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Abstract. We establish an explicit connection between the perimeter measure of an opgen set
with 1 boundary and the spherical Hausdorff meass#e 1 restricted tod £, when the ambient
space is a stratified group endowed with a left invariant sub-Riemannian metri@ dedotes the
Hausdorff dimension of the group. Our formula implies that the perimeter measufesofess

than or equal taS2-1E) up to a dimensional factor. The validity of this estimate positively
answers a conjecture raised by Danielli, Garofalo and Nhieu. The crucial ingredient of this result is
the negligibility of “characteristic points” of the boundary. We introduce the notion of “horizontal
point”, which extends the notion of characteristic point to arbitrary submanifolds, and we prove that
the set of horizontal points ofiazcodimensional submanifold $2—*-negligible. We propose an
intrinsic notion of rectifiability for subsets of higher codimension, ca{l@de)-rectifiability, and

we prove that Euclideakrcodimensional rectifiable sets af@, R¥)-rectifiable.

Keywords. Stratified groups, characteristic points, perimeter measure, Hausdorff measure

Introduction

The project of developing analysis in metric spaces is receiving remarkable attention in
the last few years, with several monographs on this topic([7], [18], [B5], [B6], [64]. The
class of Carnot—Caratlodory spaces provides good models to be studied in this per-
spective. They are characterized as connected differentiable manifolds with a family of
smooth vector field¥X, ..., X,, which satisfy a Lie bracket generating condition. Under
this assumption the “Carnot—Caratidory distance” can be defined [33].

We will focus our attention on stratified groups, also known as Carnot groups [25],
[59], which form a special class of Carnot—Cakadtory spaces. An important feature of
stratified groups is the existence of a family of intrinsic dilations which scale well with
the Carnot—Cara#vodory distance and define the Hausdorff dimension of the group.

Stratified groups and Carnot—Caratlidory spaces have been thoroughly investigated
in several different areas of analysis including optimal control theory, differential geom-
etry, harmonic analysis and PDEs. Some relevant books are [10], [25], [34], 53], [66].
The systematic study of geometric measure theory on stratified groups has begun only
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very recently with a continuously growing literature and it is now the subject of several
contributions: [[1], [[5], [8], [12], [15], [1¥], ([26]+[30],132],[41], [45]-[48], [54])[57],
[60]-[62], [67], and this list is certainly not complete.

The leading theme of this paper is the role of characteristic points in the study of in-
trinsic notions of rectifiability and in the expression of perimeter measure for open sets
with C1 boundary. In the area of PDESs, characteristic points have been widely studied in
connection with boundary regularity of solutions to equations with nonnegative character-
istic form [11], [13], [21], [24], [38], [39], [42]-[44] (see also the references therein). The
solution to the Dirichlet problem for the Kohn Laplacian in a smooth domain may not be
smooth up to the boundary due to the presence of characteristic points [38]. Characteris-
tic points play an important role in connection with metric properties of domains suitable
for Sobolev—Poinc#&r inequality, Ahlfors regularity of hypersurfaces, intrinsic measure
of hypersurfaces and trace theorefs [8]] [12]] [15]] [16]} [22]) [31], [48], [55], [56].

W now give a detailed description of the content of the present paper. The first sec-
tion presents all the basic material that will be used throughout the paper. gdction 2 is
devoted to characteristic points of submanifolds and their negligibility. Negligibility of
characteristic points with respect to the Euclidean Hausdorff me&g’q_ré was proved
by Derridj for (n — 1)-dimensional smooth hypersurfaces|[22]. Recently, Balogh through
a remarkable construction of functions with prescribed gradient has proved that there
exist C1 hypersurfaces in the Heisenberg group such that the one-codimensional Eu-
clidean Hausdorff measure of the characteristic set is positive [8]. However, he also
shows that if we consider the Hausdorff meast€~—! with respect to the Carnot—
Caratleodory distance, then the characteristic se€Céfhypersurfaces becomes negli-
gible with respect to this measure. The covering type procedure adopted by Balogh has
been extended by Franchi, Serapioni and Serra Cassano to all stratified groups of step
two [29].

Our approach to the negligibility of characteristic points in arbitrary stratified groups
relies on a Sard-type theorem [47], where characteristic points are properly interpreted
as intrinsic singular points of the submanifold. This characterization works for subman-
ifolds of any codimension and allows us to find an analogous notion of characteristic
point. In this general case, we call these points “horizontal”, because the tangent space to
the submanifold at these points has a sufficiently “large” intersection with the horizontal
space (see Definitidn 2.]L0). Note that in submanifolds of codimension one the notion of
horizontal point coincides with the classical notion of characteristic point.

The main result of this paper is given in Theoffem 2.16, where we show that the set of
horizontal points in &-codimensional submanifold i 2~—*-negligible. The key obser-
vation is to look at horizontal points as those points where the defining map of the surface
is “intrinsically singular”, namely, it has a nonsurjective P-differential (Definifior) 2.2).
Once horizontal points are regarded as singular points we constract kacargument
in order to apply the weak Sard-type theorem proved_in [47], due to which a.e. level set
of a vector-valued Lipschitz map contains ¥ *-negligible subset of singular points.

The negligibility of horizontal points in stratified groups immediately extends the validity
of Theorem 2.3 in[[48] to any’! hypersurface. LeE be aC* hypersurfacez and let
S2-1 be the spherical Hausdorff measure with respect to a homogeneous distance. Then
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Theoren] 2.2 gives an explicit formula for the densityS8t1L_ = with respect to the
Riemannian measure restricted to the hypersurface.

In Sectior{ B we present other consequences of Thejorerh 2.16. We first introduce the
notions of(G, R¥)-regularity and of G, R)-rectifiability (Definitiong 3.1 anf 3|2). These
notions fork = 1 have been first introduced and studied by Franchi, Serapioni and Serra
Cassano in the cycle of papers[27]-[29]. As the classical notion of differentiability is
used to define the smoothness of a manifold, we observe that P-differentiability naturally
defines(G, R¥)-regularity for every codimension, introducing a vast class of new geomet-
rical objects to be studied, whe(€, R¥)-regular sets play the role of “intrinsic regular
submanifolds”. However, those groufiswhose Lie algebr& does not contain any-
dimensional commutative subalgebra in the first layer cannot t@av&*)-regular sets.
Clearly, an(R?, R¥)-regular set is exactly &' submanifold of codimensiok. On the
other hand, as soon as we consider a noncommutative stratified group, things can dramat-
ically change. A recent paper by Kirchheim and Serra Cass$amo [41] shows a remarkable
example of anH?, R)-regular setS such thaﬂif{l(S) > 0, where| - | is the Euclidean

norm and 2< o < 5/2, whereH! is the three-dimensional Heisenberg group. This
interesting hypersurface cannot be 2-rectifiable in the Euclidean sense, although there ex-
ists a J/2-Holder continuous parametrization which makes it a topological submanifold

of topological dimension two. RecentlgH", RF)-regular sets, with 1< & < n, have

been studied by Franchi, Serapioni and Serra Cassaho [30]. In the terminolagy of [30],
these sets are callégcodimensionaH-regular surfaces. Note that there are(HS, R¥)-

regular sets wheh > n.

