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Abstract. The Deligne—-Mumford moduli space is the spaﬁeg,n of isomorphism classes of
stable nodal Riemann surfaces of arithmetic gepwusth » marked points. A marked nodal Rie-
mann surface is stable if and only if its isomorphism group is finite. We introduce the notion of a
universal unfolding of a marked nodal Riemann surface and show that it exists if and only if the
surface is stable. A natural construction based on the existence of universal unfoldings endows the
Deligne—Mumford moduli space with an orbifold structure. We include a proof of compactness.
Our proofs use the methods of differential geometry rather than algebraic geometry.
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1. Introduction

According to Grothendieck [7], a moduli space is a space whose elements may be viewed
as orbits of a groupo]n this paper, the main focus is on tRéemann moduli spacé1,

of (closed) Riemann surfaces of gerngand various related moduli spaces. We charac-
terize the Deligne—Mumford compactificatidﬁg by a universal mapping property thus
showing that it is (canonically) an orbifold. We also treat the related moduli speGgs
and M .

The points in the moduli spack!, are in bijective correspondence with equivalence
classes of Riemann surfaces where two Riemann surfaces are equivalent iff there is an iso-
morphism (holomorphic diffeomorphisE]]b)etween them; i.e. the Riemann moduli space
is the orbit space of the groupoid whose objects are Riemann surfaces and whose mor-
phisms are these isomorphisms. For applications it is important to refine these groupoids
by considering Riemann surfaces witlarked pointsAn object is now anarked Rie-
mann surfacef type(g, n), i.e. a Riemann surface of gengequipped with a sequence
of n distinct points in that surface. An isomorphism is an isomorphism of Riemann sur-
faces which carries the sequence of marked points in the source to the sequence in the
target preserving the indexing. The corresponding moduli space is defttgdand of
courseM, o = M,.

A Riemann surface is a smooth surfacequipped with a complex structuyje Since
any two smooth surfaces of the same genus are diffeomorphic we may define the Riemann
moduli space as the orbit space under the action of the diffeomorphism groyp Diff
the spaceg7 (X) of complex structureg on X:

M, := J(Z)/Diff ().

The result is independent of the choice of the substiaia the sense that any diffeo-
morphismf : ¥ — X’ induces a bijectio7 (X£) — J(X’) and a group isomorphism
Diff (¥) — Diff (¥’) intertwining the group actions. Similarly a mar@aiemann sur-
face is a triple(Z, s., j) wheres, is a finite sequence of distinct points ofX (i.e.
s« € X"\ A whereA is the “fat” diagonal) so the corresponding moduli space is

Mg’n =(J(X) x (" \ A))/Diff ().
This can also be written as
Mg,n = j(Z)/DIﬁ(Z, k)

where Diff(Z, s,) is the subgroup of diffeomorphisms which fix the points of some par-
ticular sequence,. Thus in these cases we can replace the groupoid by a group action;
the objects are the points gf(X).

1 By the termgroupoid we understand a category all of whose morphisms are isomorphisms.

2 In what follows, when no confusion can result, we will use the tiwmorphisnto signify any
bijection between sets which preserves the appropriate structures.

3 The reader is cautioned that the temmarked Riemann surfaégoften used with another mean-
ing in the literature.
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An object in a groupoid is callestableiff its automorphism group is finite. A marked
Riemann surface of typg, n) is stable if and only ifz > x(X) wherey(X) =2 — 2¢
is the Euler characteristic. In this case each automorphism group is finite, but (in the case
g > 1) may be nontrivial. However, the only automorphism isotopic to the identity is
the identity itself so the identity component RifE2) of Diff (X) acts freely on7(X) x
(=" \ A). The corresponding orbit space

T = (J(E) x (£" \ A))/Diffo(X)

is calledTeichniiller space In [4] Earle and Eells showed that the projectignx) — 7,

is a principal fiber bundle with structure group RIf£) and that the basg, is a finite-
dimensional smooth manifold of real dimensiog 6 6. In other words, through each
j € J(2) there is a smooth slice for the action of BIfE). (Similar statements hold for
7,.»-) The total spacgf (%) is a complex manifold; the tangent space at a ppiat7 (%)

is the space

T,J(3) = QNE, TM) == {j € QU EndT ) : jj +jj = 0}

of (0, 1)-forms on(Z, j) with values in the tangent bundle. This tangent space is clearly
a complex vector space (the complex structurg is> j ;) and it is not hard to show
(see e.q.[[20] or Sectidn 7) that this almost complex structure/6B) is integrable
and that the action admits a hoIomor@TEdice through every point. Since the action
of Diff o(X) is (tautologically) by holomorphic diffeomorphisms gf(X), this defines a
complex structure on the bagg which is independent of the choice of the local slice
used to define it. Thug, is a complex manifold of dimensiong3— 3. Again, similar
results hold forT, ,,. Earle and Eells also showed that all three spaces in the fibration

Diff o(£) — J () — T, (EE)

are contractible so that the fibration is smoothly trivial and has a (globally defined) smooth
section. In([3] Earle showed that there is no global holomorphic sectigh®) — 7.

The monograph of Tromba [20] contains a nice exposition of this point of view (and
more) and the anthology|[6] is very helpful for understanding the history of the subject
and other points of view.

Now we take a different point of view. Aanfoldingis the germ of a paitr 4, ag)
wherery : P — A is a Riemann family andg is a point of A. (The termRiemann
family means thatr4 is a proper holomorphic map and diftP) = dimg(A) + 1. The
term germmeans that we do not distinguish between , ap) and the unfolding which
results by replacing\ by a neighborhood afg in A.) The fibersP, := 7~ 1(a) are then
complex curves. The fibeR,, is called thecentral fiber A morphismof unfoldings is a
commutative diagram

rp > 0
b, b
A 2 B

4 At this point in the discussion this means that the slice is a complex submanifgfd ©f.
After we define the complex structure on the base, a holomorphic slice will be the same thing as
the image of a holomorphic section.
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where® and¢ are holomorphicg (ag) = bg and, for eaclu € A, the restriction ofd

to the fiberP, is an isomorphism. Again, this is to be understood in the sense of germs:
¢ need only be defined on a neighborhoodugfand two morphisms are the same iff
they agree on a smaller neighborhoodzgf An unfolding (g : O — B, bg) is called
universaliff for every other unfolding(r4, ap) every isomorphismf : P,, — Qp,
extends uniquely to a morphisep, @) from (4, ag) to (;rg, bo). From the uniqueness

of the extension it follows that any two universal unfoldings with the same central fiber
are isomorphic in the obvious sense.

Now assume that4 is a submersion so that the fibers are Riemann surfaces. Using the
holomorphic slices for the principal fiber bundi&g(X) — 7, it is not hard to construct
a universal unfolding of any Riemann surface of geru; similar results hold fofZ, ,

(see Sectiof]8).

The spaced, , are not compact. Thgeligne—Mumford moduli spad&g,n defined
in Sectiorf § is a compactification 8f(, ,. The objects in the corresponding groupoid are
commonly calledstable curves of typég, n). Two such curves need not be homeomor-
phic. This moduli space is still the orbit space of a groupoid but not (in any obvious way)
the orbit space of a group action. We will charactetiek, , by the universal mapping
property, but we will word the definitions so as to avoid the complexities of algebraic
geometry and singularity theory.

It is a well known theorem of algebraic geometry that a complex canagmits a
desingularizationr : ¥ — C. This means thak is a Riemann surface and that the re-
striction ofu to the set of regular points af is a holomorphic diffeomorphism onto the
set of smooth points of the cune. The desingularization is unique in the sense that if
u' ¥ — C is another desingularization, the holomorphic diffeomorphisrho u’ ex-
tends to a holomorphic diffeomorphisEf — . A marked complex curve is one which
is equipped with a finite sequence of distinct smooth points. A desingularization pulls
back the marking to a marking &. That a marked complex cune is of type (g, n)
means that the arithmetic genus (see Definjtioh 3.&) &f ¢ and the number of marked
points isn. A nodal curvds a complex curve with at worst nodal singularities. For a nodal
curve the desingularizatianis an immersion and the critical points occur in pairs. This
equipsX with what we call anodal structureln Sectiorj B we use the termarked nodal
Riemann surfacto designate a surface with these additional structures.stable curve
is a marked nodal curve whose corresponding marked nodal Riemann surface has a finite
automorphism group. The main result of this paper extends the universal unfolding con-
struction from the groupoid of stable Riemann surfaces to the groupoid of stable marked
nodal Riemann surfaces.

Theorem A. A marked nodal Riemann surface admits a universal unfolding if and only
if it is stable.

This theorem is an immediate consequence of Theofems 5./ dnd 5.6 below. To avoid
the intricacies of singularity theory our precise definitions (see Segtjons[4 and 5) involve
only what we calhodal families However, it is well known that (near its central fiber) an
unfolding is a submersion if and only if its central fiber is a smooth complex curve, and
is a nodal family if and only if its central fiber is a nodal curve.
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Now we describe the proof. First we consider the case of a Riemann surface without
marked points or nodal points. In this case the sequélé® is a principal bundle if and
only if g > 2, i.e. if and only if any Riemann surface of gerwis stable. Abbreviate

Dy = Diffo(T), T :=T(), T:=T(2):=J(2)/Diffo(T).
Thus7, := T is Teichniiller space and the principal fiber bundeE) takes the form
Do— J—>T.
The associated fiber bundle
a7 Q=0 xp, 2 =T

has fibers isomorphic t&. It is commonly called theiniversal curve of genug over
Teichnilller space Choose a Riemann surfa¢g, jp) and a holomorphic slic c J
throughjo. Let

np:Q — B

be the restriction t® of the pullback of the bundles to its total space. A® is a slice,
the projectionz is a trivial bundle (in the smooth sense). The magpis a holomor-
phic submersion. In Secti¢n 8 we show that it is a universal unfolding.dflere’s why
(g, jo) is universal. Lett4 : P — A be a holomorphic submersion whose fiber has
genusg and whose central fiber oveg € A is isomorphic ta(Z, jo). As a smooth map,
74 is trivial, so after shrinkingd we have a smooth local trivialization: A x ¥ — P.
Write 7,(z) := 1(a, z) fora € A soz, is a diffeomorphism fronk to P,. Denote the
pull back byz, of the complex structure oR, by j,, i.e.7, : (¥, j,) — P, is aniso-
morphism. AsB is a slice we can modify the trivialization so j, € B. The equation
¢(a) = j, defines a map : A — B. Using the various trivializations we then get a
morphism(¢, ®) from 4 to 7g. In Sectior] 8 we show that these maps are holomorphic.
We also carry out the analogous constructionZgy,.

It is now clear that(r4, ap) is universal if and only ik : (A, ag) — (B, bo) is the
germ of a diffeomorphism. By the inverse function theorem this is so if and only if the
linear operato¢ (ag) : T,,A — Ty, B is invertible. This condition can be formulated
as the unique solvability of a partial differential equation By; we call an unfolding
infinitesimally universalvhen it satisfies this unique solvability condition. The crucial
point is that infinitesimal universality is meaningful even for nodal families, i.e. when
there is no analog of the Earle—Eells principal fiber bundle. But we still have the following

Theorem B. A nodal unfolding is universal if and only if it is infinitesimally universal.

This is restated as Theorém[5.4 below. Here is the idea of the proafrhetP — A, ag)
and(wp : Q — B, bo) be nodal unfoldings andp : P,, = Qp, be an isomorphism of
the central fibers. For simplicity assume there is at most one critical point in each fiber and
no marked points. Essentially by the definition of nodal unfolding there is a neighborhood
N of the set of critical points such that fare A the intersectionV, := N N P, admits
an isomorphism

Ny Z{(x,y) e D?:xy =z}
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whereD is the closed unit disk itC andz = z(a) € D. Thus ifz(a) # 0 the fiber

N, is an annulus whereas ifa) = 0 it is a pair of transverse disks. In either case the
boundary is a disjoint unioad U 3D of two copies of the circles? := 8. The map

N — A is therefore not trivializable as the topology of the fiber changes. However, the
bundledN — A is trivializable; choose a trivializatiod x (0D u D) — dN. Using

this trivialization we will define (see Sectipn|11) manifolds of maps

W= |Wae Wai=||W@.b). Wia.b):=Map@dN, 5\ Cp)
acA beB

whereCj is the set of critical points of 3 and|_| denotes disjoint union. Lét, ¢ W

be the set of all maps iw/, which extend to a holomorphic may, — Q, andV, c W

be the set of all maps in/, which extend to a holomorphic map, \ N, — Q. We will
replaceA andW by smaller neighborhoods ap and fy|d N,, as necessary. We show
thati/, andV, are submanifolds ofV,. It is not too hard to show that the unfolding
(g, bo) is universal if and only if the manifoldd, andV, intersect in a unique point:
the morphism(¢, ®) : (4, ag) — (7, bo) is then defined so that this intersection point
y lies in the fibedVy ) and®, is the unique holomorphic map extendingWe will see
that the unfolding g, bo) is infinitesimally universal if and only if (for aliz 4, ag) and
fo) the corresponding infinitesimal condition

TVoWao = TVouao ® TVoVao

holds whereyg = fo|dN,,. This Hardy space decomposition is reminiscent of the con-
struction of the moduli space of holomorphic vector bundles explained by Pressley &
Segal in[[17].

We have already explained why smooth marked Riemann surfaces have universal un-
foldings. It is now easy to construct a universal unfolding of a stable marked nodal Rie-
mann surface: it is constructed from a universal unfolding for the marked Riemann surface
that results by replacing each nodal point by a marked point. Such an unfolding is a triple
(7, Sk, bo) Whererr : Q — B is a nodal familyS, is a sequence of holomorphic sections
of = corresponding to the marked points, dde B. We call a pair(r, S,) auniver-
sal family of type(g, n) iff (1) (&, Sk, bo) is a universal unfolding for eadhy € B and
(2) every marked nodal Riemann surface of typen) occurs as the domain of a desin-
gularization of some fibe@;, b € B. Theoreni 5.3 (openness of transversality) says that
if (7T, Sk, bo) is an infinitesimally universal unfolding then so(is, S, b) for b nearby.
Together with Theorems A and B this implies

Theorem C. If n > 2 — 2g there exists a universal family of tygg, n).

This is restated as Propositipn 6.3 below. It is not asserted®thatconnected. Rather,

the universal family should be viewed as a generalization of the notion of an atlas for a
manifold. This generalization is called atale groupoidThe Deligne—Mumford orbifold

/\?lg,,, is then the orbit space of this groupoid and the definitions are arranged so that the
orbifold structure is independent of the choice of the universal family used to define it.
See Sectiohl6.
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A consequence of our theorems is that other constructions of the Deligne—Mumford
moduli space (and in particular of the Riemann moduli space) which have the universal
unfolding property give the same space. However, in the case of a construction where the
moduli space is given only a topology (or a notion of convergence of sequences as in [10])
we show that the topology determined by our construction agrees with the topology of the
other construction (see Sect@ 13). In Sec{@n 14 we prove that;t)ou,; is compact and
Hausdorff by adapting the arguments of the monograph of Hummel [10].

Notation. Throughout, the closed unit disk in the complex plane is denoted by
Di={zeC:|z] <1}

and its interior is denoted by ifid) := {z € C : |z| < 1}. ThusS? := 9D is the unit
circle. Also

A, R)={zeC:r<|z| <R}
denotes the closed annulus with inner radiand outer radius.

2. Orbifold structures

In this section we review orbifolds. Our definitions are arranged so as to suit our ultimate
objective of defining an orbifold structure on the Deligne—Mumford moduli space.

2.1. A groupoid is a category in which every morphism is an isomorphism. Bdie
the set of objects of a groupoid afiddenote the set of (iso)morphisms. o € B let
I'y.» C ' denote the isomorphisms fromto b; the group

I'n =T44

is called theautomorphism groudf] of a. The groupoid is calledtable iff every auto-
morphism group is finite. Define treourceandtarget mapss, ¢ : I' — B by

s(g)=aandt(g) =b & gel,p.

The mape : B — T which assigns to each objacthe identity morphism of is called
the identity section of the groupoid, and the map: I' — T which assigns to each
morphismg its inversei (g) = g1 is called theénversion map. Define the seF,x; I" of
composable pairsby

Fyx; T'={(g,h) e’ xT :s(g) =th)}.

The mapm : I'yx;, ' — I which assigns to each composable pair the composition
m(g, h) = gh is called themultiplication map . The five maps, ¢, ¢, i, m are called the
structure maps of the groupoid. Note that

Lo = (s x )" a, b).
We denote therbit space of the groupoid B, ") by B/ T':
B/T :={[b]:be B}, [bl:={t(g)eB:geT, s(g)=Dh).

5 Also commonly called thésotropy groupor stabilizer group
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2.2. A Lie groupoid is a groupoid B, I') such thatB andI" are smooth manifoltﬁthe
structure maps are smooth, and the map” — B (and hence also the map= s o i) is

a submersion. (The latter condition implies tiigk, I is a submanifold of” x I" so that
the condition thatn be smooth is meaningful.) Aomomorphism from a Lie groupoid
(B, T) to a Lie groupoid B’, T'’) is a smooth functor, i.e. a pair of smooth mdps> B’

andI” — I/, both denoted by, which intertwine the structure maps:

/ / /
s olL=1lL0S, tot=1t1o0t, eol=1loe,

i"'ot=10i, mo(@xti)=tom.

(The first two of these five conditions imply thatx )(I" ;x; ') C T’ ¢x, IV so that

the fifth condition is meaningful.) Similar definitions are used in the complex category
readingcomplexfor smooth(for manifolds) ancholomorphicfor smooth(for maps). A

Lie groupoid(B, I') is calledproper if the maps x ¢t : ' — B x B is propetr.

2.3. An etale groupoidis a Lie groupoid B, I') such thatthe map: I' — B (and hence
also the map = soi) is a local diffeomorphism. A proper etale groupoid is automatically
stable. A homomorphism: (B, T') — (B’, T'’) of etale groupoids is calledrafinement

iff the following holds.

() The induced map, : B/T — B’/T” on orbit spaces is a bijection.
(i) Foralla,b € B, restricts to a bijectiol, , — Ft/(a),z(b)'
(i) The map on objects (and hence also the map on morphisms) is a local diffeomor-

phism.

Two proper etale groupoids are callequivalentiff they have a common proper refine-
ment.

Definition 2.4. Fix an abstract groupoid3, G). This groupoid is to be viewed as the
“substrate” for an additional structure to be imposed; initially it does not even have a
topology. Indeed, the definitions are worded so as to allow for the possibilitystisamot
even a set but a proper class in the sense @fi€ Bernays set theory (S§2]).

An orbifold structure on the groupoid(, G) is a functoro from a proper etale
groupoid(B, I') to (5, G) such that

() o induces a bijectiorB/I" — B/G of orbit spaces, and
(i) foralla,b e B, o restricts to a bijectioT,,, = Go(a).00)-

A refinement of orbifold structures is a refinement (B, I') — (B’, ') of proper etale
groupoids such that = o’ o¢; as before we say that : (B, ') — (B, G) is a refinement
ofo’ : (B, T") — (B, G). Two orbifold structures are calleequivalent iff they have a
common refinement. Aarbifold is an abstract groupoidB, G) equipped with an orbifold
structures : (B, T") — (B, G).

6 For us a manifold is always second countable and Hausdorff, unless otherwise specified.
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Example 2.5. A smooth manifoldM is a special case of an orbifold as follows: View
M =: B as atrivial groupoid, i.e. the only morphisms are identity morphisms. Any count-
able open covefU, },c; ON M determines an etale groupdit, I') with

B:=|]|Us, T:= || U.nUp,
ael (a,B)el x1

s(a,p, B) = (a,p), tlp,p)i=(B,p), elap):=@pa),
i(O[, P, 13) = (ﬁv P, Ol), m((ﬂv P, 7/)7 (Ol, P, :3)) = (O(, P, J/)

Here| | denotes disjoint union. (Thaisjoint union | |,.; X, of an indexed collection
{Xq}acr Of sets is the set of paiKg, x) wherea € I andx € X,,.) A refinement of open
covers in the usual sense determines a refinement of etale groupoidls as in 2.3.

If {¢«, Uy }aer is acountable atlas then an obvious modification of the above construc-
tion gives rise to an orbifold structure @i whereB is a disjoint union of open subsets
of Euclidean space, i.e. a manifold structure is a special case of an orbifold structure.

Example 2.6. A Lie group actionG — Diff (M) determines a Lie groupoid, G) where
B=M,G={(g,a,b) e G xM x M : b= g(a)}, and the structure maps are defined
by s(g,a,b) = a, t(g,a,b) = b, e(a) := (id,a,a),i(g, a,b) = (gL b,a), and
m((h, b, ), (g,a, b)) ;= (hg, a, c). The orbit spac#/G of this groupoid is the same as
the orbit space/f/G of the group action. The condition that this groupoid be proper is
the usual definition of proper group action, i.e.the ndapc M — M x M : (g, x) >

(x, g(x)) is proper.

Assume that the action is almost free [meaning that the isotropy gbgupf each
point of M is finite] and sliceable [meaning that there is a slice through every poitt, of
a slice is a submanifold c M such that there is a neighborhobdof the identity inG
with the property that the malg x S — M : (g, x) — g(x) is a diffeomorphism onto a
neighborhood of in M]. Now let

B = |_| Sa

ael

be a disjoint union of slices such that every orbit passes through at least one slice. Let

= |_| Top, Top:=1{(g,a,b)€G:ac Sy be Sp
o,pel

ThenT'wg is a submanifold of;. Moreover, if the group action is proper, then the obvious
morphismo : (B,T") — (B, G) is an orbifold structure, and any two such orbifold
structures are equivalent. Note thatdifis a discrete group acting properly a#, then

S := B = M isaslice andr := id is an orbifold structure.

Example 2.7. Consider the group action whee := Z acts onM := St by (k, z) >
e?miko 7 andw € R\ Qis irrational. Then the groupoid3, G) constructed in Examp@ﬁ
is etale but not proper. Note that the quoti&hG is an uncountable set with the trivial
topology (two open sets). The inclusion of any open set fittis a refinement.
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Example 2.8. Consider the group action where the multiplicative graap= R* of
nonzero real numbers acts dh:= R2\0 byr-(x, y) := (tx, t~1y). The action is free and
sliceable but not proper, and the quotient topology is not Hausdorff (every neighborhood
of R*- (1, 0) intersects every neighborhood®f - (0, 1)). The groupoid constructed from

the disjoint unionB := $1 LI S2 of the two slicesS; = {1} x R, S2 := R x {1} is not
proper. If we extend the group action by adjoining the ntapy) — (y, x), the orbit
space iR which is Hausdorff, but the new group action is still not proper.

2.9. Let (B, T') be a stable etale groupoid,b € B, andg € I, ;. Then there exist
neighborhood# of a, V of b in B, andN of g in I such that mapsnN diffeomorphically

onto U andt mapsN diffeomorphically ontoV. Defines, = s|N, t, := t|N, and

¢g = 1g 05, . Thus¢, “extends”g € T’y to a diffeomorphismp, : U — V. The

following lemma says that whesm = b we may choosé/ = V independent of and

obtain an action

IFq — Diff (U) : g = ¢,
of the finite group", on the open sdt/.

Lemma 2.10. Let (B, I") be a stable etale groupoid and € B. Then there exists a
neighborhoodU of a and pairwise disjoint neighborhoods, (for ¢ € I';) of g in "
such that botly andr map eachv, diffeomorphically ontd/.

Proof. Choose disjoint open neighborhoodts of ¢ € I', such thats, := s|P, and
t, .= t| P, are diffeomorphisms onto (possibly different) neighborhoods &y stability
the groupl’,, is finite so there is a neighborhoddof a in B such thaty C s(P,) Nt(Py)
for g € T'y. Defineg, : V. — B by ¢, :=t,0 sg‘l. Now choosef, g € I';, and let
h:=m(f, g). We show that

On(x) = ¢f 0 Pg(x) (1)
for x in a sufficiently small neighborhood afin V. For suchx definey = ¢¢(x) € V,
zi=¢r(y) €V, g =57 (x) € Py, andf’ = s;l(y) € Pr.Ast(g) =s(f) =1y
we have(f’, g’) € Tyx, I',i.e.h’ := m(f’, g’) is well defined. By continuityh’ € P,
ands(h') = s(g’) = x andt(h’) = t(f") = z, and hence = ¢;(x) as claimed. Using
the finiteness of", again we may choose a neighborhd@f a so that|[(1) holds for all
f, g € ', and allx € W. Now the intersection

U= [)¢s(W)CV

g€l

satisfiesp,(U) = U for f € T, soU andN, := sg—l(U) satisfy the conclusions of the
lemma. O

Corollary 2.11. Let (B, T') be a stable etale groupoid and b € B. Then there exist
neighborhood$#/ andV ofa andb in B and pairwise disjoint neighborhoodé (for f e
I'yp) of f£in T such thats maps eachv, diffeomorphically ontd/ and: maps eachvy
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diffeomorphically ontd’. The etale groupoid is proper if and only if these neighborhoods
may be chosen so that in addition

sxntUuxvy=J Ny (%)

fe€lap

Proof. Choose disjoint neighborhood% of f € T'y; such thatsy := s|P; andt; =
t| Py are diffeomorphisms onto (possibly different) neighborhoods. @hooselU as in
Lemmg 2.ID so small thédt C s(Py) for all f € 'y, and defingpy : U — B by

Qr =1y OSf_1|U.

