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Abstract. Existence of proper Gorenstein projective resolutions and Tate cohomology is proved
over rings with a dualizing complex. The proofs are based on Bousfield Localization which is
originally a method from algebraic topology.
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0. Introduction

This paper proves two ring-theoretical results: existence of proper Gorenstein projective
resolutions and existence of Tate cohomology over fairly general rings.

The proofs use Bousfield Localization which, like many modern conveniences, was
invented by algebraic topologists (seé [4]). It has so far not been used extensively in ring
theory, but the results of this paper show that, when phrased as an existence theorem for
adjoint functors, it is a very natural ring theory tool.

The proof of existence of proper Gorenstein projective resolutions solves an open
problem in Gorenstein homological algebra.

Gorenstein projective resolutions. Classical homological algebra might be viewed as

being based on projective modules. In relative homological algebra, one replaces the pro-
jective modules with some other class of modules (sée [6]). One choice is to take the
Gorenstein projective modules; this results in Gorenstein homological algebra which goes

1
back to [1]. These modules have the foén= Ker(E?! a—E> E?) whereE is a complete
projective resolution, that is, an exact complex of projective modules which stays exact
when one applies the functor H@m, Q) for any projective modul€.
An augmented proper Gorenstein projective resolutara moduleM is an exact
sequence
o> G2—>G1—> Gop—> M — 0, (1)
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where theG; are Gorenstein projective modules, which stays exact when one applies the
functor HomG, —) for any Gorenstein projective module The complex

G=--—>G2—>G1—>Gop—>0— --. (2)

is then called g@roper Gorenstein projective resolutiarf M.

Gorenstein homological algebra has been developed to an advanced level (see [5]).
One of the central points is the ability of the theory to recognize Gorenstein rings. A
noetherian local commutative rilgis calledGorensteirif it is Cohen—Macaulay and has
an irreducible parameter ideal (seel[22, Thm. 18.1]), and it turns ouAitiaGorenstein
if and only if eachA-module has a proper Gorenstein projective resolution @itk= 0
fori > 0.

One problem of the theory is that existence of proper Gorenstein projective resolutions
is not obvious in general, because of the condition thiat (1) must stay exact when one
applies the functor Ho@, —). We generally know little about the structure of the class
of Gorenstein projective modules, so the precise content of this condition is unclear.

A possible solution is to drop the condition, and this approach has been taken by a
number of authors (sekl[5]). The resulting resolutions are then simply ctlezhstein
projective resolutionsand they always exist. For instance, any projective resolution can
be used since the projective modules are also Gorenstein projective.

Unfortunately, dropping the condition th@i (1) must L stay exact when one applies the
functor Hon(G, —) for any Gorenstein projective moduimgnores an important point:

The purpose of this condition is that it makes the resolufipn (2) unique up to chain homo-
topy (seel[1l, Prop. 2.2]). This in turn means that (2) can be used to define the Gorenstein
version of derived functors. Without the condition that (1) stays exact under the func-
tor Hom(G —), any such definition fails, and the theory must lead a shadow existence
without derived functors.

However, the present paper solves the problem by proving the existence of proper
Gorenstein projective resolutions over fairly general rings. This is done by showing that
the resolutions exist under one simple assumption—the existence of a certain adjoint
functore'—and by using Bousfield Localization to show thhexists if the ground ring
has a dualizing complex. This covers many rings arising in practice. For instance, any
local ring of a scheme of locally finite type over a field has a dualizing complex. Other
types of rings are also covered; see Rerark 1.1.

In fact, it may even be that some form of Bousfield Localization can be used to show
that the functoe' exists overanyring and hence that proper Gorenstein projective reso-
lutions exist in general, but this is not clear to me at the moment.