Our negligibility result applies in comparing’, R¥)-rectifiability with Euclidean
rectifiability in the Federer sense (3.2.14 [of|[23]). In the papers [27] land [29] Franchi,
Serapioni and Serra Cassano have proved that Euclidean rectifiable sets of codimension
one in stratified groups of step two are alwa{s R)-rectifiable. As application of The-
orem[2.16, in Theorein 3.8 we extend this result to any Euclidean rectifiable set of any
stratified group. Note that horizontal curves or more general Legendrian submanifolds
cannot be(G, R¥)-regular. In fact, from the notion of horizontal point, one can check
that anyk-codimensional Legendrian submanifold coincides with its horizontal set, so
Theoren] 2.16 proves that it i 2—*-negligible. In other words, &-codimensional Le-
gendrian submanifold is invisible in(&, R*)-rectifiable set in the same way as Euclidean
(g — k — s)-rectifiable sets are invisible in a Euclideén — k)-rectifiable set, where
s > 0. It is certainly interesting to investigate which coup{€s R¥) possess nontrivial
(G, R¥)-regular sets and to check whether these sets have Hausdorff dimensiband
topological dimensiog — k, whereg is the topological dimension d@&. Presently, this
guestion has been positively answeredior 1 and arbitraryG in [28] and fork < n
andG = H" in [30]. Expanding our perspective, it is natural to repl&&ewith another
stratified group, getting the general notion @fs, M)-regularity (Definitior] 3.5). We
introduce this notion of regularity to illustrate its potential in connection with future de-
velopments of geometric measure theory on stratified groups. These notions of intrinsic
regularity provide several types of rectifiable objects modelled with respect to different
geometries. This shows how the geometry of stratified groups is rich and is still far from
being well understood.
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Our negligibility result can also be applied to study the relationship between the
perimeter measure of a set witht boundary and the spherical Hausdorff measure of
its boundary. In the more general case when a po&iBm U of 0 E is a(G, R)-regular
set andl is an open subset, the formula

0E|nLU = 65_;(vir) S (W NIE)

can be found in[[28] and [49]. Due t& 2 1-negligibility of characteristic points this
formula holds for any seE with C! boundary and any measurable setGbfAs a con-
sequence, we can positively answer a conjecture raised by Danielli, Garofalo and Nhieu
in [15]. A detailed discussion of this application will be given in the last part of Secfion 3.

1. Preliminaries

We will mean bymeasureon a metric spacé& a set functionu : P(X) — [0, +o0]

with the propertieg (¥) = 0 andu(E) < Z;il:u(Ej) wheneverE C U;il E;. Every
measureu naturally induces a-algebraA,, C P(X) where it is additive on countable
disjoint unions. Recall thaB(X) is the smallest-algebra containing open sets &t
Elements of3(X) are calledBorel setsand a measurg such that3(X) C A, is called
aBorel measureThe push-forward of a measuseunder the magF : X — Y is defined

by Feu(E) = w(F~Y(E)) for every E C Y. The restriction of a measugeto a subset

A C X is defined byul_A(E) = u(A N E) for everyE C X. The following elementary
change of variable formula will be useful. Its proof can be obtained by approximation of
measurable functions with measurable step functions.

Proposition 1.1 (Change of variable) Let X, Y be two metric spaces and I&tbe either
R or a finite-dimensional space. Suppose that X — Y andu : Y — N are Borel
maps, whereu is a Borel measure ovek andu o F is u-summable. Then for every

B € B(X) we have
/ qudM:/ udFip. (2)
F~1(B) B

Definition 1.2 (Stratified group) LetG be a simply connected Lie group and {gbe
its Lie algebra of left invariant vector fields. L&' be a subspace @ and suppose that
the inductively defined sequence of subspaces

H/*Y=[H/,HY =spa[Z,Y] | Z € H!, Y € H}

has the properties:

(1) H/ n H* = {0} wheneverj # k andj, k € N\ {0},
(2) there exists > 1 such thatH' # {0} and H+1 = {0},
(3) G is spanned by all the subspaddg®’ | j =1, ..., ).
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We say thag is astratified algebrand thatG is a stratified group. The integeis called
the stepof the group. Aleft translationof the group is a mapg, : G — G defined by
s — I,(s) = ps, wherep,s € G. As a consequence ¢t) and (3) every vectol? € G
can be written in a unique way as the siim= >"_, ¥;, whereY; e H/. This enables
us to introduce canonical projections,; : G — H/ defined by, (Y) = Y;, whereY
is written as above. For the projection on the first layer we also wrjte= p 1.

Conditions (1) and (3) of the previous definition can be briefly stated by writing
ngl@-~-@H‘,

where the symbaop indicates the direct sum of vector spaces.

Recall that the exponential map ex|y :— G associates to any left invariant vector
field W € G the valueyy (1) € G of the curveyy : R — G which solves the Cauchy
problem

{y’(t) = Wy @),
y(0) =e.

We will use the fact that the exponential map exg :— G of a simply connected
nilpotent Lie group is a diffeomorphisrn_[14].

Definition 1.3 (Graded metric) We say that a left invariant Riemannian metgion G
is a graded metrigf all subspace§H’/ | j = 1,...,} are orthogonal to each other.
The left invariant scalar product between two vectdtsW e T,G will be denoted by
(V, W), or (V(p), W(p)). Inthe caseX, Y e G the scalar productX, ), is indepen-
dent of the poinp and is simply denoted b, Y).

Definition 1.4 (Graded coordinates) We define the numbeng = dim H/ forany; =
1,...,1,mo=0andm; =Z}:1 njforanyi=1,..., . We say thata basigVs, ..., W,)
of G is anadapted basig Wi, 141 Win;_g42, s Winy) is a basis ofH/ for any j =
1, ..., We say thatWy, ..., W,) is agraded basif it is an adapted and orthonormal
basis with respect to a graded metric. Tiaded coordinatesith respect to the basis
(W1, ..., W,) are given by the diffeomorphisim: R? — G defined by

F(x) = exp(_qlxjwj).
=

Thedegreeof the coordinatey; is the unique integed; such thatw; € H%.

