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Abstract. We establish an explicit connection between the perimeter measure of an open setE

with C1 boundary and the spherical Hausdorff measureSQ−1 restricted to∂E, when the ambient
space is a stratified group endowed with a left invariant sub-Riemannian metric andQ denotes the
Hausdorff dimension of the group. Our formula implies that the perimeter measure ofE is less
than or equal toSQ−1(∂E) up to a dimensional factor. The validity of this estimate positively
answers a conjecture raised by Danielli, Garofalo and Nhieu. The crucial ingredient of this result is
the negligibility of “characteristic points” of the boundary. We introduce the notion of “horizontal
point”, which extends the notion of characteristic point to arbitrary submanifolds, and we prove that
the set of horizontal points of ak-codimensional submanifold isSQ−k-negligible. We propose an
intrinsic notion of rectifiability for subsets of higher codimension, called(G,Rk)-rectifiability, and
we prove that Euclideank-codimensional rectifiable sets are(G,Rk)-rectifiable.
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Introduction

The project of developing analysis in metric spaces is receiving remarkable attention in
the last few years, with several monographs on this topic [7], [18], [35], [36], [64]. The
class of Carnot–Carathéodory spaces provides good models to be studied in this per-
spective. They are characterized as connected differentiable manifolds with a family of
smooth vector fieldsX1, . . . , Xm which satisfy a Lie bracket generating condition. Under
this assumption the “Carnot–Carathéodory distance” can be defined [33].

We will focus our attention on stratified groups, also known as Carnot groups [25],
[59], which form a special class of Carnot–Carathéodory spaces. An important feature of
stratified groups is the existence of a family of intrinsic dilations which scale well with
the Carnot–Carath́eodory distance and define the Hausdorff dimension of the group.

Stratified groups and Carnot–Carathéodory spaces have been thoroughly investigated
in several different areas of analysis including optimal control theory, differential geom-
etry, harmonic analysis and PDEs. Some relevant books are [10], [25], [34], [53], [66].
The systematic study of geometric measure theory on stratified groups has begun only
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very recently with a continuously growing literature and it is now the subject of several
contributions: [1], [5], [8], [12], [15], [17], [26]–[30], [32], [41], [45]–[48], [54], [57],
[60]–[62], [67], and this list is certainly not complete.

The leading theme of this paper is the role of characteristic points in the study of in-
trinsic notions of rectifiability and in the expression of perimeter measure for open sets
with C1 boundary. In the area of PDEs, characteristic points have been widely studied in
connection with boundary regularity of solutions to equations with nonnegative character-
istic form [11], [13], [21], [24], [38], [39], [42]–[44] (see also the references therein). The
solution to the Dirichlet problem for the Kohn Laplacian in a smooth domain may not be
smooth up to the boundary due to the presence of characteristic points [38]. Characteris-
tic points play an important role in connection with metric properties of domains suitable
for Sobolev–Poincaré inequality, Ahlfors regularity of hypersurfaces, intrinsic measure
of hypersurfaces and trace theorems [8], [12], [15], [16], [22], [31], [48], [55], [56].

W now give a detailed description of the content of the present paper. The first sec-
tion presents all the basic material that will be used throughout the paper. Section 2 is
devoted to characteristic points of submanifolds and their negligibility. Negligibility of
characteristic points with respect to the Euclidean Hausdorff measureHn−1

|·|
was proved

by Derridj for (n− 1)-dimensional smooth hypersurfaces [22]. Recently, Balogh through
a remarkable construction of functions with prescribed gradient has proved that there
exist C1 hypersurfaces in the Heisenberg group such that the one-codimensional Eu-
clidean Hausdorff measure of the characteristic set is positive [8]. However, he also
shows that if we consider the Hausdorff measureHQ−1 with respect to the Carnot–
Carath́eodory distance, then the characteristic set ofC1 hypersurfaces becomes negli-
gible with respect to this measure. The covering type procedure adopted by Balogh has
been extended by Franchi, Serapioni and Serra Cassano to all stratified groups of step
two [29].

Our approach to the negligibility of characteristic points in arbitrary stratified groups
relies on a Sard-type theorem [47], where characteristic points are properly interpreted
as intrinsic singular points of the submanifold. This characterization works for subman-
ifolds of any codimension and allows us to find an analogous notion of characteristic
point. In this general case, we call these points “horizontal”, because the tangent space to
the submanifold at these points has a sufficiently “large” intersection with the horizontal
space (see Definition 2.10). Note that in submanifolds of codimension one the notion of
horizontal point coincides with the classical notion of characteristic point.

The main result of this paper is given in Theorem 2.16, where we show that the set of
horizontal points in ak-codimensional submanifold isHQ−k-negligible. The key obser-
vation is to look at horizontal points as those points where the defining map of the surface
is “intrinsically singular”, namely, it has a nonsurjective P-differential (Definition 2.2).
Once horizontal points are regarded as singular points we construct anad hocargument
in order to apply the weak Sard-type theorem proved in [47], due to which a.e. level set
of a vector-valued Lipschitz map contains anHQ−k-negligible subset of singular points.
The negligibility of horizontal points in stratified groups immediately extends the validity
of Theorem 2.3 in [48] to anyC1 hypersurface. Let6 be aC1 hypersurface6 and let
SQ−1 be the spherical Hausdorff measure with respect to a homogeneous distance. Then
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Theorem 2.20 gives an explicit formula for the density ofSQ−1x6 with respect to the
Riemannian measure restricted to the hypersurface.

In Section 3 we present other consequences of Theorem 2.16. We first introduce the
notions of(G,Rk)-regularity and of(G,Rk)-rectifiability (Definitions 3.1 and 3.2). These
notions fork = 1 have been first introduced and studied by Franchi, Serapioni and Serra
Cassano in the cycle of papers [27]–[29]. As the classical notion of differentiability is
used to define the smoothness of a manifold, we observe that P-differentiability naturally
defines(G,Rk)-regularity for every codimension, introducing a vast class of new geomet-
rical objects to be studied, where(G,Rk)-regular sets play the role of “intrinsic regular
submanifolds”. However, those groupsG whose Lie algebraG does not contain anyk-
dimensional commutative subalgebra in the first layer cannot have(G,Rk)-regular sets.
Clearly, an(Rq ,Rk)-regular set is exactly aC1 submanifold of codimensionk. On the
other hand, as soon as we consider a noncommutative stratified group, things can dramat-
ically change. A recent paper by Kirchheim and Serra Cassano [41] shows a remarkable
example of an(H1,R)-regular setS such thatHα

|·|
(S) > 0, where| · | is the Euclidean

norm and 2< α < 5/2, whereH1 is the three-dimensional Heisenberg group. This
interesting hypersurface cannot be 2-rectifiable in the Euclidean sense, although there ex-
ists a 1/2-Hölder continuous parametrization which makes it a topological submanifold
of topological dimension two. Recently,(Hn,Rk)-regular sets, with 1≤ k ≤ n, have
been studied by Franchi, Serapioni and Serra Cassano [30]. In the terminology of [30],
these sets are calledk-codimensionalH-regular surfaces. Note that there are no(Hn,Rk)-
regular sets whenk > n.