Since this paper makes proper Gorenstein projective resolutions available over most
rings which occur in practice, | propose to simplify the terminology by dropping the word
“proper”. So for the rest of the paper, an augmented Gorenstein projective resolution of
will be an exact sequencf| (1) where tigare Gorenstein projective, which stays exact
when one applies the functor Hoﬁl, —) for any Gorenstein projective modute When
this is given,[(2) will be called &orenstein projective resolutiasf M.
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Tate cohomology. For the second result of the paper recall that, originally, Tate coho-
mology was defined for representations of finite groups. Generalizing this, | will show,
again under the assumption that the adjoint funetaxists, that it is possible to define
Tate cohomology groups

Ext (M, N)
for any modulesM and N, so that classical Tate cohomology is the special case

EitZG(k, N). Moreover, it will be established that the Tate cohomology groups have rea-
sonable basic properties, and it will be shown that there is a close connection between Tate
cohomology and Gorenstein homological algebra in the form of a long exact sequence

0— ExtL (M, N) — Ext{(M, N) — Ext-(M, N) — --- 3)
where the E)@ are Gorenstein Ext groups defined by
Ext, (M, N) = H'Hom(G, N),

whereG is a Gorenstein projective resolutionidf. The Exj? are precisely the Gorenstein
derived functors of Hom.

Relations to the literature. The notion of Gorenstein projective modules is comple-
mented by notions of Gorenstein flat and Gorenstein injective modules, and the existence
of Gorenstein flat and Gorenstein injective resolutions was established in [7]land [8].
Some other injective cousins of the results of this paper are givenlin [18].

On the other hand, it was proved in_[25] that if one restricts to finitely generated
modules, then Gorenstein projective resolutions do not exist in general.

Precursors to the present results can be found in [3][and [26]. However, these papers
only work with modules of finite Gorenstein projective dimension, and this restricts the
real scope of the theory to Gorenstein rings whereas the present paper works for much
more general rings.

A generalized version of Tate cohomology already exists in the form of Tate—\Vogel
cohomology (se€ [9] and [21]). However, this theory differs from the Tate cohomology
which will be developed here (see [12, Rmk. 6.5]). | refer to the present theory simply as
“Tate cohomology” because | think of it as the most direct generalization of the classical
theory, since, like the classical theory, it is based on complete projective resolutions (cf.
Definition[3.2 and Remaik 3.3).

Perspectives. As pointed out, this paper’s result on Gorenstein projective resolutions
permits the definition of Gorenstein derived functors. This was not previously possible,
and should prove useful in Gorenstein homological algebra.

Applications of the present Tate cohomology theory are as yet more speculative. As
mentioned, the present theory generalizes the Tate cohomolagy of [3], in which alternative
Betti and Bass numbers based on Tate cohomology are considered and proved to exhibit
surprising patterns which are impossible in classical Betti and Bass numbers. It would be
obvious to try something similar for more general rings, using the present theory.

Also, [20] and [21] consider invariants related to Betti and Bass numbers which are
based on Tate—Vogel cohomology, and use them to introduce other new invariants and to
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prove properties of syzygy modules. Again, something similar may be possible using the
present Tate cohomology theory.

The paper is organized as follows. Sectign 1 uses Bousfield Localization to show
the existence of the adjoint functel over rings with a dualizing complex. Sectiph 2
shows the existence of Gorenstein projective resolutions whenists. And Sectioh|3
defines Tate cohomology groups, shows some basic properties, and shows that the Tate
cohomology groups fit into the exact sequende (3).

1. Bousfield Localization

This section uses Bousfield Localization to show the existence of a certain adjoint functor
¢' over rings with a dualizing complex.

Remark 1.1. Dualizing complexes are popular gadgets in homological algebra. | shall
give the precise definition in Set{ip [L.4 for noetherian commutative rings and in Setup
for right-noetherian algebras over a field. But | would like already here to point out
that many rings have dualizing complexes.

For instance, a noetherian local commutative ring has a dualizing complex if and only
if it is a quotient of a Gorenstein noetherian local commutative ringl, by [16, Thm. 1.2]. It
follows that, as mentioned in the introduction, any local ring of a scheme of locally finite
type over a field has a dualizing complex. By the Cohen structure theorem, it also follows
that any complete noetherian local commutative ring does.

Some important types of non-commutative noetherian algebras are also known to have
dualizing complexes. For example, complete semi-local Pl algebras dolby [27, Cor. 0.2],
and filtered algebras do by [28, Cor. 6.9] if their associated graded algebras are noetherian
and connected, and either PI, FBN, or with enough normal elements.

