .

The following is an immediate application of Theorems 2 and 3.

Corollary 2. LetX ⊂ PN be a normal andQ-factorial variety such that through any
point of X there is a line contained in X. Assume that eitherX is toric, or has canonical
singularities anddimX ≤ 4. LetV be an irreducible family of lines coveringX. Then
there exists a geometric quotient forV .

Note that ifX ⊂ PN has sufficiently small degree thenX is covered by lines (see [KNS05]
for a precise statement).

Finally, we point out that our results are related to the construction in [BCE+02] of the
reduction morphism for a nef line bundleL ∈ PicX (see also [Tsu00]). This is an almost
holomorphic rational mapf : X 99K T , dominant with connected fibers, such that:

◦ L · C = 0 for any curveC contained in a proper fiberF of f with dimF = dimX −

dimY ;
◦ L · C > 0 for every irreducible curveC passing through a general point ofX.

The mapf is unique up to birational equivalence ofT , and the dimension ofT is called
thenef dimensionof L.

It is still quite unclear in which circumstancesf can be chosen holomorphic (see
[BCE+02, §2.4]); it is always so if the nef dimension ofL is at most one. Theorem 1
gives a partial answer for nef line bundles with nef dimension two.

Corollary 3. LetX be a normal andQ-factorial projective variety withdimX ≥ 3, and
L ∈ PicX be a nef line bundle with nef dimension2. Assume that{γ ∈ NE(X) | γ ·L = 0}

is a half-line. Then there exists a nef reduction morphismq : X → Y onto a normal
projective surfaceY such that for any curveC ⊂ X we haveq(C) = {pt} if and only if
C · L = 0.

2. Set-up on families of 1-cycles

LetX be a normal, irreducible,n-dimensional complex projective variety. For any curve
C ⊂ X, we denote by [C] ∈ N1(X)R its numerical class.

If R ⊂ NE(X) is a half-line andD is a divisor inX, we writeD ·R > 0,D ·R = 0, or
D ·R < 0 if respectivelyD ·γ > 0,D ·γ = 0, orD ·γ < 0 for a nonzero elementγ ∈ R.

Let V be a covering family of 1-cycles onX. We have a diagram given by the inci-
dence varietyC associated toV :

C
π

��

F // X

V

(1)

whereπ andF are proper and surjective. SetCv := F(π−1(v)) for anyv ∈ V .
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The relation ofV -equivalence onX induced by such a family was introduced and
studied in [Cam81]; we refer the reader to [Cam04], [Deb01, §5.4], [KMM92] or [Kol96,
§IV.4] for more details. By [Deb01, Theorem 5.9] there exists a closed and irreducible
subset of Chow(X) whose normalizationY has the following properties:

(a) if Z ⊂ Y ×X is the restriction of the universal family,

Z

p

��

e // X

q
��~

~
~

~

Y

(2)

thene is a birational morphism andq = p◦e−1 is almost holomorphic (which means
that the exceptional locus ofe does not dominateY );

(b) a general fiber ofq is aV -equivalence class,
(c) a general fiber ofq, hence ofp, is irreducible.

As a consequence of the existence of the mapq, a generalV -equivalence class is a closed
subset ofX. We denote byfV its dimension, so that dimY = n−fV . Moreover, it is well
known that anyV -equivalence class is a countable union of closed subsets ofX.

Example 1 (see [Kac97, Example 11.1], and references therein). Fix a pointx0 in P3

and let
P0 := {5 ∈ (P3)∗ | x0 ∈ 5} ' P2

be the variety of 2-planes inP3 containingx0. Consider the varietyX ⊂ P3
× P0 defined

as
X := {(x,5) ∈ P3

× P0 | x ∈ 5}.

ThenX is a smooth Fano 4-fold, with Picard number 2 and pseudo-index 2. The two
elementary extremal contractions are given by the projections on the two factors.

The morphismX → P0 is a fibration inP2: the fiber over a point is the plane corre-
sponding to that point.

