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Abstract. Given a covering familyy of effective 1-cycles on a complex projective variefy we

find conditions allowing one to construct a geometric quotientX — Y, with ¢ regular on the
whole of X, such that every fiber af is an equivalence class for the equivalence relation naturally
defined byV. Among other results, we show that on a normal @afhctorial projective varietyX’

with canonical singularities and dix < 4, every covering and quasi-unsplit famil§ of rational
curves generates a geometric extremal ray of the Mori &EX) of classes of effective 1-cycles
and that the associated Mori contraction yields a geometric quotieit.for
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1. Introduction

Let X be a normal complex projective variety. LEtbe an irreducible and closed subset
of ChowX) such that any element 6f is a 1-cycle, and such that for any poinge X,
there exists an element &f passing through. We call V a covering family ofl-cycles
onX.

The framework is Campana’s notion &f-equivalence, and the construction of the
related rational map defined of: two pointsx, x” are said to bé&/-equivalentif there
existvy, ..., v, € V such that some connected componenCgfU - -- U C,,, contains
x andx’, whereC, C X is the curve corresponding toe V. By Campana’s results (see
Section 2), there exists a dominant almost holomorphic pma@ --+ Y, Y a normal
projective variety, whose general fibers afeequivalence classes. Lgy ;= dimX —
dimY.

A morphismg’: X — Y’ onto a normal projective variety’ will be called ageomet-
ric quotientfor V if everyfiber of ¢’ is a V-equivalence class. If such a quotient exists,
then it is clearly unique up to isomorphism. On the other hand, evéni# smooth, a

L. Bonavero, S. Druel: Institut Fourier, UFR de Mathatiques, Universitde Grenoble 1,
UMR 5582, BP 74, 38402 Saint Martin d&tes, France;
e-mail: bonavero@ujf-grenoble.fr, druel@uijf-grenoble.fr

C. Casagrande: Dipartimento di Matematica, UnivarditPisa, Largo Bruno Pontecorvo 5,
56127 Pisa, Italy; e-mail: casagrande@dm.unipi.it

Mathematics Subject Classification (2000%E30, 14J99, 14M99



46 Laurent Bonavero et al.

geometric quotient fol’ does not necessarily exist (see Exanfiple 2). We refér to [KS02]
for a general introduction to this question and related ones.

The main problem is to find sufficient conditions &nandV for the geometric quo-
tient to exist.

Let N1(X)r (respectivelyN1(X)q) be the vector space of 1-cycles ¥with real
(respectively rational) coefficients, modulo numerical equivalenct/ziX g, letNE(X)
be the closure of the convex cone generated by classes of effective 1-cy&les in

We say thatV is quasi-unsplitif there exists a half-lineRy < NE(X) such that
the numerical class of every irreducible component of every cycké relongs toRy
[CO04, Definition 2.13]. Equivalentlyly is quasi-unsplit if all irreducible components of
the cycles parametrized By are numerically proportional.

The first result is the following theorem.

Theorem 1. Let X be a normal and)-factorial complex projective variety of dimension
n and letV be a covering and quasi-unsplit family dfcycles onX. If fy > n — 2, then
there exists a geometric quotient far

Next, we specialize to rational 1-cycles an that is, cycles whose irreducible compo-
nents are rational curves, and look at related questions.

A geometric extremal rapf the Mori coneNE(X) is a half-lineR < NE(X) such
that if y1 + y» € R for somey, y» € NE(X), thenyy, y» € R.

Let V be a covering and quasi-unsplit family of rational 1-cyclesXorls Ry a geo-
metric extremal ray oNE(X)?

Note that this question is natural, since any family of rational 1-cycles such that the
general member generates a geometric extremal r&yEoK) is quasi-unsplit. IfV is
not assumed to be covering, the preceding statement is not true by looking at a smooth
blow-down of a smooth projective variety to a nonprojective one: contracted curves do
not define a geometric extremal ray.

Theorem 2. Let X be a normal andQ-factorial complex projective variety of dimen-
sionn with canonical singularities. Le¥Y be a covering and quasi-unsplit family of ra-
tional 1-cycles onX, and let fy be the dimension of a gener&l-equivalence class. If

fv = n — 3, thenRy is extremal in the sense of Mori theory and the associated contrac-
tion yields a geometric quotient faf.

We then immediately get the following corollary.

