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Abstract. We use the computational power of rational homotopy theory to provide an explicit
cochain model for the loop product and the string bracket of a simply connected closed manifoldM.
We prove that the loop homology ofM is isomorphic to the Hochschild cohomology of the cochain
algebraC∗(M) with coefficients inC∗(M). Some explicit computations of the loop product and
the string bracket are given.

Keywords. String homology, rational homotopy, Hochschild cohomology, free loop space, loop
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1. Introduction

LetC∗(X) (respectivelyH∗(X)) be the singular chains (respectively the singular homol-
ogy) of a spaceX with coefficients inQ. For simplicity we identifyH∗(X × X) with
H∗(X)⊗H∗(X) and the singular cohomologyH ∗(X) with the graded dual of the homol-
ogy, i.e.H ∗(X) := H(C∗(X)) = (H∗(X))∨.

Let M be a simply connected closed orientedm-manifold and letLM (respectively
MI and�M) be the space of free loops (respectively paths and based loops). M. Chas
and D. Sullivan [6] have constructed a product, called theloop product

H∗(LM)⊗H∗(LM)→ H∗−m(LM), x ⊗ y 7→ x • y,

so thatH∗(LM) := H∗+m(LM) is a commutative graded algebra, and a morphism, called
theI -homomorphism

I : H∗(LM)→ H∗(�M),

The authors are partly supported by INTAS program 03 51 3251.
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which relates the loop product structure onH∗(LM) with the Pontryagin algebra
H∗(�M). The loop product induces thestring bracketon theS1-equivariant homology
of LM,H∗ = H S1

∗+m(LM),

H∗ ⊗H∗→ H∗−2, a ⊗ b 7→ [a, b],

such that(H, [−,−]) is a graded Lie algebra of degree 2. Few things are known about
this bracket. For surfaces of genus larger than zero, Chas and Sullivan recover formulae
proved in the context of symplectic geometry.

The purpose of this paper is to provide explicit computational tools for the duals of
these two operations in cohomology and for theI -homomorphism.

First we will describe the dual of the loop product (Theorem A) and the dual of the
string bracket (Theorem B) in terms of Sullivan models, [21]. It follows from Theorem A
that the loop product structure onH∗(LM) is invariant under orientation preserving maps
which are quasi-isomorphisms. In Theorem C, we adapt the technics of Theorem A to
a special type of Sullivan models, the cochains of a differential graded Lie algebra with
coefficients in a differential graded Lie module. The main point in this paper is Theo-
rem D which allows us to describe the dual of the loop product in terms of chains (in-
stead of cochains) of a differential graded Lie algebra. This translation is performed by
means of the “cap-homomorphism”. This homomorphism realizes, in some sense, the
Poincaŕe duality at the level of free loop spaces. The other interest for considering the cap-
homomorphism is that it allows us, in Theorem E, to identify the loop product inH∗(LM)
with the Gerstenhaber product on the Hochschild cohomologyHH ∗(C∗(M);C∗(M)).
HereC∗(M) denotes the cochain algebra of singular cochains onM.

Theorem E. LetM be a simply connected closed oriented manifold. There exists a nat-
ural isomorphism of graded algebras

J : H∗(LM)
∼=
→ HH ∗(C∗(M);C∗(M)).

Such an identification has been proved by Merkulov [19] for the field of real numbers
using iterated path integrals. Finally, we show

Theorem F. Let J be the map in Theorem E. There exists a canonical isomorphism of
graded algebras,̄J , making the diagram

H∗(LM)

I

��

J

∼=

// HH ∗(C∗(M);C∗(M))

HH ∗(C∗(M),ε)

��
H∗(�M)

J̄ // HH ∗(C∗(M))

commutative, whereε : C∗(M)→ Q denotes the usual augmentation.

Theorems E and F are complementary results to our previous paper [14]. In particular,
Theorems 2 and 3 in [14] apply verbatim.
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For the convenience of the reader we repeat the relevant material of rational homotopy
theory, without proof, thus making our exposition self-contained. Moreover, we roughly
indicate here the basic ideas of the paper.

Let L be a graded differential Lie model ofM. We denote byULa its enveloping
algebra considered as anL-module for the adjoint representation, andUL∨a its graded
dual. Then the cochain algebraC∗(L;UL∨a ) is a Sullivan model for the free loop space
LM and the map

C∗(L;UL∨a )
C∗(L;µ∨)
−−−−−→ C∗(L;UL∨a ⊗ UL∨a )

is a model for the composition of pathsLM ×M LM → LM whereµ denotes the
multiplication inUL.

On the other hand, if(A ⊗
∧
W, d) is a (Sullivan) model ofLM with A a finite-

dimensional model forM satisfying Poincaŕe duality, there exists a linear map

(A⊗
∧
W,D)⊗A (A⊗

∧
W,D)→ (A⊗

∧
W,D)⊗2

which induces the cohomology Gysin map (see 4.5)

i! : H ∗(LM ×M LM)→ H ∗+m(LM × LM)

of the finite-codimensional embeddingi : LM×M LM ↪→ LM×LM. Since the dual of
the loop product is the compositionH ∗(cM) ◦ i! , the above constructions enable explicit
calculations of the loop product.

The paper is organized as follows.

2. Preliminaries on differential homological algebra.
3. The dual of the loop product.
4. Theorem A. Dual of the loop product in terms of Sullivan models.
5. Theorem B. Dual of the string bracket in terms of Sullivan models.
6. Theorem C. Dual of the loop product in terms of cochains on a differential graded Lie

algebra.
7. Theorem D. Dual of the loop product in terms of chains on a differential graded Lie

algebra.
8. Theorem E. Loop product and Gerstenhaber product.
9. Theorem F.I -homomorphism and Hochschild homology.

2. Preliminaries on differential homological algebra

All the graded vector spaces, algebras, coalgebras and Lie algebrasV are defined overQ
and are supposed to be of finite type, i.e. dimVn <∞ for all n.
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2.1. Graded vector spaces

If V = {Vi}i∈Z is a (lower) gradedQ-vector space (when we need upper graded vector
space we putVi = V −i as usual) thenV ∨ denotes the graded dual vector space andsV

denotes thesuspensionof V :

V ∨ = Hom(V ,Q), (sV )n = Vn−1, (sV )n = V n+1.

Since we work with graded objects, we will pay a special attention to signs. Recall that if
P = {Pi} andN = {Ni} are differential graded vector spaces with∂P : Pi → Pi−1 and
∂N : Ni → Ni−1 then

• P ⊗N is a differential graded vector space:

(P ⊗N)r =
⊕
p+q=r

Pp ⊗Nq , ∂P⊗N = ∂P ⊗ idN + idP ⊗ ∂N ,

• Hom(P,N) is a differential graded vector space:

Homn(P,N) =
∏
k−l=n

Hom(Pl, Nk), DHom(P,N)f = ∂N ◦ f − (−1)|f |f ◦ ∂P .

The same formulae hold ifP = {P i} andN = {N i
} are differential graded vector

spaces withdP : P i → P i+1 anddN : N i
→ N i+1. Later on we will omit subscripts on

the differentials.

2.2. Differential graded algebras, coalgebras and Lie algebras

For precise definitions we refer to [12, §3 c,d and §21]. Recall thatT V denotes the tensor
algebra onV , while T c(V ) is the free supplemented coalgebra generated byV . If C is
a differential graded coalgebra with coproduct8 andA is a differential graded algebra
with productµ, then the cup product,f ∪ g = µ ◦ (f ⊗ g) ◦ 8, gives the differential
graded vector space Hom(C,A) a structure of differential graded algebra.

2.3. Sullivan rational homotopy theory

We refer the reader to [12, §12] for notation, terminology and results concerning Sullivan
models. However, we recall here that ifV = {V i}i≥0 is a gradedQ-vector space we
denote by

∧
V the free graded commutative algebra generated byV . Any path-connected

spaceX admits a Sullivan model

ρX : MX := (
∧
V, d)

'
→ APL(X)

whereAPL denotes the contravariant functor of piecewise linear differential forms, and
ρX is a quasi-isomorphism [12, §10 and §12]. IfX andY are two path-connected spaces
then any continuous mapf : X→ Y admits aSullivan representativeMf . Hereafter we
will make the following identifications:

H ∗(X) = H(APL(X)) = H(MX), H ∗(f ) = H(APL(f )) = H(Mf ).
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2.4. Semifree modules

LetA be a differential graded algebra. A differential gradedA-moduleP is calledsemi-
free if P is equipped with a filtrationP =

⋃
n≥0P(n) satisfyingP(0) = 0, P(n) ⊂

P(n+ 1) and such thatP(n)/P (n− 1) is free on a basis of cycles [12, §6].
For anyA-moduleN , there exists a semifree moduleP and a quasi-isomorphism

ϕ : P → N . The moduleP is called asemifree resolutionof N .

3. The dual of the loop product

3.1. A convenient definition of the dual of the loop product

While M. Chas and D. Sullivan [6] have defined the loop product by using “transversal
geometric chains” it is convenient for our purpose to define directly thedual of the loop
productin the following way. First we replace the spaceLM (respectivelyMI and�M)
by a Hilbert manifold ([1] or [7, Proposition 2.3.1]). Secondly, we consider the commu-
tative diagram

LM×2

p0×p0

��

LM ×M LM

p0

��

ioo Comp // LM

p0

��
M ×M M

1oo M

(1)

where

• Comp denotes composition of free loops,
• p0 is the evaluation at 0 and is thus a locally trivial fibre bundle [3],
• the left hand square is a pullback diagram of locally trivial fibrations,
• the inclusioni is the smooth embedding of the Hilbert manifold of composable loops

into the product of the two Hilbert manifoldsLM × LM.

