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Abstract. The Deligne–Mumford moduli space is the spacēMg,n of isomorphism classes of
stable nodal Riemann surfaces of arithmetic genusg with n marked points. A marked nodal Rie-
mann surface is stable if and only if its isomorphism group is finite. We introduce the notion of a
universal unfolding of a marked nodal Riemann surface and show that it exists if and only if the
surface is stable. A natural construction based on the existence of universal unfoldings endows the
Deligne–Mumford moduli space with an orbifold structure. We include a proof of compactness.
Our proofs use the methods of differential geometry rather than algebraic geometry.
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1. Introduction

According to Grothendieck [7], a moduli space is a space whose elements may be viewed
as orbits of a groupoid.1 In this paper, the main focus is on theRiemann moduli spaceMg

of (closed) Riemann surfaces of genusg and various related moduli spaces. We charac-
terize the Deligne–Mumford compactification̄Mg by a universal mapping property thus
showing that it is (canonically) an orbifold. We also treat the related moduli spacesMg,n

andM̄g,n.
The points in the moduli spaceMg are in bijective correspondence with equivalence

classes of Riemann surfaces where two Riemann surfaces are equivalent iff there is an iso-
morphism (holomorphic diffeomorphism)2 between them; i.e. the Riemann moduli space
is the orbit space of the groupoid whose objects are Riemann surfaces and whose mor-
phisms are these isomorphisms. For applications it is important to refine these groupoids
by considering Riemann surfaces withmarked points. An object is now amarked Rie-
mann surfaceof type(g, n), i.e. a Riemann surface of genusg equipped with a sequence
of n distinct points in that surface. An isomorphism is an isomorphism of Riemann sur-
faces which carries the sequence of marked points in the source to the sequence in the
target preserving the indexing. The corresponding moduli space is denotedMg,n and of
courseMg,0 = Mg.

A Riemann surface is a smooth surface6 equipped with a complex structurej . Since
any two smooth surfaces of the same genus are diffeomorphic we may define the Riemann
moduli space as the orbit space under the action of the diffeomorphism group Diff(6) of
the spaceJ (6) of complex structuresj on6:

Mg := J (6)/Diff (6).

The result is independent of the choice of the substrate6 in the sense that any diffeo-
morphismf : 6 → 6′ induces a bijectionJ (6) → J (6′) and a group isomorphism
Diff (6) → Diff (6′) intertwining the group actions. Similarly a marked3 Riemann sur-
face is a triple(6, s∗, j) wheres∗ is a finite sequence ofn distinct points of6 (i.e.
s∗ ∈ 6n \1 where1 is the “fat” diagonal) so the corresponding moduli space is

Mg,n := (J (6)× (6n \1))/Diff (6).

This can also be written as

Mg,n = J (6)/Diff (6, s∗)

where Diff(6, s∗) is the subgroup of diffeomorphisms which fix the points of some par-
ticular sequences∗. Thus in these cases we can replace the groupoid by a group action;
the objects are the points ofJ (6).

1 By the termgroupoid, we understand a category all of whose morphisms are isomorphisms.
2 In what follows, when no confusion can result, we will use the termisomorphismto signify any

bijection between sets which preserves the appropriate structures.
3 The reader is cautioned that the termmarked Riemann surfaceis often used with another mean-

ing in the literature.
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An object in a groupoid is calledstableiff its automorphism group is finite. A marked
Riemann surface of type(g, n) is stable if and only ifn > χ(6) whereχ(6) = 2 − 2g
is the Euler characteristic. In this case each automorphism group is finite, but (in the case
g ≥ 1) may be nontrivial. However, the only automorphism isotopic to the identity is
the identity itself so the identity component Diff0(6) of Diff (6) acts freely onJ (6) ×

(6n \1). The corresponding orbit space

Tg,n := (J (6)× (6n \1))/Diff 0(6)

is calledTeichm̈uller space. In [4] Earle and Eells showed that the projectionJ (6) → Tg
is a principal fiber bundle with structure group Diff0(6) and that the baseTg is a finite-
dimensional smooth manifold of real dimension 6g − 6. In other words, through each
j ∈ J (6) there is a smooth slice for the action of Diff0(6). (Similar statements hold for
Tg,n.) The total spaceJ (6) is a complex manifold; the tangent space at a pointj ∈ J (6)
is the space

TjJ (6) = �
0,1
j (6, TM) := {ĵ ∈ �0(6,End(T 6)) : j ĵ + ĵ j = 0}

of (0,1)-forms on(6, j) with values in the tangent bundle. This tangent space is clearly
a complex vector space (the complex structure isĵ 7→ j ĵ ) and it is not hard to show
(see e.g. [20] or Section 7) that this almost complex structure onJ (6) is integrable
and that the action admits a holomorphic4 slice through every point. Since the action
of Diff 0(6) is (tautologically) by holomorphic diffeomorphisms ofJ (6), this defines a
complex structure on the baseTg which is independent of the choice of the local slice
used to define it. ThusTg is a complex manifold of dimension 3g − 3. Again, similar
results hold forTg,n. Earle and Eells also showed that all three spaces in the fibration

Diff 0(6) → J (6) → Tg (EE)

are contractible so that the fibration is smoothly trivial and has a (globally defined) smooth
section. In [3] Earle showed that there is no global holomorphic section ofJ (6) → Tg.
The monograph of Tromba [20] contains a nice exposition of this point of view (and
more) and the anthology [6] is very helpful for understanding the history of the subject
and other points of view.

Now we take a different point of view. Anunfolding is the germ of a pair(πA, a0)

whereπA : P → A is a Riemann family anda0 is a point ofA. (The termRiemann
family means thatπA is a proper holomorphic map and dimC(P ) = dimC(A) + 1. The
term germmeans that we do not distinguish between(πA, a0) and the unfolding which
results by replacingA by a neighborhood ofa0 in A.) The fibersPa := π−1(a) are then
complex curves. The fiberPa0 is called thecentral fiber. A morphismof unfoldings is a
commutative diagram

P
8

−→ QyπA yπB
A

φ
−→ B

4 At this point in the discussion this means that the slice is a complex submanifold ofJ (6).
After we define the complex structure on the base, a holomorphic slice will be the same thing as
the image of a holomorphic section.
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where8 andφ are holomorphic,φ(a0) = b0 and, for eacha ∈ A, the restriction of8
to the fiberPa is an isomorphism. Again, this is to be understood in the sense of germs:
φ need only be defined on a neighborhood ofa0 and two morphisms are the same iff
they agree on a smaller neighborhood ofa0. An unfolding(πB : Q → B, b0) is called
universal iff for every other unfolding(πA, a0) every isomorphismf : Pa0 → Qb0

extends uniquely to a morphism(φ,8) from (πA, a0) to (πB , b0). From the uniqueness
of the extension it follows that any two universal unfoldings with the same central fiber
are isomorphic in the obvious sense.

Now assume thatπA is a submersion so that the fibers are Riemann surfaces. Using the
holomorphic slices for the principal fiber bundleJ (6) → Tg it is not hard to construct
a universal unfolding of any Riemann surface of genus≥ 2; similar results hold forTg,n
(see Section 8).

The spacesMg,n are not compact. TheDeligne–Mumford moduli spacēMg,n defined
in Section 6 is a compactification ofMg,n. The objects in the corresponding groupoid are
commonly calledstable curves of type(g, n). Two such curves need not be homeomor-
phic. This moduli space is still the orbit space of a groupoid but not (in any obvious way)
the orbit space of a group action. We will characterizeM̄g,n by the universal mapping
property, but we will word the definitions so as to avoid the complexities of algebraic
geometry and singularity theory.

It is a well known theorem of algebraic geometry that a complex curveC admits a
desingularizationu : 6 → C. This means that6 is a Riemann surface and that the re-
striction ofu to the set of regular points ofu is a holomorphic diffeomorphism onto the
set of smooth points of the curveC. The desingularization is unique in the sense that if
u′ : 6′

→ C is another desingularization, the holomorphic diffeomorphismu−1
◦ u′ ex-

tends to a holomorphic diffeomorphism6′
→ 6. A marked complex curve is one which

is equipped with a finite sequence of distinct smooth points. A desingularization pulls
back the marking to a marking of6. That a marked complex curveC is of type(g, n)
means that the arithmetic genus (see Definition 3.6) ofC is g and the number of marked
points isn. A nodal curveis a complex curve with at worst nodal singularities. For a nodal
curve the desingularizationu is an immersion and the critical points occur in pairs. This
equips6 with what we call anodal structure. In Section 3 we use the termmarked nodal
Riemann surfaceto designate a surface6 with these additional structures. Astable curve
is a marked nodal curve whose corresponding marked nodal Riemann surface has a finite
automorphism group. The main result of this paper extends the universal unfolding con-
struction from the groupoid of stable Riemann surfaces to the groupoid of stable marked
nodal Riemann surfaces.

Theorem A. A marked nodal Riemann surface admits a universal unfolding if and only
if it is stable.

This theorem is an immediate consequence of Theorems 5.4 and 5.6 below. To avoid
the intricacies of singularity theory our precise definitions (see Sections 4 and 5) involve
only what we callnodal families. However, it is well known that (near its central fiber) an
unfolding is a submersion if and only if its central fiber is a smooth complex curve, and
is a nodal family if and only if its central fiber is a nodal curve.
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Now we describe the proof. First we consider the case of a Riemann surface without
marked points or nodal points. In this case the sequence(EE) is a principal bundle if and
only if g ≥ 2, i.e. if and only if any Riemann surface of genusg is stable. Abbreviate

D0 := Diff 0(6), J := J (6), T := T (6) := J (6)/Diff 0(6).

ThusTg := T is Teichm̈uller space and the principal fiber bundle(EE) takes the form

D0 → J → T .

The associated fiber bundle

πT : Q := J ×D0 6 → T

has fibers isomorphic to6. It is commonly called theuniversal curve of genusg over
Teichm̈uller space. Choose a Riemann surface(6, j0) and a holomorphic sliceB ⊂ J
throughj0. Let

πB : Q → B

be the restriction toB of the pullback of the bundleπT to its total space. AsB is a slice,
the projectionπB is a trivial bundle (in the smooth sense). The mapπB is a holomor-
phic submersion. In Section 8 we show that it is a universal unfolding ofj0. Here’s why
(πB , j0) is universal. LetπA : P → A be a holomorphic submersion whose fiber has
genusg and whose central fiber overa0 ∈ A is isomorphic to(6, j0). As a smooth map,
πA is trivial, so after shrinkingA we have a smooth local trivializationτ : A× 6 → P .
Write τa(z) := τ(a, z) for a ∈ A so τa is a diffeomorphism from6 to Pa . Denote the
pull back byτa of the complex structure onPa by ja , i.e. τa : (6, ja) → Pa is an iso-
morphism. AsB is a slice we can modify the trivializationτ so ja ∈ B. The equation
φ(a) = ja defines a mapφ : A → B. Using the various trivializations we then get a
morphism(φ,8) fromπA toπB . In Section 8 we show that these maps are holomorphic.
We also carry out the analogous construction forTg,n.

It is now clear that(πA, a0) is universal if and only ifφ : (A, a0) → (B, b0) is the
germ of a diffeomorphism. By the inverse function theorem this is so if and only if the
linear operatordφ(a0) : Ta0A → Tb0B is invertible. This condition can be formulated
as the unique solvability of a partial differential equation onPa0; we call an unfolding
infinitesimally universalwhen it satisfies this unique solvability condition. The crucial
point is that infinitesimal universality is meaningful even for nodal families, i.e. when
there is no analog of the Earle–Eells principal fiber bundle. But we still have the following

Theorem B. A nodal unfolding is universal if and only if it is infinitesimally universal.

This is restated as Theorem 5.4 below. Here is the idea of the proof. Let(πA : P → A, a0)

and(πB : Q → B, b0) be nodal unfoldings andf0 : Pa0 → Qb0 be an isomorphism of
the central fibers. For simplicity assume there is at most one critical point in each fiber and
no marked points. Essentially by the definition of nodal unfolding there is a neighborhood
N of the set of critical points such that fora ∈ A the intersectionNa := N ∩ Pa admits
an isomorphism

Na ∼= {(x, y) ∈ D2 : xy = z}
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whereD is the closed unit disk inC and z = z(a) ∈ D. Thus if z(a) 6= 0 the fiber
Na is an annulus whereas ifz(a) = 0 it is a pair of transverse disks. In either case the
boundary is a disjoint union∂D t ∂D of two copies of the circleS1 := ∂D. The map
N → A is therefore not trivializable as the topology of the fiber changes. However, the
bundle∂N → A is trivializable; choose a trivializationA × (∂D t ∂D) → ∂N . Using
this trivialization we will define (see Section 11) manifolds of maps

W :=
⊔
a∈A

Wa, Wa :=
⊔
b∈B

W(a, b), W(a, b) := Map(∂Na,Qb \ CB)

whereCB is the set of critical points ofπB and
⊔

denotes disjoint union. LetUa ⊂ W
be the set of all maps inWa which extend to a holomorphic mapNa → Q, andVa ⊂ W
be the set of all maps inWa which extend to a holomorphic mapPa \Na → Q. We will
replaceA andW by smaller neighborhoods ofa0 andf0|∂Na0 as necessary. We show
that Ua andVa are submanifolds ofWa . It is not too hard to show that the unfolding
(πB , b0) is universal if and only if the manifoldsUa andVa intersect in a unique point:
the morphism(φ,8) : (πA, a0) → (πB , b0) is then defined so that this intersection point
γ lies in the fiberWφ(a) and8a is the unique holomorphic map extendingγ . We will see
that the unfolding(πB , b0) is infinitesimally universal if and only if (for all(πA, a0) and
f0) the corresponding infinitesimal condition

Tγ0Wa0 = Tγ0Ua0 ⊕ Tγ0Va0

holds whereγ0 = f0|∂Na0. This Hardy space decomposition is reminiscent of the con-
struction of the moduli space of holomorphic vector bundles explained by Pressley &
Segal in [17].

We have already explained why smooth marked Riemann surfaces have universal un-
foldings. It is now easy to construct a universal unfolding of a stable marked nodal Rie-
mann surface: it is constructed from a universal unfolding for the marked Riemann surface
that results by replacing each nodal point by a marked point. Such an unfolding is a triple
(π, S∗, b0) whereπ : Q → B is a nodal family,S∗ is a sequence of holomorphic sections
of π corresponding to the marked points, andb0 ∈ B. We call a pair(π, S∗) a univer-
sal family of type(g, n) iff (1) (π, S∗, b0) is a universal unfolding for eachb0 ∈ B and
(2) every marked nodal Riemann surface of type(g, n) occurs as the domain of a desin-
gularization of some fiberQb, b ∈ B. Theorem 5.3 (openness of transversality) says that
if (π, S∗, b0) is an infinitesimally universal unfolding then so is(π, S∗, b) for b nearb0.
Together with Theorems A and B this implies

Theorem C. If n > 2 − 2g there exists a universal family of type(g, n).

This is restated as Proposition 6.3 below. It is not asserted thatB is connected. Rather,
the universal family should be viewed as a generalization of the notion of an atlas for a
manifold. This generalization is called anetale groupoid. The Deligne–Mumford orbifold
M̄g,n is then the orbit space of this groupoid and the definitions are arranged so that the
orbifold structure is independent of the choice of the universal family used to define it.
See Section 6.
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A consequence of our theorems is that other constructions of the Deligne–Mumford
moduli space (and in particular of the Riemann moduli space) which have the universal
unfolding property give the same space. However, in the case of a construction where the
moduli space is given only a topology (or a notion of convergence of sequences as in [10])
we show that the topology determined by our construction agrees with the topology of the
other construction (see Section 13). In Section 14 we prove that ourM̄g,n is compact and
Hausdorff by adapting the arguments of the monograph of Hummel [10].

Notation. Throughout, the closed unit disk in the complex plane is denoted by

D := {z ∈ C : |z| ≤ 1}

and its interior is denoted by int(D) := {z ∈ C : |z| < 1}. ThusS1 := ∂D is the unit
circle. Also

A(r, R) := {z ∈ C : r ≤ |z| ≤ R}

denotes the closed annulus with inner radiusr and outer radiusR.

2. Orbifold structures

In this section we review orbifolds. Our definitions are arranged so as to suit our ultimate
objective of defining an orbifold structure on the Deligne–Mumford moduli space.

2.1. A groupoid is a category in which every morphism is an isomorphism. LetB be
the set of objects of a groupoid and0 denote the set of (iso)morphisms. Fora, b ∈ B let
0a,b ⊂ 0 denote the isomorphisms froma to b; the group

0a := 0a,a

is called theautomorphism group5 of a. The groupoid is calledstable iff every auto-
morphism group is finite. Define thesourceandtarget mapss, t : 0 → B by

s(g) = a andt (g) = b ⇔ g ∈ 0a,b.

The mape : B → 0 which assigns to each objecta the identity morphism ofa is called
the identity section of the groupoid, and the mapi : 0 → 0 which assigns to each
morphismg its inversei(g) = g−1 is called theinversion map. Define the set0s×t 0 of
composable pairsby

0s×t 0 = {(g, h) ∈ 0 × 0 : s(g) = t (h)}.

The mapm : 0s×t 0 → 0 which assigns to each composable pair the composition
m(g, h) = gh is called themultiplication map . The five mapss, t , e, i,m are called the
structure mapsof the groupoid. Note that

0a,b = (s × t)−1(a, b).

We denote theorbit spaceof the groupoid(B, 0) byB/0:

B/0 := {[b] : b ∈ B}, [b] := {t (g) ∈ B : g ∈ 0, s(g) = b}.

5 Also commonly called theisotropy groupor stabilizer group.
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2.2. A Lie groupoid is a groupoid(B, 0) such thatB and0 are smooth manifolds,6 the
structure maps are smooth, and the maps : 0 → B (and hence also the mapt = s ◦ i) is
a submersion. (The latter condition implies that0s×t 0 is a submanifold of0×0 so that
the condition thatm be smooth is meaningful.) Ahomomorphism from a Lie groupoid
(B, 0) to a Lie groupoid(B ′, 0′) is a smooth functor, i.e. a pair of smooth mapsB → B ′

and0 → 0′, both denoted byι, which intertwine the structure maps:

s′ ◦ ι = ι ◦ s, t ′ ◦ ι = ι ◦ t, e′ ◦ ι = ι ◦ e,

i′ ◦ ι = ι ◦ i, m′
◦ (ι× ι) = ι ◦m.

(The first two of these five conditions imply that(ι × ι)(0 s×t 0) ⊂ 0′
s′×t ′ 0

′ so that
the fifth condition is meaningful.) Similar definitions are used in the complex category
readingcomplexfor smooth(for manifolds) andholomorphicfor smooth(for maps). A
Lie groupoid(B, 0) is calledproper if the maps × t : 0 → B × B is proper.

2.3. An etale groupoidis a Lie groupoid(B, 0) such that the maps : 0 → B (and hence
also the mapt = s◦i) is a local diffeomorphism. A proper etale groupoid is automatically
stable. A homomorphismι : (B, 0) → (B ′, 0′) of etale groupoids is called arefinement
iff the following holds.

(i) The induced mapι∗ : B/0 → B ′/0′ on orbit spaces is a bijection.
(ii) For all a, b ∈ B, ι restricts to a bijection0a,b → 0′

ι(a),ι(b).
(iii) The map on objects (and hence also the map on morphisms) is a local diffeomor-

phism.

Two proper etale groupoids are calledequivalent iff they have a common proper refine-
ment.

Definition 2.4. Fix an abstract groupoid(B,G). This groupoid is to be viewed as the
“substrate” for an additional structure to be imposed; initially it does not even have a
topology. Indeed, the definitions are worded so as to allow for the possibility thatB is not
even a set but a proper class in the sense of Gödel Bernays set theory (see[12]).

An orbifold structure on the groupoid(B,G) is a functorσ from a proper etale
groupoid(B, 0) to (B,G) such that

(i) σ induces a bijectionB/0 → B/G of orbit spaces, and
(ii) for all a, b ∈ B, σ restricts to a bijection0a,b → Gσ(a),σ (b).

A refinement of orbifold structures is a refinementι : (B, 0) → (B ′, 0′) of proper etale
groupoids such thatσ = σ ′

◦ ι; as before we say thatσ : (B, 0) → (B,G) is a refinement
of σ ′ : (B ′, 0′) → (B,G). Two orbifold structures are calledequivalent iff they have a
common refinement. Anorbifold is an abstract groupoid(B,G) equipped with an orbifold
structureσ : (B, 0) → (B,G).

6 For us a manifold is always second countable and Hausdorff, unless otherwise specified.
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Example 2.5. A smooth manifoldM is a special case of an orbifold as follows: View
M =: B as a trivial groupoid, i.e. the only morphisms are identity morphisms. Any count-
able open cover{Uα}α∈I onM determines an etale groupoid(B, 0) with

B :=
⊔
α∈I

Uα, 0 :=
⊔

(α,β)∈I×I

Uα ∩ Uβ ,

s(α, p, β) := (α, p), t (α, p, β) := (β, p), e(α, p) := (α, p, α),

i(α, p, β) := (β, p, α), m((β, p, γ ), (α, p, β)) := (α, p, γ ).

Here
⊔

denotes disjoint union. (Thedisjoint union
⊔
α∈I Xα of an indexed collection

{Xα}α∈I of sets is the set of pairs(α, x) whereα ∈ I andx ∈ Xα.) A refinement of open
covers in the usual sense determines a refinement of etale groupoids as in 2.3.

If {φα, Uα}α∈I is a countable atlas then an obvious modification of the above construc-
tion gives rise to an orbifold structure onM whereB is a disjoint union of open subsets
of Euclidean space, i.e. a manifold structure is a special case of an orbifold structure.

Example 2.6. A Lie group actionG → Diff (M) determines a Lie groupoid(B,G)where
B = M, G = {(g, a, b) ∈ G ×M ×M : b = g(a)}, and the structure maps are defined
by s(g, a, b) := a, t (g, a, b) := b, e(a) := (id, a, a), i(g, a, b) := (g−1, b, a), and
m((h, b, c), (g, a, b)) := (hg, a, c). The orbit spaceB/G of this groupoid is the same as
the orbit spaceM/G of the group action. The condition that this groupoid be proper is
the usual definition of proper group action, i.e. the mapG ×M → M ×M : (g, x) 7→

(x, g(x)) is proper.
Assume that the action is almost free [meaning that the isotropy groupGp of each

point ofM is finite] and sliceable [meaning that there is a slice through every point ofM;
a slice is a submanifoldS ⊂ M such that there is a neighborhoodU of the identity inG
with the property that the mapU × S → M : (g, x) 7→ g(x) is a diffeomorphism onto a
neighborhood ofS in M]. Now let

B :=
⊔
α∈I

Sα

be a disjoint union of slices such that every orbit passes through at least one slice. Let

0 :=
⊔
α,β∈I

0αβ , 0αβ := {(g, a, b) ∈ G : a ∈ Sα, b ∈ Sβ}.

Then0αβ is a submanifold ofG. Moreover, if the group action is proper, then the obvious
morphismσ : (B, 0) → (B,G) is an orbifold structure, and any two such orbifold
structures are equivalent. Note that, ifG is a discrete group acting properly onM, then
S := B = M is a slice andσ := id is an orbifold structure.

Example 2.7. Consider the group action whereG := Z acts onM := S1 by (k, z) 7→

e2πikωz andω ∈ R\Q is irrational. Then the groupoid(B,G) constructed in Example 2.6
is etale but not proper. Note that the quotientB/G is an uncountable set with the trivial
topology (two open sets). The inclusion of any open set intoS1 is a refinement.
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Example 2.8. Consider the group action where the multiplicative groupG := R∗ of
nonzero real numbers acts onM := R2

\0 byt ·(x, y) := (tx, t−1y). The action is free and
sliceable but not proper, and the quotient topology is not Hausdorff (every neighborhood
of R∗

·(1,0) intersects every neighborhood ofR∗
·(0,1)). The groupoid constructed from

the disjoint unionB := S1 t S2 of the two slicesS1 := {1} × R, S2 := R × {1} is not
proper. If we extend the group action by adjoining the map(x, y) 7→ (y, x), the orbit
space isR which is Hausdorff, but the new group action is still not proper.

2.9. Let (B, 0) be a stable etale groupoid,a, b ∈ B, andg ∈ 0a,b. Then there exist
neighborhoodsU of a,V of b in B, andN of g in 0 such thats mapsN diffeomorphically
onto U and t mapsN diffeomorphically ontoV . Define sg := s|N , tg := t |N , and
φg := tg ◦ s−1

g . Thusφg “extends”g ∈ 0a,b to a diffeomorphismφg : U → V . The
following lemma says that whena = b we may chooseU = V independent ofg and
obtain an action

0a → Diff (U) : g 7→ φg,

of the finite group0a on the open setU .

Lemma 2.10. Let (B, 0) be a stable etale groupoid anda ∈ B. Then there exists a
neighborhoodU of a and pairwise disjoint neighborhoodsNg (for g ∈ 0a) of g in 0
such that boths andt map eachNg diffeomorphically ontoU .

Proof. Choose disjoint open neighborhoodsPg of g ∈ 0a such thatsg := s|Pg and
tg := t |Pg are diffeomorphisms onto (possibly different) neighborhoods ofa. By stability
the group0a is finite so there is a neighborhoodV of a in B such thatV ⊂ s(Pg)∩ t (Pg)

for g ∈ 0a . Defineφg : V → B by φg := tg ◦ s−1
g . Now choosef, g ∈ 0a and let

h := m(f, g). We show that

φh(x) = φf ◦ φg(x) (1)

for x in a sufficiently small neighborhood ofa in V . For suchx definey := φg(x) ∈ V ,
z := φf (y) ∈ V , g′ := s−1

g (x) ∈ Pg, andf ′ := s−1
f (y) ∈ Pf . As t (g′) = s(f ′) = y

we have(f ′, g′) ∈ 0s×t 0, i.e.h′ := m(f ′, g′) is well defined. By continuity,h′
∈ Ph

ands(h′) = s(g′) = x andt (h′) = t (f ′) = z, and hencez = φh(x) as claimed. Using
the finiteness of0a again we may choose a neighborhoodW of a so that (1) holds for all
f, g ∈ 0a and allx ∈ W . Now the intersection

U :=
⋂
g∈0a

φg(W) ⊂ V

satisfiesφf (U) = U for f ∈ 0a soU andNg := s−1
g (U) satisfy the conclusions of the

lemma. ut

Corollary 2.11. Let (B, 0) be a stable etale groupoid anda, b ∈ B. Then there exist
neighborhoodsU andV ofa andb inB and pairwise disjoint neighborhoodsNf (for f ∈

0a,b) of f in 0 such thats maps eachNf diffeomorphically ontoU and t maps eachNf
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diffeomorphically ontoV . The etale groupoid is proper if and only if these neighborhoods
may be chosen so that in addition

(s × t)−1(U × V ) =

⋃
f∈0a,b

Nf . (∗)

Proof. Choose disjoint neighborhoodsPf of f ∈ 0a,b such thatsf := s|Pf and tf :=
t |Pf are diffeomorphisms onto (possibly different) neighborhoods ofa. ChooseU as in
Lemma 2.10 so small thatU ⊂ s(Pf ) for all f ∈ 0a,b and defineφf : U → B by

φf := tf ◦ s−1
f |U.

DefineNf := s−1
f (U). As in Lemma 2.10 we haveφh = φf ◦ φg for g ∈ 0a , f ∈ 0a,b,

h := m(f, g), so th(Nh) = φh(U) = φf (U) = tf (Nf ). Any two elementsh, f ∈ 0a,b
satisfyh = m(f, g) for someg ∈ 0a soV := tf (Nf ) is independent of the choice of
f ∈ 0a,b used to define it. The condition thats × t is proper means that for any sequence
{fν ∈ 0aν ,bν }ν such that the sequences{aν}ν and{bν}ν converge toa andb respectively,
the sequence{fν}ν has a convergent subsequence. Condition(∗) implies this asfν must
lie in someNf for infinitely many values ofν. The converse follows easily by an indirect
argument. ut

2.12. Let (B, 0) be an etale groupoid and equip the orbit spaceB/0 with the quotient
topology, i.e. a subset ofB/0 is open iff its preimage under the quotient mapπ : B →

B/0 is open. IfU ⊂ B is open then so isπ−1(π(U)) = {t (g) : g ∈ s−1(U)} soπ
is an open map. Ifι : (B, 0) → (B ′, 0′) is a refinement of etale groupoids, then the
induced bijectionι∗ : B/0 → B ′/0′ is a homeomorphism. [The continuity ofι∗ follows
from the continuity ofι; the openness ofι∗ follows from the openness ofι and the fact
that if U ′

⊂ B ′ is open then so isπ ′−1
(π ′(U ′)).] Hence equivalent etale groupoids have

homeomorphic orbit spaces. It follows that the topology induced onB/G by an orbifold
structureσ : (B, 0) → (B,G) depends only the equivalence class. This topology is called
theorbifold topology.

Corollary 2.13. For a proper etale groupoid the quotient topology onB/0 is Hausdorff.

Proof. In other words, if0a0,b0 = ∅ then there are neighborhoodsU of a andV of b such
that0(a, b) = ∅ for a ∈ U andv ∈ V . This is a special case of Corollary 2.11. ut

3. Structures on surfaces

The phrasesurfacemeansoriented smooth (i.e.C∞) manifold of (real) dimension two,
not necessarily connected. Unless otherwise specified all surfaces are assume to be closed,
i.e. compact and without boundary. The structures we impose on surfaces are complex
structures, nodal structures, and point markings. Surfaces equipped with these structures
form the objects of a groupoid. The objective of this paper is to equip the orbit space of
this groupoid with an orbifold structure.
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Definition 3.1. A Riemann surfaceis a pair(6, j)where6 is a surface andj : T6 →

T6 is a smooth complex structure on6 which determines the given orientation of6.
Since a complex structure on a surface is necessarily integrable, a Riemann surface may
be viewed as a smooth complex curve, i.e. a compact complex manifold of (complex)
dimension one. When there is no danger of confusion we denote a Riemann surface and
its underlying surface by the same letter.

Definition 3.2. A nodal surfaceis a pair (6, ν) consisting of a surface6 and a set

ν = {{y1, y2}, {y3, y4}, . . . , {y2k−1, y2k}}

wherey1, . . . , y2k are distinct points of6; we also sayν is a nodal structure on 6.
The pointsy1, . . . , y2k are called thenodal points of the structure and the pointsy2j−1
and y2j are calledequivalent nodal points. The nodal structure should be viewed as
an equivalence relation on6 such that every equivalence class consists of either one or
two points and only finitely many equivalence classes have two points. Hence we often
abbreviate6 \

⋃
ν by

6 \ ν := 6 \ {y1, y2, y3, y4, . . . , y2k−1, y2k}.