Our negligibility result applies in comparing(G,Rk)-rectifiability with Euclidean
rectifiability in the Federer sense (3.2.14 of [23]). In the papers [27] and [29] Franchi,
Serapioni and Serra Cassano have proved that Euclidean rectifiable sets of codimension
one in stratified groups of step two are always(G,R)-rectifiable. As application of The-
orem 2.16, in Theorem 3.8 we extend this result to any Euclidean rectifiable set of any
stratified group. Note that horizontal curves or more general Legendrian submanifolds
cannot be(G,Rk)-regular. In fact, from the notion of horizontal point, one can check
that anyk-codimensional Legendrian submanifold coincides with its horizontal set, so
Theorem 2.16 proves that it isHQ−k-negligible. In other words, ak-codimensional Le-
gendrian submanifold is invisible in a(G,Rk)-rectifiable set in the same way as Euclidean
(q − k − s)-rectifiable sets are invisible in a Euclidean(q − k)-rectifiable set, where
s > 0. It is certainly interesting to investigate which couples(G,Rk) possess nontrivial
(G,Rk)-regular sets and to check whether these sets have Hausdorff dimensionQ−k and
topological dimensionq − k, whereq is the topological dimension ofG. Presently, this
question has been positively answered fork = 1 and arbitraryG in [28] and fork ≤ n

andG = Hn in [30]. Expanding our perspective, it is natural to replaceRk with another
stratified groupM, getting the general notion of(G,M)-regularity (Definition 3.5). We
introduce this notion of regularity to illustrate its potential in connection with future de-
velopments of geometric measure theory on stratified groups. These notions of intrinsic
regularity provide several types of rectifiable objects modelled with respect to different
geometries. This shows how the geometry of stratified groups is rich and is still far from
being well understood.
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Our negligibility result can also be applied to study the relationship between the
perimeter measure of a set withC1 boundary and the spherical Hausdorff measure of
its boundary. In the more general case when a portion∂E ∩ U of ∂E is a(G,R)-regular
set andU is an open subset, the formula

|∂E|HxU = θ
g

Q−1(νH )S
Q−1x(U ∩ ∂E)

can be found in [28] and [49]. Due toHQ−1-negligibility of characteristic points this
formula holds for any setE with C1 boundary and any measurable set ofG. As a con-
sequence, we can positively answer a conjecture raised by Danielli, Garofalo and Nhieu
in [15]. A detailed discussion of this application will be given in the last part of Section 3.

1. Preliminaries

We will mean bymeasureon a metric spaceX a set functionµ : P(X) → [0,+∞]
with the propertiesµ(∅) = 0 andµ(E) ≤

∑
∞

j=1µ(Ej ) wheneverE ⊂
⋃

∞

j=1Ej . Every
measureµ naturally induces aσ -algebraAµ ⊂ P(X) where it is additive on countable
disjoint unions. Recall thatB(X) is the smallestσ -algebra containing open sets ofX.
Elements ofB(X) are calledBorel setsand a measureµ such thatB(X) ⊂ Aµ is called
aBorel measure. The push-forward of a measureµ under the mapF : X → Y is defined
by F]µ(E) = µ(F−1(E)) for everyE ⊂ Y . The restriction of a measureµ to a subset
A ⊂ X is defined byµxA(E) = µ(A ∩ E) for everyE ⊂ X. The following elementary
change of variable formula will be useful. Its proof can be obtained by approximation of
measurable functions with measurable step functions.

Proposition 1.1 (Change of variable). LetX, Y be two metric spaces and letN be either
R or a finite-dimensional space. Suppose thatF : X → Y andu : Y → N are Borel
maps, whereµ is a Borel measure overX and u ◦ F is µ-summable. Then for every
B ∈ B(X) we have ∫

F−1(B)

u ◦ F dµ =

∫
B

u dF]µ. (1)

Definition 1.2 (Stratified group). Let G be a simply connected Lie group and letG be
its Lie algebra of left invariant vector fields. LetH 1 be a subspace ofG and suppose that
the inductively defined sequence of subspaces

H j+1
= [H j , H 1] = span{[Z, Y ] | Z ∈ H j , Y ∈ H 1

}

has the properties:

(1) H j
∩H k

= {0} wheneverj 6= k andj, k ∈ N \ {0},
(2) there existsι ≥ 1 such thatH ι

6= {0} andH ι+1
= {0},

(3) G is spanned by all the subspaces{H j
| j = 1, . . . , ι}.
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We say thatG is astratified algebraand thatG is a stratified group. The integerι is called
the stepof the group. Aleft translationof the group is a maplp : G → G defined by
s 7→ lp(s) = ps, wherep, s ∈ G. As a consequence of(1) and (3) every vectorY ∈ G
can be written in a unique way as the sumY =

∑ι
j=1 Yj , whereYj ∈ H j . This enables

us to introduce canonical projectionspH j : G → H j defined bypH j (Y ) = Yj , whereY
is written as above. For the projection on the first layer we also writepH = pH1.

Conditions (1) and (3) of the previous definition can be briefly stated by writing

G = H 1
⊕ · · · ⊕H ι,

where the symbol⊕ indicates the direct sum of vector spaces.
Recall that the exponential map exp :G → G associates to any left invariant vector

fieldW ∈ G the valueγW (1) ∈ G of the curveγW : R → G which solves the Cauchy
problem {

γ ′(t) = W(γ (t)),

γ (0) = e.

We will use the fact that the exponential map exp :G → G of a simply connected
nilpotent Lie group is a diffeomorphism [14].

Definition 1.3 (Graded metric). We say that a left invariant Riemannian metricg on G
is a graded metricif all subspaces{H j

| j = 1, . . . , ι} are orthogonal to each other.
The left invariant scalar product between two vectorsV,W ∈ TpG will be denoted by
〈V,W 〉p or 〈V (p),W(p)〉. In the caseX, Y ∈ G the scalar product〈X, Y 〉p is indepen-
dent of the pointp and is simply denoted by〈X, Y 〉.

Definition 1.4 (Graded coordinates). We define the numbersnj = dimH j for anyj =

1, . . . , ι,m0=0 andmi=
∑i
j=1 nj for anyi=1, . . . , ι. We say that a basis(W1, . . . ,Wq)

of G is anadapted basisif (Wmj−1+1,Wmj−1+2, . . . ,Wmj ) is a basis ofH j for any j =

1, . . . , ι. We say that(W1, . . . ,Wq) is a graded basisif it is an adapted and orthonormal
basis with respect to a graded metric. Thegraded coordinateswith respect to the basis
(W1, . . . ,Wq) are given by the diffeomorphismF : Rq → G defined by

F(x) = exp
( q∑
j=1

xjWj

)
.

Thedegreeof the coordinatexj is the unique integerdj such thatWj ∈ H dj .

LetX, Y ∈ G. The Baker–Campbell–Hausdorff formula (briefly BCH-formula) allows us
to obtain an explicit polynomialP(X, Y ) with respect to the nonassociative Lie product
of G such that exp(P (X, Y )) = expX expY (see for instance [37]). The BCH-formula
and graded coordinates allow us to view the group operation inRq as a polynomial op-
eration (which depends on the fixed system of graded coordinates). We will denote this
polynomial operation byx ·y, wherex, y ∈ Rq . In case the Lie algebraG is commutative,
i.e. [X, Y ] = 0 for everyX, Y ∈ G, we simply havex · y = x + y and all coordinates
have degree one (see also Chapter XIII, Section 5 of [65]).
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Proposition 1.5. LetF : Rq → G be a system of graded coordinates with respect to a
graded metricg. ThenF]Lq = vg, whereLq is theq-dimensional Lebesgue measure.