DefineN; := sf_l(U). Asin Lemm we hav@y, = ¢y o, forg e Iy, f € Ty p,

h =m(f, g), s0tp(Np) = ¢p(U) = ¢r(U) = ty(Ny). Any two elements:, f € Tup
satisfyh = m(f, g) for someg € I', soV = tr(Ny) is independent of the choice of
f € 'y used to define it. The condition thaix ¢ is proper means that for any sequence
{fv € Ty, b, }» such that the sequencgs }, and{b, }, converge taz andb respectively,
the sequencéf,}, has a convergent subsequence. Conditigrimplies this asf,, must

lie in someNy for infinitely many values ob. The converse follows easily by an indirect
argument. O

2.12. Let (B, ") be an etale groupoid and equip the orbit sp&gd&™ with the quotient
topology, i.e. a subset @/ T" is open iff its preimage under the quotient nrap B —

B/T is open. IfU C B is open then so igs 1z (U)) = {t(g) : g € s X(U)} soxn

is an open map. If : (B,I") — (B’,T") is a refinement of etale groupoids, then the
induced bijection,. : B/T — B’/T"is a homeomorphism. [The continuity gffollows
from the continuity ofi; the openness af. follows from the openness ofand the fact
thatif U’ ¢ B’ is open then so is’~1(z’(U")).] Hence equivalent etale groupoids have
homeomorphic orbit spaces. It follows that the topology induce# g by an orbifold
structures : (B, ') — (B, G) depends only the equivalence class. This topology is called
theorbifold topology.

Corollary 2.13. For a proper etale groupoid the quotient topology By I™ is Hausdorff.

Proof. In other words, ifl"4, », = @ then there are neighborhootisof « andV of b such
thatI"(a, b) = @ fora € U andv € V. This is a special case of Corollgry 211. O

3. Structures on surfaces

The phrasesurface meansoriented smooth (i.eC°°) manifold of (real) dimension two,

not necessarily connectednless otherwise specified all surfaces are assume to be closed,
i.e. compact and without boundary. The structures we impose on surfaces are complex
structures, nodal structures, and point markings. Surfaces equipped with these structures
form the objects of a groupoid. The objective of this paper is to equip the orbit space of
this groupoid with an orbifold structure.
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Definition 3.1. A Riemann surfaceis a pair (X, j) whereX isasurfaceang : T —

TY is a smooth complex structure @ which determines the given orientation Bf

Since a complex structure on a surface is necessarily integrable, a Riemann surface may
be viewed as a smooth complex curve, i.e. a compact complex manifold of (complex)
dimension one. When there is no danger of confusion we denote a Riemann surface and
its underlying surface by the same letter.

Definition 3.2. A nodal surfaceis a pair (2, v) consisting of a surfacZ and a set

v = {{y1, yo}, {¥3, ya}, . .., {y2a—1, yx}}

whereys, ..., yx are distinct points ofz; we also sayv is a nodal structure on X.

The pointsyy, ..., yx are called thenodal points of the structure and the points; 1

and y»; are calledequivalent nodal points The nodal structure should be viewed as

an equivalence relation ol such that every equivalence class consists of either one or
two points and only finitely many equivalence classes have two points. Hence we often
abbreviatex \ | v by

A\vi=2X\{y1, Y2, ¥3, Y4, ..., Y2k—1, Y2k}.

Definition 3.3. A point marking of a surfaceX is a sequence

re = (r1,r2, ..., Fn)

of distinct points of=; the pointsr; are calledmarked points. A marked nodal surface
is atriple (X, ry, v) Where(Z, v) is a nodal surface and, is a point marking o such
that no marked point; is a nodal point of(X, v); a special pointof the marked nodal
surface is a point which is either a nodal point or a marked point.

Definition 3.4. A marked nodal surfacez, r,, v) determines a labeled graph called the
signature of (2, r,, v) as follows. The set of vertices of the graph label the connected
components ok and there is one edge connecting verticeand g for every pair of
equivalent nodal points with one of the pointip and the other inXg. More precisely,

the number of edges frol, to Xz is the number of pairgx, y} of equivalent nodal
points with eitherx € X, andy € Xg or y € X, andx € Xg. Each vertexx has two
labels, the genus of the componé&iy denoted byg, and the set of indices of marked
points which lie in the componei, .

Remark 3.5. Two marked nodal surfaces are isomorphic if and only if they have the
same signature.

Proof. In other words(X, ry, v) and(X’, r., v") have the same signature if and only if

%9

there is a diffeomorphismt : ¥ — X’ such that’ = ¢,v where

v = {{o(y), ¢ (¥2)} {9 (¥3). ¢ (YA}, - - -, (@ (ya—1), (Y2 }}

andr; = ¢(r;) fori = 1,...,n = n’. This is because two connected surfaces are
diffeomorphic if and only if they have the same genus and any bijection between two finite
subsets of a connected surface extends to a diffeomorphism of the ambient marifold.
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Definition 3.6. Define theBetti numbers of a graph by the formula
b; :==rankH;(K), i=0,1,

where H; (K) is theith homology group of the cell complék ThuskK is connected if
and only ifbg = 1 and

bo — by = #vertices— # edges

Define thegenusof the labeled graph by
g :=b1+ Z 8a-

Thearithmetic genusof a nodal surfac€X, v) is the genus of the signature @, v).
Note that the arithmetic genus can be different fromtdtel genusg’ := >, ga.

Definition 3.7. A marked nodal surfac€X, r,, v) is said to be oftype (g, n) iff the
length of the sequenog is n, the underlying graphk in the signature is connected,
and the arithmetic genus o0&, v) is g. A marked nodal Riemann surfa€g, ry, v, j) is
calledstableiff its automorphism group

AUL(E, ry, v, j) 1= {¢p € DIff (2) 1 ¢ j = j, psv = v, ¢(re) =14}
is finite. A stable marked nodal Riemann surface is commonly catéahée curve

3.8. A marked nodal Riemann surface of tyae n) is stable if and only if the number of
special points in each component of genus zero is at least three and the number of special
points in each component of genus one is at least one. This is an immediate consequence
of the following:

(i) An automorphism of a surface of genus zero is @bdilis transformation; if it fixes
three points it is the identity.
(i) A surface of genus one is isomorphic@ A whereA = Z @& Zz andz lies in the
upper half plane.
(iii) The automorphisms of the abelian groupof form z — az wherea € C\ 0 form a
group of order at most six.
(iv) The automorphism group of a compact Riemann surface of genus greater than one
is finite.
The proofs of these well known assertions can be found in any book on Riemann surfaces.
It follows that for each paicg, n) of nonnegative integers there are only finitely many
labeled graphs which arise as the signature of a stable marked nodal Riemann surface of
type(g, n).

Remark 3.9. A marked nodal surface has arithmetic genus zero if and only if each com-
ponent has genus zero and the graph is a tree. The automorphism group of a stable marked
nodal Riemann surface of arithmetic genus zero is trivial.
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4. Nodal families

In this section we introduce the basic setup which will allow us to define the charts of the
Deligne—Mumford orbifold.

4.1. Let P andA be complex manifolds with dig P) = dimc(A)+1andr : P — A

be a holomorphic map. By the holomorphic implicit function theorem a ppiat P is

a regular point ofr if and only if there is a holomorphic coordinate systém ..., 1)
defined in a neighborhood af(p) € A, and a functiory defined in a neighborhood ¢f

in P suchthatz,t1o0m,...,t, om)is a holomorphic coordinate system. In other words,
the pointp is a regular point if and only if the germ af at p is isomorphic to the germ
at 0 of the projection

Cl S C (ot t) > (e b).

Similarly, a pointp € P is a called anodal point of  if and only if the germ ofr at p
is isomorphic to the germ at 0 of the map

Cn+l_) Cn . (x’yaIZa"'vtﬂ)'_) (xy7t27'-'9tn)9

i.e. if and only if there are holomorphic coordinates,, ..., t, on A atz(p) and holo-
morphic functionst andy defined in a neighborhood ¢f such that(x, y, t o, ...,

t, o ) is a holomorphic coordinate system,p) = y(p) = 0, andxy = z o x. Ata
regular pointp we have ding ker(dz (p)) = 1 and ding cokerdz (p)) = 0 while at a
nodal point we have dimker(dz (p)) = 2 and dimy cokerdn(p)) =1

Definition 4.2. A nodal family is a surjective proper holomorphic map : P — A
between connected complex manifolds such dirag(P) = dimc(A) + 1 and every
critical point of 7 is nodal. We denote the set of critical pointswoby

Cr :={p € P : dn(p) not surjective.

It intersects each fibeP, := 7 ~1(a) in a finite set. For each regular value € A of =
the fiber P, is a compact Riemann surface. Whegr A is a critical value ofr we view
the fiberP, as a nodal Riemann surface as follows.

By the maximum principle the compositiere u of 7 with a holomorphic mam :
> — P defined on a compact Riemann surfatenust be constant, i.e(X) c P, for
someu. A desingularization of a fiber P, is a holomorphic map : ¥ — P defined on
a compact Riemann surfage such that

(1) u=X(Cy) is finite,
(2) the restriction ofu to £ \ u~1(C,;) maps this set bijectively t8, \ C.

The restriction oft to £\ u~1(C, ) is an isomorphism between this open Riemann surface
and P, \ C, (because it is holomorphic, bijective, and proper).
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Lemma4.3. (i) Every fiber of a nodal family admits a desingularization.
(i) fug:Xy— Panduy: X2 — P are two desingularizations of the same fiber, then
the map

ugl ouy: X1\ uIl(Cn) — X2\ ugl(Cn)

extends to an isomorphiskEy — X».
(i) A desingularization of a fiber of a nodal family is an immersion and the preimage
u~1(p) of a critical pointp € C,, consists of exactly two points.

Proof. Letw : P — A be a nodal family and € A. Eachp € C; N P, has a small
neighborhood intersecting, in two transverse embedded holomorphic disks intersecting
at p. DefineX set-theoretically as the disjoint union Bf \ C,, with two copies ofP,NC;,

and use these disks as coordinates; the majx — P, is the identity onP, \ C, and
sends each pair of nodal points to the poin€gfwhich gave rise to it. Assertion (ii) fol-
lows from the removable singularity theorem for holomorphic functions, and (iii) follows
from (ii) and the fact that the maps— (x, 0) andy — (0, y) are immersions. O

Remark 4.4. We can construct eanonical desingularizationof the fiber by replacing
each poinp € P, N C, by a point for each connected componentiof {p} whereU is

a suitable neighborhood ¢f in P, and extending the smooth and complex structures in
the only way possible.

Definition 4.5. Letws : P - Aandzp : 0 — B be nodal families. For € A and
b € B abijection f : P, — Qj is called afiber isomorphism iff for some (and hence
every) desingularization : ¥ — P, the mapfou : ¥ — Qj is a desingularization.
A pseudomorphismfrom 4 to 7 is a commutative diagram

[}

P — 0
b T
A 2 B

where ® and ¢ are smooth and, for eachh € A, the restriction of® to the fiberP,
is a fiber isomorphism. Aorphism is a pseudomorphism such that bethrand ® are
holomorphic. Fora € A andb € B the notation

(P, 9) : (w4, a) — (7B, D)
indicates that the pseudomorphigm, ¢) satisfiesp(a) = b.

Lemma4.6. Letr : P — A be a nodal family. Then the arithmetic genus (see Defini-
tion[3.9 of the fiberP, is a locally constant function ef € A.

Proof. The arithmetic genus is the genus of the surface obtained by removing a small
disk about each nodal point and identifying corresponding components. Hence it is equal
to the ordinary genus of a regular fiber. O
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Definition 4.7. A marked nodal family is a pair (7, R,) wherer : P — A is a nodal
family and

R, = (R1,..., R))
is a sequence of complex submanifoldsPofvhich are pairwise disjoint and such that
7| R; mapsR; diffeomorphically ontaA. It follows thatR; does not intersect the s€t,
of critical points. A desingularization : ¥ — P of a fiber P, of a marked nodal family
(7, R,) determines a point marking. given by the formula

{urid)} = Ri N Pq

fori =1,...,n. By Lemm@.3any two desingularizations of the same fiber give rise to
isomorphic marked nodal Riemann surfaces. Thus the signature (see DefBd)iofithe

fiber (P,, P, N R,) is independent of the choice of the desingularization used to define it.
In the context of marked nodal families, the tdioer isomorphisnis understood to entail

that the bijectionf preserves the induced point markings; similarly pseudomorphisms
and morphisms of marked nodal families preserve the corresponding point markings. We
say that the marked nodal family, R,) is oftype (g, n) when each fiber is of typg, n)

(see Definitiof8.7).

Definition 4.8. A fiber of a marked nodal family : P — A is called stable iff its
desingularization is stable. A marked nodal family is cakéableiff each of its fibers is
stable.

Remark 4.9. Itis easy to see that stability is an open condition, i.e. every stable fiber has
a neighborhood consisting of stable fibers. However, the open set of stable fibers can have
unstable fibers in its closure. For example, consider the nodal famijlyR1, R2, R3))
with

P={(x,y,z].a) e CP2x C: xy = az’},
A =C,n(x,y,z],a) = a, R1 = {[1,0,0]} x A, R» = {[0,1,0]} x A, andR3 =
{([1, a,1],a) : a € A}. The desingularization of the fiber over 0 consists of two compo-
nents of genus zero and the regular fibers consist of one component of genus zero. The
regular fibers all have three marked points and are thus stable; one of the two compo-
nents of the (desingularized) singular fiber has fewer than three special points and is thus
unstable.

5. Universal unfoldings

In this section we formulate the most important definitions and theorems of this paper.
The key definition is that of a universal unfolding. Once we have established the existence
of universal unfoldings, the definition of the orbifold structure on the Deligne—Mumford
moduli space (which we carry out in the next section) becomes almost tautological. The
most important theorem asserts that an unfolding is universal if and only if it satisfies a
suitable infinitesimal conditon (which is easier to verify).

Definition 5.1. A nodal unfolding is a triple (g, Ss, b) consisting of a marked nodal
family (mp : QO — B, S,) and a pointb € B of the baseB. The fiberQ, is called
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the central fiber of the unfolding and the unfolding is said to be an unfolding of the
marked nodal Riemann surface induced by any desingularization of this central fiber. The
unfolding is calleduniversal iff for every other nodal unfoldingrs : P — A, Ry, a)

and any fiber isomorphisri : P, — Q, there is a unique germ of a morphism

(®,¢) : (wa,a) — (7B, b)

such thatd (R;) C S; for all i and®|P, = f. The termgermmeans thap is defined in

a neighborhood of in A and @ is defined on the preimage of this neighborhood under
4. The termuniqguemeans that if ®’, ¢’) is another morphism with the same properties
then it agrees witl{®, ¢) over a sufficiently small neighborhoodaf

Definition 5.2. Let (x : Q — B, S, b) be an unfolding of a marked nodal Riemann
surface(X, s, v, j) andu : ¥ — Q; be a desingularization. Let

Xy = {(:2,13) € QUE, u*T Q) x TyB | AW =D, ilsi) € Tuip Siy a”d}

u(zy) = u(zz) = i(z1) = u(z2)

and
Vui=1{n e QOXZ,u*T Q) : dn(u)n = 0}

For (i1, b) € X..» define
Dy y(it, b) == D,ii

whereD, : Q= u*T Q) — QOL(=,u*T Q) is the linearized Cauchy—Riemann op-
erator. We call the unfoldingr, S, b) infinitesimally universal iff the operatorD,, ;, :
X..» — Y, is bijective for some (and hence every) desingularization of the central fiber.

Theorem§ 5]3, 515, afnd $.6 which follow are proved in Se€fign 12 below.

Theorem 5.3 (Stability). Let (x, Sk, bo) be an infinitesimally universal unfolding. Then
(7, Sy, b) is infinitesimally universal fob sufficiently neaiby.

Theorem 5.4 (Universal unfolding). An unfolding(sr, S., b) is universal if and only if
it is infinitesimally universal.

Proof. We prove “if” in Sectior] IR. For “only if” we argue as follows. A composition of
morphisms (of nodal unfoldings) is again a morphism. The only morphism which is the
identity on the central fiber of a universal unfolding is the identity. It follows that any two
universal unfoldings of the same marked nodal Riemann surface are isomorphic. By The-
orem[5.6 below there is an infinitesimally universal unfolding and by “if” it is universal
and hence isomorphic to every other universal unfolding. Any unfolding isomorphic to
an infinitesimally universal unfolding is itself infinitesimally universal. O

Theorem 5.5 (Uniqueness)Let (g, S, bo) be an infinitesimally universal unfolding.
Then every pseudomorphism frémy, Ry, ag) to (s, Sk, bo) is @ morphism.

Theorem 5.6 (Existence).A marked nodal Riemann surface admits an infinitesimally
universal unfolding if and only if it is stable.
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Proof. We prove “if” in Sectior{ IP. For “only if” we argue as follows. L€E, s, v, j)

be a marked nodal Riemann surface. Assume it is not stable. Then Eithas genus
one and has no special points or elBecontains a component of genus zero with at
most two special points. In either case there is an abelian complex Lie gréngmely

A = X in the former case and = C* in the latter) and an effective holomorphic action
AX Y —> ¥ :(a,z)— ag(z). Let P := A x ¥ andr4 be the projection on the first
factor. Ifv : ¥ — Q is any desingularization of a fib&?, of an unfoldingzz : 0 — B,
then®1(a, z) := v(z) and®z(q, z) := v(ax(z)) are distinct morphisms which extend
the fiber isomorphisnge, z) — v(z). Hencerg is not universal. O

6. Universal families and the Deligne—Mumford moduli space

In this section we define the orbifold structure on the Deligne—-Mumford moduli space.
The proof of compactness will be relegated to Sedtign 14. The results we prove in this
section are easy consequences of Theofems 53 gnd 5.6.

6.1. Throughout this sectiog andn are nonnegative integers with > 2 — 2g. Let

Bg,,, denote the groupoid whose objects are stable marked nodal Riemann surfaces of
type (g, n) and whose morphisms are isomorphisms of marked nodal Riemann surfaces.
The Deligne-Mumford moduli spaceis the orbit space\?lg,,, of this groupoid: a point

of M, , is an equivalence claﬁsf objects of3, , where two objects are equivalent if

and only if they are isomorphic. We will introduce a canonical orbifold structure (see
Definition[2.4) on this groupoid. The following definition is crucial.

Definition 6.2. A universal marked nodal family of type(g, n) is a marked nodal fam-
ily (rp : Q — B, S,) satisfying the following conditions.

(1) (mp, S, b) is a universal unfolding for everly € B.

(2) Every stable marked nodal Riemann surface of tpe:) is the domain of a desin-
gularization of at least one fiber afp.

(3) B is second countable (but possibly disconnected).

Proposition 6.3. For every pair(g, n) withn > 2— 2g there is a universal marked nodal
family.

Proof. By Theorem$§ 516, 514, afnd %.3, each stable marked nodal Riemann surface admits
a universal unfolding satisfying (1) and (3). To construct a universal unfolding that also
satisfies (2) we must covefr;tg,,, by countably many such families. This is possible be-
causeMg,n is a union of finitely many strata, one for each stable signature, and each
stratum is a separable topological space. O

7 Strictly speaking, the equivalence class is a proper class in the sense of set theory as explained
in the appendix of [112] for example. One could avoid this problem by choosing for each stable
signature (see Remafk B.5 gnd]3.8) a “standard marked nodal surface” with that signature and
restricting the space of objects of the groupBig,, to those having a standard surface as substrate.
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Definition 6.4. Let (=g : QO — B, S,) be a universal marked nodal family. Thsso-
ciated groupoid is the tuple(B, T, s, t, e, i, m), where" denotes the set of all triples
(a, f,b) suchthata,b € Band f : O, — Qy is a fiber isomorphism, and the structure
mapss,z: " — B,e: B—T',i:I' - I',andm : I'yx, I' — I are defined by

sa, f,b) :=a, t(a, f,b):=0b, e(a):=(a,id, a),
i(a, f,b) = (b, f_lv a), m((b,g,c)(a,f,b)=(a,gof o).

The associated groupoid is equipped with a functor
B— By, b I

to the groupoidég,n of In other wordsy,, : X, — Qjp denotes the canonical desin-
gularization defined in Remak4 By definition the induced map

B/T = Mgn:[blp = [Zh]g,,. [bls :={t(f): [ €T, s(f)=b},

on orbit spaces is bijective. The next theorem asserts that the groupold) equips the
moduli spaceM, , with an orbifold structure which is independent of the choice of the
universal family. This is therbifold structure on the Deligne—Mumford moduli space.

Theorem 6.5. (i) Let(np : Q — B, S.) be universal as in Definitiof.2and (B, I')
be the associated groupoid of Definit{erd Then there is a unique complex mani-
fold structure onl” such that(B, I') is a complex etale Lie groupoid with structure
mapss, t, e, i, m.

(i) A morphism between universal familieg: Qo — Bo andmy : Q1 — Bj induces
arefinement : (Bg, ') — (B1, I'1) of the associated etale groupoids.

(iiiy The orbifold structure onM, , introduced in Definitio@ is independent of the
choice of the universal marked nodal famitys, S,) used to define it.

Proof. We prove (i). Uniqueness is immediate since part of the definition of complex
etale Lie groupoid is that is a local holomorphic diffeomorphism. We prove existence.
It follows from the definition of universal unfolding that each trigle, fo, bp) € T
determines a morphism

ou 2 v

g T

v o2 v

for suitable neighborhoods C B of ag andV C B of bg such thatb|Q,, = fo. Every
such morphism determines a chagt: U — T" given by

to(a) = (a, Dgy, p(a)).

(In this context a chart is a bijection between an open set in a complex manifold and a
subset of".) By construction each transition map between two such charts is the identity.
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This defines the manifold structure DnThat the structure maps are holomorphic follows
from the identities

sotp=id, totp =¢, e=Ig,

iolp =lp-10¢, mo(lygod X1p) = lyed.

This proves (i).
We prove (ii). If (¢, @) is a morphism fromxg to 71 then the refinement: (B, o)
— (B1, I'7) of (ii) is given by

(ao. fo. bo) - (¢ (ao), Py, o foo Dt ¢ (bo)).

This proves (ii).

We prove (iii). Letrg : Qo — Bo andmy : Q1 — B1 be universal families. For each
b € Bg choose a neighborhodd, C Bg of b and a morphisn®;, : Qo|U, — Q1. Cover
Bo by countably many such neighborhodds . Then the disjoint uniorB of the nodal
families Qo|U), defines another universal famity : 0 — B equipped with morphisms
to bothsrg and; (to g by inclusion and tory by construction). Now each morphism of
universal families induces a refinement of the corresponding orbifold structures.o

Theorem 6.6. Let (7 : Q@ — B, Sx) be a universal family. Then the etale groupoid
(B, T") constructed in Definitiof6.4is proper and the quotient topology @&y T" is com-
pact.

Proof. See Sectiop 34 below. O

Example 6.7. Assumeg = 0. Then the moduli spac#1g, of marked nodal Riemann
surfaces of genus zero (called Beothendieck—Knudsen compactificatior) is a com-

pact connected complex manifold (Knudsen'’s theorem). In our formulation this follows
from the fact that the automorphism group of each marked nodal Riemann surface of
genus zero consists only of the identity.[Inl[16, Appendix D] the complex manifold struc-
ture onMy_, is obtained from an embedding into a product of 2-spheres via cross ratios.
That the manifold structure in [16] agrees with ours follows from the fact that the projec-
tion 7 : Mo,n+1 — Mo,n (with the complex manifold structures of [16]) is a universal
family as in Definitior] 6.P.

7. Complex structures on surfaces
The sphere

In preparation for the construction of universal unfoldings (without nodes and marked
points) we review the space of complex structures on a Riemann sifacthis and the
following two sections. This section treats the case of genus zero. Dengfgd%y the
space of complex structures 6R that induce the standard orientation and by §i§?)

the group of orientation preserving diffeomorphismsséf



A construction of the Deligne—Mumford orbifold 631

Theorem 7.1. There is a fibration

PSL(C) — Diffo(S?)
+
J (5

where the inclusioPSLy(C) — Diff o(5?) is the action by Nabius transformations and
the projectionDiff o($2) — 7 (52) sendsp to ¢*i.

The theorem asserts that the map §is%) — 7(52) has the path liting property for
smooth paths and that the lifting depends smoothly on the path. One consequence of this,
as observed iri [4], is the celebrated theorem of Smale [19] which asserts thasiff
retracts onto SCB). Another consequence is that, up to diffeomorphism, there is a unique
complex structure on the 2-sphere. Yet another consequence is that a proper holomorphic
submersion whose fibers have genus zero is holomorphically locally trivial. (See Theo-

rem8.9.)

Proof of TheorelChoose a smooth path,[0] — J(S2) : ¢ — j,. We will find an
isotopyt +— v, of §¢ such that

W;*jr = j0~ (2)
Suppose that the unknown isotopy is generated by a smooth family of vector fields
£ € Vect(5?) via

d Yy =& o Yo =id
_— = le) — .
dt t t ts 0
Then @) is equivalent tgr;* (Le, j + ft) = 0 and hence to
£E;jt jt - Ov (3)

Wheref, = %j, € C®(End(T $2)). As usual we can think of, as a(0, 1)-form on $2
with values in the complex line bundle

E, = (TS? jp).

The vector field; is a section of this line bundle. This line bundle is holomorphic and its
Cauchy—Riemann operator
bj, - C®(Ey) — QL (E))
has the form .
0jn=3(Vn+ jioVno j)

whereV is the Levi-Civita connection of the Riemannian meti¢, j;-) on S2 andw €
Q2(5?) denotes the standard volume form. Now, for every vector fjeddVect(S2), we
have

(55,]})’7 = ES, () — jzﬁg,ﬂ = [jin, &1 — jin, &]
= Ve, (Jim) — Vi — i Ve, n + ji Vié:
= jtvné,:'t - Vj,nét = 2jt(3j,€t)(77)-
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The penultimate equality uses the fact tljais integrable and s¥ j, = 0. Hence equa-
tion (3) can be expressed in the form

E_)j,& = %jtft« (4)
Now the line bundleE; has Chern numperl(E,) = 2 and hence, by the Riemann—Roch
theorem, the Cauchy—Riemann operaitphas real Fredholm index six and is surjective

for everyz. Denote by .
05 1 QOHE) — C™(EY)

the formalL2-adjoint operator oﬁj,. By elliptic regularity, the formula
. 1'* a. ax\y—1,. %
& = Eag, (3j,3j,) (e Je)
defines a smooth family of vector fields ¢ and this family obviously satisfieg](4).
Hence the isotopy, generated by, satisfies[(R). O
Lemma7.2. LetC — J(S°) : s + it — j, be holomorphic andC — Diff (5?) :
s + it — ¢, be the unique family of diffeomorphisms satisfying
¢;k,tjs,t =i, ¢s:(0)=0, ¢, =1 ¢5(00) = 00.

