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Abstract. Existence of proper Gorenstein projective resolutions and Tate cohomology is proved
over rings with a dualizing complex. The proofs are based on Bousfield Localization which is
originally a method from algebraic topology.
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0. Introduction

This paper proves two ring-theoretical results: existence of proper Gorenstein projective
resolutions and existence of Tate cohomology over fairly general rings.

The proofs use Bousfield Localization which, like many modern conveniences, was
invented by algebraic topologists (see [4]). It has so far not been used extensively in ring
theory, but the results of this paper show that, when phrased as an existence theorem for
adjoint functors, it is a very natural ring theory tool.

The proof of existence of proper Gorenstein projective resolutions solves an open
problem in Gorenstein homological algebra.

Gorenstein projective resolutions. Classical homological algebra might be viewed as
being based on projective modules. In relative homological algebra, one replaces the pro-
jective modules with some other class of modules (see [6]). One choice is to take the
Gorenstein projective modules; this results in Gorenstein homological algebra which goes

back to [1]. These modules have the formG = Ker(E1 ∂1
E

→ E2) whereE is a complete
projective resolution, that is, an exact complex of projective modules which stays exact
when one applies the functor Hom(−, Q) for any projective moduleQ.

An augmented proper Gorenstein projective resolutionof a moduleM is an exact
sequence

· · · → G2 → G1 → G0 → M → 0, (1)
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where theGi are Gorenstein projective modules, which stays exact when one applies the
functor Hom(G̃, −) for any Gorenstein projective modulẽG. The complex

G = · · · → G2 → G1 → G0 → 0 → · · · (2)

is then called aproper Gorenstein projective resolutionof M.
Gorenstein homological algebra has been developed to an advanced level (see [5]).

One of the central points is the ability of the theory to recognize Gorenstein rings. A
noetherian local commutative ringA is calledGorensteinif it is Cohen–Macaulay and has
an irreducible parameter ideal (see [22, Thm. 18.1]), and it turns out thatA is Gorenstein
if and only if eachA-module has a proper Gorenstein projective resolution withGi = 0
for i � 0.

One problem of the theory is that existence of proper Gorenstein projective resolutions
is not obvious in general, because of the condition that (1) must stay exact when one
applies the functor Hom(G̃, −). We generally know little about the structure of the class
of Gorenstein projective modules, so the precise content of this condition is unclear.

A possible solution is to drop the condition, and this approach has been taken by a
number of authors (see [5]). The resulting resolutions are then simply calledGorenstein
projective resolutions, and they always exist. For instance, any projective resolution can
be used since the projective modules are also Gorenstein projective.

Unfortunately, dropping the condition that (1) must stay exact when one applies the
functor Hom(G̃, −) for any Gorenstein projective modulẽG ignores an important point:
The purpose of this condition is that it makes the resolution (2) unique up to chain homo-
topy (see [11, Prop. 2.2]). This in turn means that (2) can be used to define the Gorenstein
version of derived functors. Without the condition that (1) stays exact under the func-
tor Hom(G̃, −), any such definition fails, and the theory must lead a shadow existence
without derived functors.

However, the present paper solves the problem by proving the existence of proper
Gorenstein projective resolutions over fairly general rings. This is done by showing that
the resolutions exist under one simple assumption—the existence of a certain adjoint
functore!—and by using Bousfield Localization to show thate! exists if the ground ring
has a dualizing complex. This covers many rings arising in practice. For instance, any
local ring of a scheme of locally finite type over a field has a dualizing complex. Other
types of rings are also covered; see Remark 1.1.

In fact, it may even be that some form of Bousfield Localization can be used to show
that the functore! exists overany ring and hence that proper Gorenstein projective reso-
lutions exist in general, but this is not clear to me at the moment.

Since this paper makes proper Gorenstein projective resolutions available over most
rings which occur in practice, I propose to simplify the terminology by dropping the word
“proper”. So for the rest of the paper, an augmented Gorenstein projective resolution ofM

will be an exact sequence (1) where theGi are Gorenstein projective, which stays exact
when one applies the functor Hom(G̃, −) for any Gorenstein projective modulẽG. When
this is given, (2) will be called aGorenstein projective resolutionof M.
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Tate cohomology. For the second result of the paper recall that, originally, Tate coho-
mology was defined for representations of finite groups. Generalizing this, I will show,
again under the assumption that the adjoint functore! exists, that it is possible to define
Tate cohomology groups

Êxt
i
(M, N)

for any modulesM and N , so that classical Tate cohomology is the special case

Êxt
i

kG(k, N). Moreover, it will be established that the Tate cohomology groups have rea-
sonable basic properties, and it will be shown that there is a close connection between Tate
cohomology and Gorenstein homological algebra in the form of a long exact sequence

0 → Ext1G (M, N) → Ext1(M, N) → Êxt
1
(M, N) → · · · (3)

where the ExtiG are Gorenstein Ext groups defined by

ExtiG (M, N) = HiHom(G, N),

whereG is a Gorenstein projective resolution ofM. The ExtiG are precisely the Gorenstein
derived functors of Hom.