Let X, Y € G. The Baker—Campbell-Hausdorff formula (briefly BCH-formula) allows us

to obtain an explicit polynomiaP (X, Y) with respect to the nonassociative Lie product

of G such that expP (X, Y)) = expX expY (see for instance [37]). The BCH-formula
and graded coordinates allow us to view the group operati@fias a polynomial op-
eration (which depends on the fixed system of graded coordinates). We will denote this
polynomial operation by - y, wherex, y € R?. In case the Lie algebiGis commutative,

i.e. [X,Y] = OforeveryX,Y e G, we simply havex - y = x + y and all coordinates
have degree one (see also Chapter Xlll, Section 5 of [65]).
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Proposition 1.5. Let F : R? — G be a system of graded coordinates with respect to a
graded metricg. ThenF;£? = v,, whereL? is theg-dimensional Lebesgue measure.

Proof. We know thatF : R — G is a smooth diffeomorphism. Let be a measurable
subset ofR?. By the classical area formula and the left invariance of hgtand F; £4
we have

Cﬁq(A)=vg(F(A))=/AJqF(S)d€

for some constant > 0. We have denoted by, F the g-dimensional Jacobian of .
Thenf, J,F = c for any measurable. By continuity ofé — J, F(£) we infer that
JyF (&) = cforanyé e R?. We know thatF = expo L, whereL(§) = Z}’:lgj W;
and (W;) is an orthonormal basis . Since the ma@ F(0) = dexp(0) o L = L has
Jacobian equal to one, we have- 1 and the assertion follows. O

Motivated by the previous proposition we will also adopt the simpler notatj¢A) =
|A| for every measurable subsétc G.

Definition 1.6 (Dilations) LetG be a stratified group. For every > 0 we define the
dilations, : G — G by

60 = exp( Y/ pyi (X (p))).
=1

Consider a system of graded coordinates: R? — G. Thecoordinate dilationA, :
R? — R? associated t@F is defined byr, = F~166, o F and can be written as

q
Ar() =) rlixe;, 2)

j=1
where(e;) is the canonical basis &&? andd; is the degree of the coordinatg.

In view of relation ) it is easy to see théf (A,(A)) = r2L£7(A) for any measurable
subsetA c R?, where we have defined

q L .
Q=> di=>jdimH). 3)
k=1 j=1

Thus, by definition of coordinate dilation and by Proposifiorj 1.5, foramy 0 and any
measurable subsét C G we have

V(8. E) = vg(F(A(FH(E)))) = LIY(A(FHEY) = r@ L1(FHE)) = rC v (E).
Finally, the left invariance ob, yields the formula

ve(ly 0 8,(E)) = r2 vy(E) 4)
foranyp € G and anyr > 0. Observing thaB,, , = [,,(8, B1) we have in particular

vg(Bp,r) = r¢ vg(B1).
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This implies that the numbep defined in[(B) is the Hausdorff dimension of the group
and that theQ-dimensional Hausdorff measut¢? built with respect to a homogeneous
distance is finite on bounded sets and it is proportional, to

Thehorizontal subbundlé? G is defined by the collection of all subspaces

H,G={X(p)| X € HY)

wherep € G. These are the so-callédrizontal spacedNe denote byH Q2 the subfamily
of horizontal space#l,G wherep € Q and< is an open subset @. Another way to
introduce horizontal spaces is the following:

dl,(H,G) = H,G (5)

for everyp € G, wheree is the unit element of the group.

By definition of stratified group, the Lie algebra spannedsby coincides withg,
so the well known Chow theorem implies that any two pointszo€an be connected
by at least one absolutely continuous curve a.e. tangent to the horizontal subpuhdle [10].
These curves are the so-callaafizontal curvesvhich permit us to introduce théarnot—
Caratheodory distancelLet p, p’ € G and consider the infimum of the lengths of all
horizontal curves connectingwith p’, where the length is computed with respect to the
graded metric of the group. This infimum is the Carnot—Camadory distance between
p andp’ and it is denoted by (p, p’). The left invariance of the graded metric implies
that the Carnot—Caradodory distance is left invariant, that js(p’ p, p’s) = p(p, s) for
everyp, p',s € G, and it is also homogeneous with respect to dilatier(g, p, §,s) =
rp(p, s) for everyr > 0.

Next we will use the usual Euclidean norm @h To do this, there is not a unique
choice and we will refer to a fixed system of graded coordin&tesR? — G. This
choice will not affect our arguments becaus€&if R? — G is another system of graded
coordinates, the change of variatieo G=1 : R? — R? is an isomorphism, hence the
Euclidean norm with respect 16 is equivalent to the one with respect ¥ With this
convention we state an important relation between the Euclidean distance and the Carnot—
Caratleodory distance on stratified groups:

Yo foranyx,y e K C G, (6)

lx —yl < plx,y) <Clx —yl
where K is compact and” is a dimensional constant depending &n Note that: is
the step of the group. Estimatés (6) can be proved in more general Carnot-€0eoath
spaces/ [58]. In particular the Carnot—Cagaitiory distance is continuous and it induces
the same topology df.

Definition 1.7 (Homogeneous distance)A continuous mag : G x G — [0, +00) is

a homogeneous distandet satisfies the axioms of an abstract distance, it is left invari-
ant,d(p'p, p's) = d(p,s) forany p, p’, s € G, and it is homogeneous with respect to
dilations,d(, p, é,s) = rd(p, s) for everyr > 0.
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Clearly the Carnot—Caratlodory distance is the foremost homogeneous distance, but
also other useful examples of homogeneous distances can be considered. For instance,
in Propositior] 2.19 we will study the symmetry properties of the homogeneous distance
dso introduced in[[29]. It is worth observing that any two homogeneous distances are
biLipschitz equivalent in the following sense.df andd, are homogeneous distances,

then there exists a constafit> 1 such that for every, s € G we have

CYdi(p,s) < da(p,s) < Cdi(p,s).

This fact can be seen using the classical argument used for norms of finite-dimensional
spaces, which actually is a particular case. In what follows we will always refer to a fixed
homogeneous distance.

Definition 1.8 (Metric ball). The open ball of radiug > 0 and centrep € G will

be denoted by, .. If we wish to emphasize the particular choice of the homogeneous
distanced we writeB;f’,. Open balls with radius and centred at the unit element of the
group are denoted b,. We use similar conventions for closed ballg , of centrep

and radiusr.

