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Abstract. A one-dimensional system describing the propagation of low Mach number flames in
sprays is studied. We show that pulsating waves may exist when the droplet distribution in the un-
burnt region is spatially periodic. The range of possible propagation speeds may be either bounded
or unbounded, depending on the threshold temperatures of the burning and vaporization rates.

1. Introduction and main results

In view of the breadth of their potential applications and complexity, models for flame
propagation in sprays present significant analytical and computational challenges. It is
therefore desirable to have a good understanding of the basic phenomena when flame
propagation involves both burning of the gas and droplet evaporation that converts them
into the flammable gas and provides an additional source of fuel for the flame. We con-
sider a simplified model for the propagation of one-dimensional flames in sprays (see [16]
for the background on this model) that involves three unkno@ig’, S):
e T(t, x) is the temperature of the mixture,
e Y (¢, x) is the mass fraction of the gaseous reactant,
e S(t, x) represents the surface of the droplets that are, at fjifeecated ate. We are
thus making the—simplistic but not irrelevant—assumption that, at every point in time
and space, the droplets have only one radius. Such a spray is waliextlisperse

The evolution ofT', Y andS is described by the following system:
T, — Tyx =Yf(T),
Y, — Yor = —Yf(T) — 3,(S%?), (1,x) € R% (1.1)
St =—e(T)S,
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The first two equations ifi (I].1) are the usual thermo-diffusive system but for the last term
in the equation forr that represents the gas production due to evaporation of droplets.
The last equation describes the decrease in the number of droplets available because of
the same process. The reaction rétand evaporation rate are smooth, and satisfy the
following assumptions:

e f(0) = ¢(0) = 0; moreoverf andg are nonnegative nondecreasing functions, uni-
formly bounded from above:

0<o(), f(T)<C for0<T < +o0; (1.2)

o there exist 0< 6, < 6; < +oo such thatf (resp.p) is positive on(9;, +o0) (resp.
(8, +00)) and zero outside. B, = 0 we assume’(0) > 0.

The threshold®, and6; are called, respectively, tHeoiling andignition temperatures
The ignition temperature can (and sometimes will) be taken equal to 0.

The system[(1]1) has been considered’in [7] where travelling fronts have been shown
to exist when the density of droplets in the unburnt region is uniform. In reality the droplet
distribution is not homogeneous and may be quite complex. As a first step, in this paper
we consider a periodic distribution of liquid droplets located “ahead of the front-at
(the convention is that the flame propagates from right to left). This leads to the following
boundary conditions as — —oc:

T(t,—00) =0, Y(t,—00)=Y,, lim (SGt.x)=Su(x) =0 (1.3)

where

e Y, is a nonnegative quantity, that may—and sometimes will—be O;
e S, (x) is a smooth, positive, 1-periodic function.

The boundary conditions in the burnt region,xas> +oo, are as follows. If we ask—
which is quite natural—that everything is burnt-ato, then bothS andY shall be 0
at4-o0:

S(4+00) = Y (+00) =0. (1.4
We will see that the valu@), of T asx — +oo will be determined automatically by the
values ofY, and the average df, (x) over the period:

Ty = T(+00) = Y, + (S3/°). (1.5)

Here(g) denotes the average of a functigmover its period.
As we have mentioned, should the droplet distribuiprat —oco be constant, the sys-
tem under study would admit travelling waves [7]. The periodicity of the radius distribu-
tion at—oo leads us to replace this notion by the wider notion of pulsating waves|[6, 17],
namely solutions of (I]1)F(1.3) that are time-periodic in some galilean reference frame. In
more mathematical terms these are solutionf of (1.1) of the fogmx) = U (x + ct, x)
with a functionU that is periodic in the second variable. Alternatively, there exists a speed
¢ > 0 such that
(T,Y,S)(t,x — ct)is 1/c-periodic int.

Ouir first result deals with the case of a positive ignition temperature.
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Theorem 1.1 (Nonzero ignition temperature Assumey; > 0. There exists a constant
qo € (0, 1) such that if

6,/6;i <qo and maxY,, min S,(x)) > 1/q0 (1.6)
x€[0,1]

then the problenfL.1}(1.3) has a pulsating wave solution.

The first condition in[(1J6) makes sure that the evaporation produces fuel at sufficiently
low temperatures on the left. The second assumption means that there is enough fuel,
either liquid or gaseous, in the unburnt region. We also show that there exist two constants
co andc; that depend only on the data of the problem so that the pulsating front speed
satisfies

O0<c¢yg=<c=<rcy<+o0.

This means that the possible range of speeds is a priori bounded in the ignition case.

The case of a zero ignition temperature is treated separately. Following the termi-
nology of the thermo-diffusive systems we refer to it as the ‘KPP case’, although the
underlying physics, and, potentially, the behaviour of solutions, may vary according to
the respective proportion of droplets and gaseous fuebat

Theorem 1.2. Assumé; = 6, = 0. There existsg > 0such that the probleffl.I)T.3)
has a pulsating wave solution with the spegd

It is well known that, in the case of scalar reaction-diffusion equations

ur —uyx = uf(u)

with, for instance,f > 0 on [0 1) and f(1) = O, there existgg > 0 such that, for all

¢ > co, the above problem has travelling wave solutions that move with the speed
connectz = 0tou = 1. We would therefore like to see if this is the case here; we have a
partial result in this direction.

Theorem 1.3. Assume, for simplicity, thaf(T) = ¢(T) = T for0 < T < 1 and
otherwise the aforementioned assumptions are satisfied.

(i) There existsg > 0such that any pulsating wave solution(@1)}T.3)has a velocity
larger thanco.

(i) Assume in addition that, > 0. There existg1 > co such that, for allc > c¢1, the
problem(T:A(1-3) has a pulsating wave solution that moves with the speed

We do not know whether; = cg, that is, if the range of speeds is a semi-infinite interval.
In particular, we do not know if there exists a pulsating front that moves with the minimal
speed. It is also not known whether the velocity spectrum is unbounded ¥yherO.

We mention that while existence of pulsating fronts for a single reaction-diffusion
equation has been extensively studied [6, 17], the only result for reaction-diffusion sys-
tems that we are aware of is that bf [15], where small (but nontrivial) perturbations of a
planar travelling front have been considered.

The paper is organized as follows. Sectiphs 2[gnd 3 are devoted to the proof of Theo-
rem[1.]: in Sectiop|2, we perforenpriori estimates on potential pulsating wave solutions
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to (I.1){(1.8); in Sectiop]|3 we prove the actual existence by a degree argument allowed
by the estimates of the preceding section. In Sedtjon 4 we prove Th¢orgm 1.2 by ap-
proximation by a sequence of problems with ignition temperature. Sddtion 5 is devoted
to Theorenj 13: it is provedia a direct estimate on the velocity, an additional weighted
estimate for the temperature and a homotopy argument. Possible extensions are discussed
in Sectior 6.

2. The case of nonzero ignition temperature: a priori estimates

The main difficulty in deriving uniform bounds will be to bourid Indeed, as opposed
to what happens in a purely gaseous flame, there is a positive source term in the equation
for Y due to droplet evaporation. This may in turn cause a (mild) unboundedness for the
function (¢, x). We do not see any convincing reason why the Cauchy problern T¢r (1.1)
would produce a solution whosécomponent would be unbounded, but we are not able
to prove it at the moment. It turns out, however, that finding a lower bound for the velocity
will help us, because this puts us in the framework of periodic functions with a bounded
periodL = 1/c. This is a strong restriction on the set of global solutions that we have to
investigate, and this will help us in finding the upper bounds that will in turn allow us to
set up a degree argument.

It also turns out that the bounds that we shall find strongly depend on the valije of
If Y, is large enough—Iarger than the ignition temperatirewe will be faced with a
flame in which the presence of the spray neither helps nor prevents the propagation; the
physics of the phenomenon is that of a purely gaseous flame. As opposed to that, when
Y, is small or 0, the propagation cannot take place without the help of the evaporation
process; in the limit,, — 0 it is really this process that governs the propagation. Thus
we are confronted with two very different physics, a situation which is described in detail
for travelling waves in[[7].