Relations to the literature. The notion of Gorenstein projective modules is comple-
mented by notions of Gorenstein flat and Gorenstein injective modules, and the existence
of Gorenstein flat and Gorenstein injective resolutions was established in [7] and [8].
Some other injective cousins of the results of this paper are given in [18].

On the other hand, it was proved in [25] that if one restricts to finitely generated
modules, then Gorenstein projective resolutions do not exist in general.

Precursors to the present results can be found in [3] and [26]. However, these papers
only work with modules of finite Gorenstein projective dimension, and this restricts the
real scope of the theory to Gorenstein rings whereas the present paper works for much
more general rings.

A generalized version of Tate cohomology already exists in the form of Tate–Vogel
cohomology (see [9] and [21]). However, this theory differs from the Tate cohomology
which will be developed here (see [12, Rmk. 6.5]). I refer to the present theory simply as
“Tate cohomology” because I think of it as the most direct generalization of the classical
theory, since, like the classical theory, it is based on complete projective resolutions (cf.
Definition 3.2 and Remark 3.3).

Perspectives. As pointed out, this paper’s result on Gorenstein projective resolutions
permits the definition of Gorenstein derived functors. This was not previously possible,
and should prove useful in Gorenstein homological algebra.

Applications of the present Tate cohomology theory are as yet more speculative. As
mentioned, the present theory generalizes the Tate cohomology of [3], in which alternative
Betti and Bass numbers based on Tate cohomology are considered and proved to exhibit
surprising patterns which are impossible in classical Betti and Bass numbers. It would be
obvious to try something similar for more general rings, using the present theory.

Also, [20] and [21] consider invariants related to Betti and Bass numbers which are
based on Tate–Vogel cohomology, and use them to introduce other new invariants and to
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prove properties of syzygy modules. Again, something similar may be possible using the
present Tate cohomology theory.

The paper is organized as follows. Section 1 uses Bousfield Localization to show
the existence of the adjoint functore! over rings with a dualizing complex. Section 2
shows the existence of Gorenstein projective resolutions whene! exists. And Section 3
defines Tate cohomology groups, shows some basic properties, and shows that the Tate
cohomology groups fit into the exact sequence (3).

1. Bousfield Localization

This section uses Bousfield Localization to show the existence of a certain adjoint functor
e! over rings with a dualizing complex.

Remark 1.1. Dualizing complexes are popular gadgets in homological algebra. I shall
give the precise definition in Setup 1.4 for noetherian commutative rings and in Setup
1.4′ for right-noetherian algebras over a field. But I would like already here to point out
that many rings have dualizing complexes.

For instance, a noetherian local commutative ring has a dualizing complex if and only
if it is a quotient of a Gorenstein noetherian local commutative ring, by [16, Thm. 1.2]. It
follows that, as mentioned in the introduction, any local ring of a scheme of locally finite
type over a field has a dualizing complex. By the Cohen structure theorem, it also follows
that any complete noetherian local commutative ring does.

Some important types of non-commutative noetherian algebras are also known to have
dualizing complexes. For example, complete semi-local PI algebras do by [27, Cor. 0.2],
and filtered algebras do by [28, Cor. 6.9] if their associated graded algebras are noetherian
and connected, and either PI, FBN, or with enough normal elements.

Definition 1.2. If A is a ring, thenE(A) denotes the class of complete projective res-
olutions ofA-left-modules. So a complex ofA-left-modulesE is in E(A) if it consists
of projectiveA-left-modules, is exact, and hasHomA(E, Q) exact for each projective
A-left-moduleQ.

Remark 1.3. I will view E(A) as a full subcategory ofK(ProA), the homotopy category
of complexes of projectiveA-left-modules. The inclusion functor will be denoted

e∗ : E(A) → K(ProA).

Setup 1.4. Let A be a noetherian commutative ring with a dualizing complexD. That is,

(i) The cohomology ofD is bounded and finitely generated overA.
(ii) The injective dimension idAD is finite.