Definition 3.3. A point marking of a surface6 is a sequence

r∗ = (r1, r2, . . . , rn)

of distinct points of6; the pointsri are calledmarked points. A marked nodal surface
is a triple (6, r∗, ν) where(6, ν) is a nodal surface andr∗ is a point marking of6 such
that no marked pointri is a nodal point of(6, ν); a special pointof the marked nodal
surface is a point which is either a nodal point or a marked point.

Definition 3.4. A marked nodal surface(6, r∗, ν) determines a labeled graph called the
signature of (6, r∗, ν) as follows. The set of vertices of the graph label the connected
components of6 and there is one edge connecting verticesα and β for every pair of
equivalent nodal points with one of the points in6α and the other in6β . More precisely,
the number of edges from6α to 6β is the number of pairs{x, y} of equivalent nodal
points with eitherx ∈ 6α andy ∈ 6β or y ∈ 6α andx ∈ 6β . Each vertexα has two
labels, the genus of the component6α denoted bygα and the set of indices of marked
points which lie in the component6α.

Remark 3.5. Two marked nodal surfaces are isomorphic if and only if they have the
same signature.

Proof. In other words,(6, r∗, ν) and(6′, r ′∗, ν
′) have the same signature if and only if

there is a diffeomorphismφ : 6 → 6′ such thatν′
= φ∗ν where

φ∗ν := {{φ(y1), φ(y2)}, {φ(y3), φ(y4)}, . . . , {φ(y2k−1), φ(y2k)}}

and r ′i = φ(ri) for i = 1, . . . , n = n′. This is because two connected surfaces are
diffeomorphic if and only if they have the same genus and any bijection between two finite
subsets of a connected surface extends to a diffeomorphism of the ambient manifold.ut
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Definition 3.6. Define theBetti numbers of a graph by the formula

bi := rankHi(K), i = 0,1,

whereHi(K) is the ith homology group of the cell complexK. ThusK is connected if
and only ifb0 = 1 and

b0 − b1 = # vertices− # edges.

Define thegenusof the labeled graph by

g := b1 +

∑
α

gα.

Thearithmetic genusof a nodal surface(6, ν) is the genus of the signature of(6, ν).
Note that the arithmetic genus can be different from thetotal genusg′ :=

∑
α gα.

Definition 3.7. A marked nodal surface(6, r∗, ν) is said to be oftype (g, n) iff the
length of the sequencer∗ is n, the underlying graphK in the signature is connected,
and the arithmetic genus of(6, ν) is g. A marked nodal Riemann surface(6, r∗, ν, j) is
calledstable iff its automorphism group

Aut(6, r∗, ν, j) := {φ ∈ Diff (6) : φ∗j = j, φ∗ν = ν, φ(r∗) = r∗}

is finite. A stable marked nodal Riemann surface is commonly called astable curve.

3.8. A marked nodal Riemann surface of type(g, n) is stable if and only if the number of
special points in each component of genus zero is at least three and the number of special
points in each component of genus one is at least one. This is an immediate consequence
of the following:

(i) An automorphism of a surface of genus zero is a Möbius transformation; if it fixes
three points it is the identity.

(ii) A surface of genus one is isomorphic toC/3 where3 = Z ⊕ Zτ andτ lies in the
upper half plane.

(iii) The automorphisms of the abelian group3 of form z 7→ az wherea ∈ C \ 0 form a
group of order at most six.

(iv) The automorphism group of a compact Riemann surface of genus greater than one
is finite.

The proofs of these well known assertions can be found in any book on Riemann surfaces.
It follows that for each pair(g, n) of nonnegative integers there are only finitely many
labeled graphs which arise as the signature of a stable marked nodal Riemann surface of
type(g, n).

Remark 3.9. A marked nodal surface has arithmetic genus zero if and only if each com-
ponent has genus zero and the graph is a tree. The automorphism group of a stable marked
nodal Riemann surface of arithmetic genus zero is trivial.
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4. Nodal families

In this section we introduce the basic setup which will allow us to define the charts of the
Deligne–Mumford orbifold.

4.1. LetP andA be complex manifolds with dimC(P ) = dimC(A)+ 1 andπ : P → A

be a holomorphic map. By the holomorphic implicit function theorem a pointp ∈ P is
a regular point ofπ if and only if there is a holomorphic coordinate system(t1, . . . , tn)
defined in a neighborhood ofπ(p) ∈ A, and a functionz defined in a neighborhood ofp
in P such that(z, t1 ◦ π, . . . , tn ◦ π) is a holomorphic coordinate system. In other words,
the pointp is a regular point if and only if the germ ofπ atp is isomorphic to the germ
at 0 of the projection

Cn+1
→ Cn : (z, t1, . . . , tn) 7→ (t1, . . . , tn).

Similarly, a pointp ∈ P is a called anodal point of π if and only if the germ ofπ atp
is isomorphic to the germ at 0 of the map

Cn+1
→ Cn : (x, y, t2, . . . , tn) 7→ (xy, t2, . . . , tn),

i.e. if and only if there are holomorphic coordinatesz, t2, . . . , tn onA atπ(p) and holo-
morphic functionsx andy defined in a neighborhood ofp such that(x, y, t2 ◦ π, . . . ,

tn ◦ π) is a holomorphic coordinate system,x(p) = y(p) = 0, andxy = z ◦ π . At a
regular pointp we have dimC ker(dπ(p)) = 1 and dimC coker(dπ(p)) = 0 while at a
nodal point we have dimC ker(dπ(p)) = 2 and dimC coker(dπ(p)) = 1

Definition 4.2. A nodal family is a surjective proper holomorphic mapπ : P → A

between connected complex manifolds such thatdimC(P ) = dimC(A) + 1 and every
critical point ofπ is nodal. We denote the set of critical points ofπ by

Cπ := {p ∈ P : dπ(p) not surjective}.

It intersects each fiberPa := π−1(a) in a finite set. For each regular valuea ∈ A of π
the fiberPa is a compact Riemann surface. Whena ∈ A is a critical value ofπ we view
the fiberPa as a nodal Riemann surface as follows.

By the maximum principle the compositionπ ◦ u of π with a holomorphic mapu :
6 → P defined on a compact Riemann surface6 must be constant, i.e.u(6) ⊂ Pa for
somea. A desingularization of a fiberPa is a holomorphic mapu : 6 → P defined on
a compact Riemann surface6 such that

(1) u−1(Cπ ) is finite,
(2) the restriction ofu to6 \ u−1(Cπ ) maps this set bijectively toPa \ Cπ .

The restriction ofu to6\u−1(Cπ ) is an isomorphism between this open Riemann surface
andPa \ Cπ (because it is holomorphic, bijective, and proper).
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Lemma 4.3. (i) Every fiber of a nodal family admits a desingularization.
(ii) If u1 : 61 → P andu2 : 62 → P are two desingularizations of the same fiber, then

the map

u−1
2 ◦ u1 : 61 \ u−1

1 (Cπ ) → 62 \ u−1
2 (Cπ )

extends to an isomorphism61 → 62.
(iii) A desingularizationu of a fiber of a nodal family is an immersion and the preimage

u−1(p) of a critical pointp ∈ Cπ consists of exactly two points.

Proof. Let π : P → A be a nodal family anda ∈ A. Eachp ∈ Cπ ∩ Pa has a small
neighborhood intersectingPa in two transverse embedded holomorphic disks intersecting
atp. Define6 set-theoretically as the disjoint union ofPa\Cπ with two copies ofPa∩Cπ
and use these disks as coordinates; the mapu : 6 → Pa is the identity onPa \ Cπ and
sends each pair of nodal points to the point ofCp which gave rise to it. Assertion (ii) fol-
lows from the removable singularity theorem for holomorphic functions, and (iii) follows
from (ii) and the fact that the mapsx 7→ (x,0) andy 7→ (0, y) are immersions. ut

Remark 4.4. We can construct acanonical desingularizationof the fiber by replacing
each pointp ∈ Pa ∩ Cπ by a point for each connected component ofU \ {p} whereU is
a suitable neighborhood ofp in Pa and extending the smooth and complex structures in
the only way possible.

Definition 4.5. Let πA : P → A andπB : Q → B be nodal families. Fora ∈ A and
b ∈ B a bijectionf : Pa → Qb is called afiber isomorphism iff for some (and hence
every) desingularizationu : 6 → Pa the mapf ◦ u : 6 → Qb is a desingularization.
A pseudomorphismfromπA to πB is a commutative diagram

P
8

−→ QyπA yπB
A

φ
−→ B

where8 and φ are smooth and, for eacha ∈ A, the restriction of8 to the fiberPa
is a fiber isomorphism. Amorphism is a pseudomorphism such that bothφ and8 are
holomorphic. Fora ∈ A andb ∈ B the notation

(8, φ) : (πA, a) → (πB , b)

indicates that the pseudomorphism(8, φ) satisfiesφ(a) = b.

Lemma 4.6. Letπ : P → A be a nodal family. Then the arithmetic genus (see Defini-
tion 3.6) of the fiberPa is a locally constant function ofa ∈ A.

Proof. The arithmetic genus is the genus of the surface obtained by removing a small
disk about each nodal point and identifying corresponding components. Hence it is equal
to the ordinary genus of a regular fiber. ut
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Definition 4.7. A marked nodal family is a pair (π, R∗) whereπ : P → A is a nodal
family and

R∗ = (R1, . . . , Rn)

is a sequence of complex submanifolds ofP which are pairwise disjoint and such that
π |Ri mapsRi diffeomorphically ontoA. It follows thatRi does not intersect the setCπ
of critical points. A desingularizationu : 6 → P of a fiberPa of a marked nodal family
(π, R∗) determines a point markingr∗ given by the formula

{u(ri)} = Ri ∩ Pa

for i = 1, . . . , n. By Lemma4.3any two desingularizations of the same fiber give rise to
isomorphic marked nodal Riemann surfaces. Thus the signature (see Definition3.4) of the
fiber (Pa, Pa ∩R∗) is independent of the choice of the desingularization used to define it.
In the context of marked nodal families, the termfiber isomorphismis understood to entail
that the bijectionf preserves the induced point markings; similarly pseudomorphisms
and morphisms of marked nodal families preserve the corresponding point markings. We
say that the marked nodal family(π, R∗) is of type (g, n) when each fiber is of type(g, n)
(see Definition3.7).

Definition 4.8. A fiber of a marked nodal familyπ : P → A is called stable iff its
desingularization is stable. A marked nodal family is calledstable iff each of its fibers is
stable.

Remark 4.9. It is easy to see that stability is an open condition, i.e. every stable fiber has
a neighborhood consisting of stable fibers. However, the open set of stable fibers can have
unstable fibers in its closure. For example, consider the nodal family(π, (R1, R2, R3))

with
P = {([x, y, z], a) ∈ CP 2

× C : xy = az2
},

A = C, π([x, y, z], a) = a, R1 = {[1,0,0]} × A, R2 = {[0,1,0]} × A, andR3 =

{([1, a,1], a) : a ∈ A}. The desingularization of the fiber over 0 consists of two compo-
nents of genus zero and the regular fibers consist of one component of genus zero. The
regular fibers all have three marked points and are thus stable; one of the two compo-
nents of the (desingularized) singular fiber has fewer than three special points and is thus
unstable.

5. Universal unfoldings

In this section we formulate the most important definitions and theorems of this paper.
The key definition is that of a universal unfolding. Once we have established the existence
of universal unfoldings, the definition of the orbifold structure on the Deligne–Mumford
moduli space (which we carry out in the next section) becomes almost tautological. The
most important theorem asserts that an unfolding is universal if and only if it satisfies a
suitable infinitesimal conditon (which is easier to verify).

Definition 5.1. A nodal unfolding is a triple (πB , S∗, b) consisting of a marked nodal
family (πB : Q → B, S∗) and a pointb ∈ B of the baseB. The fiberQb is called
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the central fiber of the unfolding and the unfolding is said to be an unfolding of the
marked nodal Riemann surface induced by any desingularization of this central fiber. The
unfolding is calleduniversal iff for every other nodal unfolding(πA : P → A,R∗, a)

and any fiber isomorphismf : Pa → Qb there is a unique germ of a morphism

(8, φ) : (πA, a) → (πB , b)

such that8(Ri) ⊂ Si for all i and8|Pa = f . The termgermmeans thatφ is defined in
a neighborhood ofa in A and8 is defined on the preimage of this neighborhood under
πA. The termuniquemeans that if(8′, φ′) is another morphism with the same properties
then it agrees with(8, φ) over a sufficiently small neighborhood ofa.

Definition 5.2. Let (π : Q → B, S∗, b) be an unfolding of a marked nodal Riemann
surface(6, s∗, ν, j) andu : 6 → Qb be a desingularization. Let

Xu,b :=

{
(û, b̂) ∈ �0(6, u∗TQ)× TbB

∣∣∣∣ dπ(u)û = b̂, û(si) ∈ Tu(si )Si, and
u(z1) = u(z2) ⇒ û(z1) = û(z2)

}
and

Yu := {η ∈ �0,1(6, u∗TQ) : dπ(u)η = 0}.

For (û, b̂) ∈ Xu,b define
Du,b(û, b̂) := Duû

whereDu : �0(6, u∗TQ) → �0,1(6, u∗TQ) is the linearized Cauchy–Riemann op-
erator. We call the unfolding(π, S∗, b) infinitesimally universal iff the operatorDu,b :
Xu,b → Yu is bijective for some (and hence every) desingularization of the central fiber.

Theorems 5.3, 5.5, and 5.6 which follow are proved in Section 12 below.

Theorem 5.3 (Stability). Let(π, S∗, b0) be an infinitesimally universal unfolding. Then
(π, S∗, b) is infinitesimally universal forb sufficiently nearb0.

Theorem 5.4 (Universal unfolding). An unfolding(π, S∗, b) is universal if and only if
it is infinitesimally universal.

Proof. We prove “if” in Section 12. For “only if” we argue as follows. A composition of
morphisms (of nodal unfoldings) is again a morphism. The only morphism which is the
identity on the central fiber of a universal unfolding is the identity. It follows that any two
universal unfoldings of the same marked nodal Riemann surface are isomorphic. By The-
orem 5.6 below there is an infinitesimally universal unfolding and by “if” it is universal
and hence isomorphic to every other universal unfolding. Any unfolding isomorphic to
an infinitesimally universal unfolding is itself infinitesimally universal. ut

Theorem 5.5 (Uniqueness).Let (πB , S∗, b0) be an infinitesimally universal unfolding.
Then every pseudomorphism from(πA, R∗, a0) to (πB , S∗, b0) is a morphism.

Theorem 5.6 (Existence).A marked nodal Riemann surface admits an infinitesimally
universal unfolding if and only if it is stable.
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Proof. We prove “if” in Section 12. For “only if” we argue as follows. Let(6, s∗, ν, j)
be a marked nodal Riemann surface. Assume it is not stable. Then either6 has genus
one and has no special points or else6 contains a component of genus zero with at
most two special points. In either case there is an abelian complex Lie groupA (namely
A = 6 in the former case andA = C∗ in the latter) and an effective holomorphic action
A × 6 → 6 : (a, z) 7→ a6(z). Let P := A × 6 andπA be the projection on the first
factor. If v : 6 → Q is any desingularization of a fiberQb of an unfoldingπB : Q → B,
then81(a, z) := v(z) and82(a, z) := v(a6(z)) are distinct morphisms which extend
the fiber isomorphism(e, z) 7→ v(z). HenceπB is not universal. ut

6. Universal families and the Deligne–Mumford moduli space

In this section we define the orbifold structure on the Deligne–Mumford moduli space.
The proof of compactness will be relegated to Section 14. The results we prove in this
section are easy consequences of Theorems 5.3 and 5.6.

6.1. Throughout this sectiong andn are nonnegative integers withn > 2 − 2g. Let
B̄g,n denote the groupoid whose objects are stable marked nodal Riemann surfaces of
type(g, n) and whose morphisms are isomorphisms of marked nodal Riemann surfaces.
TheDeligne–Mumford moduli spaceis the orbit spaceM̄g,n of this groupoid: a point
of M̄g,n is an equivalence class7 of objects ofB̄g,n where two objects are equivalent if
and only if they are isomorphic. We will introduce a canonical orbifold structure (see
Definition 2.4) on this groupoid. The following definition is crucial.

Definition 6.2. A universal marked nodal family of type(g, n) is a marked nodal fam-
ily (πB : Q → B, S∗) satisfying the following conditions.

(1) (πB , S∗, b) is a universal unfolding for everyb ∈ B.
(2) Every stable marked nodal Riemann surface of type(g, n) is the domain of a desin-

gularization of at least one fiber ofπB .
(3) B is second countable (but possibly disconnected).

Proposition 6.3. For every pair(g, n) withn > 2−2g there is a universal marked nodal
family.

Proof. By Theorems 5.6, 5.4, and 5.3, each stable marked nodal Riemann surface admits
a universal unfolding satisfying (1) and (3). To construct a universal unfolding that also
satisfies (2) we must cover̄Mg,n by countably many such families. This is possible be-
causeM̄g,n is a union of finitely many strata, one for each stable signature, and each
stratum is a separable topological space. ut

7 Strictly speaking, the equivalence class is a proper class in the sense of set theory as explained
in the appendix of [12] for example. One could avoid this problem by choosing for each stable
signature (see Remark 3.5 and 3.8) a “standard marked nodal surface” with that signature and
restricting the space of objects of the groupoidB̄g,n to those having a standard surface as substrate.
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Definition 6.4. Let (πB : Q → B, S∗) be a universal marked nodal family. Theasso-
ciated groupoid is the tuple(B, 0, s, t, e, i, m), where0 denotes the set of all triples
(a, f, b) such thata, b ∈ B andf : Qa → Qb is a fiber isomorphism, and the structure
mapss, t : 0 → B, e : B → 0, i : 0 → 0, andm : 0s×t 0 → 0 are defined by

s(a, f, b) := a, t (a, f, b) := b, e(a) := (a, id, a),

i(a, f, b) := (b, f−1, a), m((b, g, c), (a, f, b)) := (a, g ◦ f, c).

The associated groupoid is equipped with a functor

B → B̄g,n : b 7→ 6b

to the groupoidB̄g,n of 6.1. In other words,ιb : 6b → Qb denotes the canonical desin-
gularization defined in Remark4.4. By definition the induced map

B/0 → M̄g,n : [b]B 7→ [6b]B̄g,n , [b]B := {t (f ) : f ∈ 0, s(f ) = b},

on orbit spaces is bijective. The next theorem asserts that the groupoid(B, 0) equips the
moduli spaceM̄g,n with an orbifold structure which is independent of the choice of the
universal family. This is theorbifold structure on the Deligne–Mumford moduli space.

Theorem 6.5. (i) Let (πB : Q → B, S∗) be universal as in Definition6.2 and (B, 0)
be the associated groupoid of Definition6.4. Then there is a unique complex mani-
fold structure on0 such that(B, 0) is a complex etale Lie groupoid with structure
mapss, t, e, i, m.

(ii) A morphism between universal familiesπ0 : Q0 → B0 andπ1 : Q1 → B1 induces
a refinementι : (B0, 00) → (B1, 01) of the associated etale groupoids.

(iii) The orbifold structure onM̄g,n introduced in Definition6.4 is independent of the
choice of the universal marked nodal family(πB , S∗) used to define it.

Proof. We prove (i). Uniqueness is immediate since part of the definition of complex
etale Lie groupoid is thats is a local holomorphic diffeomorphism. We prove existence.
It follows from the definition of universal unfolding that each triple(a0, f0, b0) ∈ 0

determines a morphism
Q|U

8
−→ Q|Vyπ yπ

U
φ

−→ V

for suitable neighborhoodsU ⊂ B of a0 andV ⊂ B of b0 such that8|Qa0 = f0. Every
such morphism determines a chartι8 : U → 0 given by

ι8(a) := (a,8a, φ(a)).

(In this context a chart is a bijection between an open set in a complex manifold and a
subset of0.) By construction each transition map between two such charts is the identity.
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This defines the manifold structure on0. That the structure maps are holomorphic follows
from the identities

s ◦ ι8 = id, t ◦ ι8 = φ, e = ιid,

i ◦ ι8 = ι8−1 ◦ φ, m ◦ (ι9 ◦ φ × ι8) = ι9◦8.

This proves (i).
We prove (ii). If (φ,8) is a morphism fromπ0 to π1 then the refinementι : (B0, 00)

→ (B1, 01) of (ii) is given by

(a0, f0, b0) 7→ (φ(a0),8b0 ◦ f0 ◦8−1
a0
, φ(b0)).

This proves (ii).
We prove (iii). Letπ0 : Q0 → B0 andπ1 : Q1 → B1 be universal families. For each

b ∈ B0 choose a neighborhoodUb ⊂ B0 of b and a morphism8b : Q0|Ub → Q1. Cover
B0 by countably many such neighborhoodsUbi . Then the disjoint unionB of the nodal
familiesQ0|Ubi defines another universal familyπ : Q → B equipped with morphisms
to bothπ0 andπ1 (to π0 by inclusion and toπ1 by construction). Now each morphism of
universal families induces a refinement of the corresponding orbifold structures.ut

Theorem 6.6. Let (πB : Q → B, S∗) be a universal family. Then the etale groupoid
(B, 0) constructed in Definition6.4 is proper and the quotient topology onB/0 is com-
pact.

Proof. See Section 14 below. ut

Example 6.7. Assumeg = 0. Then the moduli spacēM0,n of marked nodal Riemann
surfaces of genus zero (called theGrothendieck–Knudsen compactification) is a com-
pact connected complex manifold (Knudsen’s theorem). In our formulation this follows
from the fact that the automorphism group of each marked nodal Riemann surface of
genus zero consists only of the identity. In [16, Appendix D] the complex manifold struc-
ture onM̄0,n is obtained from an embedding into a product of 2-spheres via cross ratios.
That the manifold structure in [16] agrees with ours follows from the fact that the projec-
tion π : M̄0,n+1 → M̄0,n (with the complex manifold structures of [16]) is a universal
family as in Definition 6.2.

7. Complex structures on surfaces

The sphere

In preparation for the construction of universal unfoldings (without nodes and marked
points) we review the space of complex structures on a Riemann surface6 in this and the
following two sections. This section treats the case of genus zero. Denote byJ (S2) the
space of complex structures onS2 that induce the standard orientation and by Diff0(S

2)

the group of orientation preserving diffeomorphisms ofS2.
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Theorem 7.1. There is a fibration

PSL2(C) → Diff 0(S
2)

↓

J (S2)

where the inclusionPSL2(C) → Diff 0(S
2) is the action by M̈obius transformations and

the projectionDiff 0(S
2) → J (S2) sendsφ to φ∗i.

The theorem asserts that the map Diff0(S
2) → J (S2) has the path lifting property for

smooth paths and that the lifting depends smoothly on the path. One consequence of this,
as observed in [4], is the celebrated theorem of Smale [19] which asserts that Diff0(S

2)

retracts onto SO(3). Another consequence is that, up to diffeomorphism, there is a unique
complex structure on the 2-sphere. Yet another consequence is that a proper holomorphic
submersion whose fibers have genus zero is holomorphically locally trivial. (See Theo-
rem 8.9.)

Proof of Theorem 7.1.Choose a smooth path [0,1] → J (S2) : t 7→ jt . We will find an
isotopyt 7→ ψt of S2 such that

ψ∗
t jt = j0. (2)

Suppose that the unknown isotopyψt is generated by a smooth family of vector fields
ξt ∈ Vect(S2) via

d

dt
ψt = ξt ◦ ψt , ψ0 = id .

Then (2) is equivalent toψ∗
t (Lξt jt + ĵt ) = 0 and hence to

Lξt jt + ĵt = 0, (3)

whereĵt := d
dt
jt ∈ C∞(End(T S2)). As usual we can think of̂jt as a(0,1)-form onS2

with values in the complex line bundle

Et := (T S2, jt ).

The vector fieldξt is a section of this line bundle. This line bundle is holomorphic and its
Cauchy–Riemann operator

∂̄jt : C∞(Et ) → �0,1(Et )

has the form
∂̄jtη =

1
2(∇η + jt ◦ ∇η ◦ jt )

where∇ is the Levi-Civita connection of the Riemannian metricω(·, jt ·) onS2 andω ∈

�2(S2) denotes the standard volume form. Now, for every vector fieldη ∈ Vect(S2), we
have

(Lξt jt )η = Lξt (jtη)− jtLξtη = [jtη, ξt ] − jt [η, ξt ]

= ∇ξt (jtη)− ∇jtηξt − jt∇ξtη + jt∇ηξt

= jt∇ηξt − ∇jtηξt = 2jt (∂̄jt ξt )(η).
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The penultimate equality uses the fact thatjt is integrable and so∇jt = 0. Hence equa-
tion (3) can be expressed in the form

∂̄jt ξt =
1
2jt ĵt . (4)

Now the line bundleEt has Chern numberc1(Et ) = 2 and hence, by the Riemann–Roch
theorem, the Cauchy–Riemann operator∂̄jt has real Fredholm index six and is surjective
for everyt . Denote by

∂̄∗

jt
: �0,1(Et ) → C∞(Et )

the formalL2-adjoint operator of̄∂jt . By elliptic regularity, the formula

ξt :=
1

2
∂̄∗
ξt
(∂̄jt ∂̄

∗

jt
)−1(jt ĵt )

defines a smooth family of vector fields onS2 and this family obviously satisfies (4).
Hence the isotopyψt generated byξt satisfies (2). ut

Lemma 7.2. Let C → J (S2) : s + it 7→ js,t be holomorphic andC → Diff (S2) :
s + it 7→ φs,t be the unique family of diffeomorphisms satisfying

φ∗
s,tjs,t = i, φs,t (0) = 0, φs,t (1) = 1, φs,t (∞) = ∞.

Then the map
C × S2

→ C × S2 : (s + it, z) 7→ (s + it, φs,t (z))

is holomorphic with respect to the standard complex structure at the source and the com-
plex structure

J (s, t, z) :=

(
i 0
0 js,t (z)

)
at the target.

Proof. Defineξs,t , ηs,t ∈ Vect(S2) by

∂sφs,t = ξs,t ◦ φs,t , ∂yφs,t = ηs,t ◦ φs,t .

Differentiating the identityφ∗
s,tjs,t = i gives∂sj+Lξ j = ∂tj+Lηj = 0. Sinces+it 7→

js,t is holomorphic we have

0 = ∂sj + j∂tj = −Lξ j − jLηj = −Lξ+jηj

where the last equality uses the integrability ofj . Thusξs,t + js,tηs,t is a holomorphic
vector field vanishing at three points soξs,t + js,tηs,t = 0 for all s, t . Hence by definition
of ξ andη we have

∂sφ + j∂tφ = 0

as required. ut

The torus

Continuing the preparatory discussion of the previous section we treat the case of genus
one. Denote byJ (T2) the space of complex structures on the 2-torusT2 := R2/Z2 that
induce the standard orientation and by Diff0(T2) the group of diffeomorphisms ofT2
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that induce the identity on homology. Denote the elements of the upper half planeH by
λ = λ1 + iλ2 and consider the mapj : H → J (T2) given by

j (λ) :=
1

λ2

(
−λ1 −λ2

1 − λ2
2

1 λ1

)
. (5)

Thusj (λ) is the pullback of the standard complex structure under the diffeomorphism

fλ : T2
→

C
Z + λZ

, fλ(x, y) := x + λy.

A straightforward calculation shows that the mapj : H → J (T2) is holomorphic as is
the map

(λ, z+ Z + λZ) 7→ (j (λ), f−1
λ (z)+ Z2)

from {(λ, z+ Z + λZ) : λ ∈ H, z ∈ C} toJ (T2)× T2. The next theorem shows that the
mapj : H → J (T2) is a global slice for the action of Diff0(T2).

Theorem 7.3. There is a proper fibration

T2
→ Diff 0(T2)× H

↓

J (T2)

where the inclusionT2
→ Diff 0(T2) is the action by translations and the projection

Diff 0(T2)× H → J (T2) sends(φ, λ) to φ∗jλ.

The theorem asserts that the map Diff0(T2)×H → J (T2) has the path lifting property for
smooth paths and that the lifting depends smoothly on the path. One consequence of this
is that Diff0(T2) retracts ontoT2. Another consequence is that every complex structure
onT2 is diffeomorphic tojλ for someλ ∈ H.

Proof of Theorem7.3. The uniformization theorem asserts that for everyj ∈ J (T2) there
is a unique volume formωj ∈ �2(T2)with

∫
T2 ωj = 1 such that the metricgj = ωj (·, j ·)

has constant curvature zero. (A proof can be based on the Kazdan–Warner equation.)
Hence it follows from the Cartan–Ambrose–Hicks theorem that, for every positive real
numberµ, there is an orientation preserving diffeomorphismψj : C → R2, unique up to
composition with a rotation, such that

ψ∗

j gj = µg0, ψ(0) = 0.

Hereg0 denotes the standard metric onC. We can chooseµ and the rotation such that
ψj (1) = (1,0). This determinesψj (andµ) uniquely. The orientation preserving condi-
tion shows thatλj := ψj (i) ∈ H. Moreover, it follows from the invariance ofgj under
the action ofZ2 that

ψj (Z + λZ) = Z2.

Henceψj induces an isometry of flat tori(C/Z + λjZ, g0) → (T2, gj ) which will
still be denoted byψj . Let φj be the precomposition of this isometry with the map
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T2
→ C2/Z + λjZ : (x, y) 7→ x + λjy. Thenφj ∈ Diff 0(T2) andφ∗

j j = j (λj ). Thus
we have proved that the map

Diff 00(T2)× H → J (T2) : (φ, λ) 7→ φ∗j (λ)

is a bijection, where Diff00(T2) is the subgroup of all diffeomorphismsφ ∈ Diff 0(T2) that
satisfyφ(0) = 0. That the map Diff00(T2) × H → J (T2) is actually a diffeomorphism
follows by examining the linearized operator at points(φ, λ) with φ = id and noting that
it is a bijection (between suitable Sobolev completions). This proves the theorem.ut

Surfaces of higher genus

Continuing the preparatory discussion of the previous two sections we treat the case of
genus bigger than one. Let6 be a compact connected oriented 2-manifold of genusg > 1
andJ (6) be the Fŕechet manifold of complex structuresj on6, i.e. j is an automor-
phism of T6 such thatj2

= −1. The identity component Diff0(6) of the group of
orientation preserving diffeomorphisms acts onJ (6) by j 7→ φ∗j . The orbit space

T (6) := J (6)/Diff 0(6)

is called theTeichmüller spaceof 6. For j ∈ J (6) the tangent spaceTjJ (6) is the
space of endomorphismŝj ∈ �0(6,End(T 6)) that anti-commute withj , i.e. j ĵ + ĵ j

= 0. Thus
TjJ (6) = �

0,1
j (6, T 6).