Corollary 1. LetX be a normal and)-factorial complex projective variety of dimension
< 4 with canonical singularities and le¥ be a covering and quasi-unsplit family of
rational 1-cycles onX. ThenRy is extremal in the sense of Mori theory and the associated
contraction yields a geometric quotient for.

We finally consider the toric case, where we can prove both extremality and existence of
a geometric quotient for a quasi-unsplit family of 1-cycles in any dimension.
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Theorem 3. Let X be a toric andQ-factorial complex projective variety, and l&tbe a
covering and quasi-unsplit family dfcycles inX. ThenRy is an extremal ray oNE(X)

in the sense of Mori theory and the associated contraction yields an equivariant and
equidimensional morphisgi: X — Y’ onto a toric andQ-factorial projective variety

Y’ which is a geometric quotient fdr.

The following is an immediate application of Theorgms 2[and 3.

Corollary 2. Let X c PV be a normal andQ-factorial variety such that through any
point of X there is a line contained in X. Assume that eitkiés toric, or has canonical
singularities anddim X < 4. LetV be an irreducible family of lines covering. Then
there exists a geometric quotient far

Note thatifX c PV has sufficiently small degree théhis covered by lines (see [KNS05]
for a precise statement).

Finally, we point out that our results are related to the construction in [BX2ffof the
reduction morphism for a nef line bundlee PicX (see alsa [Tsu00]). This is an almost
holomorphic rational mag': X --» T, dominant with connected fibers, such that:

o L-C = 0forany curveC contained in a proper fiber of f with dim F = dimX —

dimy;
o L -C > 0foreveryirreducible curv€ passing through a general pointXf
The mapf is unique up to birational equivalence Bf and the dimension df is called
thenef dimensiomf L.

It is still quite unclear in which circumstances can be chosen holomorphic (see

[BCET02, §2.4)); it is always so if the nef dimension bfis at most one. TheoreB 1
gives a partial answer for nef line bundles with nef dimension two.

Corollary 3. Let X be a normal andQ-factorial projective variety witldim X > 3, and
L e PicX be a nefline bundle with nef dimensi2mssume thaty € NE(X) | y-L = 0}
is a half-line. Then there exists a nef reduction morphismX — Y onto a normal
projective surfac&’ such that for any curv€ c X we havey(C) = {pt} if and only if
C-L=0.

2. Set-up on families of 1-cycles

Let X be a normal, irreducible;-dimensional complex projective variety. For any curve
C C X, we denote by(] € N1(X)g its numerical class.
If R ¢ NE(X) is a half-line andD is a divisor inX, we writeD-R > 0, D-R = 0, or
D-R < OifrespectivelyD-y > 0,D-y = 0,0rD-y < 0foranonzero elememt € R.
Let V be a covering family of 1-cycles oki. We have a diagram given by the inci-
dence variety associated td/:

c—Ltox

in (1)

1%
wherer andF are proper and surjective. S8t := F(x~1(v)) foranyv e V.
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The relation ofV-equivalence orX induced by such a family was introduced and
studied in[[Cam81]; we refer the reader(to [Cain04], [Deb01, §5.4], [KMM9Z] or [Kol96,
81V.4] for more details. By[[Deb01, Theorem 5.9] there exists a closed and irreducible
subset of ChowX) whose normalizationr has the following properties:

(a) if Z c Y x X is the restriction of the universal family,

Z—=X
7/

p 7 (2)

IR

Y

thene is a birational morphism angl= p oe~1 is almost holomorphic (which means
that the exceptional locus efdoes not dominat#);

(b) a general fiber of is aV-equivalence class,

(c) ageneral fiber of, hence ofp, is irreducible.

As a consequence of the existence of the gnaggeneraV -equivalence class is a closed
subset ofX. We denote byfy its dimension, so that difi = n — fy. Moreover, itis well
known that anyV -equivalence class is a countable union of closed subséfs of

Example 1 (see [Kac9F7, Example 11.1], and references therdfiy a pointxg in P3
and let
Po = {IT € (P** | xo € IT} ~ P?

be the variety of 2-planes if® containingxo. Consider the varietX ¢ P3 x Py defined
as
X :={(x, ) eP®x Py|x e}

Then X is a smooth Fano 4-fold, with Picard number 2 and pseudo-index 2. The two
elementary extremal contractions are given by the projections on the two factors.

The morphismX — Py is a fibration inP?: the fiber over a point is the plane corre-
sponding to that point.