(iii) The canonical morphismA → RHomA(D, D) in the derived categoryD(A) is an
isomorphism.

Setup 1.5. Let D
'
→ I be an injective resolution for whichI is a bounded complex.

See [10, Chp. V] for background on dualizing complexes.
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Remark 1.6. SinceA has a dualizing complex, it has finite Krull dimension by [10, Cor.
V.5.2], so by [24, Seconde partie, cor. (3.2.7)], each flatA-module has finite projective
dimension.

The following lemma usesI , the injective resolution of the dualizing complexD.

Lemma 1.7. LetP be a complex of projectiveA-modules. Then

HomA(P, Q) is exact for each projectiveA-moduleQ ⇔ I ⊗A P is exact.

Proof. ⇒ Suppose that Hom(P, Q) is exact for each projective moduleQ. To see that
I ⊗ P is an exact complex, it is enough to see that

Hom(I ⊗ P, J ) ∼= Hom(P, Hom(I, J ))

is exact for each injective moduleJ .
It follows from [19, Thm. 1.2] that Hom(I, J ) is a bounded complex of flat modules.

Hence, Hom(I, J ) is finitely built from flat modules in the homotopy category of com-
plexes ofA-modules,K(A), and so it is enough to see that Hom(P, F ) is exact for each
flat moduleF .

SinceF has finite projective dimension by Remark 1.6, there is a projective resolution

P̃
'
→ F with P̃ bounded. SinceP consists of projective modules and both̃P andF are

bounded, this induces a quasi-isomorphism

Hom(P, P̃ ) ' Hom(P, F ).

So it is enough to see that Hom(P, P̃ ) is exact.
But P̃ is a bounded complex of projective modules, so it is finitely built from projec-

tive modules, so it is enough to see that Hom(P, Q) is exact for each projective module
Q. And this holds by assumption.

⇐ Suppose thatI ⊗ P is an exact complex. I must show that Hom(P, Q) is exact for
each projective moduleQ.

First observe that by [2, Thm. (3.2)], there is an isomorphism

Q
∼=
→ RHom(D, D

L
⊗ Q).

Of course, I can replaceD by I to get

Q
∼=
→ RHom(I, I

L
⊗ Q). (4)

Here

I
L
⊗ Q ∼= I ⊗ Q

becauseQ is projective. Moreover,I ⊗ Q is a bounded complex of injective modules so

RHom(I, I
L
⊗ Q) ∼= RHom(I, I ⊗ Q) ∼= Hom(I, I ⊗ Q).

So the isomorphism (4) in the derived category is represented by the chain map

Q → Hom(I, I ⊗ Q)

which must accordingly be a quasi-isomorphism.
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Completing to a distinguished triangle inK(A) gives

Q → Hom(I, I ⊗ Q) → C →

whereC is exact. HereI andI ⊗ Q are bounded, so Hom(I, I ⊗ Q) is bounded. As the
same is true forQ, the mapping coneC is also bounded.

Now, the distinguished triangle gives another distinguished triangle

Hom(P, Q) → Hom(P, Hom(I, I ⊗ Q)) → Hom(P, C) → .

Here Hom(P, C) is exact becauseP is a complex of projective modules whileC is a
bounded exact complex. So to see that Hom(P, Q) is exact as desired, it is enough to see
that Hom(P, Hom(I, I ⊗ Q)) is exact.

However,
Hom(P, Hom(I, I ⊗ Q)) ∼= Hom(I ⊗ P, I ⊗ Q).

And this is exact becauseI ⊗P is exact by assumption whileI ⊗Q is a bounded complex
of injective modules. ut

Lemma 1.8. The homotopy category of complexes of projectiveA-modules,K(ProA), is
a compactly generated triangulated category.

Proof. It is clear thatK(ProA) is triangulated. The ringA is noetherian and hence coher-
ent, and by Remark 1.6 each flatA-module has finite projective dimension. SoK(ProA)

is compactly generated by [15, Thm. 2.4]. ut

Combining Lemmas 1.7 and 1.8 with Bousfield Localization now gives existence of the
adjoint functore! .

Proposition 1.9. The inclusion functore∗ : E(A) → K(ProA) has a right-adjointe! :
K(ProA) → E(A).