Proof. We know thatF : Rq → G is a smooth diffeomorphism. LetA be a measurable
subset ofRq . By the classical area formula and the left invariance of bothvg andF]Lq
we have

c Lq(A) = vg(F (A)) =

∫
A

JqF(ξ) dξ

for some constantc > 0. We have denoted byJqF the q-dimensional Jacobian ofF .
Then

∫
A
JqF = c for any measurableA. By continuity of ξ 7→ JqF(ξ) we infer that

JqF(ξ) = c for any ξ ∈ Rq . We know thatF = exp◦ L, whereL(ξ) =
∑q

j=1 ξj Wj
and(Wj ) is an orthonormal basis ofG. Since the mapdF(0) = d exp(0) ◦ L = L has
Jacobian equal to one, we havec = 1 and the assertion follows. ut

Motivated by the previous proposition we will also adopt the simpler notationvg(A) =

|A| for every measurable subsetA ⊂ G.

Definition 1.6 (Dilations). Let G be a stratified group. For everyr > 0 we define the
dilation δr : G → G by

δrp = exp
( ι∑
j=1

rj pH j (exp−1(p))
)
.

Consider a system of graded coordinatesF : Rq → G. Thecoordinate dilation3r :
Rq → Rq associated toF is defined by3r = F−1

◦ δr ◦ F and can be written as

3r(x) =

q∑
j=1

rdj xj ej , (2)

where(ej ) is the canonical basis ofRq anddj is the degree of the coordinatexj .

In view of relation (2) it is easy to see thatLq(3r(A)) = rQLq(A) for any measurable
subsetA ⊂ Rq , where we have defined

Q =

q∑
k=1

dk =

ι∑
j=1

j dim(H j ). (3)

Thus, by definition of coordinate dilation and by Proposition 1.5, for anyr > 0 and any
measurable subsetE ⊂ G we have

vg(δrE) = vg(F (3r(F
−1(E)))) = Lq(3r(F−1(E))) = rQ Lq(F−1(E)) = rQ vg(E).

Finally, the left invariance ofvg yields the formula

vg(lp ◦ δr(E)) = rQ vg(E) (4)

for anyp ∈ G and anyr > 0. Observing thatBp,r = lp(δrB1) we have in particular

vg(Bp,r) = rQ vg(B1).



Characteristic points, rectifiability and perimeter measure 591

This implies that the numberQ defined in (3) is the Hausdorff dimension of the group
and that theQ-dimensional Hausdorff measureHQ built with respect to a homogeneous
distance is finite on bounded sets and it is proportional tovg.

Thehorizontal subbundleHG is defined by the collection of all subspaces

HpG = {X(p) | X ∈ H 1
}

wherep ∈ G. These are the so-calledhorizontal spaces. We denote byH� the subfamily
of horizontal spacesHpG wherep ∈ � and� is an open subset ofG. Another way to
introduce horizontal spaces is the following:

dlp(HeG) = HpG (5)

for everyp ∈ G, wheree is the unit element of the group.
By definition of stratified group, the Lie algebra spanned byH 1 coincides withG,

so the well known Chow theorem implies that any two points ofG can be connected
by at least one absolutely continuous curve a.e. tangent to the horizontal subbundle [10].
These curves are the so-calledhorizontal curveswhich permit us to introduce theCarnot–
Carath́eodory distance. Let p, p′

∈ G and consider the infimum of the lengths of all
horizontal curves connectingp with p′, where the length is computed with respect to the
graded metric of the group. This infimum is the Carnot–Carathéodory distance between
p andp′ and it is denoted byρ(p, p′). The left invariance of the graded metric implies
that the Carnot–Carathéodory distance is left invariant, that is,ρ(p′p, p′s) = ρ(p, s) for
everyp, p′, s ∈ G, and it is also homogeneous with respect to dilations,ρ(δrp, δrs) =

rρ(p, s) for everyr > 0.
Next we will use the usual Euclidean norm onG. To do this, there is not a unique

choice and we will refer to a fixed system of graded coordinatesF : Rq → G. This
choice will not affect our arguments because ifG : Rq → G is another system of graded
coordinates, the change of variableF ◦ G−1 : Rq → Rq is an isomorphism, hence the
Euclidean norm with respect toG is equivalent to the one with respect toF . With this
convention we state an important relation between the Euclidean distance and the Carnot–
Carath́eodory distance on stratified groups:

|x − y| ≤ ρ(x, y) ≤ C |x − y|1/ι for anyx, y ∈ K ⊂ G, (6)

whereK is compact andC is a dimensional constant depending onK. Note thatι is
the step of the group. Estimates (6) can be proved in more general Carnot–Carathéodory
spaces [58]. In particular the Carnot–Carathéodory distance is continuous and it induces
the same topology ofG.

Definition 1.7 (Homogeneous distance). A continuous mapd : G × G → [0,+∞) is
a homogeneous distanceif it satisfies the axioms of an abstract distance, it is left invari-
ant, d(p′p, p′s) = d(p, s) for anyp, p′, s ∈ G, and it is homogeneous with respect to
dilations,d(δrp, δrs) = r d(p, s) for everyr > 0.
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Clearly the Carnot–Carathéodory distance is the foremost homogeneous distance, but
also other useful examples of homogeneous distances can be considered. For instance,
in Proposition 2.19 we will study the symmetry properties of the homogeneous distance
d∞ introduced in [29]. It is worth observing that any two homogeneous distances are
biLipschitz equivalent in the following sense. Ifd1 andd2 are homogeneous distances,
then there exists a constantC > 1 such that for everyp, s ∈ G we have

C−1 d1(p, s) ≤ d2(p, s) ≤ C d1(p, s).

This fact can be seen using the classical argument used for norms of finite-dimensional
spaces, which actually is a particular case. In what follows we will always refer to a fixed
homogeneous distance.

Definition 1.8 (Metric ball). The open ball of radiusr > 0 and centrep ∈ G will
be denoted byBp,r . If we wish to emphasize the particular choice of the homogeneous
distanced we writeBdp,r . Open balls with radiusr and centred at the unit element of the
group are denoted byBr . We use similar conventions for closed ballsDp,r of centrep
and radiusr.

Definition 1.9 (Hausdorff measures). Let d be a homogeneous distance ofG and let
a ≥ 0. For each subsetE ⊂ G we define thea-dimensional spherical Hausdorff measure

Sa(E) = lim
ε→0+

inf

{ ∞∑
i=1

diam(Dxi ,ti )
a

2a

∣∣∣∣ E ⊂

∞⋃
i=1

Dxi ,ti , ti ≤ ε

}
and thea-dimensional Hausdorff measureas

Ha(E) = lim
ε→0+

inf

{ ∞∑
i=1

ωa
diam(Fi)a

2a

∣∣∣∣ E ⊂

∞⋃
i=1

Fi, diam(Fi) ≤ ε

}
where{Fi} are subsets ofG anddiam(A) = sup(x,y)∈A×A d(x, y) for anyA ⊂ G. The
dimensional constantωa is defined as follows:

ωa =
πa/2

0(1 + a/2)
, 0(s) =

∫
∞

0
rs−1e−r dr.

Remark 1.10. Note that we have used the dimensional constantωa only for the definition
of the Hausdorff measureHa . In fact, our formulae involving the spherical Hausdorff
measureSa will contain the metric factorθgQ−1 (Definition 2.17) that naturally replaces
the constantωa .

When we want to specify the use of the Euclidean distance we will writeHa
|·|

and
Sa

|·|
, and for the case of the Carnot–Carathéodory distance we will writeHa

ρ andSaρ .
Throughout the paper the symbol� will denote an open subset ofG. We will denote by
0(H�) the space of smooth sections ofH�, i.e. thehorizontal vector fields. The symbol
0c(H�) denotes the family of horizontal vector fields compactly supported in�.
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Definition 1.11 (Horizontal divergence). Let (X1, . . . , Xm) be a basis of left invariant
vector fields ofH 1. Thehorizontal divergence(for short,H -divergence) of the section
ϕ =

∑m
i=1 ϕ

jXj ∈ 0(H�) is defined bydivH ϕ =
∑m
j=1Xjϕ

j .