Definition 1.2. If A is a ring, thenE(A) denotes the class of complete projective res-
olutions of A-left-modules. So a complex dfleft-modulesE is in E(A) if it consists

of projective A-left-modules, is exact, and h&tom, (E, Q) exact for each projective
A-left-moduleQ.

Remark 1.3. | will view E(A) as a full subcategory d€(Pro A), the homotopy category
of complexes of projective -left-modules. The inclusion functor will be denoted

ex . E(A) — K(Pro A).
Setup 1.4. Let A be a noetherian commutative ring with a dualizing comgbex hat is,

(i) The cohomology oD is bounded and finitely generated over
(i) The injective dimension igD is finite.
(i) The canonical morphismt — RHomy (D, D) in the derived categorip(A) is an
isomorphism.

Setup 1.5. Let D S Ibean injective resolution for whichis a bounded complex.

Seel[10, Chp. V] for background on dualizing complexes.
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Remark 1.6. SinceA has a dualizing complex, it has finite Krull dimension by|[10, Cor.
V.5.2], so by [24, Seconde partie, cor. (3.2.7)], each Alahodule has finite projective
dimension.

The following lemma uses, the injective resolution of the dualizing compléx
Lemma 1.7. Let P be a complex of projectivé-modules. Then
Hom, (P, Q) is exact for each projectiva-moduleQ < I ®4 P is exact.

Proof. = Suppose that HoP, Q) is exact for each projective modu(@. To see that
I ® P is an exact complex, it is enough to see that

Hom(I ® P, J) = Hom(P, Hom(Z, J))

is exact for each injective module

It follows from [19, Thm. 1.2] that HorY, J) is a bounded complex of flat modules.
Hence, HonZ, J) is finitely built from flat modules in the homotopy category of com-
plexes ofA-modulesK(A), and so it is enough to see that HaP) F) is exact for each
flat modulerF .

SinceF has finite projective dimension by Remark|1.6, there is a projective resolution

P S F with P bounded. Since® consists of projective modules and bdthand F are
bounded, this induces a quasi-isomorphism

Hom(P, P) ~ Hom(P, F).

So itis enough to see that Hgm, ﬁ) is exact.

But P is a bounded complex of projective modules, so it is finitely built from projec-
tive modules, so it is enough to see that H&mQ) is exact for each projective module
0. And this holds by assumption.

< Suppose thal ® P is an exact complex. | must show that HaPy Q) is exact for
each projective modulg@.
First observe that by [2, Thm. (3.2)], there is an isomorphism
~ L
0 > RHom(D, D ® Q).
Of course, | can replach by I to get

0 5 RHOM(I.1 & 0). (4)
Here
1802180
because) is projective. Moreover] ® Q is a bounded complex of injective modules so
RHom(Z. I & 0) = RHom(I. I ® Q) = Hom(I. I ® 0).
So the isomorphisnj [4) in the derived category is represented by the chain map
0 — Hom(1,I ® Q)

which must accordingly be a quasi-isomorphism.
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Completing to a distinguished triangle Ki(A) gives
QO —>Hom(/,I® Q) —> C —

whereC is exact. Herd and/ ® Q are bounded, so Homh, I ® Q) is bounded. As the
same is true foQ, the mapping con€ is also bounded.
Now, the distinguished triangle gives another distinguished triangle

Hom(P, Q) - Hom(P, Hom(/, I ® Q)) — Hom(P,C) — .

Here Hom(P, C) is exact becaus® is a complex of projective modules whitg is a
bounded exact complex. So to see that HIBQ) is exact as desired, it is enough to see
that Hom(P, Hom(Z, I ® Q)) is exact.
However,
Hom(P, Hom(Z, I ® Q)) EHom(I ® P, I ® Q).

And this is exact becaude® P is exact by assumption whileg Q is a bounded complex
of injective modules. O

Lemma 1.8. The homotopy category of complexes of projectiv@odulesK(Pro A), is
a compactly generated triangulated category.