Consider the morphis’X — P3. If x # xo, the fiber overx is the P! of planes
containingx andxg. But the fiberFy over xg is naturally identified withPy, hence it is
isomorphic toP2. Let V — P° be the blow-up okg andC — X be the blow-up ofFy:

c=x

q /
N:pl // iq/
£y
V—>=p3

Definition 1. We say that a subset &f is V-connectedf it is contained in aV-equiva-
lence class.

Lemma 1. Let X be a normal projective variety and be a covering family of-cycles
on X. Consider the diagranf@) above. Ther(p~1(y)) is V-connected for any € Y.
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Proof. Let R ¢ X x X be the graph of the equivalence relation definedWyit is

a countable union of closed subvarieties siicés proper. The fiber produc xy Z

is irreducible and thusge x ¢)(Z xy Z) C R thanks to properties (a) and (b) above.
Therefore, for any € e(p~(y)), the cyclee(p~(y)) is contained in thé’-equivalence
class ofx. O

Finally, we will need the following.

Lemma 2. Let X be a normal projective variety and be a covering and quasi-unsplit
family of 1-cycles onX. Then there exists a covering and quasi-unsplit fanwilyof
1-cycles onX such that:

o the general cycle of’ is reduced and irreducible;
o foranyv’ € V' there existe € V such thatC,, € C,; in particular Ry = Ry.

Proof. Let C be the incidence variety associatedWtoas in [3). It is well known that
every irreducible component 6fdominatesV; let C” be an irreducible component 6f
which also dominateX. Let C’ be the normalization of” andC’ — V'’ be the Stein
factorization of the composite md@p — C” — V. SinceC’ — V’ has connected fibers
and(’ is normal, the general fiber 6f — V' is irreducible. Moreover, the image i
of every fiber ofC’ — V' is contained in a cycle of .

SinceV’ is normal, there is a holomorphic m&p — Chow(X). Then after replacing
V' by its image in ChowX) and(C’ by its image in ChowX) x X, we get the desired
family. O

3. Properties of the base locus

Let V be a covering family of 1-cycles oX, and recall the diagram|(2) associated/to
Let E C Z be the exceptional locus ef andB := ¢(E) C X. Observe that sinc¥ is
normal, dimB <n — 2.

Proposition 1. Let X be a normal and)-factorial projective variety, and’ be a cover-
ing and quasi-unsplit family df-cycles onX. Consider the associated diagram ag{@).
Then:

(i) e(p~L(y))is aV-equivalence class of dimensigi for everyy € Y \ p(E);
(i) B isthe union of allvV-equivalence classes of dimension greater thian

Proof. Setx?:= X\ BandY?:= Y\ p(E) = ¢(X°). Choose a very ample line bundle
HonY,and letU C |H| be the open subset of prime divisdbssuch thatD N Y0 £ ¢.
For anyD in U, we defineD := q~Y(D N YY), which is a prime Weil divisor irX . Since
X is Q-factorial, some multiple oD defines a line bundléf on X. Observe that a®
varies inU, the divisorsD are numerically equivalent iX. R

‘Observe also that a general cyclgof V is contained in a fiber of disjoint from D,
soD - C, = 0. SinceV is quasi-unsplit, this give® - Ry = 0, meaning that foevery
irreducible component’ of everycycle of V we haveD - C = 0.
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Let now N := hO(H), and letsy, ..., sy be general global sections generatig
Foreach =1,..., N, let D; € |H| be the divisor of zeros of andﬁi in X as defined
above. R R

Let us show thatD1 N --- N Dy = B. If x ¢ B, theng is defined atc and there
is someig € {1,..., N} such thaly(x) ¢ D;,, sox ¢ D;,. Conversely, lek € B and
fix i € {1,..., N}. Thene 1(x) has positive dimension; l&f ¢ Z be an irreducible
curve such that(C) = x. Recall thatZ c Y x X, so p(C) is a curve inY. Then
D; N p(C) # ¢ andp~1(D;) N C # ¢. Now observe thap~*(D;) does not contain any
component of, hencee(p~1(D; ) is a divisor inX which coincides W|thD overX\ B.
ThenD; = e(p—l(D )) andx € D;.

Claim. LetC be an irreducible curve iX such thatD - C = 0 for someD € U. Then
eitherC € B,orC N B =@ andq(C) = {pt}.