In what follows, we consider a pulsating wave solutigh Y, ) to (I.1), with a
speedc. System[(1]1) is then written in the reference frame of the wave; thus the sys-
tem under study is now

Ty — Ty +cTy = Yf(T)a
Y; — Yex + Yy = =YF(T) — (0 4+ cd)(S¥?),  (1,x) € R? (2.1)
St + ¢Sy = —p(T)S,

As we have mentioned, the conditions+ato for temperaturel” cannot be chosen arbi-
trarily. Adding up the equations far andY, then integrating the whole lot @@, 1/¢) x R
yields
3/2
(T +Y)(+oo) =Y, + (S 7).
This last value will be denoted g, (Y,, S,), the burnt gas temperature; these consider-
ations are therefore summed up in the conditionsa&t:

T(,—o0)=0, T(t,+00)=Ty(Yy, Sy,
Y(ts —OO) = Yus Y(tv +OO) = O’ (22)
ﬂrpoo(S(t, x)—8,(x)) =0, S8(,400)=0,
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and the periodicity condition

(T, Y, S)(t +1/c, x) = (T, Y, S)(t, x). (2.3)

2.1. Alower bound for the flame speed

The main result of this section is the following proposition. Hereafter we set

S, = inf S,(x). 2.4
S xe'[B,l] (x) (2.4)

Proposition 2.1. If max(Y,, S,) is large enough, there existg > 0, depending only on
the data, such that any solutign, T, Y, S) of (2.1)+2.3)satisfies: > co.

Proof. Two cases should be distinguished.

1. The case of larger),. Namely, we assume that
Y, > 6. (2.5)
As is classical, introduce the enthalpy function
W, x)=T(,x)+Y(,x); (2.6)

we have
W, — Wex + cWy = —0,(5¥%) =0,  W(t, £o0) > ¥,. (2.7)

Lettingt — +oo yields W(t — +o00) > Y,; moreover, this is true for all times & is
periodic in time. Therefore we have

Tt —Tox +cTy = (Y, = T) f(T) =: g(T). (2.8)

Take anys > O suchthat,—3§ > (Y,+6;)/2 and consider the travelling wa¥g (x+cst)
which is a solution of

ur — Uyy = gs(u), u(t,—o00) =—4, u(t,+o0) =Y, —4.

Heregs(u) = (Y, — 8 — u) f (1) with the convention thaf (u) = 0 foru < 0. The front
speed:; is controlled from below by som& > 0 depending only of,, the smoothness
of g and the size of. We claim thatc > ¢;; indeed, assume the contrary: this makes
T'5(x) a subsolution td{2]8); moreover, due to its limitstato we may, up to the correct
translation, assume th@t (x) < T(0, x) with a contact poinkg. The maximum principle
impliesT (1/c, x) > Ts(x); moreover the periodicity inimplies thatxg is still a contact
point betweerf (1/c, -) andTs. This contradicts the strong maximum principle.

2. The case of largeS,. We give the proof in the case of zero boiling temperature; the
cased, > 0 differs only by computational details. A8(0) > 0, there exist O< ¢ < @
such that -

9T < o(T) <9T on][0,6,]. (2.9)



560 Peter Constantin et al.

By the nonincrease of the lap number for a parabolic equétion [1], combined with the fact
thatT (¢, x) — 6; is a time-global solution for the (appropriately rewritten to subtégct
first equation of[(Z]1), there exists a smoath!-periodic functionx; () such that

VieR, x<xi(t) = T, x)<0;, x>xi(t) = T, x)>0. (2.10)

Letx;” be the minimum value of;; we may assume it to be 0. The function— 6;e*
satisfies the equation f@r for x < 0 and is abové& for (¢, x) € R x {0}; lettingt — +o0
implies, after shifting the time origir?; (¢, x) < ;¢ for (¢, x) € R x R_. Then we have

S +cSy > —@TS > —@bie”™S, x <0.

This implies (once again let— 4oo and use the fact thatis 1/c-periodic int)
PYi ex
S, x) > _Suexp<——2e ) x <0. (2.112)
C

Our goal is to find a subsolution to the equation¥an R x R_. Note that in this domain

Y satisfies
3 3
Y+ cYy — Yo = E<;>(T)S3/2 > 5@53/2.
To find an explicit subsolution for we would be glad to replacE(z, x) by 6;¢“*; unfor-
tunately it is an upper bound fdrf, and not a lower bound. To make up for that we first
assume < 1 (otherwise the proof would end here), then resecaladx in a parabolic
fashion:

T=c%, £=ocx. (2.12)

ThenT satisfies
T: —Tee +T: =0 onRxR_; T(t+c¢§)=T(5%).

In particular, there existg € [0, 1] such thatl (=g + nc, 0) = 6; for all n € Z: these are
the times when the curve (¢) hits zero. It follows that (=g + nc, &) > 0; forall & > 0.
Without loss of generality we may assume that= 0. Moreover,T is a supersolution to
the advection equation everywhere. This implies

V(t,x) €[0, 1] xRy, T(r,§)=T1(r,§)

where
T, -Tee+Te=0 O<t<1 £§>0),
T(r,00=0 O<t<)],
70,8 =06 (¢ >0).

The parabolic Harnack inequality implies the existenc€ of 0 such that

Vre[0,1], T(r.1) > C6;. (2.13)
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We may now construct yet another subsolutidffor 7 as

O — P +Pe=0 O<7t<1 §>0),

®(r, 1) = C6; O0<7t <1,
®(0,8) =0 0<E& <1,
®0,¢)=0 ¢ <0).

The maximum principle implies tha < T, hence applying the parabolic Harnack in-
equality once again we obtain, for a possibly differént 0,

VYVt eRy, T(z,0) > C6;.

Still working in the (z, &) variables we end up with (letting — 400 and using the
time-periodicity ofT)

V(r,€) eRxR_, T(1,&) > COiet. (2.14)

Consequently, we obtain, fgr, &) e R x R_,

C(pQ-eS 300;
Ve~ Yeg + Y = ——5—5) 2ew(—%eé). (2.15)

An eventual subsolution t§ (Z]L5) is obtained by setting the time-derivative equal to 0 and
solving the differential equation with the zero boundary conditionsat; recall that the
solution of

—u"+u' =f onR_, u(0) =u(—oc0)=0,

0 3
u@):/g (ef*f—e%f(;)du(l—ef)f £ de. (2.16)

Applying formula [2.I6) withf (£) = (Cgb; e /c?) exp(—3gb; e /2¢?) we obtain

-1 —

0, et 396,

Y(r,-1) > cgf/Z/ PO expl = et ) ae
o C2 2c2

C/c?
> csﬁ/zf e dn > CSY? (2.17)
0

for a constanC > 0 under control, as we have assumed that1.
Come back to thér, x) variables. As a consequence[of (2.17) we hiye —1/¢) >

C_Sf/z, and the functiorW (z, x) (given by [2.§)) satisfies

W, — Wex +cWe >0, W(t, +00) > C(S7?), W(t, —1/c) > CST2.  (2.18)
Therefore, once again, lettting — +oo and using the periodicity o/ in time we
conclude that ifS, is large enough, there & > 0 such thatW(, x) > 6; + § for
x > —1/c. We conclude as in part 1: 16 be a travelling wave solution of

oT) =T + MM =T f(T%), T°(—o00)=—5, T’(+00) =TI,

X
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with 9; < IT < C§3/2. Thenc; is bounded below uniformly ié for § small. Moreover,
if ¢ < cs, then asr? > 0, we have

T < T2 + (W —=T)HF(T%, x>-1/c, (2.19)

and of course,
T, +cTy =T + (W =T)f(T). (2.20)

Now, shift 7% to the right so much thaf?(x) < T'(0, x) for all x and start moving it
back to the left. There will beg so that the shifted™ (x) and7 (0, x) touch for the first
time. Then we would still havé® < 7'(0, x) everywhere, which would mean that (2.19)
holds even forx < —1/c simply becausef (T%) = 0 there. Therefore, for this particular
shift both 7% and T touch at exactly one point ari® satisfiesg). Then we get a
contradiction as in part 1 of this proof.