Proof. Consider the functor

k(−) = H0((A ⊕ I ) ⊗A −)

fromK(ProA) toAb, the category of abelian groups. This is clearly a homological functor
respecting set indexed coproducts. Moreover,

k(6iP) ∼= Hi(P ) ⊕ Hi(I ⊗A P),

where6i denotes theith suspension, so forP to satisfyk(6iP) = 0 for eachi means

Hi(P ) = 0 and Hi(I ⊗A P) = 0

for eachi. Using Lemma 1.7, this shows

{ P ∈ K(ProA) | k(6iP) = 0 for eachi } = E(A).

That is,E(A) is the kernel of the homological functork.
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One consequence of this is thatE(A) is closed under set indexed coproducts. Hence
[17, Lem. 3.5] says that fore∗ to have a right-adjoint is the same as for the Verdier
quotientK(ProA)/E(A) to have the property that each Hom set is in fact a set (as opposed
to a class).

Now, the categoryK(ProA) is compactly generated by Lemma 1.8. By [23, Lem.
4.5.13] withβ = ℵ0, this even implies that there is only a set of isomorphism classes of
compact objects inK(ProA). Hence the version of Bousfield Localization given in [14,
Thm. 4.1] applies to the functork onK(ProA), and shows that inK(ProA) modulo the
kernel ofk, each Hom is a set. That is, inK(ProA)/E(A) each Hom is a set, as desired.

ut

The methods given above also apply to non-commutative algebras. Let the following
setups replace Setups 1.4 and 1.5.

Setup 1.4′. Let A be a left-coherent and right-noetheriank-algebra over the fieldk for
which there exists a left-noetheriank-algebraB and a dualizing complexBDA. That is,
D is a complex ofB-left-A-right-modules, and

(i) The cohomology ofD is bounded and finitely generated both overB and overAop.
(ii) The injective dimensions idBD and idAopD are finite.

(iii) The canonical morphisms

A → RHomB(D, D) and B → RHomAop(D, D)

in the derived categoriesD(A ⊗k Aop) andD(B ⊗k Bop) are isomorphisms.

Setup 1.5′. Let D
'
→ I be an injective resolution ofD over B ⊗k Aop. ReplaceI by

a bounded truncation. This may ruin the property thatI is an injective resolution over
B ⊗k Aop, but because idBD and idAopD are finite, I can still suppose thatI consists of
modules which are injective both overB and overAop.

The definition of dualizing complexes over non-commutative algebras is taken from
[28, Def. 1.1].

With Setups 1.4 and 1.5 replaced by Setups 1.4′ and 1.5′, let me inspect the rest of
this section. As the ground ringA is now non-commutative, I must replace “module” by
“left-module” throughout. Remark 1.6 also needs to be replaced by the following.

Remark 1.6′. Under Setup 1.4′, each flatA-left-module has finite projective dimension
by [13].

After this, the proof of Lemma 1.7 goes through if one keeps track of left and right
structures throughout, and the proofs of Lemma 1.8 and Proposition 1.9 also still work.

Hence I can sum up the results of this section in the following theorem.

Theorem 1.10. Consider either of the following two situations.

(i) A is a noetherian commutative ring with a dualizing complex (see Setup1.4).
(ii) A is a left-coherent and right-noetheriank-algebra over the fieldk for which there

exists a left-noetheriank-algebraB and a dualizing complexBDA (see Setup1.4′).
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Then the inclusion functor
e∗ : E(A) → K(ProA)

has a right-adjoint
e! : K(ProA) → E(A).

2. Gorenstein projective resolutions

This section shows the existence of Gorenstein projective resolutions when the adjoint
functore! exists.

Setup 2.1. For the rest of this paper,A is a ring for which the inclusion functore∗ :
E(A) → K(ProA) has a right-adjointe! : K(ProA) → E(A).

Remark 2.2. The existence of the right-adjointe! is precisely the hypothesis under which
the constructions of this paper work.

The functore! exists over fairly general rings; see Theorem 1.10 and Remark 1.1. As
mentioned in the introduction, it may even be the case thate! exists overany ring, but I
do not know how to prove that.

Remark 2.3. If P is a complex of projectiveA-left-modules, thene!P can be thought of
as the best approximation toP by a complete projective resolution.

Elaborating on this, ifM is anA-left-module with projective resolutionP , thene!P

can be thought of as the best approximation toM by a complete projective resolution.
This point will be made more precise in Lemma 3.6.

Construction 2.4. If P is a complex ofA-left-modules, then for eachi there is a chain
map

· · · - 0 - P i id - P i - 0 - · · ·

· · · - P i−1
?

∂ i−1
P - P i

id
?