Notice that this definition does not depend on the choice of the basis ofH 1. Now we
recall the notion of “image” of a vector field through a diffeomorphism. Letf : M → N

be aC1 diffeomorphism of differentiable manifolds and letX be a vector field onM. The
image ofX underf is the vector field onN defined by

f∗X(p) = df (f−1(p))(X(f−1(p)))

for everyp ∈ N . A vector fieldX ∈ H 1 is viewed inRq through a system of graded
coordinatesF : Rq → G when it is defined as̃X = F−1

∗ X. We will use this notation to
denote vector fields ofG with respect to graded coordinates ofRq . With this notation the
horizontal divergence can be written as follows:

(divHϕ) ◦ F =

m∑
j=1

X̃j ϕ̃
j , (7)

whereϕ ∈ 0(HG) andϕ̃ = ϕ ◦F . Another useful formula involving left invariant vector
fields inRq is

W̃k = ∂xk +

q∑
j=mdk+1

akj (x1, . . . , xj−1) ∂xj , (8)

whereW̃k = F−1
∗ Wk with k = 1, . . . , q, the integersmi anddj are introduced in Defi-

nition 1.4, the mapsakj are homogeneous polynomials with respect to coordinate dilations
and the graded basis(W1, . . . ,Wq) of G is associated to the system of graded coordinates
F (see also p. 621 of [65]). Note that in formula (8) we have used the standard represen-
tation of vector fields as first order differential operators.

Let u : � → R be aC1 map,p = F(x) ∈ � andũ = u ◦ F . We consider the map
y 7→ ũ(x ·y). By left invariance of the vector fields̃Wj onRq we have the useful formula

∂ũ

∂yj

∣∣∣∣
y=0

= W̃j ũ(x) = Wju(p). (9)

In the following definition the symbol| · | will denote the norm induced by the Rie-
mannian metric on tangent spaces. We will use this notation whenever its meaning is clear
from the context.

Definition 1.12 (Perimeter measure). We say that a measurable setE ⊂ � is of H -
finite perimeteron the open subset� ⊂ G if

|∂E|H (�) = sup

{∫
E

divH φ dvg

∣∣∣∣ φ ∈ 0c(H�), |φ| ≤ 1

}
< ∞.

If E hasH -finite perimeter on every open subsetU compactly contained in� we say that
E has locally H -finite perimeterin �. We will denote by|∂E|H the associated Radon
measure.
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By the Riesz representation theorem there exists a measurable sectionνE of HG such
that ∫

E

divH φ dvg = −

∫
G

〈φ, νE〉 d |∂E|H (10)

for any φ ∈ 0c(HG). We say thatνE is thegeneralized inward normalto E. By the
standard polar decomposition (Corollary 1.29 of [3]) we have|νE(p)| = 1 for |∂E|H -a.e.
p ∈ �.

2. Horizontal set ofC1 submanifolds

In this section we introduce the notion of horizontal point for ak-codimensional subman-
ifold and we prove that the set of all horizontal points isHQ−k-negligible. The symbols
G andM denote stratified groups and� stands for an open subset ofG. We will show the
relationship between the intrinsic notion of P-differentiability and the notion of horizontal
point. Recall that P-differentiability of maps between stratified groups was successfully
introduced by Pansu in order to study rigidity properties [59].

Definition 2.1 (G-linear map). We say thatL : G → M is aG-linear mapif it is a group
homomorphism andL(δrp) = δ′rL(p) for everyp ∈ G and everyr > 0, whereδr andδ′r
are dilations of the stratified groupsG andM, respectively.

Definition 2.2 (P-differentiable map). Let f : � → M, whereM is a stratified group.
We say thatf is P-differentiableat p ∈ � if there exists a G-linear mapL : G → M
such that

ρ′(f (p)−1f (s), L(p−1s))

ρ(p, s)
→ 0 ass → p, (11)

whereρ andρ′ are the Carnot–Carath́eodory distances ofG and M, respectively. The
unique G-linear map which satisfies(11) is called theP-differential of f at p and it is
denoted bydHf (p). Via the exponential mapexp : G → G we will also view the P-
differential as a linear map between the Lie algebras ofG and of M. In this case we will
use the same notationdHf (p).

Definition 2.3 (C1
H map). We denote byC1

H (�,M) the class of mapsf : � → M
which are P-differentiable at every point of� and whose P-differentialp 7→ dHf (p) is
continuous. In the caseM = R we simply writeC1

H (�).

In the present paper we work withC1 maps andC1 submanifolds, but mainly using the
notion of P-differentiability. The next proposition ensures that this is possible sinceC1

maps in the usual sense are alsoC1
H .

Proposition 2.4 (P-differentiability). The inclusionC1(�,Rk) ⊂ C1
H (�,R

k) holds
and for everyu ∈ C1(�,Rk) and everyp ∈ � we have the formuladHu(p)(Y (p)) =

du(p)(pH (Y )(p)) wheneverY ∈ G. The mappH : G → H 1 is the canonical projection
introduced in Definition1.2.
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Proof. Let us fix a system of graded coordinatesF : Rq → G with respect to a graded
basis(W1, . . . ,Wq) of G. Defineũ = u◦F ∈ C1(�̃,Rk), where�̃ = F−1(�). We define
x = F−1(p) wherep ∈ �. Using graded coordinates together with coordinate dilations
and the notion of P-differentiability our proof boils down to showing the existence of the
limit

lim
r→0+

ũ(x ·3r(y))− ũ(x)

r

uniformly asy varies in some bounded neighbourhood of the origin. Let us define the
map

r 7→ ũ(x ·3r(y)) = ũ
(
x ·

( q∑
j=1

rdj yj ej

))
= ψ(r, y).

Since the mapψ isC1 we can write

ψ(r, y)− ψ(0, y)

r
= r−1

∫ r

0
∂tψ(τ, y) dτ,

hence formula (9) implies that

ψ(r, y)− ψ(0, y)

r
= r−1

q∑
j=1

∫ r

0
dj τ

dj−1yj W̃j ũ(x ·3τy) dτ

=

m∑
j=1

yj

∫ 1

0
W̃j ũ(x ·3rτy) dτ +

q∑
j=m+1

dj r
dj−1yj

∫ 1

0
τ dj−1W̃j ũ(x ·3rτy) dτ,

where the degreedj of the coordinateyj is greater than one if and only ifj > m. By
the continuity ofW̃j ũj for everyj = 1, . . . , q, formula (9) and the last equality we have
proved that

lim
r→0+

ũ(x ·3r(y))− ũ(x)

r
=

m∑
j=1

yj W̃j ũ(x) =

m∑
j=1

yjWju(p). (12)

This expression yields a G-linear map with respect to graded coordinatesy,

dHu(p)
( q∑
j=1

yjWj (p)
)

=

m∑
j=1

yjWju(p).

The explicit formula for the P-differential and the continuity ofWj for everyj = 1, . . . , q
yield the continuity ofdHu(p) with respect top. Finally, observing that

pH

( q∑
j=1

yjWj

)
(p) =

m∑
j=1

yjWj (p) ∈ HpG

for everyY ∈ G we obtain the relationdHu(p)(Y (p)) = du(p)(pH (Y )(p)). ut
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Proposition 2.5. Letu ∈ C1(�) andp ∈ �. Then there exists a unique horizontal vector,
denoted by∇Hu(p) ∈ HpG, such thatdHu(p)(V ) = 〈∇Hu(p), V 〉p for anyV ∈ TpG
and∇Hu(p) is the orthogonal projection of∇u(p) ontoHpG.

