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Abstract. A one-dimensional system describing the propagation of low Mach number flames in
sprays is studied. We show that pulsating waves may exist when the droplet distribution in the un-
burnt region is spatially periodic. The range of possible propagation speeds may be either bounded
or unbounded, depending on the threshold temperatures of the burning and vaporization rates.

1. Introduction and main results

In view of the breadth of their potential applications and complexity, models for flame
propagation in sprays present significant analytical and computational challenges. It is
therefore desirable to have a good understanding of the basic phenomena when flame
propagation involves both burning of the gas and droplet evaporation that converts them
into the flammable gas and provides an additional source of fuel for the flame. We con-
sider a simplified model for the propagation of one-dimensional flames in sprays (see [16]
for the background on this model) that involves three unknowns(T , Y, S):

• T (t, x) is the temperature of the mixture,
• Y (t, x) is the mass fraction of the gaseous reactant,
• S(t, x) represents the surface of the droplets that are, at timet , located atx. We are

thus making the—simplistic but not irrelevant—assumption that, at every point in time
and space, the droplets have only one radius. Such a spray is calledmonodisperse.

The evolution ofT , Y andS is described by the following system:
Tt − Txx = Yf (T ),

Yt − Yxx = −Yf (T ) − ∂t (S
3/2),

St = −ϕ(T )S,

(t, x) ∈ R2. (1.1)
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The first two equations in (1.1) are the usual thermo-diffusive system but for the last term
in the equation forY that represents the gas production due to evaporation of droplets.
The last equation describes the decrease in the number of droplets available because of
the same process. The reaction ratef and evaporation rateϕ are smooth, and satisfy the
following assumptions:

• f (0) = ϕ(0) = 0; moreoverf andϕ are nonnegative nondecreasing functions, uni-
formly bounded from above:

0 ≤ ϕ(T ), f (T ) ≤ C for 0 ≤ T < +∞; (1.2)

• there exist 0≤ θv ≤ θi < +∞ such thatf (resp.ϕ) is positive on(θi, +∞) (resp.
(θv, +∞)) and zero outside. Ifθv = 0 we assumeϕ′(0) > 0.

The thresholdsθv andθi are called, respectively, theboiling and ignition temperatures.
The ignition temperature can (and sometimes will) be taken equal to 0.

The system (1.1) has been considered in [7] where travelling fronts have been shown
to exist when the density of droplets in the unburnt region is uniform. In reality the droplet
distribution is not homogeneous and may be quite complex. As a first step, in this paper
we consider a periodic distribution of liquid droplets located “ahead of the front” at−∞

(the convention is that the flame propagates from right to left). This leads to the following
boundary conditions asx → −∞:

T (t, −∞) = 0, Y (t,−∞) = Yu, lim
x→−∞

(S(t, x) − Su(x)) = 0, (1.3)

where

• Yu is a nonnegative quantity, that may—and sometimes will—be 0;
• Su(x) is a smooth, positive, 1-periodic function.

The boundary conditions in the burnt region, asx → +∞, are as follows. If we ask—
which is quite natural—that everything is burnt at+∞, then bothS andY shall be 0
at+∞:

S(+∞) = Y (+∞) = 0. (1.4)

We will see that the valueTb of T asx → +∞ will be determined automatically by the
values ofYu and the average ofSu(x) over the period:

Tb = T (+∞) = Yu + 〈S
3/2
u 〉. (1.5)

Here〈g〉 denotes the average of a functiong over its period.
As we have mentioned, should the droplet distributionSu at−∞ be constant, the sys-

tem under study would admit travelling waves [7]. The periodicity of the radius distribu-
tion at−∞ leads us to replace this notion by the wider notion of pulsating waves [6, 17],
namely solutions of (1.1)–(1.3) that are time-periodic in some galilean reference frame. In
more mathematical terms these are solutions of (1.1) of the formT (t, x) = U(x + ct, x)

with a functionU that is periodic in the second variable. Alternatively, there exists a speed
c > 0 such that

(T , Y, S)(t, x − ct) is 1/c-periodic int .

Our first result deals with the case of a positive ignition temperature.
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Theorem 1.1 (Nonzero ignition temperature). Assumeθi > 0. There exists a constant
q0 ∈ (0, 1) such that if

θv/θi ≤ q0 and max(Yu, min
x∈[0,1]

Su(x)) ≥ 1/q0 (1.6)

then the problem(1.1)–(1.3)has a pulsating wave solution.

The first condition in (1.6) makes sure that the evaporation produces fuel at sufficiently
low temperatures on the left. The second assumption means that there is enough fuel,
either liquid or gaseous, in the unburnt region. We also show that there exist two constants
c0 andc1 that depend only on the data of the problem so that the pulsating front speedc

satisfies
0 < c0 ≤ c ≤ c1 < +∞.

This means that the possible range of speeds is a priori bounded in the ignition case.
The case of a zero ignition temperature is treated separately. Following the termi-

nology of the thermo-diffusive systems we refer to it as the ‘KPP case’, although the
underlying physics, and, potentially, the behaviour of solutions, may vary according to
the respective proportion of droplets and gaseous fuel at−∞.

Theorem 1.2. Assumeθi = θv = 0. There existsc0 > 0 such that the problem(1.1)–(1.3)
has a pulsating wave solution with the speedc0.

It is well known that, in the case of scalar reaction-diffusion equations

ut − uxx = uf (u)

with, for instance,f > 0 on [0, 1) andf (1) = 0, there existsc0 > 0 such that, for all
c ≥ c0, the above problem has travelling wave solutions that move with the speedc and
connectu = 0 tou = 1. We would therefore like to see if this is the case here; we have a
partial result in this direction.

Theorem 1.3. Assume, for simplicity, thatf (T ) = ϕ(T ) = T for 0 ≤ T ≤ 1 and
otherwise the aforementioned assumptions are satisfied.

(i) There existsc0 > 0 such that any pulsating wave solution to(1.1)–(1.3)has a velocity
larger thanc0.

(ii) Assume in addition thatYu > 0. There existsc1 ≥ c0 such that, for allc ≥ c1, the
problem(1.1)–(1.3)has a pulsating wave solution that moves with the speedc.

We do not know whetherc1 = c0, that is, if the range of speeds is a semi-infinite interval.
In particular, we do not know if there exists a pulsating front that moves with the minimal
speed. It is also not known whether the velocity spectrum is unbounded whenYu = 0.

We mention that while existence of pulsating fronts for a single reaction-diffusion
equation has been extensively studied [6, 17], the only result for reaction-diffusion sys-
tems that we are aware of is that of [15], where small (but nontrivial) perturbations of a
planar travelling front have been considered.

The paper is organized as follows. Sections 2 and 3 are devoted to the proof of Theo-
rem 1.1: in Section 2, we performa priori estimates on potential pulsating wave solutions
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to (1.1)–(1.3); in Section 3 we prove the actual existence by a degree argument allowed
by the estimates of the preceding section. In Section 4 we prove Theorem 1.2 by ap-
proximation by a sequence of problems with ignition temperature. Section 5 is devoted
to Theorem 1.3: it is provedvia a direct estimate on the velocity, an additional weighted
estimate for the temperature and a homotopy argument. Possible extensions are discussed
in Section 6.

2. The case of nonzero ignition temperature: a priori estimates

The main difficulty in deriving uniform bounds will be to boundY . Indeed, as opposed
to what happens in a purely gaseous flame, there is a positive source term in the equation
for Y due to droplet evaporation. This may in turn cause a (mild) unboundedness for the
functionY (t, x). We do not see any convincing reason why the Cauchy problem for (1.1)
would produce a solution whoseY -component would be unbounded, but we are not able
to prove it at the moment. It turns out, however, that finding a lower bound for the velocity
will help us, because this puts us in the framework of periodic functions with a bounded
periodL = 1/c. This is a strong restriction on the set of global solutions that we have to
investigate, and this will help us in finding the upper bounds that will in turn allow us to
set up a degree argument.

It also turns out that the bounds that we shall find strongly depend on the value ofYu.
If Yu is large enough—larger than the ignition temperatureθi—we will be faced with a
flame in which the presence of the spray neither helps nor prevents the propagation; the
physics of the phenomenon is that of a purely gaseous flame. As opposed to that, when
Yu is small or 0, the propagation cannot take place without the help of the evaporation
process; in the limitYu → 0 it is really this process that governs the propagation. Thus
we are confronted with two very different physics, a situation which is described in detail
for travelling waves in [7].

In what follows, we consider a pulsating wave solution(T , Y, S) to (1.1), with a
speedc. System (1.1) is then written in the reference frame of the wave; thus the sys-
tem under study is now

Tt − Txx + cTx = Yf (T ),

Yt − Yxx + cYx = −Yf (T ) − (∂t + c∂x)(S
3/2),

St + cSx = −ϕ(T )S,

(t, x) ∈ R2. (2.1)

As we have mentioned, the conditions at+∞ for temperatureT cannot be chosen arbi-
trarily. Adding up the equations forT andY , then integrating the whole lot on(0, 1/c)×R
yields

(T + Y )(+∞) = Yu + 〈S
3/2
u 〉.