Consider the morphismX → P3. If x 6= x0, the fiber overx is theP1 of planes
containingx andx0. But the fiberF0 overx0 is naturally identified withP0, hence it is
isomorphic toP2. LetV → P3 be the blow-up ofx0 andC → X be the blow-up ofF0:

C
π=p

��

F=e // X

q ′

��

q

~~~
~

~
~

V
ψ // P3

Definition 1. We say that a subset ofX is V -connectedif it is contained in aV -equiva-
lence class.

Lemma 1. LetX be a normal projective variety andV be a covering family of1-cycles
onX. Consider the diagram(2) above. Thene(p−1(y)) is V -connected for anyy ∈ Y .
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Proof. Let R ⊂ X × X be the graph of the equivalence relation defined byV ; it is
a countable union of closed subvarieties sinceV is proper. The fiber productZ ×Y Z

is irreducible and thus(e × e)(Z ×Y Z) ⊂ R thanks to properties (a) and (b) above.
Therefore, for anyx ∈ e(p−1(y)), the cyclee(p−1(y)) is contained in theV -equivalence
class ofx. ut

Finally, we will need the following.

Lemma 2. LetX be a normal projective variety andV be a covering and quasi-unsplit
family of 1-cycles onX. Then there exists a covering and quasi-unsplit familyV ′ of
1-cycles onX such that:

◦ the general cycle ofV ′ is reduced and irreducible;
◦ for anyv′

∈ V ′ there existsv ∈ V such thatCv′ ⊆ Cv; in particular RV = RV ′ .

Proof. Let C be the incidence variety associated toV as in (1). It is well known that
every irreducible component ofC dominatesV ; let C′′ be an irreducible component ofC
which also dominatesX. Let C′ be the normalization ofC′′ andC′

→ V ′ be the Stein
factorization of the composite mapC′

→ C′′
→ V . SinceC′

→ V ′ has connected fibers
andC′ is normal, the general fiber ofC′

→ V ′ is irreducible. Moreover, the image inX
of every fiber ofC′

→ V ′ is contained in a cycle ofV .
SinceV ′ is normal, there is a holomorphic mapV ′

→ Chow(X). Then after replacing
V ′ by its image in Chow(X) andC′ by its image in Chow(X) × X, we get the desired
family. ut

3. Properties of the base locus

Let V be a covering family of 1-cycles onX, and recall the diagram (2) associated toV .
Let E ⊂ Z be the exceptional locus ofe, andB := e(E) ⊂ X. Observe that sinceX is
normal, dimB ≤ n− 2.

Proposition 1. LetX be a normal andQ-factorial projective variety, andV be a cover-
ing and quasi-unsplit family of1-cycles onX. Consider the associated diagram as in(2).
Then:

(i) e(p−1(y)) is aV -equivalence class of dimensionfV for everyy ∈ Y \ p(E);
(ii) B is the union of allV -equivalence classes of dimension greater thanfV .

Proof. SetX0 := X \B andY 0 := Y \p(E) = q(X0). Choose a very ample line bundle
H onY , and letU ⊂ |H | be the open subset of prime divisorsD such thatD ∩ Y 0

6= ∅.
For anyD in U , we defineD̂ := q−1(D ∩ Y 0), which is a prime Weil divisor inX. Since
X is Q-factorial, some multiple of̂D defines a line bundlêH onX. Observe that asD
varies inU , the divisorsD̂ are numerically equivalent inX.

Observe also that a general cycleCv of V is contained in a fiber ofq disjoint fromD̂,
so D̂ · Cv = 0. SinceV is quasi-unsplit, this giveŝD · RV = 0, meaning that forevery
irreducible componentC of everycycle ofV we haveD̂ · C = 0.
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Let nowN := h0(H), and lets1, . . . , sN be general global sections generatingH .