In fact, assume thaf is not contained inB. SmceB = 51 Nn---N DN, there exists
i €{1,..., N}suchthal is not contained |rD ThenCﬂD = QJ becaus - D =0.
ThusC ﬂ B = 0.

Moreover ifg(C) is a curve, there existBg € U such thatDg intersectsy (C) in a
finite number of points. Thef) intersect<” without containing it, a contradiction, again
becaus& - Dg = 0.

This shows that is closed with respect t&'-equivalence. In fact, le€ be an irre-
ducible component of a cycle &f such thatC N B # . We haveC - D = 0, so the Claim
above implies tha€ C B.

Consider now & -equivalence clas§ C X. SinceB is closed with respect t¥'-
equivalence, eitheF N B = @, or F C B.

Assume thaf N B = ¢, and choose an irreducible componéntf a cycle ofV such
thatC < F. We haveD - C = 0 for anyD € U, henceg(C) is a point by the Claim
above. By definition oV -equivalence, any two points df can be joined by a chain of
components of cycles df, so we havey(F) = yg € Y, andF C e(p~1(yg)). On the
other hande¢(p~1(y)) is V-connected by Lemn@ 1, s = e(p~1(yp)). Finally, since
F N B =@, we must haveg € Y°, soF is a proper fiber of of dimensionfy .

For anyx € X, letY, := p(e~1(x)) be the family of cycles parametrized byand
passing through, and LocusY,) := e(p~1(Y,)). Observe that for any € Y., the subset
e(p~1(y)) containsy and isV-connected by Lemnﬁ 1. Hence Lo¢Hsg) is V-connected
foranyx € X.

SinceZ C Y x X, we have din¥, = dime~1(x). Thus dimy, > 0 if and only if
x € B, by Zariski's main theorem. If so, Loc(s,) has dimension at leagi, + 1.

Now let F be aV-equivalence class contained® andx € F. Then LocusgY,) has
dimension at leasty + 1 and is contained i#', hence dinF > fy + 1. O

Let us remark that in general, ¥ is not quasi-unsplitB is not closed with respect to
V-equivalence.

Example 2. In P2 fix two pointsx, y and the lineL = xy. ConsiderP? x P? with the
projectionsry, 2 on the two factors, and fix three curvls, R, L such that:
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o R.isalineinP? x x andR, is a line inP? x y;
o m1(Ry) Nm1(Ry) is a pointz € P2
o L':=z x Listhe unique line dominating via w2 and intersecting boti®, andR,.
Leto: W — P? x P2 be the blow-up o, andR,. In W, the strict transform of.’ is a
smooth rational curve with normal bunot[qpl(—l)@? Let X be the variety obtained by
“flipping” this curve. ThenX is a smooth toric Fano 4-fold withy = 4 (this isZ> in
Batyrev’s list, see [Bat99, Proposition 3.3.5]).

X——>=W

N
N

JT200
77 J/ ’
PZ

The strict transform of a general line in a fibermgfgives a covering family of rational
curves onX. The birational magX --» P2 x P2 is an isomorphism ovéf? x (P2 \ L); if
U c X is the corresponding open subset, tliers closed with respect t¥-equivalence
and every fiber ofj: U — P2\ L is a V-equivalence class isomorphic B¥. Thus
fv =2

Let T, andT, be the images itX of the exceptional divisors af in W. These two
divisors areV-connected, and they cannot be contained ibecause dinB < 2. More-
over,P :=T,NT,is thelP? with normal bundle(Q]pz(—l)GBZ obtained under the flip. The
mapg: X --» P2 cannot be defined ovet, soP N B # . ThereforeB cannot be closed
with respect tdV -equivalence.

Observe that the numerical classiofies in the interior oNE(X), hence the unique
morphism, onto a projective variety, which contracts curveg,ims X — {pt}.

Proof of Theorem|1If B is not empty, Proposition] 1 gives dih> fy +1 > n — 1,
which is impossible becauséis normal. HenceB is empty and;: X — Y is an equidi-
mensional morphism, whose fibers &eequivalence classes. O

Proof of Corollary[3. Let V be a covering family of 1-cycles having intersection zero
with L. Such a family exists becaugehas nef dimension two and the dimensionxofs
at least three.

SinceR := {y € NE(X) |y - L = 0} is an extremal ray oNE(X) and the general
1-cycle of V has numerical class iR, the family V is quasi-unsplit an®y = R.