Define an almost complex structure onJ (6) by the formulaĵ 7→ j ĵ . The next theorem
shows thatT (6) is a complex manifold of dimension 3g − 3.

Theorem 7.4. For everyj0 ∈ J (6) there exists a holomorphic local slice throughj0.
More precisely, there is an open neighborhoodB of zero inC3g−3 and a holomorphic
mapι : B → J (6) such that the map

B × Diff 0(6) → J (6) : (b, φ) 7→ φ∗ι(b)

is a diffeomorphism onto a neighborhood of the orbit ofj0.

Proof. We first show that each orbit of the action of Diff0(6) is an almost complex sub-
manifold ofJ (6). (The complex structure onJ (6) is integrable becauseJ (6) is the
space of sections of a bundle over6 whose fibers are complex manifolds. However, we
shall not use this fact.) The Lie algebra of Diff0(6) is the space of vector fields

Vect(6) = �0(6, T 6).

Its infinitesimal action onJ (6) is given by

Vect(6) → TjJ (6) : ξ 7→ Lξ j = 2j ∂̄j ξ.

Thus the tangent space of the orbit ofj is the image of the Cauchy–Riemann operator
∂̄j : �0(6, T 6) → �

0,1
j (6, T 6). Sincej is integrable the operator∂̄j is complex linear

and so its image is invariant under multiplication byj .
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By the Riemann–Roch theorem the operator∂̄j has complex Fredholm index 3− 3g.
It is injective because its kernel is the space of holomorphic sections of a holomorphic
line bundle of negative degree. Hence its cokernel has dimension 3g − 3. Let B ⊂

�
0,1
j0
(6, T 6) be an open neighborhood of zero in a complex subspace of dimension

3g − 3 which is a complement of the image of∂̄j0 and assume that1 + η is invertible
for everyη ∈ B. Defineι : B → J (6) by

ι(η) := (1 + η)−1j0(1 + η).

Then
dι(η)η̂ = [ι(η), (1 + η)−1η̂]

and an easy calculation shows thatι is holomorphic, i.e.dι(η)j0η̂ = ι(η)dι(η)η̂ for all η
andη̂.

Let p > 2 and denote by Diff2,p0 (6) andJ 1,p(6) the appropriate Sobolev comple-
tions. Consider the map

Diff 2,p
0 (6)× B → J 1,p(6) : (φ, η) 7→ φ∗ι(η).

This is a smooth map between Banach manifolds and, by construction, its differential at
(id,0) is bijective. Hence, by the inverse function theorem, it restricts to a diffeomor-
phism from an open neighborhood of(id,0) in Diff 2,p

0 (6)× B to an open neighborhood
of j0 in J 1,p(6). The restriction of this diffeomorphism to the space of smooth pairs in
Diff 0(6)×B is a diffeomorphism onto an open neighborhood ofj0 in J (6). To see this,
note that every element of Diff2,p

0 (6) is aC1 diffeomorphism and that everyC1 diffeo-
morphism of6 that intertwines two smooth complex structures is necessarily smooth.
ShrinkB so that{id} × B is a subset of the neighborhood just constructed. The action
of Diff 0(6) onJ (6) is free and Lemma 7.5 below asserts that it is proper. Hence, by a
standard argument, we may shrinkB further so that the local diffeomorphism

Diff 0 ×B → J (6) : (φ, η) 7→ φ∗ι(η)

is injective; it is the required diffeomorphism onto an open neighborhood of the orbit
of j0. ut

Lemma 7.5. Let6 be a surface andjk, j ′

k ∈ J (6) andφk ∈ Diff (6) be sequences such
that j ′

k converges toj ′
∈ J (6) andjk = φ∗

k j
′

k converges toj ∈ J (6). Thenφk has a
subsequence which converges inDiff (6).

Proof. Fix an embedded closed diskD ⊂ 6 and two pointsz0 ∈ int(D), z1 ∈ ∂D. Let
D ⊂ C denote the closed unit disk. By the Riemann mapping theorem, there is a unique
diffeomorphismuk : D → D such that

u∗

kjk = i, uk(0) = z0, uk(1) = z1.

The standard bubbling and elliptic bootstrapping arguments forJ -holomorphic curves
(see [16, Appendix B]) show thatuk converges in theC∞ topology. The same arguments
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show that the sequenceu′

k := φk ◦ uk of j ′

k-holomorphic disks has a subsequence which
converges on every compact subset of the interior ofD. Thus we have proved that the
restriction ofφk to any embedded disk in6 has a convergent subsequence. Henceφk has
a convergent subsequence. The limitφ satisfiesφ∗j ′

= j and has degree one. Henceφ is
a diffeomorphism. ut

8. Teichmüller space

The spaceTg

In this section we prove Theorems 5.3–5.6 forg > 1 in the case of surfaces without nodes
or marked points.

8.1. LetA be a complex manifold and6 be a surface. We denote the complex structure
onA by

√
−1. An almost complex structure onA×6 with respect to which the projection

A×6 → A is holomorphic has the form

J =

(√
−1 0
α j

)
, (6)

wherej : A → J (6) is a smooth function with values in the space of (almost) complex
structures on6 andα ∈ �1(A,Vect(6)) is a smooth 1-form onA with values in the
space of vector fields on6 such that

α(a,
√

−1â)+ j (a)α(a, â) = 0 (7)

for all a ∈ A and â ∈ TaA. This means that the 1-formα is complex anti-linear with
respect to the complex structure on the vector bundleA × Vect(6) → A determined
by j . From an abstract point of view it is useful to think ofα as a connection on the
(trivial) principal bundleA×Diff (6) and ofj : A → J (6) as a section of the associated
fiber bundleA×J (6). This section is holomorphic with respect to the Cauchy–Riemann
operator associated to the connectionα if and only if

dj (a)â + j (a)dj (a)
√

−1â + j (a)Lα(a,â)j (a) = 0 (8)

for all a ∈ A andâ ∈ TaA. (For a finite-dimensional analogue see for example [2].)

Lemma 8.2. J is integrable if and only ifj andα satisfy(8).

Proof. It suffices to consider the casem = 1, soA ⊂ C with coordinates + it . Then the
complex structureJ onA×6 has the form

J =

 0 −1 0
1 0 0

−jξ −ξ j

 , (9)

whereA → J (6) : s + it 7→ js,t andA → Vect(6) : s + it 7→ ξs,t are smooth maps.
The equation (8) has the form

∂sj + j∂tj + Lξ j = 0. (10)
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To see that this is equivalent to integrability ofJ evaluate the Nijenhuis tensorNJ (X, Y )
:= [JX, JY ] − J [X, JY ] − J [JX, Y ] − [X, Y ] on a pair of vectors of the formX =

(1,0,0), Y = (0,0, ẑ). The conditionNJ (X, Y ) = 0 for all such vectors is equivalent
to (10) and it is easy to see thatNJ = 0 if and only ifNJ ((1,0,0), (0,0, ẑ)) = 0 for all
ẑ ∈ T6. The latter assertion uses the facts thatNJ is bilinear,NJ (X, Y ) = −NJ (Y,X) =

JNJ (JX, Y ), and every complex structure on a 2-manifold is integrable. This proves the
lemma. ut

Let A be a complex manifold andι : A → J (6) be a holomorphic map. Consider the
fibration

πι : Pι := A×6 → A

with almost complex structure

Jι(a, z) :=

(√
−1 0
0 ι(a)(z)

)
. (11)

By Lemma 8.2 the almost complex structureJι onPι is integrable.

Lemma 8.3. Let a ∈ A. Then the pair(πι, a) is an infinitesimally universal unfolding if
and only if the restriction ofι to a sufficiently small neighborhood ofa is a local slice as
in Theorem7.4.

Proof. Let u : 6 → Pa be the diffeomorphismu(z) := (a, z) and definej := ι(a). Then
the linearized operatorDu,a (at the pair(u, a) for the equation̄∂ju = 0 with j = ι(a))

has domainXu,a = �0(6, T 6)× TaA, target spaceYu = �
0,1
j (6, T 6) and is given by

Du,a(û, â) = ∂̄j û−
1
2jdι(a)â.

(See the formula in [16, p. 176] withv = id.) This operator is bijective if and only if
dι(a) is injective and its image inTjJ = �

0,1
j (6, T 6) is a complement of im̄∂j =

Tj (Diff 0(6)
∗j) (see the proof of Theorem 7.4). This proves the lemma. ut

Theorem 8.4. Theorems5.3–5.6 hold for Riemann surfaces of genusg > 1 without
nodes and marked points.

Proof. Let6 be a surface of genusg. Abbreviate

D0 := Diff 0(6), J := J (6), T := T (6) := J (6)/Diff 0(6).

ThusTg := T is Teichm̈uller space. Consider the principal fiber bundle

D0 → J → T .

The associated fiber bundle

πT : Q := J ×D0 6 → T

has fibers isomorphic to6.



638 Joel W. Robbin, Dietmar A. Salamon

Step 1. Q andT are complex manifolds andπT is a proper holomorphic submersion.

By Lemma 8.2 withA = J and the mapA → J equal to the identity, the spaceJ ×6

is a complex manifold. SinceD0 acts by holomorphic diffeomorphisms, so is the (finite-
dimensional) quotientQ.

Step 2. The projectionπT is an infinitesimally universal unfolding of each of its fibers.

Choose [j0] ∈ T . Let B be an open neighborhood of 0 inC3g−3 andι : B → J be a
local holomorphic slice such thatι(0) = j0 (see [20] or Section 7). Then the projection
Qι → B is a local coordinate chart onQ → T . Hence Step 2 follows from Lemma 8.3.

Step 3. Every pseudomorphism from(πA, a0) to (πT , [j0]) is a morphism.

Let (φ,8) be a pseudomorphism from(πA : P → A, a0) to (πT , [j0]) andι : B → J
be as in the proof of Step 2. Define(ψ,9) to be the composition of(φ,8) with the
obvious morphism from(πT , [j0]) to (Qι,0). Using the maps9a : Pa → 6 given by
9(p) =: (ψ(a),9a(p)) for p ∈ Pa we construct a trivialization

τ : A×6 → P, τ(a, z) := τa(z) := 9−1
a (z).

Then the pullback of the complex structure onP underτ has the form

J (a, z) :=

(√
−1 0
α j (a)(z)

)
where j := ι ◦ ψ : A → J and α ∈ �

0,1
j (A,Vect(6)). SinceJ is integrable it

follows from Lemma 8.2 thatj and α satisfy (8). Since the local slice is holomor-
phic the termdj (a)â + j (a)dj (a)

√
−1â is tangent to the slice while the last summand

j (a)Lα(a,â)j (a) = −Lα(a,√−1â)j (a) is tangent to the orbit ofj (a) underD0. It follows
that both terms vanish for alla ∈ A andâ ∈ TaA. Henceα = 0 and the mapj : A → J
is holomorphic. Thereforeψ : A → B is holomorphic and hence so is9.

Step 4. πT is a universal unfolding of each of its fibers.

Choose an unfolding(πA : P → A, a0) and a holomorphic diffeomorphismu0 : (6, j0)
→ Pa0. Thenu−1

0 is a fiber isomorphism fromPa0 to Q[j0] . Trivialize P by a map
τ : A×6 → P such thatτa0 = u0. Definej : A → J so thatj (a) is the pullback
of the complex structure onPa underτa . Thenj (a0) = j0. Defineφ : A → T and
8 : P → Q by

φ(a) := [j (a)], 8(p) := [j (a), z], p =: τ(a, z)

for a ∈ A andp ∈ Pa . This is a pseudomorphism and hence, by Step 3, it is a morphism.
To prove uniqueness, choose a local holomorphic sliceι : B → J such thatι(0) = j0.

Choose two morphisms(ψ,9), (φ,8) : (πA, a0) → (πι,0) such that8a0 = 9a0 =

u−1
0 : Pa0 → 6. If a is neara0 then

9a ◦8−1
a : (6, ι(φ(a))) → (6, ι(ψ(a)))
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is a diffeomorphism close to the identity and hence isotopic to the identity. Hence by the
local slice propertyφ(a) = ψ(a) and9a ◦8−1

a = id.

Step 5.Let j0 be a complex structure on6. Every infinitesimally universal unfolding
(πB : Q → B, b0) of (60, j0) is isomorphic to(πT , [j0]).

As in Step 3 we may assume thatQ = B ×6 with complex structure

J (b, z) :=

(√
−1 0
0 ι(b)(z)

)
whereι : B → J is holomorphic andι(b0) = j0. By Lemma 8.2 this almost complex
structure is integrable. Since(πB : Q → B, b0) is infinitesimally universal, it follows
from Lemma 8.3 that the restriction ofι to a neighborhood ofb0 is a local slice. Hence
(πB , b0) is isomorphic to(πT , [j0]) by the local slice property. ut

Remark 8.5. The universal unfoldingπT : Q → T of Theorem 8.4 determines an etale
groupoid(B, 0) with B := T = J (6)/Diff 0(6) and

0 := {[j, φ, j ′] : j, j ′
∈ J (6), φ ∈ Diff (6), j = φ∗j ′

}.

Here [j, φ, j ′] denotes the equivalence class under the diagonal action of Diff0(6) by
ψ∗(j, φ, j ′) := (ψ∗j, ψ−1

◦ φ ◦ ψ,ψ∗j ′). By Lemma 7.5 this etale groupoid is proper.

The spaceTg,n

In this section we prove Theorems 5.3–5.6 for all stable marked Riemann surfaces without
nodes. Let(6, s∗, j0) be a stable marked Riemann surface of type(g, n) without nodes.
We will construct an infinitesimally universal unfolding(πB , S∗, b0) of (6, j0, s∗), prove
that it is universal, and prove that every infinitesimally universal unfolding of(6, s∗, j0)

is isomorphic to the one we have constructed.

8.6. Let n andg be nonnegative integers such thatn > 2 − 2g and let6 be a surface of
genusg. Abbreviate

G := Diff 0(6), P := J (6)× (6n \1), B := P/G,

where1 ⊂ 6n denotes the fat diagonal, i.e. the set of alln-tuples of points in6n where
at least two components are equal. ThusB = Tg,n is the Teichm̈uller space of Riemann
surfaces of genusg with n distinct marked points. Consider the principal fiber bundle

G → P → B.

The associated fiber bundle

πB : Q := P ×G 6 → B

has fibers isomorphic to6 and is equipped withn disjoint sections

Si := {[j, s1, . . . , sn, z] ∈ Q : z = si}, i = 1, . . . , n.

It is commonly called theuniversal curveof genusg with n marked points.
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8.7. Let (j0, r∗) ∈ P, A be a complex manifold,a0 ∈ A, and letι = (ι0, ι1, . . . , ιn) :
A → P be a holomorphic map such that

ι0(a0) = j0, ιi(a0) = ri, i = 1, . . . , n. (12)

Define the unfolding(πι : Pι → A,Rι,∗, a0) by

Pι := A×6, Jι(a, z) :=

(√
−1 0
0 ι0(a)(z)

)
(13)

where
√

−1 denotes the complex structure onA and

Rι,i := {(a, ιi(a)) : a ∈ A}, i = 1, . . . , n. (14)

Lemma 8.8. The unfolding(πι, Rι,∗, a0) is infinitesimally universal if and only if the
restriction of ι to a sufficiently small neighborhood ofa0 is a (holomorphic) local slice
for the action ofG onP.

Proof. Let u0 : (6, j0) → A be the holomorphic embeddingu0(z) := (a0, z). Then the
operatorDu0,a0 has domain

X0 := {(û, â) ∈ �0(6, T 6)× Ta0A : û(ri) = dιi(a0)â},

target spaceY0 := �
0,1
j0
(6, T 6), and is given by

Du0,a0(û, â) = ∂̄j0û−
1
2j0dι0(a0)â.

Now the tangent space of the group orbitG∗(j0, r∗) at (j0, r∗) is given by

T(j0,r∗)G
∗(j0, r∗) = {(2j0∂̄j0ξ,−ξ(r1), . . . ,−ξ(rn)) : ξ ∈ �0(6, T 6)}.

(See the proof of Theorem 7.1 for the formulaLξ j0 = 2j0∂̄j0ξ .) Hence the operator
Du0,a0 is injective if and only if imdι(a0)∩ T(j0,r∗)G∗(j0, r∗) = 0 anddι(a0) is injective.
It is surjective if and only if imdι(a0) + T(j0,r∗)G∗(j0, r∗) = T(j0,r∗)P. This proves the
lemma. ut

Theorem 8.9. Theorems5.3–5.6hold for marked Riemann surfaces without nodes.

Proof.

Step 1. Q and B are complex manifolds, the projectionπB is a proper holomorphic
submersion, andS1, . . . ,Sn are complex submanifolds ofQ.

Apply Lemma 8.2 to the complex manifoldA = J = J (6), replace the fiber6 by
6n \ 1, and replaceι by the mapJ → J (6n \ 1) which assigns to each complex
structurej ∈ J (6) the corresponding product structure on6n \1. Then (the proof of)
Lemma 8.2 shows thatP = J×(6n\1) is a complex manifold. The groupG = Diff 0(6)

acts on this space by the holomorphic diffeomorphisms

(j, s1, . . . , sn) 7→ (f ∗j, f−1(s1), . . . , f
−1(sn))
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for f ∈ G. The action is free and admits holomorphic local slices for allg andn. It
follows that the quotientB = P/G is a complex manifold. The same argument shows
that the total spaceQ is a complex manifold and that the projectionπB : Q → B is
holomorphic. That it is a proper submersion is immediate from the definitions.

Here are more details on the holomorphic local slices for the action ofG on P. In
the caseg > 1 we will find a holomorphic local sliceι : B → P, defined onB :=
B0 × int(D)n, which has the form

ι(b0, b1, . . . , bn) = (ι0(b0), ι1(b0, b1), . . . , ιn(b0, bn)).

Here ι0 : B0 → J is a holomorphic local slice as in Theorem 7.4. Fori = 1, . . . , n,
the map(b0, bi) 7→ (b0, ιi(b0, bi)) is holomorphic with respect to the complex structure
Jι0 onQ0 := B0 × 6 defined by (13) and restricts to a holomorphic embedding from
b0 × int(D) to (6, j) with j = ι0(b0). That such mapsιi exist and can be chosen with
disjoint images follows from Lemma 7.2.

In the caseg = 1 andn ≥ 1 with 6 = T2 := R2/Z2 an example of a holomorphic
local slice is the mapι : B = B0 × B1 × · · · × Bn−1 → P given by

ι(λ0, b1, . . . , bn−1) := (j (λ0), f
−1
λ0
(b1), . . . , f

−1
λ0
(bn−1), f

−1
λ0
(sn))

whereB0 ⊂ H andBi ⊂ C are open sets such that closures of then − 1 setsBi +

Z + λ0Z ⊂ Tλ0 := C/Z + λ0Z are pairwise disjoint, none of these sets contains the
point sn + Z + λ0Z, the complex structurej (λ0) ∈ J (T2) is defined by (5), and the
isomorphismfλ0 : (T2, j (λ0)) → Tλ0 is defined byfλ0(x, y) := x + λ0y. That any
such map is a holomorphic local slice for the action ofG = Diff 0(T2) follows from
Theorem 7.3.

In the caseg = 0 andn ≥ 3 with6 = S2, an example of a holomorphic local slice is
the mapι : B = int(D)n−3

→ P given by

ι(b1, . . . , bn−s) := (j0, ι1(b1), . . . , ιn−3(bn−3), sn−2, sn−1, sn)

wheresn−2, sn−1, sn are distinct points inS2, j0 ∈ J (S2) denotes the standard complex
structure, and theιi : int(D) → S2 are holomorphic embeddings for 1≤ i ≤ n − 3
such that the closures of their images are pairwise disjoint and do not contain the points
sn−2, sn−1, sn. That any such map is a holomorphic local slice for the action ofG =

Diff 0(S
2) follows from Theorem 7.1.

Thus we have constructed holomorphic local slices for the action ofG = Diff 0(6) on
P = J (6)× (6n \1) in all cases. Holomorphic slices for the action ofG onP ×6 can
be constructed in a similar fashion. It then follows from the symmetry of the construction
under permutations of the components in6 that the sectionsSi are complex submanifolds
of Q. This proves Step 1.

Step 2. The pair(πB,S∗) is an infinitesimally universal unfolding of each of its fibers.

Choose [j0, s∗] ∈ B. Let B be an open neighborhood ofb0 = 0 in C3g−3+n and ι =

(ι0, ι1, . . . , ιn) : B → P be a local holomorphic slice satisfying (12). Then the unfolding
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(πι : Qι → B, Sι,∗, b0) defined as in (13) and (14) is isomorphic to(πB,S∗, [j0, s∗]).
Hence Step 2 follows from Lemma 8.8.

Step 3. Every pseudomorphism from(πA, R∗, a0) to (πB,S∗, [j0, s∗]) is a morphism.

Let (φ,8) be a pseudomorphism from(πA : P → A,R∗, a0) to (πB,S∗, [j0, s∗]) and
ι = (ι0, ι1, . . . , ιn) : B → P be as in the proof of Step 2. Define(ψ,9) to be the
composition of(φ,8)with the obvious morphism from(πB,S∗, [j0, s∗]) to the unfolding
(Qι, Sι,∗, b0), defined as in (13) and (14). Using the maps9a : Pa → 6 given by
9(p) =: (ψ(a),9a(p)) for p ∈ Pa we construct a trivialization

τ : A×6 → P, τ(a, z) := τa(z) := 9−1
a (z).

Then the pullback of the sectionRi is given by

τ−1(Ri) = {(a, σi(a)) : a ∈ A}, σi := ιi ◦ ψ : A → 6,

and the pullback of the complex structure onP underτ has the form

J (a, z) :=

(√
−1 0
α j (a)(z)

)
,

wherej := ι0 ◦ ψ : A → J andα ∈ �
0,1
j (A,Vect(6)). SinceJ is integrable it follows

from Lemma 8.2 thatj andα satisfy

dj (a)â + j (a)dj (a)
√

−1â − Lα(a,√−1â)j (a) = 0.

Sinceτ−1(Ri) is a complex submanifold ofA×6, we have

dσi(a)â + j (a)dσi(a)
√

−1â + α(a,
√

−1â)(σi(a)) = 0 (15)

for i = 1, . . . , n. Sinceι is a local holomorphic slice these two equations together imply
that

dj (a)â + j (a)dj (a)
√

−1â = 0, dσi(a)â + j (a)dσi(a)
√

−1â = 0,

andLα(a,√−1â)j (a) = 0 andα(a,
√

−1â)(σi(a)) = 0 for all â ∈ TaA. Sincen > 2−2g it
follows thatα ≡ 0. Moreover, the map(j, σ1, . . . , σn) = ι ◦ψ : A → P is holomorphic.
Sinceι is a holomorphic local slice, this implies thatψ , and hence also9, is holomorphic.

Step 4. The pair(πB,S∗) is a universal unfolding of each of its fibers.

Choose [j0, s∗] ∈ B and let(πA : P → A, a0) admit an isomorphismu0 : (6, j0) → Pa0

such thatu0(si) := Pa0 ∩ Ri . Thenu−1
0 is a fiber isomorphism fromPa0 to Q[j0,s∗] .

Trivialize P by a mapτ : A × 6 → P such thatτa0 = u0. Definej : A → J and
σi : A → 6 so thatj (a) is the pullback of the complex structure onPa underτa and
τ−1(Ri) = {(a, σi(a)) : a ∈ A}. Thenj (a0) = j0 andσi(a0) = si . Defineφ : A → B
and8 : P → Q by

φ(a) := [j (a), σ∗(a)], 8(p) := [j (a), σ∗(a), z], p =: τ(a, z)
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for a ∈ A andp ∈ Pa . This is a pseudomorphism and hence, by Step 3, it is a morphism.
To prove uniqueness, choose a local holomorphic sliceι = (ι0, ι1, . . . , ιn) : B → P such
thatι(b0) = (j0, s1, . . . , sn). Choose two morphisms

(ψ,9), (φ,8) : (πA, R∗, a0) → (πι, Sι,∗, b0)

such that8a0 = 9a0 = u−1
0 : Pa0 → 6. If a is neara0 then

9a ◦8−1
a : (6, ι0(φ(a))) → (6, ι0(ψ(a)))

is a diffeomorphism isotopic to the identity that sendsιi(φ(a)) to ιi(ψ(a)) for i =

1, . . . , n. Hence by the local slice propertyφ(a) = ψ(a) and8a = 9a .

Step 5. Let j0 be a complex structure on6 and s1, . . . , sn be distinct marked points
on6. Every infinitesimally universal unfolding(πB : Q → B, S∗, b0) of (60, s∗, j0) is
isomorphic to(πB,S∗, [j0, s∗]).

As in Step 3 we may assume thatQ = B ×6 with complex structure

J (b, z) :=

(√
−1 0
0 ι0(b)(z)

)
andSi = {(b, ιi(b)) : b ∈ B} whereι = (ι0, ι1, . . . , ιn) : B → P is holomorphic
and ι(b0) = (j0, s1, . . . , sn). By Lemma 8.2 the almost complex structureJ is inte-
grable. Since(πB : Q → B, S∗, b0) is infinitesimally universal, the restriction ofι to a
neighborhood ofb0 is a local slice by Lemma 8.8. Hence(πB , S∗, b0) is isomorphic to
(πB,S∗, [j0, s0]) by the local slice property. ut

Remark 8.10. The etale groupoid associated to the universal marked curve of 8.6 is
proper as in Remark 8.5.

9. Nonlinear Hardy spaces

In this section we characterize infinitesimally universal unfoldings in terms of certain
“nonlinear Hardy spaces” associated to a desingularization. The idea is to decompose a
Riemann surface6 as a union of submanifolds� and1, intersecting in their common
boundary, and to identify holomorphic maps on6 with pairs of holomorphic maps de-
fined on� and1 that agree on that common boundary.

9.1. Throughout this section we assume that

(πB : Q → B, S∗, b0)

is a nodal unfolding of a marked nodal Riemann surface(6, s∗, ν, j) and that

w0 : 6 → Qb0
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is a desingularization. LetCB ⊂ Q denote the set of critical points ofπB . Let U be a
neighborhood ofCB equipped with nodal coordinates. This means

U = U1 ∪ · · · ∪ Uk

where the setsUi have pairwise disjoint closures, eachUi is a connected neighborhood
of one of the components ofCB , and fori = 1, . . . , k there is a holomorphic coordinate
system

(ζi, τi) : B → C × Cd−1, d := dimC(B),

and holomorphic functionsξi, ηi : Ui → C such that

(ξi, ηi, τi ◦ πB) : Ui → C × C × Cd−1

is a holomorphic coordinate system andξiηi = ζi ◦ πB . Assume thatŪ ∩ S∗ = ∅. Let
V ⊂ Q be an open set such that

Q = U ∪ V, V̄ ∩ CB = ∅,

andUi ∩V intersects each fiberQb in two open annuli with|ξi | > |ηi | on one component
and|ξi | < |ηi | on the other. Introduce the abbreviations

W := U ∩ V, Wi := Ui ∩ V, Wi,1 := {|ξi | > |ηi |}, Wi,2 := {|ξi | < |ηi |},

Ub := U ∩Qb, Vb := V ∩Qb, Wb := W ∩Qb.

9.2. We consider a decomposition

6 = � ∪1, ∂� = ∂1 = � ∩1 =: 0,

into submanifolds with boundary such that1 is a disjoint union

1 = 11 ∪ · · · ∪1k

where, for eachi, the set1i is either an embedded closed annulus or the union of two
disjoint embedded closed disks centered at two equivalent nodal points, and

w0(�) ⊂ V, w0(1i) ⊂ Ui

for i = 1, . . . , k. It follows that every pair of equivalent nodal points appears in some1i .
In case1i is a disjoint union of two disks, say1i = 1i,1 ∪ 1i,2, choose holomorphic
diffeomorphismsxi : 1i,1 → D andyi : 1i,2 → D which send the nodal point to 0.
In case1i is an annulus choose a holomorphic diffeomorphismxi : 1i → A(δi,1) and
defineyi : 1i → A(δi,1) by yi = δi/xi . In both cases choose the names so that

w0(x
−1
i (S1)) ⊂ Wi,1, w0(y

−1
i (S1)) ⊂ Wi,2.

The curvesξi ◦ w0 ◦ x−1
i andηi ◦ w0 ◦ y−1

i from S1 to C \ 0 both have winding number
one about the origin.
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9.3. Fix an integers + 1/2 > 1. SinceπB |W is a submersion, the spaceH s(0,Wb) is,
for eachb ∈ B, a submanifold of the Hilbert manifold of allH s maps from0 toW (see
Appendix B). Define an open subset

W(b) ⊂ H s(0,Wb)

by the condition that forγ ∈ H s(0,Wb) we haveγ ∈ W(b) iff

γ (x−1
i (S1)) ⊂ Wi,1, γ (y−1

i (S1)) ⊂ Wi,2,

and the curvesξi ◦ γ ◦ x−1
i andηi ◦ γ ◦ y−1

i from S1 to C \ 0 both have winding number
one about the origin. Introduce sets

Z(b) := {v ∈ Hols+1/2(�, Vb) : v|0 ∈ W(b) and v(s∗ ∩�) = S∗ ∩Qb},

N (b) := {u ∈ Hols+1/2(1,Ub) : u|0 ∈ W(b) andu preservesν}.

Here we use the notation

Hols+1/2(X, Y ) = {f ∈ H s+1/2(X, Y ) : df ◦ JX = JY ◦ df } (16)

for a compact Riemann surfaceX with boundary and an almost complex manifoldY . By
Theorem B.4(i), restriction to the boundary defines a continuous map Hols+1/2(X, Y ) →

H s(∂X, Y ). The phrase “u preservesν” means that{x, y} ∈ ν ⇒ u(x) = u(y) ∈ CB .
Define thenonlinear Hardy spacesby

U(b) := {u|0 : u ∈ N (b)}, V(b) := {v|0 : v ∈ Z(b)}.

Define
W0 :=

⊔
b∈B

W(b), V0 :=
⊔
b∈B

V(b), U0 :=
⊔
b∈B

U(b),

so that(γ, b) ∈ W0 ⇔ γ ∈ W(b), etc. The desingularizationw0 : 6 → Qb0 determines
a point

(γ0, b0) ∈ U0 ∩ V0 ⊂ W0, γ0 := w0|0. (17)

Lemma 9.4. For every(γ, b) ∈ U0∩V0 there is a unique desingularizationw : 6 → Qb

withw|0 = γ .