Then the map
Cx 82— Cx 82 (s+it,2) > (s +it, ¢y, (2)
is holomorphic with respect to the standard complex structure at the source and the com-

plex structure
i 0
J(s,t,2) = .
51,2 (0 ]s,z(Z))
at the target.
Proof. Defineg; ;, ns., € Vect(S?) by
as¢s,l = ‘i‘-s,t o ¢S,t9 8y¢s,t = Ns,t © (/J)s,l'
Differentiating the identitypy , js., = i givesdsj+Lsj = 9,j+Lyj = 0. Sinces +it
Js.¢ IS holomorphic we have

0=20,j+jorj=—Lej—jLyj=—Leyjnj

where the last equality uses the integrabilityjofThusé&; ; + Jjs.:ns.¢ iS @ holomorphic
vector field vanishing at three points 8o + j; /15, = O for all s, . Hence by definition
of &€ andn we have

as(p + ]at¢ =0
as required. O

The torus

Continuing the preparatory discussion of the previous section we treat the case of genus
one. Denote by7 (T?) the space of complex structures on the 2-tdféds= R?/Z? that
induce the standard orientation and by B(f?) the group of diffeomorphisms ¢f?
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that induce the identity on homology. Denote the elements of the upper halflilage
A = A1+ ir2 and consider the map: H — 7(T?) given by

. 1 (—x1 —A2—-212
A) = — 1 72, 5
j0i= 5 ( o )
Thusj (1) is the pullback of the standard complex structure under the diffeomorphism
f'TzeL fulx, y) i=x + A
A Z + )\,Z’ A ’ y i y

A straightforward calculation shows that the map H — 7(T?) is holomorphic as is
the map
2+ Z+22) > (JO, [T + 27

from{(A,z+Z+AZ) : » € H, z € C} to J(T?) x T2. The next theorem shows that the
map; : H — 7(T?) is a global slice for the action of D§fT?).

Theorem 7.3. There is a proper fibration

T2 — Diffo(T?) x H
\
J(T?)

where the inclusiolf? — Diffo(T?) is the action by translations and the projection
Diff o(T?) x H — J(T?) send(¢, 1) to ¢* j;.

The theorem asserts that the map §iiff?) x H — 7 (T?) has the path lifting property for
smooth paths and that the lifting depends smoothly on the path. One consequence of this
is that Diffp(T?) retracts ontdl2. Another consequence is that every complex structure
onT? is diffeomorphic toj, for somex € H.

Proof of Theorerfi.3 The uniformization theorem asserts that for every 7 (T2) there

is a unique volume formy; € Q%(T?) with [, ; = 1 such that the metrig; = w; (-, j-)

has constant curvature zero. (A proof can be based on the Kazdan—Warner equation.)
Hence it follows from the Cartan—Ambrose—Hicks theorem that, for every positive real
numbery, there is an orientation preserving diffeomorphigm: C — R2, unique up to
composition with a rotation, such that

Vg =ngo, ¥(0) =0.

Here go denotes the standard metric @ We can choose and the rotation such that
¥; (1) = (1, 0). This determinesg); (and ) uniquely. The orientation preserving condi-
tion shows that; := v;(i) € H. Moreover, it follows from the invariance gf; under
the action ofz? that

Ui (Z+ A1) = 72.

Hencev; induces an isometry of flat toiC/Z + X;Z, go) — (Tz,gj) which will
still be denoted byy;. Let ¢; be the precomposition of this isometry with the map
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T? — C?/Z+3;Z (x,y) = x + Ajy. Theng; € Diffo(T?) and¢7j = j(%;). Thus
we have proved that the map

Diff go(T?) x H — J(T?) : (¢, 1) > ¢*j (1)

is a bijection, where Diffp(T?) is the subgroup of all diffeomorphisrgse Diff o(T?) that
satisfy¢ (0) = 0. That the map Diffo(T?) x H — J(T?) is actually a diffeomorphism
follows by examining the linearized operator at poi@s A) with ¢ = id and noting that
it is a bijection (between suitable Sobolev completions). This proves the theorenm

Surfaces of higher genus

Continuing the preparatory discussion of the previous two sections we treat the case of
genus bigger than one. LEtbe a compact connected oriented 2-manifold of genusl
and 7 (X) be the Fechet manifold of complex structurgson Z, i.e. j is an automor-
phism of TS such thatj2 = —1. The identity component Di§{X) of the group of
orientation preserving diffeomorphisms acts66x) by j — ¢*j. The orbit space

T(2) := J(2)/Diff o(X)
is called theTeichmiller spaceof X. For j € J(X) the tangent spacg J(X) is the
space of endomorphismjse Q%(, End(T %)) that anti-commute withy, i.e. jj + jj

= 0. Thus
T,J(3) = NS, T).

Define an almost complex structure gi{) by the formulaj — j j. The next theorem
shows thatZ (X) is a complex manifold of dimensiorg3- 3.

Theorem 7.4. For every jo € J(X) there exists a holomorphic local slice through
More precisely, there is an open neighborhaBdf zero inC3¢~2 and a holomorphic
map: : B — J(X) such that the map

B x Diffo(2) — J(2) : (b, ¢) — ¢*1(b)
is a diffeomorphism onto a neighborhood of the orbifi@f

Proof. We first show that each orbit of the action of BIfE) is an almost complex sub-
manifold of 7(X). (The complex structure off (X) is integrable becaus€ (%) is the
space of sections of a bundle overwhose fibers are complex manifolds. However, we
shall not use this fact.) The Lie algebra of B({fE) is the space of vector fields

Vect(z) = Q%(2, TS).
Its infinitesimal action or7 (X) is given by
Vect(X) — T3 J(2) 1 & > Lgj = 2j0j&.

Thus the tangent space of the orbit jofs the image of the Cauchy—Riemann operator
3 1 Q%%, TT) — Q]c.”l(z, TX). Sincej is integrable the operatdy is complex linear
and so its image is invariant under multiplication jy
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By the Riemann—Roch theorem the operakonas complex Fredholm index-3 3g.
It is injective because its kernel is the space of holomorphic sections of a holomorphic
line bundle of negative degree. Hence its cokernel has dimengion 3. Let B C
Q%l(z, TX) be an open neighborhood of zero in a complex subspace of dimension
3¢ — 3 which is a complement of the image @g and assume that + 7 is invertible
for everyn € B. Definet: B — J(X) by

W) = @+ 1) Lo + ).

Then
du(mi = [e(), @+ )]

and an easy calculation shows tha holomorphic, i.edi(n) jon = t(n)di(n)7n for all »
andn.

Let p > 2 and denote by Diﬁ"’(E) and 717 (%) the appropriate Sobolev comple-
tions. Consider the map

Diff 57 (£) x B — JP() 1 (¢, 1) > ¢*1()-

This is a smooth map between Banach manifolds and, by construction, its differential at
(id, 0) is bijective. Hence, by the inverse function theorem, it restricts to a diffeomor-
phism from an open neighborhood @d, 0) in Diffé""(Z) x B to an open neighborhood

of jo in JL7(%). The restriction of this diffeomorphism to the space of smooth pairs in
Diff o(2) x B is a diffefomorphism onto an open neighborhoodgh 7 (X). To see this,

note that every element of Dﬁfﬁ(E) is aC? diffeomorphism and that everg® diffeo-
morphism ofX that intertwines two smooth complex structures is necessarily smooth.
Shrink B so that{id} x B is a subset of the neighborhood just constructed. The action
of Diffo(X) on J (%) is free and Lemmp 7.5 below asserts that it is proper. Hence, by a
standard argument, we may shriBlfurther so that the local diffeomorphism

Diffo xB — J(X) : (¢, 1) > ¢™t(n)

is injective; it is the required diffeomorphism onto an open neighborhood of the orbit
of jo. O

Lemma 7.5. Let X be a surface ang, j, € J(X) and¢; € Diff (£) be sequences such
that j; converges tg’ € J(X) and ji = ¢} j;, converges tg € J(X). Theng; has a
subsequence which convergeDiff ().

Proof. Fix an embedded closed digk ¢ ¥ and two pointgg € int(D), z1 € 9D. Let
D ¢ C denote the closed unit disk. By the Riemann mapping theorem, there is a unique
diffeomorphismu; : D — D such that

upjk =i,  ux(0) =zo, ux(l) =z1.

The standard bubbling and elliptic bootstrapping arguments/ faolomorphic curves
(seel[16, Appendix B]) show thaj. converges in th€ > topology. The same arguments
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show that the sequenag := ¢; o u; of j;-holomorphic disks has a subsequence which
converges on every compact subset of the interidboThus we have proved that the
restriction ofg; to any embedded disk iB has a convergent subsequence. Hefceas

a convergent subsequence. The lighiatisfiesp* j’ = j and has degree one. Hengés

a diffeomorphism. O

8. Teichmiiller space
The spacd/,

In this section we prove Theoreins|§.345.64o¢ 1 in the case of surfaces without nodes
or marked points.

8.1. Let A be a complex manifold an®l be a surface. We denote the complex structure
on A by /—1. An almost complex structure ehix X with respect to which the projection
A x ¥ — A is holomorphic has the form
J= (V -1 9) , ©)
o J
wherej : A — J(X) is a smooth function with values in the space of (almost) complex
structures or= anda € QL(A, Vect(¥)) is a smooth 1-form om with values in the

space of vector fields oR such that
a(a,v—1a) + j(a)a(a,a) =0 @)

foralla € A anda € T,A. This means that the 1-forma is complex anti-linear with
respect to the complex structure on the vector bundle Vect(¥) — A determined

by j. From an abstract point of view it is useful to think @fas a connection on the
(trivial) principal bundleA x Diff (¥£) and ofj : A — J(X) as a section of the associated
fiber bundleA x 7 (X). This section is holomorphic with respect to the Cauchy—Riemann
operator associated to the connectioifiand only if

dj(a)a+ j(a)dj(a)v—1a + j(a)Ly.ayj(@) =0 (8)
foralla € A anda € T, A. (For a finite-dimensional analogue see for examigle [2].)
Lemma 8.2. J is integrable if and only ifi and« satisfy(8).

Proof. It suffices to consider the case= 1, soA C C with coordinates + it. Then the
complex structurg on A x X has the form

0 -1 0
J=1 1 0o o}, )
—jE =&

whereA — J(X) : s + it — js, andA — Vect(X) : s + it — &, are smooth maps.
The equation(8) has the form

Osj+jorj+Lej=0. (20)
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To see that this is equivalent to integrability bevaluate the Nijenhuis tensof; (X, Y)
=[JX,JY] - J[X,JY] - J[JX,Y] —[X, Y] on a pair of vectors of the forrX =
(1,0,0), Y = (0,0, 2). The conditionN; (X, Y) = 0 for all such vectors is equivalent

to (10) and it is easy to see th&ly = 0 if and only if N, ((1, 0, 0), (0, 0, 2)) = O for all

z € TX. The latter assertion uses the facts thatis bilinear,N; (X, Y) = —N; (Y, X) =
JN;(JX,Y), and every complex structure on a 2-manifold is integrable. This proves the
lemma. O

Let A be a complex manifold and: A — 7(X) be a holomorphic map. Consider the
fibration
TP =AXxYX—> A

with almost complex structure

_(¥-1 0
Jt(a,z)._< 0 L(a)(z)) (11)

By Lemmg 8.2 the almost complex structufeon P, is integrable.

Lemma 8.3. Leta € A. Then the pait(r,, a) is an infinitesimally universal unfolding if
and only if the restriction of to a sufficiently small neighborhood @fis a local slice as
in TheoreniZ.4

Proof. Letu : ¥ — P, be the diffeomorphism(z) := (a, z) and defingj := ((a). Then
the linearized operatab, , (at the pair(u, a) for the equatiord;u = 0 with j = 1(a))
has domaint,, , = QUE, TY) x T,A, target spac®/, = Q?’l():, TX) and is given by

Dy (i, 4) = djit — 3 jdi(a)a.

(See the formula in[16, p. 176] with = id.) This operator is bijective if and only if
di(a) is injective and its image iT;J = Q(.)'l():, TY) is a complement of irﬁj =
T; (Diff o(X)* /) (see the proof of Theorejn T.4). This proves the lemma. ]

Theorem 8.4. Theorem¢5.3{5.G hold for Riemann surfaces of gengs> 1 without
nodes and marked points.

Proof. Let X be a surface of genus Abbreviate
Do :=Diffo(2), J:=T(2), T:=T(X):=J(2)/Diffo(T).
Thus7, := T is Teichmilller space. Consider the principal fiber bundle
Do— J—>T.
The associated fiber bundle
a7 Q=0 Xp, T —>T

has fibers isomorphic t&.
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Step 1. Q and7 are complex manifolds andy is a proper holomorphic submersion.

By Lemmg 8.2 withA = 7 and the mapi — 7 equal to the identity, the spacé x %
is a complex manifold. Sinc®q acts by holomorphic diffeomorphisms, so is the (finite-
dimensional) quotien®.

Step 2. The projectionz7 is an infinitesimally universal unfolding of each of its fibers.

Choose Jo] € 7. Let B be an open neighborhood of 0@ and: : B — J be a
local holomorphic slice such that0) = jo (see([20] or Sectiop|7). Then the projection
0, — Bis alocal coordinate chart o — 7. Hence Step 2 follows from Lemma 8.3.

Step 3. Every pseudomorphism fro€r 4, ag) to (r7, [ jo]) is a morphism.

Let (¢, ®) be a pseudomorphism frotms : P — A, ag) to (w7, [jo]) andt : B — J
be as in the proof of Step 2. Defing, ¥) to be the composition ofp, ®) with the
obvious morphism frontz7, [jo]) to (Q,, 0). Using the mapsl, : P, — X given by
Y (p) =: (Y(a), ¥,(p)) for p € P, we construct a trivialization

T:AXE > P, 1(a,2) i=1,(2) i= ¥, 1(2).
Then the pullback of the complex structure Brundert has the form

V-1 0 )

J(“’Z):Z( ¢ j@@

wherej = 1oy : A - J anda € Q](.”l(A,Vect(E)). Since J is integrable it
follows from Lemma[ 8.2 thay and « satisfy [8). Since the local slice is holomor-
phic the termdj (a)a + j(a)dj(a)~/—1a is tangent to the slice while the last summand
J@Ly@a.ail@) = _ﬁam,m)j(“) is tangent to the orbit of (@) underDy. It follows
that both terms vanish for all € A anda € T,A. Hencewx = 0 andthemapg : A — J

is holomorphic. Thereforg¢ : A — B is holomorphic and hence sous.

Step 4. =7 is a universal unfolding of each of its fibers.

Choose an unfoldingrs : P — A, ag) and a holomorphic diffeomorphisay : (2, jo)

— P,. Then ugl is a fiber isomorphism fronP,, to Qyj,. Trivialize P by a map
7:A x ¥ — P such thatr,, = ug. Definej : A — J so thatj(a) is the pullback
of the complex structure o®, undert,. Thenj(ag) = jo. Define¢p : A — 7 and

®:P— Qby

¢ =[j@], @(p) =[j@.z], p=ta,z2)

fora € Aandp € P,. This is a pseudomorphism and hence, by Step 3, it is a morphism.
To prove uniqueness, choose a local holomorphic slice — 7 such that(0) = jo.

Choose two morphism&y, ¥), (¢, ®) : (w4, a0) — (., 0) such thatd,, = ¥,, =

gt : Pay — . If a is nearag then

W, 0 ®,1 1 (2, (@) — (T, 1y (@)
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is a diffeomorphism close to the identity and hence isotopic to the identity. Hence by the
local slice property (a) = ¥ (a) and¥, o <I>;1 =id.

Step 5.Let jo be a complex structure ol. Every infinitesimally universal unfolding
(g : Q — B, bg) of (Xo, jo) is isomorphic taiz7, [jol).

As in Step 3 we may assume that= B x X with complex structure

V=T
"“””"( 0 L<b><z>)

where: : B — J is holomorphic and(bg) = jo. By Lemm& 8.2 this almost complex
structure is integrable. Sinderg : Q — B, bp) is infinitesimally universal, it follows

from Lemm4 8.8 that the restriction oto a neighborhood by is a local slice. Hence
(g, bo) is isomorphic ta(z 7, [ jo]) by the local slice property. O

Remark 8.5. The universal unfolding'7 : Q — 7 of Theorenj 84 determines an etale
groupoid(B, ") with B := 7 = J(X2)/Diffo(X) and

F={[j.¢,j1:j,j € T(), ¢ €Diff (L), j =¢"j'}.

Here [j, ¢, j'] denotes the equivalence class under the diagonal action qf( Diffoy
VG, ¢, j) = W*j, v Lo ¢ oy, ¥*j’). By Lemmd 7.5 this etale groupoid is proper.

The spac€, ,

In this section we prove Theoreins|§.345.6 for all stable marked Riemann surfaces without
nodes. Lel(X, s,, jo) be a stable marked Riemann surface of typen) without nodes.

We will construct an infinitesimally universal unfoldinig s, S, bo) of (X, jo, sx), prove

that it is universal, and prove that every infinitesimally universal unfoldin@ofs., jo)

is isomorphic to the one we have constructed.

8.6. Letn andg be nonnegative integers such that 2 — 2¢g and letX be a surface of
genusg. Abbreviate

G :=Diffo(X), P:=T(X)x (Z"\A), B:=P/G,

whereA C X" denotes the fat diagonal, i.e. the set ofratuples of points in2” where
at least two components are equal. Tlfus= 7, , is the Teichnilller space of Riemann
surfaces of genus with n distinct marked points. Consider the principal fiber bundle

G—>P— B
The associated fiber bundle
3. Q:=PxgX—>B
has fibers isomorphic t& and is equipped with disjoint sections
Si={lj,s1,...,50,2]€Q:z=s;}, i=1...,n

It is commonly called theniversal curve of genusg with » marked points.
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8.7. Let (jo,r«) € P, A be a complex manifoldgg € A, and lett = (t0,t1, ..., ) :
A — P be a holomorphic map such that
wlaog) = jo, tia) =ri, i=1...,n (12)

Define the unfoldingz, : P, — A, R, «, ap) by

P=AxY, J(a,z) = <*/__1 0 ) (13)

0  w@
where/—1 denotes the complex structure drand
R ={(a,u)):ac A}, i=1...,n (24)

Lemma 8.8. The unfolding(,, R, «, ao) is infinitesimally universal if and only if the
restriction of: to a sufficiently small neighborhood af is a (holomorphic) local slice
for the action ofG onP.

Proof. Letug : (Z, jo) — A be the holomorphic embedding(z) := (ao, z). Then the
operatorD,, 4, has domain

Xo:={@,a) e QO(E, TY) x TyoA : a(ri) = du(ag)al,
target spac@)p = Q?(;l():, TY), and is given by
Dug.aoit, @) = djoii — 3 jodto(a0)a-
Now the tangent space of the group ot jo, r«) at (jo, 7«) is given by

(o G (os 74) = {(2jodjg, —E(r1). ... —&(rn)) : & € QUE, TZ)).

(See the proof of Theore@.l for the formula jo = 2,odj,&.) Hence the operator
Dyy,q0 is injective if and only if imdi(ag) N T(jy,r,)G* (jo, r+) = 0 anddi(ap) is injective.
It is surjective if and only if indi(ag) + T(jo,r)G* (o, +) = T(jo,r)P- This proves the
lemma. O

Theorem 8.9. Theorem{.345.6 hold for marked Riemann surfaces without nodes.

Proof.

Step 1. Q and B are complex manifolds, the projectiory is a proper holomorphic
submersion, andy, ..., S, are complex submanifolds &f.

Apply Lemma[8.2 to the complex manifold = 7 = J(X), replace the fibe& by
"\ A, and replace by the map7 — J(X" \ A) which assigns to each complex
structurej € J(Z) the corresponding product structure Bf \ A. Then (the proof of)
Lemmg 8.2 shows tha& = 7 x (£"\ A) is a complex manifold. The group = Diff o(X)
acts on this space by the holomorphic diffeomorphisms

oSty e essn) = (F5 G, F7E60, -0 £ )
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for f € G. The action is free and admits holomorphic local slices forgadindn. It
follows that the quotients = P/G is a complex manifold. The same argument shows
that the total spac® is a complex manifold and that the projectiag : Q@ — B is
holomorphic. That it is a proper submersion is immediate from the definitions.

Here are more details on the holomorphic local slices for the actiagh afi P. In
the caseg > 1 we will find a holomorphic local slice : B — P, defined onB =
Bg x int(D)", which has the form

l(bO» blv R bl’l) = (lO(bO)» ll(bO» bl)a LA} Ln(bOa bn))

Herew : Bg — J is a holomorphic local slice as in Theor¢m|7.4. Foe 1,...,n,
the map(bo, b;) — (bo, ; (bo, b;)) is holomorphic with respect to the complex structure
Jip ON Qo = Bo x X defined by[(IB) and restricts to a holomorphic embedding from
bo x int(D) to (X, j) with j = 1p(bg). That such maps exist and can be chosen with
disjoint images follows from Lemnja 7.2.

In the caseg = 1 andn > 1 with & = T? := R?/Z? an example of a holomorphic
local slice isthe map: B = Bg x By x --+ x B,_1 — P given by

100, b1, -+, bum1) 1= (j0), fr5- (B, - -5 o (Bam), fr5 (s))

whereBgp ¢ H and B; ¢ C are open sets such that closures of the 1 setsB; +
Z + rZ C Ty, = C/Z + roZ are pairwise disjoint, none of these sets contains the
point s, + Z + AoZ, the complex structurg (rg) € J(T?) is defined by), and the
isomorphismf;, : (T?, j(r0)) — T, is defined byfi,(x,y) := x + Agy. That any
such map is a holomorphic local slice for the actiongof= Diff o(T?) follows from
Theoreni 7.B.

In the caseg = 0 andn > 3 with = = 52, an example of a holomorphic local slice is
the map : B = int(D)"~3 — P given by

t(b1, ..., bu—s) = (jo, t1(b1), ..., ty—3(by—3), Sn—2, Sn—1, Sn)

wheres,_», s,_1, s, are distinct points ir§2, jo € J(52) denotes the standard complex
structure, and the : int(D) — S2 are holomorphic embeddings ford i < n — 3
such that the closures of their images are pairwise disjoint and do not contain the points
Sn—2,Sn—1, Sp. That any such map is a holomorphic local slice for the actio of
Diff o(52) follows from Theorenj 7]1.

Thus we have constructed holomorphic local slices for the actigh-eiff o(X) on
P =J(X) x (E"\ A)in all cases. Holomorphic slices for the actiondobnP x T can
be constructed in a similar fashion. It then follows from the symmetry of the construction
under permutations of the component&ithat the sections; are complex submanifolds
of Q. This proves Step 1.

Step 2. The pair (g, S,) is an infinitesimally universal unfolding of each of its fibers.

Choose Jo, sx] € B. Let B be an open neighborhood b§ = 0 in C3#-3t" and: =
(to, t1, - .-, tn) : B — P be alocal holomorphic slice satisfyirig {12). Then the unfolding
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(m, : Q. = B, S« bo) defined as in[(113) andl (L4) is isomorphic(teg, Sx, [jo. s«])-
Hence Step 2 follows from Lemmia 8.8.

Step 3. Every pseudomorphism frofr 4, Ry, ao) to (3, Sk, [jo, s«]) iS @ morphism.

Let (¢, ®) be a pseudomorphism froers : P — A, Rs, ag) to (3, Sk, [Jo, s«]) and
t = (0, t1,...,ty) . B — P be as in the proof of Step 2. Defing/, ¥) to be the
composition of ¢, ®) with the obvious morphism frortrrz, S, [Jjo, s«]) to the unfolding
(Q., 8.+, bo), defined as in[(13) and (14). Using the maps : P, — X given by
W(p) =: (Y(a), Y, (p)) for p € P, we construct a trivialization

T:AXE = P, 1(a,2) :=1() =¥, ).
Then the pullback of the sectia®; is given by
Y R) ={(a,0i(@)) iac A}, oii=io¥:A—>X,
and the pullback of the complex structure Brunderz has the form

V-1 0>,

J(“’Z):=< ¢ j@@)

wherej (=190 : A — J anda € Q?’l(A, Vect(X)). SinceJ is integrable it follows
from Lemmg 8.P thaj andu satisfy

dj(a)a + j(a)dj(a)v/—1la — Loya. /=12y (@ = 0.
Sincer~1(R;) is a complex submanifold of x =, we have
doi(a)a + j(a)doi(a)v/—1a + a(a, v —1a)(oi(a)) =0 (15)

fori =1,...,n. Since is a local holomorphic slice these two equations together imply
that

dj(a)a + j(a)dj(a)v—1a =0, doi(a)a+ j(a)doi(a)v/'—1a =0,
andﬁa(aﬂ/_—l&)j(a) = 0andu(a, v/—1a)(o;(a)) = Oforalla € T,A. Sincen > 2—2g it
follows thate = 0. Moreover, the magj, o1, ...,0,) =toy : A — P is holomorphic.
Sincer is a holomorphic local slice, this implies that and hence als#, is holomorphic.

Step 4. The pair (g, S,) is a universal unfolding of each of its fibers.