Consider the nef reductiofi: X --» T of L and letF be a general fiber. For any
irreducible curveC C F we haveC - L = 0, so [C] € R. Using the Claim in the proof
of Propositior] IL, we see tha&tn B = ## andq(C) is a point. This is true for all curves in
F,s0F N B = ¥ andq (F) must be point. Thel is contained in & -equivalence class,
hencefy > dimF =n —dimT > n — 2. Now the statement follows from Theoréin 1.

O

4. Extremality for covering families of rational 1-cycles

We now consider extremality properties ®f for a covering and quasi-unsplit family of
rational 1-cycles.
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The following well known remark will be of constant use (see [K0I96, Proposition
IV.3.13.3], or [ACOO04, Corollary 4.2)).

Remark 1. Assume thatV is a covering family of rational 1-cycles, and I8t ¢ X
be V-connected. Then every curve containedzins numerically equivalent ik to a
linear combination with rational coefficients of irreducible components of cycl&s In
particular, ifV is quasi-unsplit and’ is a curve contained in E-connected subset df,
then [C] € Ry.

A key observation is the following.

Proposition 2. Let X be a normal and)-factorial projective variety, and’ a covering
and quasi-unsplit family of rational-cycles onX. If every connected component Bf
is V-connected, then there exists a nef divigbon X such that for any curve€ in X,
D - C =0ifand only if[C] € Ry.

Proof. We use the same notation as in the proof of Proposdifion 1#S® a very ample
line bundle onY, U C |H| is the open subset of divisor3 that are irreducible and such
thatD Z p(E), and foranyD in U, we setD := ¢~1(D \ p(E)). Recall thaD-Ry = 0,
andthatB = D1 N - N Dy forsomeDy, ..., Dy € U.

Let us show thaiD is nef. By contradiction, suppose that there exists an irreducible
curveC with C - D < 0. ThenC must be contained i1, ..., Dy, henceC C B. But
B is V-connected, so by Remdgrk @,should be numerically proportional 6, which is
impossible becausb - Ry = 0* R

Let us finally show tha€ - D = 0 if and only if [C] € Ry: actually, ifC - D = 0, the
Claim in the proof of Proposition] 1 shows that eitli&rc B or C is contained in a fiber
of ¢, both areV-connected, henc&€] € Ry by Remark]L. O

Unfortunately,B is notV-connected in general as shown by the following example.

Example 3. Let us go back to Examplg 1. We haxé,, x = Q]%Dz(l) and(—Kx)|r, =
OF,(2). Observe thav is a family of extremal irreducible rational curves of anticanonical
degree 2.

If we considerX x P! with the same family of curves, we have difn= 4, fy = 1
andB = Fy x P, which is notV-connected.

We finally get the following result: i has the smallest possible dimension, then it is
V-connected.

Lemma 3. Let X be a normal andQ-factorial projective variety, and’ be a covering
and quasi-unsplit family ot-cycles onX. If dmB = fy + 1, then every connected
component oB is a V-equivalence class.

Proof. By Propositiorj ]L, we know thak is the union of allV-equivalence classes whose
dimension isfy + 1. Since each of these equivalence classes must contain an irreducible
component ofB, they are in a finite number, and each is contained in a connected com-
ponent ofB.
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So if By is a connected component Bf we haveBg = F, U - - - U F,., where eaclF;
is aV-equivalence class. We want to show that 1.

Assume by contradiction that > 1. Observe that thé&;'s are disjoint andBy is
connected, hence at least ofieis not a closed subset &f; assume it ig.

Then F1 is a countable union of closed subsets. Considering the decompositin of
as a union of irreducible components, we find an irreducible compdhehiBg such that

T=|J Kn
meN
where eaclX,, is a nonempty proper closed subsefofSinceT is an irreducible com-
plex projective variety, this is impossible. O
We reformulate in a single result what we proved so far.

Proposition 3. Let X be a normal and)-factorial projective variety, and’ a covering
and quasi-unsplit family of rationdl-cycles onX. Then:

(i) eitherB =@ ordimB > fy +1, R
(i) if B=¢orif dmB = fy + 1then there exists a nef divisé on X such that for
any curveC in X, D - C = 0ifand only if[C] € Ry.

5. Existence of a geometric quotient

Let V be a covering and quasi-unsplit family of 1-cyclesXnObserve that the geomet-
ric quotientg’: X — Y’ for V, provided it exists, has the following properfgr any
irreducible curveC in X, ¢’(C) is a point if and only if[C] € Ry.