∂ i
P- P i+1

∂ i
P

?
∂ i+1
P - P i+2

?
- · · ·

where the upper complex is null homotopic.

If T
t

→ P is now a chain map, then I can add the upper complex toT and thereby

changet so that theith componentT i t i

→ P i becomes surjective. Doing so does not
change the isomorphism class oft in K(A), the homotopy category of complexes ofA-
left-modules.

Construction 2.5. If M is an A-left-module, then letP be a projective resolution
concentrated in non-positive cohomological degrees and consider the counit morphism

e∗e!P
εP
→ P in K(ProA). By applying Construction 2.4 in each degree, I can assume that

εP is represented by a surjective chain map, so for

F = e∗e!P,
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there is a short exact sequence of complexes

0 → K → F → P → 0.

Note that since bothF andP consist of projective modules, the sequence is semi-split
(that is, split in each degree) andK also consists of projective modules.

Lemma 2.6. Consider the complexK from Construction2.5. Then

HomK(ProA)(E, K) = 0

for E in E(A).

Proof. The chain mapF → P represents the counit morphism

e∗e!P
εP
→ P

which leads to a commutative diagram

HomE(A)(E, e!P)
e∗(−)- HomK(ProA)(e∗E, e∗e!P)

HHH
HHHHj

HomK(ProA)(e∗E, P )

Hom(e∗E,εP )

?

where the diagonal map is the adjunction isomorphism while the horizontal map is an
isomorphism becausee∗ is the inclusion functor of a full subcategory. The vertical map
must therefore also be an isomorphism. That is,

HomK(ProA)(E, F ) → HomK(ProA)(E, P ) (5)

is an isomorphism.
Now, the short exact sequence from Construction 2.5 is semi-split and therefore gives

a distinguished triangle
K → F → P →

in K(ProA). Hence there is a long exact sequence consisting of pieces

HomK(ProA)(6
iE, K) → HomK(ProA)(6

iE, F) → HomK(ProA)(6
iE, P ).

Since6iE is in E(A) for eachi, the second homomorphism here is of the type from
equation (5), so is an isomorphism for eachi. This implies HomK(ProA)(E, K) = 0 as
desired. ut

Remark 2.7. For the following lemma, recall that aGorenstein projectiveA-left-module

is a module of the formG = Ker(E1 ∂1
E

→ E2) whereE is in E(A) (cf. Definition 1.2).
It is not hard to see that each projectiveA-left-module is Gorenstein projective, but

in general, there are other Gorenstein projective modules than these. For instance, over a
noetherian local commutative Gorenstein ring, each maximal Cohen–Macaulay module
is Gorenstein projective.
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Lemma 2.8. Consider the complexK from Construction2.5. Suppose that the sequence

· · · → K i−2
→ K i−1 k

→ N → 0

obtained fromK is exact. Let̃G be Gorenstein projective and let̃G
g̃

→ N be a homomor-
phism. Theñg lifts throughk,

G̃

	..
..

..
..

..
..

..

K i−1 k - N .

g̃

?

Proof. By (de)suspending, I can clearly pick a complexE in E(A) with G̃ = Ker(Ei
∂ i
E

→

Ei+1). SinceE is in E(A), the kernel of each differential inE is Gorenstein projective,

and it is not hard to see that there is a chain mapE
e

→ K which fits together with̃G
g̃

→ N

in a commutative diagram

· · · - Ei−2 - Ei−1 - Ei ∂ i
E - Ei+1 - · · ·

@
@RR

�
�
�
`

�

G̃

· · · - K i−2

ei−2

?
- K i−1

ei−1

?
-

g̃

K i

ei

?
- K i+1

ei+1

?
- · · ·

@
@kRR �

��

N .
?

Since Lemma 2.6 says HomK(ProA)(E, K) = 0 for E in E(A), the chain mape must be
null homotopic. Letε be a null homotopy withe = ε∂E

+∂Kε, consisting of components

Ej εj

→ Kj−1. Then it is straightforward to prove

k ◦ (εi`) = g̃,

soG̃
g̃

→ N has been lifted throughK i−1 k
→ N as desired. ut

Remark 2.9. For the next theorem, recall that anaugmented Gorenstein projective reso-
lution of anA-left-moduleM is an exact sequence

· · · → G2 → G1 → G0 → M → 0,

where theGi are Gorenstein projective modules, which stays exact when one applies the
functor HomA(G̃, −) for any Gorenstein projective modulẽG. The complex

G = · · · → G2 → G1 → G0 → 0 → · · ·

is then called aGorenstein projective resolutionof M.