The embeddings1 and i both have codimensionm. Thus, using the Thom–Pontryagin
theory (see 4.5 for a precise definition), we obtain the Gysin maps

1! : H k(M)→ H k+m(M×2), i! : H k(LM ×M LM)→ H k+m(LM×2).

Thus diagram (1) yields the following diagram:

H k+m(LM×2) H k(LM ×M LM)
i!oo H k(LM)

H k(Comp)oo

H k+m(M×2)

H ∗(p0)
⊗2

OO

H k(M)
1!

oo

H ∗(p0)

OO

H k(M)

H ∗(p0)

OO
(2)

Following [22], [8] or [9], thedual of the loop productis defined by composition of maps
in the upper line:

i! ◦H ∗(Comp) : H ∗(LM)→ H ∗+m(LM×2)
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while the map in the lower line is the dual of the intersection product. The commuta-
tivity of this diagram expresses the fact thatH ∗(p0) is a homomorphism between two
cocommutative graded coalgebras.

3.2. Why is it possible to express this definition in terms of Sullivan models?

First we remark that diagram (1) is the pullback diagram of the diagram

(MI )×2

(p0,p1)
×2

��

MI
×M MI

q

��

i′oo Comp′ // MI

(p0,p1)

��
M×4 M×312,3

oo π1,3
// M×2

(1′)

along the diagram

M×4 M×312,3
oo π1,3

// M×2

M×2

1×2

OO

M
1oo

1′

OO

M

1

OO

where1′ = (1 ⊗ id) ◦1, π1,3(x, y, z) = (x, z), q(α, β) = (α(0), α(1) = β(0), β(1))
and12,3(x, y, z) = (x, y, y, z). The other maps are the obvious ones. The second obser-
vation that once again the Thom–Pontryagin theory yields the commutative diagram

H k+m((MI )×2) H k(MI
×M MI )

i′
!

oo H k(MI )
H ∗(Comp′)oo

H k+m(M×4)

H ∗(p0,p1)
⊗2

OO

H k(M×3)
idM⊗1!

⊗idMoo

H ∗(q)

OO

H k(M×2)

H ∗(p0,p1)

OO

H ∗(π1,3)oo

(2′)

with H ∗(π1,3)(a ⊗ b) = a ⊗ 1⊗ b.
It is then natural to define thepath productas the composition of the maps in the

upper line of the diagram(2′).
Since the loop product appears as a “pullback” of the path product it is worthwhile

to determine the path product. This is the purpose of the last observation: There is a
commutative diagram

(MI )×2 MI
×M MIi′oo Comp′ // MI

M×2

σ×σ

OO

M

σ ′

OO

1oo M

σ

OO
(3)
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whereσ(x) is the constant path atx ∈ M andσ ′(x) = (σ (x), σ (x)). From the properties
of the Thom–Pontryagin construction, diagram (3) converts into a commutative diagram

H k+m((MI )×2) H k(MI
×M MI )

i′
!

oo H k(MI )
Comp′oo

H k+m(M×2)

H ∗(σ )⊗2

OO

H k(M)
1!

oo

H ∗(σ ′)

OO

H k(M)

H ∗(σ )

OO
(3′)

Since1! is the multiplication by the Euler class of the diagonal embedding (see 4.3)
and sinceσ is a homotopy equivalence we obtain a description of the path product in
terms of Sullivan models.

4. Theorem A. The dual of the loop product in terms of Sullivan models

4.1. Relative Sullivan model for loop fibrations

It is convenient to consider a cofibrant Sullivan representative of a mapf : X→ Y called
a relative Sullivan model[12, §14]:λf : MY ↪→ (MY ⊗

∧
V, d) = MX. Our primary

example is the following diagram:

MI

(p0,p1) ""EE
EE

EE
EE

M
'

σoo

1}}{{
{{

{{
{{

M×2

(4)

which describes the fibration associated to the diagonal map, and whereσ(x) is the con-
stant path atx ∈ M. This diagram converts into

MM×2 =M⊗2
M

λ(p0,p1)

uujjjjjjjjjjjjjjj
M1=µ

%%LLLLLLLLLL

MMI = (MM×2 ⊗
∧
sV , d) MM

Mσ

'
oo

(M(4))

In this diagram:

a) MM = (
∧
V, d) is a Sullivan model ofM.

b) µ is the product on
∧
V .

c) The differential in(
∧
V )⊗2

⊗
∧
sV , d) =MMI is defined as in [12, §15, Example 1]:

for v ∈ V, sv ∈ sV ,
d(v ⊗ 1⊗ 1̄) = dv ⊗ 1⊗ 1̄,
d(1⊗ v ⊗ 1̄) = 1⊗ dv ⊗ 1̄,

d(1⊗ 1⊗ sv) = (v ⊗ 1− 1⊗ v)⊗ 1̄−
∞∑
i=1

(sd)i

i!
(v ⊗ 1⊗ 1̄).
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Here 1 and̄1 denote respectively the unit of
∧
V and of

∧
sV , ands is the unique

degree−1 derivation of
∧
V ⊗

∧
V ⊗

∧
sV defined by{

s(v ⊗ 1⊗ 1̄) = 1⊗ 1⊗ sv = s(1⊗ v ⊗ 1̄),
s(1⊗ 1⊗ sv) = 0.

d) Mσ = µ ⊗ ε̄ : ((
∧
V )⊗2

⊗
∧
sV , d) = MMI → MM = (

∧
V, d) is a quasi-

isomorphism with̄ε the canonical augmentation of
∧
sV .

The use of relative Sullivan models is interesting because it converts a pullback diagram
of fibrations into a pushout diagram in the category of differential graded commutative
algebras [12, Proposition 15.8]: Each pullback diagram

f ∗E

p′

��

f ′ // E

p

��
B ′

f // B

(∗)

wherep is any fibration, converts into the pushout diagram in the category of differential
graded commutative algebras,

MB

λp

��

Mf // MB ′

λp′

��
ME = (MB ⊗

∧
W, d)

Mf⊗id
// (MB ′ ⊗

∧
W, d ′) =Mf ∗E

(M(∗))

The differential onMf ∗E is explicitly defined by the canonical isomorphism of graded
algebras

MB ′ ⊗MB
ME =MB ′ ⊗MB

(MB ⊗
∧
W)

∼=
→MB ′ ⊗

∧
W =Mf ∗E .

As a first example, the pullback diagram

LM

p0

��

� � j // MI

(p0,p1)

��
M

1 // M ×M

(5)

converts into the pushout diagram

M⊗2
m

M1=µ //

λ(p0,p1)

��

MM

λp0

��
MMI = (M⊗2

m ⊗
∧
sV , d)

Mj // MLM = (MM ⊗
∧
sV , d)

(M(5))
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whereλp0 is a Sullivan relative model forp0 [12, §12, c]. The differential onMLM =

(
∧
V ⊗

∧
sV , d) is defined byds = −sd wheres denotes the degree−1 derivation

which extends the linear isomorphismV → sV and satisfiess ◦ s = 0. In particular
Mj = µ⊗ id.

In the same way, the pullback diagram

LM×2

p0×p0

��

LM ×M LM
ioo

p0

��
M ×M M

1oo

(6)

converts into the pushout diagram

M⊗2
M

µ //

λp0×p0
��

MM

λp0

��
M⊗2
LM
∼= (M⊗2

M ⊗ (
∧
sV )⊗2, d)

µ⊗id⊗id // (MM ⊗ (
∧
sV )⊗2, d)

(M(6))

The differential onMLM×MLM = (MM ⊗ (
∧
sV )⊗2, d) is defined by

d(v ⊗ 1̄⊗ 1̄) = dv ⊗ 1̄⊗ 1̄,
d(1⊗ sv ⊗ 1̄) = −s(dv ⊗ 1̄⊗ 1̄),
d(1⊗ 1̄⊗ sv) = −s′(dv ⊗ 1̄⊗ 1̄),

v ∈ V, v ∈ V .

Heres ands′ are the unique degree−1 derivations of
∧
V ⊗ (

∧
sV )⊗2 such thats ◦ s =

0= s′ ◦ s′ and forv ∈ V , sv ∈ sV ,
s(v ⊗ 1̄⊗ 1̄) = 1⊗ sv ⊗ 1̄,
s′(v ⊗ 1̄⊗ 1̄) = 1⊗ 1̄⊗ sv,
s(1⊗ sv ⊗ 1̄) = 0= s′(1⊗ sv ⊗ 1̄),
s(1⊗ 1̄⊗ sv) = 0= s′(1⊗ 1̄⊗ sv).

These two examples provide us with relative Sullivan models forLM
p0
→ M and

LM ×M LM
p0
→ M as well as forMi = µ ⊗ id ⊗ id : MLM → MLM×MLM =

MLM ⊗MM
MLM .

In a similar way, the pullback diagram which appears as the left part in diagram(1′)—
call it (7)—converts into the pushout diagram

M⊗4
M

id⊗µ⊗id //

λ
(p0,p1)

×2

��

M⊗3
M

λq

��
M⊗2
MI
∼= (M⊗4

M ⊗ (
∧
sV )⊗2, d)⊗2 id⊗µ⊗id⊗id // (M⊗3

M ⊗ (
∧
sV )⊗2, d)

(M(7))
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where the differential onMMI×MM
I = (M⊗3

M ⊗ (
∧
sV )⊗2, d) is defined forv ∈ V and

v ∈ V by:



d(v⊗1⊗1⊗ 1̄⊗ 1̄) = dv⊗1⊗1⊗ 1̄⊗ 1̄,

d(1⊗v⊗1⊗ 1̄⊗ 1̄) = 1⊗dv⊗1⊗ 1̄⊗ 1̄,

d(1⊗1⊗v⊗ 1̄⊗ 1̄) = 1⊗1⊗1⊗dv⊗ 1̄⊗ 1̄,

d(1⊗1⊗1⊗ sv⊗ 1̄) = (v⊗1−1⊗v)⊗1⊗ 1̄⊗ 1̄−
∞∑
i=1

(sd)i

i!
(v⊗1⊗1⊗ 1̄⊗ 1̄),

d(1⊗1⊗1⊗ 1̄⊗ sv) = 1⊗ (v⊗1−1⊗v)⊗ 1̄⊗ 1̄−
∞∑
i=1

(s′d)i

i!
(1⊗v⊗1⊗ 1̄⊗ 1̄).