Proof. Itis clear that<(Pro A) is triangulated. The ring is noetherian and hence coher-
ent, and by Remaifk 7.6 each flatmodule has finite projective dimension. B¢Pro A)
is compactly generated by [15, Thm. 2.4]. O

Combining Lemmak 1} 7 arid 1.8 with Bousfield Localization now gives existence of the
adjoint functore'.

Proposition 1.9. The inclusion functoex : E(A) — K(Pro A) has a right-adjointe' :
K(Pro A) — E(A).

Proof. Consider the functor
k(=) =HY(A®T)®4—)

from K(Pro A) to Ab, the category of abelian groups. This is clearly a homological functor
respecting set indexed coproducts. Moreover,

K(Z'P)=H(P)®H (I ®4 P),
whereX! denotes théth suspension, so fa? to satisfyk(X! P) = 0 for eachi means
H(P)=0 and HUI ®4 P)=0
for eachi. Using Lemmé 1]7, this shows
{P € K(ProA) | k(X' P) =0 foreachi } = E(A).

That is,E(A) is the kernel of the homological functér
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One consequence of this is tHatA) is closed under set indexed coproducts. Hence
[17, Lem. 3.5] says that foex to have a right-adjoint is the same as for the Verdier
quotientK(Pro A)/E(A) to have the property that each Hom set is in fact a set (as opposed
to a class).

Now, the categoryK(Pro A) is compactly generated by Lemra]l1.8. Byl[23, Lem.
4.5.13] withg = R, this even implies that there is only a set of isomorphism classes of
compact objects ilK(Pro A). Hence the version of Bousfield Localization givenlini[14,
Thm. 4.1] applies to the functdron K(Pro A), and shows that ilK(Pro A) modulo the
kernel ofk, each Hom is a set. That is, KXPro A)/E(A) each Hom is a set, as desired.

O

The methods given above also apply to non-commutative algebras. Let the following
setups replace Setups]L.4 1.5.

Setup[1.4. Let A be a left-coherent and right-noetherikslgebra over the field for
which there exists a left-noetheriaralgebraB and a dualizing compley D 4. That is,
D is a complex ofB-left-A-right-modules, and

(i) The cohomology ofD is bounded and finitely generated both oeand overA®P.
(i) The injective dimensions iglD and idyop D are finite.
(iii) The canonical morphisms

A — RHomg(D, D) and B — RHomyo(D, D)

in the derived categorid3(A ®; A°P) andD(B ®; B°P) are isomorphisms.

Setup. Let D S I be an injective resolution ab over B ®; A°P. Replacel by
a bounded truncation. This may ruin the property thas an injective resolution over
B ®;. AP, but because iglD and idsopr D are finite, | can still suppose thatconsists of
modules which are injective both ovBrand overA°®P.

The definition of dualizing complexes over non-commutative algebras is taken from
[28, Def. 1.1].

With Setups 1}4 and 1.5 replaced by Sefup$ amtl[1.5, let me inspect the rest of
this section. As the ground ring is now non-commutative, | must replace “module” by
“left-module” throughout. Remaik 1.6 also needs to be replaced by the following.

Remark[1.§. Under Setujp 114 each flatA-left-module has finite projective dimension
by [13].

After this, the proof of Lemmp 1.7 goes through if one keeps track of left and right
structures throughout, and the proofs of Lenima 1.8 and Propdsitibn 1.9 also still work.
Hence | can sum up the results of this section in the following theorem.

Theorem 1.10. Consider either of the following two situations.

() A isanoetherian commutative ring with a dualizing complex (see fef)ip
(ii) A is a left-coherent and right-noetherianalgebra over the field for which there
exists a left-noetheriak-algebraB and a dualizing complexD, (see Setup.4).
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Then the inclusion functor
ex . E(A) > K(Pro A)

has a right-adjoint
e K(Pro A) — E(A).

2. Gorenstein projective resolutions

This section shows the existence of Gorenstein projective resolutions when the adjoint
functore' exists.

Setup 2.1. For the rest of this paped is a ring for which the inclusion functor :
E(A) — K(Pro A) has a right-adjoin¢' : K(Pro A) — E(A).

Remark 2.2. The existence of the right-adjoiattis precisely the hypothesis under which
the constructions of this paper work.