Definition 1.9 (Hausdorff measures) Let d be a homogeneous distance®fand let
a > 0. For each subsef c G we define the-dimensional spherical Hausdorff measure

[ diam(Dy, 1,)? *
SUE) = Im&mf{E % ’ Ec|JDyu ti < g}
e i=1 i=1

and thea-dimensional Hausdorff measuss

4 . [& diam(F)¢
HY(E) =8|_|)n(1)+|nf{2wa2—a ‘

i=1

o
EC UFi’ diam(F;) < s}

i=1

where{F;} are subsets ofs and diam(A) = SURy yyeaxa d(x, Y) foranyA c G. The
dimensional constand, is defined as follows:

jTa/Z

“T(d+a/2)’

o
Wy I'(s) =/ e " dr.
0
Remark 1.10. Note that we have used the dimensional constaranly for the definition
of the Hausdorff measurg&“. In fact, our formulae involving the spherical Hausdorff
measureS* will contain the metric factoﬁg_l (Definition|2.17) that naturally replaces
the constand,.

When we want to specify the use of the Euclidean distance we will wtfteand
8‘?‘, and for the case of the Carnot-Caktory distance we will write?) and S7.
Throughout the paper the symmlwill denote an open subset 6f. We will denote by
['(H Q) the space of smooth sections#f2, i.e. thehorizontal vector fieldsThe symbol
I'.(H$2) denotes the family of horizontal vector fields compactly supporteel. in
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Definition 1.11 (Horizontal divergence) Let (X4, ..., X,,) be a basis of left invariant
vector fields of#1. Thehorizontal divergencéfor short, H-divergencg of the section
¢ =3 iL1¢’X; € T(HRQ)is defined bylivy ¢ = 371 X;¢/.

Notice that this definition does not depend on the choice of the bagisloNow we
recall the notion of “image” of a vector field through a diffeomorphism. fetM — N
be aC? diffeomorphism of differentiable manifolds and ltbe a vector field on/. The
image ofX under f is the vector field onv defined by

F:X(p) = df (fF X (F 7))

for everyp € N. A vector fieldX € H? is viewed inR? through a system of graded
coordinatesF : RY — G when it is defined a¥ = F_1X. We will use this notation to
denote vector fields @ with respect to graded coordinatesisf. With this notation the
horizontal divergence can be written as follows:

divgp)o F =Y X;¢/, )
j=1

wherep € I'(HG) andg = ¢ o F. Another useful formula involving left invariant vector

fields inRY is
q

Wi = dy, + Z agj(x1, .- .5 Xj-1) By, (8)
j:mdk+l

whereW, = F;lwk with k = 1, ..., g, the integersn; andd; are introduced in Defi-
nition[I1.4, the mapsy; are homogeneous polynomials with respect to coordinate dilations
and the graded bas{®, ..., W,) of G is associated to the system of graded coordinates
F (see also p. 621 of [65]). Note that in formula (8) we have used the standard represen-
tation of vector fields as first order differential operators.

Letu : @ — RbeaClmap,p = F(x) € Q andii = u o F. We consider the map
y — i(x - y). By left invariance of the vector field@j onRR? we have the useful formula

ou
3y y=0

In the following definition the symbdl- | will denote the norm induced by the Rie-
mannian metric on tangent spaces. We will use this notation whenever its meaning is clear
from the context.

= W;ii(x) = Wju(p). 9)

Definition 1.12 (Perimeter measure) We say that a measurable sEtc Q is of H-
finite perimeteron the open subsét C G if

[0E| g (R) = sup{f divy ¢ dvg
E

¢ €Te(HQ), |9| = l} < oo.

If E hasH -finite perimeter on every open subgetompactly contained if2 we say that
E haslocally H-finite perimeterin Q. We will denote byd E|y the associated Radon
measure.
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By the Riesz representation theorem there exists a measurable sectién/ G such
that

[ dvaodv, =~ [ @.verdioEl (10)
E G

forany¢ € I'.(HG). We say thatg is the generalized inward normab E. By the
standard polar decomposition (Corollary 1.29 of [3]) we haye& p)| = 1 for |0 E|y-a.e.
p € Q.

2. Horizontal set of C submanifolds

In this section we introduce the notion of horizontal point féreodimensional subman-
ifold and we prove that the set of all horizontal pointg4§ —*-negligible. The symbols

G andM denote stratified groups aszistands for an open subset®f We will show the
relationship between the intrinsic notion of P-differentiability and the notion of horizontal
point. Recall that P-differentiability of maps between stratified groups was successfully
introduced by Pansu in order to study rigidity properties [59].

Definition 2.1 (G-linear map) We say thal. : G — M is aG-linear magif it is a group
homomorphism and (8, p) = 8. L(p) for everyp € G and every > 0, wheres, and$,
are dilations of the stratified grougs and M, respectively.

Definition 2.2 (P-differentiable map) Let f : Q@ — M, whereM is a stratified group.
We say thatf is P-differentiableat p € Q if there exists a G-linear map : G - M
such that

o' (f(P)Lf(s), L(p~Ls))
o(p,s)

wherep and p’ are the Carnot—Carathodory distances d& and M, respectively. The
unique G-linear map which satisfi€$]) is called theP-differential of f at p and it is
denoted byiy f(p). Via the exponential mapxp : G — G we will also view the P-
differential as a linear map between the Lie algebragiond of M. In this case we will
use the same notatiaty f (p).

— 0 ass— p, (11)

Definition 2.3 (CL, map) We denote by}, (2, M) the class of mapg : @ — M
which are P-differentiable at every point ©f and whose P-differentigh — dgy f(p) is
continuous. In the casel = R we simply writeC}, ().

In the present paper we work with! maps andC! submanifolds, but mainly using the
notion of P-differentiability. The next proposition ensures that this is possible gihce
maps in the usual sense are aﬂs}g

Proposition 2.4 (P-differentiability) The inclusionC1(Q, RF) ¢ €% (2, R) holds
and for everyu € C1(Q, R¥) and everyp € Q we have the formuldgu(p)(Y (p)) =
du(p)(pr(Y)(p)) whenevel¥ € G. The mapy : G — H1is the canonical projection
introduced in DefinitioffL.2
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Proof. Let us fix a system of graded coordinates R? — G with respect to a graded
basis(Wy, ..., W,) of G. Defineii = uo F € C1(Q, R¥), whereQ = F~1(Q). We define
x = F~1(p) wherep e Q. Using graded coordinates together with coordinate dilations
and the notion of P-differentiability our proof boils down to showing the existence of the
limit
lim ux - Ar(y)) —u(x)
r—0t r

uniformly asy varies in some bounded neighbourhood of the origin. Let us define the
map

riedi(x- Ar(y) = ft(x - (Xq: V‘l’yj'ej» =9y, y).