Heres ands′ are the unique degree−1 derivations of(
∧
V )⊗3

⊗ (
∧
sV )⊗2 such that

s ◦ s = 0= s′ ◦ s′ and
s(v ⊗ 1⊗ 1⊗ 1̄⊗ 1̄) = 1⊗ 1⊗ 1⊗ sv ⊗ 1̄= s(1⊗ v ⊗ 1⊗ 1̄⊗ 1̄),

s(1⊗ 1⊗ v ⊗ 1̄⊗ 1̄) = 0= s′(v ⊗ 1⊗ 1⊗ 1̄⊗ 1̄),

s′(1⊗ v ⊗ 1⊗ 1̄⊗ 1̄) = 1⊗ 1⊗ 1⊗ 1̄⊗ sv = s(1⊗ 1⊗ v ⊗ 1̄⊗ 1̄).

In particularMi′ = id⊗ µ⊗ id⊗ id.

4.2. Sullivan representatives of compositions of free paths and free loops

Consider the next diagram which relates the right parts of diagrams (1) and(1′):

LM ×M LM
⊂ //

p0

��

Compyyrrrrrrrrrrr
MI
×M MI

q

��

Comp′yyssssssssss

LM
⊂ //

p0

��

MI

(p0,p1)

��

M
(id×1)◦1

//

rrrrrrrrrrrr

rrrrrrrrrrrr

σ ′

'

44

M×3

π1,3

yyrrrrrrrrrr

M
1 //

σ
'

AA

M×2

(8)

Lemma 1. There exists a unique homomorphismMComp′ of differential graded algebras
such that, in the next diagram, the upper square commutes while the lower square com-
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mutes up to homotopy:

MM MM

MMI ⊗MM
MMI

Mσ ′

OO

MMI

MComp′oo

Mσ=µ.ε̄

OO

M⊗3
M

λq

OO

M⊗2
M

M
π1,3oo

λ(p0,p1)

OO (9)

Moreover,Mσ ′ = µ.ε̄ ⊗ µ.ε̄ is a surjective quasi-isomorphism.

Proof. Let us introduce the following notation:

a) V = sV , V̂ = V ,
b) (

∧
V ⊗

∧
V̂ , d) is the acyclic Sullivan algebra whose differentiald is defined by

d(v̄) = v̂ andd(v̂) = 0,
c) π : (

∧
V ⊗

∧
V ⊗

∧
V̂ , d)→ (

∧
V, d) is the quasi-isomorphism defined byπ(v) =

v andπ(v̄) = π(v̂) = 0,
d) s is the derivation on(

∧
V, d)⊗(

∧
V ⊗

∧
V̂ , d) defined bys(v)= v̄, s(v̄)=s(v̂)=0.

Following [12, §15 Example 1], there is an isomorphismϕ defined by

ϕ : MMI → (
∧
V, d)⊗ (

∧
V ⊗

∧
V̂ , d),


ϕ(v ⊗ 1⊗ 1̄) = v,

ϕ(1⊗ v ⊗ 1̄) = v + v̂ +
∞∑
n=1

(sd)n

n!
(v),

ϕ(1⊗ 1⊗ sv) = v̄.

This isomorphism gives the relative Sullivan model of(p0, p1) considered in diagram
(4). The composite

MMI⊗MM
MMI

ϕ⊗MM
ϕ
// (

∧
V, d)⊗(

∧
V⊗

∧
V̂ , d)⊗∧

V (
∧
V, d)⊗(

∧
V⊗

∧
V̂ , d)

id⊗∧
V π

��
(
∧
V, d)⊗(

∧
V⊗

∧
V̂ , d)⊗∧

V (
∧
V, d)

π⊗∧
V id

��
(
∧
V, d) (

∧
V, d)⊗∧

V (
∧
V, d)

id·π ·πoo

is preciselyMσ ′ . From the lifting lemma [12, Lemma 12.4], we deduce that there exists
a unique homomorphismMComp′ such thatMComp′ ◦Mσ ′ = Mσ . It follows from [12,
Proposition 14.6] that the lower square of (9) is commutative up to homotopy. ut
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Therefore, using diagram(M(5)) of 4.1, we obtain the commutative diagram

MMI

Mj=µ⊗id

��

MComp′ // MMI ⊗MM
MMI

Mj⊗MM
Mj

��

∼= (M⊗3
M ⊗ (

∧
sV )⊗2, d) =MMI×MM

I

µ◦(µ⊗id)⊗id
��

MLM

MComp// MLM ⊗MM
MLM∼= (MM ⊗ (

∧
sV )⊗2, d) =MLM×MLM

Thus we have proved:

Proposition 1. The homomorphismMComp is a Sullivan representative ofComp :
LM ×M LM → LM.

4.3. A representative fori! : H ∗(LM ×M LM)→ H ∗+m(LM)⊗2

First recall [2, VI, Theorem 12.4] that the Euler class of the diagonal embedding1 :
M → M ×M (also called the diagonal class) is the cohomology class

e1 =
∑
l

(−1)|βl |β̂l ⊗ βl ∈ H
m(M ×M) = (H ∗(M)⊗H ∗(M))m

where{βl} denotes a homogeneous linear basis ofH ∗(M) and{β̂l} its Poincaŕe dual basis
(〈βi ∪ β̂j , [M]〉 = δji 1).

Observe here thatH ∗(M) is anH ∗(M)⊗2-module via the multiplicationH ∗(1). Thus
1! is mutiplication bye1 and anH ∗(M)⊗2-linear map.

The crucial point in our construction of a representative ofi! is the following result:

Proposition 2. There exists anM⊗2
M -linear map

f : MMI = (M⊗2
M ⊗

∧
sV , d)→M⊗2

M

of degreem such thatf (d(x)) = (−1)md ◦ f (x). Moreover,f is unique up to anM⊗2
M -

linear homotopy and

1!
= H(f ) ◦H(σ)−1.

Proof. The homomorphism defined in 4.1,Mσ : MMI = (M⊗2
M ⊗

∧
sV , d) → MM ,

is anM⊗2
M -semifree resolution (see 2.4). Thus (see [11, Appendix]) we have the Moore

spectral sequence

Extp,qH⊗H (H,H ⊗H)⇒ Extp+q
M⊗2

M

(MM ,M
⊗2
M ) := H ∗(HomM⊗2

M
(MMI ,MM)),

with H = H(
∧
V, d). The spectral sequence can also be constructed by replacing the

minimal models by Halperin–Stasheff filtered models ([16]) and by using the induced
filtration on the Hom complex. SinceH ⊗ H is a Poincaŕe duality algebra of formal
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dimension 2m, by [11, Theorem 3.1] we have

Extp,qH⊗H (Q, H ⊗H) ∼=
{
{0} if p + q 6= 2m,
Q if p + q = 2m.

Induction on the dimension ofE proves that Extp,qH⊗H (E,H ⊗ H) = 0 if 0 ≤ p + q <
2m − d for any finite-dimensionalH ⊗ H -moduleE concentrated in degrees≤ d. In
particular,

Extp,qH⊗H (H,H ⊗H) = 0 if 0 ≤ p + q < m. (C1)

On the other hand, sinceM is simply connected, we haveHm−1
= 0, and from the long

exact sequence associated to the short exact sequence 0→ Hm
→ H → H/Hm

→ 0
we deduce that

Extp,qH⊗H (H,H ⊗H)
∼=

{
{0} if p + q = m+ 1,
Q for (p, q) such thatp + q = m.

(C2)

Conditions(C1) and(C2) and the convergence of the Moore spectral sequence imply that

Extm
M⊗2

M

(MM ,M
⊗2
M ) ∼= Q.

Multiplication by e1 defines a generator of Extm
H⊗H (H,H ⊗ H) which survives in

Extm
M⊗2

M

(MM ,M
⊗2
M ) ∼= Q. Any cocycle in HomM⊗2

M
(MMI ,MM) can be viewed as a

mapf satisfying the conclusion of Proposition 2. Iff andf ′ are two such cocycles then
f − f ′ = Dh andh is the required homotopy betweenf andf ′. ut

The proof of the next result is postponed to Subsection 4.5.

Proposition 3. The mapM!
i , defined as the composition of the following natural maps:

MMI ⊗MM
MLM×MLM

' //

M!
i

##GGGGGGGGGGGGGGGGGGGGGGGG
MMI ⊗M⊗2

M
M⊗2
ML

f⊗id
��

M⊗2
M ⊗M⊗2

M
M⊗2
LM

'

��
M⊗2
LM

is such that

i! = H(M!
i) ◦H(Mσ ⊗ id)−1 : H k(LM ×M LM)→ H ∗+m(LM×2).
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4.4. Statement of Theorem A and Examples

From diagram (2) and Propositions 1 and 3 we deduce our first result:

Theorem A. The dual of the loop product

H ∗(LM)
H ∗(Comp)
−−−−−→ H ∗(LM ×M LM)

i!