The functore' exists over fairly general rings; see Theofem [L.10 and Rejmdrk 1.1. As
mentioned in the introduction, it may even be the casedhekists overanyring, but |
do not know how to prove that.

Remark 2.3. If P is a complex of projectivel-left-modules, ther' P can be thought of
as the best approximation by a complete projective resolution.

Elaborating on this, if/ is an A-left-module with projective resolutioR, thene' P
can be thought of as the best approximationvdyy a complete projective resolution.
This point will be made more precise in Lemnal3.6.

Construction 2.4. If P is a complex ofA-left-modules, then for eachthere is a chain

map
id

0 P P 0
L id a, J
i-1 i i+1
., pi-1 % pi % pi+1 % pit2 _, ...

where the upper complex is null homotopic.
If T P is now a chain map, then | can add the upper compleR and thereby
changer so that theith componentr L Pi becomes surjective. Doing so does not

change the isomorphism classzoh K(A), the homotopy category of complexes Af
left-modules.

Construction 2.5. If M is an A-left-module, then letP be a projective resolution
concentrated in non-positive cohomological degrees and consider the counit morphism

exe'P L Pin K(Pro A). By applying Constructio4 in each degree, | can assume that
ep is represented by a surjective chain map, so for

F = e*e!P,
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there is a short exact sequence of complexes
00— K—F—-P—0.

Note that since botli” and P consist of projective modules, the sequence is semi-split
(that is, split in each degree) adalso consists of projective modules.

Lemma 2.6. Consider the complek from Constructioff.5 Then
Homkpro 4y (E, K) =0
for E in E(A).
Proof. The chain magF — P represents the counit morphism
e*e!P Lp

which leads to a commutative diagram
! ex(—) |
Home () (E, e P) —— HOMK(pro a)(exE, exe’ P)
Hom(ex E,ep)

HomK(Pro A) (e* E, P)

where the diagonal map is the adjunction isomorphism while the horizontal map is an
isomorphism becauss: is the inclusion functor of a full subcategory. The vertical map
must therefore also be an isomorphism. That is,

Homkpro 4y (E, F) — HOMK(pro 4)(E, P) )

is an isomorphism.
Now, the short exact sequence from Construgtioh 2.5 is semi-split and therefore gives
a distinguished triangle
K—F—P—

in K(Pro A). Hence there is a long exact sequence consisting of pieces
HOMK (pro 4) (2 E, K) — HOMK(pro 4)(Z'E, F) — HOMk(pro 4y (Z'E, P).

Since =/ E is in E(A) for eachi, the second homomorphism here is of the type from
equation [(b), so is an isomorphism for eactThis implies Homp 4)(E, K) = 0 as
desired. O

Remark 2.7. For the following lemma, recall that@orenstein projectivel -left-module

al
is a module of the fornG = Ker(E?® a—E> E?) whereE is in E(A) (cf. Definition).
It is not hard to see that each projectiteleft-module is Gorenstein projective, but
in general, there are other Gorenstein projective modules than these. For instance, over a
noetherian local commutative Gorenstein ring, each maximal Cohen—Macaulay module
is Gorenstein projective.
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Lemma 2.8. Consider the complek from Constructioff.5 Suppose that the sequence
— K72 K"*l—k>N—>O

obtained fromk is exact. LeG be Gorenstein projective and l6t % N be a homomor-
phism. Theg lifts throughk,

G

o

Ki-1 N.

~ !
Proof. By (de)suspending, | can clearly pick a compkein E(A) with G = Ker(E! -5
E*1). SinceE is in E(A), the kernel of each differential iff is Gorenstein projective,

and it is not hard to see that there is a chain ma K which fits together wittG > N
in a commutative diagram

~N A
ei—2 ei—l G el ei+l
g
_ Ki—2 Ki—l Ki Ki+1 ...
NS
N.