This last value will be denoted byTb(Yu, Su), the burnt gas temperature; these consider-
ations are therefore summed up in the conditions at±∞:

T (t, −∞) = 0, T (t,+∞) = Tb(Yu, Su),

Y (t, −∞) = Yu, Y (t,+∞) = 0,

lim
x→−∞

(S(t, x) − Su(x)) = 0, S(t,+∞) = 0,
(2.2)
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and the periodicity condition

(T , Y, S)(t + 1/c, x) = (T , Y, S)(t, x). (2.3)

2.1. A lower bound for the flame speed

The main result of this section is the following proposition. Hereafter we set

Su = inf
x∈[0,1]

Su(x). (2.4)

Proposition 2.1. If max(Yu, Su) is large enough, there existsc0 > 0, depending only on
the data, such that any solution(c, T , Y, S) of (2.1)–(2.3)satisfiesc ≥ c0.

Proof. Two cases should be distinguished.

1. The case of largeYu. Namely, we assume that

Yu > θi . (2.5)

As is classical, introduce the enthalpy function

W(t, x) = T (t, x) + Y (t, x); (2.6)

we have
Wt − Wxx + cWx = −∂t (S

3/2) ≥ 0, W(t, ±∞) ≥ Yu. (2.7)

Letting t → +∞ yieldsW(t → +∞) ≥ Yu; moreover, this is true for all times asW is
periodic in time. Therefore we have

Tt − Txx + cTx ≥ (Yu − T )f (T ) =: g(T ). (2.8)

Take anyδ > 0 such thatYu−δ > (Yu+θi)/2 and consider the travelling waveT δ(x+cδt)

which is a solution of

ut − uxx = gδ(u), u(t,−∞) = −δ, u(t,+∞) = Yu − δ.

Heregδ(u) = (Yu − δ − u)f (u) with the convention thatf (u) = 0 for u < 0. The front
speedcδ is controlled from below by somec0 > 0 depending only onYu, the smoothness
of g and the size ofδ. We claim thatc ≥ cδ; indeed, assume the contrary: this makes
T δ(x) a subsolution to (2.8); moreover, due to its limits at±∞ we may, up to the correct
translation, assume thatT δ(x) ≤ T (0, x) with a contact pointx0. The maximum principle
impliesT (1/c, x) ≥ T δ(x); moreover the periodicity int implies thatx0 is still a contact
point betweenT (1/c, ·) andT δ. This contradicts the strong maximum principle.

2. The case of largeSu. We give the proof in the case of zero boiling temperature; the
caseθv > 0 differs only by computational details. Asφ′(0) > 0, there exist 0< ϕ < ϕ

such that
ϕT ≤ ϕ(T ) ≤ ϕT on [0, θi ]. (2.9)
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By the nonincrease of the lap number for a parabolic equation [1], combined with the fact
thatT (t, x) − θi is a time-global solution for the (appropriately rewritten to subtractθi)
first equation of (2.1), there exists a smooth,c−1-periodic functionxi(t) such that

∀t ∈ R, x < xi(t) ⇒ T (t, x) < θi, x > xi(t) ⇒ T (t, x) > θi . (2.10)

Let x−

i be the minimum value ofxi ; we may assume it to be 0. The functionx 7→ θie
cx

satisfies the equation forT for x < 0 and is aboveT for (t, x) ∈ R×{0}; letting t → +∞

implies, after shifting the time origin,T (t, x) ≤ θie
cx for (t, x) ∈ R×R−. Then we have

St + cSx ≥ −ϕT S ≥ −ϕθie
cxS, x < 0.

This implies (once again lett → +∞ and use the fact thatS is 1/c-periodic int)

S(t, x) ≥ Suexp

(
−

ϕθi

c2
ecx

)
, x < 0. (2.11)

Our goal is to find a subsolution to the equation forY in R×R−. Note that in this domain
Y satisfies

Yt + cYx − Yxx =
3

2
φ(T )S3/2

≥
3

2
ϕT S3/2.

To find an explicit subsolution forY we would be glad to replaceT (t, x) by θie
cx ; unfor-

tunately it is an upper bound forT , and not a lower bound. To make up for that we first
assumec < 1 (otherwise the proof would end here), then rescalet andx in a parabolic
fashion:

τ = c2t, ξ = cx. (2.12)

ThenT satisfies

Tτ − Tξξ + Tξ = 0 onR × R−; T (τ + c, ξ) = T (τ, ξ).

In particular, there existsτ0 ∈ [0, 1] such thatT (τ0 + nc, 0) = θi for all n ∈ Z: these are
the times when the curvexi(t) hits zero. It follows thatT (τ0 + nc, ξ) > θi for all ξ > 0.
Without loss of generality we may assume thatτ0 = 0. Moreover,T is a supersolution to
the advection equation everywhere. This implies

∀(t, x) ∈ [0, 1] × R+, T (τ, ξ) ≥ T (τ, ξ)

where T τ − T ξξ + T ξ = 0 (0 < τ < 1, ξ > 0),

T (τ, 0) = 0 (0 < τ < 1),

T (0, ξ) = θi (ξ > 0).

The parabolic Harnack inequality implies the existence ofC > 0 such that

∀τ ∈ [0, 1], T (τ, 1) ≥ Cθi . (2.13)
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We may now construct yet another subsolution8 for T as
8τ − 8ξξ + 8ξ = 0 (0 < τ < 1, ξ > 0),

8(τ, 1) = Cθi (0 < τ < 1),

8(0, ξ) = θi (0 ≤ ξ < 1),

8(0, ξ) = 0 (ξ < 0).

The maximum principle implies that8 ≤ T , hence applying the parabolic Harnack in-
equality once again we obtain, for a possibly differentC > 0,

∀τ ∈ R+, T (τ, 0) ≥ Cθi .

Still working in the (τ, ξ) variables we end up with (lettingτ → +∞ and using the
time-periodicity ofT )

∀(τ, ξ) ∈ R × R−, T (τ, ξ) ≥ Cθie
ξ . (2.14)

Consequently, we obtain, for(τ, ξ) ∈ R × R−,

Yτ − Yξξ + Yξ ≥
Cϕθie

ξ

c2
S

3/2
u exp

(
−

3ϕθi

2c2
eξ

)
. (2.15)

An eventual subsolution to (2.15) is obtained by setting the time-derivative equal to 0 and
solving the differential equation with the zero boundary conditions at±∞; recall that the
solution of

−u′′
+ u′

= f onR−, u(0) = u(−∞) = 0,

is

u(ξ) =

∫ 0

ξ

(eξ−ζ
− eξ )f (ζ ) dζ + (1 − eξ )

∫ ξ

−∞

f (ζ ) dζ. (2.16)

Applying formula (2.16) withf (ξ) = (Cϕθie
ξ/c2) exp(−3ϕθie

ξ/2c2) we obtain

Y (τ, −1) ≥ CS
3/2
u

∫
−1

−∞

ϕθie
ζ

c2
exp

(
−

3ϕθi

2c2
eζ

)
dζ

≥ CS
3/2
u

∫ C/c2

0
e−η dη ≥ CS

3/2
u (2.17)

for a constantC > 0 under control, as we have assumed thatc < 1.
Come back to the(t, x) variables. As a consequence of (2.17) we haveY (t, −1/c) ≥

CS
3/2
u , and the functionW(t, x) (given by (2.6)) satisfies

Wt − Wxx + cWx ≥ 0, W(t,+∞) ≥ C〈S
3/2
u 〉, W(t,−1/c) ≥ CS

3/2
u . (2.18)

Therefore, once again, letttingt → +∞ and using the periodicity ofW in time we
conclude that ifSu is large enough, there isδ > 0 such thatW(t, x) ≥ θi + δ for
x ≥ −1/c. We conclude as in part 1: letT δ be a travelling wave solution of

cδT
δ
x = T δ

xx + (5 − T δ)f (T δ), T δ(−∞) = −δ, T δ(+∞) = 5,
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with θi < 5 < CS
3/2
u . Thencδ is bounded below uniformly inδ for δ small. Moreover,

if c < cδ, then asT δ
x > 0, we have

cT δ
x < T δ

xx + (W − T δ)f (T δ), x > −1/c, (2.19)

and of course,
Tt + cTx = Txx + (W − T )f (T ). (2.20)

Now, shift T δ to the right so much thatT δ(x) < T (0, x) for all x and start moving it
back to the left. There will bex0 so that the shiftedT δ(x) andT (0, x) touch for the first
time. Then we would still haveT δ

≤ T (0, x) everywhere, which would mean that (2.19)
holds even forx ≤ −1/c simply becausef (T δ) = 0 there. Therefore, for this particular
shift bothT δ andT touch at exactly one point andT δ satisfies (2.19). Then we get a
contradiction as in part 1 of this proof.