j=1
Since the mag is C! we can write

Vo) =V Oy _

r

/ 80 (r. y) dr.
0

hence formulg(9) implies that

V) — YOy _

r

q r
rilz/(; d; rdf'*lyj Wii(x - Ary)dt
j=1

m 1 q 1
=Zy,-/ Wiii(x - Apey)dr + Y dj rd.fflyj/ 9 IWiii(x - Ayry) dr,

j=1 70 j=m+1 0
where the degreg; of the coordinatey; is greater than one if and only jf > m. By

the continuity ofVT/jﬁj foreveryj =1,...,¢q, formula @) and the last equality we have
proved that

im L0 Ar() — i)

r—0t r e
J

YiWjditx) =Y yiWju(p). (12)
=1 j=1
This expression yields a G-linear map with respect to graded coordinates
q m
dHu(p)( Z ijj(p)) = Z yiWju(p).
j=1 j=1

The explicit formula for the P-differential and the continuityWsf for everyj =1,...,¢
yield the continuity ol u(p) with respect top. Finally, observing that

q m
pH(Z)’jo)(P) =Y ¥W;(p) € HyG
j=1 j=1

for everyY € G we obtain the relatiodyu(p)(Y (p)) = du(p)(pa(Y)(p)). O
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Proposition 2.5. Lety € C1(22) andp € Q. Then there exists a unique horizontal vector,
denoted bWy u(p) € H,G, such thadyu(p)(V) = (Vyu(p), V), foranyV e 7,G
andVyu(p) is the orthogonal projection d¥u(p) onto H,G.

Proof. The linear mapdyu(p) can be represented by a vecr € 7,G such that
dyu(p)(V) = (W, V), foranyV e T,G. We first prove thatW¥ € H,G. Observe
that7,G = HI}G @ --- & H,G where we have defined, foragy=1, ...,

HIG = (X(p) € T,G | X € HI}.

Then we can writd/ = 7., V; andW = 3. _; W;, whereV;, W; € HJG. By Propo-
sition[2.4 we know thadzu(p)(V) = du(p)(V1) = (Vu(p), V1), hence

(Vu(p), Vi)p = (W, V), = (W, V).

Since we are using a graded metric the subsp{a[dé@ | j =1,...,) are orthogonal
to each other, so the arbitrary choiceloimplies thatW; = 0 for every 2< j < and

(Vu(p) — Wi, V1) =0

for every V1 € H,G. The last property characteriz&; as the orthogonal projection
of Vu(p) onto H,G. In particularW, is the projection of onto H,G. Thus, defining
Vyu(p) = W1 completes the proof. O

Definition 2.6 (Horizontal normal) LetX c Q be aC?! submanifold of codimension
one and letp € X. We denote by(p) a unit normal toX at p with respect to a fixed
graded metric. We say that the orthogonal projection @) onto H,G is a horizontal
normalof ¥ at p and we denote it byy (p).

Remark 2.7. Note that the horizontal normal should be considered up to sign, because
we do not require oriented submanifolds in the definition of horizontal normal, and the
functions depending on the horizontal normal do not depend on its sign. In more rigorous
terms, one should identifyy and—vg in H,G and consider the corresponding quotient
space.

Lemma2.8. Letu : @ — R be aC! map. Suppose that 1(0) # ¢ and assume that
Vu(p) # 0for everyp € Q. Then for every € u~1(0) and everyZ e T,G we have

Vuu(p)
IVu(p)|’

wherevy (p) is the horizontal normal of the submanifald(0) at the pointp.

duu(p)(Z) = [Vu(p)| (vu(p), Z)p and vu(p) =

(13)

Proof. We observe thab(p) = Vu(p)/|Vu(p)| is a unit normal tox~1(0) at p. By
definition of horizontal normal, the orthogonal projectiomgp) onto H,G is vy (p),
and Propositiof 2|5 concludes the proof. o
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Definition 2.9 (Horizontal gradient) Letu e C1(2). In view of Propositiof2.§we can
define thehorizontal gradientf u as the unique? horizontal vector field7;u such that

dau(p)(Y) = (Vau(p),Y),
for everyp € Q and everyy e T,G.

Definition 2.10 (Horizontal point) LetX~ c Q be aC! submanifold of codimensidn
and letp € . We say thap € X is ahorizontal poinof X if

dim(H,G) —dim(H,GNT,X) <k — 1. (14)
Thehorizontal sebf T is the subset of all horizontal points and it is denotedfy).

The last definition is inspired by Lemra 2|11 and Thedrem|2.13 below, in the following
sense. Lett be a submanifold of codimension one defined as a level set@f map

u : 2 — R. Theorenf 2.13 singles out a class of “intrinsic” singular point&otor-
responding to the subset &f wheredyu vanishes (this subset is well defined due to
Propositior] 2.4). In view of Lemma Z]11 this subset exactly corresponds to the subset
of horizontal points of£. The singularity ofu at p € X can also be expressed by the
condition dim(H,G) = dim(H,GNT,%), thatis,dgu(p) vanishes. For submanifolds of
higher codimension conditio4) amounts to the nonsurjectivigef(p) : G — R,
because difilzu(p)(H,G)) = dim(H,G) —dim(H,GNT,%), although the map does

not appear in[(14). In the cage= 1, one can interpret inequality (14) via the inclusion
H,G C T,%, which coincides with the condition dit#,G) = dim(H,G N T, X). Itis

clear that whert > 1 condition @) means that the horizontal subspdg€ is allowed

to intersectl, ¥ without necessarily being contained in it. Thus in higher codimension,
apointp such that?,G C 7, X is a horizontal point, but the horizontal $&¢>) includes

a larger class of points.

Lemma 2.11 (Singular points) Let O be an open subset @ containing the unit
elemente and letu € C1(0,RF) be such thatu(e) = 0 and the differential map
du(p) : T,G — Rk is surjective for anyp € O. Then, definingc = u~1(0), we
represent the horizontal set &f as follows:

C(Z)={pe=|dyu(p): G — RKis not surjectivé.

Proof. We choosep € £ C 0. SinceX is the level set:~1(0) we have Ketdu(p)) =
T, %. Define the subspace

S(p)=1{XeH'|X(p) e H,GNT,T} C H™.
We wish to prove that
Ker(duu(p) = S(p) @ H* @ --- & H'". (15)
We will use the formula

duu(p)(Y(p)) =du(p)(pu(Y)(p)) foranyY eg, (16)
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proved in Propositiop 2|4. Let € S(p) ® H? & --- & H'. By definition of S(p) we
havepy (Y)(p) € H,G N T,% and by ) we obtaidyu(p)(H’/) = {0} for every
j=2,...,1thusdgu(p)(Y(p)) = 0. As a result, we have proved the inclusion

S(p) ® H?>® --- @ H' C Ker(dyu(p)).