If 6, # 0 we only have to replace(T) by o(T —6,) for a0, slightly above the actual
vaporization temperature, and use the same argument. O

2.2. The upper bounds

This section is devoted tb*° bounds for all the unknown functions, as well as an upper
bound for the front speed. The lower bound fasbtained in the previous section will in
particular be of use to us. The result of this section is best stated in terms of the enthalpy
function W defined by[(2.6).

Eroposition 2.2. Assume thal, < go6; with a constantg < 1. There exists a constant
W > 0, depending only on the data, the lower bougdf Propositio andgp, such

that |Wl|cigz) < W.
An immediate corollary is
Corollary 2.3. There existg1 > 0, depending only on the data angl, so thatc < c;.
Proof. Assuming Proposition 2.2 to be true, the temperafupe x) satisfies
T, = Tex +cTe < (W=T)f(T), T(t,~00) =0, T(t, +00) < W.

Arguing as in Propositiof 2.1, part 1, we may prove thag it- 0 is below¢; and
(c1, T(x)) solves

T +aT =W+ -T)f(T), Tt —o0)=35, T(t,+00)=W +3,
thenc < c3. |

Proof of Propositiof 2.2.We do not know yet any upper bound farto make up for that
let us come back to the parabolic scaling= ¢z, £ = cx. The equation foW is then

3¢p(T)8%/2

We — Wee + We = 22

(2.21)
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We wish to find an eventual supersolution &t To do so, let us defing such that

vreRrve £ T@H = T+ (5% +6)/2 (2.22)

W(‘L’, S) =< 2Tb(Yua Su)-

If x;(¢) is defined by[(2.70), le; () be its counterpart in ther, £) system. Without loss
of generality we may assume that the functiptakes its minimum a¢ = 0. Two cases
are to be discussed.

The regiont < 0. We simply havel'(z, &) < 6;¢%, hence
o(1)5%2 < C||S1%%6;¢¢ (2.23)

The regiont > 0. Let us find an upper bound f&%/%¢(T). We have (see the proof of
Propositiof 2.]1) a constagt < (0, 1] such that

VTt eR, VE>0, T(t,&) > q16;.
We takegg < ¢1. Then there ig > 0 such that
VT eR, VE >0, o(T(1,8)>¢.
An eventual supersolution fdgtin {¢ > 0} is
S(1.£) = ||S]lsoe %/ (2.24)

This will bound S(z, &) for & > 0. Gathering[(2.33) andl (2.4) we realize that there is
C > 0 depending only on the data such that

1
Vo >0, SISYE0eT @)l m = C (2.25)

An eventual supersolution fa¥ is the functionW (£) which satisfies, ofé < £},

3/2 _GE/02
g llooll S| 36—/
2 b

3/2

— — C
—W W = IS ieflp + (2.26)

c

with W(—o0) = ¥, and W (&) = 2T,(Y,, S,). A simple ODE integration shows that
W (&) is bounded independently of The C* bounds follow from parabolic regularity
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2.3. Uniform exponential decay

Assume that the solutiote, 7, Y, S) of (2.1)-{2.3) additionally satisfies the normaliza-
tion condition
T(0,0) = 6;. (2.27)

The main result of this subsection is the following.

Proposition 2.4. There exisipg > 0 andC > 0, depending only on the data, such that,
forall t € R,

Vx e R, |[(T(t,x),Y(t,x) =Yy, S(t,x) = Su(x — c1))| < Cel,

2.28
Vi eRe,  [(T(x) = Yy — (ST2). Y (t.2). S(t.0))| < Ce#. (2.28)

By parabolic regularity, it is sufficient to prove the following

Lemma 2.5. There exisfpp > 0 andC > 0, depending only on the data, such that, for
al r e R,

le™POX(T (1, ), Y (1, ) = Yu, S, ) = Sul- — i) 2@y < C,

3/2

2.29
e” (T, ) = Yu — (S ), Y (&, ), SC DNlew,) = C. (2.29)

An important intermediate step is

Lemma 2.6. Let x;(r) be the function defined bf2.1Q) There isxg > 0 such that
|xi(t)] < xoforall r € R.

Proof of Lemma Z2]6Let —xo < 0 be the minimal value of;; the proof of Proposition
[2.7 (part 2) yields the existence 6f > 0 such thaf'(t, —xg) > C#;. Also, remember
the existence (as in the proof of Proposifion 2.1y1of> 6;, only depending on the data,
such thatw (¢, x) > W. Consequently, we have

T} = Tex +cTo = (W =T)f(T), T, +o0)>W. (2.30)

For anyW > 6;, letc(W) be the unique speed of the travelling wave connecting W to
by the equation
—u" +cu' =W —u)fu).

Two cases are to be investigated.

e If ¢ < ¢(W), then there exists (sel€ [4]) a unique solutiofx) to

“I"+cI'=W-1)f(T) (x> x0),

T(xg) =C6O;, T(+o0)=W, (2.31)

which is an eventual subsolution {o (229). Moreover, because of the boundedness of
from above, there is an absolute constant- 0 such that

Vx >xg, |T(x) — W| < Ce PO¥=%0) (2.32)
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e If ¢ > ¢(W), then (see Aronson—Weinberger [2], [3]) we have
T(t,0=W.

ThenY decays, in both cases, exponentially to Qtas> +oo, at a uniform rate. This
implies an inequality fofl” of the form [2.3R).

All this is enough to prove the lemma: the minimal valdgy cannot be too negative
sinceT (0, 0) > ¢;, and the maximal value of; (¢) is bounded directly by (2.32). O

Proof of Lemm@ 2|5 Oncexg is known to be bounded, the first part/of (4.29)—the bounds
on the left—is easy: indeed, we have<0T (¢, x) < 6;e* ) this is enough due to the
uniform boundedness affrom below. Then, using the boundednessSddy || S, ||cc We
have the existence of a const&ht- 0 such that

Yy — Yax + ¥y | < CecO0);

an eventual, exponentially decreasing supersolution is easily found and left to the reader.
The equation fof§ is treated in the same fashion.

Consider anys > 0. From Lemma 216, there isy > 0, uniformly bounded, such
thatT > 6, + & as soon ax > x1. This forces an exponential decay fSrdue to
the boundedness aeffrom below; this in turn forces an exponential decay fofrom
the maximum principle. It remains to prove tihé bound forW; to do so we argue as
follows. First, for convenience, rescale the time= cz; the new functionW is hence
1-periodic inz. Decomposé¥ (t, x) in a Fourier series:

W(t,x) = Z Wy (x)e2™T

nez

The equation fowg(x) is

3 1
—wg + cwgy = 5/0 o(T)S(t, x)¥? dr,

which implies

3 [too y 1
wo(x) = Tp(Yy, Su) — 5/ ecu—”/ / o(T)S(t,2)¥2drdzdy.  (2.33)
—o00 JO

X

The limits forwg areY, andT,(Y,, S.), because @(T)S(z, z)%?/2 is exactly equal to
—(3; + 3,)S¥2; the desiredL? bound forwyg is obtained, at the possible expense of
decreasingy a bit, by recalling the exponential decay$ét +o0o and the fact thap(T')
vanishes for large negative

Forn # 0 the equation fow, is

1
—w) + cw), + 2ircnw, = —(2iwen + cax)/ e 2™t e(r, )24 (x e R),
0

wn(£00) = 0.
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This equation has two characteristic roets, whose real part is above (resp. below)
C(1+./n) (resp.—C(1+./n)) whereC is a constant under uniform control. This implies,
by an elementary computation, the existence of a small, unifoem0O such that

e w, |l 2y < C/n. (2.34)

This in turn implies arL.2([0, 1], L2(R)) bound fore”* Wz, x). o

3. Nonzero ignition temperature: construction of the wave

The uniformL? bounds for and7" will allow us to perform directly a topological degree
argument for the systern (2.1)—(R.3) on the whole real line, without the approximation step
on a finite interval taken ir [5]. The system will first be reduced to a fixed point problem;
then we shall introduce a homotopy bringing it to the problem of finding a travelling wave
for the 1D thermo-diffusive scalar equation—for which everything is known.