Proof. Uniqueness is an immediate consequence of unique continuation. To prove ex-
istence, let(γ, b) ∈ U0 ∩ V0 be given. Then, by definition ofU0 andV0, there is a
continuous mapw : 6 → Qb which is holomorphic in int(�) and in int(1) with
w(s∗) = S∗ ∩ Qb andw(z0) = w(z1) for every nodal pair{z0, z1} ∈ ν. The map
w : 6 → Q is of classH s+1/2 and is therefore holomorphic on all of6. We must
prove that ifz0 6= z1 we havew(z0) = w(z1) if and only if {z0, z1} ∈ ν. Assume first
that there are no nodes, i.e.Qb ∩ CB = ∅. Then1 is a union of disjoint annuli and,
by the winding number assumption, the restriction ofw to 1 is an embedding intoQb

andw(1) ∪ Vb = Qb. Hence there is a pointq ∈ w(1) \ V . Hence the degree ofw
at q is one and hencew : 6 → Qb is a holomorphic diffeomorphism. Now assume
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Qb ∩ CB 6= ∅. Thenw−1(CB) =
⋃
ν, by the winding number assumption, and so the

restrictionw : 6 \
⋃
ν → Qb \CB is proper. Hence the degree of this restriction is con-

stant on each component of6\
⋃
ν. Now each component of6 contains a component1′

of 1 that is diffeomorphic to a disk. By the winding number assumption, the restriction
of w to1′ is an embedding. Moreover, the images underw of the components of1 \CB
are disjoint and there is a pointq ∈ w(1′) \ (CB ∪ V ). Sincew(�) ⊂ V , the degree of
the restrictionw : 6 \

⋃
ν → Qb \ CB at any such pointq is one. Hence the degree of

the restriction is one at every point and hencew : 6 \
⋃
ν → Qb \ CB is a holomorphic

diffeomorphism. This proves the lemma. ut

Theorem 9.5. Fix an integers + 1/2 > 4. Let (πB : Q → B, S∗, b0) be a nodal
unfolding of a marked nodal Riemann surface(6, s∗, ν, j) andw0 : 6 → Qb0 be a
desingularization as in9.1. LetU0,V0 ⊂ W0 be the subspaces in9.3andγ0 := w0|0 as
in (17). LetDw0,b0 be the Fredholm operator in Definition5.2. Then the following holds.

(i) U0 andV0 are complex Hilbert submanifolds ofW0.
(ii) The intersectionT(γ0,b0)U0 ∩ T(γ0,b0)V0 is isomorphic to the kernel ofDw0,b0.

(iii) The quotientT(γ0,b0)W0/(T(γ0,b0)U0 + T(γ0,b0)V0) is isomorphic to the cokernel of
Dw0,b0.

(iv) The unfolding(πB , S∗, b0) is infinitesimally universal if and only if

T(γ0,b0)W0 = T(γ0,b0)U0 ⊕ T(γ0,b0)V0.

Proof. We prove thatU0 is a complex Hilbert submanifold ofW0.

Choose the indexing so thatzi(b0) = 0 for i ≤ ` andzi(b0) 6= 0 for i > `. Abbreviate
H s := H s(S1,C) for the Sobolev space in B.1 and consider the map

W0 → (H s)2k × B : γ 7→ (α1, β1, . . . , αk, βk, b)

whereγ ∈ W(b) andαi = ξi ◦ γ ◦ x−1
i andβi = ηi ◦ γ ◦ y−1

i . This mapsW0 diffeo-
morphically onto an open set in a Hilbert space. The map sendsU0 ⊂ W0 to the subset of
all tuples(α1, β1, . . . , αk, βk, b) such that all nonpositive coefficients ofαi andβi vanish
for i ≤ ` and

βi(y) =
ζi(b)

αi(δi/y)

for i > `. Thus the tuple(α1, β1, . . . , α`, β`) is restricted to a closed subspace of(H s)2`

and, fori > `, the componentβi can be expressed as a holomorphic function ofαi andb.
This shows thatU0 is a complex Hilbert submanifold ofW0.

We will show that the restriction map

Z0 :=
⊔
b∈B

Z(b) → W0 : v 7→ v|0

is a holomorphic embedding. Since the image is preciselyV0 by definition, this will show
thatV0 is a complex Hilbert submanifold ofW0. Denote byB the space of all pairs(v, b),
whereb ∈ B andv : � → Vb is anH s+1/2 map satisfying

v(s∗) = S∗ ∩Qb.
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The spaceB is a complex Hilbert manifold whose tangent space at(v, b) is the Sobolev
space

Tv,bB = {(v̂, b̂) ∈ H s+1/2(�, v∗TQ)× TbB : dπB(v)v̂ ≡ b̂, v̂(si) ∈ Tv(si )Si},

i.e. v̂ is a section of classH s+1/2 of the pullback tangent bundlev∗TQ that projects to
a constant tangent vector ofB and at the marked points is tangent toS∗. Consider the
complex Hilbert space bundleE → B whose fiber

Ev,b := H s−1/2(�,30,1T ∗�⊗ v∗TQb)

over(v, b) ∈ B is the Sobolev space of(0,1)-forms on� of classH s−1/2 with values in
the vertical pullback tangent bundlev∗TQb. The Cauchy–Riemann operator∂̄ is a section
of this bundle and its zero set is the spaceZ0 ⊂ B defined above. The vertical derivative
of ∂̄ at a zero(v, b) is the restriction

Dv,b : Tv,bB → Ev,b

of the Cauchy–Riemann operator of the holomorphic vector bundlev∗TQ → � to the
subspaceTv,bB ⊂ H s+1/2(�, v∗TQ). This operator is split surjective; a right inverse
can be constructed from an appropriate Lagrangian boundary condition (see [16, Ap-
pendix C]). HenceZ0 is a complex submanifold ofB.

We show that the restriction map is an injective holomorphic immersion.

By unique continuation at boundary points, the restriction map is injective, i.e. two ele-
ments of Hols+1/2(�, Vb) that agree on the boundary agree everywhere. The derivative
of the restriction map is also a restriction map; it is injective and has a left inverse, by
Theorem B.4(ii). Hence the restriction mapZ0 → W0 is a holomorphic immersion.

We show that the restriction mapZ0 → W0 is proper.

Suppose thatvk ∈ Z(bk), that γk := vk|0, that γk converges toγ ∈ W(b), and that
γ = v|0 wherev ∈ Z(b). We prove in four steps thatvk converges tov inH s+1/2(�,Q).

Step 1. We may assume without loss of generality that eachvk is an embedding for
everyk.

After shrinkingV0 we find thatγ : 0 → Qb is an embedding for every(γ, b) ∈ V0.
(This makes sense becauses > 3/2, soγ is continuously differentiable.) Ifγ = v|0 is
an embedding andv ∈ Hols+1/2(�, Vb) thenv is an embedding. This is because #v−1(q)

(the number of preimages counted with multiplicity) forq ∈ Qb \ v(0) can only change
asq passes through the image ofγ . As γ is an embedding #v−1(q) is either zero or one.
Hencev is an embedding.

Step 2. A subsequence ofvk converges in theC∞ topology on every compact subset
of int(�).

If the first derivatives ofvk are uniformly bounded thenvk|int(�) has aC∞ convergent
subsequence (see [16, Appendix B]). Moreover, a nonconstant holomorphic sphere inQ



648 Joel W. Robbin, Dietmar A. Salamon

bubbles off whenever the first derivatives ofvk are not bounded. But bubbling cannot
occur inV . To see this argue as follows. Supposezk converges toz0 ∈ int(�) and the
derivatives ofvk atzk blow up. Then the standard bubbling argument (see [16, Chapter 4])
applies. It shows that, after passing to a subsequence and modifyingzk (without changing
the limit), there are(i, jk)-holomorphic embeddingsεk from the diskDk ⊂ C, centered at
zero with radiusk, toQ such thatεk(0) = zk, the family of disksεk(Dk) converges toz0,
andvk ◦ εk converges to a nonconstantJ -holomorphic spherev0 : S2

= C ∪ ∞ → Qb.
(The convergence is uniform with all derivatives on every compact subset ofC.) The
image ofv0 must intersect the nodal setQb∩CB . Hence there is a pointa ∈ C = S2

\{∞}

such thatv0(a) ∈ Q\V̄ . This impliesvk(εk(a)) /∈ V for k sufficiently large, contradicting
the fact thatvk(�) ⊂ V .

Step 3. A subsequence ofvk converges tov in theC0 topology.

By Arzelà–Ascoli it suffices to show that the sequencevk is bounded inC1. We treat
this as a Lagrangian boundary value problem. ChooseM ⊂ Qb to be a submanifold
with boundary that contains the image ofv in its interior. Choose a smooth family of
embeddings

ιa : M → Qa \ CB , a ∈ B,

such thatιb : M → Qb \CB is the inclusion. Then the image ofιbk contains the image of
vk for k sufficiently large. Think ofM as a symplectic manifold and define the Lagrangian
submanifoldsL ⊂ M andLk ⊂ M by

L := γ (0), Lk := ι−1
bk

◦ γk(0).

Sinces > 7/2 the sequenceι−1
bk

◦ γk : 0 → M converges toγ in theC3 topology.
Hence there is a sequence of diffeomorphismsφk : M → M such thatφk converges to
the identity in theC3 topology and

φk ◦ ι−1
bk

◦ γk = γ, φk(Lk) = L.

Define
ṽk := φk ◦ ι−1

bk
◦ vk, J̃k := (φk ◦ ι−1

bk
)∗Jbk ,

whereJa denotes the complex structure onQa . ThenJ̃k converges toJ̃ := Jb in theC2

topology,ṽk : � → M is a J̃k-holomorphic curve such thatṽk(0) ⊂ L and, moreover,

ṽk|0 = γ : 0 → L (18)

for all k. We must prove that the first derivatives ofṽk are uniformly bounded. Suppose
by contradiction that there is a sequencezk ∈ � such that

ck := |dṽk(zk)| = ‖dṽk‖L∞ → ∞.

Now apply the standard rescaling argument: Assume without loss of generality thatzk
converges toz0 ∈ �, choose a coordinate chart from a neighborhood ofz0 to the up-
per half plane (sendingzk to ζk), and compose the resulting̃Jk-holomorphic curve with
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the rescaling mapεk(ζ ) := ζk + ζ/ck. Let dk be the Euclidean distance ofζk from the
boundary of the upper half plane. There are two cases. Ifck · dk → ∞ then a nonconstant
holomorphic sphere bubbles off and the same argument as in Step 2 leads to a contra-
diction. If the sequenceck · dk is bounded then, by [16, Theorem B.4.2], the rescaled
sequence has a subsequence that converges in theC1 topology to a holomorphic curve
w̃ : {ζ ∈ C : im ζ ≥ 0} → M with w̃(R) ⊂ L. The choice of the rescaling factor shows
that the derivative of̃w has norm one at some point and sow̃ is nonconstant. On the other
hand, sinceεk converges to a constant, condition (18) implies that the restriction of this
holomorphic curve to the boundary is constant; contradiction.

Step 4. A subsequence ofvk converges tov in theH s+1/2 topology.

Let v be the limit in Step 3. Thenv|0 = γ takes values inWb. By Step 2 it is enough
to show thatvk converges tov in some neighborhood of each boundary component in
theH s+1/2 topology. We can identify such a neighborhood holomorphically withA(r,1).
Shrinking the neighborhood if necessary we may assume thatvk mapsA(r,1) toWb for
k sufficiently large. By assumption and Step 2 the restriction ofvk to ∂A(r,1) converges
in H s . Hence Step 4 follows from the fact that the restriction mapH s+1/2(A(r,1)) →

H s(∂A(r,1)) is a linear embedding onto a closed subspace (see Theorem B.4(ii)). In the
notation of 10.5 below this subspace is the diagonal inH s

r ×H s .
Thus we have proved that every subsequence ofvk has a further subsequence converg-

ing to v in H s+1/2. Hence the sequencevk itself converges tov in theH s+1/2 topology.
This completes the proof of (i).

We prove (ii). It follows directly from the definitions that there is a map

kerDw0,b0 → T(γ0,b0)U0 ∩ T(γ0,b0)V0 : (ξ, b̂) 7→ (ξ |0, b̂).

This map is surjective by elliptic regularity: ifξ : 6 → w∗

0TQ is a continuous section

with dπB(w0)ξ = b̂ whose restriction to both1 and� is of classH s+1/2 and belongs
to the kernel of the differential operatorDw0, thenξ is smooth. The map is injective by
unique continuation: an element(ξ, b̂) ∈ kerDw0,b0 vanishes identically if and only if the
restriction ofξ to the disjoint union0 of circles vanishes. (The fibers are connected and
so0 intersects each component of6 in at least one circle.) This proves (ii).

To prove (iii), we define a map

cokerDw0,b0 →
T(γ0,b0)W0

T(γ0,b0)U0 + T(γ0,b0)V0
: [η] 7→ [γ̂ , b̂] (19)

as follows. Givenη ∈ Yw0 (i.e. η ∈ �0,1(6,w∗

0TQ) with dπ(w0)η ≡ 0) choose two
vector fieldsξu along u0 := w0|1 and ξv along v0 := w0|� that project each to a
constant vector̂bu := dπB(u0)ξu andb̂v := dπB(v0)ξv in Tb0B and satisfy

Du0,b0(ξu, b̂u) = η|1, Dv0,b0(ξv, b̂v) = η|�. (20)
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The existence ofξu andξv (with b̂u = b̂v = 0) can be proved by imposing a Lagrangian
boundary condition with high Maslov index. Define

γ̂ := ξu|0 − ξv|0 : 0 → γ ∗

0 TQ, b̂ := b̂u − b̂v. (21)

Given η, the pair(ξu|0, b̂u) is well defined up to an additive vector inT(γ0,b0)U0 and
(ξv|0, b̂v) up to an additive vector inT(γ0,b0)V0. Moreover, ifη ∈ imDw0,b0 then there is
a pair(ξ, b̂) ∈ Xw0,b0 such thatDw0,b0(ξ, b̂) = η (see Definition 5.2) and we may choose
ξu := ξ |1 andξv := ξ |� in (20) so thatb̂u = b̂v = b̂ and(γ̂ , b̂) = (0,0) in (21). This
shows that the equivalence class of(γ̂ , b̂) is independent of the choice ofξu andξv and
depends only on the equivalence class ofη in Yw0/imDw0,b0. Hence the map (19) is well
defined.

We prove that (19) is injective. Letη ∈ Yw0 be given, choose(ξu, b̂u) and(ξv, b̂v) so
as to satisfy (20), and define(γ̂ , b̂) ∈ T(γ0,b0)W0 by (21). Assume(γ̂ , b̂) ∈ T(γ0,b0)U0 +

T(γ0,b0)V0. Then there are vector fieldsξ ′
u alongu0 andξ ′

v alongv0, as well as tangent
vectorsb̂′

u, b̂
′
v ∈ Tb0B such thatdπ(u0)ξ

′
u ≡ b̂′

u, dπ(u0)ξ
′
v ≡ b̂′

v, and

Du0,b0(ξ
′
u, b̂

′
u) = 0, Dv0,bu(ξ

′
v, b̂

′
v) = 0,

γ̂ = ξ ′
u|0 − ξ ′

v|0, b̂ := b̂′
u − b̂′

v.

Hence, replacing(ξu, b̂u) by (ξu − ξ ′
u, b̂u − b̂′

u) and(ξv, b̂v) by (ξv − ξ ′
v, b̂v − b̂′

v), we
may assume without loss of generality thatγ̂ = 0 andb̂ = 0 in (21). Thusξu|0 = ξv|0.
In other words, there is a continuous vector fieldξ alongw0 such thatξ |1 = ξu and
ξ |� = ξv. SinceDw0ξ = η is smooth it follows from elliptic regularity thatξ is smooth
and henceη ∈ imDw0,b0. This shows that the map (19) is injective as claimed.

That (19) is surjective follows from the next two assertions.

(a) Each element of the quotient spaceT(γ0,b0)W0/(T(γ0,b0)U0 + T(γ0,b0)V0) can be rep-
resented by a smooth vertical vector field alongγ0.

(b) For every smooth vertical vector field̂γ alongγ0 there exist smooth vertical vector
fieldsξu alongu0 andξv alongv0 such thatγ̂ = ξu|0 − ξv|0 and the(0,1)-form η

alongw0 defined byη|1 := Du0,b0(ξu, b̂u) andη|� := Du0,b0(ξv, b̂v) is smooth.

To prove (b) choose holomorphic coordinatesτ + iθ ∈ [−δ, δ] + iR/2πZ near each
component of0 so that the component is{τ = 0} and� is {τ ≥ 0}. Choose a complex
trivialization of the vertical tangent bundle over this annulus. In this trivialization a(0,1)-
form over the annulus has the form12(η ds − iη dt) with η : [−δ, δ] × S1

→ C and the
operatorD = Dw0,b0 has the form

Dξ = ∂τ ξ + i∂θξ + Sξ

whereS : [−δ, δ] × S1
→ EndR(C) is a smooth map. We seek three smooth sections

ξu over {τ ≤ 0}, ξv over {τ ≥ 0}, andη over the whole annulus (of the vertical tangent
bundle) such that

η|{τ ≤ 0} = Dξu, η|{τ ≥ 0} = Dξv,
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and
ξv(0, θ)− ξu(0, θ) = ξ0(θ) := −γ̂ (θ). (22)

We takeξu := 0 andξv in the form

ξv(τ, θ) =

∞∑
k=0

ck(τ, θ)

k!
τ k, ck(τ, θ) =

{
ck(0, θ) for 0 ≤ τ ≤ δk,

0 for τ ≥ 2δk,

where 2δk < δ and eachck is smooth on [0, δ] × S2. To satisfy condition (22) we must
choosec0(0, θ) = ξ0(θ). To makeη continuous we must chooseξv such that

∂τ ξv(0, θ)+ i∂θξv(0, θ)+ S(0, θ)ξv(0, θ) = 0

and hence
c1(0, θ) = ∂τ ξv(0, θ) = −i∂θξ0(θ)− S(0, θ)ξ0(θ).

More generally, oncec0, . . . , ck have been chosen to makeη of classCk−1 the func-
tion θ 7→ ck+1(0, θ) is uniquely determined byξ0 and the condition thatη be of class
Ck. Finally, chooseδk converging sufficiently rapidly to zero and defineck(τ, θ) :=
β(τ/δk)ck(0, θ) for a suitable cutoff functionβ so that the series forξv converges in
theC` norm for everỳ . Note that our argument follows the construction, due toÉmile
Borel, of a smooth function with a prescribed Taylor series at a point.

To prove (a) we first observe that every smooth pair(γ̂ , b̂) ∈ T(γ0,b0)W0 is equiv-
alent in the quotientT(γ0,b0)W0/(T(γ0,b0)U0 + T(γ0,b0)V0) to a smooth vertical vector
field. Namely, choose any vector fieldξ ′ alongv0 that projects tôb, and choose a ver-
tical vector fieldξ ′′ along v0 such thatξ := ξ ′

+ ξ ′′ satisfiesDv0ξ = 0 (as we did
in the proof of (b)). Then(ξ |0, b̂) ∈ T(γ0,b0)V0 and hence(γ̂ − ξ |0,0) is a vertical
vector field equivalent to(γ̂ , b̂). Now consider the subspace of all elements of the quo-
tientT(γ0,b0)W0/(T(γ0,b0)U0 + T(γ0,b0)V0) that can be represented by smooth vertical vec-
tor fields. By what we have just proved, this subspace is dense and, by (b), it is finite-
dimensional. Hence this subspace must be equal to the entire quotient and this proves (a).
Thus we have proved (a) and (b) and hence the operator (19) is surjective. This proves (iii).
Part (iv) is an immediate consequence of (ii) and (iii). This completes the proof of Theo-
rem 9.5. ut

Remark 9.6. The strategy for the proof of the universal unfolding theorem is to as-
sign to each unfolding(πA : P → A,R∗, a0) of the marked nodal Riemann surface
(6, s∗, ν, j) a family of Hilbert submanifoldsUa,Va ⊂ Wa as in 9.3 parametrized by
a ∈ A. Transversality will then imply that for eacha neara0 there is a unique intersection
point (γa, ba) ∈ Ua ∩ Va near(γ0, b0). Then the fiber isomorphismsfa : Pa → Qba de-
termined by theγa as in Lemma 9.4 will fit together to determine the required morphisms
P → Q of nodal families. The key point is to show that the submanifoldsUa fit together
to form a complex submanifold

U :=
⊔
a∈A

Ua ⊂ W :=
⊔
a∈A

Wa

(see Theorem 11.9 below). We begin by studying a local model near a given nodal point
in the next section.
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10. The local model

10.1. Consider thestandard nodedefined as the map

N → int(D) : (x, y) 7→ xy, N := {(x, y) ∈ D2 : |xy| < 1}.

Fora ∈ int(D) andb ∈ C define

Na := {(x, y) ∈ D2 : xy = a}, Qb := {(x, y) ∈ C2 : xy = b}.

We study the set of all quadruples(a, ξ, η, b) wherea, b ∈ C are close to 0 and

(ξ, η) : Na → Qb

is a holomorphic map. Ifa 6= 0 this meansξ(z), η(z) are holomorphic functions on the
annulus|a| ≤ |z| ≤ 1 that are close to the identity, and satisfy the condition

xy = a ⇒ ξ(x)η(y) = b (23)

for |a| ≤ |x| ≤ 1 and|a| ≤ |y| ≤ 1. If a 6= 0, this condition implies thatb 6= 0. When
a = 0, the functionsξ andη are defined on the closed unit disk and vanish at the origin;
henceb = 0.

10.2. Fix s > 1/2 and letH s
= H s(S1,Cn) be the Sobolev space as in B.1. We think of

an element ofH s as a power series

ζ(z) =

∑
n∈Z

ζnz
n. (24)

Forr > 0 therescaling mapz 7→ rzmaps the unit circle to the circle of radiusr. Denote
by ζr the result of conjugatingζ by this map, i.e.

ζr(z) := r−1ζ(rz).

The norm‖ζr‖s is finite if and only if the seriesζ converges to anH s function on the
circle of radiusr.

10.3. For δ > 0 define the open setWδ ⊂ C ×H s
×H s

× C by

Wδ := {(a, ξ, η, b) : ‖ξ − id‖s < δ, ‖η − id‖s < δ, |a| < δ}.

DefineUδ ⊂ Wδ to be the set of those quadruples(a, ξ, η, b) ∈ Wδ which satisfy (23).
More precisely if(a, ξ, η, b) ∈ Wδ, then fora 6= 0 we have

(a, ξ, η, b) ∈ Uδ ⇔

{
‖ξ|a|‖s < ∞, ‖η|a|‖s < ∞, and

ξ(x)η(ax−1) = b for |a| ≤ |x| ≤ 1,

while for a = 0 we have

(0, ξ, η, b) ∈ Uδ ⇔ b = 0 andξ(0) = η(0) = 0.

ThusUδ is the space of (boundary values of) local holomorphic fiber isomorphisms in the
standard model. The main result of this section is thatUδ is a manifold:
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Theorem 10.4. Let s > 1/2. Then, forδ > 0 sufficiently small, the setUδ is a complex
submanifold of the open setWδ ⊂ C ×H s

×H s
× C.

The proof occupies the rest of this section. Using the Hardy space decomposition defined
in 10.5 we formulate three propositions which define a mapT whose graph lies inUδ. We
then prove six lemmas, then we prove the three propositions, and finally we prove that the
graph ofT is exactly equal toUδ.

10.5. A holomorphic functionζ(z) defined on an annulus centered at the origin has a
Laurent expansion of the form (24). We writeζ = ζ+ + ζ− where

ζ+(z) :=
∑
n>0

ζnz
n, ζ−(z) :=

∑
n≤0

ζnz
n.

For r > 0 ands > 1/2 introduce the norm

‖ζ‖r,s :=
√∑
n∈Z

(1 + |n|)2sr2n−2|ζn|2

so thatζ+ converges inside the circle of radiusr if ‖ζ+‖r,s < ∞ andζ− converges outside
the circle of radiusr if ‖ζ−‖r,s < ∞. Let

H s
r := {ζ : ‖ζ‖r,s < ∞}

andH s
r,± be the subspace of thoseζ for which ζ = ζ± so we have the Hardy space

decomposition
H s
r = H s

r,+ ⊕H s
r,−.

ThenH s
= H s

1 and‖ · ‖s = ‖ · ‖1,s . We abbreviate

H s
± := H s

1,±.

We view the ball of radiusδ about id in the Hilbert spaceH s
r as a space ofH s-maps from

the circle of radiusr to a neighborhood of this circle; the norm onH s
r is defined so that

conjugation by the rescaling mapz 7→ rz induces an isometryH s
r → H s : ζ → ζr , i.e.

‖ζ‖r,s = ‖ζr‖s, ζr(z) := r−1ζ(rz). (25)

Proposition 10.6 (Existence).For everys > 1/2 there are positive constantsδ and c
such that the following holds. Ifa ∈ C with 0< r :=

√
|a| ≤ 1 andξ+, η+ ∈ H s

+ satisfy

‖ξ+ − id‖s < δ, ‖η+ − id‖s < δ, (26)

then there exists a triple(b, ξ−, η−) ∈ C × H s
r2,−

× H s
r2,−

such thatξ := ξ+ + ξ− and
η := η+ + η− satisfy the equation

ξ(x)η(ax−1) = b (27)

for r2
≤ |x| ≤ 1 and

|ba−1
− ξ1η1| + ‖ξ−‖r,s + ‖η−‖r,s ≤ 2cr(‖ξ+ − id‖s + ‖η+ − id‖s). (28)
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Proposition 10.7 (Uniqueness).For everys > 1/2 there exist positive constantsδ and
ε such that the following holds. Ifa, b, b′

∈ C, ξ+, η+ ∈ H s
+ andξ−, η−, ξ

′
−, η

′
− ∈ H s

r,−

with 0< r :=
√

|a| < 1 satisfy(26)and

‖ξ−‖r,s < ε, ‖η−‖r,s < ε, sup
|x|=r

|ξ ′
−(x)| < rε, sup

|y|=r

|η′
−(y)| < rε,

and if (a, ξ := ξ+ + ξ−, η := η+ + η−, b) and (a, ξ ′ := ξ+ + ξ ′
−, η

′ := η+ + η′
−, b

′)

satisfy(27) for |x| = r then(ξ−, η−, b) = (ξ ′
−, η

′
−, b

′).

10.8. Fix a constants > 1/2. Choose positive constantsδ and ε such that Proposi-
tion 10.7 holds. Shrinkingδ if necessary we may assume that Proposition 10.6 holds
with the same constantδ and a suitable constantc > 0. Let

H s
+(id, δ) := {ζ ∈ H s

+ : ‖ζ − id‖s < δ}

and define
T : D ×H s

+(id, δ)×H s
+(id, δ) → C ×H s

− ×H s
−

by the conditions thatT (a, ξ+, η+) = (b, ξ−, η−) is the triple constructed in Proposi-
tion 10.6 fora 6= 0 and

T (0, ξ+, η+) := (0,0,0).

(In definingT we used the fact thatH s
r,− ⊂ H s

− for r ≤ 1.)

Proposition 10.9. The mapT is continuous. It is holomorphic for|a| < 1.

Lemma 10.10 (A priori estimates). There is a constantc > 0 such that, forδ > 0
sufficiently small, the following holds. If(a, ξ, η, b) ∈ Uδ anda 6= 0 then

|ba−1
− 1| < cδ, sup

|a|≤|x|≤1
|ξ(x)x−1

− 1| ≤ cδ, sup
|a|≤|y|≤1

|η(y)y−1
− 1| ≤ cδ.

Proof. Rewriteξ(x)η(ax−1) = b as

a
ξ(x)

x2
= ab

x−2

η(ax−1)
.

Using the substitutiony = ax−1, dy = −ax−2 dx we get

a

∮
|x|=1

ξ(x) dx

x2
= b

∮
|x|=1

ax−2 dx

η(ax−1)
= b

∮
|y|=|a|

dy

η(y)
= b

∮
|y|=1

dy

η(y)

where all the contour integrals are counterclockwise. By the Sobolev embedding theorem,
there is a constantc such that|ζ(z)| ≤ c‖ζ‖s for ζ ∈ H s and |z| = 1. This gives the
estimate ∣∣∣∣ξ(x)x2

−
1

x

∣∣∣∣ = |ξ(x)− x| ≤ c‖ξ − id‖s ≤ cδ
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for |x| = 1. If ‖η − id‖s < δ ≤ 1/2c then, by the Sobolev embedding theorem again,
|η(y)− y| < 1/2 and so|η(y)| > 1/2 for |y| = 1. Hence∣∣∣∣ 1

η(y)
−

1

y

∣∣∣∣ =
|η(y)− y|

|η(y)|
≤ 2c‖η − id‖s ≤ 2cδ

for |y| = 1. Hence the contour integrals are within 4πcδ of 2πi and so, if we enlargec,
thenb/a is within cδ of 1 as required.

By symmetry the third inequality follows from the second; we prove the second. Using
the Sobolev inequality we have

sup
|x|=1

∣∣∣∣ξ(x)x − 1

∣∣∣∣ ≤ cδ, sup
|y|=1

∣∣∣∣η(y)y − 1

∣∣∣∣ ≤ cδ.

Now lety := ax−1 and|x| = |a|. Then|y| = 1 and

ξ(x)

x
− 1 =

b

a

y − η(y)

η(y)
+
b

a
− 1.

Hence

sup
|x|=|a|

∣∣∣∣ξ(x)x − 1

∣∣∣∣ ≤

∣∣∣∣ba
∣∣∣∣ sup
|y|=1

∣∣∣∣y − η(y)

η(y)

∣∣∣∣ +

∣∣∣∣ba − 1

∣∣∣∣ ≤ cδ.

By the maximum principle this implies

sup
|a|≤|x|≤1

∣∣∣∣ξ(x)x − 1

∣∣∣∣ ≤ cδ.

This proves the lemma. ut

10.11. The proofs of Propositions 10.6, 10.7, and 10.9 are based on a version of the
implicit function theorem for the map

Fr : C ×H s
r ×H s

r → H s

defined by
Fr(λ, ξ, η)(z) := r−2ξ(rz)η(rz−1)− λ (29)

for |z| = 1 andr > 0. The zeros ofFr are solutions of (27) witha = r2 andb = λa.
Note thatFr(1, id, id) = 0 for everyr > 0. The differential ofFr at the point(1, id, id)
will be denoted by

Dr := dFr(1, id, id) : C ×H s
r ×H s

r → H s .

Thus
Dr(λ̂, ξ̂ , η̂)(z) = r−1z−1ξ̂ (rz)+ r−1zη̂(rz−1)− λ̂.

We shall need six lemmata. They are routine consequences of well known facts and rescal-
ing. To ease the exposition we relegate the proofs of the first five to the end of the section
and omit the proof of the sixth entirely. (The last proof is just the proof of the implicit
function theorem keeping track of the estimates.)
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Lemma 10.12 (Sobolev estimate).Denote byA(r, R) ⊂ C the closed annulusr ≤ |z|

≤ R. For everys > 1/2 there is a constantc > 0 such that

‖ζ‖L∞(A(r,R)) ≤ c(r‖ζ−‖r,s + R‖ζ+‖R,s)

for all r andR and every holomorphic functionζ(z) on the annulusr ≤ |z| ≤ R.