If θv 6= 0 we only have to replaceϕ(T ) by ϕ(T −θv) for aθv slightly above the actual
vaporization temperature, and use the same argument. ut

2.2. The upper bounds

This section is devoted toL∞ bounds for all the unknown functions, as well as an upper
bound for the front speed. The lower bound forc obtained in the previous section will in
particular be of use to us. The result of this section is best stated in terms of the enthalpy
functionW defined by (2.6).

Proposition 2.2. Assume thatθv ≤ q0θi with a constantq0 < 1. There exists a constant
W > 0, depending only on the data, the lower boundc0 of Proposition2.1, andq0, such

that‖W‖C1(R2) ≤ W .

An immediate corollary is

Corollary 2.3. There existsc1 > 0, depending only on the data andc0, so thatc ≤ c1.

Proof. Assuming Proposition 2.2 to be true, the temperatureT (t, x) satisfies

Tt − Txx + cTx ≤ (W − T )f (T ), T (t, −∞) = 0, T (t,+∞) ≤ W.

Arguing as in Proposition 2.1, part 1, we may prove that, ifδ > 0 is belowθi and
(c1, T (x)) solves

−T
′′

+ c1T
′
= (W + δ − T )f (T ), T (t, −∞) = δ, T (t,+∞) = W + δ,

thenc ≤ c1. ut

Proof of Proposition 2.2.We do not know yet any upper bound forc; to make up for that
let us come back to the parabolic scalingτ = c2t , ξ = cx. The equation forW is then

Wτ − Wξξ + Wξ =
3ϕ(T )S3/2

2c2
. (2.21)
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We wish to find an eventual supersolution forW . To do so, let us definēξ such that

∀τ ∈ R, ∀ξ ≥ ξ̄ ,
T (τ, ξ) ≥ (Tb(Yu + 〈S

3/2
u 〉) + θi)/2,

W(τ, ξ) ≤ 2Tb(Yu, Su).
(2.22)

If xi(t) is defined by (2.10), letξi(τ ) be its counterpart in the(τ, ξ) system. Without loss
of generality we may assume that the functionξi takes its minimum atξ = 0. Two cases
are to be discussed.

The regionξ ≤ 0. We simply haveT (τ, ξ) ≤ θie
ξ , hence

ϕ(T )S3/2
≤ C‖S‖

3/2
∞ θie

ξ . (2.23)

The regionξ ≥ 0. Let us find an upper bound forS3/2ϕ(T ). We have (see the proof of
Proposition 2.1) a constantq1 ∈ (0, 1] such that

∀τ ∈ R, ∀ξ > 0, T (τ, ξ) ≥ q1θi .

We takeq0 < q1. Then there is̄ϕ > 0 such that

∀τ ∈ R, ∀ξ > 0, ϕ(T (τ, ξ)) ≥ ϕ̄.

An eventual supersolution forS in {ξ ≥ 0} is

S(τ, ξ) = ‖S‖∞e−ϕξ/c2
. (2.24)

This will boundS(τ, ξ) for ξ ≥ 0. Gathering (2.23) and (2.24) we realize that there is
C > 0 depending only on the data such that

∀τ > 0,
1

c2
‖S3/2(τ )ϕ(T (τ))‖L1

ξ (R) ≤ C. (2.25)

An eventual supersolution forW is the functionW(ξ) which satisfies, on{ξ ≤ ξ̄},

−W
′′

+ W
′
=

C

c2
‖S‖

3/2
∞ θie

ξ 1R−
+

‖ϕ‖∞‖S‖
3/2
∞ e−ϕξ/c2

c2
, (2.26)

with W(−∞) = Yu andW(ξ̄) = 2Tb(Yu, Su). A simple ODE integration shows that
W(ξ) is bounded independently ofc. TheC1 bounds follow from parabolic regularity.ut
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2.3. Uniform exponential decay

Assume that the solution(c, T , Y, S) of (2.1)–(2.3) additionally satisfies the normaliza-
tion condition

T (0, 0) = θi . (2.27)

The main result of this subsection is the following.

Proposition 2.4. There existρ0 > 0 andC > 0, depending only on the data, such that,
for all t ∈ R,

∀x ∈ R−, |(T (t, x), Y (t, x) − Yu, S(t, x) − Su(x − ct))| ≤ Ceρ0x,

∀x ∈ R+, |(T (t, x) − Yu − 〈S
3/2
u 〉, Y (t, x), S(t, x))| ≤ Ce−ρ0x .

(2.28)

By parabolic regularity, it is sufficient to prove the following

Lemma 2.5. There existρ0 > 0 andC > 0, depending only on the data, such that, for
all t ∈ R,

‖e−ρ0x(T (t, ·), Y (t, ·) − Yu, S(t, ·) − Su(· − ct))‖L2(R−) ≤ C,

‖eρ0x(T (t, ·) − Yu − 〈S
3/2
u 〉, Y (t, ·), S(t, ·))‖L2(R+) ≤ C.

(2.29)

An important intermediate step is

Lemma 2.6. Let xi(t) be the function defined by(2.10). There isx̄0 > 0 such that
|xi(t)| ≤ x̄0 for all t ∈ R.

Proof of Lemma 2.6.Let −x0 ≤ 0 be the minimal value ofxi ; the proof of Proposition
2.1 (part 2) yields the existence ofC > 0 such thatT (t, −x0) ≥ Cθi . Also, remember
the existence (as in the proof of Proposition 2.1) ofW > θi , only depending on the data,
such thatW(t, x) ≥ W . Consequently, we have

Tt − Txx + cTx ≥ (W − T )f (T ), T (t, +∞) ≥ W. (2.30)

For anyW > θi , let c(W) be the unique speed of the travelling wave connecting 0 toW

by the equation
−u′′

+ cu′
= (W − u)f (u).

Two cases are to be investigated.

• If c ≤ c(W), then there exists (see [4]) a unique solutionT (x) to

−T ′′
+ cT ′

= (W − T )f (T ) (x > x0),

T (x0) = Cθi, T (+∞) = W,
(2.31)

which is an eventual subsolution to (2.29). Moreover, because of the boundedness ofc

from above, there is an absolute constantρ0 > 0 such that

∀x > x0, |T (x) − W | ≤ Ce−ρ0(x−x0). (2.32)
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• If c ≥ c(W), then (see Aronson–Weinberger [2], [3]) we have

T (t, 0) ≥ W.

ThenY decays, in both cases, exponentially to 0 asx → +∞, at a uniform rate. This
implies an inequality forT of the form (2.32).

All this is enough to prove the lemma: the minimal value−x0 cannot be too negative
sinceT (0, 0) ≥ θi , and the maximal value ofxi(t) is bounded directly by (2.32). ut

Proof of Lemma 2.5.Oncex0 is known to be bounded, the first part of (2.29)—the bounds
on the left—is easy: indeed, we have 0≤ T (t, x) ≤ θie

c(x−x0); this is enough due to the
uniform boundedness ofc from below. Then, using the boundedness ofS by ‖Su‖∞ we
have the existence of a constantC > 0 such that

|Yt − Yxx + cYx | ≤ Cec(x−x0);

an eventual, exponentially decreasing supersolution is easily found and left to the reader.
The equation forS is treated in the same fashion.

Consider anyδ > 0. From Lemma 2.6, there isx1 > 0, uniformly bounded, such
that T ≥ θi + δ as soon asx ≥ x1. This forces an exponential decay forS due to
the boundedness ofc from below; this in turn forces an exponential decay forY from
the maximum principle. It remains to prove theL2 bound forW ; to do so we argue as
follows. First, for convenience, rescale the time:τ = ct ; the new functionW is hence
1-periodic int . DecomposeW(τ, x) in a Fourier series:

W(τ, x) =

∑
n∈Z

wn(x)e2iπnτ .

The equation forw0(x) is

−w′′

0 + cw′

0 =
3

2

∫ 1

0
ϕ(T )S(τ, x)3/2 dτ,

which implies

w0(x) = Tb(Yu, Su) −
3

2

∫
+∞

x

ec(x−y)

∫ y

−∞

∫ 1

0
ϕ(T )S(τ, z)3/2 dτ dz dy. (2.33)

The limits forw0 areYu andTb(Yu, Su), because 3ϕ(T )S(τ, z)3/2/2 is exactly equal to
−(∂t + ∂x)S

3/2; the desiredL2 bound forw0 is obtained, at the possible expense of
decreasingρ0 a bit, by recalling the exponential decay ofS at+∞ and the fact thatϕ(T )

vanishes for large negativex.
Forn 6= 0 the equation forwn is

−w′′
n + cw′

n + 2iπcnwn = −(2iπcn + c∂x)

∫ 1

0
e−2iπnτS(τ, x)3/2 dτ (x ∈ R),

wn(±∞) = 0.