3.1. Strategy

To explain how we wish to proceed, let us start by recalling some basic facts. Assume
that we are given a Banach spakeand a sectorial operatot such thatje=4| < 1.
Fora € (0, 1), consider a functiory (r) € C*(R, X) which is 1-periodic. The Cauchy
problem for

i+ Au = f(t) (3.1)
is well-posed, in the sense that, for every initial datugre X, it admits a unique strong
solutionu(r) such thai(0) = ug. We are interested in finding some 1-periodic solutions
for (3.3); to do so it is sufficient to look for the initial datum; it is uniquely given by

1
uo= (I — e_A)_1/ e_(l_s)Af(s) ds,
0

and the (unique) 1-periodic solution ¢f (B.1) is given by

1 t
ut) =e "I - "_A)_l/o e~ I94 £(5)ds +/O e~ U4 £(5) ds. (3.2)

Let us denote byF f the right side of[(3]2). If the right side df (3.1) is replaced by a
nonlinear functionf (¢, u) which is, say, Klder in its first variable and Lipschitz in its
second variable and which is moreover 1-periodic in time, the problem of finding periodic
solutions to
i+ Au = f(t,u)

reduces to

u=Ff(,u). (3.3)
It is this very simple fact that we wish to use in order to redficd (4.1)}-(2.3) to a fixed point
problem, the major point that we will have to care about beingithat F f (-, u) should
be compact if we wish to have a chance to apply a degree argument.
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3.2. Fixed point setting

Let us try to apply the above strategy, namely to define a subs?pa:fecgé‘?/ 2(IRZ) X

Cat’?(R2) x CperR?) x R and a compact nonlinear mappisgof X such that(ZJ1)F(2]3)
reduces to finding a fixed point ¢f. Here the subscrigkr means that we are dealing with
functions of the variableg, x) that are 1-periodic in.

In what follows, we take the boiling and ignition temperatwesndé, to be positive,
in agreement with the assumptién> 0 of Theoreni 1]1. The other data are also assumed
to be in agreement with the assumptions of this theorem. The #ignit> 0 will be
considered at the end of this section.

The first step is to renormalize the time so that the period i (2.3) becomes 1. We take
Y, W, S, ¢ as our principal unknowns instead Bf Y, S, c; the reason for this choice will
become clear as the discussion goes on. The set of equations that have to be satisfied then
becomes

Yy — Y +cYe = =YW = Y) — c(d + ) (5%?),
Wi — Wey + cWy = —c(d; 4 0,)(5¥?), (t,x) eR2,  (3.4)

1
St + Sy = —Efp(W -Y)S,
together with the conditions atoo,
Y([,—OO)ZYM, Y(t7+oo):Oa

W(t, —00) = Yy, W1, 4+00) = Ty(Yu, Su), (3.5)
lim_(S(t,x) = Su(x)) =0, S(t, +00) =0,

the periodicity condition
Y, W, 9@ +1,x)= (Y, W, x) (3.6)
and the normalization condition
(W —Y)(0,0) = 6. (3.7)
Let us then define the spa&e as
/2 @,a/2

X}’ = {M € Cper . erlxlu € Cper } (38)

We first choose, once and for adl, e (0, 1) which will measure the Blder character of
Y andW. Next, we recall the real numbep defined in Lemm@S, the lower boungl
for the velocity, its upper boundy, and we fix» > 0 such that

—C0 + /5 + 4 (Tp(Yu, Su))
). (3.9)

1
= min|{ po, co,
r<5 (,oo@ >
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In fact, the functionS will not be a principal unknown: we will compute it directly
from W andY. Assume therefore that and W are known; then the equation fé&rin
(3.4) has a unique 1-periodic solutionrithat is given by

0
S, x) = 8,(x — t)exp(—% f o4t +5,x +5) ds) (3.10)

where we have seta(s, y) = (W — Y)(s, y). We denote the right side df (3]10) by
Fale, Y, W)(t, x).

Let y (x) be a smooth nonnegative function that is equal to @-eto, —1] and to 1
onRR,. In order to obtain unknowns that decay exponentiallyab, let ug(x) andwg(x)
be defined as

wo(x) = Yu(L—y (),  wo(x) = Yy + (S7%)y (x). (3.11)
Then look forY andW in the form
Y=uo+u, W=wo+w. (3.12)

Examination of [(3.10) and of the definition @f in Lemma[ 2.} yields the following
estimate forF,:

Lemma 3.1. Consider two function¥ and W of the form(3.13)with u, w in a bounded
subset ofY,, andc € [co/2, 2¢0]. ThenFa(c, Y, W)(z, x) has the form

Fale, Y. W)(t,x) = Sy(x — ) (L — y (x)) + Falc, Y, W)(t, x)
with Fa(c, Y, W) € X,; moreover there is a constant(c, ¥, W) > 0 such that
\Fale, Y, W)(t, x)| < Ce— POl

Next we turn to the equation fdrf. The first equation i (3]4) is rewritten as (for short
we redefinel’ asW — Y, and we keep the notatior’¥ andY when we do not want to
underline a specific decay property)

cup — uxx + cux +y () f(Tp (Y, Su))u
= —(f(M) =y f(Tp(Yu, S)Y — vy ) f(Tp(Yy, Su))uo

— (3 + 3) Fale, Y, W32 + uf — cuy,. (3.13)
Let A, denote the differential operator
4 d®> d
Ar = —c _2+_+C y(x) f(Tp(Yy, Su)).
dx dx

If UC(R) is the space of all bounded, continuous function® ofve define, for alp > 0,
Y, = {u € UC(R) : e "™l € UC(R)}.
We extract from[(3]9) and [9, Chap. 5] the following
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Lemma 3.2. There is3g > 0, depending o and pg, such that, for every e [co/2, 2cq],

and for all § € [0, 8g], the operatorA. is sectorial iNY,ys,; its spectrum is moreover in

the right complex half-plane, bounded away from the imaginary axis. This statement is
uniform with respect té < [0, &o].

The proof is standard and omitted. Thas'c has norm< 1in X, s for everys € [0, 8ol;
hence we may defing>(c, u, w) as follows:

o the underlying space ig;
e the quantityFz(c, u, w) is defined by[(312), witly being the RHS of (3.13).

Rephrasing Lemnfa 2.5, we have

Lemma 3.3. For the quantityso of Lemmd3.2 the mappindc, u, w) > Fa(c, u, w) is
¢ and compact fronfico/2, 2c0] x X, x X, into X5,

This implies the following
Proposition 3.4. The mapping, is C* and compact fronfico/ 2, 2¢o] x X x X, into X,,..