For eachi = 1, . . . , N , letDi ∈ |H | be the divisor of zeros ofsi andD̂i in X as defined
above.

Let us show that̂D1 ∩ · · · ∩ D̂N = B. If x 6∈ B, thenq is defined atx and there
is somei0 ∈ {1, . . . , N} such thatq(x) 6∈ Di0, sox 6∈ D̂i0. Conversely, letx ∈ B and
fix i ∈ {1, . . . , N}. Thene−1(x) has positive dimension; letC ⊂ Z be an irreducible
curve such thate(C) = x. Recall thatZ ⊂ Y × X, so p(C) is a curve inY . Then
Di ∩ p(C) 6= ∅ andp−1(Di) ∩ C 6= ∅. Now observe thatp−1(Di) does not contain any
component ofE, hencee(p−1(Di)) is a divisor inX which coincides witĥDi overX\B.
ThenD̂i = e(p−1(Di)) andx ∈ D̂i .

Claim. LetC be an irreducible curve inX such thatD̂ · C = 0 for someD ∈ U . Then
eitherC ⊆ B, or C ∩ B = ∅ andq(C) = {pt}.

In fact, assume thatC is not contained inB. SinceB = D̂1 ∩ · · · ∩ D̂N , there exists
i ∈ {1, . . . , N} such thatC is not contained in̂Di . ThenC ∩ D̂i = ∅, becauseC · D̂i = 0.
ThusC ∩ B = ∅.

Moreover ifq(C) is a curve, there existsD0 ∈ U such thatD0 intersectsq(C) in a
finite number of points. Then̂D0 intersectsC without containing it, a contradiction, again
becauseC · D̂0 = 0.

This shows thatB is closed with respect toV -equivalence. In fact, letC be an irre-
ducible component of a cycle ofV such thatC∩B 6= ∅. We haveC ·D̂ = 0, so the Claim
above implies thatC ⊆ B.

Consider now aV -equivalence classF ⊆ X. SinceB is closed with respect toV -
equivalence, eitherF ∩ B = ∅, orF ⊆ B.

Assume thatF ∩B = ∅, and choose an irreducible componentC of a cycle ofV such
thatC ⊆ F . We haveD̂ · C = 0 for anyD ∈ U , henceq(C) is a point by the Claim
above. By definition ofV -equivalence, any two points ofF can be joined by a chain of
components of cycles ofV , so we haveq(F ) = y0 ∈ Y , andF ⊆ e(p−1(y0)). On the
other hand,e(p−1(y)) is V -connected by Lemma 1, soF = e(p−1(y0)). Finally, since
F ∩ B = ∅, we must havey0 ∈ Y 0, soF is a proper fiber ofq of dimensionfV .

For anyx ∈ X, let Yx := p(e−1(x)) be the family of cycles parametrized byY and
passing throughx, and Locus(Yx) := e(p−1(Yx)). Observe that for anyy ∈ Yx , the subset
e(p−1(y)) containsx and isV -connected by Lemma 1. Hence Locus(Yx) isV -connected
for anyx ∈ X.

SinceZ ⊂ Y × X, we have dimYx = dime−1(x). Thus dimYx > 0 if and only if
x ∈ B, by Zariski’s main theorem. If so, Locus(Yx) has dimension at leastfV + 1.

Now letF be aV -equivalence class contained inB, andx ∈ F . Then Locus(Yx) has
dimension at leastfV + 1 and is contained inF , hence dimF ≥ fV + 1. ut

Let us remark that in general, ifV is not quasi-unsplit,B is not closed with respect to
V -equivalence.

Example 2. In P2 fix two pointsx, y and the lineL = xy. ConsiderP2
× P2 with the

projectionsπ1, π2 on the two factors, and fix three curvesRx , Ry , L′ such that:
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◦ Rx is a line inP2
× x andRy is a line inP2

× y;
◦ π1(Rx) ∩ π1(Ry) is a pointz ∈ P2;
◦ L′ := z× L is the unique line dominatingL via π2 and intersecting bothRx andRy .

Let σ : W → P2
× P2 be the blow-up ofRx andRy . InW , the strict transform ofL′ is a

smooth rational curve with normal bundleOP1(−1)⊕3. LetX be the variety obtained by
“flipping” this curve. ThenX is a smooth toric Fano 4-fold withρX = 4 (this isZ2 in
Batyrev’s list, see [Bat99, Proposition 3.3.5]).