566 Peter Constantin et al.

This equation has two characteristic rootsr±, whose real part is above (resp. below)
C(1+

√
n) (resp.−C(1+

√
n)) whereC is a constant under uniform control. This implies,

by an elementary computation, the existence of a small, uniformρ > 0 such that

‖eρ0|x|wn‖L2(R) ≤ C/n. (2.34)

This in turn implies anL2([0, 1], L2(R)) bound foreρ0xW(t, x). ut

3. Nonzero ignition temperature: construction of the wave

The uniformL2 bounds forW andT will allow us to perform directly a topological degree
argument for the system (2.1)–(2.3) on the whole real line, without the approximation step
on a finite interval taken in [5]. The system will first be reduced to a fixed point problem;
then we shall introduce a homotopy bringing it to the problem of finding a travelling wave
for the 1D thermo-diffusive scalar equation—for which everything is known.

3.1. Strategy

To explain how we wish to proceed, let us start by recalling some basic facts. Assume
that we are given a Banach spaceX and a sectorial operatorA such that‖e−A

‖ < 1.
For α ∈ (0, 1), consider a functionf (t) ∈ Cα(R, X) which is 1-periodic. The Cauchy
problem for

u̇ + Au = f (t) (3.1)

is well-posed, in the sense that, for every initial datumu0 ∈ X, it admits a unique strong
solutionu(t) such thatu(0) = u0. We are interested in finding some 1-periodic solutions
for (3.1); to do so it is sufficient to look for the initial datum; it is uniquely given by

u0 = (I − e−A)−1
∫ 1

0
e−(1−s)Af (s) ds,

and the (unique) 1-periodic solution of (3.1) is given by

u(t) = e−tA(I − e−A)−1
∫ 1

0
e−(1−s)Af (s) ds +

∫ t

0
e−(t−s)Af (s) ds. (3.2)

Let us denote byFf the right side of (3.2). If the right side of (3.1) is replaced by a
nonlinear functionf (t, u) which is, say, Ḧolder in its first variable and Lipschitz in its
second variable and which is moreover 1-periodic in time, the problem of finding periodic
solutions to

u̇ + Au = f (t, u)

reduces to
u = Ff (·, u). (3.3)

It is this very simple fact that we wish to use in order to reduce (2.1)–(2.3) to a fixed point
problem, the major point that we will have to care about being thatu 7→ Ff (·, u) should
be compact if we wish to have a chance to apply a degree argument.
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3.2. Fixed point setting

Let us try to apply the above strategy, namely to define a subspaceX of C
α,α/2
per (R2) ×

C
α,α/2
per (R2)×Cper(R2)×R and a compact nonlinear mappingF of X such that (2.1)–(2.3)

reduces to finding a fixed point ofF . Here the subscriptper means that we are dealing with
functions of the variables(t, x) that are 1-periodic int .

In what follows, we take the boiling and ignition temperaturesθi andθv to be positive,
in agreement with the assumptionθi > 0 of Theorem 1.1. The other data are also assumed
to be in agreement with the assumptions of this theorem. The limitθv → 0 will be
considered at the end of this section.

The first step is to renormalize the time so that the period in (2.3) becomes 1. We take
Y, W, S, c as our principal unknowns instead ofT , Y, S, c; the reason for this choice will
become clear as the discussion goes on. The set of equations that have to be satisfied then
becomes

cYt − Yxx + cYx = −Yf (W − Y ) − c(∂t + ∂x)(S
3/2),

cWt − Wxx + cWx = −c(∂t + ∂x)(S
3/2),

St + Sx = −
1

c
ϕ(W − Y )S,

(t, x) ∈ R2, (3.4)

together with the conditions at±∞,
Y (t, −∞) = Yu, Y (t,+∞) = 0,

W(t,−∞) = Yu, W(t,+∞) = Tb(Yu, Su),

lim
x→−∞

(S(t, x) − Su(x)) = 0, S(t,+∞) = 0,
(3.5)

the periodicity condition

(Y, W, S)(t + 1, x) = (Y, W, S)(t, x) (3.6)

and the normalization condition

(W − Y )(0, 0) = θi . (3.7)

Let us then define the spaceXr as

Xr = {u ∈ C
α,α/2
per : er|x|u ∈ C

α,α/2
per }. (3.8)

We first choose, once and for all,α ∈ (0, 1) which will measure the Ḧolder character of
Y andW . Next, we recall the real numberρ0 defined in Lemma 2.5, the lower boundc0
for the velocity, its upper boundc0, and we fixr > 0 such that

r <
1

5
min

(
ρ0, c0,

−c0 +

√
c2

0 + 4f (Tb(Yu, Su))

2

)
. (3.9)
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In fact, the functionS will not be a principal unknown: we will compute it directly
from W andY . Assume therefore thatY andW are known; then the equation forS in
(3.4) has a unique 1-periodic solution int that is given by

S(t, x) = Su(x − t)exp

(
−

1

c

∫ 0

−∞

ϕ4(t + s, x + s) ds

)
(3.10)

where we have setϕ4(s, y) = ϕ(W − Y )(s, y). We denote the right side of (3.10) by
F4(c, Y,W)(t, x).

Let γ (x) be a smooth nonnegative function that is equal to 0 on(−∞, −1] and to 1
onR+. In order to obtain unknowns that decay exponentially at±∞, letu0(x) andw0(x)

be defined as

u0(x) = Yu(1 − γ (x)), w0(x) = Yu + 〈S
3/2
u 〉γ (x). (3.11)

Then look forY andW in the form

Y = u0 + u, W = w0 + w. (3.12)

Examination of (3.10) and of the definition ofρ0 in Lemma 2.5 yields the following
estimate forF4:

Lemma 3.1. Consider two functionsY andW of the form(3.12)with u, w in a bounded
subset ofXr , andc ∈ [c0/2, 2c0]. ThenF4(c, Y,W)(t, x) has the form

F4(c, Y,W)(t, x) = Su(x − t)(1 − γ (x)) + F̃4(c, Y,W)(t, x)

with F̃4(c, Y,W) ∈ Xr ; moreover there is a constantC(c, Y,W) > 0 such that

|F̃4(c, Y,W)(t, x)| ≤ Ce−ρ0|x|.

Next we turn to the equation forY . The first equation in (3.4) is rewritten as (for short
we redefineT asW − Y , and we keep the notationsW andY when we do not want to
underline a specific decay property)

cut − uxx + cux + γ (x)f (Tb(Yu, Su))u

= −(f (T ) − γ (x)f (Tb(Yu, Su))Y − γ (x)f (Tb(Yu, Su))u0

− c(∂t + ∂x)F4(c, Y,W)3/2
+ u′′

0 − cu′

0. (3.13)

Let Ac denote the differential operator

Ac = −c−1 d2

dx2
+

d

dx
+ c−1γ (x)f (Tb(Yu, Su)).

If UC(R) is the space of all bounded, continuous functions ofR, we define, for allρ > 0,

Yρ = {u ∈ UC(R) : e−ρ|x|u ∈ UC(R)}.

We extract from (3.9) and [9, Chap. 5] the following
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Lemma 3.2. There isδ0>0, depending onc0 andρ0, such that, for everyc∈ [c0/2, 2c0],
and for all δ ∈ [0, δ0], the operatorAc is sectorial inYr+δ0; its spectrum is moreover in
the right complex half-plane, bounded away from the imaginary axis. This statement is
uniform with respect toδ ∈ [0, δ0].

The proof is standard and omitted. Thuse−Ac has norm< 1 in Xr+δ for everyδ ∈ [0, δ0];
hence we may defineF2(c, u,w) as follows:

• the underlying space isYr ;
• the quantityF2(c, u,w) is defined by (3.2), withf being the RHS of (3.13).

Rephrasing Lemma 2.5, we have

Lemma 3.3. For the quantityδ0 of Lemma3.2, the mapping(c, u,w) 7→ F2(c, u,w) is
C1 and compact from[c0/2, 2c0] × Xr × Xr into Xr+δ0.

This implies the following

Proposition 3.4. The mappingF2 isC1 and compact from[c0/2, 2c0]×Xr ×Xr intoXr .

Proof. Straightforward, but lengthy—by Lemma 3.3 and parabolic regularity. We omit it.
ut

We would now like to do the same operation for theW -equation, but we do not have here
a term that ensures some coercivity at+∞. However, if we set, for allρ > 0,

Ỹρ = {u ∈ UC(R) : e−ρxu ∈ UC(R)},

then, for allc ∈ [c0/2, 2c0], the operator

Bc = −c−1 d2

dx2
+

d

dx

satisfies‖e−Bc‖L(Ỹr )
< 1, uniformly inc. The verification is even simpler than for Lemma

3.2, and is therefore omitted. Consequently, a mapping can be constructed as before: first,
the equation forw is

cwt − wxx + cwx = −c(∂t + ∂x)(F4(c, Y,W))3/2
− w′′

0 + cw′

0. (3.14)

Then, by writing formula (3.2) withf as the RHS of (3.14), andA = Bc, we obtain a
mapping that we callF3(c, Y,W). Now, Lemma 2.5 together with parabolic regularity
implies

Proposition 3.5. The mappingF3 isC1 and compact from[c0/2, 2c0]×Xr ×Xr intoXr .