Proof. Straightforward, but lengthy—by Lemrpa B.3 and parabolic regularity. We omit it.
|

We would now like to do the same operation for fileequation, but we do not have here
a term that ensures some coercivityato. However, if we set, for alp > 0,

Y, ={u € UC(R) : e "*u € UC(R)},
then, for allc € [co/2, 2co], the operator

., d?> d

B, =—c"——+—
¢ ¢ a’x2+dx

SatISerS|e_B‘||L(Y) < 1, uniformly inc. The verification is even simpler than for Lemma
[3.3, and is therefore omitted. Consequently, a mapping can be constructed as before: first,
the equation fow is

cw; — Wyy 4 cwy = —c(d + 8;)(Fale, ¥, W))¥? — wf + cw). (3.14)

Then, by writing formula[(3]2) withf as the RHS of[(3.14), and = B, we obtain a
mapping that we callFz(c, Y, W). Now, Lemmd 2.p together with parabolic regularity
implies

Proposition 3.5. The mappingFz is C and compact fronfico/ 2, 2¢o] x X, x X, into X,,..
Finally, we define the mapping
File, Y, W) =c — (W(0,0) — Y(0,0) —6,). (3.15)

Clearly, 1 is compact.
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We are now ready to state the fixed point problem. Cet> 0 be such that if
(¢, T, Y, S) solves[(3})H(3]7), then the corresponding functioaadw defined by[(3.12)
are—due to all the estimates of Section 2—in the open baX,ofvith centre 0 and ra-
dius C, which we denote by, (0, C). Now, define the open subsetRfx X, x X, and
the mappingF from QtoR x X, x X, by

Q = (co/2, 2c0) x Br(0,C) x B,(0,C), F = (F1, F2, F3). (3.16)

Clearly, F is compact fronf2 to X, x X, x R. Moreover, a fixed point ofF cannot be
onof.

3.3. The homotopy

To do the homotopy, we simply perturb the values-ab. Without loss of generality, we
assume that; < 1/2. We then replac&, as the left limit ofY by tY, +1 — 7, and
S, by tS,—that is, we replacd},(Y,, S,) by Tp(zY, + 1 — 7, tS,). We note that, for
t € [0, 1], the estimates of Sectign 2 apply to these new conditiorsoat we let F*
be the corresponding mappings defined in the preceding section. Cleatyy, w) —
F(c,u, w) is C1 and compact. Also, any fixed point & is inside$2 according to the
a priori estimates. We may therefore definedeg F7, 2, 0); it is constant with respect
to t. This triggers the last step of

Proof of Theorenp 1|11t suffices to prove that d&§ — F*, 2,0) # 0. However, for

7 = 0, we have the usual thermo-diffusive system with the Lewis number equal to one:
there are no droplets. Hence, a fixed point/of F* is such that the corresponding
function W is exactly equal to 1, and the corresponding functiois a solution of

Y, — Yex + ¥y = —Yf(1—Y) = g(Y). (3.17)

The only time-periodic solution of (3.17) such that-1v is equal ta; at (0, 0) and goes

to 0 at+oo is the 1D wave that we callp with the speed calledy. Let us quickly prove

thatl — d..,.,,F° at the wave is an isomorphism Bf x X, x X,; notice that, because
of what precedes). , ., F* is a compact operator dR x X, x X,. Hence it suffices to

prove that/ — BC,M,,,,]-‘O has a zero null space. By the definition®f, it suffices to solve

the following equation, with unknowng, i, w):

#(0,0) =0,
(0 — Oxx +codx —g'(Yo)it =0, u(t+1,)=ul,-). (3.18)
w =0,

From [9, Chap. 5], the operator
d? N d ¥
L s i
dx? de 110

with domain inX,, is nondegenerate, in the sense that the geometric and algebraic mul-
tiplicity of the eigenvalue 0 is 1, with associated eigenfuncti¢gn Consequently, the

Lo =



Pulsating waves in a model of flames 571

second line of[(3.118) implies that(, x) is proportional toY}, and the first equation in
turn implies thaw = 0.

To summarizeF° has a unique zero i, andac,u,w}'0 is an isomorphism oR x
X, x X,, which implies (see [11]) that dég— F7, 2, 0) is nonzero. This ensures the
existence of a wave solution o (2.1)—(2.3) as soon as the evaporation tempeéyagire
positive.

It remains to send, to 0. However, all the bounds that are proved in Section 2 are
uniform with respect t@,, as soon as; is fixed—in fact,0, > 0 was only required to
obtain some compactness fdt. The passage to the limit, — 0 is therefore standard,;
see for instance [6] for the details. O

4. The KPP limit

As in [€], the strategy that we shall use here for obtaining the wave of lower velocity is
to send the ignition temperature to 0. Our main problem is that the bounds devised so far
are not uniform with respect to the ignition temperature. On the other hand, what we are
now aiming at is the existence of waves when both ignition and vaporization temperatures
are zero. This leaves us some freedom for the approximating sequences, and we will use
one that will generate a painless estimate ¥fer-something that we had to work for in
Sectior] 2. This in turn will allow us a (less easy) estimate for the enthalpy. Also, we will

in a first approximation keep the mass fraction of the unburnt gases nonzero; this will give
us a free lower estimate, for in this case, part 1 of the proof of Propogitipn 2.1 applies. All
this is summed up in the following

Proposition 4.1. Let (fp)9-0 and (pg)g-0 be two sequences of Lipschitz functions, de-
fined for smalb > 0 and having as ignition (resp. vaporization) temperatures. Assume
moreover the ratigy / f» to be uniformly bounded from above, and bounded away @om
ConsiderY, > 0 and a positive, smootH;periodic functionS, (x). Then there exists a
family of solutions(cy, Ty, Yy, Sp) to the problem(2.1)2.3). Moreover, the following
properties hold:

e the sequencéy) is bounded away fror@,
o if Wy is the enthalpy, then the sequenid®; || - is bounded,
e the exponential estimates of Sec{laf hold uniformly with respect t6.

Proof. It is clear that, given the considerations of Sectigfis 2 ghd 3, a solution
(co, Ty, Yy, Sp) to the problem[(2]1)f(2] 3) exists as soon as the estimates stated in the
proposition hold, and the proof reduces to proving these estimates. In what follows, we
consider a solutioric, 7, Y, S) to (2.3){2.8); we have deleted (and will continue to do
so in the course of the proof) the subscgiph order to alleviate the notations.

1. Upper bound for Y. BreakY (¢, x) into Y1(z, x) + Y2(z, x) where

(0 — Oxx +cox + f(THY1=0 (¢t >0, x eR),
Y1(0,x) = Y (0, x),
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and
(O = Oxx + Oy + f(T)Y2=0(T)S (>0, x eR),
Y>2(0, x) = 0.

By an elementary computation for the advection-diffusion equation we have

limsupY1(z, x) < Yy;
t——+o0

moreover, if the functiorts, x) — Y2(s, x) has a maximum poiro, xo), then

o(T (to, x0)

Y b J—
2010-%0) = 10 20)

S(to, x0) < ClSulloo,

as the ratiap/f is uniformly bounded by assumption. If there is no maximum, we may
always consider a maximizing sequerigg x,), consider the suitably translated sequence
Y (t +t,, x + x,) and sendk to +o00, to get the same estimate. In any case, this botnds
from above.

2. Lower bound for ¢. Similar to part 1 of the proof of Propositi¢n 2.1.

In the next two steps we revert (for convenience, and without change of notation) to
the original reference frame; thus the functiais Y, S) satisfy [1.1)-f(Z.8). Of course,
the benefit of the estimates of the previous two steps is kept.

3. L* bound for T, and T,,. We start from the Duhamel formula fa¥ (z, x):
o~ (—Y)?/A(t—s)

t
10 o o3/2
W(t,x)=e W(O,x)+/(;/R NI (—0587“) ds.

The free terme!®x W (0, x) has the eventual bourif,(Y,, S,)/2 and is of no concern.
The remaining term, which we denote B (¢, x), is broken into

t—1 t
W, x) =/ +/ = W1+ Wi,
0 t—1

which we study separately.

[i] Becauseyp(T) and S are both bounded (seg (]L.2)), we immediately infer from the
parabolic regularity that, for every e (1, +o0), there isC,, > 0 such that, for every
bounded interval of length /2, and for everyz, x) € (2, +o0) x R, we have

[0 W12||LI’((t,x)+[2) + [|0xx W12||LP((1,X)+12) = Cp~ (41)

Indeed,W1, solves

3
(8 — Dyx)Win = —0,8%2 = E@(T)S3/2 for(s,x) e (t — 1,1) x R, 4.2)

Waa(t — 1, x) = 0.
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[ii] The term W11 has the expression

o~ (x—y)?/4 o~ (—y)?/4
WMnm=AJ————4a—LwW——————Maww>@

Var Vart
-1 1 — )2\ e~ (—0?/A1-s)
[ @—“ ”)e S(s, )% ds dy
0 RE—S 2t —s)) JSAn (@t —5)

=: W111(z, x) + W112(t, x).