Proof. This follows from Lemma A.2 and the maximum principle. ut

Lemma 10.13 (Product estimate).For everys > 1/2 there is a positive constantC
such that, for any two functionsξ, η ∈ H s , we have

‖ξη‖s ≤ C‖ξ‖s‖η‖s, ‖ξη‖s ≤ C(‖ξ‖s‖η‖L∞(S1) + ‖ξ‖L∞(S1)‖η‖s).

Proof. Lemma A.3 and Corollary A.11. ut

Lemma 10.14 (Linear estimate).For ξ̂−, η̂− ∈ H s
r,− andλ̂ ∈ C we have

‖ξ̂−‖
2
r,s + ‖η̂−‖

2
r,s + |λ̂|2 ≤ ‖Dr(λ̂, ξ̂−, η̂−)‖

2
s .

Proof. The formula

Dr(λ̂, ξ̂−, η̂−)(z) = r−1z−1ξ̂−(rz)+ r−1zη̂−(rz
−1)− λ̂

shows that
Dr(λ̂, ξ̂−, η̂−) = D1(λ̂, (ξ̂−)r , (η̂−)r).

Hence, by (25) it suffices to prove the lemma forr = 1. Then

D1(λ̂, ξ̂−, η̂−)(z) =

∑
n<0

ξ̂n+1z
n

− λ̂+

∑
n>0

η̂1−nz
n

so

‖D1(λ̂, ξ̂−, η̂−)‖
2
s =

∑
n<0

(1 + |n|)2s |ξ̂n+1|
2
+ |λ̂|2 +

∑
n>0

(1 + |n|)2s |η̂1−n|
2

=

∑
n≤0

(2 + |n|)2s |ξ̂n|
2
+ |λ̂|2 +

∑
n≤0

(2 + |n|)2s |η̂n|
2

≥ ‖ξ̂−‖
2
s + |λ̂|2 + ‖η̂−‖

2
s .

This proves the lemma. ut

Lemma 10.15 (Approximate solution). For everys > 1/2 there is a constantc > 0
such that

‖Fr(ξ1η1, ξ+, η+)‖s ≤ cr(‖ξ+ − id‖s + ‖η+ − id‖s)

for every pairξ+, η+ ∈ H s
+ with ‖ξ+‖s ≤ 1, ‖η+‖s ≤ 1, and everyr ∈ (0,1].
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Proof. The constant isc = 4
√

3C whereC is the constant of Lemma 10.13. We first
prove the inequality

‖F1(ξ1η1, ξ+, η+)‖s ≤ 2
√

3C(‖ξ+ − ξ1 id‖s + ‖η+ − η1 id‖s). (30)

Since

F1(ξ1η1, ξ+, η+)(z) = ξ+(z)η+(z
−1)− ξ1η1 =

∑
k 6=0

(∑
n>0

ξn+kηn

)
zk +

∑
n>1

ξnηn

we have

‖F1(ξ1η1, ξ+, η+)‖
2
s =

∑
k 6=0

(1 + |k|)2s
∣∣∣∑
n>0

ξn+kηn

∣∣∣2 +

∣∣∣∑
n>1

ξnηn

∣∣∣2
≤

∑
k>0

(1 + k)2s
(∑
n>0

|ξn+kηn|
)2

+

(∑
n>1

|ξnηn|
)2

+

∑
k>0

(1 + k)2s
(∑
n>k

|ξn−kηn|
)2

≤ 3C2(‖ξ+ − ξ1 id‖
2
s‖η+‖

2
s + ‖ξ+‖

2
s‖η+ − η1 id‖

2
s ).

The last inequality follows from Lemma 10.13; note that each sum omits eitherξ1 orη1 or
both. The inequality (30) follows by taking the square root of the last estimate and using
the fact that‖ξ+‖s ≤ 2 and‖η+‖s ≤ 2.

The formula

Fr(ξ1η1, ξ+, η+)(z) = r−2ξ+(rz)η+(rz
−1)− ξ1η1

shows that
Fr(ξ1η1, ξ+, η+) = F1(ξ1η1, (ξ+)r , (η+)r).

Note that the operationξ 7→ ξr leaves the coefficientξ1 unchanged. Hence, by (30), we
have

‖Fr(ξ1η1, ξ+, η+)‖s = ‖F1(ξ1η1, (ξ+)r , (η+)r)‖s

≤ 2
√

3C(‖(ξ+)r − ξ1 id‖s + ‖(η+)r − η1 id‖s)

= 2
√

3C(‖ξ+ − ξ1 id‖r,s + ‖η+ − η1 id‖r,s)

≤ 2
√

3Cr(‖ξ+ − ξ1 id‖s + ‖η+ − η1 id‖s)

≤ 4
√

3Cr(‖ξ+ − id‖s + ‖η+ − id‖s).

This proves the lemma. ut

Lemma 10.16 (Quadratic estimate).For everys > 1/2 there is a constantc > 0 such
that

‖(dFr(λ, ξ, η)−Dr)(λ̂, ξ̂ , η̂)‖s ≤ c(‖η − id‖r,s‖ξ̂‖r,s + ‖ξ − id‖r,s‖η̂‖r,s)

for all ξ, η, ξ̂ , η̂ ∈ H s
r andλ, λ̂ ∈ C.
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Proof. We have

dFr(λ, ξ, η)(λ̂, ξ̂ , η̂)(z) = r−2ξ̂ (rz)η(rz−1)+ r−2ξ(rz)η̂(rz−1)− λ̂

and hence

(dFr(λ, ξ, η)−Dr)(λ̂, ξ̂ , η̂)(z) = r−2ξ̂ (rz)(η − id)(rz−1)+ r−2(ξ − id)(rz)η̂(rz−1).

So the result follows from Lemma 10.13 withc = C. ut

Lemma 10.17 (Inverse function theorem).Letf : U → V be a smooth map between
Banach spaces andD : U → V be a Banach space isomorphism. Letu0 ∈ U and
suppose that there is a constantρ > 0 such that

‖D−1
‖ ≤ 1, ‖f (u0)‖V ≤ ρ/2 (31)

and, for everyu ∈ U ,

‖u− u0‖U ≤ ρ ⇒ ‖df (u)−D‖ ≤ 1/2. (32)

Then there is a unique elementu ∈ U such that

‖u− u0‖U ≤ ρ, f (u) = 0.

Moreover,‖u− u0‖U ≤ 2‖f (u0)‖V .

Proof. Standard. ut

Proof of Proposition 10.6.Throughout we fix a constants > 1/2 and a constantc ≥ 1
such that the assertions of Lemmata 10.12, 10.15 and 10.16 hold with these constantss

andc. Choose positive constantsε, ρ, andδ such that

3cε < 1/2, c

√
2δ2 + ρ2 ≤ 1/2, 2cδ ≤ ε/2, ρ :=

√
3ε. (33)

We prove the assertion with these constantsc andδ.
Assume first thata is a positive real number and setr :=

√
a. Fix a pair(ξ+, η+) ∈

H s
+ ×H s

+ satisfying (26). Let

U := C ×H s
r,− ×H s

r,−, V := H s,

and consider the mapf : U → V defined by

f (u) := Fr(λ, ξ+ + ξ−, η+ + η−), u := (λ, ξ−, η−). (34)

LetD := Dr : U → V andu0 := (ξ1η1,0,0). Then, by Lemma 10.14,

‖D−1
‖L(V ,U) ≤ 1 (35)

and, by Lemma 10.15 and (33),

‖f (u0)‖V ≤ cr(‖ξ+ − id‖s + ‖η+ − id‖s) ≤ 2cδ ≤ ε/2 ≤ ρ/2. (36)
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In this notation the operatordf (u) − D : U → V is the restriction of the operator
dFr(λ, ξ, η) − Dr : C × H s

r × H s
r → H s to the subspaceU , so by Lemma 10.16 we

have

‖df (u)−D‖L(U,V ) ≤ c

√
‖η − id‖2

r,s + ‖ξ − id‖2
r,s

for u = (λ, ξ−, η−) ∈ U andξ := ξ+ + ξ− andη := η+ + η−. Note that‖ζ‖r,s ≤ ‖ζ‖s
for ζ ∈ H s

+ and 0< r ≤ 1. Hence

‖df (u)−D‖L(U,V ) ≤ c

√
‖ξ+ − id‖2

s + ‖η+ − id‖2
s + ‖ξ−‖2

r,s + ‖η−‖2
r,s

for u = (λ, ξ−, η−) ∈ U . Since‖ξ+ − id‖s ≤ δ and‖η+ − id‖s ≤ δ we have

‖u− u0‖U ≤ ρ ⇒ ‖df (u)−D‖L(U,V ) ≤ c

√
2δ2 + ρ2 ≤ 1/2 (37)

for everyu = (λ, ξ−, η−) ∈ U . Here we have used (33).
It follows from (35), (36), and (37) that the assumptions of Lemma 10.17 are satisfied.

Hence there is a unique pointu ∈ U such that

‖u− u0‖U ≤ ρ, f (u) = 0,

and this unique point satisfies

‖u− u0‖U ≤ 2‖f (u0)‖V ≤ ε. (38)

Thus, for every(ξ+, η+) ∈ H s
+ × H s

+ satisfying (26), we have found a unique triple
(λ, ξ−, η−) ∈ U such thatξ := ξ+ + ξ− andη := η+ + η− satisfy

Fr(λ, ξ, η) = 0, ‖ξ−‖r,s ≤ ε, ‖η−‖r,s ≤ ε, |λ− ξ1η1| ≤ ε.

That the quadruple(a, ξ, η, b) also satisfies the estimate (28) follows from (36) and (38).
Next we prove that this quadruple(a, ξ, η, b) satisfiesξ(z) 6= 0 andη(z) 6= 0 for

r ≤ |z| ≤ 1. To see this note that

‖(ζ/id)+‖s =

√∑
n≥2

n2s |ζn|2 ≤ ‖ζ+‖s

and

r‖(ζ/id)−‖r,s =

√
|ζ1|2 +

∑
n≤0

(2 − n)2sr2n−2|ζn|2 ≤ ‖ζ+‖s + 2‖ζ−‖r,s .

Hence

sup
r≤|x|≤1

|ξ(x)x−1
− 1| ≤ c(‖(ξ/id −1)+‖s + r‖(ξ/id −1)−‖r,s)

≤ 2c(‖ξ+ − id‖s + ‖ξ−‖r,s) ≤ 2c(δ + ε) ≤ 1/2.
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Here the first inequality follows from Lemma 10.12 and the last uses the fact that 2cε ≤

1/3 and 2cδ ≤ ε/2 ≤ 1/6. Thus we have proved thatξ andη do not vanish on the closed
annulusr ≤ |z| ≤ 1. Now extendξ andη to the annulusr2

≤ |z| ≤ 1 by the formulas

ξ(x) :=
b

η(ax−1)
, η(y) :=

b

ξ(ay−1)
, r2

≤ |x|, |y| ≤ r.

The resulting functionsξ andη are continuous across the circle of radiusr by (27). Hence
they are holomorphic on the large annulusr2 < |z| < 1. Since (27) holds on the middle
circle |x| = r it holds on the annulusr2

≤ |x| ≤ 1. This proves the proposition for
positive real numbersa.

To prove the proposition for generala we use the following “rotation trick”. Fix a
constantθ ∈ R. Givenξ, η ∈ H s

+ ⊕ H s
r,− anda, b ∈ C defineξ̃ , η̃ ∈ H s

+ ⊕ H s
r,− and

ã, b̃ ∈ C by

ξ̃ (z) := e−iθξ(eiθz), η̃(z) := e−iθη(eiθz), ã := e−2iθa, b̃ := e−2iθb.

Thena, b, ξ, η satisfy (27) if and only ifã, b̃, ξ̃ , η̃ satisfy (27). Hence the result for gen-
erala can be reduced to the special case by choosingθ such that̃a := e−2iθa is a positive
real number. This proves the proposition. ut

Proof of Proposition 10.7.The general case can be reduced to the casea > 0 by the
rotation trick in the proof of Proposition 10.6. Hence we assumea = r2 and r > 0.
Choose positive constantsc andC such that the assertions of Lemmata 10.12, 10.13,
and 10.16 hold with these constants. Chooseδ andε such that

2cδ ≤ 1, 8C(1 + c)ε < 1.

Let (a, ξ, η, b) and(a′, ξ ′, η′, b′) satisfy the assumptions of Proposition 10.7 with these
constantsδ andε and define

λ := b/a = b/r2, λ′ := b′/a′
= b′/r2.

Then
r−2ξ(rz)η(rz−1) = λ, r−2ξ ′(rz)η′(rz−1) = λ′, |z| = 1. (39)

Denote byLr : C ×H s
r,− ×H s

r,− → H s the linear operator given by

Lr(λ̂, ξ̂−, η̂−)(z) := r−2ξ̂−(rz)η+(rz
−1)+ r−2ξ+(rz)η̂−(rz

−1)− λ̂.

In the notation of 10.11 the operatorLr is the restriction of the differential ofFr at
(λ, ξ+, η+) (for anyλ) to the subspaceC ×H s

r,− ×H s
r,−. Sincecδ ≤ 1/2 it follows from

Lemmata 10.14 and 10.16 that the operatorLr is invertible and the norm of the inverse is
bounded by 2:

|λ̂|2 + ‖ξ̂−‖
2
r,s + ‖η̂−‖

2
r,s ≤ 4‖Lr(λ̂, ξ̂−, η̂−)‖

2
s . (40)

Let us denote byQr : H s
r,− ×H s

r,− → H s the quadratic form

Qr(ξ−, η−)(z) := r−2ξ−(rz)η−(rz
−1).
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Then, by Lemma 10.13, we have

‖Qr(ξ−, η−)‖s ≤ Cr−1(‖ξ−‖r,s sup
|y|=r

|η−(y)| + ‖η−‖r,s sup
|x|=r

|ξ−(x)|). (41)

Now let
λ̂ := λ′

− λ, ξ̂− := ξ ′
− ξ, η̂− := η′

− η.

Then the difference of the two equations in (39) can be expressed in the form

Lr(λ̂, ξ̂−, η̂−) = Qr(ξ−, η−)−Qr(ξ
′
−, η

′
−) = −Qr(ξ̂−, η−)−Qr(ξ−, η̂−)−Qr(ξ̂−, η̂−).

Abbreviate

ζ̂ := (λ̂, ξ̂−, η̂−), ‖ζ̂‖r,s :=
√

|λ̂|2 + ‖ξ̂−‖2
r,s + ‖η̂−‖2

r,s .

Then

‖ζ̂‖r,s ≤ 2‖Lr ζ̂‖s ≤ 2(‖Qr(ξ̂−, η−)‖s + ‖Qr(ξ−, η̂−)‖s + ‖Qr(ξ̂−, η̂−)‖s)

≤ 2C(‖ξ−‖r,s + ‖η−‖r,s)‖ζ̂‖r,s + 2Cr−1( sup
|x|=r

|ξ̂−(x)| + sup
|y|=r

|η̂−(y)|)‖ζ̂‖r,s

≤ 2C(1 + c)(‖ξ−‖r,s + ‖η−‖r,s)‖ζ̂‖r,s

+ 2Cr−1( sup
|x|=r

|ξ ′
−(x)| + sup

|y|=r

|η′
−(y)|)‖ζ̂‖r,s

≤ 8C(1 + c)ε‖ζ̂‖r,s .

Here the first inequality follows from (40), the second from the triangle inequality, the
third from Lemma 10.13 and (41), the fourth from Lemma 10.12, and the last from the
assumptions of the proposition. Since 8C(1 + c)ε < 1 it follows thatζ̂ = 0. This proves
the proposition. ut

Proof of Proposition 10.9.

Step 1. The mapT is continuous.

Continuity fora > 0 is an easy consequence of the proof of Proposition 10.6. The mapf

defined in (34) depends continuously on the parametersξ+, η+, r, andr =
√
a depends

continuously ona. For complex nonzeroa we can chooseθ in the rotation trick to depend
continuously ona. To prove continuity fora = 0 we deduce from (28) that there is a
constantc > 0 such that

‖T (a, ξ+, η+)‖ :=
√

|b|2 + ‖ξ−‖2
s + ‖η−‖2

s ≤ c|a|.

Here we used the fact that‖ζ‖s ≤ r‖ζ‖r,s for ζ ∈ H s
r,−.

Step 2. Letξ+, η+ ∈ H s
+(id, δ) anda ∈ D\0 and defineξ := ξ++ξ− andη := η++η−,

where(b, ξ−, η−) := T (a, ξ+, η+). Then the linear operator

L : C ×H s
r,− ×H s

r,− → H s
r
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defined by
L(b̂, ξ̂−, η̂−)(x) := ξ̂−(x)η(ax

−1)+ ξ(x)η̂(ax−1)− b̂

is invertible.

In the notation of the proof of Proposition 10.6 the operatorL is conjugate todf (u).
Specifically,

L(λ̂r2, ξ̂−, η̂−)r = rdf (u)(λ̂, ξ̂−, η̂−)

whena = r2. The operatordf (u) is invertible by (35) and (37). For generala use the
rotation trick from the end of the proof of Proposition 10.6.

Step 3. The mapT is continuously differentiable for0< |a| < 1.

We formulate a related problem. Define a partial rescaling operator

Rr : H s
→ H s

+ ⊕H s
r,−, (Rrξ)(z) := ξ+(z)+ rξ−(r

−1z).

The operatorRr is a Hilbert space isometry for everyr ∈ (0,1]. Let

X := C × C ×H s
×H s, Y := H s .

There is a splittingX = X+ ⊕ X− where

X+ := C ×H s
+ ×H s

+, X− := C ×H s
− ×H s

−.

Let U ⊂ X denote the open set{0< |a| < 1} and defineF̃ : U → Y by

F̃(a, b, ξ, η)(z) := (Rrξ)(rz) · (Rrη)(ar
−1z−1)− b, r :=

√
|a|.

DefineT̃ : U ∩ X+ → X− by

T̃ (a, ξ+, η+) := (b, (ξ−)r , (η−)r), (b, ξ−, η−) := T (a, ξ+.η+).

(Recall thatζr(z) := r−1ζ(rz) for ζ ∈ H s
r and |z| = 1.) By construction the graph of

T̃ is contained in the zero set of̃F . By Step 2 the derivative of̃F in the directionX̃− is
an invertible operator at every point in the graph ofT̃ . Hence, by the implicit function
theorem,T̃ is continuously differentiable. Define the mapR : U → U by

R(a, b, ξ, η) := (a, b, Rrξ, Rrη), r :=
√

|a|.

This map is continuously differentiable and

graph(T ) = R ◦ graph(T̃ ).

Here graph(T ) denotes the map(a, ξ+, η+) 7→ (a, b, ξ, η) given by (b, ξ−, η−) :=
T (a, ξ+, η+). Similarly for graph(T̃ ). Hence graph(T ) is continuously differentiable for
0< |a| < 1 and so isT .

Step 4. The mapT is holomorphic for0< |a| < 1.
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As T is differentiable we have

dT (a, ξ+, η+)(â, ξ̂+, η̂+) = (b̂, ξ̂−, η̂−)

for â ∈ C and ξ̂+, η̂+ ∈ H s
+ whereξ̂−, η̂− ∈ H s

r,− and b̂ ∈ C are determined by the
equation

L(b̂, ξ̂−, η̂−)(x) = −ξ̂+(x)η(ax
−1)− ξ(x)η̂+(ax

−1)− ξ(x)η′(ax−1)âx−1 (42)

for |x| = r :=
√

|a|. HereL : C ×H s
r,− ×H s

r,− → H s is the operator of Step 2. SinceL
is complex linear so isdT (a, ξ+, η+).

Step 5. The mapT is holomorphic for|a| < 1.

That T is holomorphic neara = 0 follows from Step 4, continuity, and the Cauchy
integral formula. More precisely, supposeX andY are complex Hilbert spaces andT :
C ×X → Y is a continuous map which is holomorphic on(C \ 0)×X. Then

T (a, x) =
1

2π

∫ 2π

0
T (a + eiθ â, x + eiθ x̂) dθ

and

dT (a, x)(â, x̂) =
1

2π

∫ 2π

0
e−iθT (a + eiθ â, x + eiθ x̂) dθ

for a, â ∈ C andx, x̂ ∈ X with a 6= 0. In the case at handT (a, x) converges uniformly
to zero as|a| tends to zero (see the proof of Step 1). By the Cauchy integral formula, this
implies thatdT (a, x) converges uniformly to zero in the operator norm as|a| tends to
zero. This proves the proposition. ut

Proof of Theorem10.4. Fix a constants > 1/2 and chooseδ, c, andε such that Proposi-
tions 10.6 and 10.7 hold. Shrinkingδ we may assume 4cδ < ε. We prove that the graph
of T intersectsWδ in Uδ. By definition

graph(T ) ∩Wδ ⊂ Uδ.

To prove the converse choose(a, ξ, η, b) ∈ Uδ. If a = 0 thenξ− = η− = 0 andb = 0
so (a, ξ, η, b) belongs to the graph ofT . Hence assumea 6= 0 and letr :=

√
|a|. Then

‖ξ+ − id‖s < δ and ‖η+ − id‖s < δ. So, by Proposition 10.6, there is an element
(a, ξ ′, η′, b′) ∈ Wδ ∩ graph(T ) satisfyingξ ′

+ = ξ+, η′
+ = η+, and

‖ξ ′
−‖r,s ≤ 4crδ < ε, ‖η′

−‖r,s ≤ 4crδ < ε.

We claim thatξ = ξ ′, η = η′, andb = b′. By Proposition 10.7 it suffices to show that

sup
|x|=r

|ξ−(x)| < rε, sup
|y|=r

|η−(y)| < rε.

By symmetry we need only prove the first inequality. By the triangle inequality

sup
|x|=r

|ξ−(x)| ≤ sup
|x|=r

|ξ(x)− x| + sup
|x|=r

|ξ+(x)− x|. (43)
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By Lemma 10.10 we estimate the first term on the right by

sup
|x|=r

|ξ(x)− x| ≤ crδ. (44)

For the second term we have, by Lemma 10.12,

sup
|x|=r

|ξ+(x)− x| = r sup
|z|=1

|(ξ+ − id)r(z)| ≤ rc‖(ξ+ − id)r‖s = cr‖ξ+ − id‖r,s .

But the series forξ+ − id has only positive powers andr ≤ 1 so

‖ξ+ − id‖r,s ≤ ‖ξ+ − id‖s ≤ ‖ξ − id‖s ≤ δ.

Combining the last two lines gives

sup
|x|=r

|ξ+(x)− x| ≤ crδ. (45)

Now use (43), (44), and (45) and shrinkδ so 2cδ < ε. ut

We close this section with two lemmas that will be useful in what follows.

Lemma 10.18. Fix s > 1/2 and chooseδ > 0 as in Theorem10.4. LetA ⊂ int(D)×Cm
be an open set and

A → Uδ : (a, t) 7→ (a, ξa,t , ηa,t , ba,t )

be a holomorphic map. Then the map

8 : {(x, y, t) ∈ C2+m : x, y ∈ int(D), (xy, t) ∈ A} → C × C

given by
8(x, y, t) := 8t (x, y) := (ξxy,t (x), ηxy,t (y))

is holomorphic.

Proof. The evaluation map

H s
∩H s

r2 × {z ∈ C : r2 < |z| < 1} → C : (ζ, z) 7→ ζ(z)

is holomorphic. It follows that the map(x, y, t) 7→ 8t (x, y) is holomorphic in the do-
mainxy 6= 0. We prove that8 is continuous. Supposexi → x 6= 0, yi → 0, andti → t .
Thenξxiyi ,ti converges toξ0,t , uniformly in a neighborhood ofx, and henceξxiyi ,ti (xi)
converges toξ0,t (x). Moreover, ifc andδ are the constants of Lemma 10.10, then

|ηxiyi ,ti (yi)| ≤ (cδ + 1)|yi |

and soηxiyi ,ti (yi) converges toη0,t (0) = 0. Hence8ti (xi, yi) converges to8t (x,0) =

(ξ0,t (x),0). Hence8 is continuous at every point(x,0, t) with x 6= 0. By symmetry,
8 is continuous at every point(0, y, t) with y 6= 0. That8 is continuous at every point
(0,0, t) follows again from Lemma 10.10. Since8 is continuous and is holomorphic in
xy 6= 0, it follows from the Cauchy integral formula that8 is holomorphic. ut
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Lemma 10.19. Letξ0, η0 : int(D) → C be two holomorphic functions satisfyingξ0(0) =

η0(0) = 0 andξ ′

0(0) 6= 0, η′

0(0) 6= 0. Then there are neighborhoodsU1 andU2 of (0,0)
in C2 andB1 andB2 of 0 in C and holomorphic diffeomorphisms8 := (ξ, η) : U1 → U2
andζ : B1 → B2 such that

ξ(x,0) = ξ0(x), η(0, y) = η0(y), ξ(x, y)η(x, y) = ζ(xy)

for x, y near0.

Proof. Replacingξ0 andη0 by ξ ′

0(0)
−1ξ0 andη′

0(0)
−1η0 we may assume thatξ ′

0(0) =

η′

0(0) = 1. Replacingξ0(x) and η0(y) by ε−1ξ0(εx) and ε−1η0(εy) we may assume
that the power series forξ0 andη0 lie in H s

+(id, δ) with δ > 0 as in 10.8. Forz ∈ D
defineαz, βz ∈ H s

− by (ζ(z), αz, βz) := T (z, ξ0, η0) and then defineξ(x, y) := ξ0(x)+

αxy(x) andη(x, y) := η0(y)+βxy(y). Then8 is holomorphic by Lemma 10.18. A direct
calculation shows thatd8(0,0) is the identity so8 is a local diffeomorphism. The desired
identities follow from the definition ofT . To prove thatζ ′(0) = 1 differentiate the identity
ξη = ζ twice. ut

11. Hardy decompositions

In this section we redo Section 9 in parametrized form. We will use the implicit function
theorem on a manifold of maps. The main difficulty in defining a suitable manifold of
maps is that the nodal familyπA is not locally trivial because the homotopy type of
the fiber changes. To circumvent this difficulty we use the local model of Section 10
for a neighborhood of the nodal set and suitable trivializations for the complement (see
Definitions 11.2 and 11.6).

11.1. Throughout this section(πA : P → A,R∗, a0) and(πB : Q → B, S∗, b0) are
nodal unfoldings,

f0 : Pa0 → Qb0

is a fiber isomorphism, andp1, . . . , pk are the nodal points of the central fiberPa0, so
qi := f0(pi) (for i = 1, . . . , k) are the nodal points of the central fiberQb0. Letm :=
dimC(A) andd := dimC(B). LetCA ⊂ P andCB ⊂ Q denote the critical points ofπA
andπB respectively.

Definition 11.2. A Hardy decompositionfor (πA, R∗, a0) is a decomposition

P = M ∪N, ∂M = ∂N = M ∩N,

into manifolds with boundary such that

N = N1 ∪ · · · ∪Nk,



666 Joel W. Robbin, Dietmar A. Salamon

eachNi is a neighborhood ofpi , the closures of theNi are pairwise disjoint,N is disjoint
from the elements ofR∗, andN is the domain of anodal coordinate system. This consists
of three sequences of holomorphic maps

(xi, yi) : Ni → D2, zi : A → C, ti : A → Cm−1,

such that each map
A → D × Cm−1 : a 7→ (zi(a), ti(a))

is a holomorphic coordinate system, each map

Ni → D2
× Cm−1 : p 7→ (xi(p), yi(p), ti(πA(p)))

is a holomorphic coordinate system and

xi(pi) = yi(pi) = 0, zi ◦ πA = xiyi .

(Note that hereNi has a boundary whereas its analogUi in 9.1was open.) Restricting to
a fiber gives a decomposition

Pa = Ma ∪Na, Ma := M ∩ Pa, Na := N ∩ Pa

whereMa is a Riemann surface with boundary and each component ofNa is either a
closed annulus or a pair of transverse closed disks. The nodal coordinate system deter-
mines a trivialization

ι : A× 0 → ∂N, 0 :=
k⋃
i=1

{(i,1), (i,2)} × S1, (46)

whereι−1 is the disjoint union of the maps

π × xi : ∂1Ni → A× S1, ∂1Ni := {|xi | = 1},

π × yi : ∂2Ni → A× S1, ∂2Ni := {|yi | = 1}.

The indexing is so thatι(A × (i,1) × S1) = ∂1Ni and ι(A × (i,2) × S1) = ∂2Ni . For
a ∈ A defineιa : 0 → ∂N by ιa(λ) := ι(a, λ).

Lemma 11.3. After shrinkingA andB if necessary, there is a Hardy decompositionP =

M ∪N as in11.2and there are open subsets

U = U1 ∪ · · · ∪ Uk, V , W := U ∩ V

ofQ and functionsξi, ηi, ζi, τi as described in9.1such that

f0(Ma0) ⊂ Vb0, f0(Na0) ⊂ Ub0,

and
ξi ◦ f0 ◦ x−1

i (x,0,0) = x, ηi ◦ f0 ◦ y−1
i (0, y,0) = y

for x, y ∈ D.
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Proof. Choose any Hardy decompositionP = M ∪N as in 11.2 as well as open subsets
U = U1 ∪ · · · ∪ Uk, V , W of Q and functionsξi, ηi, ζi, τi as described in 9.1. Read
ξi ◦ f0 ◦ x−1

i (x) for ξ0(x) andηi ◦ f0 ◦ y−1
i (y) for η0(y) in Lemma 10.19, let8 andζ

be as in the conclusion of that lemma, and replace(ξi, ηi) by 8−1
◦ (ξi, ηi) andζi by

ζ−1
◦ ζi . This requires shrinkingUi (andB). Then shrinkN so thatf0(Na0) ⊂ Ub0 and

enlargeV so thatf0(Ma0) ⊂ Vb0. ut

11.4. We use a Hardy decomposition to mimic the construction of 9.3 witha ∈ A as a
parameter. Choose a Hardy decompositionP = M ∪ N for (πA, R∗, a0), open subsets
U = U1 ∪ · · · ∪ Uk, V ,W of Q, and functionsξi, ηi, ζi, τi as described in 9.1, such that
the conditions of Lemma 11.3 are satisfied. Fix an integers+1/2> 1 and define an open
subset

W(a, b) ⊂ H s(∂Na,Wb)

by the condition that forγ ∈ H s(∂Na,Wb) we haveγ ∈ W(a, b) iff

γ (x−1
i (S1)) ⊂ Wi,1, γ (y−1

i (S1)) ⊂ Wi,2

(see 9.1 for the notationWi,1 andWi,2) and the curvesξi ◦ γ ◦ x−1
i andηi ◦ γ ◦ y−1

i from
S1 to C \ 0 both have winding number one about the origin. Fora ∈ A andb ∈ B let

U(a, b) :=

{
γ = u|∂Na ∈ W(a, b) :

u ∈ Hols+1/2(Na, Ub),

u(CA ∩ Pa) = CB ∩Qb

}
,

V(a, b) :=

{
γ = v|∂Na ∈ W(a, b) :

v ∈ Hols+1/2(Ma, Vb),

v(R∗ ∩ Pa) = S∗ ∩Qb

}
.