Finally, we define the mapping

F1(c, Y,W) = c − (W(0, 0) − Y (0, 0) − θi). (3.15)

Clearly,F1 is compact.
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We are now ready to state the fixed point problem. LetC > 0 be such that if
(c, T , Y, S) solves (3.4)–(3.7), then the corresponding functionsu andw defined by (3.12)
are—due to all the estimates of Section 2—in the open ball ofXr with centre 0 and ra-
diusC, which we denote byBr(0, C). Now, define the open subset ofR × Xr × Xr and
the mappingF from � to R × Xr × Xr by

� = (c0/2, 2c0) × Br(0, C) × Br(0, C), F = (F1,F2,F3). (3.16)

Clearly,F is compact from� to Xr × Xr × R. Moreover, a fixed point ofF cannot be
on ∂�.

3.3. The homotopy

To do the homotopy, we simply perturb the values at−∞. Without loss of generality, we
assume thatθi < 1/2. We then replaceYu as the left limit ofY by τYu + 1 − τ , and
Su by τSu—that is, we replaceTb(Yu, Su) by Tb(τYu + 1 − τ, τSu). We note that, for
τ ∈ [0, 1], the estimates of Section 2 apply to these new conditions at−∞; we letF τ

be the corresponding mappings defined in the preceding section. Clearly,(τ, c, u, w) 7→

F τ (c, u,w) is C1 and compact. Also, any fixed point ofF τ is inside� according to the
a priori estimates. We may therefore define deg(I −F τ , �, 0); it is constant with respect
to τ . This triggers the last step of

Proof of Theorem 1.1.It suffices to prove that deg(I − F τ , �, 0) 6= 0. However, for
τ = 0, we have the usual thermo-diffusive system with the Lewis number equal to one:
there are no droplets. Hence, a fixed point ofI − F τ is such that the corresponding
functionW is exactly equal to 1, and the corresponding functionY is a solution of

Yt − Yxx + cYx = −Yf (1 − Y ) := g(Y ). (3.17)

The only time-periodic solution of (3.17) such that 1− Y is equal toθi at (0, 0) and goes
to 0 at+∞ is the 1D wave that we callY0 with the speed calledc0. Let us quickly prove
that I − ∂c,u,wF0 at the wave is an isomorphism ofR × Xr × Xr ; notice that, because
of what precedes,∂c,u,wF τ is a compact operator onR × Xr × Xr . Hence it suffices to
prove thatI − ∂c,u,wF0 has a zero null space. By the definition ofF τ , it suffices to solve
the following equation, with unknowns(c̃, ũ, w̃): ũ(0, 0) = 0,

(∂t − ∂xx + c0∂x − g′(Y0))ũ = 0, u(t + 1, ·) = u(t, ·).

w̃ = 0,

(3.18)

From [9, Chap. 5], the operator

L0 = −
d2

dx2
+ c0

d

dx
− g′(Y0),

with domain inXr , is nondegenerate, in the sense that the geometric and algebraic mul-
tiplicity of the eigenvalue 0 is 1, with associated eigenfunctionY ′

0. Consequently, the
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second line of (3.18) implies thatu(t, x) is proportional toY ′

0, and the first equation in
turn implies thatu ≡ 0.

To summarize,F0 has a unique zero in�, and∂c,u,wF0 is an isomorphism ofR ×

Xr × Xr , which implies (see [11]) that deg(I − F τ , �, 0) is nonzero. This ensures the
existence of a wave solution to (2.1)–(2.3) as soon as the evaporation temperatureθv is
positive.

It remains to sendθv to 0. However, all the bounds that are proved in Section 2 are
uniform with respect toθv, as soon asθi is fixed—in fact,θv > 0 was only required to
obtain some compactness forW . The passage to the limitθv → 0 is therefore standard;
see for instance [6] for the details. ut

4. The KPP limit

As in [6], the strategy that we shall use here for obtaining the wave of lower velocity is
to send the ignition temperature to 0. Our main problem is that the bounds devised so far
are not uniform with respect to the ignition temperature. On the other hand, what we are
now aiming at is the existence of waves when both ignition and vaporization temperatures
are zero. This leaves us some freedom for the approximating sequences, and we will use
one that will generate a painless estimate forY—something that we had to work for in
Section 2. This in turn will allow us a (less easy) estimate for the enthalpy. Also, we will
in a first approximation keep the mass fraction of the unburnt gases nonzero; this will give
us a free lower estimate, for in this case, part 1 of the proof of Proposition 2.1 applies. All
this is summed up in the following

Proposition 4.1. Let (fθ )θ>0 and (ϕθ )θ>0 be two sequences of Lipschitz functions, de-
fined for smallθ > 0 and havingθ as ignition (resp. vaporization) temperatures. Assume
moreover the ratioϕθ/fθ to be uniformly bounded from above, and bounded away from0.
ConsiderYu > 0 and a positive, smooth,1-periodic functionSu(x). Then there exists a
family of solutions(cθ , Tθ , Yθ , Sθ ) to the problem(2.1)–(2.3). Moreover, the following
properties hold:

• the sequence(cθ ) is bounded away from0,
• if Wθ is the enthalpy, then the sequence‖Wθ‖∞ is bounded,
• the exponential estimates of Section2.3hold uniformly with respect toθ .

Proof. It is clear that, given the considerations of Sections 2 and 3, a solution
(cθ , Tθ , Yθ , Sθ ) to the problem (2.1)–(2.3) exists as soon as the estimates stated in the
proposition hold, and the proof reduces to proving these estimates. In what follows, we
consider a solution(c, T , Y, S) to (2.1)–(2.3); we have deleted (and will continue to do
so in the course of the proof) the subscriptθ in order to alleviate the notations.

1. Upper bound for Y . BreakY (t, x) into Y1(t, x) + Y2(t, x) where{
(∂t − ∂xx + c∂x + f (T ))Y1 = 0 (t > 0, x ∈ R),

Y1(0, x) = Y (0, x),
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and {
(∂t − ∂xx + c∂x + f (T ))Y2 = ϕ(T )S (t > 0, x ∈ R),

Y2(0, x) = 0.

By an elementary computation for the advection-diffusion equation we have

lim sup
t→+∞

Y1(t, x) ≤ Yu;

moreover, if the function(s, x) 7→ Y2(s, x) has a maximum point(t0, x0), then

Y2(t0, x0) ≤
ϕ(T (t0, x0)

f (T (t0, x0)
S(t0, x0) ≤ C‖Su‖∞,

as the ratioφ/f is uniformly bounded by assumption. If there is no maximum, we may
always consider a maximizing sequence(tn, xn), consider the suitably translated sequence
Y (t + tn, x + xn) and sendn to +∞, to get the same estimate. In any case, this boundsY

from above.

2. Lower bound for c. Similar to part 1 of the proof of Proposition 2.1.

In the next two steps we revert (for convenience, and without change of notation) to
the original reference frame; thus the functions(T , Y, S) satisfy (1.1)–(1.3). Of course,
the benefit of the estimates of the previous two steps is kept.

3. L∞ bound for Tt and Txx . We start from the Duhamel formula forW(t, x):

W(t, x) = et∂xx W(0, x) +

∫ t

0

∫
R

e−(x−y)2/4(t−s)

√
4π(t − s)

(−∂sS
3/2) ds.

The free termet∂xx W(0, x) has the eventual boundTb(Yu, Su)/2 and is of no concern.
The remaining term, which we denote byW1(t, x), is broken into

W1(t, x) =

∫ t−1

0
+

∫ t

t−1
=: W11 + W12,

which we study separately.

[i] Becauseϕ(T ) and S are both bounded (see (1.2)), we immediately infer from the
parabolic regularity that, for everyp ∈ (1, +∞), there isCp > 0 such that, for every
bounded intervalI of length 1/2, and for every(t, x) ∈ (2, +∞) × R, we have

‖∂tW12‖Lp((t,x)+I2) + ‖∂xxW12‖Lp((t,x)+I2) ≤ Cp. (4.1)

Indeed,W12 solves

(∂s − ∂xx)W12 = −∂sS
3/2

=
3

2
ϕ(T )S3/2 for (s, x) ∈ (t − 1, t) × R,

W12(t − 1, x) = 0.

(4.2)
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[ii] The termW11 has the expression

W11(t, x) =

∫
R

(
e−(x−y)2/4

√
4π

S(t − 1, y)3/2
−

e−(x−y)2/4t

√
4πt

S(0, y)3/2
)

dy

+

∫ t−1

0

∫
R

1

t − s

(
1 −

(x − y)2

2(t − s)

)
e−(x−y)2/4(t−s)

√
4π(t − s)

S(s, y)3/2 ds dy

=: W111(t, x) + W112(t, x).