Conversely, we show that a morphism with the property above is quite close to being
a geometric quotient.

Proposition 4. Let X be a normal and)-factorial projective variety, and’ a covering
and quasi-unsplit family ol-cycles onX. Assume that there exists a morphism with
connected fiberg’: X — Y’ onto a complete and normal algebraic variéty, such that
for any irreducible curveC in X, ¢’(C) is a point if and only iffC] € Ry. Then there
exists a birational morphisnf : Y — Y’ that fits into the commutative diagram

z H/ X (3)
pl 1 lq,
Y l Y’
Moreover, ifB’ := ¢'(B), we haveg’)~1(B’) = B, and
B = {yeY'|dmg) () > fv} = (y €Y' dimy~(y) > 0).
In particular, every fiber oy’ overY’ \ B’ is a V-equivalence class.

Observe that in Examp|é ¥ is not an isomorphism.
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Proof. Let C C X be an irreducible curve contained in a filéiof ¢’. Then [C] € Ry,
so the Claim in the proof of Propositiph 1 gives that eitbec B, orC N B = ¢ and
q(C) is a point. SinceF is connected, we see that eithem B = @, or F € B. This
means thatg’)~1(¢’(B)) = B.

The existence ofs as in [3) follows easily from the normality af and the fact that
g’ contracts all curves i, hence allV-equivalence classes. Observe tfids surjective
with connected fibers.

Let us show thap contracts to a point any fiber gf o e overY’ \ B'.

Let F be afiber ofy’ overY’ \ B’; then we haveF c X \ B. Choose an irreducible
curveC C e 1(F). Thene(C) C F ande(C) N B = ¥, sog(e(C)) = p(C) is a point.
Sincee~1(F) is connected, we have shown thatontractse~1(F) to a point. Since¥
andY’ are normal, this implies that is an isomorphism ove¥’ \ B'.

Finally, lety € B and letF’ = (¢')"1(y). Then F’ C B, soe has positive-
dimensional fibers oi”’, and dime=1(F’) >dim F’ > fy. Sincee X(F") = p~ (v ~1(y))
andp has all fibers of dimensiopiy, we must have ding —1(y) > 0. O

Proof of Theorenfi|2If B is empty, then the statement is clear. Assume thas not
empty. Then Proposition] 3 and Lemiia 3 show that girs fy +1 = n — 2, every
connected component & is a V-equivalence class, and there exists a nef divi3an
X such that for any curv€' in X, D-C =0ifand only if [C] € Ry.

We have to show that Kx - Ry > 0. Let V' be the covering family of rational 1-
cycles onX given by Lemma R, and consider a resolution of singularifiesy’ — X.
The family V' determines a covering family” of rational 1-cycles irX’. If Co C X isa
general element of the family’, thenC’ := f~1(Co \ Sing(X)) is a general element of
V”,andCo = f(C").

SinceCy is reduced and irreducible, sods. MoreoverV” is covering, sa’ is a free
curve inX’, and it has positive anticanonical degree.

Letm € Z-o be such thainKx is Cartier. SinceX has canonical singularities, we
have

mKy = f*mKx)+ Y _aiEi,
i
whereE; are exceptional divisors of anda; € Z>o. Then

—mKx - Co=—f*(mKx)-C'=-mKx -C'+ ) aE-C' >0.
i

This gives—Kx - Ry > 0 and thus-Kx - Ry > 0.

Since X has canonical singularities, the cone theorem and the contraction theorem
hold for X (see|[Deb01, Theorems 7.38 and 7.39]). Moreover, the extremat yalies
in the K x-negative part of the Mori cone, hence it can be contracted.

Letqg’: X — Y’ be the extremal contraction; théti is a normal, projective variety,
and it isQ-factorial by [DebO01, Proposition 7.44].

Applying Propositiof }#, we see that all fibersgfoverY’ \ ¢’(B) areV-equivalence
classes. Since connected component® afeV-equivalence classes, they are exactly the
fibers ofq’ overq’(B), and we have the statement. O
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6. The toric case: proof of Theorenj B

Step 1: the case with Picard number one.

If px = 1, the statement isjusghXtis V-connected. This is well known, and can be
seen as follows. Consider a divisbron X constructed as in the proof of Proposit@n 1.
This is an effective divisor which cannot be ample becaiseRy = 0. Sincepy = 1,
the only possibility is that is a point andD = 0.