X //___

q   @
@

@
@ W

π2◦σ

��
P2

The strict transform of a general line in a fiber ofπ2 gives a covering familyV of rational
curves onX. The birational mapX 99K P2

× P2 is an isomorphism overP2
× (P2

\L); if
U ⊂ X is the corresponding open subset, thenU is closed with respect toV -equivalence
and every fiber ofq : U → P2

\ L is a V -equivalence class isomorphic toP2. Thus
fV = 2.

Let Tx andTy be the images inX of the exceptional divisors ofσ in W . These two
divisors areV -connected, and they cannot be contained inB because dimB ≤ 2. More-
over,P := Tx ∩ Ty is theP2 with normal bundleOP2(−1)⊕2 obtained under the flip. The
mapq : X 99K P2 cannot be defined overP , soP ∩B 6= ∅. ThereforeB cannot be closed
with respect toV -equivalence.

Observe that the numerical class ofV lies in the interior ofNE(X), hence the unique
morphism, onto a projective variety, which contracts curves inV , isX → {pt}.

Proof of Theorem 1.If B is not empty, Proposition 1 gives dimB ≥ fV + 1 ≥ n − 1,
which is impossible becauseX is normal. HenceB is empty andq : X → Y is an equidi-
mensional morphism, whose fibers areV -equivalence classes. ut

Proof of Corollary 3. Let V be a covering family of 1-cycles having intersection zero
with L. Such a family exists becauseL has nef dimension two and the dimension ofX is
at least three.

SinceR := {γ ∈ NE(X) | γ · L = 0} is an extremal ray ofNE(X) and the general
1-cycle ofV has numerical class inR, the familyV is quasi-unsplit andRV = R.

Consider the nef reductionf : X 99K T of L and letF be a general fiber. For any
irreducible curveC ⊆ F we haveC · L = 0, so [C] ∈ R. Using the Claim in the proof
of Proposition 1, we see thatC ∩ B = ∅ andq(C) is a point. This is true for all curves in
F , soF ∩ B = ∅ andq(F ) must be point. ThenF is contained in aV -equivalence class,
hencefV ≥ dimF = n− dimT ≥ n− 2. Now the statement follows from Theorem 1.

ut

4. Extremality for covering families of rational 1-cycles

We now consider extremality properties ofRV for a covering and quasi-unsplit family of
rational 1-cycles.
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The following well known remark will be of constant use (see [Kol96, Proposition
IV.3.13.3], or [ACO04, Corollary 4.2]).

Remark 1. Assume thatV is a covering family of rational 1-cycles, and letZ ⊂ X

be V -connected. Then every curve contained inZ is numerically equivalent inX to a
linear combination with rational coefficients of irreducible components of cycles inV . In
particular, ifV is quasi-unsplit andC is a curve contained in aV -connected subset ofX,
then [C] ∈ RV .

A key observation is the following.

Proposition 2. LetX be a normal andQ-factorial projective variety, andV a covering
and quasi-unsplit family of rational1-cycles onX. If every connected component ofB
is V -connected, then there exists a nef divisorD̂ onX such that for any curveC in X,
D̂ · C = 0 if and only if[C] ∈ RV .

Proof. We use the same notation as in the proof of Proposition 1. SoH is a very ample
line bundle onY , U ⊂ |H | is the open subset of divisorsD that are irreducible and such
thatD 6⊆ p(E), and for anyD inU , we setD̂ := q−1(D \ p(E)). Recall that̂D ·RV = 0,
and thatB = D̂1 ∩ · · · ∩ D̂N for someD1, . . . , DN ∈ U .

Let us show that̂D is nef. By contradiction, suppose that there exists an irreducible