The terma; W111 is uniformly bounded, just becausk is uniformly bounded. As for
Wi12there is a polynomiaP (X) (easily explicitly computed, but whose expression is of
no use to us) such that

r—1 1 (x — )2 5
|8 W112(, x)| S/O (t—s)2P< t_ys )e_("_” M=) 55, y)¥2ds dy.

This boundsH; W112.
Now, remembering[ (4]1) and using the equation Worand the boundedness of its
right side, we conclude that the outcome of the two paragraphs [i] and [ii] is

10: Wl Lo (r.x)+12) T 10xx Wl Lo 0)+12) < Cp (4.3)

for all p € (1, +00). This is not quite enough; we would in fact wish to bouh® and
dxx W in some Hdlder space. However we are now in a relatively good situation, and we
may argue as follows: first, the boundedness of the coefficients of the equatibndsr
well as the boundedness Bf imply a bound fort of the type[(4.B). This in turn implies

a similar bound fofT, becauséV = T — Y. Consequently, becaug&T) and f (T) are
bounded together with their derivatives, thereis (0, 1) such that

I f (D)l caarz + ll@(T) || caarz < C.

If we now setu(t, x) = T; (¢, x) we have, from the previous considerations,
Uy — Uxx — f/(T)Y” =Y, f(T);

the coefficients and RHS of the above equation are boundétt##?. Moreover, because
of theL{;C bound foru, there istg € (0, 1) such that|u(ro, -)||» (1) iS bounded uniformly
on all intervalsl of length 1. Parabolic regularity implies aklder bound foi,, which is

enough to infer a Elder bound for;. Hence the outcome of this step is

IT¢lloo + I Txxlloo = C. (4.4)

4. L* bound for W. If C is the bound of[(4}4), andy a lower bound for, consider
K > 0large enough so that

C+3JCK
@ b

K>1+2 (4.5)
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let xo be the smallest point for which there is € R, such thatT'(¢, x) = K; without

loss of generality we may assume tligtx) = (0, 0). Hence we havé& (k, —ck) = K;
recall that at the moment we are working in the original variables. Now, by interpolation,
using [4.5) and (4]4) we haw(t, —cr) > 1 for allt € R. Lettings — +oo yields

T(tv-x) 2 mln(l’ Tb(Yu’ Su))’

for x > —ct, which in turn implies that(7') is bounded away from 0 by a constant
independent of. Consequently, for > 0 andx > —ct we have

S, x) < ISulloc €XP{—g(t — x/0)}, (4.6)
andu(t, x) ;= W(t, x — ct) satisfies, forx > 0,
[y — uxx +cuy| < C”Su”ooe_gt-

Due to the upper bound fdf, this is bounded fox = 0 andx = +o0. Lettingsr — +o0
yields a uniform bound for andW.

Once theL® bound forW is obtained, the upper bound foerand the exponential
bounds follow as in Sectidn 2.2. m|

Proposition 4.]1 readily implies Theorgm [1.2. Indeed, one only has to consider a se-
quence of approximating solutior(ss, 7y, Ys, Sg). The uniform L? estimate plus the
lower bound orry ensure that the limiting tripl€7, Y, S) converges to the right limit at
+o00; the details are as in][5].

5. Existence of waves with higher velocities

A first trivial observation to support this fact—which also has the merit of clearly pointing
out where the/,, > 0 assumption is needed—is the following: any solutidnY, S)(z, x)

of the Cauchy problem fof (1.1]=(1.3) h&8(s, x) > Y,/2 as soon as we wait long
enough; consequently, ff(T) = T we have

W—T> Y.,/2—T)T

for + > 0 large. The RHS of the above inequality is, once again, a KPP term, which
generates travelling waves connecting @’ig2 with any speed larger thayY, /2. We
therefore may have arbitrarily high burning rates, in the sense of [8], hence arbitrary large
propagation velocities might be expected.

Let us now try to give some substance to this observation. To do so, we will be guided
by the following toy problem:

Uy —uyy = (Y, —wu =: folu), u(t,—o0) =0, u(t, +o0) =Y,. (5.1)
For everyK > 0 andc > 2K, let us define the two quantities (¢, K) < r(c, K) by

c+c?2—4K
5 )

re(c, K) = (5.2)
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For everyc > 27, atravelling wave solutiot, (x) of ) that moves with the speed
exists and decays atoo according to theninimalrate [13], i.e. for every- < ¢ there
existsk, > 0 such that

Pe(x) = kye= T O(™). (5.3)

Moreover, still for every € (0, ¢), define the weighted space
B, = {u(x) € BUCR) : (1+ ¢ ™)u € BUC(R)};
then the operatok, with a suitable domain iB,, defined as

d? d ,
L= T T T fo(¢e)
is an isomorphism from its domain in®).; see once again [13].

For the construction of waves with higher velocities, we are going to use a degree
argument similar in spirit to the one of Section 3, apart from the fact that the velocity is
now prescribed. Note that, once the velocity is prescrili¢d,bounds forT, W and S
can be obtained by arguing as in, for instance, the proof of Propogitipn 4.1. We will use
these bounds freely, without writing them in the form of a theorem.

5.1. Direct lower bound on the velocity

Theoren{ 1.p does not by any means imply Theoferh 1.3. Indeed, it yields a pulsating
wave solution whose velocity is bounded in terms of the data; however, it does not say
thatall pulsating wave solutions tp (3.1)—([L.3) satisfy this estimate. Of course, it also says
nothing about the boundedness or unboundedness of the velocity spectrum.

The first task in proving Theorem 1.3 is to prove a direct lower bound on the wave
speeds. We start with a qualitative property of the temperature analogous to, but weaker
than, the lap number decay principle, which will be useful to us in what follows.

Proposition 5.1. If (¢, T, Y, S) is a solution taZ.)2.3) then, for alls € R, the function
x +— T(t, x) is nondecreasing on the set where it is belBwY,, S.).

Proof. Assume the contrary. Then there is a value (0, 7,(Y,, S,)) that is, at some
time g, taken twice by — T (1o, x). By Sard’s theorem, we may assume this value to be
noncritical for the functior’. The level se{T (z, x) = [} consists, therefore, of a finite
set of ordered, nonintersecting smooth curiies; ()} in space-time. Take aniysuch
thatT(¢,x) < [ if x € (y;(¢), yi+1(2)). This defines an open subgetin space-time in
which, by periodicity of7, a minimum is attained. Howevef, is a supersolution to an
advection-diffusion equation, which contradicts the strong maximum principle. O

Proof of Theorerp T]3. Step 1: a lower bound on velocitiéshares many common points

with the proof of Propositiop 2|1, apart from the fact that we may not get an upper bound
for the temperature in the unburnt region—for the simple reason that there is no unburnt
region, as there is no ignition temperature. We argue by contradiction, that is, assume the
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existence of a sequeneg — O—that we immediately relabel simply—giving rise to
pulsating wave solutions. We use once again the parabolic scaling

T =ct, &=cx. (5.4)

ConsiderA > 0 large; the size ot (independent of) will be made precise later. From
Propositior] 5.1 there exists a possibly discontinuous, but at least lower semicontinuous
function&4 (t) such that

T(t,€) > Ac® ifandonlyif &> &4(2). (5.5)
We may assume that the minimumé&f is 0. Foré > 0 we have
(0; — Ogg +0¢)T = 0. (5.6)

Arguing as in the proof of Propositign 2.1 we infer the existence®a0, independent
of A andc, such that