Since Lemm@G says Huw 4)(E, K) = 0 for E in E(A), the chain mag must be
null homotoplc Lek be a null homotopy witle = €3 + 3% ¢, consisting of components

El S ki1, Then it is straightforward to prove
ko(e't) =g,
s0G % N has been lifted througki~1 % N as desired. o

Remark 2.9. For the next theorem, recall that angmented Gorenstein projective reso-
lution of an A-left-moduleM is an exact sequence

> Gy—>G1—> Gog—> M — 0,

where theG; are Gorenstein projective modules, which stays exact when one applies the
functor Homy (G, —) for any Gorenstein projective module The complex

G=--—>G2—>G1—>Gop—>0— .-

is then called &orenstein projective resoluticof M.
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Remark 2.10. Recall Constructiofi 2|5. The complegx is in E(A). In particular it is
exact, and therefore the cohomology long exact sequence shows

i M fori=1,
HK_{O fori # 1.

Hence there is an exact sequence
o> K25 K15 K0 Kera}(—> M — 0.

Theorem 2.11. Let M be anA-left-module. Then the exact sequence from Re@dd
is an augmented Gorenstein projective resolutioMof

Proof. The modulek®, K1, ... are projective and hence Gorenstein projective.

As for Kerd, observe that in the short exact sequence from Constrn 2.5, the
complex P is concentrated in non-positive cohomological degrees, so the mogtiles
and P2 are zero. So in degrees 1 and 2, the short exact sequence gives

) G — F2
i ak
Kt = Fl

Hence Kenl = Keral, and Kerdt is Gorenstein projective becauses in E(A).
To complete the proof, | must show that the exact sequence from Rgmark 2.10,

o> K25 K15 K0S Ker8,1<—>M—>O,

remains exact when one applies the functor Ij()&\, —) for any Gorenstein projective
moduleG. ~

First, leti < 0 be aninteger and l&t 5 Kibea homomorphism whose composition
with the subsequent homomorphism in the exact sequence is zero. | must shgWifthat
throughk'~1 — K'.

| can viewg as a homomorphism?~ £ Kerdi,, and must then show that lifts
through the canonical homomorphiski—1 — Keraj(. But this follows from Lemma

[2.8 applied to . ‘ .
o> K72 5 K71 Kerdl — 0.

Secondly, leG % Kera}( be a homomorphism whose composition with the subse-
guent homomorphism in the exact sequence,aﬁ,er» M, is zero. | must show thaf
lifts throughk ® — Kerat.

| can viewg as a homomorphisi& £ Im 82, and must then show thatifts through
the canonical homomorphisii® — Im 2. But this follows from Lemm8 applied to

> K15 k%> 1mad - o
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Thirdly, letG % M be a homomorphism. | must show tiglifts through Kers —
M. However, from the data given | can construct a commutative diagram

0 1
Ix Ik 2

K° k! K
N SN S
Keray Cokerd?

~NoA

. —

R

and by applying Lemma 2.8 to
N G ‘S N Coker82 -0

| find thatG 5: Cokeralg lifts throughk* — Cokeralg. Itis a small diagram exercise to
see that hencé £ Miifts through Kerdz — M as desired. o
Let me close the section with the following easy consequence.

Remark 2.12. Recall that aGorenstein projective precovef an A-left-moduleM is a

homomorphisnG £ M whereG is a Gorenstein projective module, so thaGifis any
Gorenstein projective module with a homomorphﬁm’i M, theng lifts throughg,

G

o

G £ . M.
Corollary 2.13. EachA-left-module has a Gorenstein projective precover.

Proof. It follows from Theorenj 2.1]1 that the homomorphism Kgr— M is a Goren-
stein projective precover. O

3. Tate cohomology

This section defines Tate cohomology groups whieexists and goes on to show some

basic properties: A short exact sequence in either variable gives a long exact sequence

of Tate cohomology groups, the Tate cohomology groups coincide with the previously

defined Tate cohomology groups from [3] and|[26] when these exist, and classical Tate

cohomology is the special caE/e}t}{G(k, N) of the new definition. Finally, it is proved that

the Tate cohomology groups fit into the long exact sequérjce (3) from the introduction.
Recall that Setup 21 remains in force.
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Remark 3.1. It is classical that the category dfleft-modulesMod(A) is equivalent to
the full subcategory oK(Pro A) consisting of projective resolutions df-left-modules.
Let

res :Mod(A) — K(Pro A)

be a functor implementing the equivalence.