Conversely, assume € Ker(dgu(p)). By (16) it follows thatp (Y)(p) € Ker(du(p)),
sopy(Y)(p) € H,G N T,X. We have proved thaty (Y) € S(P), henceY e S(p) @
H?@®--- @ H'. This implies

Ker(dyu(p) C S(p) @ H? @ --- & H.',
and [I5%) follows. The equalitief ([L5) and difiip)) = dim(H,G N T, %) yield
dim(dpu(p)(9)) = dim(G) — dim(Ker(dyu(p)))
= dim(H,G) — dim(H,G N T, %). (17)
Now assume thagt € C(X). By definition of horizontal point we know that
dim(H,G) — dim(H,GNT,%) <k —1,

therefore formulal (17) implies that di@yu(p)(G)) < k — 1 anddpu(p) : G — R*
cannot be surjective. Converselydf;u(p) : G — R is not surjective, then b@.?) it
follows that dim(H,G) — dim(H,G N T,X) < k — 1. This concludes the proof. O

Proposition 2.12. Let ¥ be a submanifold of. Then for anyp € G we have
[p(C(X)) = CUp(%)).

Proof. The left translatiori, : G — G is a diffeomorphism, thereforls () is another
submanifold ofG. In view of @) and using the chain rule it follows thaék, (s)(H,G) =
H,G for anys € G, hence

dly(s)(HsG N Ty X) = HpG Ndly(s) (T X) = HpsG N Ty (1,5). (18)
As a consequence, for amye G we have
dim(H,G N T, D) = dim(HpsG N Ty (1, X)).

By the definition of horizontal point, the last equality implies that C(X) if and only
if ps € C(I,%). O

An essential tool to prove Theorgm 2,16 below is the following Sard-type theorem, which
corresponds to Theorem 2.7 of[47].

Theorem 2.13 (Sard-type theorem) Let G and M be stratified groups of Hausdorff
dimensionQ and P, respectively, with) > P.LetA C G be a measurable set. Consider
a Lipschitz mapg : A — M and define the set of singular points

S ={p e A|dyt(p) exists and itis not surjectiye

ThenH2 P (SNt~ 1)) = Ofor HP-a.e.& € M.
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Remark 2.14. Due to the general Eilenberg inequality proved in 2.10.25 df [23] the fact
that the points where is not P-differentiable are negligible implies that they &€~ -
negligible in#”-a.e. level set. In other words, f6t”-a.e. level set ofi the subset of
points p wheredy T (p) exists has full measure.

We will apply Theoren 2.13 to the cadé = R¥, P = k andt € C1(U, R¥), where
U is an open subset @&. Due to Propositio4, any map 6f(U, R¥) also belongs
to C},(U, R¥), so it is everywhere P-differentiable, with continuous P-differential. The
everywhere existence of the P-differential allows us to divide the points bft) into
two disjoint subsets for eveny € R¥. The first one is the subset of pointse 771(r)
such thatdyt(p) : G — R* is not surjective, and the second one is the complement.
It is clear thatC}LI maps are locally Lipschitz with respect to the Carnot—Cé&wedory
distance, therefore Theorgm 2.13 can be applied o whereK is a compact subset
of U, yielding

HC*({p € K | t(p) = t anddy T (p) is not surjectivg) = 0 (19)

for a.e.t € R, If we take a countable familyk;} of compact subsets with unidsn and
we apply ) to any of them, it follows that for aree R* we have

HO X ({p e U | t(p) =t anddyt(p) is not surjectivg) = 0. (20)
This proves the following corollary of Theorgm 2]13.

Corollary 2.15. Let : U — R be aC* map. Therr e C} (U, R¥) and(20) holds for
a.e.r € R,

The next theorem is the main result of this paper.

Theorem 2.16 (Negligibility). LetX c € be aC! submanifold of codimensidn Then
HOK(C(Z)) =0.

Proof. According to Definitio@, we fix a graded basi¥,, ..., W,) and the associ-
ated graded coordinates given By. RY — G. Let us fix a pointp € Z. By definition of
C* submanifold there exists an open neighbourhégdof p, a mapu, € C1(0,, R¥)
and some integers ¥ j1 < --- < ji < ¢ such that for any € O, the vectors
(Wiup(s), ..., Wjupy(s)) are linearly independent and N 0, = u;l(O). Proposi-
tion[2.12 permits us to translageto the unit element € G.

We define0 = 1,10, andu : O — RF asu(s) = u,(l,s) for eachs € O.
The left invariance of the vector field&; gives W;u(s) = Wju,(l,s) for everys € O
and everyj = 1,...,q. Thus for everys € O the vectorgWj u(s), ..., Wju(s)) are
linearly independent. We define the translated submaniipld= /,-1%, the open set

0 = F7Y(0) c R? andX® = F~1(%,) c R, observing thafi—1(0) = £ N O where
i=uoF:0 — RFisCL We have

dy;(0) = du 0 9y; F(0) = du o Wj(e) = Wju(e)
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foranyj = 1,...,¢. Then the vectorsdy i, ..., dy, i) are linearly independent in an
open neighbourhoo®; c O of the origin. Let us define the subspace

N={xeR?|x;, =---=xj =0}

By the implicit function theorem there exist an open subset IT containing the origin
and aC! mapy : A — R* such thati(¢, ¢(¢)) = 0 for anyé € A. Our notation
precisely means

i€{j1,en i}

EpEN= Y &+ Y  ¢®e
P E{ 15k}
where(e;) is the canonical basis @?. The map® : A — O, is defined by®(§) =
(£, (&) € X foranyé e A. We introduce thec! map¥ : R x A — G,
W(t, &) = expri W, - expoWi, - - -exptyy W, - F(P(§))

for every(r, £) € RK x A. We have used the dot to denote the group operation. We have
k i
W (©0) = Wj(e) e .G and 3 ¥ (0) = Wj(e) + Z%} (0) Wj, (e),
i=1

foreveryi =1,...,kandeveryj ¢ {j1, ..., ji}. Itis easily seen that the vectors
(0, %(0), ..., 3, ¥(0)

are a basis of,G, hence there exigt > 0 and open setd1 C A andU C G such that
W((—e¢, ) x A1) = U, 0 € A1, e € U and the function

\I/:(—s,s)kXAl—>U

is invertible. Let us consider the projectipn R? — R¥ defined byp(x) = (ejgs - Xj)
for anyx € R? and define the&€! mapz : U — (—¢, &)f ast(s) = p(¥~1(s)) for any
s € U. Then Corollary 2.15 implies that for aze (—e, £)* we have

HO ¥ ({s € U | t(s) = t anddy(s) is not surjectivg) = 0. (21)

As W is invertible it follows thatdz (s) is surjective for every € U, so the subsef;, =
Y1) c U is aC submanifold for any. We can apply Lemna 2.1L1 to obtain

C(S;) = {s € S; | dgt(s) is not surjectivé.