→ H ∗+m(LM×2)

is induced in homology by the maps

MLM

MComp

��
MLM×MLM =MM ⊗MM

MLM×MLM MMI ⊗MM
MLM×MLM 'MLM×MLM

Mσ⊗id

'
oo

M!
i

��
MLM ⊗MLM

Example: Formal spaces.Let M be a formal space, i.e. a spaceM whose minimal
modelMM = (

∧
V, d) is quasi-isomorphic to(H = H ∗(M),0). Examples of formal

spaces are given by connected compact Kähler manifolds ([10]) and quotients of compact
connected Lie groups by closed subgroups of the same rank. WhenM is a formal space
the dual of the loop product is induced in homology by the maps

(H ⊗
∧
sV ,D)

H(MComp)

��
(H ⊗ (

∧
sV )⊗2, d) (H⊗2

⊗
∧
sV )⊗H (H ⊗ (

∧
sV )⊗2)

µ.ε̄⊗idoo

M!
i

��
(H⊗2

⊗ (
∧
sV )⊗2, d)

Let us describe explicitly the particular caseM = CP n. The minimal model ofCP n is
given by(

∧
(x, y), d), d(y) = xn+1, |x| = 2, |y| = 2n + 1. Thus the relative Sullivan

model of the free loop space is(
∧
(x, x̄, y, ȳ), d), d(x̄) = 0,d(ȳ) = −(n+1)xnx̄. Since

we have a quasi-isomorphism(
∧
(x, y), d)→ (

∧
(x)/(xn+1), d) =: H , the spaceCP n

is formal. A linear basis of

H ∗(LM) = H(
∧
(x, x̄, ȳ)/(yn+1), d) ∼= Q · 1⊕ (

∧
≥1
(x, x̄)/(xn+1, xnx̄)⊗

∧
ȳ)

is formed by the elements 1,xpȳ[q] , andxr x̄ȳ[s] , p = 1, . . . , n, q ≥ 0, s ≥ 0, r =
0, . . . , n− 1, with ȳ[s]

= ȳs/s!.



Rational string topology 137

A Sullivan representative of the composition of free loops Comp :LM ×M LM

→ LM is given by

MComp(x̄) = x̄ + x̄
′, MComp(ȳ) = ȳ + ȳ

′
−
n(n+ 1)

2
xn−1x̄x̄′.

The dual of the loop product is induced by the map

θ : (H ∗(M)⊗
∧
(x̄, ȳ), d)→ (H ∗(M)⊗

∧
(x̄, ȳ), d)⊗ (H ∗(M)⊗

∧
(x̄, ȳ), d),

θ(α ⊗ ȳ[s]) =

n∑
p=0

s∑
j=0

αxpȳ[j ]
⊗ xn−pȳ[s−j ]

−
n(n+ 1)

2

n∑
p=0

s−1∑
j=0

αxn−1+px̄ȳ[j ]
⊗ xn−px̄ȳ[s−j ],

θ(α ⊗ x̄ ⊗ ȳ[s]) = (1⊗ x̄ + x̄ ⊗ 1) ·
( n∑
p=0

s∑
j=0

αxpȳ[j ]
⊗ xn−py[s−j ]

)
,

with α ∈ H ∗(M). The dual basis

1, ap,q , br,s, p = 1, . . . , n, q ≥ 0, s ≥ 0, r = 0, . . . , n− 1,

with |ap,q | = 2p+2qn, |br,s | = 2r+1+2sn, is a linear basis ofH∗(LM). Thus the loop
productH∗(LM × LM)→ H∗−m(LM), x ⊗ y 7→ x • y, is described by the formulae

ap,q •ar,s = ap+r−n,q+s, ap,q •br,s = bp+r−n,q+s, (an−1,0)
n
= 1, 1•an,1 = 0 .

This shows that

H∗(L(CP n);Q) ∼=
∧
(a, b, t)/(an+1, anb, ant),

with |a| = −2, |b| = −1 and|t | = 2n, a = an−1,0, b = bn−1,0, t = an,1 (cf. [9]).

4.5. Proof of Proposition 3

Let M andN be (smooth Banach and without boundary) connected manifolds andf :
M → N be a (smooth) closed embedding [18, II, §2]. Then we have the exact sequence
of fiber bundles

0→ TM
Tf
→ TN|M → νf → 0

whereTM andTN are the tangent bundles andνf is thenormal fiber bundle off . By
definition of an immersion, this exact sequence splits [18, II, Proposition 2.3]. Hereafter
we will identify νf with a factor bundle ofTN|M . When the fiber ofνf is of finite di-
mensionk, the embedding has codimensionk. Consider the associated disk and sphere
bundles,νD, νS , and theThom classof the oriented normal fiber bundle pair(νD, νS).
The exponential mapD ⊂ TN → N restricted toνf is a local isomorphism on the zero
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section of the bundleTN → N . Sincef is a closed embedding and sinceN admits a par-
tition of unity, by [18, IV, Theorem 5.1], there exists an open neighborhoodZ of the zero
section ofνf , an open neighborhoodU of f (M) in N , and an isomorphismθ : Z → U

which identifies the zero section ofνf with f (M). Sincef has finite codimensionk we

identify Z with νDf , and the isomorphismνDf
θ
→ U =: tubef restricts to an isomor-

phismνSf
∼= θ(νSf ) =: ∂ tubef . The above discussion is summarized in the commutative

diagram

H ∗(N,N − f (M))

∼= Excision
��

j (N,N−f (M)) // H ∗(N)

��
H ∗(tubef, ∂ tubef )

j (tubef,∂ tubef )

// H ∗(tubef )

H ∗(νDf , ν
S
f )

j
(νS
f
,νS
f
)

// H ∗(νDf )

H ∗−k(M)

∼=H ∗(πD◦f )(−)∪τf

OO

−∪eπ
S

// H ∗(M)

πD◦f−1
|f (M)

OO

TheH ∗(N)-linear mapf ! defined as the composition of the natural homomorphisms

H ∗+k(νDf , ν
S
f ) = H

∗(tubef, ∂tubef )
(Excision)−1

∼=

// H ∗(N,N − f (M))

j (N,N−f (M))

��
H ∗(M)

f !
//

H ∗(πD◦f )(−)∪τf

OO

H ∗(N)

is called thecohomology Gysin mapandf !(1) = ef ∈ H k(N) is called theEuler class
of the embeddingf ([20]).

End of proof of Proposition 3.First consider the commutative diagram

E //

��

LM×2

p×2
0

��

F
' //

��

'

=={{{{{{{{{
LM ×M LM

i

88qqqqqqqqqqq

p0

��

σ×id
'

eeLLLLLLLLLLL

MI
p0×p1 // M×2

MI

'

=={{{{{{{{ p0 // M

σ

'

eeLLLLLLLLLLL

1

88qqqqqqqqqqqq

where the front face and the back face of the cube are pullback diagrams.
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Secondly, observe that

H ∗(E) = H(MMI ⊗M⊗2
M

M⊗2
LM) and H ∗(F ) = H(MMI ⊗MM

MLM×MM
LM).

From Proposition 2 we have the associated commutative diagram

H ∗(E)
H(f⊗id) //

∼=yyrrrrrrrrrr
H(σ×id)

∼= ((PPPPPPPPPPPP H(LM)⊗2

H ∗(F ) H ∗(LM ×M LM)

i!
66mmmmmmmmmmmmH ∗(p0)oo

H ∗(MI )

OO

H(f ) //

H(σ)

∼= ''PPPPPPPPPPPP
∼=

yyssssssssss
H ∗(M)⊗2

OO

H ∗(MI )

H ∗(p0)

OO

H ∗(M)

OO

H ∗(p0)oo

1!
66nnnnnnnnnnnnn

This ends the proof of Proposition 3. ut

5. Theorem B. String bracket in terms of Sullivan models

5.1. Statement and proof of Theorem B

The string homology(respectivelystring cohomology) is the desuspended equivariant
homology of the free loop space (respectively the graded dual of the desuspended equiv-
ariant homology)

H∗ = H S1

∗+m(LM) = H∗+m(LM ×S1 ES
1) (respectivelyH∗ = (H∗)∨).

Let ξ ∈ H 2(LM ×S1 ES1) be the characteristic class of the circle bundleS1
→

LM × ES1 p
→ LM ×S1 ES1 and consider the associated Gysin sequence

· · · → Hn
H(p)
−→ Hn

ξ∩−
−→ Hn−2

M
−→ Hn−1→ · · · . (10)

Thestring bracketonH∗ is the bilinear map (see [6])

[−,−] : H∗ ⊗H∗→ H∗−2, a ⊗ b 7→ [a, b] = (−1)|a|H∗(p)(M(a) •M(b)),

where• denotes the loop product onH∗(LM).

Let MM

λp0
↪→ MLM = (MM ⊗

∧
sV , d) be a Sullivan model ofLM

p0
→ M (see

diagram (5)). Then a Sullivan representative for the inclusionLM → LM ×S1 ES1 is
given by theMLM -linear map (see [4])

π : (MLM ⊗
∧
u,D)→MLM , 1⊗ u 7→ 0,
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where(MLM ⊗
∧
u,D) is a Sullivan model for the equivariant free loop spaceLM ×S1

ES1 whose differentialD is given byD(u) = 0, |u| = 2,D(v) = d(v)+us(v),D(sv) =
−s(dv). This proves that the dual of the Gysin sequence (10) is the homology long exact
sequence associated to the short exact sequence of cochain complexes

0→ (MLM ⊗
∧
u,D)

µu
→ (MLM ⊗

∧
u,D)

π
→MLM → 0.

The connecting map̃s is induced by the derivations considered in the definition ofMLM

(see 4.1) andµu denotes multiplication by the cocycleu. Then Theorem B follows from
Theorem A and the definition of the string bracket:

Theorem B. The dual of the string bracket

B∨ : H∗→ (H∗ ⊗H∗)∗+2

is induced in homology by the homomorphisms of complexes:

MLM

MComp

��

(MLM⊗
∧
u,D)

πoo

MLM×MLM =MM⊗MM
MLM×MLM MMI⊗MM

MLM×MLM 'MLM×MLM'

µ.ε̄⊗idoo

M!
i

��
(MLM⊗

∧
u,D)⊗(MLM⊗

∧
u,D) MLM⊗MLM

s̃⊗s̃oo

5.2. Examples

1) Assume thatH ∗(M) is equal to
∧
u with |u| odd, or to

∧
u/(un+1) with |u| even.