Choose Jo, s«] € Bandlet(wry : P — A, ap) admit an isomorphismg : (X, jo) = Pq,
such thatuo(s;) := Py N R;. Thenua1 is a fiber isomorphism fron®,, to Qfj,.s,]-
Trivialize P by amapr : A x ¥ — P such thatr,, = uo. Definej : A — J and
o; © A — X so thatj(a) is the pullback of the complex structure &) underz, and
1™ Y(R;) = {(a, 0i(a)) : a € A}. Thenj(ag) = jo ando;(ag) = s;. Define¢ : A — B
and® : P — Qhy

¢a) :=[ja),o.(a)], @(p):=[jla),ox(a),z], p=:t(a,z)
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fora € Aandp € P,. This is a pseudomorphism and hence, by Step 3, it is a morphism.
To prove uniqueness, choose a local holomorphic slie€o, t1, ..., ;) : B — P such
thati(bo) = (jo, 51, . . ., s»). Choose two morphisms

(‘(//a "IJ)’ (¢’ (I)) : (7TA7 R*v aO) - (Trta Sl,*’ bO)

such thatb,, = ¥,, = ugl : Py, = X. If ais nearag then

Wy 0 d1 1 (2, 10( (@) — (2, 1o(V(a)))

is a diffeomorphism isotopic to the identity that sendg (a)) to ¢; (Y (a)) for i =
1, ..., n. Hence by the local slice propergya) = ¥ (a) andd, = ,,.

Step 5. Let jo be a complex structure oR andsi, ..., s, be distinct marked points
on X. Every infinitesimally universal unfoldingrg : O — B, Sx, bo) Of (20, s«, jo) IS
isomorphic to(zrg, Sk, [Jjo, s«]).

As in Step 3 we may assume that= B x X with complex structure

(VT 0
J(b,2) -—< 0 Lo(b)(Z)>

andS; = {(b,;(b)) : b € B} wheret = (10,t1,...,t,) : B — P is holomorphic
and«(bo) = (jo,s1....,sn). By Lemma[8.R the almost complex structufeis inte-
grable. Sincdrp : Q — B, Sy, bo) is infinitesimally universal, the restriction ofto a
neighborhood oby is a local slice by Lemmia 8.8. Hencep, S.. bo) is isomorphic to
(B, Sk, [jo, so]) by the local slice property. O

Remark 8.10. The etale groupoid associated to the universal marked curje Jof 8.6 is
proper as in Remaik 8.5.

9. Nonlinear Hardy spaces

In this section we characterize infinitesimally universal unfoldings in terms of certain
“nonlinear Hardy spaces” associated to a desingularization. The idea is to decompose a
Riemann surfac& as a union of submanifold® and A, intersecting in their common
boundary, and to identify holomorphic maps Bnwith pairs of holomorphic maps de-

fined onQ2 and A that agree on that common boundary.

9.1. Throughout this section we assume that
(g 1 Q — B, Sk, bo)
is a nodal unfolding of a marked nodal Riemann surfgges,, v, j) and that

U)():E—>Qh0
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is a desingularization. Lefs C Q denote the set of critical points afz. Let U be a
neighborhood o5 equipped with nodal coordinates. This means

U=U1U---UU;

where the set#/; have pairwise disjoint closures, eabhis a connected neighborhood
of one of the components @fg, and fori = 1, ..., k there is a holomorphic coordinate
system

(Gi,t) B — CxC¥ 1  4:=dmc(B),

and holomorphic functiong, n; : U; — C such that
(i, mi,tiomp): Ui —» CxCxCit

is a holomorphic coordinate system and; = ¢; o mz. Assume that/ N S, = ¢. Let
V C Q be an open set such that

Q=UUV, VNCg=0,

andU; NV intersects each fib&p;, in two open annuli with;| > |n;| on one component
and|&;| < |n;| on the other. Introduce the abbreviations

wW:=unV, W =UnV, Wai={&>Inl}, Wyz2:={§&l<Inl}
U, =UNQp, Vpi=VNQEp Wy=WnNQo,p.

9.2. We consider a decomposition
Y=QUA, 0Q=0A=QNA=T,
into submanifolds with boundary such thatis a disjoint union
A=A1U---UA;

where, for eachi, the setA; is either an embedded closed annulus or the union of two
disjoint embedded closed disks centered at two equivalent nodal points, and

wo(2) C V.,  wo(A;) CU;

fori =1, ..., k. It follows that every pair of equivalent nodal points appears in spme
In caseA; is a disjoint union of two disks, sag; = A; 1 U A; 2, choose holomorphic
diffeomorphismsy; : A;1 — D andy; : A; 2 — D which send the nodal point to 0.
In caseA; is an annulus choose a holomorphic diffeomorphism A; — A($;, 1) and
definey; : A; — A(S;, 1) by y; = §;/x;. In both cases choose the names so that

wox; T(SY) C Wi, wo(y; H(Sh) C Wiz

The curves; o wg o xi_l andn; o wg o yl._l from $1 to C \ 0 both have winding number
one about the origin.
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9.3. Fix an integers + 1/2 > 1. Sincerrg|W is a submersion, the spaég’ (I", Wp,) is,
for eachb € B, a submanifold of the Hilbert manifold of alf* maps fromI" to W (see
AppendiqB). Define an open subset

W(b) C H*(I", Wp)
by the condition that foy € HS(I", W;,) we havey € W(b) iff
yG S Cc Wia vy (7 HEh) € Wiz,

and the curve§; oy o xi_l andn; oy o yi_l from 51 to C \ 0 both have winding number
one about the origin. Introduce sets

Z(b) = {v € HOFtY2(Q, V},) : v|T e W(b) and v(ss N Q) = S, N O},
N®) = {u € HOFTY2(A, Uy) : u|T € W(b) andu preserves}.
Here we use the notation
HolPtY2(X, Y) = {f € HYY2(X,Y) 1 df o Jx = Jy o df} (16)

for a compact Riemann surfadgewith boundary and an almost complex manifédBy
Theore E‘ (i), restriction to the boundary defines a continuous map Mé(x, v) —
H*(0X,Y). The phrasei preserves” means thafx, y} e v = u(x) = u(y) € Cp.
Define thenonlinear Hardy spacesby

UD) =l :ueNOB)}, V) =Tl :veZD)}

Define
Wo=| W), Vo=| |ve). t:=|]um),
beB beB beB
so that(y, b)) € Wo < y € W(b), etc. The desingularizationg : ¥ — Q,, determines
a point
(Yo, bo) e Up N Vo C Wo,  yo := woll'. (17)

Lemma 9.4. For every(y, b) € UpNVg there is a unique desingularization: ~ — Q,
withw|l" = y.

Proof. Uniqueness is an immediate consequence of unique continuation. To prove ex-
istence, let(y, b) € Uy N Vo be given. Then, by definition dffp and Vo, there is a
continuous mapw : X — Qp which is holomorphic in ing) and in in{A) with

w(sy) = Se N Qp andw(zg) = w(zy) for every nodal paifzo, z1} € v. The map

w: ¥ — Qis of classH**1/2 and is therefore holomorphic on all af. We must
prove that ifzg # z1 we havew(zo) = w(z1) if and only if {zg, z1} € v. Assume first

that there are no nodes, i.8, N Cp = @. ThenA is a union of disjoint annuli and,

by the winding number assumption, the restrictioruofo A is an embedding int@,
andw(A) UV, = Qp. Hence there is a point € w(A) \ V. Hence the degree af

atq is one and hence : ¥ — Q@ is a holomorphic diffeomorphism. Now assume
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Qp N Cp # . Thenw™1(Cp) = |Jv, by the winding number assumption, and so the
restrictionw : £\ | Jv — QO \ Cp is proper. Hence the degree of this restriction is con-
stant on each componentBf\ _J v. Now each component & contains a component’

of A that is diffeomorphic to a disk. By the winding number assumption, the restriction
of w to A’ is an embedding. Moreover, the images undef the components of \ Cp

are disjoint and there is a poigte w(A’) \ (Cp U V). Sincew(2) C V, the degree of
the restrictionw : ¥ \ | Jv — 0y \ Cp at any such poing is one. Hence the degree of
the restriction is one at every point and hemce X \ [ Jv — Q) \ Cp is a holomorphic
diffeomorphism. This proves the lemma. O

Theorem 9.5. Fix an integers + 1/2 > 4. Let(wg : Q — B, Sk, bo) be a nodal
unfolding of a marked nodal Riemann surfac®, s., v, j) andwp : ¥ — Qp, be a
desingularization as if9.1 Letil, Vo C W be the subspaces[m3andyp := wo|T" as
in (I7). Let Dy, », be the Fredholm operator in Definitig@2 Then the following holds.

() Uo and)Vy are complex Hilbert submanifolds ©¥y.
(i) The intersectiorf(,,, 500 N T(yo,60) Vo IS isomorphic to the kernel dbyq 4.
(iiiy The quotientl(,, o) Wo/ (Tye.b0)Uo + T(y0.50) Vo) iS isomorphic to the cokernel of
Do, bo-
(iv) The unfoldingw s, Sk, bo) is infinitesimally universal if and only if
Tiy0.0) Wo = T(y0.60)U0 ® T(30,50) Vo-
Proof. We prove thatfy is a complex Hilbert submanifold df/;.

Choose the indexing so that(bg) = 0fori < ¢ andz;(bg) # 0fori > £. Abbreviate
H* := H*(S%, C) for the Sobolev space .1 and consider the map

Wo — (HS)ZI‘ x B:y+— (a1, B1,...,%%, Br,b)

wherey € W(b) anda; = & oy ox; tandp; = n; o y o y; 1. This mapsy diffeo-
morphically onto an open set in a Hilbert space. The map dgnds )V to the subset of

all tuples(as, B1, - - -, ok, Bk, b) such that all nonpositive coefficientsgfandg; vanish
fori < ¢ and
¢i(b)
Bi(y) =
AT
fori > ¢. Thus the tupléa, B1, . .., ap, Be) is restricted to a closed subspace B )%

and, fori > ¢, the componens; can be expressed as a holomorphic functios;andb.
This shows that{y is a complex Hilbert submanifold o#V,.
We will show that the restriction map

Zp = |_|Z(b)—>Wo:v|—> o|T
beB

is a holomorphic embedding. Since the image is precigglyy definition, this will show
that)y is a complex Hilbert submanifold 0. Denote byi3 the space of all paire, b),
whereb € B andv : Q — V, is anH*+1/2 map satisfying

v(sx) = S5 N Op.
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The spaceB is a complex Hilbert manifold whose tangent spacévab) is the Sobolev
space

TysB = {(D,b) € HPY2(Q,v* T Q) x TpB : drg(v)d = b, 0(s;) € Ty(s)Si),

i.e.  is a section of clas#/*t1/2 of the pullback tangent bundigT Q that projects to
a constant tangent vector &f and at the marked points is tangentSqo Consider the
complex Hilbert space bundie— 5B whose fiber

Eop = HTV2(Q, APIT*Q @ v* T 0))

over (v, b) € B is the Sobolev space ¢, 1)-forms on< of classH* /2 with values in
the vertical pullback tangent bundiéT Q,. The Cauchy—Riemann operatois a section
of this bundle and its zero set is the spagec B defined above. The vertical derivative
of 3 at a zero(v, b) is the restriction

Dyyp: Tvbe — 5v,b

of the Cauchy—Riemann operator of the holomorphic vector bunidle) — < to the
subspacel, ;B ¢ H*tY/2(Q,v*T Q). This operator is split surjective; a right inverse
can be constructed from an appropriate Lagrangian boundary condition_(see [16, Ap-
pendix C]). HenceZyp is a complex submanifold ds.

We show that the restriction map is an injective holomorphic immersion.

By unique continuation at boundary points, the restriction map is injective, i.e. two ele-
ments of HoltY/2($2, V,) that agree on the boundary agree everywhere. The derivative
of the restriction map is also a restriction map; it is injective and has a left inverse, by
Theorenj B.J(ii). Hence the restriction m&p — W is a holomorphic immersion.

We show that the restriction magy — W is proper.

Suppose thaty € Z(by), thaty, = v|T, thaty, converges toy € W(b), and that
y = v|T wherev € Z(b). We prove in four steps thaj converges te in H*t1/2(2, Q).

Step 1. We may assume without loss of generality that egclis an embedding for
everyk.

After shrinking)Vp we find thaty : ' — Q, is an embedding for evergy, b) € V.
(This makes sense because 3/2, soy is continuously differentiable.) f = v|T is
an embedding and € Hol*tY/2(©2, V},) thenv is an embedding. This is because #(g)
(the number of preimages counted with multiplicity) fpe Q, \ v(I") can only change
asg passes through the imagejfAs y is an embedding# 1(¢) is either zero or one.
Hencev is an embedding.

Step 2. A subsequence af, converges in the®°° topology on every compact subset
of int(Q2).

If the first derivatives ofy;, are uniformly bounded thewy |int(2) has aC*> convergent
subsequence (se€e [16, Appendix B]). Moreover, a nonconstant holomorphic spigere in
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bubbles off whenever the first derivatives qf are not bounded. But bubbling cannot
occur inV. To see this argue as follows. Suppageconverges tag € int(2) and the
derivatives ofv; atz; blow up. Then the standard bubbling argument (see [16, Chapter 4])
applies. It shows that, after passing to a subsequence and modifyiwithout changing
the limit), there aréi, j;)-holomorphic embeddings from the diskD; c C, centered at
zero with radius, to Q such thak, (0) = zx, the family of diskss; (D) converges tao,
anduy, o &, converges to a nonconstahtholomorphic sphereg : $2 = CU oo — Qp.
(The convergence is uniform with all derivatives on every compact subsgt)ofhe
image ofug must intersect the nodal s@, NCg. Hence there is a poiate C = $2\ {oo}
such thawg(a) € Q\ V. This impliesv (e (a)) ¢ V for k sufficiently large, contradicting
the fact that, (R2) C V.

Step 3. A subsequence of converges ta in the C° topology.

By Arzela—Ascoli it suffices to show that the sequengeis bounded inC1. We treat
this as a Lagrangian boundary value problem. Chadse- Q) to be a submanifold
with boundary that contains the image win its interior. Choose a smooth family of
embeddings

lg:M— Q,\Cp, ac€B,

suchthat, : M — Qp \ Cp is the inclusion. Then the image gf contains the image of
vy, for k sufficiently large. Think o as a symplectic manifold and define the Lagrangian
submanifoldd. ¢ M andL; C M by

L=y(@), Li:=u"0u).

Sinces > 7/2 the sequence;k1 oy : ' = M converges to in the C2 topology.
Hence there is a sequence of diffeomorphigins M — M such thatp; converges to
the identity in theC topology and

$rog ovk =y, $i(Li)=L.

Define
< -1 o -1
Vg =g oty ok, Ji = (dr oty e,

whereJ, denotes the complex structure gh. ThenJi converges tol ;= Jp in theC2
topology, vy : 2 — M is aJi-holomorphic curve such thag (I') C L and, moreover,

wl=y:I'—>L (18)

for all k. We must prove that the first derivativesgf are uniformly bounded. Suppose
by contradiction that there is a sequenges 2 such that

¢k = |dvg(zi)| = [|dvg|lLe — oo.

Now apply the standard rescaling argument: Assume without loss of generality, that
converges tao € €2, choose a coordinate chart from a neighborhoodoato the up-
per half plane (sending to ¢;), and compose the resultinfg-holomorphic curve with
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the rescaling mapy(¢) = ¢ + ¢/ck. Letdy be the Euclidean distance gf from the
boundary of the upper half plane. There are two caseg.- Hy — oo then a nonconstant
holomorphic sphere bubbles off and the same argument as in Step 2 leads to a contra-
diction. If the sequencey, - d; is bounded then, by [16, Theorem B.4.2], the rescaled
sequence has a subsequence that converges @'th@pology to a holomorphic curve
w:{¢eC:im¢ >0} - M with w(R) c L. The choice of the rescaling factor shows

that the derivative ofo has norm one at some point andg@s nonconstant. On the other
hand, since; converges to a constant, conditipn](18) implies that the restriction of this
holomorphic curve to the boundary is constant; contradiction.

Step 4. A subsequence of converges ta in the H5+1/2 topology.

Let v be the limit in Step 3. Then|I" = y takes values iW,. By Step 2 it is enough
to show thatv; converges ta in some neighborhood of each boundary component in
the H*1t1/2 topology. We can identify such a neighborhood holomorphically with 1).
Shrinking the neighborhood if necessary we may assumesthaapsA(r, 1) to W, for
k sufficiently large. By assumption and Step 2 the restriction,db dA(r, 1) converges
in H*. Hence Step 4 follows from the fact that the restriction nt&pY2(A(r, 1)) —
H*(3A(r, 1)) is a linear embedding onto a closed subspace (see Theorém B.4(ii)). In the
notation of 10.5 below this subspace is the diagonad!inx H°.

Thus we have proved that every subsequeneg bés a further subsequence converg-
ing tov in H*+1/2. Hence the sequenag, itself converges ta in the H*+1/2 topology.
This completes the proof of (i).

We prove (ii). It follows directly from the definitions that there is a map
KerDug bo = Tyob)Uo N Tiye ) Vo © (€, b) > (EIT, b).

This map is surjective by elliptic regularity: & : ¥ — w{T Q is a continuous section
with drg(wg)é = b whose restriction to botth and is of classH* /2 and belongs

to the kernel of the differential operatar,,,, then& is smooth. The map is injective by
unique continuation: an elemegt, b) e ker Dy, », vanishes identically if and only if the
restriction ofé to the disjoint uniorm" of circles vanishes. (The fibers are connected and
sol intersects each component®fin at least one circle.) This proves (ii).

To prove (iii), we define a map

T(Vo,bo)WO
Tyo.b0)U0 + Tyo,00) Vo

cokerDyy po — [ = [, B] (19)

as follows. Giverny € Yy, (i.e.n € Q¥X(Z, wiT Q) with dr(wo)n = 0) choose two
vector fieldsg, Aalong ug ‘= wolA qnd &, alongvg = wo|R2 that project each to a
constant vectob, := dwp(uo)&, andb, := dxp(vo)§, in Ty, B and satisfy

Dy, pous l;u) = n|A, Dy by (Evs I;v) = n|€2. (20)
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The existence of, andé, (with 5, = b, = 0) can be proved by imposing a Lagrangian
boundary condition with high Maslov index. Define

P =& — &0 T > yiTQ., b:=b,— b, (21)

Given n, the pair(&,|T, BM) is well defined up to an additive vector i, 4,0 and
(&y|T, Bv) up to an additive vector iff(,, »,) Vo. Moreover, ify € im Dy, 5, then there is
apair(g, b) € KXo, bo SUCh thatDy,; 5, (&, b) = n (see Definitio) and we may choose
& = £|A andg, = £|Qin (20) so thab, = b, = b and(7, b) = (0,0) in (21). This
shows that the equivalence class(9f b) is independent of the choice &f and&, and
depends only on the equivalence clasg of ),,,/im Dy, »,. Hence the ma@g) is well
defined.

We prove tha9) is injective. Let € Yy, be given, choosé,, b,) and(&,, b,) so
as to satisfy[(20), and defing, 5) € Tiq,0)Wo by (21). Assume?, b) € Ty 0o +
Ty0.b0) Yo- Then there are vector fieldg alongug andé, alongvg, as well as tangent
vectorsb!,, b, € Ty, B such thadm (ug), = b.,, dn(uo)€,, = b, and

Dug.bo(&,. b)) =0, Dy, (&), b)) =0,
p=E0—&T, b:=b, —b.

Hence, replacings,, b,) by (&, — &,, b, — b)) and(&,, by) by (&, — &,, b, — b)), we
may assume without loss of generality tifa= 0 andh = 0 in ). Thust, | = &,|T.
In other words, there is a continuous vector fi€ldlongwg such thatt|A = &, and
£1Q = &,. SinceD,,& = n is smooth it follows from elliptic regularity that is smooth
and hence) € im Dy, »,. This shows that the map (19) is injective as claimed.

That [19) is surjective follows from the next two assertions.

(a) Each element of the quotient spagg, 5, Wo/ (T(yo,60)Uo + T(0,60) Vo) CaN be rep-
resented by a smooth vertical vector field alggg

(b) For every smooth vertical vector fiefd alongyg there exist smooth vertical vector
fields&, alongug andé&, alonguvg such thaty = &,|I" — &,|T" and the(0, 1)-form n
alongwo defined byy|A := Dy, py (&4, by) @andn|Q == Doy e (v, by) is smooth.

To prove (b) choose holomorphic coordinates i6 € [—3§, §] + iR/2xZ near each
component of” so that the component {3 = 0} and2 is {t > 0}. Choose a complex
trivialization of the vertical tangent bundle over this annulus. In this trivializatic® &)-
form over the annulus has the for%mn ds — indt) with n : [-8, 8] x ST — C and the
operatorD = D, », has the form

DE = 0. + i0gE + SE

whereS : [-8,8] x ST — Endr(C) is a smooth map. We seek three smooth sections
&, over{tr < 0}, & over{r > 0}, andn over the whole annulus (of the vertical tangent
bundle) such that

n{t =0} =D&, nl{r = 0} = D§,,
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and
£,(0,0) — &,(0,0) = £&(0) := -y (). (22)
We taket, := 0 andg, in the form

o0
_E:qﬁﬂ)k _ Ja(0,0) forO=<7 <4
50 0) = e v, al) = {O for v > 25,

where 3, < § and eachy is smooth on [08] x $2. To satisfy condition@Z) we must
chooserg(0, 8) = &p(6). To maken continuous we must choogg such that

0:£0(0,0) +1096,(0,0) + S(0,0)£,(0,6) =0

and hence
c1(0, 0) = 9:6,(0, 0) = —idg&0(0) — S(0, 0)&0(0).

More generally, onceo, . .., c; have been chosen to makeof classC*~! the func-
tion 6 — cx+1(0, 0) is uniquely determined by and the condition that be of class
CFk. Finally, chooses; converging sufficiently rapidly to zero and defing(z, §) :=
B(t/8;)ck (0, 0) for a suitable cutoff functior8 so that the series fa, converges in
the C* norm for every¢. Note that our argument follows the construction, du&aile
Borel, of a smooth function with a prescribed Taylor series at a point.

To prove (a) we first observe that every smooth pgirb) e Tyo,60) Wo IS equiv-
alent in the quotient,, »q) Wo/(T(yo,60)Uo + T(3,60) Vo) 10 @ smooth vertical vector
field. Namely, choose any vector fiedd alongvg that projects tdb, and choose a ver-
tical vector field¢” alongvg such thatt = &’ + ¢” satisfiesD,,& = 0 (as we did
in the proof of (b)). Then&|T, b) € T(y.5,)Vo and hencey — £|T,0) is a vertical
vector field equivalent t@y, ). Now consider the subspace of all elements of the quo-
tient 7,4, 0 Wo/ (T(y,b0)Uo + Ty0.50) Vo) that can be represented by smooth vertical vec-
tor fields. By what we have just proved, this subspace is dense and, by (b), it is finite-
dimensional. Hence this subspace must be equal to the entire quotient and this proves (a).
Thus we have proved (a) and (b) and hence the opefator (19) is surjective. This proves (iii).
Part (iv) is an immediate consequence of (ii) and (iii). This completes the proof of Theo-

rem9.5. O

Remark 9.6. The strategy for the proof of the universal unfolding theorem is to as-
sign to each unfoldingzy : P — A, R, ap) of the marked nodal Riemann surface
(X, 5%, v, j) a family of Hilbert submanifold$/,, V, C W, as in[9.3 parametrized by

a € A. Transversality will then imply that for eaechnearag there is a unique intersection
point (., by) € U, NV, near(yo, bo). Then the fiber isomorphismg, : P, — Qy, de-
termined by they, as in Lemm& 9]4 will fit together to determine the required morphisms
P — Q of nodal families. The key point is to show that the submaniféigéit together

to form a complex submanifold

U= |t cw:=]_|Wa
acA acA

(see Theorern 11].9 below). We begin by studying a local model near a given nodal point
in the next section.
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10. The local model

10.1. Consider thestandard nodedefined as the map
N = int@D): (x,y) > xy, N:i={(x,y) eD?:|xy| <1}.
Fora € int(D) andb € C define
Ng = {(x,y) e]D)Zixyza}, Op:={(x,y) e(Cz:xyzb}.
We study the set of all quadruplés, &, n, b) wherea, b € C are close to 0 and
(.1 Na—> Qb

is a holomorphic map. I # 0 this meang (z), n(z) are holomorphic functions on the
annulusla| < |z| < 1 that are close to the identity, and satisfy the condition

xy=a = Ex)n(y)=>b (23)

for ja] < |x] < landla| < |y| < 1. If a # 0, this condition implies that # 0. When
a = 0, the functiong andn are defined on the closed unit disk and vanish at the origin;
henceb = 0.

10.2. Fix s > 1/2 and letH® = H*(S%, C") be the Sobolev space ag in B.1. We think of
an element ofH* as a power series

(@ =) " (24)

nez

Forr > 0 therescaling mapz — rz maps the unit circle to the circle of radiusDenote
by ¢, the result of conjugating by this map, i.e.

&) =r Y (rz).

The norm||¢, |5 is finite if and only if the serieg converges to ar{® function on the
circle of radiusr.

10.3. For$ > 0 define the open s&Vs Cc C x H® x H® x C by
Ws={(a,§,n,b) : [|§ —id|ly <3, [n—idlls <3, |al <8}

Definelds C W to be the set of those quadruples &, , b) € W;s which satisfy [(2B).
More precisely if(a, &, n, b) € W, then fora # 0 we have

[€a)lls < 00, [Inalls < oo, and
9 9 7b M @

(@& D) €U S a1 = bfor fal < x| < 1,

while for a = 0 we have

Thusl;s is the space of (boundary values of) local holomorphic fiber isomorphisms in the
standard model. The main result of this section is #yat a manifold:



A construction of the Deligne—Mumford orbifold 653

Theorem 10.4. Lets > 1/2. Then, for§ > 0 sufficiently small, the séfs is a complex
submanifold of the open siVs € C x H® x HS x C.

The proof occupies the rest of this section. Using the Hardy space decomposition defined
in[L0.5 we formulate three propositions which define a maphose graph lies its. We

then prove six lemmas, then we prove the three propositions, and finally we prove that the
graph of7 is exactly equal téf;s.

10.5. A holomorphic function (z) defined on an annulus centered at the origin has a
Laurent expansion of the forr (24). We write= ¢4 + ¢ where

;—‘:—(Z) = ZC;zZn, () = Zé“nz".

n>0 n<0

Forr > 0 ands > 1/2 introduce the norm

1Ellrs == [> (A4 n)Zr2=2|g,|?
nez

so that;; converges inside the circle of radiu# |||, < oo and¢_ converges outside
the circle of radiug if ||¢_||,s < oco. Let

H = A{¢ 1 I llrs < o0}

and H; . be the subspace of thogefor which ¢ = ¢+ so we have the Hardy space
decomposition
H'=H', ®H _.