Proof. The linear mapdHu(p) can be represented by a vectorW ∈ TpG such that
dHu(p)(V ) = 〈W,V 〉p for any V ∈ TpG. We first prove thatW ∈ HpG. Observe
thatTpG = H 1

pG ⊕ · · · ⊕H ι
pG where we have defined, for anyj = 1, . . . , ι,

H
j
pG = {X(p) ∈ TpG | X ∈ H j

}.

Then we can writeV =
∑ι
j=1Vj andW =

∑ι
j=1Wj , whereVj ,Wj ∈ H

j
pG. By Propo-

sition 2.4 we know thatdHu(p)(V ) = du(p)(V1) = 〈∇u(p), V1〉, hence

〈∇u(p), V1〉p = 〈W,V 〉p = 〈W,V1〉.

Since we are using a graded metric the subspaces{H
j
pG | j = 1, . . . , ι} are orthogonal

to each other, so the arbitrary choice ofV implies thatWj = 0 for every 2≤ j ≤ ι and

〈∇u(p)−W1, V1〉 = 0

for everyV1 ∈ HpG. The last property characterizesW1 as the orthogonal projection
of ∇u(p) ontoHpG. In particularW1 is the projection ofW ontoHpG. Thus, defining
∇Hu(p) = W1 completes the proof. ut

Definition 2.6 (Horizontal normal). Let6 ⊂ � be aC1 submanifold of codimension
one and letp ∈ 6. We denote byν(p) a unit normal to6 at p with respect to a fixed
graded metric. We say that the orthogonal projection ofν(p) ontoHpG is a horizontal
normalof6 at p and we denote it byνH (p).

Remark 2.7. Note that the horizontal normal should be considered up to sign, because
we do not require oriented submanifolds in the definition of horizontal normal, and the
functions depending on the horizontal normal do not depend on its sign. In more rigorous
terms, one should identifyνH and−νH in HpG and consider the corresponding quotient
space.

Lemma 2.8. Let u : � → R be aC1 map. Suppose thatu−1(0) 6= ∅ and assume that
∇u(p) 6= 0 for everyp ∈ �. Then for everyp ∈ u−1(0) and everyZ ∈ TpG we have

dHu(p)(Z) = |∇u(p)| 〈νH (p), Z〉p and νH (p) =
∇Hu(p)

|∇u(p)|
, (13)

whereνH (p) is the horizontal normal of the submanifoldu−1(0) at the pointp.

Proof. We observe thatν(p) = ∇u(p)/|∇u(p)| is a unit normal tou−1(0) at p. By
definition of horizontal normal, the orthogonal projection ofν(p) ontoHpG is νH (p),
and Proposition 2.5 concludes the proof. ut
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Definition 2.9 (Horizontal gradient). Letu ∈ C1(�). In view of Proposition2.5we can
define thehorizontal gradientof u as the uniqueC1 horizontal vector field∇Hu such that

dHu(p)(Y ) = 〈∇Hu(p), Y 〉p

for everyp ∈ � and everyY ∈ TpG.

Definition 2.10 (Horizontal point). Let6 ⊂ � be aC1 submanifold of codimensionk
and letp ∈ 6. We say thatp ∈ 6 is ahorizontal pointof6 if

dim(HpG)− dim(HpG ∩ Tp6) ≤ k − 1. (14)

Thehorizontal setof6 is the subset of all horizontal points and it is denoted byC(6).

The last definition is inspired by Lemma 2.11 and Theorem 2.13 below, in the following
sense. Let6 be a submanifold of codimension one defined as a level set of aC1 map
u : � → R. Theorem 2.13 singles out a class of “intrinsic” singular points of6, cor-
responding to the subset of6 wheredHu vanishes (this subset is well defined due to
Proposition 2.4). In view of Lemma 2.11 this subset exactly corresponds to the subset
of horizontal points of6. The singularity ofu at p ∈ 6 can also be expressed by the
condition dim(HpG) = dim(HpG∩Tp6), that is,dHu(p) vanishes. For submanifolds of
higher codimension condition (14) amounts to the nonsurjectivity ofdHu(p) : G → Rk,
because dim(dHu(p)(HpG)) = dim(HpG)−dim(HpG∩Tp6), although the mapu does
not appear in (14). In the casek = 1, one can interpret inequality (14) via the inclusion
HpG ⊂ Tp6, which coincides with the condition dim(HpG) = dim(HpG ∩ Tp6). It is
clear that whenk > 1 condition (14) means that the horizontal subspaceHpG is allowed
to intersectTp6 without necessarily being contained in it. Thus in higher codimension,
a pointp such thatHpG ⊂ Tp6 is a horizontal point, but the horizontal setC(6) includes
a larger class of points.

Lemma 2.11 (Singular points). Let O be an open subset ofG containing the unit
elemente and let u ∈ C1(O,Rk) be such thatu(e) = 0 and the differential map
du(p) : TpG → Rk is surjective for anyp ∈ O. Then, defining6 = u−1(0), we
represent the horizontal set of6 as follows:

C(6) = {p ∈ 6 | dHu(p) : G → Rk is not surjective}.

Proof. We choosep ∈ 6 ⊂ O. Since6 is the level setu−1(0) we have Ker(du(p)) =

Tp6. Define the subspace

S(p) = {X ∈ H 1
| X(p) ∈ HpG ∩ Tp6} ⊂ H 1.

We wish to prove that

Ker(dHu(p)) = S(p)⊕H 2
⊕ · · · ⊕H ι. (15)

We will use the formula

dHu(p)(Y (p)) = du(p)(pH (Y )(p)) for anyY ∈ G, (16)
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proved in Proposition 2.4. LetY ∈ S(p) ⊕ H 2
⊕ · · · ⊕ H ι. By definition ofS(p) we

havepH (Y )(p) ∈ HpG ∩ Tp6 and by (16) we obtaindHu(p)(H j ) = {0} for every
j = 2, . . . , ι; thusdHu(p)(Y (p)) = 0. As a result, we have proved the inclusion

S(p)⊕H 2
⊕ · · · ⊕H ι

⊂ Ker(dHu(p)).

Conversely, assumeY ∈ Ker(dHu(p)). By (16) it follows thatpH (Y )(p) ∈ Ker(du(p)),
sopH (Y )(p) ∈ HpG ∩ Tp6. We have proved thatpH (Y ) ∈ S(P ), henceY ∈ S(p) ⊕

H 2
⊕ · · · ⊕H ι. This implies

Ker(dHu(p)) ⊂ S(p)⊕H 2
⊕ · · · ⊕H ι,

and (15) follows. The equalities (15) and dim(S(p)) = dim(HpG ∩ Tp6) yield

dim(dHu(p)(G)) = dim(G)− dim(Ker(dHu(p)))

= dim(HpG)− dim(HpG ∩ Tp6). (17)

Now assume thatp ∈ C(6). By definition of horizontal point we know that

dim(HpG)− dim(HpG ∩ Tp6) ≤ k − 1,

therefore formula (17) implies that dim(dHu(p)(G)) ≤ k − 1 anddHu(p) : G → Rk
cannot be surjective. Conversely, ifdHu(p) : G → Rk is not surjective, then by (17) it
follows that dim(HpG)− dim(HpG ∩ Tp6) ≤ k − 1. This concludes the proof. ut

Proposition 2.12. Let6 be a submanifold ofG. Then for anyp ∈ G we have

lp(C(6)) = C(lp(6)).