The term∂tW111 is uniformly bounded, just becauseSt is uniformly bounded. As for
W112 there is a polynomialP(X) (easily explicitly computed, but whose expression is of
no use to us) such that

|∂tW112(t, x)| ≤

∫ t−1

0

1

(t − s)2
P

(
(x − y)2

t − s

)
e−(x−y)2/4(t−s)S(s, y)3/2 ds dy.

This bounds∂tW112.
Now, remembering (4.1) and using the equation forW and the boundedness of its

right side, we conclude that the outcome of the two paragraphs [i] and [ii] is

‖∂tW‖Lp((t,x)+I2) + ‖∂xxW‖Lp((t,x)+I2) ≤ Cp (4.3)

for all p ∈ (1, +∞). This is not quite enough; we would in fact wish to bound∂tW and
∂xxW in some Ḧolder space. However we are now in a relatively good situation, and we
may argue as follows: first, the boundedness of the coefficients of the equation forY , as
well as the boundedness ofY , imply a bound forY of the type (4.3). This in turn implies
a similar bound forT , becauseW = T − Y . Consequently, becauseϕ(T ) andf (T ) are
bounded together with their derivatives, there isα ∈ (0, 1) such that

‖f (T )‖Cα,α/2 + ‖ϕ(T )‖Cα,α/2 ≤ C.

If we now setu(t, x) = Tt (t, x) we have, from the previous considerations,

ut − uxx − f ′(T )Yu = Ytf (T );

the coefficients and RHS of the above equation are bounded inCα,α/2. Moreover, because
of theL

p

loc bound foru, there ist0 ∈ (0, 1) such that‖u(t0, ·)‖Lp(I ) is bounded uniformly
on all intervalsI of length 1. Parabolic regularity implies a Hölder bound forut , which is
enough to infer a Ḧolder bound forWt . Hence the outcome of this step is

‖Tt‖∞ + ‖Txx‖∞ ≤ C. (4.4)

4. L∞ bound for W . If C is the bound of (4.4), andc0 a lower bound forc, consider
K > 0 large enough so that

K ≥ 1 + 2
C + 3

√
CK

c0
; (4.5)
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let x0 be the smallest pointx for which there ist ∈ R+ such thatT (t, x) = K; without
loss of generality we may assume that(t, x) = (0, 0). Hence we haveT (k, −ck) = K;
recall that at the moment we are working in the original variables. Now, by interpolation,
using (4.5) and (4.4) we haveT (t, −ct) ≥ 1 for all t ∈ R. Letting t → +∞ yields

T (t, x) ≥ min(1, Tb(Yu, Su)),

for x > −ct , which in turn implies thatϕ(T ) is bounded away from 0 by a constantϕ

independent ofθ . Consequently, fort > 0 andx > −ct we have

S(t, x) ≤ ‖Su‖∞ exp{−ϕ(t − x/c)}, (4.6)

andu(t, x) := W(t, x − ct) satisfies, forx > 0,

|ut − uxx + cux | ≤ C‖Su‖∞e−ϕt .

Due to the upper bound forY , this is bounded forx = 0 andx = +∞. Letting t → +∞

yields a uniform bound foru andW .
Once theL∞ bound forW is obtained, the upper bound forc and the exponential

bounds follow as in Section 2.2. ut

Proposition 4.1 readily implies Theorem 1.2. Indeed, one only has to consider a se-
quence of approximating solutions(cθ , Tθ , Yθ , Sθ ). The uniformL2 estimate plus the
lower bound oncθ ensure that the limiting triple(T , Y, S) converges to the right limit at
±∞; the details are as in [5].

5. Existence of waves with higher velocities

A first trivial observation to support this fact—which also has the merit of clearly pointing
out where theYu > 0 assumption is needed—is the following: any solution(T , Y, S)(t, x)

of the Cauchy problem for (1.1)–(1.3) hasW(t, x) ≥ Yu/2 as soon as we wait long
enough; consequently, iff (T ) = T we have

W − T ≥ (Yu/2 − T )T

for t > 0 large. The RHS of the above inequality is, once again, a KPP term, which
generates travelling waves connecting 0 toYu/2 with any speed larger than

√
Yu/2. We

therefore may have arbitrarily high burning rates, in the sense of [8], hence arbitrary large
propagation velocities might be expected.

Let us now try to give some substance to this observation. To do so, we will be guided
by the following toy problem:

ut − uxx = (Yu − u)u =: f0(u), u(t,−∞) = 0, u(t,+∞) = Yu. (5.1)

For everyK > 0 andc > 2
√

K, let us define the two quantitiesr−(c, K) < r+(c, K) by

r±(c, K) =
c ±

√
c2 − 4K

2
. (5.2)
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For everyc > 2
√

Y u a travelling wave solutionφc(x) of (5.1) that moves with the speedc

exists and decays at−∞ according to theminimal rate [13], i.e. for everyr < c there
existskr > 0 such that

φc(x) = kre
r−(c,Yu)x

+ O(erx). (5.3)

Moreover, still for everyr ∈ (0, c), define the weighted space

Br = {u(x) ∈ BUC(R) : (1 + e−rx)u ∈ BUC(R)};

then the operatorL, with a suitable domain inBr , defined as

L = −
d2

dx2
+ c

d

dx
− f ′

0(φc)

is an isomorphism from its domain intoBr ; see once again [13].
For the construction of waves with higher velocities, we are going to use a degree

argument similar in spirit to the one of Section 3, apart from the fact that the velocity is
now prescribed. Note that, once the velocity is prescribed,L∞ bounds forT , W andS

can be obtained by arguing as in, for instance, the proof of Proposition 4.1. We will use
these bounds freely, without writing them in the form of a theorem.

5.1. Direct lower bound on the velocity

Theorem 1.2 does not by any means imply Theorem 1.3. Indeed, it yields a pulsating
wave solution whose velocity is bounded in terms of the data; however, it does not say
thatall pulsating wave solutions to (1.1)–(1.3) satisfy this estimate. Of course, it also says
nothing about the boundedness or unboundedness of the velocity spectrum.

The first task in proving Theorem 1.3 is to prove a direct lower bound on the wave
speeds. We start with a qualitative property of the temperature analogous to, but weaker
than, the lap number decay principle, which will be useful to us in what follows.

Proposition 5.1. If (c, T , Y, S) is a solution to(2.1)–(2.3)then, for allt ∈ R, the function
x 7→ T (t, x) is nondecreasing on the set where it is belowTb(Yu, Su).

Proof. Assume the contrary. Then there is a valuel ∈ (0, Tb(Yu, Su)) that is, at some
time t0, taken twice byx 7→ T (t0, x). By Sard’s theorem, we may assume this value to be
noncritical for the functionT . The level set{T (t, x) = l} consists, therefore, of a finite
set of ordered, nonintersecting smooth curves{t, yi(t)} in space-time. Take anyi such
thatT (t, x) < l if x ∈ (yi(t), yi+1(t)). This defines an open subset� in space-time in
which, by periodicity ofT , a minimum is attained. However,T is a supersolution to an
advection-diffusion equation, which contradicts the strong maximum principle. ut

Proof of Theorem 1.3. Step 1: a lower bound on velocities.It shares many common points
with the proof of Proposition 2.1, apart from the fact that we may not get an upper bound
for the temperature in the unburnt region—for the simple reason that there is no unburnt
region, as there is no ignition temperature. We argue by contradiction, that is, assume the
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existence of a sequencecn → 0—that we immediately relabel simplyc—giving rise to
pulsating wave solutions. We use once again the parabolic scaling

τ = c2t, ξ = cx. (5.4)

ConsiderA > 0 large; the size ofA (independent ofc) will be made precise later. From
Proposition 5.1 there exists a possibly discontinuous, but at least lower semicontinuous
functionξA(τ ) such that

T (τ, ξ) ≥ Ac2 if and only if ξ ≥ ξA(τ ). (5.5)

We may assume that the minimum ofξA is 0. Forξ ≥ 0 we have

(∂τ − ∂ξξ + ∂ξ )T ≥ 0. (5.6)

Arguing as in the proof of Proposition 2.1 we infer the existence of aδ > 0, independent
of A andc, such that

∀(τ, ξ) ∈ R × R+, T (τ, ξ) ≥ δAc2. (5.7)

Now, remember that (5.6) also holds forξ ≤ 0; as a consequence we have

∀(τ, ξ) ∈ R × R−, T (τ, ξ) ≥ δAc2eξ . (5.8)

In particular, we have
T (τ, −2) ≥ δAc2/e2. (5.9)

Turn now toS(τ, ξ); recall the equation

(∂τ + ∂ξ )S = −ϕ(T )S/c2,

and the fact thatC1T ≤ ϕ(T ) ≤ C2T ; together they imply

∀(t, ξ) ∈ R × [−2, +∞), S(τ, ξ) ≤ ‖Su‖∞exp

(
−

CδA

e2
(ξ + 2)

)
. (5.10)

Finally, turn to the functionW(τ, ξ). The time period of the wave in the rescaled coor-
dinates isc; however, we may also consider the wave as beingτ0 = Nc-periodic, with
N = [1/c]. Note that whenc is small, which is the case here,τ0 is a number in the interval
[1/2, 1]. This observation will be useful to us when we wish to apply parabolic regularity.
Let w0(ξ) be the zeroth Fourier mode ofW , that is, its average over a time period; we
have, for−2 ≤ ξ ≤ 0,

w0(ξ) = Yu + 〈S
3/2
u 〉 −

∫
+∞

ξ

eξ−ζ
〈S3/2

〉(ζ ) dζ

≥ 〈S
3/2
u 〉 − ‖Su‖

3/2
∞ /(1 + CδA) by (5.10)

≥ 〈S
3/2
u 〉/2 as soon asA is large enough. (5.11)
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Consider nowA to be chosen so that the last inequality of (5.11) holds; sinceϕ(T ) is
uniformly bounded for−2 ≤ ξ ≤ 0, we have

(∂τ − ∂ξξ + ∂ξ )W =
3

2c2
S3/2ϕ(T ) = O(1).