ThenH* = Hj and|| - ||ls = || - l1s. We abbreviate
Hy '=Hj,.

We view the ball of radiug about id in the Hilbert spacH; as a space aff*-maps from
the circle of radius- to a neighborhood of this circle; the norm &fj is defined so that
conjugation by the rescaling map— rz induces an isometrf} — H® : { — ¢, i.e.

1llrs = 15 lls, & (2) i=r e (ra). (25)

Proposition 10.6 (Existence).For everys > 1/2 there are positive constanésand ¢
such that the following holds. if e Cwith0 < r := /|a|] < 1and&,, n, € HJ satisfy

5+ —idlly <8, lny —idlly <3, (26)

then there exists a tripléh, £_,n_) € C x Hrs2 X Hrs2 _suchthatt :=&; +&_ and
n := n+ + n— satisfy the equation

Enaxh =b (27)
forr? < |x| < 1land

ba™t — &1l + & llrs + In-llrs < 2cr (15 —idlls + 94 —id]s).  (28)
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Proposition 10.7 (Uniqueness).For everys > 1/2 there exist positive constantsand
& such that the following holds. i, b, " € C, &, € H} andé_,n_,&" ,n" € H; _

with 0 < r := /[a] < 1 satisfy(26) and

IE-llrs <& ln-llrs <& suplEL()| <re,  supln_(y)l <re,

|x|=r [yl=r

andif(a,& ==& +& ., n:=ny+n_,b)and(a. & =& +& .0 =n +19_,b)
satisfy@7) for |x| = r then(6_, n—, b) = ¢/, 1", b).

10.8. Fix a constants > 1/2. Choose positive constandisand ¢ such that Proposi-
tion[I0.7 holds. Shrinking if necessary we may assume that Proposition]10.6 holds
with the same constaitand a suitable constaat> 0. Let

H:.(id, 8) := {¢ € HS : [|¢ —id]l; < 8)

and define
T :D x Hy(id, 8) x H{(id,8) - C x H® x H®

by the conditions thaf (a, ., ny) = (b, &_, n_) is the triple constructed in Proposi-

tion[10.6 fora # 0 and
7(0,é+,n4) = 1(0,0,0).

(In defining7 we used the fact tha! _ ¢ H? forr < 1.)
Proposition 10.9. The map? is continuous. It is holomorphic fga| < 1.

Lemma 10.10 (A priori estimates). There is a constant > 0 such that, for§ > 0
sufficiently small, the following holds. (4, &, n, b) € Us anda # 0then

lba=t — 1| < ¢8, sup |E()x"t =1 < ¢s, sup |n(y)y t—1] <cs.

lal<|x|<1 lal<|yl=1

Proof. Rewrite&(x)n(ax—1) = b as

§0) _ ., x7?
2 Tty

Using the substitution = ax~1, dy = —ax—2dx we get

E(x)dx ax2dx dy dy
“jﬁ 7 = bjg = bj{ —— = b% —
k=1 X Ix|=1 n(ax~") lyl=la] 1Y) Iyl=1 ()

where all the contour integrals are counterclockwise. By the Sobolev embedding theorem,
there is a constant such thati¢(z)| < c|¢|ls for ¢ € H® and|z| = 1. This gives the
estimate

— 1 .
- _‘ = [§() — x| < cll§ —id|ls < 8
X X
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for |x] = 1. If |n —id||; < 8 < 1/2¢ then, by the Sobolev embedding theorem again,
In(y) —y| < 1/2 and sdn(y)| > 1/2 for |y| = 1. Hence

’i 3 }‘ _ &) =yl
ny vy ()]

for |y| = 1. Hence the contour integrals are withime® of 27i and so, if we enlarge,
thenb/a is within ¢é of 1 as required.

By symmetry the third inequality follows from the second; we prove the second. Using
the Sobolev inequality we have

< 2c|ln —id|ls < 2cé

sup@—l <cé, supw—l < cd.
lx|=1 X lyl=1l ¥
Now lety := ax~1 and|x| = |a|. Then|y| = 1 and
E) g _by=n® b4
x a ny) a
Hence A
sup 50) -1 <|-| sup y— 1) +|-—1 =dé.
lxl=lall ¥ aljy=1 n() a
By the maximum principle this implies
sup 50 _ 1 <cs.
lal<|x|<1] X
This proves the lemma. O

10.11. The proofs of Propositiorfs 10.6, 1.7, gnd 10.9 are based on a version of the
implicit function theorem for the map

F:Cx H! x H' — H*®

defined by

Fr( &M@ = r %nerzh — 2 (29)
for |z| = 1 andr > 0. The zeros off, are solutions of (47) with = 2 andb = Aa.
Note thatZ, (1, id, id) = O for everyr > 0. The differential ofF, at the point(1, id, id)
will be denoted by

D, :=dF.(L,id,id) : C x H} x H' — H*.
Thus . A A
D, E @) =r ) +r 2t — A
We shall need six lemmata. They are routine consequences of well known facts and rescal-
ing. To ease the exposition we relegate the proofs of the first five to the end of the section

and omit the proof of the sixth entirely. (The last proof is just the proof of the implicit
function theorem keeping track of the estimates.)
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Lemma 10.12 (Sobolev estimate)Denote byA(r, R) C C the closed annulus < |z|
< R. For everys > 1/2there is a constant > 0 such that

Il Leacry < crliE=llrs + RIC+IIR,s)
for all » and R and every holomorphic functian(z) on the annulus < |z] < R.
Proof. This follows from Lemma A.R and the maximum principle. o

Lemma 10.13 (Product estimate).For everys > 1/2 there is a positive constar
such that, for any two functioris n € H*, we have

IEnlls = CliENslnlls, 1l < CUE NI Loocs1y + 11§ oo sy lmlls)-
Proof. Lemmg A.3 and Corollary A]1. o
Lemma 10.14 (Linear estimate).For é_, i_ € HS_ andi e C we have
HE-1IZ, + 17— 12, + 1417 < 1D (R E-L )12
Proof. The formula
Dy (-, 1)) = r 2 o (re) +r iz =

shows that
Dr()‘a E—a ﬁ—) = Dl()\v (s—)rv (ﬁ—)r)
Hence, by[(Zb) it suffices to prove the lemmafoe 1. Then

D1 E, 4)@) =) Eppad" —h+ ) 1"

n<0 n>0
SO
D1, E A2 =Y A+ D Engal® + 127+ Y A+ In)Z A0l
n<0 n>0
= > @+ 1DZ Il + A2+ D@+ ) |7l
n<0 n<0
> E 112+ 1R17 + 17112
This proves the lemma. O

Lemma 10.15 (Approximate solution). For everys > 1/2 there is a constant > 0
such that

I Gna, &+ n)lls < er (164 —idlls + [In4 — id]ls)

for every pair§;, ny € H{ with |, [l < 1, In4]s <1, and every € (0, 1].
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Proof. The constant i = 4v/3C whereC is the constant of Leml3. We first
prove the inequality

IF1(En, £, 1) lls < 2v/3C (16 — Evidll + s — naid]ls). (30)
Since
Fr6m. 64,10 = £ @0 @D = g1m = Y (3 Guwnnn )+ Y &
k#0 n>0 n>1
we have

2

1FEn. €012 = YA+ D2 [ v+ [3 &
k#0 n>0 n>1

< S @ (X lewml) + (X aml)
k>0 n>0 n>1
£ Y+ 07 (X i)’

k>0 n>k
< 3C2(J&+ — E0id2n4 12 + 15+ 12 1ng — naid]|?).

The last inequality follows from Lemnja T0]13; note that each sum omits éiluer; or
both. The inequality (30) follows by taking the square root of the last estimate and using
the fact thatl& [l < 2 and]n ||, < 2.

The formula

FrEnt, €4, 10) @) = r 24 (rm e (rz™) — E1m
shows that
Fr1nt, &+, n+) = Fagang, G+)r, M4)r)-
Note that the operatioh — &, leaves the coefficier#, unchanged. Hence, by (30), we
have

I En, £, 00l = IF1En1. Ers )0 s
< 2v3C(1(E), — &1 idlly + [ (n)r — n1idlls)
= 2V3C(|&+ — E1idllys + I+ — n2id]l.5)
< 2v3Cr (g4 — £1id s + lIn4 — naidlly)
< 4V3Cr (& —idls + lIng —id]ls).
This proves the lemma. O

Lemma 10.16 (Quadratic estimate).For everys > 1/2 there is a constant > 0 such
that

I dFr Oy &,1) — D)y €, Dl < el — il 5 1E N5 + 1€ — idlls17llrs)
forall &, 1, &,/ € H and, A e C.
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Proof. We have
dF, (e &, G E @) = r2Eromez ™D +r 260z — A
and hence
dFr(h &) — DO E A)2) = r %) —id) 2™ + r 72 —id)(ra)A(rz ™).
So the result follows from Lemna 10113 with= C. O

Lemma 10.17 (Inverse function theorem).Let f : U — V be a smooth map between
Banach spaces an) : U — V be a Banach space isomorphism. gt € U and
suppose that there is a constant- 0 such that

ID7H <1 lfwolv < p/2 (31)
and, for everys € U,
lu —uolly <p = lldf(w) —D| <1/2. (32)
Then there is a unique elemen& U such that
lu—uolly <p, fw)=0.
Moreover,|lu — uolly =< 2| f (uo)llv.
Proof. Standard. O

Proof of Propositiorf 10J6.Throughout we fix a constanst> 1/2 and a constant > 1
such that the assertions of Lemmiata IP[12, 10.15 and]10.16 hold with these canstants
andc. Choose positive constardsp, ands such that

3ce < 1/2, /2824 p2<1/2, 28 <¢e/2, pi=+/3e. (33)

We prove the assertion with these constardaads.
Assume first that is a positive real number and set= /a. Fix a pair(&§4, n4) €

Hj x Hi satisfying[(26). Let
U::(CxHr‘YﬁxHrSﬁ, V= H°*,

and consider the map : U — V defined by
f@) :=FR & +5-np+n-), ui=(R E-,n-). (34)
LetD :=D, : U — V andug := (£1n1, 0, 0). Then, by Lemmp 10.14,
ID e,y =1 (35)
and, by Lemm@ 10.15 and (33),
If@o)lly = cr(lé+ —idlls + lIny —idlly) < 2c6 <¢/2 < p/2. (36)
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In this notation the operataff(u) — D : U — V is the restriction of the operator
dF,(x &) — D, : Cx Hf x H' — H* to the subspac#, so by Lemmé& 10.16 we
have

1df @) = Dllcw.vy < e/lln —idI2, + 1§ — id]2,

foru =, §_,n-) € Uand§ :=&; +&_ andn 1= ny +n—. Note thatl|¢[l,s < [I¢]ls
for¢ € H} and O< r < 1. Hence

1df () = Dllcw.vy < e/l —idI2 + Iy —id2 + 612, + - 112,

foru = (A, &_,n_) € U. Since||&; —id|ly < § and|n+ —id|s < 5 we have

lu—uolly <p = lldf ) — Dllgw,v) < cy/26%+ p? <1/2 (37)

for everyu = (A, &_, n—) € U. Here we have usefl (33).
It follows from (35), [36), and (37) that the assumptions of Lerima 10.17 are satisfied.
Hence there is a unique poimte U such that

lu —uollv <p, f(u)=0,
and this unique point satisfies
lu —uolly < 2|l f(mo)llv < e. (38)

Thus, for every(¢y,n4) € HY x Hj satisfying [(26), we have found a unique triple
(A, é_,n-) € U such that := &, + &_ andn := ny + n_ satisfy

Fr(x, &) =0, E—lrs <&, In—llrs <&, [A —&1m| < e.

That the quadrupléz, &, n, b) also satisfies the estimafe [28) follows frgm|(36) and (38).
Next we prove that this quadruple, &, n, b) satisfiest(z) # 0 andn(z) # 0O for
r < |z| < 1. To see this note that

I /id)lls = D n®1gal? < Mgyl
n>2

P fid) s = \/ 612+ 3@~ m2r2=25,12 < 4l + 2018 rs.

n<0

and

Hence

sup 1E)x "t =1 < c(IE/id =Dy lls + rlIE/id =)l

r<|x|<1

< 2c(llE+ —idlls + 1E-llrs) < 2c(6 +¢) = 1/2.



660 Joel W. Robbin, Dietmar A. Salamon

Here the first inequality follows from Lemnjia 10]12 and the last uses the factdhat 2
1/3 and 28 < ¢/2 < 1/6. Thus we have proved thatandn do not vanish on the closed
annulus- < |z| < 1. Now extend: andp to the annulus? < |z| < 1 by the formulas
r2<|xl,lyl<r

E(x) == . )=
n

b b
(ax~1) E(ay~by’

The resulting functions andn are continuous across the circle of radiusy (27). Hence
they are holomorphic on the large annulds< |z| < 1. Since ) holds on the middle
circle |x| = r it holds on the annulus? < |x| < 1. This proves the proposition for
positive real numbers.

To prove the proposition for generalwe use the following “rotation trick”. Fix a
constan® € R. Givené,n € H @ H;_ anda,b € C define§,n € H{ ® H; _ and
a,b e Chby

E) =P80, () :i=eneE?2), a:= e 20, b= %0,

Thena, b, &, n satisfy ) if and only ifi, b, &, 77 satisfy ). Hence the result for gen-
erala can be reduced to the special case by chodsisgch thati := ¢ %% is a positive
real number. This proves the proposition. O

Proof of Propositior] 10]7.The general case can be reduced to the aase 0 by the
rotation trick in the proof of Propositidn 10.6. Hence we assume r2 andr > O.
Choose positive constanésand C such that the assertions of Lemmpta Ip[1Z, 70.13,
and10.1B hold with these constants. Chabaede such that

2c6 <1, 8C(A+c)e <l

Let (a,&,n,b) and(d’, &', ', b') satisfy the assumptions of Propositjon 10.7 with these
constant$ ande and define

Ai=bja=b/r?, N :=0bjd =b/r?
Then
r2eronrz Y =4, % eon'ezh =2, lzl=1 (39)

Denote byL, : C x H; _ x H}_ — H’ the linear operator given by

LeGu -, 1-)@) i=r 2 (rams rz D) +r 26, ) - (rz Y — 4.

In the notation of 10.J1 the operatds. is the restriction of the differential of,. at
(A, &1, ny) (for any i) to the subspac€ x H; _ x H;_. Sincecs < 1/2 it follows from
Lemmatg 10.74 ar{d 016 that the operdtpis invertible and the norm of the inverse is
bounded by 2:

A2 1512, + 112, < 4ILr Gy 6 A1, (40)

Let us denote by, : H _ x H’_ — H® the quadratic form

0,(E_, 1)) i=r2%_(rom_(rz b).
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Then, by Lemm@ 10.13, we have
10, E— n)lls < Crmt(lE-llrs SUPp -1+ In-ll-s SUPIE-(X)D).  (41)

lyl=r lx|=r
Now let . R
A=A —A, E_=&-& f_=n-n
Then the difference of the two equations|[in](39) can be expressed in the form
LGué, ) = Qr6—,n)— 0, (L. n") = =0, (-, n)—Qr (-, 1) — 0 (G-, ).
Abbreviate

Eim GLE i) el = AR+ 1612, + 17-12,.
Then

IEllrs < 20 Ells < 20100 =y n)lls + 1105 (B, A) Iy + 1105 G, A=) 5
< 2C(1E_llrs + I0-lrs)E s +2Cr2(sup [E_ ()] + SUp 1H—)DIE s

[x|=r [yl=r
< 2CA+)UE=rs + 7=l l1rs
+2Cr~Y(sup €~ (x)] + sup [0 M DIE s

lx|=r lyl=r

< 8C(1+ el |lr.s-

Here the first inequality follows fronj (40), the second from the triangle inequality, the
third from Lemmd 10.7]3 andl (#1), the fourth from Lemma Ip.12, and the last from the
assumptions of the proposition. Sinc€@ + ¢)e < 1 it follows thatZ = 0. This proves

the proposition. O

Proof of Propositiof 10]9.
Step 1. The map? is continuous.

Continuity fora > 0 is an easy consequence of the proof of Propoditior 10.6. Thefmap
defined in ) depends continuously on the paraméters. , r, andr = ./a depends
continuously orz. For complex nonzera we can choose in the rotation trick to depend
continuously oru. To prove continuity fou = 0 we deduce fron{ (28) that there is a
constant > 0 such that

17 (a, &+, np)ll == \/lbl2 + 1612 + In-11? < clal.
Here we used the fact thigg ||y < r[|¢]l,s for¢ € H; _.

Step 2. Letéy, ny € Hi(id, §) anda € D\Oand defing := &, +&_andy = ny 41,
where(b, £_, n_) := T (a, £+, n+). Then the linear operator

L:CxH xH — H
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defined by o A A
L(b,E_, ) (x) == E_()nlax™H) + E@)itax™Y — b

is invertible.

In the notation of the proof of Propositign 1.6 the operdtois conjugate talf (u).
Specifically, o o
LOs2 & 7o)y =rdf w)(h, &, )

whena = r2. The operatorf (u) is invertible by [(35) and (37). For generaluse the
rotation trick from the end of the proof of Propositjon 70.6.

Step 3. The map? is continuously differentiable fd < |a| < 1.
We formulate a related problem. Define a partial rescaling operator
R H'—> H®H_, (R&() =) +ri-(r ).
The operatorR, is a Hilbert space isometry for everye (O, 1]. Let
X =CxCxH*xH*, Y:=H"
There is a splittingt = X & X_ where
Xy =CxH{ xH], X =CxH xH.

Let/ C X denote the open séd < |a| < 1} and defineF : i/ — Y by

Fla,b, &)@ = (RED) - Rem(ar Tz b, ri=/lal.
Define7 : U N X, — X_by

T(a,&4,n4) == (b, E)r, 1)r),  (bE_,n-) =T (a,Exn3).

(Recall that;, (z) := rtc(rz) for ¢ e H? and|z| = 1.) By construction the graph of
T is contained in the zero set gf. By Step 2 the derivative of in the directiont_ is
an invertible operator at every point in the graphZafHence, by the implicit function
theorem 7 is continuously differentiable. Define the m&p: U — U by

R(a’baé’ n) = (avb’ RrEerrl)a ri= V| |'
This map is continuously differentiable and
graph7) = R o graph7).

Here grapli7) denotes the maga, &+, n+) — (a,b,§,n) given by (b,6_,n-) =
T (a, &+, n1). Similarly for graph7). Hence grapti) is continuously differentiable for
O<|al <landsoisT.

Step 4. The map! is holomorphic fol0 < |a| < 1.
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As T is differentiable we have

dT(aa §+’ 7)+)(é7 é+7 ﬁ+) = (57 é*? ﬁ*)

fora € C andé,, iy € HY whereé_,7i_ € H_ andb e C are determined by the
equation

Lb,E_, 1-)(x) = =Er()n(ax™Y) — )i (ax™Y) — £y (ax hHax™t  (42)

for [x| = r := J/|a|]. HereL : C x H; _ x H; _ — H* is the operator of Step 2. Sinde
is complex linear so i87 (a, &4, n4).

Step 5. The map? is holomorphic forla| < 1.

That 7 is holomorphic near: = 0 follows from Step 4, continuity, and the Cauchy
integral formula. More precisely, suppoX¥eandY are complex Hilbert spaces afd:
C x X — Y is a continuous map which is holomorphic @i\ 0) x X. Then

1 (27 . .
T(a,x) = Z/o T(a+e%, x+e%%)do

and
1 & . .
dT (a,x)(a,x) = —/ e T @+ e, x+e%%)do
2 0
fora,a € C andx, x € X with a # 0. In the case at harfi(a, x) converges uniformly
to zero ada| tends to zero (see the proof of Step 1). By the Cauchy integral formula, this

implies thatd7 (a, x) converges uniformly to zero in the operator norm/@stends to
zero. This proves the proposition. O

Proof of Theorerfi0.4 Fix a constant > 1/2 and choosé, c, ande such that Proposi-
tions[I0.6 an@f 10]7 hold. Shrinkidgwe may assumecd < e. We prove that the graph
of 7 intersect3V; in Us. By definition

grapi7) N Ws C Us.

To prove the converse chooéeg &, 71, b) € Us. If a = Othené_ = n_ =0andb =0
so(a, £, n, b) belongs to the graph d&f. Hence assume # 0 and letr := /]a[. Then
l&+ —id|ly < 8 and|ny — id|ly < 8. So, by Propositiof 10,6, there is an element
(a,&,n',b") € Ws Ngraph(7) satisfying¢’, =&, n/, =n4, and

”E/_”r,s <4cré < g, ||77/_||r,s <4cré < e.
We claim thatt = &', n =/, andb = b'. By Proposition 10J7 it suffices to show that

supl§-(x)| <re, sup[n-(y)| <re.

lx|=r lyl=r
By symmetry we need only prove the first inequality. By the triangle inequality

Sup [§-(x)[ = sup[§(x) — x| + ISUD &4+ (x) — x|. (43)

x|=r x|=r x|=r
|| |x] \
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By Lemmg 10.1ID we estimate the first term on the right by
sup [£(x) — x| < cré. (44)

|x|=r

For the second term we have, by Lemima 1D.12,
sup [§4(x) — x| =r sup|(§4 —id), ()| < rell(G4 —id),[ls = crlléy —id]l,.s.

|x|=r lz|=1
But the series fog — id has only positive powers and< 1 so
6+ —idllys < 6+ —idlls < 1§ —id]ls < 6.

Combining the last two lines gives

sup &4 (x) — x| < cré. (45)
|x|=r
Now use[(4B),[(44), anl (45) and shrifilko 2§ < «. o

We close this section with two lemmas that will be useful in what follows.

Lemma 10.18. Fix s > 1/2 and choosé > Oas in Theorerfl0.4 LetA C int(D) x C™
be an open set and
A - Z/{(S . (aa t) = (a9 éa,lv na,h ba,t)

be a holomorphic map. Then the map
@ {(x,y,1) € CT" : x, y eint(D), (xy, 1) € A} > C x C
given by
Q(x, y, 1) 1= Pr(x, y) 1= (Sxy,r (X), Nxy, i (V)
is holomorphic.

Proof. The evaluation map
H NH, x{zeC:r? <zl <1} > C: (¢ 2~ L)

is holomorphic. It follows that the mafx, y, t) — ®;(x, y) is holomorphic in the do-
mainxy # 0. We prove thatd is continuous. Suppose — x # 0,y; — 0, andt; — r.
Thené,,,, ,, converges tdyg,, uniformly in a neighborhood of, and hencé,, . ;, (x;)
converges t@op ,(x). Moreover, ifc ands are the constants of Lem@.lo, then

|77x,-y,-,tl- (yl)| S (C(S + 1)|y[|

and sony, y,.;; (i) converges to)g,;(0) = 0. Henced,, (x;, y;) converges tab;(x, 0) =
(é0.¢(x), 0). Hence® is continuous at every poir, O, ) with x # 0. By symmetry,
® is continuous at every poin0, y, t) with y = 0. That® is continuous at every point
(0, 0, 1) follows again from Lemmp 10.10. Sin@is continuous and is holomorphic in
xy # 0, it follows from the Cauchy integral formula thétis holomorphic. O
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Lemma 10.19. Leté&g, no : int(D) — C be two holomorphic functions satisfyigg0) =
1n0(0) = 0and£;(0) # 0, ny(0) # 0. Then there are neighborhoodg and U of (0, 0)
in C2 and B and B, of 0in C and holomorphic diffeomorphismds:= (&, 1) : Uy — Uz
and¢ : B1 — B> such that

E(x,0 =%(x), nO,y)=no(y), &, yInx,y)=7(xy)
for x, y nearO.

Proof. Replacingé andng by £,(0)~1&y andny(0)~1no we may assume thag(0) =
n5(0) = 1. Replacingéo(x) and no(y) by e 1&o(ex) and e 1no(ey) we may assume
that the power series fdp andng lie in H3 (id, §) with § > 0 as in. For € D
definewa;, B, € H® by (¢(z), o, B;) := T (z, &, no) and then definé(x, y) := &(x) +
ayy(x) @ndn(x, y) := no(y)+Bry(y). Thend is holomorphic by Lemmfa 10.18. A direct
calculation shows that® (0, 0) is the identity sab is a local diffeomorphism. The desired
identities follow from the definition of . To prove that’(0) = 1 differentiate the identity
&n = ¢ twice. O

11. Hardy decompositions

In this section we redo Sectipi 9 in parametrized form. We will use the implicit function
theorem on a manifold of maps. The main difficulty in defining a suitable manifold of
maps is that the nodal family 4 is not locally trivial because the homotopy type of
the fiber changes. To circumvent this difficulty we use the local model of Section 10
for a neighborhood of the nodal set and suitable trivializations for the complement (see

Definitiong 11.2 anf 11]6).

11.1. Throughout this sectioirs : P — A, R.,a0) and(wg : Q — B, S, bo) are
nodal unfoldings,

fo : Pao g Qbo
is a fiber isomorphism, angs, ..., px are the nodal points of the central fibBy,, so
gi ‘= fo(p;) (fori = 1,..., k) are the nodal points of the central fib@y,,. Letm :=
dimc(A) andd := dimg(B). LetC4 € P andCp C Q denote the critical points of 4
andrn g respectively.
Definition 11.2. A Hardy decompositionfor (4, R, ag) is a decomposition
P=MUN, OM=0N=MNN,

into manifolds with boundary such that

N = N1 U---U Ny,
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eachn; is a neighborhood op;, the closures of th&; are pairwise disjoint) is disjoint
from the elements &&,, andN is the domain of @odal coordinate systemThis consists
of three sequences of holomorphic maps

(xi, i) N; — ]D)Z, zi:A—=C, t:A— (Cm_l,

such that each map
A->DxC"1:a (zi(a), ti(a)

is a holomorphic coordinate system, each map
Ni = D?x C" 11 p > (x(p), yi(p), ti(wa(p))
is a holomorphic coordinate system and
xi(pi) =yi(pi) =0, zioma = xiyi.