Proof. The left translationlp : G → G is a diffeomorphism, thereforelp(6) is another
submanifold ofG. In view of (5) and using the chain rule it follows thatdlp(s)(HsG) =

HpsG for anys ∈ G, hence

dlp(s)(HsG ∩ Ts6) = HpsG ∩ dlp(s)(Ts6) = HpsG ∩ Tps(lp6). (18)

As a consequence, for anys ∈ G we have

dim(HsG ∩ Ts6) = dim(HpsG ∩ Tps(lp6)).

By the definition of horizontal point, the last equality implies thats ∈ C(6) if and only
if ps ∈ C(lp6). ut

An essential tool to prove Theorem 2.16 below is the following Sard-type theorem, which
corresponds to Theorem 2.7 of [47].

Theorem 2.13 (Sard-type theorem). Let G and M be stratified groups of Hausdorff
dimensionQ andP , respectively, withQ ≥ P . LetA ⊂ G be a measurable set. Consider
a Lipschitz mapτ : A → M and define the set of singular points

S = {p ∈ A | dH τ(p) exists and it is not surjective}.

ThenHQ−P (S ∩ τ−1(ξ)) = 0 for HP -a.e.ξ ∈ M.
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Remark 2.14. Due to the general Eilenberg inequality proved in 2.10.25 of [23] the fact
that the points whereu is not P-differentiable are negligible implies that they areHQ−P -
negligible inHP -a.e. level set. In other words, forHP -a.e. level set ofu the subset of
pointsp wheredH τ(p) exists has full measure.

We will apply Theorem 2.13 to the caseM = Rk, P = k andτ ∈ C1(U,Rk), where
U is an open subset ofG. Due to Proposition 2.4, any map ofC1(U,Rk) also belongs
to C1

H (U,R
k), so it is everywhere P-differentiable, with continuous P-differential. The

everywhere existence of the P-differential allows us to divide the points ofτ−1(t) into
two disjoint subsets for everyt ∈ Rk. The first one is the subset of pointsp ∈ τ−1(t)

such thatdH τ(p) : G → Rk is not surjective, and the second one is the complement.
It is clear thatC1

H maps are locally Lipschitz with respect to the Carnot–Carathéodory
distance, therefore Theorem 2.13 can be applied tou|K , whereK is a compact subset
of U , yielding

HQ−k({p ∈ K | τ(p) = t anddH τ(p) is not surjective}) = 0 (19)

for a.e.t ∈ Rk. If we take a countable family{Kj } of compact subsets with unionU and
we apply (19) to any of them, it follows that for a.e.t ∈ Rk we have

HQ−k({p ∈ U | τ(p) = t anddH τ(p) is not surjective}) = 0. (20)

This proves the following corollary of Theorem 2.13.

Corollary 2.15. Let τ : U → Rk be aC1 map. Thenτ ∈ C1
H (U,R

k) and(20) holds for
a.e.t ∈ Rk.

The next theorem is the main result of this paper.

Theorem 2.16 (Negligibility). Let6 ⊂ � be aC1 submanifold of codimensionk. Then
HQ−k(C(6)) = 0.

Proof. According to Definition 1.4, we fix a graded basis(W1, . . . ,Wq) and the associ-
ated graded coordinates given byF : Rq → G. Let us fix a pointp ∈ 6. By definition of
C1 submanifold there exists an open neighbourhoodOp of p, a mapup ∈ C1(Op,Rk)
and some integers 1≤ j1 < · · · < jk ≤ q such that for anys ∈ Op the vectors
(Wj1up(s), . . . ,Wjkup(s)) are linearly independent and6 ∩ Op = u−1

p (0). Proposi-
tion 2.12 permits us to translatep to the unit elemente ∈ G.

We defineO = lp−1Op andu : O → Rk asu(s) = up(lps) for eachs ∈ O.
The left invariance of the vector fieldsWj givesWju(s) = Wjup(lps) for everys ∈ O

and everyj = 1, . . . , q. Thus for everys ∈ O the vectors(Wj1u(s), . . . ,Wjku(s)) are
linearly independent. We define the translated submanifold6p = lp−16, the open set

Õ = F−1(O) ⊂ Rq and6̃ = F−1(6p) ⊂ Rq , observing that̃u−1(0) = 6̃ ∩ Õ where
ũ = u ◦ F : Õ → Rk isC1. We have

∂xj ũ(0) = du ◦ ∂xjF(0) = du ◦Wj (e) = Wju(e)
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for anyj = 1, . . . , q. Then the vectors(∂xj1 ũ, . . . , ∂xjk ũ) are linearly independent in an

open neighbourhoodO1 ⊂ Õ of the origin. Let us define the subspace

5 = {x ∈ Rq | xj1 = · · · = xjk = 0}.

By the implicit function theorem there exist an open subsetA ⊂ 5 containing the origin
and aC1 mapϕ : A → Rk such thatũ(ξ, ϕ(ξ)) = 0 for any ξ ∈ A. Our notation
precisely means

(ξ, ϕ(ξ)) =

∑
i /∈{j1,...,jk}

ξiei +

∑
i∈{j1,...,jk}

ϕi(ξ)eji

where(ej ) is the canonical basis ofRq . The map8 : A → O1 is defined by8(ξ) =

(ξ, ϕ(ξ)) ∈ 6̃ for anyξ ∈ A. We introduce theC1 map9 : Rk × A → G,

9(t, ξ) = expt1Wj1 · expt2Wj2 · · · exptkWjk · F(8(ξ))

for every(t, ξ) ∈ Rk × A. We have used the dot to denote the group operation. We have

∂ti9(0) = Wji (e) ∈ TeG and ∂ξj9(0) = Wj (e)+

k∑
i=1

ϕ
ji
ξj
(0)Wji (e),

for everyi = 1, . . . , k and everyj /∈ {j1, . . . , jk}. It is easily seen that the vectors

(∂t19(0), . . . , ∂tq9(0))

are a basis ofTeG, hence there existε > 0 and open setsA1 ⊂ A andU ⊂ G such that
9((−ε, ε)k × A1) = U , 0 ∈ A1, e ∈ U and the function

9 : (−ε, ε)k × A1 → U

is invertible. Let us consider the projectionp : Rq → Rk defined byp(x) = (xj1, . . . , xjk )

for anyx ∈ Rq and define theC1 mapτ : U → (−ε, ε)k asτ(s) = p(9−1(s)) for any
s ∈ U . Then Corollary 2.15 implies that for a.e.t ∈ (−ε, ε)k we have

HQ−k({s ∈ U | τ(s) = t anddH τ(s) is not surjective}) = 0. (21)

As9 is invertible it follows thatdτ(s) is surjective for everys ∈ U , so the subsetSt =

τ−1(t) ⊂ U is aC1 submanifold for anyt . We can apply Lemma 2.11 to obtain

C(St ) = {s ∈ St | dH τ(s) is not surjective}.

In view of (21) we getHQ−k(C(St )) = 0 for a.e.t ∈ (−ε, ε)k. By definition ofτ we
know that

St = τ−1(t) = {s ∈ U | 9−1(s) ∈ {t} × A1}

= expt1Wj1 · expt2Wj2 · · · exptkWjk · F(8(A1))

= lst1
(lst2

(· · · (lstkF(8(A1)))) · · · ),
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wheret = (t1, . . . , tk) andsti = exptiWji for everyi = 1, . . . , k. For t = 0 ∈ Rk the
previous equations yieldS0 = F(8(A1)) ⊂ 6p, so

St = lst1
(lst2

(· · · (lstk S0)) · · · ).

This formula and theHQ−1-negligibility of C(St ) for a.e.t ∈ (−ε, ε)k yield

0 = HQ−k(C(St )) = HQ−k(C(lst1
(lst2

(· · · (lstk S0)) · · · )))

= HQ−k(lstk (lstk−1
· · · (lst1

(C(S0)) · · ·))) = HQ−k(C(S0)).