Recall the diagram

c—Ltsx

in

Recall also that ifD c X is a prime invariant Weil divisor, there is a natural inclusion
ip: Ni(D)r = N1(X)R.

Step 2: letD C X be a prime invariant Weil divisor such th#@ - Ry = 0. Then there
exists a covering and quasi-unsplit famiy of 1-cycles inD such that p(Ry,) = Ry.

Choose an irreducible componeWt of F~1(D) which dominatesD. Set V) =
(W), and letC}, be an irreducible component ﬂf_l(Vl/)) containingW. Consider the
normalizatiorCp of C/,, and letrp : Cp — Vp be the Stein factorization of the compos-
ite mapCp — Cj, — V. Finally, letFp: Cp — X be the induced map.

Forv € Vp, setG, = FD(n,;l(v)). ThenG, N D # @, G, is connected, and
G, - D = 0 becauseV is quasi-unsplit. This implie&s, < D, henceFp(Cp) C D.
Moreover, sincéV dominatesD, we haveFp(Cp) = D.

SinceVp is normal, there is a holomorphic mafp — Chow(D). Then after replac-
ing Vp by its image in ChowD) andCp, by its image in ChowD) x X, we get the desired
family.

Step 3: ifpx > 1, then there exists an invariant prime Weil divisor having intersection
zero withRy .

In fact, letg: X --+ Y be the rational map associatedWfo Sincepy > 1,7 is not
a point. LetD be a prime divisor irt intersecting (X°) and setD’ := ¢—1(D). Since
there are curves of the family disjoint from D’, we haveD’ - Ry = 0. Moreover,D’ is
linearly equivalenttd ; a; D;, whereg; € Q-0 andD; are invariant prime Weil divisors.
Hence the statement.

Step 4: we prove the statement.

Let Xx be the fan ofX in N = Z", and letG x be the set of primitive generators
of one-dimensional cones My. It is well known thatGx is in bijection with the set of
invariant prime divisors oX; for anyx € Gy, we denote byD, the associated divisor.
Recall that for any clasg € N1(X)q, we have

Yy DHx=0 INnN®zQ,

xeGy
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and that the assignmept— erGX (v-Dy)x gives a canonical identification 8f1 (X)q
with theQ-vector space of linear relations with rational coefficients amGrg

Letmyx1 + - - - 4+ mypx, = 0 be the relation corresponding to the numerical class of a
general cycle oV, with x; € Gx andm; nonzero rational numbers for all SinceV is
covering and quasi-unsplit, all;'s must be positive.

The following two statements are equivalent (see [Rei83, Theorem 2.4] and [Cas03,
Theorem 2.2]):

(a) there exists &-factorial, projective toric variety” and a flat, equivariant morphism
q': X — Y’ such that for any curv€ in X, ¢'(C) is a pointif and only if ] € Ry;
(b) foranyr € ¥y suchthatvy, ..., x; € 7, we have

T+ {x1,...,%,...,xp) €Xx foralli=1,..., A 4)

Let us show (b) by induction on the dimensionXf

If px = 1, we have already shown (a) and hence (b) in Step 1.

Assume thapy > 1. Observe that i € Gx, we haveD, - Ry = 0 ifand only if y
is different fromxy, . .., x;. So by Step 3, we know th&y \ {x1, ..., x5} iS nonempty.

Clearly, it is enough to check](4) for any maximain Xy not containing any;.
Since{x1, ..., xp} € Gy, such a maximat will have positive dimension.

Lety € Gx N . We haveD, - Ry = 0, so by Step 2 there exists a quasi-unsplit,
covering faminVDy in Dy such thatp, (Rv,,) = Ry.

SetN := N/Z -y and for anyz € N, write 7 for its image inN. The fan¥p, of
D, is given by the projections iV ®7 Q of all cones of£x containingy. The relation
corresponding to the numerical class of a general cychképofis Am1x1 + - - - 4+ Ampxp
= 0 for somex € Q.. By induction, we know that (b) holds fafp_ in D,. In particular,
the projectiorr of  isin ¥p,, so we have '

T+ (X1,....%,...,Xp) € Zp, foralli=1,... A

This yields[(3).
Finally, sinceq’ is equidimensional, all fibers must Bé-equivalence classes and
B=40.
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