From [4], we have the following facts:
If H ∗(M) =

∧
u with |u| = 2p + 1 thenH2i = 0 for all i.

If H ∗(M) =
∧
u/(un+1) with |u| = 2p, then dimQH2i = 1 for all i.

Furthermore, the spaceM is formal and it is shown in [23] that the mapξ ∩ − is an
isomorphism.

This proves, in the two cases, the nullity of the maps

E = H∗(p) : H2i → H2i and M : H2i −→ H2i+1.

Let a ∈ H2i−1 andb ∈ H2j−1, for some(i, j) ∈ Z2. ThenM(a) •M(b) ∈ H2(i+j+1), so
we have [a, b] = −E(M(a) •M(b)) = 0. Thus, for such manifoldsM the string bracket
is trivial.

2) If M := S2k+1
× S2k+1, k ≥ 1, then models forM, LM andLM ×S1 ES1 are given

by
M : (

∧
(x, y),0),

LM : (
∧
(x, y, x̄, ȳ),0),

LM ×S1 ES1 : (
∧
(x, y, x̄, ȳ, u),D),

{
Du = D(x̄) = D(ȳ) = 0,
Dy = uȳ, Dx = ux̄.
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A set of cocycles representing a basis of the vector spaceH̃ ∗
S1(LM) := H ∗

S1(LM)/Qu is
formed by the elements ([4])

ea,b = x̄
a ȳb, (a, b) ∈ N2

− (0,0), fa,b = (yx̄ − xȳ)x̄
a ȳb, (a, b) ∈ N2.

The vector spacẽH ∗(LM) has the following basis:{
ea,b,

fa,b,


e′a,b = xyx̄

a ȳb, (a, b) ∈ N2,

f ′a,b = xx̄
a ȳb, (a, b) ∈ N2,

f ′′b = yȳ
b, b ∈ N.

From the above description of the Gysin sequence we deduceH ∗(p)(ea,b) = ea,b,
H ∗(p)(fa,b) = fa,b, M ′(f ′a,b) = ea+1,b, M ′(e′a,b) = fa,b, M

′(f ′′b ) = e0,b+1, M ′(ea,b)
= 0, andM ′(fa,b) = 0.

To fix signs, denote byxy the fundamental class ofM. A straightforward computation
shows that

B∨(ur) = 0,

B∨(x̄pȳq) =
p∑
r=0

q∑
s=0

(
p

r

)(
q

s

)
(x̄r ȳs+1

⊗ x̄p−r+1ȳq−s − x̄r+1ȳs ⊗ x̄p−r ȳq−s+1)

B∨(fp,q) = (f0,0⊗ 1+ 1⊗ f0,0)(x̄ ⊗ ȳ − ȳ ⊗ x̄) · B∨(x̄pȳq).

To describe the string bracket inH∗ we choose the dual basistr , ap,q andbp,q to ur ,
x̄pȳq andfp,q . In that basis the string bracket satisfies

[bk,t , al,m] =

(
k + l

k

)(
m+ t

t

)
km− lt

(k + l)(t +m)
bk+l−1,t+m−1,

[ak,t , al,m] =

(
k + l

k

)(
m+ t

t

)
lt − km

(k + l)(t +m)
ak+l−1,t+m−1,

[br,s, bm,n] = 0.

In particular the string Lie algebraH∗ is not nilpotent, since for instance [a1,1, ar,s ] =
(r − s)ar,s .

6. Theorem C. Dual of the loop product in terms of cochains on a differential
graded Lie algebra

6.1. Chains and cochains on a differential graded Lie algebra

Let (L, ∂) be a differential graded Lie algebra with∂ : Li → Li−1 and(P, ∂) (respec-
tively (Q, ∂)) be a left (respectively right) differentialL-module. Thetwo-sided chain
complexC∗(P ;L;Q) is defined as follows:

Ck(P ;L;Q) = (P ⊗
∧k

sL⊗Q, ∂0+ ∂1).
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A generic element is writtenp⊗ sx1∧ · · · ∧ sxk ⊗ q with degree|p| + |q| +
∑k
i=1 |sxi |.

The differential∂ = ∂0+ ∂1 is defined by

Ck(P ;L;Q)
∂0
→ Ck(P ;L;Q), Ck(P ;L;Q)

∂1
→ Ck−1(P ;L;Q),

∂0(p ⊗ c ⊗ q) = ∂p ⊗ sx1 ∧ · · · ∧ sxk ⊗ q

− p ⊗

k∑
i=1

(−1)|p|+εi sx1 ∧ · · · ∧ s∂xi ∧ · · · ∧ sxk ⊗ q

+ (−1)|p|+εkp ⊗ c ⊗ ∂q,

∂1(p ⊗ sx1 ∧ · · · ∧ sxk ⊗ q)

=

k∑
i=1

(−1)|p|+|sxi |εip · xi ⊗ sx1 ∧ · · · ŝxi · · · ∧ sxk ⊗ q

+ p ⊗
∑

1≤i<j≤k

(−1)|p|+εij s[xi, xj ] ∧ · · · ŝxi · · · ŝxj · · · ∧ sxk ⊗ ∂q

+

k∑
i=1

(−1)|p|+εk+1+|xi |+|sxi |εk,ip ⊗ sx1 ∧ · · · ŝxi · · · ∧ sxk ⊗ xi · q

whereεi,j = εi+1+ εj for i < j andεi =
∑
k<i |sxk|.

The chain coalgebraof (L, ∂) is the graded differential coalgebraC∗(L) =
(
∧
sL, ∂0+ ∂1) := C∗(Q;L;Q) with coproduct

sx1 ∧ · · · ∧ sxk 7→

k∑
j=0

∑
σ∈Sh(j)

εσ (sxσ(1) ∧ · · · ∧ sxσ(j))⊗ (sxσ(j+1) ∧ · · · ∧ sxσ(k)),

whereεσ is the graded signature and Sh(j) denotes the set of(j, k − j)-shuffles.
Recall that ifQ is a leftL-module then it is also a rightL-module for the action

defined bya · x := −(−1)|a|·|x|x · a, a ∈ Q, x ∈ UL. For any leftL-differential module
Q (respectively for any right differential moduleP ) put

C∗(L;Q) = C∗(Q;L;Q) (respectivelyC∗(P ;L) = C∗(P ;L;Q)).

Thus, as graded vector spaces,C∗(L;Q) =
∧
sL⊗Q andC∗(P ;L) = P ⊗

∧
sL. The

cochain complexof L with coefficients in a rightL-moduleP is defined by

C∗(L;P) = HomUL(C∗(L;UL), P ).

WhenQ = UL with the action induced by left multiplication thenC∗(L;UL) =
(
∧
sL ⊗ UL, ∂) is a left C∗(L)-comodule and a rightUL-module and both structures

are compatible. Moreover, the inclusionQ ↪→ C∗(L;UL) is a quasi-isomorphism and
C∗(L;UL) is a semifreeL-module [12, Proposition 22.3]. Thus,

H(C∗(L;P)) = TorL(Q, P ) and H(C∗(L;P)) = ExtL(Q, P ).
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6.2. Cochains with coefficients in the adjoint moduleULa and free loop space

Let (L, ∂) be as in 6.1 and consider theadjoint modulesULa andUL∨a with actions
defined by

l · x = [l, x] onULa,
(f · l)(x) = f ([l, x]) onUL∨a ,

l ∈ L, x ∈ UL, f ∈ UL∨.

Moreover, sinceUL is a Hopf algebra, for any right (respectively left) differentialL-
modules(P, ∂) (respectively(Q, ∂)) the left diagonalL-moduleP ⊗Q is defined by

x · (a ⊗ b) =
∑
i

(−1)|x
′
i | |a|(xi · a)⊗ (x

′

i · b), x ∈ UL, a ∈ P, b ∈ Q,

wherex 7→
∑
i xi ⊗ x

′

i denotes the coproduct inUL.
Now let (L, ∂) be such that ([12, Lemma 23.1 and (24.b)]) the differential graded

algebraC∗(L) is quasi-isomorphic to a minimal model ofM:

C∗(L) = (
∧
V, d) 'MM .

The differential graded Lie algebra is uniquely defined by this condition. We haveV =

s(L∨), H(L, ∂) = π∗(�M) andH∗(�M) = H(UL, ∂) as Hopf algebras [12, Theorem
21.15]. Moreover, by the Poincaré–Birkhoff–Witt theorem [12, Proposition 21.2], the nat-
ural linear isomorphismγ :

∧
L→ UL, x1 ∧ · · · ∧ xk 7→ (1/k!)

∑
σ εσxσ(1) · · · xσ(k),

is an isomorphism of graded coalgebras. Therefore we have the following isomorphism
of graded algebras:

UL∨ ∼=
∧
sV .

Lemma 4. ConsideringULa as a rightL-module, the graded linear isomorphisms

C∗(L;UL∨a ) ∼= C∗(L;UL∨) ∼= C∗(L)⊗ UL∨ ∼= C∗(L)⊗
∧
sV

define a structure of graded algebra onC∗(L;UL∨a ) which is compatible with the differ-
ential ofC∗(L;UL∨a ). Moreover, the natural inclusion

C∗(L) ↪→ C∗(L;UL∨a ) ' (C∗(L)⊗
∧
sV , d), f 7→ f ⊗ 1UL∨ ,

is a relative Sullivan model ofp0 : LM → M.