curveC with C · D̂ < 0. ThenC must be contained in̂D1, . . . , D̂N , henceC ⊆ B. But
B is V -connected, so by Remark 1,C should be numerically proportional toV , which is
impossible becausêD · RV = 0.

Let us finally show thatC · D̂ = 0 if and only if [C] ∈ RV : actually, ifC · D̂ = 0, the
Claim in the proof of Proposition 1 shows that eitherC ⊂ B or C is contained in a fiber
of q, both areV -connected, hence [C] ∈ RV by Remark 1. ut

Unfortunately,B is notV -connected in general as shown by the following example.

Example 3. Let us go back to Example 1. We haveNF0/X = �1
P2(1) and(−KX)|F0 =

OF0(2). Observe thatV is a family of extremal irreducible rational curves of anticanonical
degree 2.

If we considerX × P1 with the same family of curves, we have dimY = 4, fV = 1
andB = F0 × P1, which is notV -connected.

We finally get the following result: ifB has the smallest possible dimension, then it is
V -connected.

Lemma 3. LetX be a normal andQ-factorial projective variety, andV be a covering
and quasi-unsplit family of1-cycles onX. If dimB = fV + 1, then every connected
component ofB is aV -equivalence class.

Proof. By Proposition 1, we know thatB is the union of allV -equivalence classes whose
dimension isfV + 1. Since each of these equivalence classes must contain an irreducible
component ofB, they are in a finite number, and each is contained in a connected com-
ponent ofB.
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So ifB0 is a connected component ofB, we haveB0 = F1 ∪ · · · ∪ Fr , where eachFi
is aV -equivalence class. We want to show thatr = 1.

Assume by contradiction thatr > 1. Observe that theFi ’s are disjoint andB0 is
connected, hence at least oneFi is not a closed subset ofX; assume it isF1.

ThenF1 is a countable union of closed subsets. Considering the decomposition ofB0
as a union of irreducible components, we find an irreducible componentT of B0 such that

T =

⋃
m∈N

Km

where eachKm is a nonempty proper closed subset ofT . SinceT is an irreducible com-
plex projective variety, this is impossible. ut

We reformulate in a single result what we proved so far.

Proposition 3. LetX be a normal andQ-factorial projective variety, andV a covering
and quasi-unsplit family of rational1-cycles onX. Then:

(i) eitherB = ∅ or dimB ≥ fV + 1,
(ii) if B = ∅ or if dimB = fV + 1 then there exists a nef divisor̂D onX such that for

any curveC in X, D̂ · C = 0 if and only if[C] ∈ RV .

5. Existence of a geometric quotient

Let V be a covering and quasi-unsplit family of 1-cycles onX. Observe that the geomet-
ric quotientq ′ : X → Y ′ for V , provided it exists, has the following property:for any
irreducible curveC in X, q ′(C) is a point if and only if[C] ∈ RV .

Conversely, we show that a morphism with the property above is quite close to being
a geometric quotient.

Proposition 4. LetX be a normal andQ-factorial projective variety, andV a covering
and quasi-unsplit family of1-cycles onX. Assume that there exists a morphism with
connected fibersq ′ : X → Y ′ onto a complete and normal algebraic varietyY ′, such that
for any irreducible curveC in X, q ′(C) is a point if and only if[C] ∈ RV . Then there
exists a birational morphismψ : Y → Y ′ that fits into the commutative diagram

Z

p

��

e // X
q