In the third equality we have used Proposition 2.12 and in the fourth one we have used
the fact that left translations are isometries with respect to any homogeneous distance.

Note thatS0 contains the unit elemente and it is an open subset of6p. We know that
6p = lp−16, hence definingSp = lpS0 we see thatSp ⊂ 6 is an open neighbourhood of
p in the topology of6. Thus, reasoning as before we obtain

HQ−k(Sp) = HQ−k(C(lpS0)) = HQ−k(lp(C(S0))) = HQ−k(C(S0)) = 0.

The arbitrary choice ofp implies that we can find a countable family of open subsets

{Spj | Spj ⊂ 6, j ∈ N}

such that6 =
⋃
j∈N Spj andHQ−k(C(Spj )) = 0 for everyj ∈ N. Finally, the conclusion

follows from the equalityC(6) =
⋃
j∈N C(Spj ). ut

A first important consequence of the previous theorem occurs in codimension one, where
we obtain the representation of the(Q− 1)-dimensional spherical Hausdorff measure of
C1 hypersurfaces. To see this, we will use the notion of “metric factor” [48].

Definition 2.17 (Metric factor). LetB1 be the open unit ball with respect to a fixed ho-
mogeneous distanced of G. Considerν ∈ H 1

\ {0} along with its orthogonal hyperplane
L̃(ν) in G and defineL(ν) = expL̃(ν) ⊂ G. Let F : Rq → G represent a system of
graded coordinates and define

θ
g

Q−1(ν) = Hq−1
|·|

(F−1(L(ν) ∩ B1)). (22)

The mapν 7→ θ
g

Q−1(ν) is called themetric factorof the homogeneous distanced with
respect to the directionν and the graded metricg.

With a slight abuse of notation, it will be useful to define the metric factor also for hori-
zontal vectors. We define

θ
g

Q−1(v) = θ
g

Q−1(V )

wherev ∈ HpG andV ∈ H 1
\ {0} is the unique vector field such thatV (p) = v. Note

that a more rigorous, but unnecessary formulation should consider the metric factorθ
g

Q−1
as a function on the tangent bundleTG and which is constant along left invariant vector
fields.
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Remark 2.18. As we have seen in Lemma 1.10 of [48], the above definition does not
depend on the choice of graded coordinates. So the numberθ

g

Q−1(ν) depends only on the
homogeneous distanced, the direction ofν and the graded metricg. By the symmetry of
Euclidean balls, taking two of themB |·|

r1 andB |·|
r2 such thatB |·|

r1 ⊂ F−1(B1) ⊂ B
|·|
r2 , we

notice that the intersectionF−1(L(ν))∩B |·|
ri for i = 1,2 is independent of the directionν.

As a result, for anyν ∈ H 1
\ {0} we have

ωq−1 r
q−1
1 ≤ θ

g

Q−1(ν) ≤ ωq−1 r
q−1
2 ,

soν 7→ θ
g

Q−1(ν) is uniformly bounded from above and from below by positive constants
which depend on the homogeneous distance and on the graded metric.

In Subsection 2.1 of [48] a class of stratified groups where the Carnot–Carathéodory
distance yields a constant metric factor is singled out, namely, the class ofR-rotational
groups, which encompasses Heisenberg groups and more general H-type groups. In the
appendix of [29], Franchi, Serapioni and Serra Cassano have constructed a general homo-
geneous distanced∞ for every stratified group. Its explicit formula is stated inRq with
respect to graded coordinates:

d∞(x,0) = max
j=1,...,ι

{εj |(x
mj−1+1, . . . , xmj )|1/j }; (23)

it has the left invariance propertyd∞(x, y) = d∞(x
−1

·y,0), andεj ∈ ]0,1[ for everyj =

1, . . . , q are suitable dimensional constants depending only on the group. The integers
mj for j = 0, . . . , ι are introduced in Definition 1.4 and the dot betweenx−1 and y
denotes the group operation in graded coordinates, according to the discussion following
Definition 1.4. In the next proposition we prove that the metric factor with respect to this
distance becomes a constant function of the horizontal directionν.

Proposition 2.19. Let θgQ−1 represent the metric factor with respect to the distanced∞.

Then there existsαQ−1 > 0 such thatθgQ−1(ν) = αQ−1 for everyν ∈ H 1
\ {0}.

Proof. For any couple of horizontal vectorsν, µ ∈ H \ {0} we can find an isometry
τ : G → G such thatτ(ν) = µ andτ(L̃(ν)) = L̃(µ), whereL̃(ν) and L̃(µ) are the
orthogonal spaces toν andµ, respectively. We view these orthogonal spaces inG by
definingL(ν) = exp(L̃(ν)) andL(µ) = exp(L̃(µ)). Let (W1, . . . ,Wq) be a graded
basis ofG, let F : Rq → G be the associated system of graded coordinates and define
I (x) =

∑q

j=1 x
j Wj ∈ G for everyx ∈ Rq . By the expression ofd∞ it is easy to see that

the unit ballB̃1 ⊂ Rq with respect tod∞ is preserved under the family of isometriesτ̃ ,
i.e. τ̃ (B̃1) = B̃1. Thus, taking into account thatF = exp◦ I and thatτ̃ = I−1

◦ τ ◦ I :
Rq → Rq is a Euclidean isometry, we have

F−1(L(µ)) ∩ B̃1 = I−1(L̃(µ)) ∩ B̃1 = I−1(τ (L̃(ν))) ∩ B̃1

= τ̃ (I−1(L̃(ν)) ∩ τ̃−1(B̃1)) = τ̃ (I−1(L̃(ν)) ∩ B̃1)

= τ̃ (F−1(L(ν)) ∩ B̃1),
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so by Definition 2.17 it follows that

θ
g

Q−1(µ) = Hq−1
|·|

(F−1(L(µ)) ∩ B̃1) = Hq−1
|·|

(τ̃ (F−1(L(ν)) ∩ B̃1))

= Hq−1
|·|

(F−1(L(ν)) ∩ B̃1) = θ
g

Q−1(ν).

This concludes the proof. ut

In view of Theorem 2.16 in the casek = 1, the statement of Theorem 2.3 in [48] holds
for anyC1 submanifold of codimension one. As a consequence, the relation between the
Riemannian measureσg induced by the graded metricg restricted to aC1 submanifold
6 of codimension one andSQ−1x6 is established on arbitrary stratified groups.

Theorem 2.20. Let6 be aC1 submanifold of codimension one in�. Then

θ
g

Q−1(νH )S
Q−1x6 = |νH |σgx6, (24)

SQ−1x6 =
|νH |

θ
g

Q−1(νH )
σgx6, (25)

whereσg is the measure induced by the graded metricg restricted to6.

3. (G,Rk)-rectifiability and perimeter measure

In this section we present some applications of Theorem 2.16. We start by introducing
families of regular sets with respect to the geometry of stratified groups.

Definition 3.1 ((G,Rk)-regular set). A subset6 ⊂ � is a (G,Rk)-regular setif there
exists a mapf ∈ C1

H (�,R
k) such that6 = f−1(0) and the P-differential

dHf (p) : G → Rk

is a surjective G-linear map for anyp ∈ 6.

Definition 3.2 ((G,Rk)-rectifiability). We say thatS ⊂ � is (G,Rk)-rectifiableif there
exists a sequence{6j } of (G,Rk)-regular sets such that

HQ−k
(
S \

⋃
j∈N

6j

)
= 0.