V(r,6) e R xRy, T(1,&) > SAc° (5.7)
Now, remember thaf (5.6) also holds fp O; as a consequence we have
V(r,6) eRxR_, T(r,&) > SAc%". (5.8)

In particular, we have
T(t, —2) > §Ac?/e°. (5.9)

Turn now toS(z, £); recall the equation
(0 + 0)S = —(T)S/c?,

and the fact thaf1T < ¢(T) < C2T; together they imply
CSA
V(t, &) e Rx[-2,+00), S(1,8) < IISullooeXp<—7(§ + 2)>- (5.10)

Finally, turn to the functiorW (z, £). The time period of the wave in the rescaled coor-
dinates isc; however, we may also consider the wave as being= Nc-periodic, with

N =[1/c]. Note that where is small, which is the case herg,is a number in the interval
[1/2, 1]. This observation will be useful to us when we wish to apply parabolic regularity.
Let wo(§) be the zeroth Fourier mode &F, that is, its average over a time period; we
have, for-2 <& <0,

400
wo€) = Yu + (2 — / &0 (8¥2) () di
3

> (53 = 1.1 /(1 + CsA) by (BI0)
3/2)/2 as soon ad is large enough. (5.11)

v

(Su
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Consider nowA to be chosen so that the last inequality [of (5.11) holds; sin@®) is
uniformly bounded for-2 < & < 0, we have

3
(3 — gz + )W = Ps>‘3/2<p(T) =0().
By parabolic regularity, and also by letting— +o0, so that we only keep the effect of
the right side, for alp > 1, there isC,, > 0 independent of such that

IWellLrqo,1yx[—2,01 + IWeellLrqo,1x[—2.0) < Cp.

Take p large enough so that the above estimate impli€$-&/? estimate for some e
(0, 1). This, combined with[(5.31), and the fact thtis c-periodic int, andc is a small
number, implies

VieR, W(, -1 > (5733, (5.12)

Next, we recall thatl'(r,£) < Ac? for all r andé < 0. Consider now a small
numberd and a smooth functiog(7) havingé as an ignition temperature, and such
thatg(7T) < T. We therefore havec? < 6 if ¢ is small enough; hence, for our pulsating
wave we have

(W —T)T > (83— T)g(T) onRA. (5.13)

Indeed, [(5.18) holds fof > —1 because of (5.12), while fdr < —1 the right side of
(5.13) vanishes becaugeis below the ignition temperature fg(T'). The velocity of the
pulsating wave is therefore larger than the velocg)of the travelling wave solution of

w — gy = (SYA/3—wg),  u(t,—o00) =0, u(t, +o0) = (52/%)/3.

When6 > 0 is small enough, we have> cg ~ 24/ ((Sf/z)/3)f/(0), the KPP velocity.
This contradicts the smallness of O

5.2. Uniform decay bounds and homotopy

The general idea is the following: perform a homotopy from problen} (1-T)}~(1.3) to prob-
lem (5.1). The deformation is done through the droplet distributiehoat namely we go
from S(¢, x) = S,(x) at —oo to S(¢, x) = 0 at—oo. This means that we simply forget,
in the end, the effect of the droplets, and this is understandable: combustion will occur in
this situation whether or not droplets are present in the picture.

What we will need to complete the degree argument is not only the claggicalund
onT at+oo, but a uniform control of” in the X, norm, for some € (r_(c, Yy,), ¢). This
will allow us to reduce the issue to the problem of finding a fixed point of an operator
which is a sum of a contracting and a compact one.
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Proposition 5.2. There existk > 0 anddp > 0 satisfyingr_(c, ¥,,) + 6o < ry(c, ¥,),
depending only on the data, such that®f, W, S) is a pulsating wave solution .1~
(1.3) with velocityc > K, and

T(t,x) — (V)X = Q==Y+ g9y — 0, (5.14)
then there exist€' > 0, also depending only on the data, such that
IT(t, x) — &~ ©Y¥| < Celr=(YH00x  for (1 x) € R2. (5.15)

Proof. The proof of this proposition is really a stability argument; instead of comparing
directly 7'(z, x) to &~ (Y* we will compare it to the only (KPP) wavgy(x) of (5.1),
satisfying

Po(x) ~ e~ EY¥  asy oo, (5.16)

1. We claim that, ifT(z,x) ~ ¢o(x) for x — —o0, thenT(t,x) > ¢o(x). Indeed,
W(t, x) > Y,, implying
(0 — Oxx +cOx)T = (Y, —T)T, T(t,+00)>Y,. (5.17)

Letu(z, x) be the only solution of (5]1) with the initial datu(0, x). Because of (5.14)
we have (see [14])

im u(t, x) = ¢o(x).
t——+00
This, together with[(5.77), proves the claim.

2.Considers > 0 small, to be chosen later. Assume the functitdn, x) has been trans-
lated in time and space such that

TO0,00= min T(,x)=3. (5.18)
(t,x)eRxR
This implies, through Step 1, that the correspondbp@x) < 8 for x < 0. It also follows
thato(T) = f(T) = T for & < 0. Now, for allé € R_, denote byw(z, &) the function
W(t, &) and decompos® (¢, x), forr e R, x < &, asW[T] + W9, where both functions
W[T] and WO are 1/ c-periodic inz, and where

(0 — By + ) W[T] = SSS/ZT, W[T](1,€) =0,

(5.19)
(8 — dxx + )W =0, WO, &) = w(, &).
We recall the existence @f > 0 such that
0< WO, x)— Y, < Ce¥9), (5.20)

simply because the right side ¢ (5]20) is a supersolution to the equation (5.19)for
and because of the>* bounds forW. Now, set

rs=r(c,Y) +8, vt,x,&) =ePTE(T (1, x) — do(x)); (5.21)
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the real numbes is not chosen yet—simply remember that it will be small. The function
v(t, x, &) solves, for(t, x) € R x (—o0, &),

Vr — Uxx + (¢ — 2rs)vy + (crs — r(gz —Y,)v
=—(po+ T)v+ (WO —¥)e =T 4 o=rsC=EW[T]T
< e 8 (CHe I E) L WIT]T). (5.22)

In the last inequality of[(5.22), we have used the positivity @6 drop the first term on
the second line, while in the second term we used the decdy-ef¢o(x), and [5.2D).
Set

Vs(t, &) = lu(t, -, &)l Lo ((—00.£)); (5.23)

recall that an eventual supersolution #{77] is the functionW (z, x) solving

— — 3
W'+ W' = SIS o+ e V(1. 6)).

We invoke the following three facts:

@) r <c, .
(i) formula (2.18) holds and gives an expressiorfiof
(iii) we have ¢o(x) < Cde'~©Y)*—=8)_gsee Step 1 of this proof. The constantis
independent of > 0.

Points (i) to (iii) above imply, after a computation, the following bound W[7]T on
R x (—o0, &):

0< e PEOWITIT < C(e"— T =DO=8) 4 o=y (1 £)2)52, (5.24)

Now, we start shrinking. First, we require the amouat; — r82 — Y, to be positive; from
(5:22){5.2%), the normalization conditign (5.18) and the maximum principle, we have

t
Vs(t, §) < 8 + e~ —Viryy 4 C52(1 + /0 BTNV Rs, £ ds)'

Then we ask to be small enough so that the equat@®hX? — X + C$ has two positive
roots: one that i) (8), the other one that i© (1/6). Fix such &, and call it5g.

Lettingr — 400 and using the Ac-periodicity of Vs (¢, &) we get, for alls < 8o, and
for a constant once again independent &f

2 8 2
IVs(.8) oo = C|8+6 +—zylle(-,€)||oo

crg —ry —
< CSL+ [Vs(, &)%)
This implies that eitheV;s (7, £) = O(6), or Vs(¢, &) = O(1/8). The first solution prevails

for large negative and smalls; so by continuity,Vs,(t, 0) = O(dg). This proves our
proposition. O
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The fact thatT > ¢g readily implies the exponential convergenceScand W to their
limits at —oo.