Here Hols+1/2(X, Y ) is defined by (16); holomorphy at a nodal point is defined as in 10.1.
Define

Wa :=
⊔
b∈B

W(a, b), Va :=
⊔
b∈B

V(a, b), Ua :=
⊔
b∈B

U(a, b),

W :=
⊔
a∈A

Wa, V :=
⊔
a∈A

Va, U :=
⊔
a∈A

Ua .

Our notation means that the three formulas(a, γ, b) ∈ W, (γ, b) ∈ Wa , andγ ∈ W(a, b)

have the same meaning.

11.5. We use the trivializationι : A× 0 → ∂N in (46) to construct an auxiliary Hilbert
manifold structure onW. Define an open set

W0 ⊂ {(a, γ, b) ∈ A×H s(0,W)× B : πB ◦ γ = b}

by the condition that the map

W0 → W : (a, γ, b) 7→ (a, γ ◦ ι−1
a , b) (47)

is a bijection. In particularγ ((i,1)× S1) ⊂ Wi,1 andγ ((i,2)× S1) ⊂ Wi,2 for (a, γ, b)
∈ W0. By a standard constructionH s(0,W) is a complex Hilbert manifold and the subset
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{(a, γ, b) : πB ◦ γ = b} is a complex Hilbert submanifold ofA × H s(0,W) × B. This
is because the mapH s(0,W) → H s(0, B) induced byπB is a holomorphic submersion.
Note thatW0 is a connected component of{(a, γ, b) : πB ◦ γ = b} and hence inherits its
Hilbert manifold structure. We emphasize that the resulting Hilbert manifold structure on
W depends on the choice of the trivialization. Two different trivializations give rise to a
homeomorphism which is of classCk on the dense subsetW ∩H s+k.

Definition 11.6. A Hardy trivialization for (πA : P → A,R∗, a0) is a triple (M ∪

N, ι, ρ) whereP = M ∪ N is a Hardy decomposition with corresponding trivialization
ι : A× 0 → ∂N as in11.2and

ρ : M → � := Ma0

is a trivialization such that

ρa ◦ ιa = ιa0, ρa := ρ|Ma : Ma → �

for a ∈ A and
ρ(R∗) = R∗ ∩� =: r∗.

We require further thatρ is holomorphic in a neighborhood of the boundary, more pre-
cisely that the coordinatesxi andyi in Definition11.2extend holomorphically to a neigh-
borhood ofNi and thatxi ◦ ρ = xi near∂1Ni andyi ◦ ρ = yi near∂2Ni .

11.7. The fiber isomorphismf0 : Pa0 → Qb0 determines a point

(a0, γ0 := f0|∂Na0, b0) ∈ W;

this point lies inU ∩ V as

γ0 = u0|∂Na0 = v0|∂Ma0, where u0 := f0|Na0, v0 := f0|Ma0.

In the following we will denote neighborhoods ofa0 in A and(a0, γ0, b0) in U , V, orW
by the same lettersA, respectivelyU , V, orW, and signal this with the text “shrinkingA,
U , V, orW if necessary”.

Lemma 11.8. For every(a, γ, b) ∈ U ∩V there is a unique fiber isomorphismf : Pa →

Qb with f |∂Na = γ .

Proof. This follows immediately from Lemma 9.4. ut

Theorem 11.9. Fix an integers + 1/2> 4. After shrinkingA, U , V,W if necessary, the
following holds.

(i) For eacha ∈ A, Ua andVa are complex submanifolds ofWa .
(ii) U andV are complex submanifolds ofW.

(iii) The projectionsW → A, U → A, V → A are holomorphic submersions.
(iv) The unfolding(πB , S∗, b0) is infinitesimally universal if and only if

Tw0Wa0 = Tw0Ua0 ⊕ Tw0Va0, w0 = (a0, γ0, b0).



A construction of the Deligne–Mumford orbifold 669

Proof. In 9.1 it was not assumed thatk was precisely the number of nodal pairs so the
arguments of Section 9 will apply when the central fiberQb0 is replaced by a nearby fiber
Qb with possibly fewer nodal points. Hence (i) and (iv) follow from Theorem 9.5. We
prove (ii) and (iii) in four steps.

Step 1. We prove thatU is a complex Hilbert submanifold ofW.

The image of the nodal coordinate system(xi, yi, ti) onNi in C×C×Cm−1 has the form

{(x, y, t) ∈ D2
× Cm−1 : (xy, t) ∈ Ai, |x| < 1, |y| < 1}.

whereAi ⊂ C × Cm−1 is contained in the open set{|zi | < 1} × Cm−1. The image of the
nodal coordinate systems(ξi, ηi, τi) onUi in C × C × Cd−1 has the form

{(ξi, ηi, τi) ∈ C × C × Cd−1 : |ξi | < 2, |ηi | < 2, (ξiηi, τi) ∈ Bi},

whereBi ⊂ C × Cd−1 is contained in the open set{|ζi | < 4} × Cd−1. By assumption
(see 11.4), the fiber isomorphismf0 : P0 → Q0 between the fibers over the origin is the
identity in these coordinates.

Consider the map

W → A× (H s)2k × B : (a, γ, b) 7→ (a, α1, β1, . . . , αk, βk, b)

whereγ ∈ W(a, b) andαi = ξi ◦ γ ◦ x−1
i andβi = ηi ◦ γ ◦ y−1

i . This map is a
diffeomorphism fromW, with the manifold structure of 11.5, onto an open subset of
the Hilbert manifoldA × (H s)2k × B. The image of the subsetU ⊂ W under this
diffeomorphism consists of all tuples(a, α1, β1, . . . , αk, βk, b) in the image ofW such
that

xy = zi(a) ⇒ αi(x)βi(y) = ζi(b) for i = 1, . . . , k.

That this subset is a complex submanifold ofA×(H s)2k×B follows from Theorem 10.4.

Step 2. Define

B :=

{
(a, v, b) :

a ∈ A, b ∈ B, v ∈ H s+1/2(Ma, Vb),

v(R∗ ∩ Pa) = S∗ ∩Qb, v|∂Na ∈ W(a, b)

}
and

Z := {(a, v, b) ∈ B : v ∈ Hols+1/2(Ma, Vb)}. (48)

We construct an auxiliary Hilbert manifold structure onB and show thatZ is a smooth
submanifold ofB.

In analogy with 11.4 define

B0 :=

{
(a, v, b) :

a ∈ A, b ∈ B, v ∈ H s+1/2(�, Vb),

v(r∗) = S∗ ∩Qb, v ◦ ρa|∂Na ∈ W(a, b)

}
,

where� := Ma0 andr∗ := R∗ ∩� = ρ(R∗) as in Definition 11.6. This space is a Hilbert
manifold and the Hardy trivialization(P = N ∪M, ι, ρ) induces a bijection

B0 → B : (a, v, b) 7→ (a, v ◦ ρa, b).



670 Joel W. Robbin, Dietmar A. Salamon

This defines the Hilbert manifold structure onB. Note the commutative diagram

B0 −→ By y
W0 −→ W

where the bijectionW0 → W is given by (47), the mapB → W is given by restriction to
the boundary, and the mapB0 → W0 is (a, v, b) 7→ (a, v ◦ ιa0, b). The bijectionB0 → B
identifies the subsetZ ⊂ B with the subsetZ0 ⊂ B0 given by

Z0 := {(a, v, b) ∈ B0 : v ∈ Hols+1/2((�, ja),Qb)},

whereja := (ρa)∗J |Ma , ρa : Ma → � is the Hardy trivialization, andJ is the complex
structure onP . (Note that the mapa 7→ ja need not be holomorphic.)

We prove thatZ0 is a smooth Hilbert submanifold ofB0. The tangent space ofB0 at
a triple(a, v, b) is

Ta,v,bB0 = TaA×{(v̂, b̂) ∈ H s+1/2(�, v∗TQ)×TbB : dπB(v)v̂ ≡ b̂, v̂(ri) ∈ Tv(si )Si}.

Let E → B0 be the complex Hilbert space bundle whose fiber

Ea,v,b := H s−1/2(�,3
0,1
ja
T ∗�⊗ v∗TQb)

over(a, v, b) ∈ B0 is the Sobolev space of(0,1)-forms on(�, ja) of classH s−1/2 with
values in the pullback tangent bundlev∗TQb. As before the Cauchy–Riemann operator
defines a smooth section∂̄ : B0 → E given by

∂̄(a, v, b) := ∂̄ja ,J (v) =
1
2(dv + J ◦ dv ◦ ja). (49)

HereJ denotes the complex structure onQ. The zero set of this section is the setZ0
defined above. It follows as in the proof of Theorem 9.5 that the linearized operator
Da,v,b : Ta,v,bB0 → Ea,v,b is surjective and has a right inverse. Hence the zero setZ0 is
a smooth Hilbert submanifold ofB0.

Step 3. We prove thatV is a complex Hilbert submanifold ofW.

As in the proof of Theorem 9.5 restriction to the boundary gives rise to a smooth embed-
ding

Z → W : (a, v, b) 7→ (a, γ, b), γ := v|∂Ma,

whose image isV. The only difference in the proof that the restriction mapZ → W is
proper is that now we have aC∞ convergent sequence of complex structures on�. The
proof is otherwise word for word the same. (Note that [16, Theorem B.4.2] allows for a
sequence of complex structures on the domain.) HenceV is a smooth Hilbert submanifold
of W.

We prove thatT(a,γ,b)V is a complex subspace ofT(a,γ,b)W for each triple(a, γ, b)
∈ V. For this we identifyW with W0 and henceV with the imageV0 of the embedding

Z0 → W0 : (a, v, b) 7→ (a, v ◦ ιa0, b). (50)
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The tangent space ofB0 at a point(a, v, b) is the space of all triples(â, v̂, b̂) ∈ TaA ×

�0(�, v∗TQ)× TbB that satisfy

dπ(v)v̂ ≡ b, v̂(ri) ∈ Tv(ri )Si, i = 1, . . . , n.

The trivializationπ × ρ : M → A × � induces a complex structure of the form (6) on
A × � wherej : A → J (�) is a smooth map andα : TA → Vect(6) a smooth 1-
form satisfying (7) and (8). Sinceρ is holomorphic near∂M with respect to the complex
structurej (a0) on� = Ma0 (see Definition 11.6) it follows thatα vanishes nearA× ∂�.
Let Dv : �0(�, v∗TQ) → �

0,1
j (a)(�, v

∗TQ) denote the linearized Cauchy–Riemann
operator associated to a(j (a), J )-holomorphic curvev : � → Q. Then the tangent space
ofZ0 at(a, v, b) is the kernel of the operatorDa,v : T(a,v,b)B0 → �

0,1
j (a)(�, v

∗TQ) given
by

Da,v(â, v̂, b̂) := Dv v̂ +
1
2J (v)dv · dj (a)â. (51)

It follows from (15) withσi(a) ≡ ri that the vector fieldα(a, â) vanishes at the pointri
for everya ∈ A and everŷa ∈ TaA. Hence the tangent spaceT(a,v,b)B0 carries a complex
structure

I(a, v, b)(â, v̂, b̂) := (
√

−1â, J (v)v̂ − dv · α(a, â),
√

−1b̂)

and, by direct calculation using (8), we find

J (v) ◦Da,v = Da,v ◦ I(a, v, b).

Hence the (almost) complex structureI descends toZ0. Sinceα vanishes near the bound-
ary the differential of the embedding (50) is complex-linear and henceV0 is a complex
submanifold ofW0 as claimed.

Step 4. We prove (iii).

That the projectionsW → A, U → A, V → A are holomorphic is obvious from the
construction. We prove that these three maps are submersions. For the mapU → A, and
hence forW → A, this follows immediately from Proposition 10.9. ForV observe that
the linearized operator of the section (49) is the operator (51). Chooseâ ∈ TaA and solve
the equationDa,v(â, v̂,0) = 0 for v̂. This equation has a solution becauseDv is surjective
with domain the space of vertical vector fields that vanish at the pointsri and target the
space of vertical(0,1)-forms. This proves (iii). ut

12. Proofs of the main theorems

Definition 12.1. The setC of critical points of a nodal familyπ : Q → B is a subman-
ifold of Q and the restriction ofπ to this set is an immersion. The family is said to be
regular nodal at b ∈ B if all self-intersections ofπ(C) in π−1(b) are transverse, i.e.

dimC(im dπ(q1) ∩ · · · ∩ im dπ(qm)) = dimC(B)−m

wheneverq1, . . . , qm ∈ C are pairwise distinct andπ(q1) = · · · = π(qm) = b; the nodal
family is calledregular nodal if it is regular nodal at eachb ∈ B.
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Lemma 12.2. Letu be a desingularization of the fiberQb, g be the arithmetic genus of
the fiber, andn be the number of marked points. Then the following hold:

(i) Du,b(û, b̂) ∈ Yu for (û, b̂) ∈ Xu,b.
(ii) The operatorDu,b : Xu,b → Yu is Fredholm.

(iii) The Fredholm index satisfies

indexC(Du,b) ≥ 3 − 3g − n+ dimC(B)

with equality if and only ifπ is regular nodal atb.

Proof. We prove (i). Choose(û, b̂) ∈ Xu,b and let

∂̄ : �0(6, TbB) → �0,1(6, TbB)

denote the usual Cauchy–Riemann operator. ThendπB(u)Duû = ∂̄dπB(u)û = 0 since
dπB(u)û is a constant vector. HenceDuû ∈ Yu. Item (ii) is immediate asDu is Fredholm
as a map from vertical vector fields to vertical(0,1)-forms andDu,b is obtained fromDu
by a finite-dimensional modification of the domain. (A vertical vector field is an element
û ∈ �0(6, u∗TQ) such thatdπ(u)û = 0; a vertical(0,1)-form is an elementη ∈

�0,1(6, u∗TQ) such thatdπ(u)η = 0, i.e. an element ofYu.)
We prove (iii). The arithmetic genusg of the fiber is given by

g = #edges− #vertices+ 1 +

∑
i

gi (52)

where #vertices=
∑
i 1 is the number of components of6, #edges is the number of pairs

of nodal points, andgi is the genus of theith component. Now consider the subspace

Xu := {(û, b̂) ∈ Xu,b : b̂ = 0}

of all vertical vector fields alongu satisfying the nodal and marked point conditions. If
(û, b̂) ∈ Xu,b, then the vector̂b belongs to the image ofdπ(q) for everyq ∈ Qb. Hence
the codimension ofXu in Xu,b is

codimXu,b(Xu) = dim
( ⋂
q∈Qb

im dπ(q)
)

≥ dimC(B)− #edges

with equality if and only ifπB is regular nodal atb. By Riemann–Roch the restricted
operator has Fredholm index

indexC(Du : Xu → Yu) =

∑
i

(3 − 3gi)− 2 #edges− n.

Here the summand−2 #edges arises from the nodal point conditions in the definition
of Xu. To obtain the Fredholm index ofDu,b we must add the codimension ofXu in Xu,b
to the last identity. Hence

indexC(Du,b) ≥

∑
i

(3 − 3gi)− 3 #edges− n+ dimC(B)

= 3 − 3g − n+ dimC(B).
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The last identity follows from (52). Again, equality holds if and only ifπB is regular
nodal atb. ut

Proof of Theorem 5.3.The proof is an easy application of the openness of transversality.
TakeP = Q, A = B, πA = πB , andf0 = id, soγ0 is the inclusion of∂Nb0 in Qb0.
Assume the unfolding(πB : Q → B, S∗, b0) is infinitesimally universal. Chooseb ∈ B

nearb0, fix an integers + 1/2 > 4, and letUb andVb be the manifolds in 11.4 with
P = Q anda = b. To show that(πB , S∗, b) is infinitesimally universal we must show
thatUb andVb intersect transversally atγ whereγ is the inclusion of∂Nb in Qb. Since
b is nearb0, so also isγ nearγ0. Consider the three subspacesTγWb, TγUb, TγVb, of
TγW. We haveTγUb = TγWb ∩ TγU and the intersection is transverse as the projection
U → B is a submersion. Similarly,TγVb = TγWb∩TγV. Hence the subspacesTγUb and
TγVb depend continuously on(b, γ ). By Theorem 11.9(iv) the submanifoldsUb0 andVb0

intersect transversally atγ0, i.e.Tγ0Wb0 = Tγ0Ub0+Tγ0Vb0. HenceTγWb = TγUb+TγVb
for (b, γ ) near(b0, γ0). Hence the unfolding(πB , S∗, b) is infinitesimally universal forb
nearb0 by Theorem 11.9 again as required. ut

Proof of Theorem 5.4.We proved “only if” in Section 5. For “if” assume that the unfold-
ing (πB , S∗, b0) is infinitesimally universal. Let(πA, R∗, a0) be another unfolding and
f0 : Pa0 → Qb0 be a fiber isomorphism. Assume the notation introduced in Section 11.
In particular assume the hypotheses of Theorem 11.9.

Step 1. U andV intersect transversally at(a0, γ0, b0).

Abbreviatew0 := (a0, γ0, b0). Chooseŵ ∈ Tw0W and letâ = dπ(w0)ŵ. As the re-
striction ofπ to U is a submersion there is a vectorû ∈ Tw0U with dπ(w0)û = â. Then
ŵ− û ∈ Tw0Wa0 so by Theorem 11.9(iv) there are vectorsû0 ∈ Tw0Ua0 andv̂0 ∈ Tw0Va0

with ŵ − û = û0 + v̂0.

Step 2.The projectionU ∩ V → A is a holomorphic diffeomorphism.

By Step 1 the intersectionU ∩ V is a complex submanifold ofW (after shrinking) and
Tw(U ∩ V) = TwU ∩ TwV for w ∈ U ∩ V. By the inverse function theorem it is enough
to show thatdπ(w0) : Tw0(U ∩ V) → Ta0A is bijective. Injectivity follows from The-
orem 11.9(iv) and the fact thatTw0Ua0 = Tw0U ∩ kerdπ(w0) andTw0Va0 = Tw0V ∩

kerdπ(w0). We prove surjectivity. Choosêa ∈ Ta0A. Since the restrictions ofπ toU and
V are submersions, there existû ∈ Tw0U andv̂ ∈ Tw0V with dπ(w0)û = dπ(w0)v̂ = â.
The differencêu− v̂ lies inTw0Wa0 so, by Theorem 11.9(iv), there areû0 ∈ Tw0Ua0 and
v̂0 ∈ Tw0Va0 with û− v̂ = û0+ v̂0. Henceû− û0 = v̂+ v̂0 lies inTw0(U ∩V) and projects
to â.

Now define8 : P → Q and φ : A → B by φ(a) := ba and8|Pa := fa ,
wherefa : Pa → Qba is the unique fiber isomorphism that satisfiesfa|∂Na = γa .
(See Lemma 11.8.)

Step 3. The mapsφ and8 and holomorphic.

The mapφ is the composition of the inverse of the projectionU ∩ V → A with the
projectionU ∩ V → B and is therefore holomorphic by Step 2. By Lemma 10.18 the
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restriction of8 to int(N) is holomorphic and hence smooth. To prove that the restriction
of 8 to int(M) is holomorphic we write it as the composition

int(M) → A×� → (U ∩ V)×� → Z0 ×� → Q

where the first map is the productπA × ρ, the second map is the inverse of the projection
U ∩V → A on the first factor, the third map is given by the obvious embedding ofU ∩V
into V0 ∼= Z0, and the fourth map is the evaluation map(a, v, b, z) 7→ v(z). All five
spaces are complex manifolds. In particular, the complex structure onZ0 ×� is

(â, v̂, b̂, ẑ) 7→ (
√

−1â, J (v)v̂ − dv · α(a, â),
√

−1b̂, j (a)(z)ẑ+ α(a, â)(z)).

All four maps are holomorphic and hence, so is the restriction of8 to int(M). Thus we
have proved that8 is holomorphic onP \ ∂N . Since8 is continuous, it follows that8 is
holomorphic everywhere. This proves the theorem. ut

Proof of Theorem 5.5.Assume that the unfolding(πB , S∗, b0) is infinitesimally univer-
sal and let(φ,8) is a pseudomorphism from(πA, R∗, a0) to (πB , S∗, b0). Then, in the
notation of the proof of Theorem 5.4,(γa, ba) := (8|∂Na, φ(a)) is the unique intersec-
tion point ofUa andVa . Hence(φ,8) agrees with the unique (holomorphic) morphism
constructed in the proof of Theorem 5.4. ut

Proof of Theorem 5.6.We proved “only if” in Section 5. For “if” assume that(6, s∗, ν, j)
is stable. We first consider the case where6 is disconnected and there are no nodal points.
Let 61, . . . , 6k be the components of6, gj be the genus of6j , andnj be the number
of marked points on6j . Let Ij ⊂ {1, . . . , n} be the index set associated to the marked
points in6j . Then{1, . . . , n} is the disjoint union of the setsI1, . . . , Ik andnj = |Ij | >

2 − 2gj . By Theorem 8.9 there exists, for eachj , a universal unfolding(πj : Qj →

Bj , {Sji}i∈Ij , b0j , v0j ) of 6j . Note that dimC(Bj ) = 3gj − 3 + nj . Define

B0 := B1 × · · · × Bk,

Q0 :=
k⊔

j=1

B1 × · · · × Bj−1 ×Qj × Bj+1 × · · · × Bk,

π0(b1, . . . , bj−1, qj , bj+1, . . . , bk) := (b1, . . . , bj−1, πj (qj ), bj+1, . . . , bk),

S0i := {(b1, . . . , bj−1, qj , bj+1, . . . , bk) : qj ∈ Sij }, i ∈ Ij ,

b0 := (b01, . . . , b0k),

v0(z) := (b01, . . . , b0,j−1, v0j (z), b0,j+1, . . . , b0k), z ∈ 6j .

Then the quadruple(π0, S0∗, b0, v0) is a universal unfolding of6.
Next consider the general case. Denote the nodal points on6 by ν = {{r1, s1}, . . . ,

{rm, sm}} and the marked points byt1, . . . , tn. Assume, without loss of generality, that
the signature of(6, t∗, ν, j) is a connected graph (see Definition 3.4). Replace all the
nodal points by marked points. Then, by what we have just proved, there exists a uni-
versal unfolding(π0, R0∗, S0∗, T0∗, b0, v0) of (6, r∗, s∗, t∗, j). Choose disjoint open sets
U1, . . . , Um, V1, . . . , Vm ⊂ Q0 such that

R0i ⊂ Ui, S0i ⊂ Vi, Ui ∩ T0j = Vi ∩ T0j = ∅
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for i = 1, . . . , m andj = 1, . . . , n. Choose holomorphic functionsxi : Ui → C and
yi : Vi → C such that

xi(R0i) = 0, yi(S0i) = 0

and (π0, xi) and (π0, yi) are coordinates onQ0. ShrinkB and the open setsUi, Vi if
necessary. Assume without loss of generality thatxi(Ui) = yi(Vi) = D. Define

B := B0 × Dm, Q := Q0 × Dm/∼.

Two points (q, z) and (q ′, z) with q ∈ Ui and q ′
∈ Vi are identified if and only if

π0(q) = π0(q
′) and either

xi(q)yi(q
′) = zi 6= 0 or xi(q) = yi(q

′) = zi = 0.

The equivalence relation onQ0 × Dm is generated by these identifications. (Two points
(q, z) and(q ′, z) with π0(q) = π0(q

′), q ∈ Ui , q ′
∈ Vi , zi = 0 arenot identified in the

casexi(q) = 0 andyi(q ′) 6= 0 nor in the casexi(q) 6= 0 andyi(q ′) = 0.) The projection
π : Q → B and the sectionsTj : B → Q are defined by

π([q, z]) := (π0(q), z), Tj := {[q, z] : q ∈ T0j }

for j = 1, . . . , n.
We have thus definedQ as a set. The manifold structure is defined as follows. For

i ∈ {1, . . . , m} denote byCi ⊂ Q the set of all equivalence classes [q, z] ∈ Q that satisfy
zi = 0 andq ∈ R0i . Note that any such point is equivalent to the pair [q ′, z] with q ′

∈ S0i
andπ0(q

′) = π0(q). Let

C :=
m⋃
i=1

Ci .

The manifold structure onQ\C is induced by the product manifold structure onQ0×Dm.
We now explain the manifold structure nearCi . Fix a constant 0< ε < 1 and define an
open neighborhoodNi ⊂ Q of Ci by

Ni := Ci ∪ {[q, z] ∈ Q : q ∈ Ui, |zi |/ε < |xi(q)| < ε}

∪ {[q, z] ∈ Q : q ∈ Vi, |zi |/ε < |yi(q)| < ε}.

A coordinate chart onNi is the map

[q, z] 7→ (b0, z1, . . . , zi−1, xi, yi, zi+1, . . . , zm),

whereb0 := π0(q) ∈ B0,

xi :=

xi(q) if q ∈ Ui,

zi/yi(q) if q ∈ Vi, zi 6= 0,
0 if q ∈ Vi, zi = 0,
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(if [ q, z] ∈ Ni andq ∈ Vi thenzi 6= 0 impliesyi(q) 6= 0), and

yi :=

yi(q) if q ∈ Vi,

zi/xi(q) if q ∈ Ui, zi 6= 0,
0 if q ∈ Ui, zi = 0.

With this construction the transition maps are holomorphic and soQ is a complex mani-
fold. In the coordinate chart onNi the projectionπ has the form

(b0, z1, . . . , zi−1, xi, yi, zi+1, . . . , zm) 7→ (b0, z), zi := xiyi .

It follows thatπ is holomorphic, the critical set ofπ isC, and each critical point is nodal.
Moreover,π restricts to a diffeomorphism fromCi onto the submanifold{zi = 0} ⊂ B.
Henceπ is a regular nodal family (see Definition 12.1).

Write b := (b0,0) ∈ B, let ι : Q0 → Q be the holomorphic map defined byι(q) :=
[q,0], and definev : 6 → Q by v := ι ◦ v0. Thenv is a desingularization of the fiber
Qb = π−1(b).

We prove that the triple(π, T∗, b) is a universal unfolding. Since the signature of the
marked nodal Riemann surface6 is a connected graph, the first Betti number of this graph
is 1− k +m (sincem is the number of edges, i.e. of equivalent pairs of nodal points, and
k is the number of vertices, i.e. of components of6). Hence the arithmetic genusg (see
Definition 3.6) of the central fiberQb is given by

g − 1 = m+

k∑
j=1

(gj − 1).

Now recall thatnj is the number of special points on6j and

k∑
j=1

nj = n+ 2m.

Since dimC(Bj ) = 3gj − 3 + nj this implies

dimC(B) = dimC(B0)+m =

k∑
j=1

(3gj − 3 + nj )+m = 3g − 3 + n.

Since the Riemann familyπ : Q → B is regular nodal it follows from Lemma 12.2 that
the operatorDv,b (see Definition 5.2) has Fredholm index zero. HenceDv,b is bijective if
and only if it is injective.

We prove in three steps thatDv,b is injective. First, every vector(v̂, b̂) ∈ Xv,b with
b̂ =: (b̂0, ẑ) satisfieŝz = 0. To see this note thatdπ(v)v̂ ≡ b̂. For everyi there is a unique
pair of equivalent nodal points in6 that are mapped toCi underv. Since the image ofdπ
at each point inCi is contained in the subspace{ẑi = 0} it follows that ẑ = 0. Second,
we define a linear operator

Xv0,b0 → Xv,b : (v̂0, b̂0) 7→ (v̂, b̂)
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by
b̂ := (b̂0,0), v̂(s) := (v̂0(s),0) ∈ Tv(s)Q,

for s ∈ 6 \ {r1, . . . , rm, s1, . . . , sm}. Thenv̂ extends uniquely to a smooth vector field
alongv. In the above coordinates onNi the tangent vector̂v(ri) = v̂(si) ∈ Tv(ri )Q =

Tv(si )Q has the form(x̂i, ŷi, b̂0,0), where

x̂i := dxi(v0(ri))v̂0(ri) and ŷi := dyi(v0(si))v̂0(si).

It is easy to see that this operator is bijective. Third, since the mapι : Q0 → Q is
holomorphic, it follows that

Dv,b(v̂, b̂) = dι(v)Dv0,b0(v̂0, b̂0).

Hence the operatorXv0,b0 → Xv,b restricts to a vector space isomorphism from the
kernel ofDv0,b0 to the kernel ofDv,b. By construction, the operatorDv0,b0 is injective and
hence, so isDv,b. Thus we have proved thatDv,b is bijective. Hence, by Theorem 5.4, the
quadruple(π, T∗, b, v) is a universal unfolding of(6, s∗, ν, j). ut

13. Topology

The orbit space of a groupoid inherits a topology from an orbifold structure on the
groupoid. This topology is independent of the choice of the structure in the sense that
equivalent orbifold structures determine the same topology (see Section 2). In the case of
the Deligne–Mumford orbifoldM̄g,n, the topology has as a basis for the open sets the
collection of all sets{[6b]B : b ∈ U} where(πB : Q → B, S∗) is a universal family as
in Definition 6.2, the functor

B → B̄g,n : b 7→ 6b

is the corresponding orbifold structure as in Definition 6.4, andU runs over all open sub-
sets ofB. In Section 14 we show that̄Mg,n is compact and Hausdorff. (See Example 2.8
for an example which shows why it is not obvious that the moduli space is Hausdorff.)
For this purpose we introduce in this section a notion of convergence of sequences of
marked nodal Riemann surfaces which we call DM-convergence.

13.1. Let6 be a compact oriented surface andγ ⊂ 6 be a disjoint union of embedded
circles. We denote by6γ the compact surface with boundary which results bycutting
open6 alongγ . This implies that there is a local embedding

σ : 6γ → 6

which maps int(6γ ) one-to-one onto6 \γ and maps∂6γ two-to-one ontoγ . One might
call σ thesuture mapandγ the incision.

Definition 13.2. Let (6′, ν′) and(6, ν) be nodal surfaces. A smooth mapφ : 6′
\ γ ′

→

6 is called a(ν′, ν)-deformation iff γ ′
⊂ 6′

\
⋃
ν′ is a disjoint union of embedded

circles such that (whereσ : 6′

γ ′ → 6′ is the suture map just defined) we have
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• φ∗ν
′ := {{φ(y′

1), φ(y
′

2)} : {y′

1, y
′

2} ∈ ν′
} ⊂ ν.