Gorenstein projective resolutions and Tate cohomology 69

Remark 2.10. Recall Construction 2.5. The complexF is in E(A). In particular it is
exact, and therefore the cohomology long exact sequence shows

HiK =

{
M for i = 1,

0 for i 6= 1.

Hence there is an exact sequence

· · · → K−2
→ K−1

→ K0
→ Ker∂1

K → M → 0.

Theorem 2.11. Let M be anA-left-module. Then the exact sequence from Remark2.10
is an augmented Gorenstein projective resolution ofM.

Proof. The modulesK0, K−1, . . . are projective and hence Gorenstein projective.
As for Ker∂1

K , observe that in the short exact sequence from Construction 2.5, the
complexP is concentrated in non-positive cohomological degrees, so the modulesP 1

andP 2 are zero. So in degrees 1 and 2, the short exact sequence gives

K2 ∼= - F 2

K1

∂1
K

6

∼= - F 1.

6

∂1
F

Hence Ker∂1
K

∼= Ker∂1
F , and Ker∂1

F is Gorenstein projective becauseF is in E(A).
To complete the proof, I must show that the exact sequence from Remark 2.10,

· · · → K−2
→ K−1

→ K0
→ Ker∂1

K → M → 0,

remains exact when one applies the functor HomA(G̃, −) for any Gorenstein projective
moduleG̃.

First, leti ≤ 0 be an integer and let̃G
g̃

→ K i be a homomorphism whose composition
with the subsequent homomorphism in the exact sequence is zero. I must show thatg̃ lifts
throughK i−1

→ K i .

I can view g̃ as a homomorphism̃G
g̃

→ Ker∂ i
K , and must then show that̃g lifts

through the canonical homomorphismK i−1
→ Ker∂ i

K . But this follows from Lemma
2.8 applied to

· · · → K i−2
→ K i−1

→ Ker∂ i
K → 0.

Secondly, let̃G
g̃

→ Ker∂1
K be a homomorphism whose composition with the subse-

quent homomorphism in the exact sequence, Ker∂1
K → M, is zero. I must show that̃g

lifts throughK0
→ Ker∂1

K .

I can viewg̃ as a homomorphism̃G
g̃

→ Im ∂0
K , and must then show that̃g lifts through

the canonical homomorphismK0
→ Im ∂0

K . But this follows from Lemma 2.8 applied to

· · · → K−1
→ K0

→ Im ∂0
K → 0.
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Thirdly, let G̃
g̃

→ M be a homomorphism. I must show thatg̃ lifts through Ker∂1
K →

M. However, from the data given I can construct a commutative diagram

· · · - K0 ∂0
K - K1 ∂1

K - K2 - · · ·

@
@R

�
�
�� @

@RR �
��

Ker∂1
K Coker∂0

K

@
@RR

�
�
��j

M

and by applying Lemma 2.8 to

· · · → K0
→ K1

→ Coker∂0
K → 0

I find thatG̃
j g̃
→ Coker∂0

K lifts throughK1
→ Coker∂0

K . It is a small diagram exercise to

see that hencẽG
g̃

→ M lifts through Ker∂1
K → M as desired. ut

Let me close the section with the following easy consequence.

Remark 2.12. Recall that aGorenstein projective precoverof anA-left-moduleM is a

homomorphismG
g

→ M whereG is a Gorenstein projective module, so that ifG̃ is any

Gorenstein projective module with a homomorphism̃G
g̃

→ M, theng̃ lifts throughg,

G̃

	..
..

..
..

..
..

..

G
g - M.

g̃

?

Corollary 2.13. EachA-left-module has a Gorenstein projective precover.

Proof. It follows from Theorem 2.11 that the homomorphism Ker∂1
K → M is a Goren-

stein projective precover. ut

3. Tate cohomology

This section defines Tate cohomology groups whene! exists and goes on to show some
basic properties: A short exact sequence in either variable gives a long exact sequence
of Tate cohomology groups, the Tate cohomology groups coincide with the previously
defined Tate cohomology groups from [3] and [26] when these exist, and classical Tate

cohomology is the special casêExt
i

kG(k, N) of the new definition. Finally, it is proved that
the Tate cohomology groups fit into the long exact sequence (3) from the introduction.

Recall that Setup 2.1 remains in force.
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Remark 3.1. It is classical that the category ofA-left-modulesMod(A) is equivalent to
the full subcategory ofK(ProA) consisting of projective resolutions ofA-left-modules.
Let

res :Mod(A) → K(ProA)

be a functor implementing the equivalence.