Definition 3.2. If M and N are A-left-modules, then the Tate cohomology groupsfof
andN are , '
Ext (M, N) = H'Homy (¢' resM, N).

Remark 3.3. As pointed out in Rema.3, the complexesM can be thought of as
the best approximation t& by a complete projective resolution. So taking Hom ino
and taking cohomology is the obvious way to get Tate cohomology groups.

Proposition 3.4. Let
O-M ->M—-M -0 and 0> N - N—->N'—=0
be short exact sequencesadeft-modules. Then there are natural long exact sequences
... = Ext (M", N) = Ext (M, N) — Ext (M, N) = - .-

and
.. > Ext (M, Ny — Ext (M, N) = Ext (M, N") — --- .

Proof. It is well known that the first short exact sequence in the proposition results in a
distinguished triangle ilK(Pro A),

resM’ — resM — resM” — .

Sinceey is a triangulated functor, so is its adjoidtby [23, Lem. 5.3.6], so there is also
a distinguished triangle iB(A),

e'resM’ — ¢'resM — ¢' resM” — .
This again results in a distinguished triangle
Homy (¢' resM”, N) — Homy(e' resM, N) — Homy (e' resM’, N) —

whose cohomology long exact sequence is the first long exact sequence in the proposition.
The complex' resM is in E(A) so consists of projective modules, so the second short
exact sequence in the proposition gives a short exact sequence of complexes

0 — Homy (¢! resM, N') — Homy (e' resM, N) — Homy(e' resM, N”) — 0

whose cohomology long exact sequence is the second long exact sequence in the propo-
sition. O
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Remark 3.5. If M andN areA-left-modules, then there is a previous definition fromn [3]
and [26] by which the Tate cohomology groupsifandN are

H'Hom, (T, N)

whereT is a complete projective resolution 8f. This means thaf is in E(A) and sits
in a diagram of chain maps

TLP>M (6)

whereP — M is a projective resolution and whefé L Piis bijective fori « 0.

Note that not allA-left-modules have complete projective resolutions. In fact, the
ones that do are exactly the ones which have finite Gorenstein projective dimension by
[26, Thm. 3.4].

Lemma 3.6. Let M be anA-left-module which has a projective resoluti®rand a com-
plete projective resolutioff. Then
¢P=T

in K(Pro A).

Proof. All projective resolutions oM are isomorphic ifK(Pro A), so | may as well prove
the lemma for the specific projective resolutiBrfrom equation[(p).

By applying Constructio4 to the chain mip—@ P in cohomological degrees
larger than some number, | can assume thatsurjective. Hence there is a short exact
sequence of complexes

0>K—>T-5P—0. (7)
Since bothT” and P consist of projective modules, the sequence is semi-splitkaatso

consists of projective modules. Moreover, by assumpﬂénf—; P! is bijective fori <« 0,
soK' = 0fori « 0. SoK is a left-bounded complex of projective modules.

Now let E be inE(A). In particular, Hom (E, Q) is exact whenQ is a projective
module. It is classical that Hop{E, K) is then also exact, becaukeis a left-bounded
complex of projective modules. Indeed, this follows by an argument analogous to the one
which shows that ifX is an exact complex andis a left-bounded complex of injective
modules, then Honpx( X, 7) is exact.

Since the sequendg (7) is semi-split, it stays exact under the functog Ham ). So
there is a short exact sequence of complexes

0 — Homy(E, K) - Homy(E, T) — Homu(E, P) — 0.

Since Hom\ (E, K) is exact, the cohomology long exact sequence shows that there is an
isomorphism
HHomyu (E, T) = H°Homu (E, P)

which is natural inE. That is, there is a natural isomorphism

HOMK (pro 4) (E, T) = HOMK(pro 4)(E, P)
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which can also be written
Home4)(E, T) = HOMK(pro 4) (E, P)

because: andT are inE(A).
On the other hand, | also have a natural isomorphism

HOMK pro 4) (E, P) = HOM(pro 4)(ex E, P) = Homg(a) (E, €' P).
Combining the last two equations gives a natural isomorphism
Homea)(E, T) = Homg 4y (E, €' P),
provingT = ¢' P as desired. O

Proposition 3.7. Let M be an A-left-module which has a complete projective resolu-
tion 7. Then the Tate cohomology groups (see Definfii@coincide with the previously
defined Tate cohomology groups fr{@h and[26] (see RemaiB.5).