Lemma 5.3. There arepg > 0 andC > 0, depending only on the data, such that
Vi, x) eRxR_, 0<8,(x) =S, x)<Ce™, 0<W(,x)—Y, <Cel*.

The proof is at this stage routine and is omitted. The last ingredient that we need for the

homotopy is a quantitative, uniform decay to the right for the functibnsy, — (S,f’/z),

W—-Y, — (Sf/z). This is provided by

Proposition 5.4. There ispg > 0 such that ifT (¢, x) satisfies the assumptions of Propo-
sition[5.3, then, for som& > 0 depending only on the data,

V(t,x) e Rx Ry, [(T(,x), W, x)) — (Tp(Yy, Su), Tp(Yy, Su))| < Ce™ "%, (5.25)

Proof. Come back to a pulsating wave that satisfies the normalization condition (5.18).
Arguing as in Propositiop 211 we hal&r, x) > C§o for x > 0; on the other hand, we
have

St + ¢Sy +Se(T) =0;

together these facts imply a uniform exponential decaysfarhenY (¢, x) satisfies
Y +cYe = Yoo + (DY = §5¥20(T);

using the lower bound fof onR x R, and the exponential bound féron the same
set, implies the exponential bound for The functionW is then treated as in Proposition
2.4. O

Proof of Theorerpi 1|3 (end)Let us picke satisfying the assumptions of Propositjon]5.2.
Let y be a smooth, nonnegative function, equal to 1TRonand 0 on [1+00). Let §g
satisfy the conclusions of Proposition]s.2, and set once and for all

r=r(cYy,) + do. (5.26)

The fixed point setting that we are going to devise here is simpler than in Section 3,
because is not to be looked for. Let us define the spagg, as

/2 ., — 3/2 /2
X,.50 = {u € Coat’? (€7 (4 — o), 2 (u — Y, — (ST?)) € Coat?). (5.27)

Here the spacé’,‘;’,"e‘i‘/2 means the classicaldtler functions which are additionally/a-
periodic inz. Now, for T € X,, let F1[T] be defined aq (3.10), i.&(z, x) is defined in
terms ofT, and let the only Ac-periodic solution of

Wi — Wex + Wy = S(A[TDY20(T),  W(t, —00) =Y,
be defined as

W, x) =y@)Yy + A —y())NTp(Yu, Sw) + F2T]. (5.28)
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The equation that we are solving is then

(@ — x4 00T = (Yo + L= y)(S2%) + (FoT] = T) £(T)

T(t, x) = ¢o(x) + 0(™) (x - —00), (5.29)
T(t, +00) = Tp(Yy, Su)-

As soon as we find a/t-periodic solution to[(5.49), we will be done.

Once the estimates are at hand, the rest of the proof of the theorem only amounts to
putting [5.29) in the right functional form, so we are not going to dwell on it too much,
all the more as it was detailed in Section 3. The unkn@Wn x) is best looked for in the
form

T(t,x)=A—=y@)Tp(Yy, S0)+ (¥ (x)(Po(x) +e™)+ (A —y(x)e "Hu(t,x)  (5.30)

where the exponentis defined in[(5.26) and the expongnis, say, less thapp/2 where
po is defined in Lemm& 5|3. This complicated-looking expression simply says that we
wish T to be asymptotic t@o(x) asx — —oo, and to converge t@(Y,, S,) at some
small exponential rate. The equation fdr, x) therefore reads

(F2T] = T) f(T)

U + Lu = fo(xv u, Mx) + ¢1(x) + V(x)(¢0(x) + erx) + (1 — y(x))e—px : (531)

where the quantities, fo, andg, have the following features.

1. The operatoL. is defined as

d? d
L = 2 +a(x) +b(x)
a(x) =yx)(c—2r) — (1 —y(x)(c —2p),

b(x) =y (x)(Yy +cr — %) + (L — y () (Tp(Yu, Su) — cp — p?).

(5.32)

Notice thatb(x) is controlled from below by a positive constant. By the maximum prin-
ciple we have therefore the inequality

le Xl cwemy < 1. (5.33)
2. The functionfy is smooth in all its variables; moreover we have
Vx ¢ [0,1], Y(u, p) € R?,  f(x,u, p) =0. (5.34)
3. There is§p depending only on the data such that
Vx €R, [p1(x)| < Ce M, (5.35)

4. Recall thatT is (for short) defined by equatiop (5]30). From Propoa!\ tion 5.2, Lemma
and Propositi .4, there exigts< min(r, pg/2) such thatifl —(Y,—(S,’ ")) (1—y)
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belongs taX, s,, then, for som& depending on th&, norm of T — (¥, — (Sf/z))(l— ¥),

Vx e R, (F2lT] - 1) f(T) < Ce %l

Y () (go(x) +e™) + (1 — y(x))e P> | —
Consequenceiet K[u] denote the right side of (5.B1). Then the operatorcting on

Cgé‘}‘/z and defined byF[u] = e~ £/°K[u] is compact inC,‘;‘é‘i‘/2

(5.36)

Now, it suffices to perform the homotopy consisting in replacing once agjalvy
S, while keepingY,, fixed. Forr = 0, this reduces to the study of the operatat®/dx?
+cd/dx — f'(¢o), which is an isomorphism between its domain and the set of all func-
tionsu decaying likee™ on the left side; se¢ [13]. This implies the existence resulta

6. Extensions

Clearly, in this paper we have not discussed the thermo-diffusive propagation of spray
flames in its full generality, although we believe that we have captured some of its main
features in the study that we have presented. Some extensions of the theory developed
so far can be thought about; some of them are simple generalizations; others seem less
obvious to us. Let us list three of them.

e Holes in the distributions of droplets atoo. We have only treated droplet distributions
at —oo that never vanished. This is truly a convenience assumption, which is only
needed in the lower bound for the velocity in the ignition temperature case. A more
accurate proof would have revealed that what matte(s,is. This generalization is
omitted.

o Polydisperse spray# more general description of the spray would describe the droplet
distribution by a probability density (¢, x, s) accounting, roughly speaking, for the
number of droplets that, between the timemndr + dr, and between the positions
andx + dx, have sizes comprised betweeands + ds. The governing equations are
then

Tt = Tox = Y(T),
400
Y = Yex = =Y f(T) +¢(T)/ s32f(t,x,s)ds, (6.1)
0
Jr = 9(p(T)H(s) f) = 0.

Here H (s) is the Heaviside function. Such a general spray is said fedbgisperse

as opposed to the monodisperse case that we have treated so far. The system we treat
has two simplifications relative tp (6.1): first, we have replaggd) by the function
identically equal tos to avoid dealing with interfaces. We have also assumed that the
distribution f (¢, x, s) has the fornd,_s ) as we consider the monodisperse case.
Although [6.1) looks much more formidable than {1.1), the investigation of travelling
waves is essentially the same as for(1.3) (ke [7])—the relevant quantity to be consid-
ered is the maximal size of the droplets-ato. We expect that this is also the case for

the pulsating fronts.
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e Several space dimensioWhat prevents us from going to several space dimensions is
the lap number decay—uwhich is, in Section 4, replaced by another typically 1D result.
Most certainly, one could by-pass the use of this result.

A less obvious point to study is what happens when there is no gaseous fuel dte.
Y, = 0. The main question to be answered is: is there an unbounded range of possible
velocities? Preliminary computations of thravelling waveproblem seem to indicate
that this is impossible, and that the system would be qualitatively close to the one with
ignition temperature. This, however, needs a more serious study than these considerations.
Also, a complete study of the burning rate, in the spiritldf [8]lorl [12], would be very
welcome. This might not be an easy task, for we would have to drop the pulsating wave
assumption—an assumption that we have heavily used in several crucial instances. In
particular, we still do not know how to derive an upper bound for the enthalpy, although
sharp upper bound results for the purely gaseous thermo-diffusive system, such as [10],
might help. We hope to give (at least partial) answers to these last two questions in the
future.
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