Definition 3.2. If M andN are A-left-modules, then the Tate cohomology groups ofM

andN are
Êxt

i
(M, N) = HiHomA(e! resM, N).

Remark 3.3. As pointed out in Remark 2.3, the complexe! resM can be thought of as
the best approximation toM by a complete projective resolution. So taking Hom intoN

and taking cohomology is the obvious way to get Tate cohomology groups.

Proposition 3.4. Let

0 → M ′
→ M → M ′′

→ 0 and 0 → N ′
→ N → N ′′

→ 0

be short exact sequences ofA-left-modules. Then there are natural long exact sequences

· · · → Êxt
i
(M ′′, N) → Êxt

i
(M, N) → Êxt

i
(M ′, N) → · · ·

and
· · · → Êxt

i
(M, N ′) → Êxt

i
(M, N) → Êxt

i
(M, N ′′) → · · · .

Proof. It is well known that the first short exact sequence in the proposition results in a
distinguished triangle inK(ProA),

resM ′
→ resM → resM ′′

→ .

Sincee∗ is a triangulated functor, so is its adjointe! by [23, Lem. 5.3.6], so there is also
a distinguished triangle inE(A),

e! resM ′
→ e! resM → e! resM ′′

→ .

This again results in a distinguished triangle

HomA(e! resM ′′, N) → HomA(e! resM, N) → HomA(e! resM ′, N) →

whose cohomology long exact sequence is the first long exact sequence in the proposition.
The complexe! resM is inE(A) so consists of projective modules, so the second short

exact sequence in the proposition gives a short exact sequence of complexes

0 → HomA(e! resM, N ′) → HomA(e! resM, N) → HomA(e! resM, N ′′) → 0

whose cohomology long exact sequence is the second long exact sequence in the propo-
sition. ut
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Remark 3.5. If M andN areA-left-modules, then there is a previous definition from [3]
and [26] by which the Tate cohomology groups ofM andN are

HiHomA(T , N)

whereT is a complete projective resolution ofM. This means thatT is in E(A) and sits
in a diagram of chain maps

T
t

→ P → M (6)

whereP → M is a projective resolution and whereT i t i

→ P i is bijective fori � 0.
Note that not allA-left-modules have complete projective resolutions. In fact, the

ones that do are exactly the ones which have finite Gorenstein projective dimension by
[26, Thm. 3.4].

Lemma 3.6. LetM be anA-left-module which has a projective resolutionP and a com-
plete projective resolutionT . Then

e!P ∼= T

in K(ProA).

Proof. All projective resolutions ofM are isomorphic inK(ProA), so I may as well prove
the lemma for the specific projective resolutionP from equation (6).

By applying Construction 2.4 to the chain mapT
t

→ P in cohomological degrees
larger than some number, I can assume thatt is surjective. Hence there is a short exact
sequence of complexes

0 → K → T
t

→ P → 0. (7)

Since bothT andP consist of projective modules, the sequence is semi-split andK also

consists of projective modules. Moreover, by assumption,T i t i

→ P i is bijective fori � 0,
soK i

= 0 for i � 0. SoK is a left-bounded complex of projective modules.
Now let E be inE(A). In particular, HomA(E, Q) is exact whenQ is a projective

module. It is classical that HomA(E, K) is then also exact, becauseK is a left-bounded
complex of projective modules. Indeed, this follows by an argument analogous to the one
which shows that ifX is an exact complex andI is a left-bounded complex of injective
modules, then HomA(X, I) is exact.

Since the sequence (7) is semi-split, it stays exact under the functor HomA(E, −). So
there is a short exact sequence of complexes

0 → HomA(E, K) → HomA(E, T ) → HomA(E, P ) → 0.

Since HomA(E, K) is exact, the cohomology long exact sequence shows that there is an
isomorphism

H0HomA(E, T ) ∼= H0HomA(E, P )

which is natural inE. That is, there is a natural isomorphism

HomK(ProA)(E, T ) ∼= HomK(ProA)(E, P )
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which can also be written

HomE(A)(E, T ) ∼= HomK(ProA)(E, P )

becauseE andT are inE(A).
On the other hand, I also have a natural isomorphism

HomK(ProA)(E, P ) = HomK(ProA)(e∗E, P ) ∼= HomE(A)(E, e!P).