By parabolic regularity, and also by lettingτ → +∞, so that we only keep the effect of
the right side, for allp > 1, there isCp > 0 independent ofc such that

‖Wτ‖Lp([0,1]×[−2,0]) + ‖Wξξ‖Lp([0,1]×[−2,0]) ≤ Cp.

Takep large enough so that the above estimate implies aCα,α/2 estimate for someα ∈

(0, 1). This, combined with (5.11), and the fact thatW is c-periodic inτ , andc is a small
number, implies

∀τ ∈ R, W(τ,−1) ≥ 〈S
3/2
u 〉/3. (5.12)

Next, we recall thatT (τ, ξ) ≤ Ac2 for all τ and ξ ≤ 0. Consider now a small
numberθ and a smooth functiong(T ) having θ as an ignition temperature, and such
thatg(T ) ≤ T . We therefore haveAc2

≤ θ if c is small enough; hence, for our pulsating
wave we have

(W − T )T ≥ (〈S
3/2
u 〉/3 − T )g(T ) onR2. (5.13)

Indeed, (5.13) holds forξ > −1 because of (5.12), while forξ ≤ −1 the right side of
(5.13) vanishes becauseT is below the ignition temperature forg(T ). The velocity of the
pulsating wave is therefore larger than the velocityc0

θ of the travelling wave solution of

ut − uxx = (〈S
3/2
u 〉/3 − u)g(u), u(t, −∞) = 0, u(t,+∞) = 〈S

3/2
u 〉/3.

Whenθ > 0 is small enough, we havec > c0
θ ∼ 2

√
(〈S

3/2
u 〉/3)f ′(0), the KPP velocity.

This contradicts the smallness ofc. ut

5.2. Uniform decay bounds and homotopy

The general idea is the following: perform a homotopy from problem (1.1)–(1.3) to prob-
lem (5.1). The deformation is done through the droplet distribution at−∞; namely we go
from S(t, x) = Su(x) at −∞ to S(t, x) = 0 at−∞. This means that we simply forget,
in the end, the effect of the droplets, and this is understandable: combustion will occur in
this situation whether or not droplets are present in the picture.

What we will need to complete the degree argument is not only the classicalL2 bound
onT at+∞, but a uniform control ofT in theXr norm, for somer ∈ (r−(c, Yu), c). This
will allow us to reduce the issue to the problem of finding a fixed point of an operator
which is a sum of a contracting and a compact one.
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Proposition 5.2. There existK > 0 andδ0 > 0 satisfyingr−(c, Yu) + δ0 < r+(c, Yu),
depending only on the data, such that if(T , W, S) is a pulsating wave solution to(1.1)–
(1.3)with velocityc ≥ K, and

T (t, x) − er−(c,Yu)x
= O(e−(r−(c,Yu)+δ0)x) asx → −∞, (5.14)

then there existsC > 0, also depending only on the data, such that

|T (t, x) − er−(c,Yu)x
| ≤ Ce(r−(c,Yu)+δ0)x for (t, x) ∈ R2. (5.15)

Proof. The proof of this proposition is really a stability argument; instead of comparing
directly T (t, x) to er−(c,Yu)x we will compare it to the only (KPP) waveφ0(x) of (5.1),
satisfying

φ0(x) ∼ er−(c,Yu)x asx → −∞. (5.16)

1. We claim that, ifT (t, x) ∼ φ0(x) for x → −∞, thenT (t, x) ≥ φ0(x). Indeed,
W(t, x) ≥ Yu, implying

(∂t − ∂xx + c∂x)T ≥ (Yu − T )T , T (t, +∞) ≥ Yu. (5.17)

Let u(t, x) be the only solution of (5.1) with the initial datumT (0, x). Because of (5.14)
we have (see [14])

lim
t→+∞

u(t, x) = φ0(x).

This, together with (5.17), proves the claim.

2. Considerδ > 0 small, to be chosen later. Assume the functionT (t, x) has been trans-
lated in time and space such that

T (0, 0) = min
(t,x)∈R×R+

T (t, x) = δ. (5.18)

This implies, through Step 1, that the correspondingφ0(x) ≤ δ for x ≤ 0. It also follows
thatϕ(T ) = f (T ) = T for ξ ≤ 0. Now, for allξ ∈ R−, denote byw(t, ξ) the function
W(t, ξ) and decomposeW(t, x), for t ∈ R, x ≤ ξ , asW [T ] + W0, where both functions
W [T ] andW0 are 1/c-periodic int , and where

(∂t − ∂xx + c∂x)W [T ] =
3

2
S3/2T , W [T ](t, ξ) = 0,

(∂t − ∂xx + c∂x)W
0

= 0, W0(t, ξ) = w(t, ξ).

(5.19)

We recall the existence ofC > 0 such that

0 ≤ W0(t, x) − Yu ≤ Cec(x−ξ), (5.20)

simply because the right side of (5.20) is a supersolution to the equation (5.19) forW0,
and because of theL∞ bounds forW . Now, set

rδ = r(c, Yu) + δ, v(t, x, ξ) = e−rδ(x−ξ)(T (t, x) − φ0(x)); (5.21)
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the real numberδ is not chosen yet—simply remember that it will be small. The function
v(t, x, ξ) solves, for(t, x) ∈ R × (−∞, ξ),

vt − vxx + (c − 2rδ)vx + (crδ − r2
δ − Yu)v

= −(φ0 + T )v + (W0
− Yu)e

−rδ(x−ξ)T + e−rδ(x−ξ)W [T ]T

≤ e−rδ(x−ξ)(Cδe(c−rδ)(x−ξ)
+ W [T ]T ). (5.22)

In the last inequality of (5.22), we have used the positivity ofv to drop the first term on
the second line, while in the second term we used the decay ofT ∼ φ0(x), and (5.20).
Set

Vδ(t, ξ) = ‖v(t, ·, ξ)‖L∞((−∞,ξ)); (5.23)

recall that an eventual supersolution forW [T ] is the functionW(t, x) solving

−W
′′

+ cW
′
=

3

2
‖Su‖

3/2
∞ (φ0 + erδ(x−ξ)Vδ(t, ξ)).

We invoke the following three facts:

(i) r < c,
(ii) formula (2.16) holds and gives an expression ofW ,

(iii) we have φ0(x) ≤ Cδer−(c,Yu)(x−ξ)—see Step 1 of this proof. The constantC is
independent ofδ > 0.

Points (i) to (iii) above imply, after a computation, the following bound forW [T ]T on
R × (−∞, ξ):

0 ≤ e−rδ(x−ξ)W [T ]T ≤ C(e(r−(c,Yu)−δ)(x−ξ)
+ erδ(x−ξ)V (t, ξ)2)δ2. (5.24)

Now, we start shrinkingδ. First, we require the amountcrδ − r2
δ −Yu to be positive; from

(5.22)–(5.24), the normalization condition (5.18) and the maximum principle, we have

Vδ(t, ξ) ≤ δ + e−(crδ−r2
δ −Yu)tV0 + Cδ2

(
1 +

∫ t

0
e(crδ−r2

δ −Yu)(t−s)V 2
δ (s, ξ) ds

)
.

Then we askδ to be small enough so that the equationCδX2
− X + Cδ has two positive

roots: one that isO(δ), the other one that isO(1/δ). Fix such aδ, and call itδ0.
Letting t → +∞ and using the 1/c-periodicity ofVδ(t, ξ) we get, for allδ ≤ δ0, and

for a constantC once again independent ofδ,

‖Vδ(·, ξ)‖∞ ≤ C

(
δ + δ2

+
δ2

crδ − r2
δ − Yu

‖Vδ(·, ξ)‖2
∞

)
≤ Cδ(1 + ‖Vδ(·, ξ)‖2

∞).