In view of (21) we getH2*(C(S;)) = O for a.e.t € (—¢, &)k, By definition of r we
know that
Ss=tN)={seU |V 1) € {1} x A1}
= exprWj, - exproWj, - - -expy Wj, - F(P (A1)
= Ly, Us,, (- - - Uy, F(P(AD))) - - -),
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wheret = (t1, ..., 1) ands; = exp;;W;, foreveryi = 1,...,k.Fort =0 ¢ RX the
previous equations yielsh = F(®(A1)) C X,, SO

St = Ly, (s, (- U, S0)) -+ ).
This formula and thé{2~1-negligibility of C(S;) for a.e.r € (—e¢, &)* yield
0="HCM(C(S)) = HOH(C Uy, Uy, (- Us, o)) -+-)))
= HO Uy, U, -+ U5, (C(S0)) - ) = HOTH(C(S0)).

In the third equality we have used Proposition 2.12 and in the fourth one we have used

the fact that left translations are isometries with respect to any homogeneous distance.
Note thatSg contains the unit elemeatand it is an open subset &f,. We know that

¥, =1,1%, hence defining, = 1, So we see thas, C X is an open neighbourhood of

p in the topology ofx. Thus, reasoning as before we obtain

Ste_1 o

HOH(S,) = HOTH(C Uy S0) = HOTF (1, (C(S0)) = HETH(C(So) = 0.
The arbitrary choice op implies that we can find a countable family of open subsets
{Sp; | Sp; €, j €N}

suchthal = (J;cn S, andHQ—"(C(S,,j)) = Oforevery; e N. Finally, the conclusion

follows from the equalityC(X) = ;e C(Sp))- O

A first important consequence of the previous theorem occurs in codimension one, where
we obtain the representation of th@ — 1)-dimensional spherical Hausdorff measure of
C?! hypersurfaces. To see this, we will use the notion of “metric facitor” [48].

Definition 2.17 (Metric factor) Let B; be the open unit ball with respect to a fixed ho-
mogeneous distanekof G. Considen € H1\ {0} along with its orthogonal hyperplane
L(v) in G and defineC(v) = expL(v) C G. LetF : R? — G represent a system of
graded coordinates and define

0%_1(v) = H{ H(FX(Lw) N By)). (22)

The mapy — 6%, _,(v) is called themetric factorof the homogeneous distandevith
respect to the direction and the graded metrig.

With a slight abuse of notation, it will be useful to define the metric factor also for hori-
zontal vectors. We define

05 _1(v) = 65_1(V)

wherev € H,G andV ¢ H1\ {0} is the unique vector field such th&tp) = v. Note
that a more rigorous, but unnecessary formulation should consider the metricﬁ@ggor
as a function on the tangent bundlé and which is constant along left invariant vector
fields.
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Remark 2.18. As we have seen in Lemma 1.10 06f [48], the above definition does not
depend on the choice of graded coordinates. So the nuipbgrv) depends only on the
homogeneous distande the direction ofv and the graded metrig. By the symmetry of
Euclidean balls, taking two of therB,"l‘ and B,"2' such thatB,"l| c FY(By) C B,"Z', we
notice that the intersectioﬂ—l(ﬁ(v))mBl;' fori = 1, 2 is independent of the direction

As aresult, forany € H'\ {0} we have

q—1 8 q—1
Wg-17] = QQ_]_(V) S wg-1Ty

sov — 6% _,1(v) is uniformly bounded from above and from below by positive constants
which depend on the homogeneous distance and on the graded metric.

In Subsection 2.1 of [48] a class of stratified groups where the Carnot—€adaity
distance yields a constant metric factor is singled out, namely, the cl@satational
groups, which encompasses Heisenberg groups and more general H-type groups. In the
appendix of[[29], Franchi, Serapioni and Serra Cassano have constructed a general homo-
geneous distancé,, for every stratified group. Its explicit formula is statedRA with
respect to graded coordinates:

doo(,0) = maX fej (x4, x| (23)

it has the left invariance properl, (x, y) = doo(x -y, 0), andg; € 10, 1[ for every;j =

1, ..., g are suitable dimensional constants depending only on the group. The integers
m; for j = 0,...,. are introduced in Definiti0.4 and the dot betweert and y
denotes the group operation in graded coordinates, according to the discussion following
Definition[I.4. In the next proposition we prove that the metric factor with respect to this
distance becomes a constant function of the horizontal direction

Proposition 2.19. Leteé_1 represent the metric factor with respect to the distasige
Then there exist8p_1 > 0such thaﬁé_l(v) = ap-1 foreveryv € H1\ {0}.

Proof. For any couple of horizontal vectots © € H \ {0} we can find an isometry

T : G — G such thatr(v) = p andt(£(v)) = L(w), whereL(v) and £(n) are the
orthogonal spaces to and i, respectively. We view these orthogonal space&iby
defining £L(v) = exp(£(v)) and L(n) = exp(L(w)). Let (Wi, ..., W,) be a graded
basis ofG, let F : R? — G be the associated system of graded coordinates and define
I(x) = Z;.’:le W; e G for everyx € RY. By the expression al, it is easy to see that

the unit ballB; c R? with respect tal,, is preserved under the family of isometrigs

i.e. 7(B1) = Bj. Thus, taking into account th@ = expo I and thatf = I Yo7 o/ :

R? — RY is a Euclidean isometry, we have

FYLw) N B =I"YL(w) N Br=I"1(Lw)) N By

=TI L) N By) =t L) N By)
= #(F~Y(L) N By),
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so by Definitior] 2.1J7 it follows that

0% () = HITH(FHLw) N By = HIT EEHLW) N By)
= H{HFHLW) N By =65 _,v).

This concludes the proof. O

In view of Theoreni 2.7]6 in the cade= 1, the statement of Theorem 2.3 n[48] holds

for any C1 submanifold of codimension one. As a consequence, the relation between the
Riemannian measuke, induced by the graded metricrestricted to aC! submanifold

¥ of codimension one an82~1L_X is established on arbitrary stratified groups.

Theorem 2.20. Let = be aC! submanifold of codimension onedn Then

05_1(vi) SCTILE = |vmlog L, (24)
v

SOy = ——
0%_1(vi)

o, L%, (25)

wherego, is the measure induced by the graded megriestricted tox.

3. (G, R¥)-rectifiability and perimeter measure

In this section we present some applications of Thedrem 2.16. We start by introducing
families of regular sets with respect to the geometry of stratified groups.

Definition 3.1 ((G, R¥)-regular set) A subsett c Q is a (G, R)-regular seif there
exists a mapf € C (2, RY) such that = £~1(0) and the P-differential

duf(p):G — Rt
is a surjective G-linear map for any € X.