Proof. Consider the differential graded Lie algebraLS defined as follows:

LSn = Ln ⊕ Ln, Ln = Ln+1, dx = −dx, (−1)|a|[a, b] = [a, b], [a, b] = 0.

Then the inclusion

C∗(L) ↪→ C∗(LS) = (
∧
(V ⊕ sV ), d) = (C∗(L)⊗

∧
sV , d) with d(sv) = −sd(v)

is a relative Sullivan model ofp0 : LM → M (see 4.1, diagram (5)). The rest of the proof
follows from the following sequence of isomorphisms of differential graded algebras:

C∗(LS) := Hom(C∗(L;ULa),Q) ∼= Hom(C∗(L;UL)⊗UL ULa,Q)
∼= HomUL(C∗(L;UL),UL∨a ) =: C∗(L;UL∨a ). ut
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6.3. Statement and proof of Theorem C

The multiplicationν : UL ⊗ UL → UL which induces the Pontryagin product on
H∗(�M) is not a morphism of graded algebras. Nonetheless,ν : ULa ⊗ULa → ULa is
a morphism ofUL-modules whenULa ⊗ ULa is the diagonal leftL-module. Thus the
dual of the product onUL, ν∨ : UL∨a → UL∨a ⊗UL

∨
a , is a homomorphism of differential

graded rightUL-modules whenUL∨a ⊗ UL
∨
a denotes the right diagonal module.

Proposition 4. The morphism of complexes

C∗(L; ν∨) : C∗(L,UL∨a )→ C∗(L,UL∨a ⊗ UL∨a ) ' (C∗(L)⊗ (
∧
sV )⊗2, d)

is a homomorphism of commutative differential graded algebras. This is a Sullivan model

for the composition of free loopsLM ×M LM
Comp
−−−→ LM.

Proof. The contractible chain complexesC∗(L;UL) andC∗(UL;L), defined in 6.1, are
differential graded coalgebras via the graded linear isomorphismsC∗(L;UL) ∼= C∗(L)⊗
UL andC∗(UL;L) ∼= UL⊗C∗(L). Therefore, the coproductµ∨ onC∗L induces a quasi-
isomorphism of differential graded coalgebras

8 : C∗(L)→ C∗(L;UL)⊗UL C∗(UL;L) ∼= (C∗(L)⊗ UL⊗ C∗(L), ∂)

defined by8(x) =
∑
i xi ⊗ 1⊗ x′i whenµ∨(x) =

∑
i xi ⊗ x

′

i , and the dual map

8∨ : (C∗(L)⊗ UL∨ ⊗ C∗(L), d) := (C∗(L;UL)⊗UL C∗(UL;L))∨→ C∗(L) (11)

is a quasi-isomorphism of differential graded algebras. This implies that the natural injec-
tion

C∗(L)⊗ C∗(L) λ
→ (C∗(L)⊗ UL∨ ⊗ C∗(L), d) ∼= (C∗(L)⊗2

⊗
∧
sV , d),

x ⊗ y 7→ x ⊗ 1⊗ y,

is a relative Sullivan model for the productµ : C∗(L)⊗C∗(L)→ C∗(L) and thus, by dia-

gram(M(4)) of 4.1, it is a Sullivan relative model for the path fibrationMI (p0,p1)
−−−→ M×2.

This fact allows us to follow the construction performed in 4.2 withMMI = (C∗(L) ⊗
UL∨ ⊗ C∗(L), d) andMσ ′ = 8

∨.
First observe that the cochain model of the vertical face on the right in diagram (8),

MI
×M MI

Comp′ //

q

��

MI

(p0,p1)

��
M×3 π1,3

// M×2
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is the pushout diagram

E
id⊗∇⊗id // C(L)⊗ UL∨ ⊗ C(L)

C∗(L)⊗3

id⊗ε∨⊗id⊗ε∨⊗id

OO

id⊗τ⊗id // C∗(L)⊗2

id⊗ε∨

OO

whereε : UL→ Q is the augmentation,τ : Q ↪→ C(L) is the natural inclusion and∇ is
the composition

UL∨
ν∨

→ (UL∨)⊗2
' UL∨ ⊗Q⊗ UL∨ id⊗τ⊗id

−−−−→ UL∨ ⊗ C∗(L)⊗ UL∨.

Observe that

E = C∗(L)⊗ UL∨ ⊗ C∗(L)⊗ UL∨ ⊗ C∗(L)
' (C∗(L;UL)⊗UL C∗(UL;L;UL)⊗UL C∗(UL;L))∨ .

Secondly, we use the machinery developed in (4.2) to translate diagram (8) in terms of
Sullivan models. We deduce the explicit model of the map Comp by considering the
pushout

(C∗(L)⊗(UL∨)⊗2, d) E
id⊗ε∨⊗idoo

(C∗(L)⊗UL∨, d)

MComp
66nnnnnnnnnnnn

(C∗(L)⊗UL∨⊗C∗(L), d) =MMI

MComp′=id⊗∇⊗id

66mmmmmmmmmmmmmmmM⊂oo

C∗(L)

nnnnnnnnnnnnnn

nnnnnnnnnnnnnn

λ

OO

C∗(L)⊗3

λ

OO

µ◦(id⊗µ)
oo

MM

λ

OO

C∗(L)⊗2

λ

OO

µ
oo

i13

66mmmmmmmmmmmm

The mapMComp : (C∗(L)⊗ UL∨, d)→ (C∗(L)⊗ (UL∨)⊗2, d) is preciselyC(L; ν∨).
ut

Remark. Denote byLS1 andLS2 two copies ofLS , andLT = LS1⊕LL
S
2 = L⊕ L̄1⊕ L̄2.

We denote byπ : LT → LS the projection obtained by mapping identically eachLSi
toLS . We observe thatC∗(LT ) is isomorphic toC∗(L;UL∨a⊗UL∨a ) and that the following
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diagram commutes:

C∗(L;UL∨a )
C∗(L;ν∨) // C∗(L;UL∨a ⊗ UL∨a )

Hom(C∗(L;ULa),Q)
Hom(C∗(L;ν),Q) // Hom(C∗(L;ULa ⊗ ULa),Q)

C∗(LS)
C∗(π) // C∗(LT )

This shows thatπ : LT → LS is a “Lie representative” for the composition of free loops
LM ×M LM → LM.

Proposition 4 and Theorem A yield

Theorem C. If C∗(L) is a Sullivan model ofM then the dual of the loop product

H ∗(LM)
H ∗(Comp)
−−−−→ H ∗(LM ×M LM)

i!

→ H ∗+m(LM×2)

is induced in homology by the maps

C∗(L;UL∨a )
C∗(L;ν∨) // C∗(L;UL∨a⊗UL∨a ) = C∗(L)⊗C∗(L)C∗(L;UL∨a⊗UL∨a )

C∗(L;UL∨a )⊗C∗(L;UL∨a ) (C∗(L)⊗UL∨⊗C∗(L), d)⊗C∗(L)C∗(L;UL∨a⊗UL∨a )
M!

ioo

8∨⊗id

OO

(C∗(L;UL∨a )⊗C∗(L;UL∨a )⊗
∧
sV , d)

with8∨ defined in(11).

6.4. Example

Recall that acoformal spaceM is a space that admits a Sullivan minimal model with
a purely quadratic differential. In this caseC∗(L) = (

∧
V, d), L = π∗(�M) ⊗ Q and

H ∗(�M) =
∧
sV . Thus,

If M is a coformal manifold with minimal model(
∧
V, d), then a model for the path

compositionLM ×M LM → LM is given by

id⊗ ν∨ : (
∧
V ⊗

∧
V , d)→ (

∧
V ⊗ (

∧
V )⊗2, d),

whereν is the Pontryagin product onH∗(�M) and(
∧
V ⊗

∧
V , d) is the model of the

free loop space, defined in4.1.
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As a particular case consider the 11-dimensional manifoldM obtained by taking the
pullback of the tangent sphere bundle toS6 along the mapf : S3

× S3
→ S6 that

collapses the 3-skeleton into a point

M //

��

τSS
6

��
S3
× S3

f // S6

The minimal model ofM is

(
∧
(x, y, z), d), dx = dy = 0, dz = xy, |x| = |y| = 3, |z| = 5.

ThusM is a coformal space. A model for the path compositionMI
×M MI

→ MI is
given by

ϕ : (
∧
(x, y, z, x′, y′, z′, x̄, ȳ, z̄), d)

→ (
∧
(x, y, z, x′, y′, z′, x′′, y′′, z′′, x̄, ȳ, z̄, x̄′, ȳ′, z̄′), d),

with d(x̄) = x − x′, d(ȳ) = y − y′, d(z̄) = z − z′ − 1
2 x̄(y + y

′) + 1
2(x + x

′)ȳ,
d(x̄′) = x′ − x′′, d(ȳ′) = y′ − y′′, d(z̄′) = z′ − z′′ − 1

2 x̄
′(y′ + y′′) + 1

2(x
′
+ x′′)ȳ′,

ϕ(x̄) = x̄ + x̄′, ϕ(ȳ) = ȳ + ȳ′, ϕ(z̄) = z̄+ z̄′ + 1
2 x̄ȳ
′
−

1
2 x̄
′ȳ. The induced model for the

path compositionLM ×M LM → LM is then given by

ϕ : (
∧
(x, y, z, x̄, ȳ, z̄), d)→ (

∧
(x, y, z, x̄, ȳ, z̄, x̄′, ȳ′, z̄′), d),

with d(x̄) = 0, d(ȳ) = 0, d(z̄) = −x̄y + xȳ, d(x̄′) = 0, d(ȳ′) = 0, d(z̄′) = −x̄′y + xȳ′,
ϕ(x̄) = x̄ + x̄′, ϕ(ȳ) = ȳ + ȳ′, ϕ(z̄) = z̄+ z̄′ + 1

2 x̄ȳ
′
−

1
2 x̄
′ȳ.