~~~
~

~
~

q ′

��
Y

ψ // Y ′

(3)

Moreover, ifB ′ := q ′(B), we have(q ′)−1(B ′) = B, and

B ′
= {y ∈ Y ′

| dim(q ′)−1(y) > fV } = {y ∈ Y ′
| dimψ−1(y) > 0}.

In particular, every fiber ofq ′ overY ′
\ B ′ is aV -equivalence class.

Observe that in Example 1,ψ is not an isomorphism.
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Proof. Let C ⊂ X be an irreducible curve contained in a fiberF of q ′. Then [C] ∈ RV ,
so the Claim in the proof of Proposition 1 gives that eitherC ⊆ B, or C ∩ B = ∅ and
q(C) is a point. SinceF is connected, we see that eitherF ∩ B = ∅, or F ⊆ B. This
means that(q ′)−1(q ′(B)) = B.

The existence ofψ as in (3) follows easily from the normality ofY and the fact that
q ′ contracts all curves inV , hence allV -equivalence classes. Observe thatψ is surjective
with connected fibers.

Let us show thatp contracts to a point any fiber ofq ′
◦ e overY ′

\ B ′.
Let F be a fiber ofq ′ overY ′

\ B ′; then we haveF ⊂ X \ B. Choose an irreducible
curveC ⊆ e−1(F ). Thene(C) ⊆ F ande(C) ∩ B = ∅, soq(e(C)) = p(C) is a point.
Sincee−1(F ) is connected, we have shown thatp contractse−1(F ) to a point. SinceY
andY ′ are normal, this implies thatψ is an isomorphism overY ′

\ B ′.
Finally, let y ∈ B ′ and letF ′

= (q ′)−1(y). ThenF ′
⊆ B, so e has positive-

dimensional fibers onF ′, and dime−1(F ′)>dimF ′
≥fV . Sincee−1(F ′)=p−1(ψ−1(y))

andp has all fibers of dimensionfV , we must have dimψ−1(y) > 0. ut

Proof of Theorem 2.If B is empty, then the statement is clear. Assume thatB is not
empty. Then Proposition 3 and Lemma 3 show that dimB = fV + 1 = n − 2, every
connected component ofB is aV -equivalence class, and there exists a nef divisorD̂ on
X such that for any curveC in X, D̂ · C = 0 if and only if [C] ∈ RV .

We have to show that−KX · RV > 0. LetV ′ be the covering family of rational 1-
cycles onX given by Lemma 2, and consider a resolution of singularitiesf : X′

→ X.
The familyV ′ determines a covering familyV ′′ of rational 1-cycles inX′. If C0 ⊂ X is a
general element of the familyV ′, thenC′ := f−1(C0 \ Sing(X)) is a general element of
V ′′, andC0 = f∗(C

′).
SinceC0 is reduced and irreducible, so isC′. MoreoverV ′′ is covering, soC′ is a free

curve inX′, and it has positive anticanonical degree.
Let m ∈ Z>0 be such thatmKX is Cartier. SinceX has canonical singularities, we

have
mKX′ = f ∗(mKX)+

∑
i

aiEi,

whereEi are exceptional divisors off andai ∈ Z≥0. Then

−mKX · C0 = −f ∗(mKX) · C′
= −mKX′ · C′

+

∑
i

aiEi · C′ > 0.

This gives−KX · RV ′ > 0 and thus−KX · RV > 0.
SinceX has canonical singularities, the cone theorem and the contraction theorem

hold forX (see [Deb01, Theorems 7.38 and 7.39]). Moreover, the extremal rayRV lies
in theKX-negative part of the Mori cone, hence it can be contracted.

Let q ′ : X → Y ′ be the extremal contraction; thenY ′ is a normal, projective variety,
and it isQ-factorial by [Deb01, Proposition 7.44].

Applying Proposition 4, we see that all fibers ofq ′ overY ′
\ q ′(B) areV -equivalence

classes. Since connected components ofB areV -equivalence classes, they are exactly the
fibers ofq ′ overq ′(B), and we have the statement. ut
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6. The toric case: proof of Theorem 3

Step 1: the case with Picard number one.
If ρX = 1, the statement is just thatX isV -connected. This is well known, and can be

seen as follows. Consider a divisor̂D onX constructed as in the proof of Proposition 1.
This is an effective divisor which cannot be ample becauseD̂ · RV = 0. SinceρX = 1,
the only possibility is thatY is a point and̂D = 0.

Recall the diagram

C
π

��

F // X

V

Recall also that ifD ⊂ X is a prime invariant Weil divisor, there is a natural inclusion
iD : N1(D)R ↪→ N1(X)R.

Step 2: letD ⊂ X be a prime invariant Weil divisor such thatD · RV = 0. Then there
exists a covering and quasi-unsplit familyVD of 1-cycles inD such thatiD(RVD ) = RV .