Proof. Lemmd 3.6 shows that the projective resolutioniesf M satisfies' resM = T.
Combining this with the formulae in Definitign 3.2 and RemfarK 3.5 proves the proposi-
tion. O

Proposition 3.8. Letk be a field,G a finite group, andV a finite-dimensionak-linear
representation o&;. Then the Tate cohomology groups

Ext,;(k, N)
are defined, and they are isomorphic to the classical Tate cohomology gronps of
R (G N).

Proof. The group algebrag is a finite-dimensionat-algebra. It is clearly left-coherent
and right-noetherian, and since it is in fact self-injective, it is clear thaiG,g is a
dualizing complex (cf. SetUp Iy

Hencee' exists overkG by TheoreO, and so the Tate cohomology groups
Ext,; (k. N) are defined.

The previously defined Tate cohomology groups from [3] and [26] also exist, and they
are isomorphic to the classical Tate cohomology grdtifiss; N) by [3, Exam. 5.1] with
k in place ofZ.

But the Tate cohomology group:é?t;(G(k, N) coincide with the Tate cohomology
groups from|[[8] and [26] by Propositi¢n 3.7, so the present proposition follows. o

Definition 3.9. If M andN are A-left-modules, then the Gorenstéint groups ofM and
N are _ _
Ext, (M, N) = H' Homs (G, N)

whereG is a Gorenstein projective resolution 8f (cf. Remari2.9).
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Remark 3.10. The resolutiorG exists by Theorel. Note that Ext-, —) is a well
defined bifunctor; see [3] or [11] for this and other properties.

Construction 3.11. Consider the short exact sequence from Construgtign 2.5,
0—-K—>F—-P—0,

whereP is a projective resolution of the-left-moduleM and whereF = exe' P. Trun-
cating the complexe& and F gives a new short exact sequence of complexes,

]

0 0 0 0 0
! T

0 — Keror — Kerdr 0 0

0 IJO 110 PO 0
! T

0 K1 F1 p1t 0,

T T T

which I will denote
0O->K —-F —-P—0. (8)

Theorem 3.12. Let M and N be A-left-modules. Then there is a long exact sequence

0 — Exty (M, N) — Ext'(M, N) — Ext (M, N) — ---
— Ext, (M, N) — Ext' (M, N) — Ext (M, N) — --- ,
natural in M and N.

Proof. Consider the short exact sequeride (8) from Construction 3.11. The comjdex
a projective resolution o#f and in order to make everything naturalih, | can clearly
suppose

P =resM

where res\f from Remarl 31 is a projective resolution depending functoriallydn
Since P = resM consists of projective modules, the short exact sequérice (8) is semi-
split and therefore stays exact under the functor Hom N). So there is a short exact
sequence of complexes

0 — Homy (resM, N) — Homu(F', N) — Homu(K’, N) — 0. 9)
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Since redV is a projective resolution afZ, | have
H'Homy (resM, N) = Ext (M, N)

for eachi.
The complex
F = e*e!P =¢'resM

isinE(A), soitis exact, so
Fl=-. > F15 F° 5 Kerot > 0— .-

is also exact, and henc?Homy, (F’, N) = 0. On the other hand, the form &f makes
it clear that

HHomy (F’, N) = HiHom, (F, N) = HiHomy (¢ resM, N) = Ext (M, N)

fori > 1.
Finally, Theoren 2.1]1 says that

K= - K15 K> Kerdgy -0 ---
is a Gorenstein projective resolution &f, shifted one step to the right. Hence
H'Homy (K’, N) = Extf1 (M, N)

fori > —1.
So looking at the cohomology long exact sequence [df (9), starting with
HOHomy (F’, N) = 0, gives

0— Exty (M, N) > Ext{(M, N) — EXt-(M, N) — ---

as desired. O
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