This implies that eitherVδ(t, ξ) = O(δ), orVδ(t, ξ) = O(1/δ). The first solution prevails
for large negativeξ and smallδ; so by continuity,Vδ0(t, 0) = O(δ0). This proves our
proposition. ut
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The fact thatT ≥ φ0 readily implies the exponential convergence ofS andW to their
limits at−∞.

Lemma 5.3. There areρ0 > 0 andC > 0, depending only on the data, such that

∀(t, x) ∈ R × R−, 0 ≤ Su(x) − S(t, x) ≤ Ceρ0x, 0 ≤ W(t, x) − Yu ≤ Ceρ0x .

The proof is at this stage routine and is omitted. The last ingredient that we need for the
homotopy is a quantitative, uniform decay to the right for the functionsT − Yu − 〈S

3/2
u 〉,

W − Yu − 〈S
3/2
u 〉. This is provided by

Proposition 5.4. There isρ0 > 0 such that ifT (t, x) satisfies the assumptions of Propo-
sition5.2, then, for someC > 0 depending only on the data,

∀(t, x) ∈ R × R+, |(T (t, x),W(t, x)) − (Tb(Yu, Su), Tb(Yu, Su))| ≤ Ce−ρ0x . (5.25)

Proof. Come back to a pulsating wave that satisfies the normalization condition (5.18).
Arguing as in Proposition 2.1 we haveT (t, x) ≥ Cδ0 for x ≥ 0; on the other hand, we
have

St + cSx + Sϕ(T ) = 0;

together these facts imply a uniform exponential decay forS. ThenY (t, x) satisfies

Yt + cYx − Yxx + f (T )Y =
3
2S3/2ϕ(T );

using the lower bound forT on R × R+, and the exponential bound forS on the same
set, implies the exponential bound forY . The functionW is then treated as in Proposition
2.4. ut

Proof of Theorem 1.3 (end).Let us pickc satisfying the assumptions of Proposition 5.2.
Let γ be a smooth, nonnegative function, equal to 1 onR− and 0 on [1, +∞). Let δ0
satisfy the conclusions of Proposition 5.2, and set once and for all

r = r(c, Yu) + δ0. (5.26)

The fixed point setting that we are going to devise here is simpler than in Section 3,
becausec is not to be looked for. Let us define the spaceXr,δ0 as

Xr,δ0 = {u ∈ C
α,α/2
per : (e−rx(u − φ0), e

δ0x(u − Yu − 〈S
3/2
u 〉)) ∈ C

α,α/2
per }. (5.27)

Here the spaceCα,α/2
per means the classical Ḧolder functions which are additionally 1/c-

periodic int . Now, for T ∈ Xr , letF1[T ] be defined as (3.10), i.e.S(t, x) is defined in
terms ofT , and let the only 1/c-periodic solution of

Wt − Wxx + cWx =
3
2(F1[T ])3/2ϕ(T ), W(t, −∞) = Yu,

be defined as

W(t, x) = γ (x)Yu + (1 − γ (x))Tb(Yu, Su) + F2[T ]. (5.28)
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The equation that we are solving is then

(∂t − ∂xx + c∂x)T = (Yu + (1 − γ )〈S
3/2
u 〉 + (F2[T ] − T )f (T )

T (t, x) = φ0(x) + O(erx) (x → −∞),

T (t, +∞) = Tb(Yu, Su).

(5.29)

As soon as we find a 1/c-periodic solution to (5.29), we will be done.

Once the estimates are at hand, the rest of the proof of the theorem only amounts to
putting (5.29) in the right functional form, so we are not going to dwell on it too much,
all the more as it was detailed in Section 3. The unknownT (t, x) is best looked for in the
form

T (t, x) = (1−γ (x)Tb(Yu, Su)+ (γ (x)(φ0(x)+erx)+ (1−γ (x))e−ρx)u(t, x) (5.30)

where the exponentr is defined in (5.26) and the exponentρ is, say, less thanρ0/2 where
ρ0 is defined in Lemma 5.3. This complicated-looking expression simply says that we
wish T to be asymptotic toφ0(x) asx → −∞, and to converge toTb(Yu, Su) at some
small exponential rate. The equation foru(t, x) therefore reads

ut + Lu = f0(x, u, ux) + φ1(x) +
(F2[T ] − T )f (T )

γ (x)(φ0(x) + erx) + (1 − γ (x))e−ρx
. (5.31)

where the quantitiesL, f0, andφ1 have the following features.

1. The operatorL is defined as

L = −
d2

dx2
+ a(x)

d

dx
+ b(x),

a(x) = γ (x)(c − 2r) − (1 − γ (x))(c − 2ρ),

b(x) = γ (x)(Yu + cr − r2) + (1 − γ (x))(Tb(Yu, Su) − cρ − ρ2).

(5.32)

Notice thatb(x) is controlled from below by a positive constant. By the maximum prin-
ciple we have therefore the inequality

‖e−L/c
‖L(UC(R)) < 1. (5.33)

2. The functionf0 is smooth in all its variables; moreover we have

∀x /∈ [0, 1], ∀(u, p) ∈ R2, f (x, u, p) = 0. (5.34)

3. There isδ0 depending only on the data such that

∀x ∈ R, |φ1(x)| ≤ Ce−δ0|x|. (5.35)

4. Recall thatT is (for short) defined by equation (5.30). From Proposition 5.2, Lemma
5.3 and Proposition 5.4, there existsδ1 < min(r, ρ0/2) such that ifT −(Yu−〈S

3/2
u 〉)(1−γ )
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belongs toXr,δ0, then, for someC depending on theXr norm ofT −(Yu−〈S
3/2
u 〉)(1−γ ),

∀x ∈ R,

∣∣∣∣ (F2[T ] − T )f (T )

γ (x)(φ0(x) + erx) + (1 − γ (x))e−ρx

∣∣∣∣ ≤ Ce−δ0|x|. (5.36)

Consequence:let K[u] denote the right side of (5.31). Then the operatorF acting on
C

α,α/2
per and defined byF [u] = e−L/cK[u] is compact inCα,α/2

per .

Now, it suffices to perform the homotopy consisting in replacing once againSu by
τSu, while keepingYu fixed. Forτ = 0, this reduces to the study of the operator−d2/dx2

+ cd/dx − f ′(φ0), which is an isomorphism between its domain and the set of all func-
tionsu decaying likeerx on the left side; see [13]. This implies the existence result.ut

6. Extensions

Clearly, in this paper we have not discussed the thermo-diffusive propagation of spray
flames in its full generality, although we believe that we have captured some of its main
features in the study that we have presented. Some extensions of the theory developed
so far can be thought about; some of them are simple generalizations; others seem less
obvious to us. Let us list three of them.

• Holes in the distributions of droplets at−∞. We have only treated droplet distributions
at −∞ that never vanished. This is truly a convenience assumption, which is only
needed in the lower bound for the velocity in the ignition temperature case. A more
accurate proof would have revealed that what matters is〈Su〉. This generalization is
omitted.

• Polydisperse sprays. A more general description of the spray would describe the droplet
distribution by a probability densityf (t, x, s) accounting, roughly speaking, for the
number of droplets that, between the timest andt + dt , and between the positionsx
andx + dx, have sizes comprised betweens ands + ds. The governing equations are
then

Tt − Txx = Yf (T ),

Yt − Yxx = −Yf (T ) + ϕ(T )

∫
+∞

0
s3/2f (t, x, s) ds, (6.1)

ft − ∂s(ϕ(T )H(s)f ) = 0.

HereH(s) is the Heaviside function. Such a general spray is said to bepolydisperse,
as opposed to the monodisperse case that we have treated so far. The system we treat
has two simplifications relative to (6.1): first, we have replacedH(s) by the function
identically equal tos to avoid dealing with interfaces. We have also assumed that the
distributionf (t, x, s) has the formδs=S(t,x) as we consider the monodisperse case.
Although (6.1) looks much more formidable than (1.1), the investigation of travelling
waves is essentially the same as for (1.3) (see [7])—the relevant quantity to be consid-
ered is the maximal size of the droplets at−∞. We expect that this is also the case for
the pulsating fronts.
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• Several space dimensions.What prevents us from going to several space dimensions is
the lap number decay—which is, in Section 4, replaced by another typically 1D result.
Most certainly, one could by-pass the use of this result.

A less obvious point to study is what happens when there is no gaseous fuel at−∞, i.e.
Yu = 0. The main question to be answered is: is there an unbounded range of possible
velocities? Preliminary computations of thetravelling waveproblem seem to indicate
that this is impossible, and that the system would be qualitatively close to the one with
ignition temperature. This, however, needs a more serious study than these considerations.
Also, a complete study of the burning rate, in the spirit of [8] or [12], would be very
welcome. This might not be an easy task, for we would have to drop the pulsating wave
assumption—an assumption that we have heavily used in several crucial instances. In
particular, we still do not know how to derive an upper bound for the enthalpy, although
sharp upper bound results for the purely gaseous thermo-diffusive system, such as [10],
might help. We hope to give (at least partial) answers to these last two questions in the
future.
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