(Note that hereV; has a boundary whereas its analog in[9.Jwas open.) Restricting to
a fiber gives a decomposition

Pp=M,UN,, M, =MNP,, N, =NNP,

where M, is a Riemann surface with boundary and each componen,af either a
closed annulus or a pair of transverse closed disks. The nodal coordinate system deter-
mines a trivialization

k

LiAxT —>aN, T=| G, 1, G2} x st (46)

i=1
where: 1 is the disjoint union of the maps

T XX 0N; - Ax St 9N = {|xi| = 1},
T Xy 0N > Ax St 9N = {|yi| = 1}.

The indexing is so thatfA x (i, 1) x $1) = 91N; and (A x (i, 2) x S1) = 9,N;. For
a € Adefiney, : T — N by, (1) :i=(a, A).

Lemma 11.3. After shrinkingA and B if necessary, there is a Hardy decompositidr=
M U N as in[I11.2and there are open subsets

U=U1U---UU, vV, wW.=UnV
of Q and functions;, n;, ¢;, ©; as described 9.1 such that
fO(Mao) - Vhoa fO(Nao) - Uho»

and
gofoox t(x,0,00=x, niofooy 20, y,0=y
forx,y € D.
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Proof. Choose any Hardy decompositiéh= M U N as i 11.P as well as open subsets
U=UU---UUy, V, W of 0 and functionss;, n;, ¢, 7; as described in 9 1. Read
& o foox; L(x) for £o(x) andn; o fo o y; () for 5o(y) in Lemmd 10.1P, let> and¢

be as in the conclusion of that lemma, and replégen;) by @1 o (&, n;) andz; by

¢ 7Y o ¢;. This requires shrinking/; (and B). Then shrinkN so thatfo(N,,) C Up, and
enlargeV so thatfo(M,) C Vi,. O

11.4. We use a Hardy decomposition to mimic the constructign df 9.3 with A as a
parameter. Choose a Hardy decomposithor= M U N for (4, R4, ap), open subsets
U=UpU---UU, V, W of Q, and functions;, n;, ¢;, 7; as described in 9.1, such that
the conditions of Lemmja 1].3 are satisfied. Fix an integel/2 > 1 and define an open
subset

W(a, b) C H*(AN,, Wp)

by the condition that foy € HS(dN,, W) we havey € W(a, b) iff
y7HSHY) C Win v NSY) € Wi

(se for the notatioW; 1 andW; 2) and the curveg; oy o xi‘l andn; oy o yi‘l from
$1to C\ 0 both have winding number one about the origin. &#ar A andb € B let

s+1/2
Ula, b) = {y — u|dN, € W(a, by : * € HOP "5 (Na. Up), }

u(CaNPy)=CpNQYyp

v € HolFtY2(Mm,, vy, }

V(Cl,b) := {V=v|aNa€W(a’b) U(R mp)_S me
* a) = Ox

Here Hot*Y/2(X, Y) is defined by|(1)6); holomorphy at a nodal point is defined 10.1.
Define

Wa = | | Wea.b). Vai=||Via.b). U,:=]||U@.b).

beB beB beB
W= || W, V= |V U=\ |t
acA acA acA

Our notation means that the three formulasy, b) € W, (v, b) € W,, andy € W(a, b)
have the same meaning.

11.5. We use the trivialization: A x I' — 9N in (48) to construct an auxiliary Hilbert
manifold structure oW. Define an open set

Wo C {(a,y,b) e Ax H*(I', W) x B:mgoy = b}
by the condition that the map
Wo— W:(a,y,b) — (a,y o011, b) (47)

is a bijection. In particulap ((i, 1) x SY) c W;1 andy ((i, 2) x S1) c W; 2 for (a, y, b)
€ Wo. By a standard constructidd® (I", W) is a complex Hilbert manifold and the subset
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{(a,y,b) : mp o y = b} is a complex Hilbert submanifold of x H*(I', W) x B. This

is because the mag* (', W) — H*(T", B) induced by is a holomorphic submersion.
Note that}y is a connected component @, y, b) : mg o y = b} and hence inherits its
Hilbert manifold structure. We emphasize that the resulting Hilbert manifold structure on
W depends on the choice of the trivialization. Two different trivializations give rise to a
homeomorphism which is of clagg’ on the dense subsiy N HS*,

Definition 11.6. A Hardy trivialization for (m4 : P — A, Ry, ap) is a triple (M U
N,t, p) whereP = M U N is a Hardy decomposition with corresponding trivialization
t:AxTI'— dN asinIIl.2and

piM— Q=M
is a trivialization such that
PaOla =lag, Pa'=p|Mg:M;— Q

fora € A and
P(R) =R, NQ =lr,.

We require further thap is holomorphic in a neighborhood of the boundary, more pre-
cisely that the coordinates andy; in DefinitionlI1.2extend holomorphically to a neigh-
borhood ofN; and thatx; o p = x; neard;N; andy; o p = y; neardN;.

11.7. The fiber isomorphisnyy : P,, — O, determines a point
(a0, 0 := foldNay, bo) € W;
this point lies ind NV as
Y0 = uo|l0Ngg = v0ldMyy, Where ug = fo|Nay, vo = folMa,.

In the following we will denote neighborhoods @f in A and(ao, y0, bo) iU, V, or W
by the same letters, respectively/, V, or W, and signal this with the text “shrinking,
U, v, orWif necessary”.

Lemma 11.8. For every(a, y, b) € UNV there is a unique fiber isomorphisfn: P, —
Qp with f|ON, = y.

Proof. This follows immediately from Lemmnia 9.4. o

Theorem 11.9. Fix an integers + 1/2 > 4. After shrinkingA, i/, V, W if necessary, the
following holds.

(i) Foreacha € A, U, andV, are complex submanifolds &¥,,.

(i) U andV are complex submanifolds bY.
(i) The projectionsV — A, U — A,V — A are holomorphic submersions.
(iv) The unfoldingwps, Sk, bo) is infinitesimally universal if and only if

TwoWao = Twouao S Twovaoa wo = (ao, Yo, bo).
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Proof. In[9.7 it was not assumed thatwas precisely the number of nodal pairs so the
arguments of Sectigr] 9 will apply when the central filggy, is replaced by a nearby fiber
Q) with possibly fewer nodal points. Hence (i) and (iv) follow from Theoifenj 9.5. We
prove (ii) and (iii) in four steps.

Step 1. We prove thal{ is a complex Hilbert submanifold of.
The image of the nodal coordinate systém y;, #;) onN; in C x C x C"~1 has the form
{(x,y,1) € D2 x c"1: (xy, 1) € Ay, |x] <1, |y| <1}

whereA; ¢ C x C"~1is contained in the open sgt;| < 1} x C"~1. The image of the
nodal coordinate systent, n;, 7;) onU; in C x C x C?~1 has the form

(& ni,w) e CxCxC7lig] <2, Inil <2, (i, w) € Bil,

whereB; ¢ C x C?1is contained in the open st;| < 4} x C¢~1. By assumption
(seq T1.4), the fiber isomorphisfp : Po — Qo between the fibers over the origin is the
identity in these coordinates.

Consider the map

W—>Ax(Hs)zka:(a,y,b)l—)(a,al,,Bl,...,otk,ﬁk,b)

wherey € W(a,b) anda; = & oy ox; > andB; = n; o y o y; +. This map is a
diffeomorphism fromV, with the manifold structure df 11.5, onto an open subset of
the Hilbert manifoldA x (H*)% x B. The image of the subsét c W under this
diffeomorphism consists of all tupleg, o1, B1, .. ., @, Bk, b) in the image ofV such
that

xy=zi(a) = o(x)Bi(y) =¢®b) fori=1,... k

That this subset is a complex submanifoldiok (H*)% x B follows from Theorer 10l4.
Step 2. Define

s+1/2
B = (a,v,b):aEA’ beB, veH (Mg, Vp),
V(RN Py) =S8N Qp, vV|ON, € W(a, )
and
Z:={(a,v,b) € B:v e HolF*Y2(Mm,, V})}. (48)

We construct an auxiliary Hilbert manifold structure ghand show thatZ is a smooth
submanifold of3.

In analogy witH TT.}4 define

s+1/2
Bozz{(a,v,b):“EA’ be B, veHTQ, V), }

v(ry) = S5 N Op, v o pa|dNa € Wa, b)

whereQ := M,, andr, := R, NQ = p(R,) as in Definitio] I1.6. This space is a Hilbert
manifold and the Hardy trivializatiot®? = N U M, ¢, p) induces a bijection

Bo— B:(a,v,b) — (a,vop,b).
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This defines the Hilbert manifold structure BnNote the commutative diagram

By — B
| |
Wo — W

where the bijectioVy — W is given by [4}), the mafg — W is given by restriction to
the boundary, and the mdfy — Wy is (a, v, b) — (a, vou,,, b). The bijection3p — B
identifies the subsef C B with the subseZy C Bp given by

Zo:={(a,v,b) € Bo: v e HOF"Y2((Q, jo), 0},

wherej, = (pa)«J Mg, pq : M, — Q is the Hardy trivialization, and is the complex
structure onP. (Note that the map — j, need not be holomorphic.)

We prove thatZp is a smooth Hilbert submanifold &y. The tangent space & at
atriple(a, v, b) is

TuwBo = TuA X {(D,b) € HYY2(Q,v* T Q) x Ty B : dup(v)d = b, (r;) € Ty(s;)Si}-
Let& — Bp be the complex Hilbert space bundle whose fiber
ga,v,b = HS_l/Z(Q, A;-)a’lT*Q ® U*TQb)

over(a, v, b) € By is the Sobolev space @9, 1)-forms on(<, j,) of classH*~1/2 with
values in the pullback tangent bundle7 Q. As before the Cauchy—Riemann operator
defines a smooth section: Byp — £ given by

d(a, v, b) ==, ;(v) = 3(dv+ J odvo j,). (49)

Here J denotes the complex structure g¢h The zero set of this section is the s&
defined above. It follows as in the proof of Theorgm| 9.5 that the linearized operator
Davp: Ty0pBo — E4.0.b 1S surjective and has a right inverse. Hence the zer&gét

a smooth Hilbert submanifold .

Step 3. We prove thaV is a complex Hilbert submanifold of.

As in the proof of Theorein 9,5 restriction to the boundary gives rise to a smooth embed-
ding
Z—->W:i(@a,v,b)— (a,y,b), y: :=vl0M,,

whose image i8/. The only difference in the proof that the restriction mép— W is
proper is that now we have@> convergent sequence of complex structure$2oihe
proof is otherwise word for word the same. (Note that [16, Theorem B.4.2] allows for a
sequence of complex structures on the domain.) H¥rise& smooth Hilbert submanifold
of W.

We prove thatr(,,, )V is a complex subspace @}, , WV for each triple(a, y, b)
€ V. For this we identifyVV with Wy and hencé&’ with the imagel; of the embedding

Zo— Wo:i(a,v,b) — (a,voig,b). (50)
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The tangent space df at a point(a, v, b) is the space of all triplegi, 9, ) € T,A x
QO(Q, v*T Q) x T}, B that satisfy

dn(v)f)sb, ﬁ(r,-) (S Tv(r,-)Sia i =1,...,I’l.

The trivializationz x p : M — A x Q induces a complex structure of the forjnj (6) on
A x Qwherej : A - J(Q) is asmooth map and : TA — Vect(X) a smooth 1-
form satisfying[(}) and (8). Sinceis holomorphic nead M with respect to the complex
structurej (ap) on Q2 = M,, (see Definitiof 11]6) it follows that vanishes neas x 9<2.
Let D, : Q9Q,v*TQ) — Q%)(Q, v*T Q) denote the linearized Cauchy—Riemann
operator associated ta a(a), J)-holomorphic curve : @ — Q. Then the tangent space
of Zg at(a, v, b) is the kernel of the operat@®, , : T(,v,5)Bo — Q?EZ)(Q, v*T Q) given
by
Dyy(@, 0, b) 1= Dyd + 1J (v)dv - dj (a)a. (51)

It follows from ) witho; (a) = r; that the vector fieldi(a, a) vanishes at the point
for everya € A and everyz € T, A. Hence the tangent spatg,. , ») B carries a complex
structure A A

ZI(a,v,b)a,v,b) = (—1a, J(v)0 —dv - a(a, a), V—1b)
and, by direct calculation usinp]|(8), we find

J()o Da,v = Llav oI(a,v,Db).

Hence the (almost) complex structdrelescends t&p. Sincex vanishes near the bound-
ary the differential of the embedding {50) is complex-linear and h&iade a complex
submanifold oV as claimed.

Step 4. We prove (iii)

That the projection3y — A, U — A,V — A are holomorphic is obvious from the
construction. We prove that these three maps are submersions. For ti axap, and
hence forW — A, this follows immediately from Propositign 10.9. Frobserve that
the linearized operator of the sectipn|(49) is the operptdr (51). Clioasg, A and solve
the equatiorD, ,(a, v, 0) = 0 for 9. This equation has a solution becausgis surjective
with domain the space of vertical vector fields that vanish at the pgirated target the
space of verticalO, 1)-forms. This proves (jii). O

12. Proofs of the main theorems

Definition 12.1. The seiC of critical points of a nodal familyr : 9 — B is a subman-
ifold of Q0 and the restriction ofr to this set is an immersion. The family is said to be
regular nodal atb € B if all self-intersections ofr (C) in = ~1(b) are transverse, i.e.

dimec(imdn(g1) N---Nimdn(g,)) = dimg(B) —m

wheneveys, ..., g, € C are pairwise distinct and (¢1) = - - - = 7 (g;») = b; the nodal
family is calledregular nodal if it is regular nodal at eactb € B.
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Lemma 12.2. Letu be a desingularization of the fib&,, ¢ be the arithmetic genus of
the fiber, and: be the number of marked points. Then the following hold:

() Dup(it,b) € Y, for (i, b) € Xy p.
(i) The operatorD,, ;, : X, , — Y, is Fredholm.
(i) The Fredholm index satisfies

indexc(Dy p) > 3—3g —n +dimc(B)
with equality if and only ifr is regular nodal ath.
Proof. We prove (i). Chooséz, 13) e X,.» and let
3: %=, T,B) —» Q%Y(z, T,B)

denote the usual Cauchy—Riemann operator. Tthes(u)D, i = ddwg(u)ii = 0 since
dmp(u)ii is a constant vector. Hend®, i € )),. Item (ii) isimmediate a®, is Fredholm
as a map from vertical vector fields to verti¢@l 1)-forms andD,, ; is obtained fromD,,
by a finite-dimensional modification of the domain. (A vertical vector field is an element
i e QOZ,u*T Q) such thatdn(u)i = 0; a vertical (0, 1)-form is an elemeny €
QOL(z, u*T Q) such thadz (u)n = 0, i.e. an element @¥),.)

We prove (iii). The arithmetic genusof the fiber is given by

g = #edges- #verticest 1+ ) _g; (52)
i

where #vertices= ) ; 1 is the number of components Bf #edges is the number of pairs
of nodal points, ang; is the genus of theth component. Now consider the subspace

X, :={(li,b) € X, : b =0}

of all vertical vector fields along satisfying the nodal and marked point conditions. If
(1, b) € X, p, then the vectob belongs to the image afr (¢) for everyg € Q,. Hence
the codimension aoft, in &},  is

codimy, , (X,) = dim( ﬂ im dzr(q)) > dimc(B) — #edges
q€Qp

with equality if and only ifrp is regular nodal ab. By Riemann—Roch the restricted
operator has Fredholm index

indexc (D, 1 X, — V) = 2(3 — 3g;) — 2#edges- n.
Here the summand-2 #edges arises from the nodal point conditions in the definition

of &,. To obtain the Fredholm index @, , we must add the codimension &, in A, 5
to the last identity. Hence

indexc(Dy5) > Y (3—3g;) — 3#edges- n + dimg(B)

= 3— 3¢ — n+dimg(B).
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The last identity follows from[(52). Again, equality holds if and onlyxig is regular
nodal ath. O

Proof of Theorerfi 5]3The proof is an easy application of the openness of transversality.
TakeP = Q, A = B, w4 = mp, and fy = id, SO yp is the inclusion 0o Ny, in Op,.
Assume the unfoldingrs : O — B, S, bo) is infinitesimally universal. Choodec B
nearbo, fix an integers + 1/2 > 4, and letl4, andV), be the manifolds if T1}4 with

P = Q anda = b. To show that(wg, Sy, b) is infinitesimally universal we must show
thatl, andV, intersect transversally at wherey is the inclusion 0B N, in Q,. Since

b is nearbg, so also isy nearyp. Consider the three subspadgsV,, T, Uy, TV, of
T, W. We haveT, U, = T, W, N T, U and the intersection is transverse as the projection
U — Bis asubmersion. Similarly;, Vi, = T, W, N T, V. Hence the subspac&si{, and

T, V, depend continuously ofb, ). By Theorenj I1]9(iv) the submanifoltls, andV,
intersect transversally &, i.e. T, Wy = TygUpy+ Ty Vio- HeNcel, Wy, = T, Up+T, Vp

for (b, y) near(bo, yo). Hence the unfoldingr g, S, b) is infinitesimally universal fob
nearbg by Theorenf 11]9 again as required. |

Proof of Theorerp 5]4We proved “only if” in Sectiofi . For “if” assume that the unfold-
ing (g, S«, bo) is infinitesimally universal. Letr4, Ry, ag) be another unfolding and

fo i Psqy = Qp, be afiber isomorphism. Assume the notation introduced in Sn 11.
In particular assume the hypotheses of Theqrem 11.9.

Step 1. & andV intersect transversally atug, y0, bo).

Abbreviatewg = (ao, 10, bo). Choosew € T,V and leta = dx(wg)w. As the re-
striction ofr to ¢/ is a submersion there is a vecibe T,,,Uf with dr (wo)it = a. Then
W — i € TywyWa, S0 by Theorerh 11]9(iv) there are vectdese Ty, aNdio € TuoVag
with @ — @i = fig + vo.

Step 2.The projectiori/ NV — A is a holomorphic diffeomorphism.

By Step 1 the intersectiol NV is a complex submanifold ofV (after shrinking) and
T,UUNYV)=T,UNT,V forw € U N V. By the inverse function theorem it is enough
to show thatdm (wo) : Tw,(U N V) — T,,A is bijective. Injectivity follows from The-
orem[11.9(iv) and the fact that, Uy, = Twd N Kerdm(wo) and TygVay = TuoV N
kerdm (wo). We prove surjectivity. Choosee T,,A. Since the restrictions of toZ{ and
V are submersions, there exise T,,,U{ and? € T,V with dz (wo)it = dm(wo)d = a.
The differencei — © lies in 7,,,W,, so, by Theorerp 11]9(iv), there aig € T,,,l4, and
00 € Ty Vag With it — 0 = fig+ Vo. Hencei —iig = 0+ g lies in Ty, (U N'V) and projects
toa.

Now define® : P —- Q and¢ : A — B by ¢(a) ;= b, and ®|P, = f,,
where f, : P, — Qp, is the unique fiber isomorphism that satisfiE30N, = ya.
(See Lemmp 17]8.)

Step 3. The map® and ® and holomorphic.

The mapg¢ is the composition of the inverse of the projectidm ¥V — A with the
projectioni/{ NV — B and is therefore holomorphic by Step 2. By Lemima 1[0.18 the
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restriction of® to int(N) is holomorphic and hence smooth. To prove that the restriction
of @ to int(M) is holomorphic we write it as the composition

iNtM) > AxQ—> UNV)xQ— Zox Q2 — Q0

where the first map is the produef; x p, the second map is the inverse of the projection
UnNYy — A on the first factor, the third map is given by the obvious embeddigof’
into Vo = Zp, and the fourth map is the evaluation map v, b, z) +— v(z). All five
spaces are complex manifolds. In particular, the complex structug®g on is

@,,b,2) — (V=1a, J @)D — dv - a(a, a), V=1b, j(@)(2)Z + a(a, @)(2)).

All four maps are holomorphic and hence, so is the restrictio® ¢ int(M). Thus we
have proved thab is holomorphic onP \ dN. Sinced is continuous, it follows tha® is
holomorphic everywhere. This proves the theorem. O

Proof of Theorer 5]5Assume that the unfoldingz s, S., bo) is infinitesimally univer-
sal and let(¢, ®) is a pseudomorphism froffx 4, R., ag) to (g, Sk, bo). Then, in the
notation of the proof of Theorem 5.4y,, b,) := (®|dN,, ¢(a)) is the unique intersec-
tion point ofi4, andV,. Hence(¢, ®) agrees with the unique (holomorphic) morphism
constructed in the proof of Theor¢mB.4. O

Proof of Theorerp 5|6 We proved “only if” in Sectiofi p. For “if” assume théE, s, v, j)

is stable. We first consider the case whEris disconnected and there are no nodal points.
Let X3, ..., X be the components at, g; be the genus oE;, andn; be the number

of marked points or¥;. Let I; C {1,...,n} be the index set associated to the marked
points inX;. Then(l, ..., n} is the disjoint union of the set, ..., Iy andn; = |[;| >

2 — 2g;. By Theoren| 8.p there exists, for eagha universal unfoldingz; : Q; —

B;, {Sji}ielj: bo;, voj) of %;. Note that dlrf@;(B]) = 3gj -3+ nj. Define

Bo:=B1 X --- X By,

k
Qo :=|_|le X Bj_1 X Qj X Bj41 X --- X By,
j=1
wo(b1, ..., bj-1,qj,bjt1,...,bx) == (b1, ...,bj—1,wi(q;), bj+1, ..., br),
Soi = {(b1,...,bj-1,qj,bjy1,...,br) 1 q; € S}, i€l
bo = (bot, - - -, bok),
vo(2) '= (bo1, - - -, bo,j—1,v0;(2), bo j41. ..., box), <z € Xj.

Then the quadrupléro, Sox, bo, vo) is a universal unfolding of.

Next consider the general case. Denote the nodal poins bpv = {{r1, s1}, ...,
{rm,sm}} and the marked points by, ..., #,. Assume, without loss of generality, that
the signature of X, #,, v, j) is a connected graph (see Definitjon]3.4). Replace all the
nodal points by marked points. Then, by what we have just proved, there exists a uni-
versal unfolding(mo, Rox, Sox, To«, bo, vo) Of (Z, ry, 54, 1+, j). Choose disjoint open sets
Ui, ..., Uy, V1,..., V;u C Qg such that

RoyCc Ui, SoiCVi, UnNTy=ViNTo;j =9
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fori =1,...,mandj = 1,...,n. Choose holomorphic functions : U; — C and
yi Vi = C such that

xi(Ro)) =0, yi(Soi)) =0
and (g, x;) and (g, y;) are coordinates o@g. Shrink B and the open set§;, V; if
necessary. Assume without loss of generality thét/;) = y; (V;) = D. Define
B:=ByxD", Q:=QgxD"/~.

Two points(g, z) and (¢’, z) with ¢ € U; andg’ € V; are identified if and only if
o(g) = mo(q’) and either

xi(@)yi(¢) =z #0 or xi(q) =yi(¢) =z =0.

The equivalence relation o@p x D™ is generated by these identifications. (Two points
(g,z) and(q’, z) with 7o(g) = mo(g’), q € Ui, ¢’ € V;, z; = 0 arenotidentified in the
casex;(g) = 0 andy; (¢’) # 0 nor in the case;(g) # 0 andy;(¢") = 0.) The projection

7 . Q — B and the sectiong; : B — Q are defined by

(g, z]) = (mo(q),2), T;:={[q.z]:q € To;}

forj=1,...,n.

We have thus define@ as a set. The manifold structure is defined as follows. For
i €{1,...,m}denote byC; C Q the set of all equivalence classes {] € Q that satisfy
zi = 0andg € Ro;. Note that any such point is equivalent to the pair f] with ¢’ € So;
andno(g’) = mo(g). Let

m
C:= Ucl-.
i=1

The manifold structure o@\ C is induced by the product manifold structure@px D™.
We now explain the manifold structure near. Fix a constant O< ¢ < 1 and define an
open neighborhood/; C Q of C; by

Ni:=CiU{lg,z] € Q:q €U, l|zil/e < |xi(@)] < &}
U{lg. 2l € Q:q e Vi, |zil/e < lyi(@)| < &}.

A coordinate chart ow; is the map
[q.2] = (bo. 21, .- Zi1s Xis Yis Zitds - - » Zm)s
wherebg := 7p(q) € Bo,
xi(q) if g € Ui,

xi=12i/yi(q) ifqeVz #0,
0 ifgeV, zi=0,
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(if[¢, z] € N; andg € V; thenz; # 0 impliesy;(¢) # 0), and

yilg)  ifg eV,
yi'=1zi/xi(q) fqelU, zi #0,
0 ifg eU, zi =0.

With this construction the transition maps are holomorphic an@ $®a complex mani-
fold. In the coordinate chart oN; the projectionz has the form

(bo, 21, -+ 5 i1, Xis Yi» Titl, -+ -5 2Zm) = (b0, 2), i =Xy

It follows thatz is holomorphic, the critical set of is C, and each critical point is nodal.
Moreover,r restricts to a diffeomorphism from; onto the submanifoldz; = 0} c B.
Hencer is a regular nodal family (see Definitipn 1p.1).

Write b := (bo, 0) € B, let.: Qg — Q be the holomorphic map defined byy) :=
[¢, 0], and definev : ¥ — Q by v := ¢ o vg. Thenv is a desingularization of the fiber
Qp = 771(b).