The(G,Rk)-rectifiability turns out to have a “fractal nature” with respect to the Euclidean
viewpoint, since(G,Rk)-regular sets may have Euclidean Hausdorff dimension strictly
greater than their topological dimension, so they cannot be rectifiable in the Euclidean
sense [41]. In the following definition we recall the classical notion of rectifiability, uti-
lizing countable unions ofC1 surfaces, instead of Lipschitz images.
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Definition 3.3 (Rectifiability). We say that a subsetS ⊂ G is rectifiableof codimension
k or simply(q−k)-rectifiableif there exists a sequence{6j } ofC1 surfaces of dimension
q − k such that

Hq−k
|·|

(
S \

⋃
j∈N

6j

)
= 0.

Remark 3.4. Notice that(G,Rk)-rectifiability coincides with rectifiability whenG =

Rq andq > k. Thus the notion of(G,R)-rectifiability allows us to state in a unified
way the De Giorgi rectifiability theorem in stratified groups. By results of [19], [27], [29]
we know that if |∂E|H (G) < ∞, whereG is either a Euclidean space or a stratified
group of step two, then theH -reduced boundary∂∗HE is (G,R)-rectifiable. Presently,
for stratified groups of step higher than two this result is an open issue.

In order to complete the picture, we briefly mention a further extension of the notion
of (G,Rk)-rectifiability. In fact, we can replaceRk with another stratified groupM.

Definition 3.5 ((G,M)-regular set). A subset6 ⊂ � is a (G,M)-regular surfaceif
there existf ∈ C1

H (�,M) such thatf−1(e) = 6 and

dHf (p) : G → M

is a surjective G-linear map for anyp ∈ 6.

It is apparent that the notion of(G,M)-regularity in higher codimension leaves us a cer-
tain freedom in the choice ofM, but not all codomains are “good” to be considered.
For instance, the family of(Hn,Hm)-regular sets is empty whenevern > m. This fol-
lows form the fact that there are no surjective G-linear maps fromHn onto Hm, as can
be checked by using the definition of G-linearity and the group operation in the Heisen-
berg group (see also Theorem 2.8 of [47]). As soon as we have a surjective G-linear map
L : G → M a canonical example of a(G,M)-regular set can be given by choosing the
subgroupN = L−1(e) ⊂ G which is(G,M)-regular. In view of Proposition 1.12 of [47]
the Hausdorff dimension ofN isQ−P , whereQ andP are the Hausdorff dimensions of
G andM, respectively. These considerations lead to the following definition.

Definition 3.6 ((G,M)-rectifiability). We say thatS ⊂ � is (G,M)-rectifiableif there
exists a sequence{6j } of (G,M)-regular sets such that

HQ−P
ρ

(
S \

⋃
j∈N

6j

)
= 0,

whereρ is the Carnot–Carath́eodory distance onG.

Theorem 3.7. Let6 ⊂ � be a connected submanifold of classC1 and codimensionk.
Then6 is (G,Rk)-rectifiable.

Proof. By Lemma 2.11 we see thatC(6) is a closed subset of6, so6 \ C(6) is a
countable union of connected pieces that can be locally represented as level sets ofC1

maps with surjective P-differential. Theorem 2.16 impliesHQ−k(C(6)) = 0, and hence
the conclusion follows. ut
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Theorem 3.8. Every rectifiable set of codimensionk is (G,Rk)-rectifiable.

Proof. Let S be a rectifiable set of codimensionk and let{6j | j ∈ N} be a family ofC1

submanifolds of codimensionk such thatHq−k
|·|

(S \
⋃
j∈N6j ) = 0. By Proposition 4.4

of [29], for everyα > 0 and everyR > 0 there existsCR > 0 such that

HQ−q+α(E) ≤ CRHα
|·|
(E) (26)

wheneverE ⊂ BR. Using the estimate (26) forα = q − k we obtain

HQ−k
(
BR ∩ S \

⋃
j∈N

6j

)
≤ Hq−k

|·|

(
BR ∩ S \

⋃
j∈N

6j

)
= 0

for everyR > 0, soHQ−k(S \
⋃
j∈N6j ) = 0. By Theorem 3.7 we know that6j is

(G,Rk)-rectifiable for anyj ∈ N. This concludes the proof. ut

Finally, we discuss an application of Theorem 2.16 related to a question raised by Danielli,
Garofalo and Nhieu in [15]. They prove that there exist constantsc, C > 0 such that for
every relatively compact open setE with C2 boundary the estimates

c SQ−1(∂E) ≤ |∂E|H (Hn) ≤ C SQ−1(∂E) (27)

hold, whereQ = 2n + 2 is the Hausdorff dimension of the Heisenberg groupHn. They
conjecture the validity of (27) for arbitrary stratified groups. Due to Theorem 2.5 of [49]
(see also Theorem 3.5 of [28]) we have the formula

|∂E|H = θ
g

Q−1(νH )S
Q−1x∂E, (28)

under the assumption that the characteristic set isSQ−1-negligible. Then Theorem 2.16
makes (28) true for any setE with C1 boundary. Thus, formula (28) immediately extends
the validity of (27) to any open set withC1 boundary contained in an arbitrary stratified
group, yielding

θ
g

Q−1S
Q−1(∂E ∩�) ≤ |∂E|H (�) ≤ θ

g

Q−1SQ−1(∂E ∩�), (29)

where� ⊂ G is an arbitrary bounded open set and the constantsθ
g

Q−1, θ
g

Q−1 are defined
as follows:

θ
g

Q−1 = inf
ν∈H1

θ
g

Q−1(ν), θ
g

Q−1 = sup
ν∈H1

θ
g

Q−1(ν).

In Remark 2.18 we have shown that the functionν 7→ θ
g

Q−1(ν) is bounded from above
and from below by positive constants, therefore estimates (29) are nontrivial.

As a last remark, we wish to show that the constants of (29) are actually optimal. To
do this, we need the following definition.
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Definition 3.9. Letp ∈ G and letν ∈ H 1
\ {0}. Thevertical half spaceswith respect to

ν are defined as follows:

S+(ν) = exp({Y ∈ G | 〈ν, Y 〉 > 0}),

S−(ν) = exp({Y ∈ G | 〈ν, Y 〉 < 0}).

Thevertical half spaceswith respect toν andcentered atp ∈ G are defined as follows:

lp(S
+(ν)) = S+(p, ν) and lp(S

−(ν)) = S−(p, ν).

Denote byO the family of nonempty bounded open sets ofG and byE the family of open
sets withC1 boundary. We easily see that

θ
g

Q−1 ≤ inf

{
|∂E|H (�)

SQ−1(∂E ∩�)

∣∣∣∣ � ∈ O, E ∈ E
}

≤ inf

{
|∂S+(ν)|H (�)

SQ−1(∂S+(ν) ∩�)

∣∣∣∣ � ∈ O, ν ∈ H 1
\ {0}

}
= inf{θgQ−1(ν) | ν ∈ H 1

\ {0}} = θ
g

Q−1,

where the first equality of the last line follows from (28). We also have

θ
g

Q−1 ≥ sup

{
|∂E|H (�)

SQ−1(∂E ∩�)

∣∣∣∣ � ∈ O, E ∈ E
}

≥ sup

{
|∂S+(ν)|H (�)

SQ−1(∂S+(ν) ∩�)

∣∣∣∣ � ∈ O, ν ∈ H 1
\ {0}

}
= sup{θgQ−1(ν) | ν ∈ H 1

\ {0}} = θ
g

Q−1.

This proves our claim.
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spaces and the existence of minimal surfaces. Comm. Pure Appl. Math.49, 1081–1144 (1996)
Zbl 0880.35032 MR 1404326
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