Definition 3.2 ((G, R¥)-rectifiability). We say thas c 2 is (G, R¥)-rectifiableif there
exists a sequende&;} of (G, R¥)-regular sets such that

HeH(s\(Jx) =0

jeN

The(G, R¥)-rectifiability turns out to have a “fractal nature” with respect to the Euclidean
viewpoint, since(G, R¥)-regular sets may have Euclidean Hausdorff dimension strictly
greater than their topological dimension, so they cannot be rectifiable in the Euclidean
sense([41]. In the following definition we recall the classical notion of rectifiability, uti-
lizing countable unions of ! surfaces, instead of Lipschitz images.
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Definition 3.3 (Rectifiability). We say that a subsétc G is rectifiableof codimension
k or simply (¢ —k)-rectifiableif there exists a sequen¢&;} of C* surfaces of dimension

g — k such that
Hi*(s\Uz) =0
jeN

Remark 3.4. Notice that(G, R¥)-rectifiability coincides with rectifiability whels =

R? andg > k. Thus the notion oG, R)-rectifiability allows us to state in a unified
way the De Giorgi rectifiability theorem in stratified groups. By results of [19], [27], [29]
we know that if[0E|g(G) < oo, whereG is either a Euclidean space or a stratified
group of step two, then th&-reduced boundar§. gy E is (G, R)-rectifiable. Presently,
for stratified groups of step higher than two this result is an open issue.

In order to complete the picture, we briefly mention a further extension of the notion
of (G, R)-rectifiability. In fact, we can repladg® with another stratified groupl.

Definition 3.5 ((G, M)-regular set) A subsetz c Q is a (G, M)-regular surfacef
there existf € CL (2, M) such thatf ~1(e) = £ and

dgf(p):G—->M
is a surjective G-linear map for any € .

It is apparent that the notion @fs, M)-regularity in higher codimension leaves us a cer-
tain freedom in the choice d¥l, but not all codomains are “good” to be considered.
For instance, the family ofH", H™)-regular sets is empty whenever> m. This fol-

lows form the fact that there are no surjective G-linear maps fifnonto H”, as can

be checked by using the definition of G-linearity and the group operation in the Heisen-
berg group (see also Theorem 2.8(0fl[47]). As soon as we have a surjective G-linear map
L : G — M a canonical example of @, M)-regular set can be given by choosing the
subgroupV = L~1(e) c G which is(G, M)-regular. In view of Proposition 1.12 df [47]

the Hausdorff dimension of is Q— P, whereQ and P are the Hausdorff dimensions of

G andM, respectively. These considerations lead to the following definition.

Definition 3.6 ((G, M)-rectifiability). We say thatS c Q is (G, M)-rectifiableif there
exists a sequende&;} of (G, M)-regular sets such that

Her(s\Uz)=o
jeN
wherep is the Carnot—Caratbodory distance oft.

Theorem 3.7. Let . C 2 be a connected submanifold of clag$ and codimensiot.
ThenX is (G, R¥)-rectifiable.

Proof. By Lemma[2.1]L we see tha@t(X) is a closed subset of, so X \ C(X) is a
countable union of connected pieces that can be locally represented as level Géts of
maps with surjective P-differential. Theorém 2.16 impli¢8—*(C (%)) = 0, and hence
the conclusion follows. O
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Theorem 3.8. Every rectifiable set of codimensiéris (G, R¥)-rectifiable.

Proof. Let S be a rectifiable set of codimensiérand let{%; | j € N} be a family ofc?t

submanifolds of codimensiahsuch thatHﬁl_k(S \ Ujen Zj) = 0. By Proposition 4.4
of [29], for everya > 0 and everyR > 0 there exist&r > 0 such that

HO™IT(E) < CrH{|(E) (26)

whenevelE C Bg. Using the estimaté (26) fer = ¢ — k we obtain
—k q—k —
Ny (BRmS\ UNEj) <H!, (BRmS\ LIJVEJ) —0
J€ J€E

for every R > 0, S0H2 (S \ ;e %) = 0. By Theoren{ 3]7 we know tha; is
(G, R-rectifiable for anyj € N. This concludes the proof. O

Finally, we discuss an application of Theorfem 2.16 related to a question raised by Danielli,
Garofalo and Nhieu in_[15]. They prove that there exist constants> 0 such that for
every relatively compact open sBtwith C? boundary the estimates

¢ SCYOE) < BE|gy(H") < C SCTIIE) 27)

hold, whereQ = 2n + 2 is the Hausdorff dimension of the Heisenberg gréiip They
conjecture the validity of (7) for arbitrary stratified groups. Due to Theorem 2[5 bf [49]
(see also Theorem 3.5 6f [28]) we have the formula

|0E|y = Qéfl(vH)ngll_aE, (28)

under the assumption that the characteristic s&@s -negligible. Then Theore6
makes) true for any sé& with C* boundary. Thus, formul@S) immediately extends
the validity of ) to any open set witfil boundary contained in an arbitrary stratified
group, yielding

inlSQ’l(aE NQ) < DE|x(Q) <05 1SCTOENQ), (29)

whereQ C G is an arbitrary bounded open set and the consg&"@g, §gQ_1 are defined
as follows:
0% . = inf 65 .(v), 65 ,= sup6® .(v).
Co1= ", Q_1( ) 0-1 VEHFi Q—l( )
In Remar we have shown that the functior> 67_, (v) is bounded from above
and from below by positive constants, therefore estimatgs (29) are nontrivial.
As a last remark, we wish to show that the constantg df (29) are actually optimal. To
do this, we need the following definition.
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Definition 3.9. Let p € G and letv € H1\ {0}. Thevertical half spacewith respect to
v are defined as follows:

ST(w) =exp{Y €G | (v.Y) >0},

STw)=exp{Y €G | (v,Y) <0}.

Thevertical half spacewith respect ta) andcentered ap € G are defined as follows:
(ST () =SF(p,v) and [,(S™(v)) = S~ (p, v).

Denote byO the family of nonempty bounded open set$oand by€ the family of open
sets withC! boundary. We easily see that

g . [0E| [ (€2)
O9-1= 'nf{ SO-1HIENQ)
i f{ ENOIL)

S2-13St (1 N Q)

=inf{6§_,(v) [ v e HM\ {0})) =65 4,

where the first equality of the last line follows from [28). We also have
= [0E| g ($2)
0% | >supl ———————— [QeO, Ecé
e-1= p{sQl(aE ne | € © }

p{ 19ST ()| H ()
S2-1(35t(1) N Q)

= SUHOS_,(v) | v € H'\ (0} = 05_.

QeO,Eeé’}

Qeo, veHl\{O}}

Qe(’),veHl\{O}}

This proves our claim.
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