• φ is a diffeomorphism from6′
\ γ ′ onto6 \ γ , whereγ :=

⋃
(ν \ φ∗ν

′).
• φ◦σ |int(6′

γ ′) extends to a continuous surjective map6′

γ ′ → 6 such that the preimage

of each nodal point inγ is a component of∂6′

γ ′ and two boundary components which

map underσ to the same component ofγ ′ map to a nodal pair{x, y} ∈ γ .

A sequenceφk : (6k \ γk, νk) → (6, ν) of (νk, ν)-deformations is calledmonotypic iff
(φk)∗νk is independent ofk.

Definition 13.3. A sequence(6k, sk,∗, νk, jk) of marked nodal Riemann surfaces of type
(g, n) is said toconverge monotypicallyto a marked nodal Riemann surface(6, s∗, ν, j)
of type(g, n) iff there is a monotypic sequenceφk : 6k \ γk → 6 of (νk, ν)-deformations
such that fori = 1, . . . , n the sequenceφk(sk,i) converges tosi in 6, and the sequence
(φk)∗jk of complex structures on6 \ γ converges toj |(6 \ γ ) in theC∞ topology. The
sequence(6k, sk,∗, νk, jk) is said toDM-converge to (6, j, s, ν) iff, after discarding
finitely many terms, it is the disjoint union of finitely many sequences which converge
monotypically to(6, s, ν, j).

Remark 13.4. Assume that (6k, sk,∗, νk, jk) DM-converges to (6, s∗, ν, j), that
(6k, sk,∗, νk, jk) is isomorphic to(6′

k, s
′

k,∗, ν
′

k, j
′

k), and that(6, s∗, ν, j) is isomorphic
to (6′, s′∗, ν

′, j ′). Then(6′

k, s
′

k,∗, ν
′

k, j
′

k) DM-converges to(6′, s′∗, ν
′, j ′).

Remark 13.5. Our definition of deformation agrees with [10, p. 79]. Our definition of
monotypic convergence is Hummel’s definition of weak convergence to cusp curves in
[10, p. 80] (with the target manifoldM a point) except that he does not allow marked
points. However, the conclusion of Proposition 5.1 in [10, p. 71] allows marked points in
the guise of what Hummel calls degenerate boundary components. We will apply Propo-
sition 5.1 of [10] in the proof of Theorem 14.5 below after some preliminary constructions
to fit its hypotheses.

Theorem 13.6. Let (π : Q → B, S∗, b0) be a universal unfolding of a marked nodal
Riemann surface(60, s0,∗, ν0, j0) of type(g, n) and (6k, sk,∗, νk, jk) be a sequence of
marked nodal Riemann surfaces of type(g, n). Then the following are equivalent.

(i) The sequence(6k, sk,∗, νk, jk) DM-converges to(60, s0,∗, ν0, j0).
(ii) After discarding finitely many terms there is a sequencebk ∈ B such thatbk con-

verges tob0 and(6k, sk,∗, νk, jk) arises from a desingularizationuk : 6k → Qbk .

We postpone the proof of Theorem 13.6 till after we treat the analogous theorem for fiber
isomorphisms.

Definition 13.7. Let (πA : P → A,R∗, a0) and (πB : Q → B, S∗, b0) be two un-
foldings of type(g, n) andfk : Pak → Qbk be a sequence of fiber isomorphisms. The
sequencefk DM-convergeto a fiber isomorphismf0 : Pa0 → Qb0 iff ak → a0, bk → b0,
and for every Hardy decompositionP = M∪N as in Definition11.2the sequencefk ◦ιak
converges tof0 ◦ ιa0 in theC∞ topology.
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Theorem 13.8. Let (πA : P → A,R∗, a0) and(πB : Q → B, S∗, b0) be two universal
unfoldings of type(g, n) andak → a0 andbk → b0 be convergent sequences. Let(8, φ) :
(P,A) → (Q,B) be the germ of a morphism satisfyingφ(a0) = b0 and8a0 = f0. Then
the following are equivalent.

(i) The sequence(ak, fk, bk) DM-converges to(a0, f0, b0).
(ii) For k sufficiently large we haveφ(ak) = bk and8ak = fk.

Proof. That (ii) implies (i) is obvious. We prove that (i) implies (ii). Recall the Hardy de-
composition as in the definition of the spacesU , V,W in 11.4. The proof of Theorem 5.4
in Section 12 shows that

(a,8a|∂N ∩ Pa, φ(a)) = Ua ∩ Va .

But (ak, fk|∂N ∩Pak , bk) ∈ Uak ∩Vak ⊂ W for k sufficiently large by DM-convergence.
Both sequences(ak,8ak |∂N ∩ Pak , φ(ak)) and (ak, fk|∂N ∩ Pak , bk) converge to the
same point(a0, f0|∂N ∩Pa0, b0). Hence by transversality in Theorem 11.9 they are equal
for largek. Now use Lemma 11.8. ut

Proof of Theorem 13.6.We prove that (ii) implies (i). Letu0 : 60 → Qb0 be a desin-
gularization. Assume thatbk converges tob and thatuk : 6k → Qbk is a sequence of
desingularizations. Choose a Hardy trivialization(Q = M ∪N, ι, ρ) for (π, S∗, b0) as in
Definition 11.6. For eachb ∈ B choose a smooth map

ψb : Qb → Qb0

as follows. The restriction ofψb toMb agrees withρb. Next, using the nodal coordinates
of Definition 11.2, extendψb to a neighborhood of the common boundary ofM andN
via (xi,0, ti) 7→ (xi,0,0) for 2

√
|zi(b)| ≤ |xi | ≤ 1 and(0, yi, ti) 7→ (0, yi,0) for

2
√

|zi(b)| ≤ |yi | ≤ 1. Finally, whenzi(b) 6= 0, extend to a smooth mapQb ∩ Ni →

Qb0 ∩ Ni that maps the circle|xi | = |yi | =
√

|zi(b)| onto the nodal pointqi and is a
diffeomorphism from the complement of this circle inQb ∩ Ni onto the complement of
qi in Qb0 ∩Ni . Define

γk :=
⋃

zi (bk)6=0

u−1
k ({q ∈ Qb ∩Ni : |xi(q)| = |yi(q)| =

√
|zi(bk)|}) ⊂ 6k.

Then, for everyk, there is a unique smooth mapφk : 6k \ γk → 60 such that

u0 ◦ φk = ψbk ◦ uk : 6k \ γk → Qb0.

It follows thatφk is a sequence of deformations as in Definition 13.2 and that this sequence
satisfies the requirements of Definition 13.3. (The sequenceφk is monotypic whenever
there is an index setI such that, for everyk, we havezi(bk) = 0 for i ∈ I andzk(bi) 6= 0
for i /∈ I ; after discarding finitely many terms, we can writeφk as a finite union of mono-
typic sequences.) Hence the sequence(6k, sk,∗, νk, jk) DM-converges to(6, j, s∗, ν).
Thus we have proved that (ii) implies (i).
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We prove that (i) implies (ii). Let(6k, sk,∗, νk, jk) be a sequence of marked nodal
Riemann surfaces of type(g, n) that DM-converges to(6, j, s∗, ν). If 6 has no nodes
then6k has no nodes and the mapsφk : 6k → 6 in the definition of DM-convergence
are diffeomorphisms. Since(φk)∗jk converges toj , assertion (ii) follows from the fact
that a slice inJ (6) determines a universal unfolding. The same reasoning works when
(6k, sk,∗, νk) has the same signature as(6, s∗, ν). To avoid excessive notation we con-
sider the case where(6, ν) has precisely one node and(6k, νk) has no nodes, i.e.

νk = ∅, ν =: {{z0, z∞}}.

Choose holomorphic diffeomorphisms

x : (10, z0) → (D,0), y : (1∞, z∞) → (D,0),

where10,1∞ ⊂ 6 are disjoint closed disks centered atz0, z∞ respectively and

1 := 10 ∪1∞

does not contain any marked points. Forδ ∈ (0,1) let1(δ) := 10(δ) ∪1∞(δ) where

10(δ) := {p ∈ 10 : |x(p)| ≤ δ}, 1∞(δ) := {q ∈ 1∞ : |y(q)| ≤ δ}.

A decreasing sequenceδk ∈ (0,1) converging to zero determines a sequence of decom-
positions

6 = �k ∪1(δk), ∂�k = ∂1(δk) = �k ∩1(δk).

Thus�k is obtained from6 by removing a nested sequence of pairs of open disks
centered at the nodal points so

⋃
k �k = 6 \ {z0, z∞}, �k ⊂ �k+1, and�k ∩ 1 =

(�k ∩10) ∪ (�k ∩1∞) is a disjoint union of two closed annuli.

Claim. There are sequences of real numbersδk, rk, θ0k, θ∞k, smooth embeddings

fk : �k → 6k, ξk : A(δk,1) → A(rk,1), ηk : A(δk,1) → A(rk,1),

and holomorphic diffeomorphisms

hk : A(rk,1) → Ak := 6k \ fk(6 \1),

satisfying the following conditions.

1) f ∗

k jk converges toj in theC∞ topology on6 \ {z0, z∞}.
2) f ∗

k jk is equal toj on�k ∩1(1/2).
3) ξk(S1) = ηk(S

1) = S1.
4) hk(ξk(x(p))) = fk(p) for p ∈ �k ∩10.
5) hk(rk/ηk(y(q))) = fk(q) for q ∈ �k ∩1∞.
6) ξk(x(p)) = eiθ0kx(p) for p ∈ �k ∩10(1/2).
7) ηk(y(q)) = eiθ∞ky(q) for q ∈ �k ∩1∞(1/2).
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Proof of the Claim.Let δk ∈ (0,1] be any sequence decreasing to zero, for exampleδk :=
1/k, and set�k := 6 \ int(1(δk)). Definefk : �k → 6k by fk := (φk|φ

−1
k (�k))

−1

whereφk : 6k \ γk → 6 is as in Definition 13.3. Thenfk satisfies 1). We will modifyδk
andfk to satisfy the other conditions.

By the path lifting arguments used in the proof of Theorem 7.1 (see also Appendix C.5
of [16]) there is a sequence of holomorphic embeddings

gk : (�k ∩1, j) → (�k, f
∗

k jk)

that converges to the identity in theC∞ topology and preserves the boundary of�k.
Extendgk to a diffeomorphism, still denoted bygk : �k → �k, so that the extensions
converge to the identity in theC∞ topology and replacefk by fk ◦gk. This new sequence
satisfies 1) and 2); in fact,fk is now holomorphic on�k∩1. (Below we modifyfk again.)

The setAk ⊂ 6k is an annulus with boundaryfk(∂10) ∪ fk(∂1∞) so there is a
unique numberrk > 0 and a holomorphic diffeomorphismhk : A(rk,1) → Ak, unique
up to composition with a rotation, such that

hk(S
1) = fk(∂10), hk(rkS

1) = fk(∂1∞).

The embeddingsξk : A(δk,1) → A(rk,1) andηk : A(δk,1) → A(rk,1) defined by 4)
and 5) satisfy 3); they are holomorphic becausefk is holomorphic on�k ∩1. Hence by
Lemma 13.10 below,rk < δk and sork converges to zero.

By Lemma 13.11 below, there are sequencesεk > 0,ρk > δk, andθ0k, θ∞k ∈ [0,2π ]
such thatεk andρk converge to zero and

|x−1ξk(x)− eiθ0k | ≤ εk, |y−1ηk(y)− eiθ∞k | ≤ εk,

for x, y ∈ A(ρk,1). To see this letδ(m) > 0 be the constant of Lemma 13.11 withε =

ρ = 1/m, choose an increasing sequence of integerskm such thatδk ≤ δ(m) for k ≥ km,
and defineεk := ρk := 1/m for km ≤ k < km+1. We call this kind of argumentproof
by patience. It follows that the mapsx 7→ e−iθ0kξk(x) andy 7→ e−iθ∞kηk(y) converge to
the identity uniformly with all derivatives on every compact subset of int(D) \ 0.

Next we construct two sequences of diffeomorphismsαk, βk : D → D, converging
to the identity in theC∞ topology, and an exhausting sequence of closed annuliBk ⊂

int(D)\0, such thatαk andβk are equal to the identity in a neighborhood ofS1
= ∂D and

ξk(αk(x)) = eiθ0kx, ηk(βk(y)) = eiθ∞ky

for x, y ∈ Bk. The assertion is obvious by an interpolation argument when the sequence
Bk is replaced by a single closed annulusB ⊂ int(D)\0. Now argue by patience as above.

Increasingδk if necessary we may assume thatA(δk,1/2) ⊂ Bk for all k. Define
�k := 6 \ int(1(δk)) as above. Now replaceξk by ξk ◦ αk andηk by ηk ◦ βk. These
functions satisfy 6) and 7). Redefinefk so that 4) and 5) hold with the new definitions of
ξk andηk. Thus we have proved the claim.
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In the following we assume without loss of generality that(π : Q → B, S∗, b0) is the
universal unfolding of(6, s∗, ν, j) constructed in the proof of Theorem 5.6. Now define
the marked Riemann surface(6′

k, s
′

k,∗, j
′

k) by

6′

k := (6 \ int(1(
√
rk)))/∼,

where
j ′

k := f ∗

k jk, s′k,i := f−1
k (sk,i),

and where the equivalence relation is defined by

p ∼ q ⇔ x(p)y(q) = zk, zk := rke
−i(θ0k+θ∞k)

for p ∈ 10 andq ∈ 1∞ with |x(p)| = |y(q)| =
√
rk. Then, after removing finitely

many terms, there is a sequence of regular valuesbk ∈ B of π : Q → B and a sequence
of desingularizationsu′

k : 6′

k → Qbk such that

u′

k(s
′

k,i) = Si ∩Qbk

andj ′

k is the pullback of the complex structure onQbk underu′

k. This follows from Theo-
rem 8.9 and the construction of a universal unfolding in the proof of Theorem 5.6. More-
over, (6′

k, s
′

k,∗, j
′

k) is isomorphic to(6k, sk,∗, jk). An explicit isomorphism is the map
ψk : 6′

k → 6k defined by

ψk(p) :=



fk(p) for p ∈ 6′

k \1,

hk(ξk(x(p))) for p ∈ 10 with δk ≤ |x(p)| ≤ 1,

hk(e
iθ0kx(p)) for p ∈ 10 with

√
rk ≤ |x(p)| ≤ δk,

hk(rk/ηk(y(p))) for p ∈ 1∞ with δk ≤ |y(p)| ≤ 1,

hk(rk/e
iθ∞ky(p)) for p ∈ 1∞ with

√
rk ≤ |y(p)| ≤ δk.

That (i) implies (ii) in the case of a single node follows immediately with

uk := u′

k ◦ ψ−1
k : 6k → Qbk .

The case of several nodes is analogous. This proves Theorem 13.6. ut

Remark 13.9. The sequenceuk just constructed is such thatuk(γk) converges to the
nodal set inQb0 anduk ◦ φ−1

k : 6 \
⋃
ν → Q converges tou0|(6 \

⋃
ν) in theC∞

topology. To prove this, note that

ψ−1
k (γk) ⊂ {[p] = [q] ∈ 6′

k :
√
rk ≤ |x(p)|, |y(q)| ≤ δk}.

Hence, by Step 1,uk(γk) converges to the nodal point inQb0. Moreover, the main part of
6′

k can be identified with the subset�k ⊂ 6 (exhausting6 \
⋃
ν in the limit k → ∞),

the sequenceu′

k converges tou0 on6 \
⋃
ν under this identification, andφk ◦ψk : �k →

6 converges to the identity under this identification.
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Lemma 13.10. If there is a holomorphic mapf : A(r1, R1) → A(r2, R2) inducing an
isomorphism of fundamental groups, thenR1/r1 ≤ R2/r2.

Proof. The result is due to Huber [9]; an exposition appears in [14, Theorem 6.1, p. 14].
The proof uses the Schwarz–Pick–Ahlfors lemma (a holomorphic map from the unit disk
to itself is a contraction in the Poincaré metric). The circle of radius

√
r1R1 is a geodesic

of length 2π2/log(R1/r1) in the hyperbolic metric; its image underf is shorter and hence
so is the central geodesic inA(r2, R2). ut

Lemma 13.11. For everyε > 0 and everyρ > 0 there is a constantδ ∈ (0, ρ) such
that the following holds. Ifu : A(δ,1) → D \ 0 is a holomorphic embedding such that
u(S1) = S1 then there is a real numberθ such that

x ∈ A(ρ,1) ⇒ |x−1u(x)− eiθ | < ε.

Proof. It suffices to assumeu(1) = 1 and then prove the claim withθ = 0. Suppose by
contradiction that there exist constantsε > 0 andρ > 0 such that the assertion is wrong.
Then there exists a sequenceδi > 0 converging to zero and a sequence of holomorphic
embeddingsui : A(δi,1) → D \ 0 such that

ui(S
1) = S1, ui(1) = 1, sup

ρ≤|x|≤1
|ui(x)− x| ≥ ερ.

We claim thatui converges to the identity, uniformly on every compact subset ofD \ 0.
To see this extendui to the annulusA(δi,1/δi) by the formula

ui(z) := 1/ui(1/z̄)

for 1 ≤ |z| ≤ 1/δi . Think of the extended map as a holomorphic embeddingui :
A(δi,1/δi) → S2

\ {0,∞}. Next we claim that

sup
i

sup
z∈K

|dui(z)| < ∞ (53)

for every compact subsetK ⊂ C \ 0. Namely, the energy of the holomorphic curve
ui is bounded by the area of the target manifoldS2. So if |dui(zi)| → ∞ for some
sequencezi → z0 ∈ C \ 0, then a holomorphic sphere bubbles off nearz0 and it follows
that a subsequence ofui converges to a constant, uniformly on every compact subset of
C \ {0, z0}. But this contradicts the fact thatui(S1) = S1. Thus we have proved (53).
Now it follows from the standard elliptic bootstrapping techniques (or alternatively from
Cauchy’s integral formula and the Arzelà–Ascoli theorem) that there is a subsequence,
still denoted byui , that converges in theC∞ topology to a holomorphic curveu0 : C \ 0
→ S2

\{0,∞}. By the removable singularity theorem,u0 extends to a holomorphic curve
u0 : S2

→ S2. Sinceui is an embedding for everyi, it follows thatu0 is an embedding
and hence a M̈obius transformation. Sinceui(S1) = S1, ui(1) = 1 and 0/∈ ui(A(δi,1)),
it follows that

u0(S
1) = S1, u0(1) = 1, u0(0) = 0.

This impliesu0 = id. Thus we have proved thatui converges to the identity, uniformly on
every compact subset ofD\0. This contradicts the inequality supρ≤|x|≤1 |ui(x)−x| ≥ ερ

and this contradiction proves the lemma. ut
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14. Compactness

In this section we prove that every sequence of stable marked nodal Riemann surfaces of
type(g, n) has a DM-convergent subsequence. Our strategy is to perform some prelimi-
nary constructions to reduce our compactness theorem to Proposition 5.1 of [10, p. 71].
We begin by rephrasing Hummel’s result in a weaker form that we will apply directly (see
Proposition 14.4 below).

14.1. Let W be a smooth oriented surface, possibly with boundary and not necessarily
compact or connected. Afinite extensionof W is a smooth orientation preserving em-
beddingι : W → S into a compact oriented surfaceS such thatS \ ι(W) is finite. If
ι1 : W → S1 and ι2 : W → S2 are two such extensions, the mapι2 ◦ ι−1

1 extends
to a homeomorphism, but not necessarily to a diffeomorphism. LetW1, . . . ,W` be the
components ofW , S1, . . . , S` be the corresponding components of a finite extensionS,
gi be the genus ofSi , mi be the number of boundary components ofWi , andni be the
number of points inSi \ ι(Wi). The (unordered) list(gi, mi, ni) is called thesignature
of W . Two surfaces of finite type are diffeomorphic if and only if they have the same
signature. (Compare 3.4 and 3.5.) We say thatW is of stable typeif ni > χ(Si) (at least
one puncture point on an annulus or torus, at least two on a disk, and at least three on a
sphere).

14.2. A hyperbolic metric onW is a complete Riemannian metrich of constant curva-
ture−1 such that each boundary component is a closed geodesic. Afinite extensionof
a complex structurej onW is a finite extensionι : W → S such thatι∗j extends to a
complex structure onS; we sayj hasfinite type if it admits a finite extension.

Proposition 14.3. LetW be a surface of stable type. Then the operation which assigns
to each hyperbolic metric onW its corresponding complex structure (rotation by90◦) is
bijective. It restricts to a bijection between hyperbolic metrics of finite area and complex
structures of finite type.

Proof. The operationh 7→ j is injective by the removable singularity theorem and sur-
jective by applying the uniformization theorem to the holomorphic double. Ifj is of finite
type, then the area is finite by [10, Proposition 3.9, p. 68]. Ifh is of finite area, thenj is
of finite type by [10, Proposition 3.6, p. 65]. ut

Proposition 14.4 (Mumford–Hummel). Let S be a compact connected surface with
boundary andx1, . . . , xn be a sequence of marked points in the interior ofS such that
W := S \ {x1, . . . , xn} is of stable type. Write

∂S =: ∂1S ∪ · · · ∪ ∂mS,

where each∂iS is a circle. Letjk be a sequence of complex structures onS andhk be the
corresponding sequence of hyperbolic metrics onW . Assume:

(a) The lengths of the closed geodesics inW \ ∂W are bounded away from zero.
(b) The lengths of the boundary geodesics converge to zero.
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Then there exists a subsequence, still denoted by(jk, hk), a closed Riemann surface
(6, j) with distinct marked pointsξ1, . . . , ξn, η1, . . . , ηm, a hyperbolic metrich of finite
area on6 \ {ξ1, . . . , ξn, η1, . . . , ηm}, and a sequence of continuous mapsφk : S → 6

satisfying the following conditions.

(i) φk(xi) = ξi for i = 1, . . . , n andφk(∂iS) = ηi for i = 1, . . . , m.
(ii) The restriction ofφk to S \ ∂S is a diffeomorphism onto6 \ {η1, . . . , ηm}.

(iii) (φk)∗jk converges toj on6 \ {η1, . . . , ηm}.
(iv) (φk)∗hk converges toh on6 \ {ξ1, . . . , ξn, η1, . . . , ηm}.

Proof. This follows from Proposition 5.1 in [10, p. 71]. The discussion preceding Propo-
sition 5.1 in [10] explains how to extract the subsequence and how to construct the Rie-
mann surface(6, j) and the hyperbolic metrich. ut

Theorem 14.5. Every sequence of stable marked nodal Riemann surfaces of type(g, n)

has a DM-convergent subsequence.

Proof. Let (6k, sk,∗, νk, jk) be a sequence of marked nodal Riemann surfaces of type
(g, n). Passing to a subsequence if necessary, we may assume that all marked nodal sur-
faces in our sequence have the same signature (see Definition 3.4) and hence are diffeo-
morphic. Thus we assume that

(6k, sk,∗, νk) = (6, s∗, ν)

is independent ofk. Denote by6∗ the possibly disconnected and noncompact surface
obtained from6 by removing the special points. Lethk be the hyperbolic metric on6∗

determined byjk (see Proposition 14.3).
Let `1

k be the length of the shortest geodesic in6∗ with respect tohk. If a subsequence
of the`1

k is bounded away from zero we can apply Proposition 14.4 to each component of
6 and the assertion follows. Namely, the mapsφk in Proposition 14.4 are deformations
as in Definition 13.2.

Hence assumè1
k converges to zero ask tends to infinity and, for eachk, choose a

geodesicγ 1
k with length`1

k. Passing to a further subsequence and, if necessary, modifying
hk by a diffeomorphism that fixes the marked and nodal points we may assume that the
geodesicsγ 1

k are all homotopic and indeed equal. Thus

γ 1
k = γ 1

for everyk. Now let `2
k be the length of the shortest geodesic in6 \ γ 1 with respect to

hk. If a subsequence of̀2k is bounded away from zero we cut open6 alongγ 1. Again the
assertion follows by applying Proposition 14.4 to each component of the resulting surface
with boundary.

Continue by induction. That the induction terminates follows from the fact that the
geodesics in(6∗, hk) of lengths at most 2arcsinh(1) are pairwise disjoint and their num-
ber is bounded above by 3g − 3 + N , whereN is the number of special points (see [10,
Lemma 4.1, p. 68]). This proves the theorem. ut
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Lemma 14.6. Let (π : P → A,R∗, a0) be a nodal unfolding andC ⊂ P be the set
of critical points ofπ . Then, after shrinkingA if necessary, there exists a closed subset
V ⊂ P and a smooth mapρ : P \ V → Pa0 \ V satisfying the following conditions.

(i) For everya ∈ A we haveC ∩ Pa ⊂ V ∩ Pa =: Va ; moreoverC ∩ Pa0 = Va0.
(ii) Each component ofV intersectsPa either in a simple closed curve or in a nodal

point.
(iii) For everya ∈ A the restrictionρa := ρ|Pa \ Va : Pa \ Va → Pa0 \ Va0 is a

diffeomorphism; moreoverρa0 = id.

Proof. Choose a Hardy trivialization(P = M ∪N, ι, ρ) as in 11.6 and write

N = N1 ∪ · · · ∪Nk

as in Definition 11.2. Let(zi, ti) : A → Ui ⊂ D × Cm−1 and(xi, yi, ti) : Ni → D2
×

Cm−1 be the holomorphic coordinates of Definition 11.2 so thatzi(π(p)) = xi(p)yi(p)

and the critical setC ⊂ P has components

Ci := {p ∈ Ni : xi(p) = yi(p) = 0}.

Define

V := V1 ∪ · · · ∪ Vk, Vi := {p ∈ Ni : |xi(p)| = |yi(p)| =
√

|zi(π(p))|}.

This set satisfies (i) and (ii). The restriction of the trivializationρ : M → Ma0 to ∂Ni ⊂

∂N = ∂M is, in the above coordinates, given byρ(xi, yi, ti) = (xi,0, ti) for |xi | = 1
and byρ(xi, yi, ti) = (0, yi, ti) for |yi | = 1. We extend this map by an explicit formula.
Choose a smooth cutoff functionβ : [1,∞) → [0,1] such thatβ ′(r) ≥ 0 for everyr and

β(r) :=

{
r − 1 for 1 ≤ r ≤ 3/2,
1 for r ≥ 2.

Then define the extensionρ : Ni \ Vi → Pa0 in local coordinates by

ρ(xi, yi, t) :=

{
(β(

√
|xi |/|yi |)xi,0, ti) if |xi | > |yi |,

(0, β(
√

|yi |/|xi |)yi, ti) if |yi | > |xi |.

The resulting mapρ : P \ V → Pa0 is smooth and satisfies (iii). This proves the lemma.
ut

Proof of Theorem 6.6.Let (π : Q → B, S∗) be a universal family and denote by(B, 0)
the associated etale groupoid of Definition 6.4 (see Theorem 6.5). We prove that this
groupoid is proper. Thus let(ak, fk, bk) be a sequence in0 such thatak converges toa0
andbk converges tob0. We must show that there is a fiber isomorphismf0 : Qa0 → Qb0

such that a suitable subsequence offk DM-converges tof0 (see Definition 13.7). To see
this choose desingularizations

ι : 6 → Qa0, ι′ : 6′
→ Qb0.
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Denote by(6, s∗, ν, j) and(6′, s′∗, ν
′, j ′) the induced marked nodal Riemann surfaces.

Consider the following diagram:

Qak \ Vak
fk //

ρak

��

Qbk \ Vbk

ρbk

��
6 \ ν

ι //

ιk

99tttttttttt
Qa0 \ Va0 Qb0 \ Vb0 6′

\ ν′ι′oo

ι′k

eeKKKKKKKKKK

Here the setsVa := V ∩Qa and the diffeomorphismsρa : Qa \ Va → Qa0 \ Va0 are as
in Lemma 14.6 fora neara0; similarly for b nearb0. Moreover,

ιk := ρ−1
ak

◦ ι, ι′k := ρ−1
bk

◦ ι′.

By definition, the pullback complex structures

jk := ι∗kJ |Qak , j ′

k := ι′k
∗
J |Qbk

converge toj , respectivelyj ′, in theC∞ topology on every compact subset of6 \ ν,
respectively6′

\ ν′. By Lemma 14.6, there exist exhausting sequences of open sets

Uk ⊂ 6 \ ν, U ′

k ⊂ 6′
\ ν′, fk(Uk) ⊂ U ′

k,

such thatjk can be modified outsideUk so as to converge in theC∞ topology on all of6
to j , and similarly forj ′

k. Then

uk := (ι′k)
−1

◦ fk ◦ ιk : Uk → 6′

is a sequence of(jk, j ′

k)-holomorphic embeddings such thatuk(s∗) = s′∗. The argument
in Remark 8.5 shows that, if the first derivatives ofuk are uniformly bounded, thenuk has
a C∞ convergent subsequence. It also shows that a nonconstant holomorphic sphere in
Q bubbles off whenever the first derivatives ofuk are not bounded. But bubbling cannot
occur (in6 \ ν). To see this argue as follows. Supposezk converges toz0 ∈ 6 \ ν and the
derivatives ofuk atzk blow up. Then the standard bubbling argument (see [16, Chapter 4])
applies. It shows that, after passing to a subsequence and modifyingzk (without changing
the limit), there are(i, jk)-holomorphic embeddingsεk from the diskDk ⊂ C, centered at
zero with radiusk, to6 such thatεk(0) = zk, the family of disksεk(Dk) converges toz0,
anduk ◦ εk converges to a nonconstantJ -holomorphic spherev0 : S2

= C ∪ ∞ → Qb0.
(The convergence is uniform with all derivatives on every compact subset ofC.) Hence
the image ofv0 contains at least three special points. It follows that the image ofuk ◦ εk
contains at least two special points fork sufficiently large. But the image ofuk contains
no nodal points, the image ofεk contains at most one marked point, anduk maps the
marked points of6 bijectively onto the marked points of6′. Hence the image ofuk ◦ εk
contains at most one special point, a contradiction.

This shows that bubbling cannot occur, as claimed, and hence a suitable subsequence
of uk converges in theC∞ topology to a(j, j ′)-holomorphic curveu0 : 6 \ ν → 6′

\ ν′.
Now the removable singularity theorem shows thatu0 extends to a(j, j ′)-holomorphic
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curve on all of6 and mapsν to ν′. Thatu0 is bijective follows by applying the same
argument tof−1

k . Hence there exists a unique fiber isomorphismf0 : Qa0 → Qb0 such
thatι′ ◦ u0 = f0 ◦ ι. By construction, the subsequence offk DM-converges tof0

Thus we have proved that the maps × t : 0 → B × B is proper. Hence, by Corol-
lary 2.13, the quotient spaceB/0 is Hausdorff. Moreover, by Theorems 13.6 and 14.5,
it is sequentially compact. SinceB is second countable it follows thatB/0 is compact.
This completes the proof of Theorem 6.6. ut

Corollary 14.7. Suppose that a sequence of marked nodal Riemann surfaces of type
(g, n) DM-converges to both(6, s∗, ν, j) and (6′, s′∗, ν

′, j ′). Then (6, s∗, ν, j) and
(6′, s′∗, ν

′, j ′) are isomorphic.