We prove that the triplér, T, b) is a universal unfolding. Since the signature of the
marked nodal Riemann surfaieis a connected graph, the first Betti number of this graph
is 1— k + m (sincem is the number of edges, i.e. of equivalent pairs of nodal points, and
k is the number of vertices, i.e. of componentsf Hence the arithmetic gengs(see
Definition[3.8) of the central fibe, is given by

k
g—l=m+> (g —1.
j=1

Now recall thatz; is the number of special points afy and

k
an =n+ 2m.
j=1

Since diny(B;) = 3g; — 3+ n; this implies

k
dimg(B) = dimg(Bo) +m = Y "(3g; —3+n;) +m =3¢ —3+n.
j=1

Since the Riemann family : Q — B is regular nodal it follows from Lemnfa 12.2 that
the operatoD, ;, (see Definition 52) has Fredholm index zero. Hehgg, is bijective if
and only if it is injective.

We prove in three steps tha, ;, is injective. First, every vecta, b) € Xy.p With
b =: (bo, %) satisfieg = 0. To see this note thaltr (v)9 = b. For everyi there is a unique
pair of equivalent nodal points iB that are mapped t6; underv. Since the image afr
at each point irC; is contained in the subspa¢g = 0} it follows thatz = 0. Second,
we define a linear operator

Xoo.bo —> Xu.p & (D0, bo) > (D, b)
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by

b= (bo,0), ¥(s) := (o(s),0) € Ty O,
fors € X\ {r1,...,"m,51,...,5,}. Thenv extends uniquely to a smooth vector field
alongw. In the above coordinates a¥j the tangent vectob(r;) = v(s;) € Ty¢)Q =
Ty(s;) O has the form(s;, 3, bo, 0), where

X :=dx;(vo(r;))Vo(r;) and J; :=dy;(vo(s;))vo(s;).

It is easy to see that this operator is bijective. Third, since the ma@o, — Q is
holomorphic, it follows that

Dy (0, b) = di(v) Dyq by (D0, bo).

Hence the operatat’, ,, — X, restricts to a vector space isomorphism from the
kernel ofD,, », to the kernel oD, ;. By construction, the operatdr,, 5, is injective and
hence, so i®, ;. Thus we have proved tha, ; is bijective. Hence, by Theorgm 5.4, the
quadrupler, Ty, b, v) is a universal unfolding ofX%, s., v, j). O

13. Topology

The orbit space of a groupoid inherits a topology from an orbifold structure on the
groupoid. This topology is independent of the choice of the structure in the sense that
equivalent orbifold structures determine the same topology (see SgLtion 2). In the case of
the Deligne-Mumford orbifold\1, ,,, the topology has as a basis for the open sets the
collection of all set4[2,]5 : b € U} where(g : Q — B, S,) is a universal family as
in Definition[6.2, the functor

B — Bg,n b~ X

is the corresponding orbifold structure as in Definifior] 6.4, &ndins over all open sub-

sets ofB. In Sectio ‘ we show tha‘t_/lg,n is compact and Hausdorff. (See Exa 2.8

for an example which shows why it is not obvious that the moduli space is Hausdorff.)
For this purpose we introduce in this section a notion of convergence of sequences of
marked nodal Riemann surfaces which we call DM-convergence.

13.1. Let X be a compact oriented surface gnd- X be a disjoint union of embedded
circles. We denote by, the compact surface with boundary which resultschiting
openX alongy. This implies that there is a local embedding

oYXy > X

which maps int%, ) one-to-one ont& \ y and map$ X, two-to-one ontg’. One might
call o thesuture mapandy theincision

Definition 13.2. Let(X’, v') and(Z, v) be nodal surfaces. A smoothmap '\ y’ —
¥ is called a(v’, v)-deformation iff y/ c X'\ |JV' is a disjoint union of embedded
circles such that (where : E]’/, — ¥’ is the suture map just defined) we have
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o ¢V 1= {d(D, ¢ (o)} {y1, yol €V} Cw.

e ¢ is a diffeomorphism frorlx’ \ y’ onto T \ y, wherey = J \ ¢sv').

° ¢oo|int(2;,) extends to a continuous surjective map — X such that the preimage
of each nodal point irv is a component 082;, and two boundary components which

map undew to the same component pf map to a nodal paifx, y} € y.

A sequencey : (Zk \ vk, vk) — (X, v) of (v, v)-deformations is calledhonotypic iff
(¢r)« Vi is independent of.

Definition 13.3. A sequencéXy, sk «, vk, jx) Of marked nodal Riemann surfaces of type
(g, n) is said toconverge monotypicallyto a marked nodal Riemann surface, s, v, j)

of type(g, n) iff there is a monotypic sequengge : X \ yx — = of (¢, v)-deformations

such that fori = 1, ..., n the sequencey(sx,;) converges ta; in X, and the sequence
(¢x)« jx Of complex structures oR \ y converges tg|(X \ y) in the C*> topology. The
sequence Xy, sk «, Vk, jx) IS said toDM-convergeto (%, j, s, v) iff, after discarding
finitely many terms, it is the disjoint union of finitely many sequences which converge
monotypically ta(X, s, v, j).

Remark 13.4. Assume that (=g, sk «, vk, jx) DM-converges to (X, s, v, j), that

(Zk, Sk, Vk» jk) 1S isomorphic to(E/,s,/C’*, v, ji), and that(Z, s, v, j) is isomorphic

to (X', s, v/, j). Then(E,’(,s,’(,*, v, j;) DM-converges tax’, s;, v', j').

Remark 13.5. Our definition of deformation agrees with |10, p. 79]. Our definition of
monotypic convergence is Hummel's definition of weak convergence to cusp curves in
[10, p. 80] (with the target manifold? a point) except that he does not allow marked
points. However, the conclusion of Proposition 5.10in [10, p. 71] allows marked points in
the guise of what Hummel calls degenerate boundary components. We will apply Propo-
sition 5.1 of [10] in the proof of Theorefm 14.5 below after some preliminary constructions
to fit its hypotheses.

Theorem 13.6. Let (x : QO — B, Sy, bp) be a universal unfolding of a marked nodal
Riemann surfac€Xo, so «, Vo, jo) Of type(g, n) and (Zx, sk «, Vk, jk) be a sequence of
marked nodal Riemann surfaces of tyfgen). Then the following are equivalent.

(i) The sequenc&y, sk «, vk, jx) DM-converges tg¢Xo, so.«, Vo, jo)-
(i) After discarding finitely many terms there is a sequehces B such thatb, con-
verges tahg and (X, sk «, vk, jk) arises from a desingularizatiosy, : £y — Oy, .

We postpone the proof of Theor¢m 113.6 till after we treat the analogous theorem for fiber
isomorphisms.

Definition 13.7. Let (w4 : P — A, Ry,a0) and (7 : Q — B, S, bg) be two un-
foldings of type(g, n) and f; : P, — Qp, be a sequence of fiber isomorphisms. The
sequencgi DM-convergeto a fiber isomorphisnfo : Py, — Qp, iff ax — ag, by — bo,
and for every Hardy decompositigh= M UN as in Definitiorfl1.2the sequence o,
converges tof o (4, in the C* topology.
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Theorem 13.8. Let (w4 : P — A, Ry, ap) and(zrp : Q — B, S, bp) be two universal
unfoldings of typég, n) anda;, — ag andb; — bg be convergent sequences. (&t ¢) :
(P, A) — (Q, B) be the germ of a morphism satisfyigro) = bo andd,, = fo. Then
the following are equivalent.

(i) The sequencey, fx, br) DM-converges tdao, fo, bo).
(i) For & sufficiently large we havg(ax) = by and ®,, = fi.

Proof. That (ii) implies (i) is obvious. We prove that (i) implies (ii). Recall the Hardy de-
composition as in the definition of the spaégs), W in[11.4. The proof of Theorem §.4
in Sectior 1P shows that

(a, Py|0N N Py, p(a)) =U; NV,

But (ax, fx|dN N Py, br) € Uy, NV, C W for k sufficiently large by DM-convergence.
Both sequence&u, ®q4 |ON N Py, d(ar)) and (ax, fx|dN N Py, by) converge to the
same pointagp, fold N N Py, bo). Hence by transversality in Theor1.9 they are equal
for largek. Now use Lemmpa 11}8. o

Proof of Theorem 13]|6We prove that (i) implies (i). Leto : o — Qp, be a desin-
gularization. Assume thdi. converges t@ and thatu; : X — Qp, is a sequence of
desingularizations. Choose a Hardy trivializatigh= M U N, ¢, p) for (&, Sk, bo) as in
Definition[11.6. For each € B choose a smooth map

Yy o Qp — Oy

as follows. The restriction of;, to M, agrees withp,. Next, using the nodal coordinates
of Definition[11.2, extend), to a neighborhood of the common boundaryMfand N
via (x;,0,t) — (x;,0,0) for 2{/|z;(b)| < |x;] < 1 and(O, y;, ;) — (0, y;,0) for
2J/1zi(b)| < lyil < 1. Finally, whenz; (b) # 0, extend to a smooth ma@, N N; —
Qp, N N; that maps the circlgy;| = |y;| = +/[z;(b)] onto the nodal poing; and is a
diffeomorphism from the complement of this circle @, N N; onto the complement of
gi in Qp, N N;. Define

vei=|J wtg € QN Ni ki@l = 1yi(@)] = 1z (b)) C T

zi (b)) #0

Then, for every, there is a uniqgue smooth map : 3; \ yx — Xo such that

uo o Px = Y, oty - T \ Yk —> -

It follows that¢y is a sequence of deformations as in Definifion[L3.2 and that this sequence
satisfies the requirements of Definitipn 13.3. (The sequepds monotypic whenever
there is an index sdtsuch that, for every, we havez; (b)) = 0 fori € I andzi(b;) # 0

fori ¢ I; after discarding finitely many terms, we can witgas a finite union of mono-
typic sequences.) Hence the seque(Eg, sk «, vk, jx) DM-converges ta(X, j, s, v).

Thus we have proved that (ii) implies (i).
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We prove that (i) implies (ii). Le(Xx, sk «, vk, jx) be a sequence of marked nodal
Riemann surfaces of typg, n) that DM-converges t@X, j, s., v). If £ has no nodes
thenX; has no nodes and the mafys: ~; — X in the definition of DM-convergence
are diffeomorphisms. Sinc@y). jx converges tgj, assertion (ii) follows from the fact
that a slice in7(X) determines a universal unfolding. The same reasoning works when
(Zk, sk.x, V) has the same signature @s, s,, v). To avoid excessive notation we con-
sider the case wheK&, v) has precisely one node aGHy, v¢) has no nodes, i.e.

vk =9, v =:{{20, Zo0}}.
Choose holomorphic diffeomorphisms
x (A0, z0) > (D,0), y:(Ax,zx) = (D,0),
whereAp, Ay C X are disjoint closed disks centeredzat z respectively and
A= AgU Ag
does not contain any marked points. Bat (0, 1) let A(8) := Ao(8) U Ao (8) where

Ao(d) :={p e Ao:lx(p)| =8}, Ax(d):={q € Ax:|y(@l| =35}

A decreasing sequendg € (0, 1) converging to zero determines a sequence of decom-
positions
Y =QrUA@), 02 = 0A(Sk) = QL N A(SE).

Thus ©; is obtained fromX by removing a nested sequence of pairs of open disks
centered at the nodal points 8¢, Q@ = £ \ {z0, 200}, % C Q41, aNdQ N A =
(2% N Ap) U (2% N Awo) is a disjoint union of two closed annuli.

Claim. There are sequences of real numb&rsry, Ook, fook, SMOOth embeddings
Jot Q= B, & TAGKL D = A, D, et AGk, D) — AGrg, D),
and holomorphic diffeomorphisms
hi 2 Ak, 1) = A = Z\ fi(E\ D),

satisfying the following conditions.

1) f jx converges tg in the C*° topology onX \ {zo, Zeo}-
2) fijxis equaltoj on 2 N A(1/2).

3) &(SH = m(sH = st

4) hi(x(x(p))) = fi(p) for p € 2 N Ao.

5) hi(ri/mk(y(q))) = fi(q) for g € QN Ao

6) & (x(p)) = e'%x(p) for p € @ N Ao(1/2).

7) m(y(q)) = €%k y(q) for g € Qi N Ax(1/2).
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Proof of the Claim.Let §; € (0, 1] be any sequence decreasing to zero, for exasple
1/k, and set; := T \ int(A(8y)). Define fy : Qx — X by fi = (¢k|¢k—1(szk))—1
wheregy : i \ yx — X is as in Definitiof 13 3. Therfy satisfies 1). We will modify,
and f; to satisfy the other conditions.

By the path lifting arguments used in the proof of Theofem 7.1 (see also Appendix C.5
of [16]) there is a sequence of holomorphic embeddings

gk QN A, ) — (., fijk)

that converges to the identity in thé> topology and preserves the boundary<af.
Extendg, to a diffeomorphism, still denoted by, : Q2 — €%, so that the extensions
converge to the identity in thé*> topology and replace by fi o gr. This new sequence
satisfies 1) and 2); in facf; is now holomorphic o2, N A. (Below we modifyf; again.)

The setA;, C X is an annulus with boundaryy(dAg) U fx(0As) SO there is a
unique number, > 0 and a holomorphic diffeomorphishy : A(r¢, 1) — Ak, unique
up to composition with a rotation, such that

he(SYH = fr@A0),  hi(riSY) = fi(dAx).

The embeddingé; : A8k, 1) — A(rg, 1) andn : Ak, 1) — A(rg, 1) defined by 4)
and 5) satisfy 3); they are holomorphic becayisés holomorphic ort2; N A. Hence by
Lemmd I3.ID belowy, < 8 and sor; converges to zero.

By Lemmg I3.1]1 below, there are sequenges 0, px > &, andbox, Ok € [0, 277]
such thak, andp; converge to zero and

-1 12 -1 i Oook
() — e <er, |y k() — €'k < g,
[x" "k (x) —e

for x, y € A(pk, 1). To see this les(m) > O be the constant of Lemma 13|11 with=
p = 1/m, choose an increasing sequence of integgrsuch that, < §(m) for k > ky,,
and definesy := pr := 1/m for k,, < k < k;+1. We call this kind of argumeryroof
by patiencelt follows that the maps — e~ %k (x) andy — e~%=kp, (y) converge to
the identity uniformly with all derivatives on every compact subset dffint, 0.

Next we construct two sequences of diffeomorphismpss, : D — D, converging
to the identity in theC*® topology, and an exhausting sequence of closed amulC
int(D) \ 0, such thaty, andpg; are equal to the identity in a neighborhoodsdf= 3> and

Er(or(x) = €% x,  me(Br(y)) = ey

for x, y € Bi. The assertion is obvious by an interpolation argument when the sequence

By is replaced by a single closed annuRig” int(ID) \ 0. Now argue by patience as above.
Increasings; if necessary we may assume thats;, 1/2) C By for all k. Define

Qr = X\ Int(A(8)) as above. Now replacg. by & o a; andn; by n; o Br. These

functions satisfy 6) and 7). Redefirfg so that 4) and 5) hold with the new definitions of

& andny. Thus we have proved the claim.
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In the following we assume without loss of generality that Q — B, S, bo) is the
universal unfolding of X, s, v, j) constructed in the proof of Theor¢m B.6. Now define
the marked Riemann surfacg;, s, ., j;) by

%= (BNInt(AGT)/~,
where
J]i = fk*jks S]/(,,' = fk_l(sk,i)v
and where the equivalence relation is defined by

p~q < x(p)y(q) =z, 2k = rre ! Gocttoot)

for p € Agandg € Ay with [x(p)| = |y(g)| = /rx. Then, after removing finitely
many terms, there is a sequence of regular valyes B of 7 : Q — B and a sequence
of desingularizations; : X; — Qy, such that

up(sp. ) = Si N Qp,

and j; is the pullback of the complex structure @, underu; . This follows from Theo-
rem[8.9 and the construction of a universal unfolding in the proof of Theprgm 5.6. More-
over, (E’,s,’(’*, Jp) is isomorphic to(Xy, sk «, jk). An explicit isomorphism is the map

Vi : X — X defined by

Jk(p) forpe X\ A,

hi(§x(x(p))) for p € Agwith & < |x(p)| <1,
Yi(p) = | hi(e"®x(p)) for p € Agwith /7 < |x(p)| < &,
hi(ric/me(y(p)))  for p € Ao With 8 < |y(p)| < 1,
hi(re /e y(p))  for p € Aco With /7 < |y(p)] < &.

That (i) implies (ii) in the case of a single node follows immediately with
Uk Zzu;{olﬂk_liz}k — Op-
The case of several nodes is analogous. This proves Théorem 13.6. o

Remark 13.9. The sequence;, just constructed is such thaj(y;) converges to the
nodal set inQ;, anduy o qbk_l : X\ Jv — 0O converges ta|(T \ Jv) in theC™®
topology. To prove this, note that

Y ) c{lpl =gl € Zf 1 e < Ix(D)], 1y(@)] < 8k

Hence, by Step Iy (yx) converges to the nodal point {y,. Moreover, the main part of
%, can be identified with the subs@j C X (exhaustings \ [J v in the limitk — o0),
the sequence), converges tag on X \ [ v under this identification, angk oy : Qx —

3 converges to the identity under this identification.
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Lemma 13.10. If there is a holomorphic mag : A(r1, R1) — A(r2, R2) inducing an
isomorphism of fundamental groups, thRtyr1 < Ry/ro.

Proof. The result is due to Huber|[9]; an exposition appears_in [14, Theorem 6.1, p. 14].
The proof uses the Schwarz—Pick—Ahlfors lemma (a holomorphic map from the unit disk
to itself is a contraction in the Poin&metric). The circle of radiug/r1 R1 is a geodesic

of length 2r2/log(R1/r1) in the hyperbolic metric; its image undgris shorter and hence

so is the central geodesic X(r2, R2). O

Lemma 13.11. For everye > 0 and everyp > O there is a constand € (0O, p) such
that the following holds. Ift : A5, 1) — D\ 0is a holomorphic embedding such that
u(S1 = S then there is a real numbersuch that

xeA(p, D) = [xtux) —e?| <e.

Proof. It suffices to assume(1) = 1 and then prove the claim with = 0. Suppose by
contradiction that there exist constants- 0 andp > 0 such that the assertion is wrong.
Then there exists a sequente> 0 converging to zero and a sequence of holomorphic
embeddings; : A(5;, 1) — D\ 0 such that

ui(SH =5 w@ =1, sup |ui(x) — x| > ep.
p=lx|=<1
We claim thatu; converges to the identity, uniformly on every compact subséx p0.
To see this extend; to the annulug\(é;, 1/8;) by the formula

ui(z) := 1/u;(1/z)

for 1 < |z] < 1/6;. Think of the extended map as a holomorphic embedding
A(8:,1/8;) — 52\ {0, 0o}. Next we claim that

supsup|du;(z)| < oo (53)
i zekK
for every compact subs&k c C \ 0. Namely, the energy of the holomorphic curve
u; is bounded by the area of the target manif6fl So if |du;(z;)] — oo for some
sequence; — zp € C\ 0, then a holomorphic sphere bubbles off ngaand it follows
that a subsequence of converges to a constant, uniformly on every compact subset of
C \ {0, zo}. But this contradicts the fact that(s?) = $*. Thus we have provedl (53).
Now it follows from the standard elliptic bootstrapping techniques (or alternatively from
Cauchy’s integral formula and the ArzelAscoli theorem) that there is a subsequence,
still denoted by;, that converges in th€° topology to a holomorphic curuey : C \ 0
— 52\ {0, 0o}. By the removable singularity theoremy extends to a holomorphic curve
uo : S2 — §2. Sinceu; is an embedding for every it follows thatug is an embedding
and hence a Kibius transformation. Sinag (S1) = S, u;(1) = 1 and 0¢ u; (A(S;, 1)),
it follows that
uo(SH =S, uo() =1, ug(0)=0.

This impliesug = id. Thus we have proved that converges to the identity, uniformly on
every compact subset B\ 0. This contradicts the inequality spp, <1 [u; (x) —x| > ep
and this contradiction proves the lemma. O
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14. Compactness

In this section we prove that every sequence of stable marked nodal Riemann surfaces of
type (g, n) has a DM-convergent subsequence. Our strategy is to perform some prelimi-
nary constructions to reduce our compactness theorem to Proposition 5.1 of [10, p. 71].
We begin by rephrasing Hummel’s result in a weaker form that we will apply directly (see

Propositiorf 144 below).

14.1. Let W be a smooth oriented surface, possibly with boundary and not necessarily
compact or connected. fnite extensionof W is a smooth orientation preserving em-
bedding: : W — S into a compact oriented surfadesuch thatS \ «(W) is finite. If

11 . W — Spandw : W — S are two such extensions, the maypo ql extends

to a homeomorphism, but not necessarily to a diffeomorphismWget .., W, be the
components oW, S1, ..., S, be the corresponding components of a finite extension

g; be the genus of;, m; be the number of boundary componentsigf andn; be the
number of points irnS; \ «(W;). The (unordered) listg;, m;, n;) is called thesignature

of W. Two surfaces of finite type are diffeomorphic if and only if they have the same
signature. (Comparfe 3.4 ahd[3.5.) We say Wias of stable typeif n; > x(S;) (at least

one puncture point on an annulus or torus, at least two on a disk, and at least three on a
sphere).

14.2. A hyperbolic metric on W is a complete Riemannian metvicof constant curva-
ture —1 such that each boundary component is a closed geodefititéAextensionof
a complex structurg on W is a finite extension : W — S such that, j extends to a
complex structure off; we say; hasfinite type if it admits a finite extension.

Proposition 14.3. Let W be a surface of stable type. Then the operation which assigns
to each hyperbolic metric oW its corresponding complex structure (rotation ®§f) is
bijective. It restricts to a bijection between hyperbolic metrics of finite area and complex
structures of finite type.

Proof. The operatiori — j is injective by the removable singularity theorem and sur-
jective by applying the uniformization theorem to the holomorphic doublgidfof finite
type, then the area is finite by [10, Proposition 3.9, p. 68}. i8 of finite area, ther is
of finite type by [10, Proposition 3.6, p. 65]. O

Proposition 14.4 (Mumford—Hummel). Let S be a compact connected surface with
boundary andxq, ..., x, be a sequence of marked points in the interiolSaguch that
W = S\ {x1,...,x,} is of stable type. Write

0§ =1 01SU---U09,S,

where eaclhd; S is a circle. Letj; be a sequence of complex structuresSeamd#; be the
corresponding sequence of hyperbolic metricdonAssume:

(a) The lengths of the closed geodesic$¥n, oW are bounded away from zero.
(b) The lengths of the boundary geodesics converge to zero.
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Then there exists a subsequence, still denotedjbyi;), a closed Riemann surface
(%, j) with distinct marked pointéy, ..., &,, n1, ..., nm, & hyperbolic metrid: of finite
areaonX \ {&1,...,&:, 11, ..., 0m}, @nd a sequence of continuous maps: S — =
satisfying the following conditions.

() dr(x;)) =& fori=1,...,nand¢r(9;S) =n; fori =1,...,m.

(i) The restriction ofp; to S \ 35 is a diffeomorphism ont& \ {n1, ..., nm}.
(i) (¢r)+jx convergestg onX \ {n1, ..., Nm}-
(iv) (¢r)«hi convergestd on \ {&1,...,&, N1, -+, N}

Proof. This follows from Proposition 5.1 i [10, p. 71]. The discussion preceding Propo-
sition 5.1 in [10] explains how to extract the subsequence and how to construct the Rie-
mann surfac€x, j) and the hyperbolic metrik. O

Theorem 14.5. Every sequence of stable marked nodal Riemann surfaces ofgtype
has a DM-convergent subsequence.

Proof. Let (X, sk.«, vk, jx) be a sequence of marked nodal Riemann surfaces of type
(g, n). Passing to a subsequence if necessary, we may assume that all marked nodal sur-
faces in our sequence have the same signature (see Definifjon 3.4) and hence are diffeo-
morphic. Thus we assume that

(Zk, kx5 Vi) = (X2, 5%, V)

is independent ok. Denote byX* the possibly disconnected and noncompact surface
obtained fromX by removing the special points. L&t be the hyperbolic metric o *
determined byj (see Proposition 14.3).

Lete,% be the length of the shortest geodesi&inwith respect tdi . If a subsequence
of theﬂ,% is bounded away from zero we can apply Proposto each component of
¥ and the assertion follows. Namely, the mapsin Propositior] 144 are deformations
as in Definitior I3.R.

Hence assumé,% converges to zero dstends to infinity and, for each, choose a
geodesiqul with Iengch,%. Passing to a further subsequence and, if necessary, modifying
h by a diffeomorphism that fixes the marked and nodal points we may assume that the
geodesicsryk1 are all homotopic and indeed equal. Thus

vi=v'
for everyk. Now Ietﬁ,f be the length of the shortest geodesicin, y! with respect to
hi. If a subsequence (ﬁff is bounded away from zero we cut opEralongy®. Again the
assertion follows by applying Propositipn 14.4 to each component of the resulting surface
with boundary.

Continue by induction. That the induction terminates follows from the fact that the
geodesics ifx*, hi) of lengths at most 2arcsinb) are pairwise disjoint and their num-
ber is bounded above by3- 3+ N, whereN is the number of special points (séel[10,
Lemma 4.1, p. 68]). This proves the theorem. O
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Lemma 14.6. Let (w : P — A, Ry, ap) be a nodal unfolding and” c P be the set
of critical points ofr. Then, after shrinkingd if necessary, there exists a closed subset
V C Pandasmoothmap : P\ V — P, \ V satisfying the following conditions.

(i) Foreverya € AwehaveC NP, C VNP, =V, moreoverC N Py, = V.
(i) Each component o¥ intersectsP, either in a simple closed curve or in a nodal
point.
(i) For everya € A the restrictionp, = p|Ps \ Va : P\ Va = Py \ Vg iS @
diffeomorphism; moreover,, = id.

Proof. Choose a Hardy trivializatio®? = M U N, ¢, p) as in 11.p and write
N =NpU---UN;

as in Definitior] 11.p. Letzi, %) : A — U; ¢ D x C"Yand(x;, yi, ;) : Ny — D? x
€™~ be the holomorphic coordinates of Definition 11.2 so thét (p)) = x;(p)yi (p)
and the critical se€ C P has components

Ci={peN;: xi(p)=yi(p) =0}
Define
Vi=ViUu-- UV, Vii={peN; |xpl=Iyipl=lzi@p)l}.