7. Dual of the loop product in terms of chains on a differential graded Lie algebra

7.1. The cap-homomorphism

Let (L, ∂) be a differential graded Lie algebra,N be a differential gradedL-module and
C∗(L;N), C∗(L;N) be as in 6.1. Letc =

∑
i sxi1 ∧ · · · ∧ sxiq ∈ Cq(L) be a cycle of

degreem. We define thecap product byc:

capc : Cq−r(L;N) = HomUL(Cq−r(L;UL),N)→ Cr(L;N), f 7→ f ∩ c,

where
f ∩ c = (−1)m

∑
i

∑
σ∈6q

(−1)|f |·|sxσ(i1)∧···∧sxσ(ir )|εσ

· sxσ(i1) ∧ · · · ∧ sxσ(ir ) ⊗ f (sxσ(ir+1) ∧ · · · ∧ sxσ(iq )).

A standard computation proves:

Lemma 5. The morphismcapc is a homomorphism of complexes which is natural with
respect to homomorphisms of differential gradedL-modules.
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7.2. Statement of Theorem D

Since the dual of the multiplicationν∨ : UL∨a → UL∨a ⊗ UL
∨
a is a morphism ofUL-

modules, Lemma 5 implies:

Proposition 5. The following diagram commutes:

C∗(L;UL∨a )
C∗(L;ν∨)// C∗(L;UL∨a ⊗ UL∨a )

C∗(L;UL∨a )

capc

OO

C∗(L;ν∨)// C∗(L;UL∨a ⊗ UL∨a )

capc

OO

The next result, whose proof is postponed to Subsection 7.3, furnishes a representative of
the Gysin mapi! : H ∗(LM ⊗M LM)→ H ∗+m(LM×2) at the level of chains.

Let (L, ∂) be such thatC∗(L) ' MM . The algebraH ∗(C∗(L)) = H ∗(M) is a
Poincaŕe duality algebra with a fundamental class [M] ∈ Hm(M). We denote byu a
cycle in C∗(L) representing [M]. Then an easy spectral sequence argument shows that
capu : C∗(L;N)→ C∗(L;N) is a quasi-isomorphism.

Proposition 6. With the notation of6.2, the following diagram commutes in homology:

C∗(L;UL∨a ⊗ UL∨a )
C∗(δ;id) // C∗(L;UL∨a )⊗ C∗(L;UL∨a )

C∗(L;UL∨a ⊗ UL∨a )

capu

OO

(C∗(L;UL∨a )⊗ C∗(L;UL∨a )⊗
∧
V , d)

(8′)∨⊗id ∼=

OO

M!
i // C∗(L;UL∨a )⊗ C∗(L;UL∨a )

capu⊗capu

OO

Hereδ : L→ L⊕ L, x 7→ (x, x).

It follows directly from Propositions 5 and 6 that the coproduct

C∗(L;UL∨a )
C∗(L;ν∨)
−−−−→ C∗(L;UL∨a ⊗ UL∨a )

C∗(δ;id)
−−−−→ C∗(L;UL∨a )⊗ C∗(L;UL∨a )

induces onH∗(LM) a coproduct

H∗(LM)→ H∗(LM)⊗H∗(LM)

which is identified via the linear mapH(capu) with the dual of the loop product

H ∗(LM)→ (H ∗(LM)⊗H ∗(LM))∗+m.

Now, observe that this coproduct onC∗(L;UL∨a ) coincides with the coproduct ob-
tained by the tensor product of the coalgebraC∗(L) with the coalgebra(UL∨, ν∨). Thus
we have proved the following result:
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Theorem D. The homology of the differential graded coalgebraC∗(L;UL∨a ) is isomor-
phic, via the isomorphism induces bycapu, to the coalgebraH∗(LM) := H ∗−m(LM)

equipped with the dual of the loop product.

It is worthwhile to observe here that there exists an isomorphism of differential graded
algebras between the dual algebra Hom(C∗(L;UL∨a ),Q) and the differential graded alge-
braC∗(L;ULa). The structure of graded algebra onC∗(L;ULa) is defined by the tensor
product of the two graded algebras:C∗(L)⊗ (UL, ν).

7.3. Proof of Proposition 6

We will use the following general result about modules over differential graded algebras.

Lemma 6. LetR be a differential graded algebra,S be a left semifreeR-module, and let
f, g : N → P be homomorphisms of rightR-modules. IfH(f ) = H(g) then the maps
f ⊗ 1, g ⊗ 1 :N ⊗R (R ⊗ V )→ P ⊗R (R ⊗ V ) induce the same map in homology.

Proof. Recall from 2.4 thatS =
∑
n≥0R ⊗W(n) with dW(n) ⊂ R ⊗

∑
k<nW(k) and

where eachW(n) is a graded vector space. The subcomplexesFp(N⊗RS) =
∑
k≤p N⊗

(R ⊗W(k)) (respectivelyFp(P ⊗R S) =
∑
k≤p P ⊗ (R ⊗W(k))) form a filtration that

induces a spectral sequence converging toH(N ⊗R S) (respectivelyH(P ⊗R S)). Since
E1(f ⊗ id) = H(f ) ⊗ id = H(g) ⊗ id = E1(g ⊗ id) we deduce thatH(f ⊗ id) =
H(g ⊗ id). ut

The next result specifies the relation between the mapC∗(δ) and the Gysin map of the
diagonal embedding (see 4.3).

Lemma 7. With the previous notations the following diagram is commutative:

H∗(C∗(L))
H∗(δ) // H∗(C∗(L⊕ L))

H ∗(L;Q)

cap[u]

OO

1!
// H ∗(L;Q)⊗H ∗(L;Q)

cap[u]⊗cap[u]

OO

Proof. By direct computation using definitions introduced in 4.3. ut

End of proof of Proposition 6.We defineR = C∗(L) ⊗ C∗(L). We remark thatR ⊗ V
= C∗(L;UL∨a ) ⊗ C∗(L;UL∨a ) is a semifreeR-module. Note also that the diagram in
Proposition 6 is the tensor product of a diagram ofR-modules byR ⊗ V overR. By
Lemma 7, this diagram commutes in homology whenV = Q. It then commutes in ho-
mology by Lemma 6. This completes the proof. ut
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8. Loop product and Gerstenhaber product

8.1. Bar construction and chains of a differential graded Lie algebra

Let (A, d) be a differential graded supplemented algebra,A = Q⊕ A, and(P, d) (resp.
(Q, d)) be a right (respectively left) differential gradedA-module. The(normalized) two-
sided bar constructionB(P ;A;Q) is defined as follows:

Bk(P ;A;Q) = P ⊗ T ksA⊗Q

whereT kV = V⊗k. A generic element is writtenm[a1|a2| · · · |ak]n with degree|m| +
|n| +

∑k
i=1 |sai |. The differentiald = d0+ d1 is defined by

Bk(P ;A;Q)
d0
→ Bk(P ;A;Q), Bk(P ;A;Q)

d1
→ Bk−1(P ;A;Q),

d0(p[a1|a2| · · · |ak]q) = d(p)[a1|a2| · · · |ak]q

−

k∑
i=1

(−1)|p|+εip[a1|a2| · · · |d(ai)| · · · |ak]q

+ (−1)|p|+εk+1p[a1|a2| · · · |ak]d(q),

d1(p[a1|a2| · · · |ak]q) = (−1)|p|pa1[a2| · · · |ak]q

+

k∑
i=2

(−1)|p|+εip[a1|a2| · · · |ai−1ai | · · · |ak]q

− (−1)|p|+εkp[a1|a2| · · · |ak−1]akq

whereεi =
∑
j<i |saj |. The(normalized) bar constructiononA is the differential graded

coalgebraB(A) := B(lk;A; lk) = (T c(sA), d). The relation between the bar construction
onUL and the chains onL is given by the following result:

Proposition 7 ([12, Proposition 22.7]). The canonical homomorphism

C∗(P ;L;Q)
9
→ B(P ;UL;Q),

p ⊗ sx1 ∧ · · · ∧ sxk ⊗ q 7→ p ⊗
( ∑
σ∈6k

εσ [xσ(1)| · · · |xσ(k)]
)
⊗ q,

is a quasi-isomorphism. In particular:

a) if P = N = UL is the canonicalL-bimodule then8 : C∗(UL;L;UL) →
B(UL;UL;UL) is also a quasi-isomorphism of differential gradedUL-bimodules,

b) if P = Q = Q is the trivialL-module thenψ : C∗(L)→ B(UL) is a quasi-isomor-
phism of differential graded coalgebras.
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8.2. The Hochschild complex and chains with coefficients in an adjoint module

LetA = Q⊕ A be a supplemented algebra,Aop be the opposite algebra andAe = A⊗
Aop be the enveloping algebra ofA; thusAe-modules areA-bimodules. TheHochschild
cochain complexof A with coefficients in theA-bimoduleP is the differential module

CC∗(A;P) = (Hom(T c(sA), P ),D0+D1) ∼= HomAe (B(A;A;A), P )

where the differentialD0+D1 of f ∈ Hom(T c(sA), P ) is defined by

D0(f )([a1|a2| · · · |ak]) = dM(f ([a1|a2| · · · |ak]))

−

k∑
i=1

(−1)|f |+εif ([a1| · · · |dAai | · · · |ak]),

D1(f )([a1|a2| · · · |ak]) = − (−1)|sa1| |f |a1f ([a2| · · · |ak])

−

k∑
i=2

(−1)|f |+εif ([a1| · · · |ai−1ai | · · · |ak])

+ (−1)|f |+εkf ([a1|a2| · · · |ak−1])ak.