Combining the last two equations gives a natural isomorphism

HomE(A)(E, T ) ∼= HomE(A)(E, e!P),

provingT ∼= e!P as desired. ut

Proposition 3.7. Let M be anA-left-module which has a complete projective resolu-
tion T . Then the Tate cohomology groups (see Definition3.2) coincide with the previously
defined Tate cohomology groups from[3] and[26] (see Remark3.5).

Proof. Lemma 3.6 shows that the projective resolution resM of M satisfiese! resM ∼= T .
Combining this with the formulae in Definition 3.2 and Remark 3.5 proves the proposi-
tion. ut

Proposition 3.8. Let k be a field,G a finite group, andN a finite-dimensionalk-linear
representation ofG. Then the Tate cohomology groups

Êxt
i

kG(k, N)

are defined, and they are isomorphic to the classical Tate cohomology groups ofN ,

Ĥ
i
(G; N).

Proof. The group algebrakG is a finite-dimensionalk-algebra. It is clearly left-coherent
and right-noetherian, and since it is in fact self-injective, it is clear thatkGkGkG is a
dualizing complex (cf. Setup 1.4′).

Hencee! exists overkG by Theorem 1.10, and so the Tate cohomology groups

Êxt
i

kG(k, N) are defined.
The previously defined Tate cohomology groups from [3] and [26] also exist, and they

are isomorphic to the classical Tate cohomology groupsĤ
i
(G; N) by [3, Exam. 5.1] with

k in place ofZ.

But the Tate cohomology groupŝExt
i

kG(k, N) coincide with the Tate cohomology
groups from [3] and [26] by Proposition 3.7, so the present proposition follows. ut

Definition 3.9. If M andN areA-left-modules, then the GorensteinExt groups ofM and
N are

ExtiG (M, N) = Hi HomA(G, N)

whereG is a Gorenstein projective resolution ofM (cf. Remark2.9).
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Remark 3.10. The resolutionG exists by Theorem 2.11. Note that Exti
G (−, −) is a well

defined bifunctor; see [3] or [11] for this and other properties.

Construction 3.11. Consider the short exact sequence from Construction 2.5,

0 → K → F → P → 0,

whereP is a projective resolution of theA-left-moduleM and whereF = e∗e!P . Trun-
cating the complexesK andF gives a new short exact sequence of complexes,

...
...

...

0 - 0

6

- 0

6

- 0

6

- 0

0 - Ker∂1
K

6

- Ker∂1
F

6

- 0

6

- 0

0 - K0

6

- F 0

6

- P 0

6

- 0

0 - K−1

6

- F−1

6

- P −1

6

- 0,

...

6

...

6

...

6

which I will denote
0 → K ′

→ F ′
→ P → 0. (8)

Theorem 3.12. LetM andN beA-left-modules. Then there is a long exact sequence

0 → Ext1G (M, N) → Ext1(M, N) → Êxt
1
(M, N) → · · ·

→ ExtiG (M, N) → Exti(M, N) → Êxt
i
(M, N) → · · · ,

natural inM andN .

Proof. Consider the short exact sequence (8) from Construction 3.11. The complexP is
a projective resolution ofM and in order to make everything natural inM, I can clearly
suppose

P = resM

where resM from Remark 3.1 is a projective resolution depending functorially onM.
SinceP = resM consists of projective modules, the short exact sequence (8) is semi-
split and therefore stays exact under the functor HomA(−, N). So there is a short exact
sequence of complexes

0 → HomA(resM, N) → HomA(F ′, N) → HomA(K ′, N) → 0. (9)
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Since resM is a projective resolution ofM, I have

HiHomA(resM, N) = Exti(M, N)

for eachi.
The complex

F = e∗e!P = e! resM

is in E(A), so it is exact, so

F ′
= · · · → F−1

→ F 0
→ Ker∂1

F → 0 → · · ·

is also exact, and hence H0HomA(F ′, N) = 0. On the other hand, the form ofF ′ makes
it clear that

HiHomA(F ′, N) = HiHomA(F, N) = HiHomA(e! resM, N) = Êxt
i
(M, N)

for i ≥ 1.
Finally, Theorem 2.11 says that

K ′
= · · · → K−1

→ K0
→ Ker∂1

K → 0 → · · ·

is a Gorenstein projective resolution ofM, shifted one step to the right. Hence

HiHomA(K ′, N) = Exti+1
G (M, N)

for i ≥ −1.
So looking at the cohomology long exact sequence of (9), starting with

H0HomA(F ′, N) = 0, gives

0 → Ext1G (M, N) → Ext1(M, N) → Êxt
1
(M, N) → · · ·

as desired. ut
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