This set satisfies (i) and (ii). The restriction of the trivialization M — M,, to dN; C
dN = oM is, in the above coordinates, given pyx;, v, ;) = (x;,0,¢) for |x;] = 1
and byp (x;, vi, ;) = (O, y;, ;) for |y;| = 1. We extend this map by an explicit formula.
Choose a smooth cutoff functigh: [1, co) — [0, 1] such thaf’(r) > 0 for everyr and

. Jr—=1 forli<r<3/2
plr) = {1 forr > 2.

Then define the extensign: N; \ V; — P, in local coordinates by
BW1xil/TyiDxi, 0,;) if |x;| > |yil,
O, BW il /IxiDyi ti)  1f [yil > |xil.

The resulting map : P\ V — P, is smooth and satisfies (jii). This proves the lemma.
]

o (xi, yi, t) 1={

Proof of Theorerh 6]6Let (7 : 0 — B, S,) be a universal family and denote bg, I')

the associated etale groupoid of Definitjon]6.4 (see Thegrein 6.5). We prove that this
groupoid is proper. Thus léty, fi, bx) be a sequence iR such thaty, converges teg

andby converges tdg. We must show that there is a fiber isomorphigm Q,, — Qp,

such that a suitable subsequencegoDM-converges tofp (see Definitio 13]7). To see

this choose desingularizations

LIZ = Qup U2 = Q.
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Denote by(X, s4, v, j) and(X’, s;, v/, j/) the induced marked nodal Riemann surfaces.
Consider the following diagram:

i
Qak \ Vak 4k> Qbk \ ka

1k Y
/ \L Pay, \L Pbk\
’

Z\v—> Qap \ Vag Obo \ Vipg <— 2/ \ v/

Here the set¥, := V N Q, and the diffeomorphisms, : Q. \ Vu = Q4o \ V4, are as
in Lemmd 14.p fou nearag; similarly for b nearbo. Moreover,

Lk:=pa_klot, L;{Zzpb_klot/.
By definition, the pullback complex structures
Jo= 0 Qa Jii= 00100

converge toj, respectively;’, in the C* topology on every compact subset Bf\ v,
respectivelyZ’ \ v'. By Lemmg 14.5, there exist exhausting sequences of open sets

U CZ\v, U,cCcT\V, filpcCly,

such thatj, can be modified outsidg, so as to converge in thé* topology on all ofZ
to j, and similarly forj;. Then

up = (L;{)_lo fiou Uy — X

is a sequence dfjx, j;)-holomorphic embeddings such that(s,) = s;. The argument
in Remark 8.5 shows that, if the first derivativessgfare uniformly bounded, ther, has
a C* convergent subsequence. It also shows that a nonconstant holomorphic sphere in
0 bubbles off whenever the first derivativesuqf are not bounded. But bubbling cannot
occur (inX \ v). To see this argue as follows. Suppaeseonverges tap € T \ v and the
derivatives ofi; atz; blow up. Then the standard bubbling argument (see [16, Chapter 4])
applies. It shows that, after passing to a subsequence and modifyiwithout changing
the limit), there arédi, j;)-holomorphic embeddings from the diskD; c C, centered at
zero with radiug, to X such thaky (0) = zi, the family of disksey (D) converges tao,
anduy o & converges to a nonconstaftholomorphic sphereg : $2 = C U 0o — Oho-
(The convergence is uniform with all derivatives on every compact subg€ef) tlence
the image ofvg contains at least three special points. It follows that the image ofs;
contains at least two special points fosufficiently large. But the image af; contains
no nodal points, the image @f contains at most one marked point, andmaps the
marked points ofZ bijectively onto the marked points &f’. Hence the image af; o &
contains at most one special point, a contradiction.

This shows that bubbling cannot occur, as claimed, and hence a suitable subsequence
of ux converges in th€ topology to &(j, j’)-holomorphic curveip : X\ v — X'\ v'.
Now the removable singularity theorem shows thgextends to &, j')-holomorphic
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curve on all of and maps to v'. Thatug is bijective follows by applying the same
argument tofk_l. Hence there exists a unique fiber isomorphigm Q,, — 0y, such
that:’ o ug = fo o 1. By construction, the subsequencefpfDM-converges tofy

Thus we have proved that the max ¢ : ' — B x B is proper. Hence, by Corol-
lary[2.13, the quotient spadg/ I" is Hausdorff. Moreover, by Theores 13.6 @and [14.5,
it is sequentially compact. Sina@ is second countable it follows th&t/ I" is compact.
This completes the proof of Theor¢m6.6. O

Corollary 14.7. Suppose that a sequence of marked nodal Riemann surfaces of type
(g, n) DM-converges to boti(X, s., v, j) and (X', s,, V', j/). Then(XZ, s«, v, j) and
(%, sk, v, j) are isomorphic.

%

Proof. Let (mp : O — B, S,) be a universal family. By Theorem 1B.6 there exist points
ao, bo € B and sequencas, — ag, by — bg such that(X, s, v, j) arises from a desin-
gularization ofQ,,, (X', s, V', j') arises from a desingularization ¢f,,, and the fibers

Q. and Q;, are isomorphic. Hence, by Theor¢m|6.6, there exists a fiber isomorphism
from Qg, t0 Oy, and so(Z, s, v, j) and(X’, s;, v, j') are isomorphic. O

A. Fractional Sobolev spaces

In this appendix and the next we summarize, for the convenience of the reader, the basic
properties of fractional Sobolev spaces used in this article.

A.1. Fors > 0 denote byH*(S1) the Hilbert space of all power series
u(eie) — Z unein9
nez
with coefficientsy,, € C whose norm

lulls 2= Nl s (s2) -= \/Z(1+ 7 )2 |u |2

nez

is finite. ThusH?(s1) = L2(s1) and, fors > 0, we haveH*(S1) c L2(s1) with a
compact dense inclusion.

Lemma A.2 (Sobolev estimate).For everys > 1/2 there is a constant > 0 such that
every smooth functiom : S* — C satisfies

lull poo sty < cllull s s1y-

Proof. The constant is = \/ZneZ(l + |n|)=%. Forz = ¢/* € S we have

@ <Y lunl =Y A+ 1D ual A+ [n]) 7 < cllull s sy

nez neZ

where the last step is by the Cauchy—Schwarz inequality. O
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Lemma A.3 (Weak product estimate). For all t+ > s > Owith ¢t > 1/2 there is a
constant > 0 such that, for al € H*(S1) andv € H'(S1), we have

luvll gs sty < cllull gssyyllvll gegsty-
Proof. The constant is

(L+ kD2
c=Su < o0
kezpl ZZ L+ k= n)Z A+ [n])?

To see that this constant is finite assume 0 and consider the sum over the four regions
n<00<n<k/2,k/2<n <k,andn > k. Now

Javi? < Y+ 1D (Pluscalival)

keZ neZ
L+ kD ,
=Y (@ k= ah* @+ )
keZ nel
(D@ k= nD P+ |n|)2‘|vn|2)
nez
<Y Y A k= n) lug—n P + [n))* v,
keZ nel
= lulZlv]?.

The third step follows from the Cauchy—Schwarz inequality. This proves the lemma.

A.4. TheFourier transform of a functionf : R — C is defined by

F(fH)) = I f(x) dx.

1 o0
— e
A/ 2 /—oo
Fors > 0 the H*(R) norm of f is defined by

1Al =1 f ey = \//R(H WDZIF ()2 dv.
The spacefi* (R) is defined to be the completion of the space of smooth functions of
compact support in this norm. It is a Hilbert space.

Lemma A.5. For every closed interval C R of length less tha2r and everys > 0
there is a constant > 0 such that

cHullgsesty < N F sy < cllullgs sy

wheneverf is supported in/ and u(e’*) = f(x) for x € I andu(e’*) = 0 for x ¢
I+ 2n7Z.
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Proof. Choose a smooth function,[@] x ST — S : (¢, ¢/*) > ¢, (¢/*) such that
¢ (e¥) = e " fort e[0,1] andx € I.

Then the Fourier coefficients @fu are

(Prt)n = % /1 e " g (eMule™) dx = \/%f(fxn +1)

and hence 1
2 2s 2
I petel s 51y = 5 ZZ(1+ InDZIF(f)n + ).
ne

By Lemmg A.3, there is a constant- 0 such that

-1
¢ ullgs sty < lprull s sty < clluell s sty

for every smooth function : St — R and every € [0, 1]. Squaring this inequality and
integrating over the interval & r < 1 gives

sy < oo /(1+|nl)25|f(f)(n+t)| dt < Plul g,
nez

The assertion follows by comparing the factar+ [n])% with (1 + |n + ¢])%; their ratio
is bounded below by 2 and is bounded above by*Xor alln € Z andr € [0,1]. O

Lemma A.6. Assumé < s < 1. Then there is a constant> 0 such that

_ 2
/|v|2“|f<f)<v)|2dv=c/ St ) = JCOF g (54)
R RJR

|t|l+2s

for every compactly supported smooth functjonR — C.

1 1 — cost

Proof. The constant is

To see this we observe that the Fourier transfornf;6f) ;= f(x + 1) — f(x) is given
by F(f)(v) = (/"' — 1)F(f)(v). Hence, by Plancherel’s theorem, we have

— 2 _ 2
/ |f ) = fOI dx dy / lfr+0) = fFOI°
R JR

|x _y|l+2s |t|l+25

|ezvt_1|2 )
— [ [ S iEneRdvar

cogv|t
o[ ([ )

% 1 — cost
:4/]1@(/0 Wdf>lvlzslf(f)(v)|2du.

This proves the lemma. O

x dt
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Corollary A.7. Whens is a honnegative integer, the spagk (R) is the completion of
the space of smooth functions of compact support in the @lft_tblld-/ fllp2.1fs >0

is not an integerH* (R) is the completion of the space of smooth functions of compact
support in the nornﬁjq(ndffan + |||dff|||s_k’2) wherek is the unique integer with
k<s<k+1land

. lg(x +1) — g(x)]? 12
lellpo = ( [ [ BTG )

Lemma A.8. Letay : R — [0, 1] be a sequence of smooth cutoff functions, supported in
{251 < |v| < 2} for k > 1andin[-2, 2] for k = 0, such that)", o, = 1. Denote by
ar .= FL(ay) the inverse Fourier transform of,. Then

o0
D 22Kla x f112, < 4N 112

k=0
Proof. Abbreviatef; := a; * f and¢y := F(fx) = ax F(f). Then

i fis = f L+ )0 (a0 Pdv = 0

—0o0

for all j andk and hence

o0 o
2 2 2(k—1)s 2
LAIZ = D IfllZ = D 22505 £ 2.
k=0 k=0

This proves the lemma. O

Lemma A.9. For everys > Othere is a constant > 0 such that the following holds. If
[ =Y =0 fc andF(f;) is supported in the intervdl-2¢+2, 26+2] then

o0
2 25k £ 112
(WA ECE 270 fiell 2
k=0

Proof. The constant is := 5% /(1 — 2-%). Define¢ := F(f) and¢y := F(fi) and
assume without loss of generality thatis supported in the interval [@*2]. Then

8= [ a0 o] v
0 k=0

4
= [ s
0 —_

me\zdv

2i+3

+Z/ @ b 3 g v

k=j+1

<55 (/ ‘Zm(\))‘ dv +222</+1>Y/2/+2

Z ¢k<v)\ dv)
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Now it follows from the Cauchy—Schwarz inequality that

/04‘2¢k(v)‘2dv < /04(;22“) (222’”|¢k(v)|2) dv

1 2k 4 2
= E 2 s/ |px (V)| dv
7
1-275 &~ 0

and, similarly,

2j+3

1 o0
dv < > 22’“/ e (v) |2 dv.
- k=j+1 2

2j+3 00 ‘2

22(j+D)s /
ZHijmw>

=j+1

j+2
The result follows by combining these three estimates. O

Theorem A.10 (Strong product estimate).For everys > 0 there is a constant > 0
such that

I felas® < clfllas@ gl + I fll Lo ®) gl s &)
for any two compactly supported smooth functighg : R — C.

Proof. Fors > 1 we follow the beautiful argument by Bourgain, Brezis, and Mironescu
in [1, Lemma D.2] which is based on the Littlewood—Paley decomposition; it simplifies
slightly in our special case. Choose a smooth cutoff funciolR — [0, 1] such that

_]1 forfv| <1,
plv) = {0 for |v| > 2,

and denote by := F~1(8) its inverse Fourier transform. For every integer 0 define
bi(t) 1= 2021, Br(v) 1= B2Fv)
so that8, = F(by). Then there is a constarg > 0 such that
Ibellzr < co, Iblle < 2o (55)
for everyk. Next define
ok =B — Pr-1.  ax=F Houw) =bp — b1

fork > 1 andag := B, ap = b so that

k k
ﬂk:zaj’ bk=2aj.
i=0 i=0

Then, for every smooth functiofi : R — C with compact support and> 0, the series

f=) axf
k=0



A construction of the Deligne—Mumford orbifold 693

is absolutely summable iH*(R). Namely, the Fourier transforigh := F(f) lies in the
Schwartz space and so decays faster than any rational function; hence thepseries
Y re ook is absolutely summable in the weight&d space of all functiong : R — C
for whichv — (1 + |v|)*y (v) is square integrable.

Given two smooth functiong, g : R — C with compact support write

£ = (aj= f)aj*g)
Jj-k=0
= (aj* )@ %)+ Y _(aj * [)a} *g)
Jj=<k j>k
> (aj £Hb_1%g). (56)
j=1
The Fourier transform ofby * f)(a; * g) is the convolution of the functiong; F(f)

anda; F(g’), both supported in the interval-pi*+1, 2k¢+1] and so it is supported in the
interval [ 2412, 2¢+2]. Hence

= (be* ;) +
k=0

bk * f)(ag * @)l 2 < bk * fllirellax * &'l 2 < coll fllzeellay * gl 12
< co2 M fllllax * gll 2.
The last step follows from the fact thi#i(a;)(v) = ivai(v) andey is supported in the
domain{2¥~1 < |v| < 21}, Similarly,
Iak % )y % )2 < llak * £l 2llbp_q * gllLe < co2llak * fll 2l Lo
Now letcy be the constant of Lemnia A.9 withreplaced by — 1. Then

o
1812y < e1 Y 2207 DHi(ar = )by * &) + (ax x (b1 * )22
k=0

o0
<21y 225 DR(|(a  f) (B _q % 22+ Iak = ) (Bf_q % )11 2)
k=0

o

< 2c0c1 Yy 22K (AN £ lar * 81122 + llaw = £17211g015)
k=0

= 2coc1e2(4 f 7 lIglIZ + liglZ< Il £12).

The last inequality follows from Lemnja A.8 wiity := 4°. Interchangingf andg and
using the Leibniz rule we obtain

1) Nls—1 < "I flleligls + gl flls)
with ¢’ := 4/10cgc1c2. Since
fgllpz < 1 flleellglpz < N fliLellglls,

this proves the theorem for > 1. For 0 < s < 1 the result follows easily from
LemmdA.§. Fos = 0 ands = 1 the result is obvious. This proves the theorem. o
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Corollary A.11. For everys > Othere is a constant > 0 such that
vl gs sty < CUlull gs sty llvll poo sty + llull oo sty vl s sty)
for any two smooth functions v : ST — C.
Proof. Lemmg A% and Theorem A.]LO. o

Lemma A.12. Fix a constants > 1/2. LetX < C™ andY < C" be open sets and
f : X — Y be asmooth map. Then

H(SY, X) = (v e H*(SY, C™) : v($Y) C X}
is an open subset gf* (S, C™) and H* (S, Y) is an open subset di* (S, C"). Mor-
ever, composition witlf defines a smooth map
H'(SY, X) »> H(SYY) tu > fou. (57)

Proof. This is Lemma C.1 in([1]. We sketch the proof. THat (S, X) and H*(S1, Y)
are open sets follows immediately from LemmalA.2. To prove that

ueH(SY, X) = foueH'(SLY) (58)
we argue by induction. For/2 < s < 1 this follows from the estimates
Ifoullsz < cllulls2,  NCfou)ll 2@ty < cllull 21,

Where|||u|||3272 is as in Corollary A.V and is a Lipschitz constant fof on the image of:
(which is compact by Lemnja A.2); for & s < 3/2 it follows from the identity

(fouw) =df (uu'
with df (u) € HY, ' € H*~Yand so(f o u) € H°~!, by Lemmd A.B. Fix an integer
k > 2 and suppose, by induction, that(58) holdsfox k — 1/2. Fix a real numbes
withk —1/2 < s < k+1/2. If u € H?, then by the induction hypothesig (1) € H* 1,
and since:’ € H*~1 it follows from Lemmg A.8 withs replaced by — 1 > 1/2 that
(fou) =dfwu' € H*"1and hencef ou € H*.
Thus we have provef (58). The same argument shows that th¢ map (57) is bounded in

the following sensefor every constantg > 0 and every compact subskEtC X there is
a constant > 0 such that

u(SH CK, lulgs <co = |foullus <c
for everyu € H*(S1, X). It follows that the map
H*(SY, X) — H* (S, Endg(C™", C") : u > df (u) (59)
is bounded as well. This in turn implies that the mjag (57), and hencealso (59), is contin-
uous. That[(5]7) is differentiable follows from the continuity[of](59) and the estimate
Ifu+8)— fu) —df@éllns < OSUIO ldf (u+16)§ —df (w)§ | us

<t<1

<c H ﬁup 8||df(u +n) —df Wl asl§las
Nigs =
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foru € HS(SY, X) andg € HS(SL, C™) with ||€||gs < §; herec is the constant in

Lemmg A.3 and we choosesufficiently small. Since the differential 4f (57) is a map of

the same type it then follows by induction that](57) is smooth. This proves the lemma.
|

B. An elliptic boundary estimate

B.1. Lets € R and letV be a finite-dimensional complex Hilbert space. Denote by
H* (81, V) the Hilbert space of all power series

v(eie) — Z vnein9
nez

with coefficientsv,, € V whose norm

wlls = 0l gssyy == DA+ ) [v,[2
nez

is finite. The crucial properties of these spaces are the following.

() If s is a nonnegative integer then tif& norm is equivalent to the sum of the?
norms of the derivatives up to order

(i) The elements of7*(S%, V) are continuous for > 1/2 and, in this case, the inclu-
sion H*(S1, V) — €S, V) is a compact operator (Lemma A.2).

(iii)y Composition with a diffeomorphism a$* induces an automorphism &f* (S, V)
for everys € R.

(iv) Multiplication by a smooth complex-valued function ¢ induces an automor-
phism of H*(St, V) for everys € R (Lemmd A.3).

(v) LetX C V be open and assume> 1/2. Then

HY(SY, X) :={v e H(SY, V) v(SH c X}

is an open subset di(S?, V) (Lemm4 A.2).

(vi) Let X ¢ V andY c W be open subsets of finite-dimensional complex Hilbert
spaces angr : X — Y be a smooth map. Assume> 1/2. Then composition with
Y induces a smooth map frof* (51, X) to H* (51, ) (Lemmd A.1D).

If E = | lper/22z Eo C S x V is a smooth (real) subbundle of the trivial bundle then,
by (iv), the subspace

H(E) :={ve H'(SY, V) :v(e') € Eg VO € R}
is a closed (real) subspaceBf (S1, V).

B.2. For everys > 1/2 there is a unique operation which assigns to every compact
1-manifoldI” and every smooth manifoltf (both without boundary) a real Hilbert man-
ifold H*(I', M) c C%(T", M) satisfying the following axioms.
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(@) IfI' = ST andM is an open subset of a complex vector space e, M) is as
above.

(b) If ¥ : M — M’ is a smooth map thep € HS(I', M) = Yoy € H*(I', M') and
the resulting magpy, : H5(I', M) — H*(I', M) is smooth.

(c) If ¢ : " — T is a diffeomorphism thep € H*(I'", M) = y o¢ € H*(I', M) and
the resulting map* : H*(I'', M) — H*(T", M) is smooth.

(d) If T is the disjoint union of"; andI's then the mayy — (y|T'1, y|T'2) is a diffeo-
morphism fromH* (", M) to HS ("1, M) x H*(I'2, M).

The Hilbert manifold structure onH*(I", M) is given by the exponential maps
H'(y*TM) — H*, M) along the smooth mapg : ' — M. If M is a complex
manifold so isH*(I", M).

B.3. Let X be a compact surface with smooth boundafype a smooth manifold, and

for each integek > 2 let H*(X, M) denote the space of maps frofrto M with k deriva-

tives in L2. The elements ofH*(X, M) are continuous and a well known construction,
analogous to the one sketched in|B.2, equifgX, M) with a smooth Hilbert manifold
structure which is a complex Hilbert manifold structure wiigris a complex manifold.

In particular, the space di* sections of a vector bundle ov&ris a Hilbert space. There

are various ways of defining a smooth Hilbert manifold structure on the 9page, M)

whens is a real number greater than 1, but we shall avoid these spaces. This is why many
of our earlier theorems begin with the hypothesis “Let 1/2 be an integer”.

Theorem B.4. Let X be a compact Riemann surface with boundgry= 0X andE —
X be a complex vector bundle. Denote the complex structu€ by j and the complex
structure onE by J. Fix an integerk = s + 1/2 > 1.

(i) Thereis a constant > 0 (depending continuously ghan J) such that
1§11 s ry < cllEll gs+rzxy

for everyt € QO(X, E).

(i) Assume thak is connected and” # @. Let D : Q%(X, E) — QOL(X, E) be a
real linear Cauchy—Riemann operator. Then there is a constast 0 (depending
continuously ory, J, and D) such that

1§11 gs+120xy < cUIDE N gs—12(x) + 11§ 15 (1))
for everyt € QO(X, E).

Proof. These estimates are well known and it is not necessary to assumeHa® is

an integer. We include a proof because we could not find an explicit reference for (ii) in
the literature. Assertion (i) is proved by the same argument. Both assertions are easy for
sections supported in the interior ®f To prove them in general we first consider the case
whereX = [0, 1] x St is an annulus with the standard complex structure. Fix a complex
(not necessarily holomorphic) trivialization éf over the annulus.
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As a warmup we prove (i) for any real number 1/2. Denote the inner product on
HS (Sl, (Cn) by
En)s =Y (A+ D> 1),

nez

whereé (') = Y, .z 6™, n(e'®) = 3", ez nae™. Then, for allg, n € C=(s, CM),
the Schwarz inequality gives

1€, mhs| < lIElls—1/2lmlls+1/2-

Hence every smooth function,[@] — C*° (S, C") : T — &(1) satisfies the inequality

d
EIIE(?)II? = 2(3:5(1), £(D))s = 2[19:5 (D) ls-1/2l15 (D) 54172

< 19:E@IZ 10 + IE@1Z,1)2-

Integrating this inequality gives

1
eIz < fo =& @IZ_ 12+ I1E@Z 1 1/2) dT < 1| gss1r20. 1753

whenevek (0) = 0. The last inquality uses the asumptior 1/2. This proves (i).
We prove (ii). The operatab has the form

DE = 3(3:& +idg& + SE)ds + 3(3p& — id: — iSE)dt
wheres : [0, 1] x S* — Endg (C"). Assume first tha§ = 0 and define
fi= 0.6 +idpk.
We think of f and¢ as functions from [01] to H* (S, C"). Consider the decomposition
H'(SL,CY=E @ E°@E"
whereE? = C" denotes the space of constant functions and
E* := closed spafe’™ : +n > 0}.

The components of an elemente H* (S, C") with respect to this decomposition will
be denoted by, £, £*. Note thate’”? is an eigenfunction of the operatdr:= —id,
with eigenvalue: and hence

(EF,AET) = BIET 20 (67, AET )y < =31 120
Sinced & = A¢ + f we have
d
Ensﬂr)nf = 2(0:51 (1), T (0))s = 2(AEH (1) + (D). 1 (1))

1ET @222 — 21T @ lls—1/211ET (@) 54172

SIET@N 2 = 2 f T @22

v

v
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Integrating this inequality gives

1 1
fo IEF (D17, 0dT < 4 fo I @IZ g pdT + 21EF D12, (60)

Similarly,

1 1
/0 1€~ ()12} 1/pdT < 4 /0 Lf (112 g pdT + 2 (O)2 (61)

and, sinc&®(r) = £%(0) + [ f°0)do, we have

1 1
fo 18012, 4)pdT < 2 /O 1722 g 2d7 + 21E°O) 2. (62)

(The three norms agree @?.) Combining the inequalitieOEGZ) we obtain

1 1
fo ||§(r>||§+1/2drs4<fo ||f(r)||§_1/2dr+||s(0)||3+||s<1)||§). (63)

Now assumeé := s 4+ 1/2 is an integer. We prove by induction that

1
fo 1975 (O 17 (1, dT < o (1 f 110 g3 51y + 1EOIF +IEQDIZ)  (64)

forv =0,1,...,k. Forv = 0 this is [63) withco = 4. Assuming that[(§4) has been
established for some integere {0, ..., kK — 1}, we use the inequality

1978 I vty = 197 (A + Pl g5y
= ||a:‘;§||Hk—V(S1) + ||a:f||Hk—v—1(51)
to obtain [(64) withv replaced by + 1. This completes the induction. Now sum}(64) for
v =0,1,...,k to obtain the estimate in part (i) for the ca$e= 0 andX = [0, 1] x S

In the case wher§ # 0 andX is a general compact Riemann surface we deduce, using
partitions of unity and what we have already proved, that

||§||HS+1/2(X) = C(||D§||Hsfl/2(x) + ||$||HS*1/2(X) + 1§ 1 s (ry) (65)

for some constant > 0 and every smooth sectigne Q°(X, E). This implies that the
operator

HYY2(E)y > H"Y2(A%1T*X @ E) x H*(E|T") : € > (D&, E|T)

has a finite-dimensional kernel and a closed image (s€e [16, Lemma A.1.X)islf
connected and £ ¢ then, by unique continuation, this operator is injective and so the
term ||& || ys-1/2(x) On the right hand side oE@SS) can be dropped, by the open mapping
principle. This proves the theorem. O
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