TheHochschild cohomology ofA with coefficients inM is

HH ∗(A;M) = H(CC∗(A;M)) = H((Hom(T c(A),M),D0+D1)).

The product defined on Hom(T c(sUL),UL) (see 2.2) commutes with the differential
D0 + D1. This is theGerstenhaber product[15]. The next result specifies how the Ger-
stenhaber product onCC∗(UL;UL) and the differential graded coalgebraC∗(L;UL∨a ),
as considered in Theorem D, are related. The proof of this result relies upon the “inverse
process” of Cartan–Eilenberg [5].

Proposition 8. LetL be a connected differential graded Lie algebra. Then there exists a
canonical isomorphism of graded algebras

HH ∗(UL;UL) ∼= Hom(H∗(C∗(L;UL∨a )),Q).

Proof. We form the commutative diagram

Hom(UL)e (B(UL;UL;UL),UL)
Hom(9,UL) //

∼=

��

Hom(UL)e (C∗(UL;L;UL),UL)

∼=

��
Hom(B(UL),UL)

Hom(ϕ,UL) // Hom(C∗(L), UL)

where the vertical maps are the canonical isomorphisms of graded vector spaces. These
isomorphisms define the graded algebra structure on

Hom(UL)e (B(UL;UL;UL),UL) and Hom(UL)e(C∗(UL;L;UL),UL).
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Therefore they can be viewed as isomorphisms of graded algebras (but not as iso-
morphisms of differential graded algebras). Since Hom(ψ,UL) is a homomorphism of
graded algebras the map Hom(9,UL) is a quasi-isomorphism of differential graded al-
gebras.

Considering the commutative diagram

Hom(UL)e (C∗(UL;L;UL),UL) α //

∼=

��

Hom(C∗(UL;L;UL)⊗(UL)e UL∨,Q)

∼=

��
Hom(C∗(L), UL) // Hom(C∗(L)⊗ UL∨,Q)

one proves, in the same manner, that the canonical isomorphismα is an isomorphism of
differential graded algebras.

Finally, a straightforward computation shows that the canonical linear isomorphism

C∗(L;UL∨a )
β
→ C∗(UL;L;UL)⊗(UL)e UL∨

is an isomorphism of chain complexes. From the commutative diagram

Hom(C∗(UL;L;UL)⊗ULe UL∨,Q)

∼=

��

β∨ // Hom(C∗(L;UL∨a ),Q)

∼=

��
Hom(C∗(L)⊗ UL∨,Q) Hom(C∗(L;UL∨),Q)

we deduce thatβ∨ is an isomorphism of differential graded algebras.
The compositionβ∨ ◦ α ◦ Hom(9,UL) induces a canonical isomorphism of graded

algebras
HH ∗(UL;UL) ∼= Hom(H∗(C∗(L;UL∨a )),Q). ut

8.3. Statement and proof of Theorem E

Assume thatC∗(L) is a Sullivan model ofM. Using the natural isomorphism of graded
algebras ([13])

HH ∗(UL;UL) ∼= HH
∗(C∗(L); C∗(L)),

and the existence of quasi-isomorphisms of differential graded algebras,C∗(L)
∼=
← A

∼=
→

C∗(M), we deduce from Proposition 8 and Theorem D:

Theorem E. LetM be a simply connected closed oriented manifold. There exists a nat-
ural isomorphism of graded algebras

J : H∗(LM)
∼=
→ HH ∗(C∗(M);C∗(M)).
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9. I -homomorphism and Hochschild homology

9.1. A convenient definition of theI -homomorphism

For each subspaceZ ↪→ M, we denote byLZM the space of loops inLM with base
point inZ. We thus have the commutative pullback diagram

LZM
i //

��

LM

��
Z

� � // M

Denote now byD a closed disk around the base pointx0. SinceD is contractible,
LDM is homotopy equivalent toD × �M. The I -homomorphismI : H∗(LM) →
H∗−m(�M) is the composition

H̃∗(LM)→ H∗(LM,LM−x0M)
Excision
−−−→ H∗(LDM,LSm−1M)

∼= Hm(D, S
m−1)⊗H∗−m(�M).

Therefore theI -homomorphism is precisely the Gysin map of the embedding�M ↪→

LM.
Let (

∧
V⊗

∧
sV , d) be a relative Sullivan model for the free loop space (4.1, diagram

(5)), and letω ∈ (
∧
V )m be a cocycle representing the fundamental class. Then the direct

sumJ = (
∧
V )>m ⊕ S, where(

∧
V )m = Q · ω ⊕ S, is an acyclic differential ideal in∧

V ; the quotient mapq : (
∧
V, d) → (A, d) = (

∧
V/J , d) is a quasi-isomorphism.

We form the tensor product

(A⊗
∧
sV , d) := (A, d)⊗∧

V (
∧
V ⊗

∧
sV , d).

Lemma 7. The natural injectioni : (
∧
sV ,0) → (A ⊗

∧
sV , d) defined byi(a) =

(−1)mω⊗ a is a morphism of complexes of degreem inducing in cohomology the dual of
theI -homomorphism,I∨ : H ∗(�M)→ H ∗+m(LM).

Proof. A model for the injectionLM−x0M ↪→ LM is given by the quotient mapq :
(A ⊗

∧
sV , d) → (A/(ω) ⊗

∧
sV , d). Therefore a model for the cochain complex

C∗(LM,LM−x0M) is given by Kerq = (Q · ω ⊗
∧
V ,0). This implies that a model for

the composition

H ∗(�M)
∼=
→ H ∗+m(LM,LM−x0M)→ H ∗+m(LM)

is given by the composition
∧
sV

a 7→(−1)mω⊗a
−−−−−−→ Q · ω ⊗

∧
V → H ∗(A⊗

∧
sV , d). ut
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9.2. Statement and proof of Theorem F

Theorem F. LetJ be as in Theorem E. There exists a canonical isomorphism of graded
algebras,J̄ , making the diagram

H∗(LM)

I

��

J

∼=

// HH ∗(C∗(M);C∗(M))

HH ∗(C∗(M),ε)

��
H∗(�M)

J̄ // HH ∗(C∗(M))

commutative, whereε : C∗M → Q denotes the usual augmentation.

Proof. Let (L, ∂) be such thatC∗(L) =MM . The algebraC∗(L;UL∨a ) = C∗(L)⊗UL∨
is then a relative Sullivan model for the free loop spaceLM, and we can apply Lemma
6 (see 7.3) to this model to have a model for the restriction morphism. Now, since the
projectionq : C∗(L;UL∨a ) → A ⊗ UL∨a is a quasi-isomorphism,q admits a lifting
q ′ : UL∨→ C∗(L;UL∨a ).

Letu be a cycle inC(L) representing the orientation class [M] such that〈ω, [M]〉 = 1.
We obtain a commutative diagram

UL∨
q ′ // C∗(L;UL∨a )

(−1)m−∩c
��

UL∨
e // C∗(L;UL∨a )

wheree(a) = 1⊗ a. The dual diagram yields in homology a diagram of graded algebras
whose vertical maps are isomorphisms:

H∗(�M) H∗+m(LM)
Ioo

H∗(UL)

J̄

OO

H ∗(Hom(C∗(L;UL∨a ),Q)) = H ∗(C∗(L;ULa))
e′oo

J

OO
(∗)

Note that the twoC∗(L)-bicomodulesC∗(L;UL) ⊗UL C∗(UL;L) andC∗(L) are quasi-
isomorphic. Therefore we have by duality a quasi-isomorphism ofC∗(L)-bimodules
C∗(L) ⊗ UL∨ ⊗ C∗(L) = (C∗(L;UL)⊗UL C∗(UL;L))∨ → C∗(L). We deduce the
isomorphism of differential graded vector spaces

CC∗(UL;UL) = Hom(UL)e(C∗(UL;L;UL),UL),
CC∗(C∗(L);C∗(L)) = HomC∗(L)e((C∗(L;UL)⊗UL C∗(UL;L))∨ , C∗(L)).

The isomorphisms

Hom(UL)e (C∗(UL;L;UL),UL) ∼= Hom(C∗(L), UL),
HomC∗(L)e ((C∗(L;UL)⊗UL C∗(UL;L))∨, C∗(L)) ∼= Hom(UL∨, C∗(L))
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induce differentials on the right hand side terms. Now a simple computation (see for
instance [13]) shows that the mapD that associates to a map in Hom(C∗(L), UL) the dual
map in Hom(UL∨, C∗(L)) is an isomorphism of complexes. This induces the following
commutative diagram of complexes:

UL Hom(UL)e (C∗(UL;L;UL),UL)e′oo

UL

∼=

��

Hom(C∗(L), UL)
e′oo

∼= D

��
Hom(UL∨,Q) Hom(UL∨, C∗(L))

Hom(UL∨,ε)oo

HomC∗(L)e ((C∗(L;UL)⊗ULC∗(UL;L))∨ ,Q) CC∗(C∗(L), C∗(L))
CC∗(C∗(L),ε)oo

CC∗(C∗(L),Q)

whereε : C∗(L) → Q denotes the canonical augmentation. The result follows now
directly from the induced diagram in cohomology, combined with diagram(∗). ut
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[1] Baker, A.,Õze, C.: Complex cobordism of Hilbert manifolds with some applications to flag
varieties of loop groups. In: Geometry and Topology (Aarhus, 1998), Comtemp. Math. 258,
Amer. Math. Soc., Providence, RI, 1–19 (2000) Zbl 0979.57013 MR 1778093

[2] Bredon, G. E.: Topology and Geometry. Grad. Texts in Math. 139, Springer (1993)
Zbl 0791.55001 MR 1224675

[3] Brylinski, J.-L.: Loop Spaces, Characterisic Classes and Geometric Quantization. Progr.
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