Choose an irreducible componentW of F−1(D) which dominatesD. SetV ′

D :=
π(W), and letC′

D be an irreducible component ofπ−1(V ′

D) containingW . Consider the
normalizationCD of C′

D, and letπD : CD → VD be the Stein factorization of the compos-
ite mapCD → C′

D → V ′

D. Finally, letFD : CD → X be the induced map.

For v ∈ VD, setGv := FD(π
−1
D (v)). ThenGv ∩ D 6= ∅, Gv is connected, and

Gv · D = 0 becauseV is quasi-unsplit. This impliesGv ⊆ D, henceFD(CD) ⊆ D.
Moreover, sinceW dominatesD, we haveFD(CD) = D.

SinceVD is normal, there is a holomorphic mapVD → Chow(D). Then after replac-
ingVD by its image in Chow(D) andCD by its image in Chow(D)×X, we get the desired
family.

Step 3: ifρX > 1, then there exists an invariant prime Weil divisor having intersection
zero withRV .

In fact, letq : X 99K Y be the rational map associated toV . SinceρX > 1, Y is not
a point. LetD be a prime divisor inY intersectingq(X0) and setD′ := q−1(D). Since
there are curves of the familyV disjoint fromD′, we haveD′

· RV = 0. Moreover,D′ is
linearly equivalent to

∑
i aiDi , whereai ∈ Q>0 andDi are invariant prime Weil divisors.

Hence the statement.

Step 4: we prove the statement.
Let 6X be the fan ofX in N ∼= Zn, and letGX be the set of primitive generators

of one-dimensional cones in6X. It is well known thatGX is in bijection with the set of
invariant prime divisors ofX; for anyx ∈ GX, we denote byDx the associated divisor.
Recall that for any classγ ∈ N1(X)Q, we have∑

x∈GX

(γ ·Dx)x = 0 inN ⊗Z Q,
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and that the assignmentγ 7→
∑
x∈GX

(γ ·Dx)x gives a canonical identification ofN1(X)Q
with theQ-vector space of linear relations with rational coefficients amongGX.

Letm1x1 + · · · +mhxh = 0 be the relation corresponding to the numerical class of a
general cycle ofV , with xi ∈ GX andmi nonzero rational numbers for alli. SinceV is
covering and quasi-unsplit, allmi ’s must be positive.

The following two statements are equivalent (see [Rei83, Theorem 2.4] and [Cas03,
Theorem 2.2]):

(a) there exists aQ-factorial, projective toric varietyY ′ and a flat, equivariant morphism
q ′ : X → Y ′ such that for any curveC in X, q ′(C) is a point if and only if [C] ∈ RV ;

(b) for anyτ ∈ 6X such thatx1, . . . , xh 6∈ τ , we have

τ + 〈x1, . . . , x̌i, . . . , xh〉 ∈ 6X for all i = 1, . . . , h. (4)

Let us show (b) by induction on the dimension ofX.
If ρX = 1, we have already shown (a) and hence (b) in Step 1.
Assume thatρX > 1. Observe that ify ∈ GX, we haveDy · RV = 0 if and only if y

is different fromx1, . . . , xh. So by Step 3, we know thatGX \ {x1, . . . , xh} is nonempty.
Clearly, it is enough to check (4) for any maximalτ in 6X not containing anyxi .

Since{x1, . . . , xh} ( GX, such a maximalτ will have positive dimension.
Let y ∈ GX ∩ τ . We haveDy · RV = 0, so by Step 2 there exists a quasi-unsplit,

covering familyVDy in Dy such thatiDy (RVDy ) = RV .

SetN := N/Z · y and for anyz ∈ N , write z for its image inN . The fan6Dy of
Dy is given by the projections inN ⊗Z Q of all cones of6X containingy. The relation
corresponding to the numerical class of a general cycle ofVDy is λm1x1 + · · · + λmhxh
= 0 for someλ ∈ Q>0. By induction, we know that (b) holds forVDy inDy . In particular,
the projectionτ of τ is in6Dy , so we have

τ + 〈x1, . . . , x̌i, . . . , xh〉 ∈ 6Dy for all i = 1, . . . , h.

This yields (4).
Finally, sinceq ′ is equidimensional, all fibers must beV -equivalence classes and

B = ∅.
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