Proof. Let (πB : Q → B, S∗) be a universal family. By Theorem 13.6 there exist points
a0, b0 ∈ B and sequencesak → a0, bk → b0 such that(6, s∗, ν, j) arises from a desin-
gularization ofQa0, (6′, s′∗, ν

′, j ′) arises from a desingularization ofQb0, and the fibers
Qak andQbk are isomorphic. Hence, by Theorem 6.6, there exists a fiber isomorphism
fromQa0 toQb0, and so(6, s∗, ν, j) and(6′, s′∗, ν

′, j ′) are isomorphic. ut

A. Fractional Sobolev spaces

In this appendix and the next we summarize, for the convenience of the reader, the basic
properties of fractional Sobolev spaces used in this article.

A.1. For s ≥ 0 denote byH s(S1) the Hilbert space of all power series

u(eiθ ) =

∑
n∈Z

une
inθ

with coefficientsun ∈ C whose norm

‖u‖s := ‖u‖H s (S1) :=
√∑
n∈Z

(1 + |n|)2s |un|2

is finite. ThusH 0(S1) = L2(S1) and, fors > 0, we haveH s(S1) ⊂ L2(S1) with a
compact dense inclusion.

Lemma A.2 (Sobolev estimate).For everys > 1/2 there is a constantc > 0 such that
every smooth functionu : S1

→ C satisfies

‖u‖L∞(S1) ≤ c‖u‖H s (S1).

Proof. The constant isc =

√∑
n∈Z(1 + |n|)−2s . Forz = eix ∈ S1 we have

|u(z)| ≤

∑
n∈Z

|un| =

∑
n∈Z

(1 + |n|)s |un|(1 + |n|)−s ≤ c‖u‖H s (S1)

where the last step is by the Cauchy–Schwarz inequality. ut
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Lemma A.3 (Weak product estimate). For all t ≥ s ≥ 0 with t > 1/2 there is a
constantc > 0 such that, for allu ∈ H s(S1) andv ∈ H t (S1), we have

‖uv‖H s (S1) ≤ c‖u‖H s (S1)‖v‖H t (S1).

Proof. The constant is

c = sup
k∈Z

√√√√∑
n∈Z

(1 + |k|)2s

(1 + |k − n|)2s(1 + |n|)2t
< ∞.

To see that this constant is finite assumek > 0 and consider the sum over the four regions
n ≤ 0, 0≤ n ≤ k/2, k/2 ≤ n ≤ k, andn ≥ k. Now

‖uv‖2
s ≤

∑
k∈Z
(1 + |k|)2s

(∑
n∈Z

|uk−n||vn|
)2

≤

∑
k∈Z

(∑
n∈Z

(1 + |k|)2s
(1 + |k − n|)2s(1 + |n|)2t

)
·

(∑
n∈Z

(1 + |k − n|)2s |uk−n|
2(1 + |n|)2t |vn|

2
)

≤ c2
∑
k∈Z

∑
n∈Z

(1 + |k − n|)2s |uk−n|
2(1 + |n|)2t |vn|

2

= c2
‖u‖2

s‖v‖
2
t .

The third step follows from the Cauchy–Schwarz inequality. This proves the lemma.ut

A.4. TheFourier transform of a functionf : R → C is defined by

F(f )(ν) :=
1

√
2π

∫
∞

−∞

e−iνxf (x) dx.

For s ≥ 0 theH s(R) norm off is defined by

‖f ‖s := ‖f ‖H s (R) :=

√∫
R
(1 + |ν|)2s |F(f )(ν)|2 dν.

The spaceH s(R) is defined to be the completion of the space of smooth functions of
compact support in this norm. It is a Hilbert space.

Lemma A.5. For every closed intervalI ⊂ R of length less than2π and everys ≥ 0
there is a constantc > 0 such that

c−1
‖u‖H s (S1) ≤ ‖f ‖H s (R) ≤ c‖u‖H s (S1)

wheneverf is supported inI and u(eix) = f (x) for x ∈ I and u(eix) = 0 for x /∈

I + 2πZ.
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Proof. Choose a smooth function [0,1] × S1
→ S1 : (t, eix) 7→ φt (e

ix) such that

φt (e
ix) = e−itx for t ∈ [0,1] andx ∈ I.

Then the Fourier coefficients ofφtu are

(φtu)n =
1

2π

∫
I

e−inxφt (e
ix)u(eix) dx =

1
√

2π
F(f )(n+ t)

and hence

‖φtu‖
2
H s (S1)

=
1

2π

∑
n∈Z

(1 + |n|)2s |F(f )(n+ t)|2.

By Lemma A.3, there is a constantc > 0 such that

c−1
‖u‖H s (S1) ≤ ‖φtu‖H s (S1) ≤ c‖u‖H s (S1)

for every smooth functionu : S1
→ R and everyt ∈ [0,1]. Squaring this inequality and

integrating over the interval 0≤ t ≤ 1 gives

c−2
‖u‖2

H s (S1)
≤

1

2π

∑
n∈Z

∫ 1

0
(1 + |n|)2s |F(f )(n+ t)|2 dt ≤ c2

‖u‖2
H s (S1)

.

The assertion follows by comparing the factor(1+ |n|)2s with (1+ |n+ t |)2s ; their ratio
is bounded below by 2−2s and is bounded above by 22s for all n ∈ Z andt ∈ [0,1]. ut

Lemma A.6. Assume0< s < 1. Then there is a constantc > 0 such that∫
R
|ν|2s |F(f )(ν)|2 dν = c

∫
R

∫
R

|f (x + t)− f (x)|2

|t |1+2s
dx dt (54)

for every compactly supported smooth functionf : R → C.

Proof. The constant is
1

c
:= 4

∫
∞

0

1 − cost

t1+2s
dt.

To see this we observe that the Fourier transform offt (x) := f (x + t) − f (x) is given
byF(ft )(ν) = (eiνt − 1)F(f )(ν). Hence, by Plancherel’s theorem, we have∫

R

∫
R

|f (x)− f (y)|2

|x − y|1+2s
dx dy =

∫
R

∫
R

|f (x + t)− f (x)|2

|t |1+2s
dx dt

=

∫
R

∫
R

|eiνt − 1|
2

|t |1+2s
|F(f )(ν)|2 dν dt

= 4
∫

R

(∫
∞

0

1 − cos|ν|t

|t |1+2s
dt

)
|F(f )(ν)|2 dν

= 4
∫

R

(∫
∞

0

1 − cost

|t |1+2s
dt

)
|ν|2s |F(f )(ν)|2 dν.

This proves the lemma. ut
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Corollary A.7. Whens is a nonnegative integer, the spaceH s(R) is the completion of
the space of smooth functions of compact support in the norm

∑s
j=0‖d

jf ‖L2. If s > 0
is not an integerH s(R) is the completion of the space of smooth functions of compact
support in the norm

∑
j<s(‖d

jf ‖L2 + |||djf |||s−k,2) wherek is the unique integer with
k < s < k + 1 and

|||g|||σ,2 :=

(∫
R

∫
R

|g(x + t)− g(x)|2

|t |1+2σ
dx dt

)1/2

.

Lemma A.8. Letαk : R → [0,1] be a sequence of smooth cutoff functions, supported in
{2k−1

≤ |ν| ≤ 2k+1
} for k ≥ 1 and in[−2,2] for k = 0, such that

∑
k αk ≡ 1. Denote by

ak := F−1(αk) the inverse Fourier transform ofαk. Then

∞∑
k=0

22sk
‖ak ∗ f ‖

2
L2 ≤ 4s‖f ‖

2
s .

Proof. Abbreviatefk := ak ∗ f andφk := F(fk) = αkF(f ). Then

〈fj , fk〉s =

∫
∞

−∞

(1 + |ν|)2sαj (ν)αk(ν)|F(f )(ν)|2 dν ≥ 0

for all j andk and hence

‖f ‖
2
s ≥

∞∑
k=0

‖fk‖
2
s ≥

∞∑
k=0

22(k−1)s
‖fk‖

2
s .

This proves the lemma. ut

Lemma A.9. For everys > 0 there is a constantc > 0 such that the following holds. If
f =

∑
k≥0 fk andF(fk) is supported in the interval[−2k+2,2k+2] then

‖f ‖
2
s ≤ c

∞∑
k=0

22sk
‖fk‖

2
L2.

Proof. The constant isc := 52s/(1 − 2−2s). Defineφ := F(f ) andφk := F(fk) and
assume without loss of generality thatφk is supported in the interval [0,2k+2]. Then

‖f ‖
2
s =

∫
∞

0
(1 + |ν|)2s

∣∣∣ ∞∑
k=0

φk(ν)

∣∣∣2 dν
=

∫ 4

0
(1 + |ν|)2s

∣∣∣ ∞∑
k=0

φk(ν)

∣∣∣2 dν
+

∞∑
j=0

∫ 2j+3

2j+2
(1 + |ν|)2s

∣∣∣ ∞∑
k=j+1

φk(ν)

∣∣∣2 dν
≤ 52s

(∫ 4

0

∣∣∣ ∞∑
k=0

φk(ν)

∣∣∣2 dν +

∞∑
j=0

22(j+1)s
∫ 2j+3

2j+2

∣∣∣ ∞∑
k=j+1

φk(ν)

∣∣∣2 dν).
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Now it follows from the Cauchy–Schwarz inequality that∫ 4

0

∣∣∣ ∞∑
k=0

φk(ν)

∣∣∣2 dν ≤

∫ 4

0

( ∞∑
k=0

2−2ks
)( ∞∑

k=0

22ks
|φk(ν)|

2
)
dν

=
1

1 − 2−2s

∞∑
k=0

22ks
∫ 4

0
|φk(ν)|

2 dν

and, similarly,

22(j+1)s
∫ 2j+3

2j+2

∣∣∣ ∞∑
k=j+1

φk(ν)

∣∣∣2 dν ≤
1

1 − 2−2s

∞∑
k=j+1

22ks
∫ 2j+3

2j+2
|φk(ν)|

2 dν.

The result follows by combining these three estimates. ut

Theorem A.10 (Strong product estimate).For everys ≥ 0 there is a constantc > 0
such that

‖fg‖H s (R) ≤ c(‖f ‖H s (R)‖g‖L∞(R) + ‖f ‖L∞(R)‖g‖H s (R))

for any two compactly supported smooth functionsf, g : R → C.

Proof. For s > 1 we follow the beautiful argument by Bourgain, Brezis, and Mironescu
in [1, Lemma D.2] which is based on the Littlewood–Paley decomposition; it simplifies
slightly in our special case. Choose a smooth cutoff functionβ : R → [0,1] such that

β(ν) =

{
1 for |ν| ≤ 1,
0 for |ν| ≥ 2,

and denote byb := F−1(β) its inverse Fourier transform. For every integerk ≥ 0 define

bk(t) := 2kb(2kt), βk(ν) := β(2−kν)

so thatβk = F(bk). Then there is a constantc0 > 0 such that

‖bk‖L1 ≤ c0, ‖b′

k‖L1 ≤ 2kc0 (55)

for everyk. Next define

αk := βk − βk−1, ak := F−1(αk) = bk − bk−1

for k ≥ 1 andα0 := β, a0 = b so that

βk =

k∑
j=0

αj , bk =

k∑
j=0

aj .

Then, for every smooth functionf : R → C with compact support ands ≥ 0, the series

f =

∞∑
k=0

ak ∗ f
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is absolutely summable inH s(R). Namely, the Fourier transformφ := F(f ) lies in the
Schwartz space and so decays faster than any rational function; hence the seriesφ =∑

∞

k=0 αkφ is absolutely summable in the weightedL2 space of all functionsψ : R → C
for whichν 7→ (1 + |ν|)sψ(ν) is square integrable.

Given two smooth functionsf, g : R → C with compact support write

fg′
=

∞∑
j,k=0

(aj ∗ f )(a′

k ∗ g)

=

∑
j≤k

(aj ∗ f )(a′

k ∗ g)+

∑
j>k

(aj ∗ f )(a′

k ∗ g)

=

∞∑
k=0

(bk ∗ f )(a′

k ∗ g)+

∞∑
j=1

(aj ∗ f )(b′

j−1 ∗ g). (56)

The Fourier transform of(bk ∗ f )(a′

k ∗ g) is the convolution of the functionsβkF(f )
andαkF(g′), both supported in the interval [−2k+1,2k+1], and so it is supported in the
interval [−2k+2,2k+2]. Hence

‖(bk ∗ f )(a′

k ∗ g)‖L2 ≤ ‖bk ∗ f ‖L∞‖ak ∗ g′
‖L2 ≤ c0‖f ‖L∞‖a′

k ∗ g‖L2

≤ c02k+1
‖f ‖L∞‖ak ∗ g‖L2.

The last step follows from the fact thatF(a′

k)(ν) = iναk(ν) andαk is supported in the
domain{2k−1

≤ |ν| ≤ 2k+1
}. Similarly,

‖(ak ∗ f )(b′

k−1 ∗ g)‖L2 ≤ ‖ak ∗ f ‖L2‖b
′

k−1 ∗ g‖L∞ ≤ c02k‖ak ∗ f ‖L2‖g‖L∞ .

Now let c1 be the constant of Lemma A.9 withs replaced bys − 1. Then

‖fg′
‖

2
s−1 ≤ c1

∞∑
k=0

22(s−1)k
‖(ak ∗ f )(b′

k−1 ∗ g)+ (ak ∗ f )(b′

k−1 ∗ g)‖2
L2

≤ 2c1

∞∑
k=0

22(s−1)k(‖(ak ∗ f )(b′

k−1 ∗ g)‖2
L2 + ‖(ak ∗ f )(b′

k−1 ∗ g)‖2
L2)

≤ 2c0c1

∞∑
k=0

22sk(4‖f ‖
2
L∞‖ak ∗ g‖2

L2 + ‖ak ∗ f ‖
2
L2‖g‖

2
L∞)

= 2c0c1c2(4‖f ‖
2
L∞‖g‖2

s + ‖g‖2
L∞‖f ‖

2
s ).

The last inequality follows from Lemma A.8 withc2 := 4s . Interchangingf andg and
using the Leibniz rule we obtain

‖(fg)′‖s−1 ≤ c′(‖f ‖L∞‖g‖s + ‖g‖L∞‖f ‖s)

with c′ :=
√

10c0c1c2. Since

‖fg‖L2 ≤ ‖f ‖L∞‖g‖L2 ≤ ‖f ‖L∞‖g‖s,

this proves the theorem fors > 1. For 0 < s < 1 the result follows easily from
Lemma A.6. Fors = 0 ands = 1 the result is obvious. This proves the theorem. ut
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Corollary A.11. For everys ≥ 0 there is a constantC > 0 such that

‖uv‖H s (S1) ≤ C(‖u‖H s (S1)‖v‖L∞(S1) + ‖u‖L∞(S1)‖v‖H s (S1))

for any two smooth functionsu, v : S1
→ C.

Proof. Lemma A.5 and Theorem A.10. ut

Lemma A.12. Fix a constants > 1/2. LetX ⊂ Cm and Y ⊂ Cn be open sets and
f : X → Y be a smooth map. Then

H s(S1, X) := {v ∈ H s(S1,Cm) : v(S1) ⊂ X}

is an open subset ofH s(S1,Cm) andH s(S1, Y ) is an open subset ofH s(S1,Cn). Mor-
ever, composition withf defines a smooth map

H s(S1, X) → H s(S1, Y ) : u 7→ f ◦ u. (57)

Proof. This is Lemma C.1 in [1]. We sketch the proof. ThatH s(S1, X) andH s(S1, Y )

are open sets follows immediately from Lemma A.2. To prove that

u ∈ H s(S1, X) ⇒ f ◦ u ∈ H s(S1, Y ) (58)

we argue by induction. For 1/2< s ≤ 1 this follows from the estimates

|||f ◦ u|||s,2 ≤ c|||u|||s,2, ‖(f ◦ u)′‖L2(S1) ≤ c‖u′
‖L2(S1)

where|||u|||2s,2 is as in Corollary A.7 andc is a Lipschitz constant forf on the image ofu
(which is compact by Lemma A.2); for 1< s ≤ 3/2 it follows from the identity

(f ◦ u)′ = df (u)u′

with df (u) ∈ H 1, u′
∈ H s−1 and so(f ◦ u)′ ∈ H s−1, by Lemma A.3. Fix an integer

k ≥ 2 and suppose, by induction, that (58) holds fors ≤ k − 1/2. Fix a real numbers
with k− 1/2< s ≤ k+ 1/2. If u ∈ H s , then by the induction hypothesisdf (u) ∈ H s−1,
and sinceu′

∈ H s−1 it follows from Lemma A.3 withs replaced bys − 1 > 1/2 that
(f ◦ u)′ = df (u)u′

∈ H s−1 and hencef ◦ u ∈ H s .
Thus we have proved (58). The same argument shows that the map (57) is bounded in

the following sense:For every constantc0 > 0 and every compact subsetK ⊂ X there is
a constantc > 0 such that

u(S1) ⊂ K, ‖u‖H s ≤ c0 ⇒ ‖f ◦ u‖H s ≤ c

for everyu ∈ H s(S1, X). It follows that the map

H s(S1, X) → H s(S1,EndR(Cm,Cn)) : u 7→ df (u) (59)

is bounded as well. This in turn implies that the map (57), and hence also (59), is contin-
uous. That (57) is differentiable follows from the continuity of (59) and the estimate

‖f (u+ ξ)− f (u)− df (u)ξ‖H s ≤ sup
0≤t≤1

‖df (u+ tξ )ξ − df (u)ξ‖H s

≤ c sup
‖η‖Hs≤δ

‖df (u+ η)− df (u)‖H s‖ξ‖H s
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for u ∈ H s(S1, X) and ξ ∈ H s(S1,Cm) with ‖ξ‖H s ≤ δ; herec is the constant in
Lemma A.3 and we chooseδ sufficiently small. Since the differential of (57) is a map of
the same type it then follows by induction that (57) is smooth. This proves the lemma.

ut

B. An elliptic boundary estimate

B.1. Let s ∈ R and letV be a finite-dimensional complex Hilbert space. Denote by
H s(S1, V ) the Hilbert space of all power series

v(eiθ ) =

∑
n∈Z

vne
inθ

with coefficientsvn ∈ V whose norm

‖v‖s := ‖v‖H s (S1) :=
√∑
n∈Z

(1 + |n|)2s |vn|2

is finite. The crucial properties of these spaces are the following.

(i) If s is a nonnegative integer then theH s norm is equivalent to the sum of theL2

norms of the derivatives up to orders.
(ii) The elements ofH s(S1, V ) are continuous fors > 1/2 and, in this case, the inclu-

sionH s(S1, V ) → C0(S1, V ) is a compact operator (Lemma A.2).
(iii) Composition with a diffeomorphism ofS1 induces an automorphism ofH s(S1, V )

for everys ∈ R.
(iv) Multiplication by a smooth complex-valued function onS1 induces an automor-

phism ofH s(S1, V ) for everys ∈ R (Lemma A.3).
(v) LetX ⊂ V be open and assumes > 1/2. Then

H s(S1, X) := {v ∈ H s(S1, V ) : v(S1) ⊂ X}

is an open subset ofH 1(S1, V ) (Lemma A.2).
(vi) Let X ⊂ V andY ⊂ W be open subsets of finite-dimensional complex Hilbert

spaces andψ : X → Y be a smooth map. Assumes > 1/2. Then composition with
ψ induces a smooth map fromH s(S1, X) toH s(S1, Y ) (Lemma A.12).

If E =
⊔
θ∈R/2πZ Eθ ⊂ S1

× V is a smooth (real) subbundle of the trivial bundle then,
by (iv), the subspace

H s(E) := {v ∈ H s(S1, V ) : v(eiθ ) ∈ Eθ ∀ θ ∈ R}

is a closed (real) subspace ofH s(S1, V ).

B.2. For everys > 1/2 there is a unique operation which assigns to every compact
1-manifold0 and every smooth manifoldM (both without boundary) a real Hilbert man-
ifold H s(0,M) ⊂ C0(0,M) satisfying the following axioms.
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(a) If 0 = S1 andM is an open subset of a complex vector space thenH s(0,M) is as
above.

(b) If ψ : M → M ′ is a smooth map thenγ ∈ H s(0,M) ⇒ ψ ◦ γ ∈ H s(0,M ′) and
the resulting mapψ∗ : H s(0,M) → H s(0,M ′) is smooth.

(c) If φ : 0′
→ 0 is a diffeomorphism thenγ ∈ H s(0′,M) ⇒ γ ◦ φ ∈ H s(0,M) and

the resulting mapφ∗ : H s(0′,M) → H s(0,M) is smooth.
(d) If 0 is the disjoint union of01 and02 then the mapγ 7→ (γ |01, γ |02) is a diffeo-

morphism fromH s(0,M) toH s(01,M)×H s(02,M).

The Hilbert manifold structure onH s(0,M) is given by the exponential maps
H s(γ ∗TM) → H s(0,M) along the smooth mapsγ : 0 → M. If M is a complex
manifold so isH s(0,M).

B.3. Let X be a compact surface with smooth boundary,M be a smooth manifold, and
for each integerk ≥ 2 letH k(X,M) denote the space of maps fromX toM with k deriva-
tives inL2. The elements ofH k(X,M) are continuous and a well known construction,
analogous to the one sketched in B.2, equipsH k(X,M) with a smooth Hilbert manifold
structure which is a complex Hilbert manifold structure whenM is a complex manifold.
In particular, the space ofH k sections of a vector bundle overX is a Hilbert space. There
are various ways of defining a smooth Hilbert manifold structure on the spaceH s(X,M)

whens is a real number greater than 1, but we shall avoid these spaces. This is why many
of our earlier theorems begin with the hypothesis “Lets + 1/2 be an integer”.

Theorem B.4. LetX be a compact Riemann surface with boundary0 := ∂X andE →

X be a complex vector bundle. Denote the complex structure onX by j and the complex
structure onE byJ . Fix an integerk = s + 1/2 ≥ 1.

(i) There is a constantc > 0 (depending continuously onj anJ ) such that

‖ξ‖H s (0) ≤ c‖ξ‖H s+1/2(X)

for everyξ ∈ �0(X,E).
(ii) Assume thatX is connected and0 6= ∅. LetD : �0(X,E) → �0,1(X,E) be a

real linear Cauchy–Riemann operator. Then there is a constantc > 0 (depending
continuously onj , J , andD) such that

‖ξ‖H s+1/2(X) ≤ c(‖Dξ‖H s−1/2(X) + ‖ξ‖H s (0))

for everyξ ∈ �0(X,E).

Proof. These estimates are well known and it is not necessary to assume thats + 1/2 is
an integer. We include a proof because we could not find an explicit reference for (ii) in
the literature. Assertion (i) is proved by the same argument. Both assertions are easy for
sections supported in the interior ofX. To prove them in general we first consider the case
whereX = [0,1] × S1 is an annulus with the standard complex structure. Fix a complex
(not necessarily holomorphic) trivialization ofE over the annulus.
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As a warmup we prove (i) for any real numbers ≥ 1/2. Denote the inner product on
H s(S1,Cn) by

〈ξ, η〉s :=
∑
n∈Z

(1 + |n|)2s〈ξn, ηn〉,

whereξ(eiθ ) =
∑
n∈Z ξne

inθ , η(eiθ ) =
∑
n∈Z ηne

inθ . Then, for allξ, η ∈ C∞(S1,Cn),
the Schwarz inequality gives

|〈ξ, η〉s | ≤ ‖ξ‖s−1/2‖η‖s+1/2.

Hence every smooth function [0,1] → C∞(S1,Cn) : τ 7→ ξ(τ ) satisfies the inequality

d

dτ
‖ξ(τ )‖2

s = 2〈∂τ ξ(τ ), ξ(τ )〉s ≤ 2‖∂τ ξ(τ )‖s−1/2‖ξ(τ )‖s+1/2

≤ ‖∂τ ξ(τ )‖
2
s−1/2 + ‖ξ(τ )‖2

s+1/2.

Integrating this inequality gives

‖ξ(1)‖2
s ≤

∫ 1

0
(‖∂τ ξ(τ )‖

2
s−1/2 + ‖ξ(τ )‖2

s+1/2) dτ ≤ ‖ξ‖H s+1/2([0,1]×S1)

wheneverξ(0) = 0. The last inquality uses the asumptions ≥ 1/2. This proves (i).

We prove (ii). The operatorD has the form

Dξ =
1
2(∂τ ξ + i∂θξ + Sξ)ds +

1
2(∂θξ − i∂τ ξ − iSξ)dt

whereS : [0,1] × S1
→ EndR(Cn). Assume first thatS ≡ 0 and define

f := ∂τ ξ + i∂θξ.

We think off andξ as functions from [0,1] toH s(S1,Cn). Consider the decomposition

H s(S1,Cn) = E−
⊕ E0

⊕ E+

whereE0 ∼= Cn denotes the space of constant functions and

E± := closed span{einθ : ±n > 0}.

The components of an elementξ ∈ H s(S1,Cn) with respect to this decomposition will
be denoted byξ−, ξ0, ξ+. Note thateinθ is an eigenfunction of the operatorA := −i∂θ
with eigenvaluen and hence

〈ξ+, Aξ+
〉s ≥

1
2‖ξ+

‖
2
s+1/2, 〈ξ−, Aξ−

〉s ≤ −
1
2‖ξ−

‖
2
s+1/2.

Since∂τ ξ = Aξ + f we have

d

dτ
‖ξ+(τ )‖2

s = 2〈∂τ ξ
+(τ ), ξ+(τ )〉s = 2〈Aξ+(τ )+ f+(τ ), ξ+(τ )〉s

≥ ‖ξ+(τ )‖2
s+1/2 − 2‖f+(τ )‖s−1/2‖ξ

+(τ )‖s+1/2

≥
1
2‖ξ+(τ )‖2

s+1/2 − 2‖f+(τ )‖2
s−1/2.
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Integrating this inequality gives∫ 1

0
‖ξ+(τ )‖2

s+1/2 dτ ≤ 4
∫ 1

0
‖f+(τ )‖2

s−1/2 dτ + 2‖ξ+(1)‖2
s . (60)

Similarly, ∫ 1

0
‖ξ−(τ )‖2

s+1/2 dτ ≤ 4
∫ 1

0
‖f−(τ )‖2

s−1/2 dτ + 2‖ξ−(0)‖2
s (61)

and, sinceξ0(τ ) = ξ0(0)+
∫ τ

0 f
0(σ ) dσ , we have∫ 1

0
‖ξ0(τ )‖2

s+1/2 dτ ≤ 2
∫ 1

0
‖f 0(τ )‖2

s−1/2 dτ + 2‖ξ0(0)‖2
s . (62)

(The three norms agree onE0.) Combining the inequalities (60)–(62) we obtain∫ 1

0
‖ξ(τ )‖2

s+1/2 dτ ≤ 4

(∫ 1

0
‖f (τ)‖2

s−1/2 dτ + ‖ξ(0)‖2
s + ‖ξ(1)‖2

s

)
. (63)

Now assumek := s + 1/2 is an integer. We prove by induction that∫ 1

0
‖∂ντ ξ(τ )‖

2
H k−ν (S1)

dτ ≤ cν(‖f ‖
2
H k−1([0,1]×S1)

+ ‖ξ(0)‖2
s + ‖ξ(1)‖2

s ) (64)

for ν = 0,1, . . . , k. For ν = 0 this is (63) withc0 = 4. Assuming that (64) has been
established for some integerν ∈ {0, . . . , k − 1}, we use the inequality

‖∂ν+1
τ ξ‖H k−ν−1(S1) = ‖∂ντ (Aξ + f )‖H k−ν−1(S1)

≤ ‖∂ντ ξ‖H k−ν (S1) + ‖∂ντ f ‖H k−ν−1(S1)

to obtain (64) withν replaced byν + 1. This completes the induction. Now sum (64) for
ν = 0,1, . . . , k to obtain the estimate in part (ii) for the caseS = 0 andX = [0,1] × S1.
In the case whereS 6= 0 andX is a general compact Riemann surface we deduce, using
partitions of unity and what we have already proved, that

‖ξ‖H s+1/2(X) ≤ c(‖Dξ‖H s−1/2(X) + ‖ξ‖H s−1/2(X) + ‖ξ‖H s (0)) (65)

for some constantc > 0 and every smooth sectionξ ∈ �0(X,E). This implies that the
operator

H s+1/2(E) → H s−1/2(30,1T ∗X ⊗ E)×H s(E|0) : ξ 7→ (Dξ, ξ |0)

has a finite-dimensional kernel and a closed image (see [16, Lemma A.1.1]). IfX is
connected and0 6= ∅ then, by unique continuation, this operator is injective and so the
term ‖ξ‖H s−1/2(X) on the right hand side of (65) can be dropped, by the open mapping
principle. This proves the theorem. ut
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Birkhäuser (1992) Zbl 0785.53001 MR 1164870

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0967.46026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1771523
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01512070&format=complete
http://www.ams.org/mathscinet-getitem?mr=1777853
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0176.38401&format=complete
http://www.ams.org/mathscinet-getitem?mr=0254233
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0185.32901&format=complete
http://www.ams.org/mathscinet-getitem?mr=0276999
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0224.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0445088
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0411.30033&format=complete
http://www.ams.org/mathscinet-getitem?mr=0466535
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0142.33504&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0079.17001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0087176
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0043.30201&format=complete
http://www.ams.org/mathscinet-getitem?mr=0043904
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0870.53002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1451624
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0768.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1034665
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0066.16604&format=complete
http://www.ams.org/mathscinet-getitem?mr=0070144
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0544.14020&format=complete
http://www.ams.org/mathscinet-getitem?mr=0702953
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0207.37902&format=complete
http://www.ams.org/mathscinet-getitem?mr=0277770
http://www.ams.org/mathscinet-getitem?mr=1698616
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1064.53051&format=complete
http://www.ams.org/mathscinet-getitem?mr=2045629
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0618.22011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0900587
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0308.47002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0493419
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0118.39103&format=complete
http://www.ams.org/mathscinet-getitem?mr=0112149
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0785.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1164870

	Introduction
	Orbifold structures
	Structures on surfaces
	Nodal families
	Universal unfoldings
	Universal families and the Deligne--Mumford moduli space
	Complex structures on surfaces
	Teichmüller space
	Nonlinear Hardy spaces
	The local model
	Hardy decompositions
	Proofs of the main theorems
	Topology
	Compactness
	Fractional Sobolev spaces
	An elliptic boundary estimate

