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Abstract. We use the computational power of rational homotopy theory to provide an explicit
cochain model for the loop product and the string bracket of a simply connected closed mahifold
We prove that the loop homology #1 is isomorphic to the Hochschild cohomology of the cochain
algebraC*(M) with coefficients inC*(M). Some explicit computations of the loop product and
the string bracket are given.
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1. Introduction

Let C.(X) (respectivelyH, (X)) be the singular chains (respectively the singular homol-
ogy) of a spaceX with coefficients inQ. For simplicity we identifyH,(X x X) with
H.(X)® H.(X) and the singular cohomology* (X) with the graded dual of the homol-
ogy, i.e. H*(X) := H(C*(X)) = (H.(X))".

Let M be a simply connected closed orienteemanifold and letL M (respectively
M! and QM) be the space of free loops (respectively paths and based loops). M. Chas
and D. Sullivan[[6] have constructed a product, calleddlog product

Hy(LM) ® Hi(LM) — H_n(LM), x®y > xeoy,

sothatH,, (LM) := H,,,(LM) is acommutative graded algebra, and a morphism, called
the I-homomorphism

[ H(LM) — H.(QM),
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which relates the loop product structure &h.(LM) with the Pontryagin algebra
H,(Q2M). The loop product induces trstring bracketon the St-equivariant homology

of LM, H, = HS. (LM),

*—+m

H*®H*_)H*_2, a®b|_>[a,b],

such that(H, [—, —]) is a graded Lie algebra of degree 2. Few things are known about
this bracket. For surfaces of genus larger than zero, Chas and Sullivan recover formulae
proved in the context of symplectic geometry.

The purpose of this paper is to provide explicit computational tools for the duals of
these two operations in cohomology and for lhkomomorphism.

First we will describe the dual of the loop product (Theorem A) and the dual of the
string bracket (Theorem B) in terms of Sullivan modeils] [21]. It follows from Theorem A
that the loop product structure @i, (L M) is invariant under orientation preserving maps
which are quasi-isomorphisms. In Theorem C, we adapt the technics of Theorem A to
a special type of Sullivan models, the cochains of a differential graded Lie algebra with
coefficients in a differential graded Lie module. The main point in this paper is Theo-
rem D which allows us to describe the dual of the loop product in terms of chains (in-
stead of cochains) of a differential graded Lie algebra. This translation is performed by
means of the “cap-homomorphism”. This homomorphism realizes, in some sense, the
Poincage duality at the level of free loop spaces. The other interest for considering the cap-
homomorphism is that it allows us, in Theorem E, to identify the loop produt. (i M)
with the Gerstenhaber product on the Hochschild cohomolBgly (C*(M); C*(M)).
HereC*(M) denotes the cochain algebra of singular cochaingfon

Theorem E. Let M be a simply connected closed oriented manifold. There exists a nat-
ural isomorphism of graded algebras

7 H.(LM) S HH*(C*(M): C*(M)).

Such an identification has been proved by Merkulov [19] for the field of real numbers
using iterated path integrals. Finally, we show

Theorem F. Let J be the map in Theorem E. There exists a canonical isomorphism of
graded algebras/, making the diagram
H.(LM) ———> HH*(C*(M); C*(M))
IJ/ iHH*(C*(M).,S)
H.(QM) ——= HH*(C*(M))

commutative, where: C*(M) — Q denotes the usual augmentation.

Theorems E and F are complementary results to our previous paper [14]. In particular,
Theorems 2 and 3 i [14] apply verbatim.
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For the convenience of the reader we repeat the relevant material of rational homotopy
theory, without proof, thus making our exposition self-contained. Moreover, we roughly
indicate here the basic ideas of the paper.

Let L be a graded differential Lie model af. We denote by L, its enveloping
algebra considered as damodule for the adjoint representation, abid.} its graded
dual. Then the cochain algebf&(L; UL)) is a Sullivan model for the free loop space
LM and the map

e uLyy LERD,

C*(L; UL ® UL))
is a model for the composition of patdisM x, LM — LM wherep denotes the
multiplication inU L.

On the other hand, ifA ® A W.d) is a (Sullivan) model oL M with A a finite-
dimensional model foM satisfying Poincdr duality, there exists a linear map

(AR AW.D)®4 (A® \W.D) > (A® AW, D)®?
which induces the cohomology Gysin map (see 4.5)
i H*(LM xp LM) — H*P™ (LM x LM)

of the finite-codimensional embedding LM x y LM — LM x LM. Since the dual of
the loop product is the compositidii*(c;) o i', the above constructions enable explicit
calculations of the loop product.

The paper is organized as follows.

. Preliminaries on differential homological algebra.

. The dual of the loop product.

. Theorem A. Dual of the loop product in terms of Sullivan models.

. Theorem B. Dual of the string bracket in terms of Sullivan models.

. Theorem C. Dual of the loop product in terms of cochains on a differential graded Lie
algebra.

7. Theorem D. Dual of the loop product in terms of chains on a differential graded Lie
algebra.

. Theorem E. Loop product and Gerstenhaber product.

9. Theorem F/-homomorphism and Hochschild homology.

OO WN

(o]

2. Preliminaries on differential homological algebra

All the graded vector spaces, algebras, coalgebras and Lie algélarasdefined ovef)
and are supposed to be of finite type, i.e. djm< oo for all n.
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2.1. Graded vector spaces

If V.= {Viliez is a (lower) graded-vector space (when we need upper graded vector
space we pu¥; = V! as usual) therv¥ denotes the graded dual vector space sgind
denotes theuspensioof V:

VY =Hom(V,Q), (sV)y=Vyo1, (sV)"=V"FL

Since we work with graded objects, we will pay a special attention to signs. Recall that if
P = {P;} andN = {N;} are differential graded vector spaces with: P; — P;,_1 and
oy : N; = N;_1 then

e P ® N is a differential graded vector space:

(PON),= P P,®N,. dpegn =dp ®idy +idp ® dy.
p+q=r

e Hom(P, N) is a differential graded vector space:

Hom,(P,N) =[] Hom(Pi, No),  Dromp.nyf =0y o f — (=D f o dp.
k—I=n

The same formulae hold i = {Pi} andN = (N} are differential graded vector
spaces withip : P/ — Pi*landdy : N' — N1 Later on we will omit subscripts on
the differentials.

2.2. Differential graded algebras, coalgebras and Lie algebras

For precise definitions we refer 10 [12, 83 c,d and §21]. Recallthatenotes the tensor
algebra onV, while 7¢(V) is the free supplemented coalgebra generatedf blf C is

a differential graded coalgebra with coproddetand A is a differential graded algebra
with productyu, then the cup productf U g = po (f ® g) o @, gives the differential
graded vector space Hafi, A) a structure of differential graded algebra.

2.3. Sullivan rational homotopy theory

We refer the reader to [12, 812] for notation, terminology and results concerning Sullivan
models. However, we recall here thatVif = {Vi}izo is a gradedQ-vector space we
denote by/ V the free graded commutative algebra generated bAny path-connected
spaceX admits a Sullivan model

px i My == (AV.d) > App(X)

where A p; denotes the contravariant functor of piecewise linear differential forms, and
px is a quasi-isomorphism [12, 810 and 812]XlfandY are two path-connected spaces
then any continuous map : X — Y admits aSullivan representativeyi;. Hereafter we

will make the following identifications:

H*(X) = H(ApL(X)) = HMy), H*(f)=H(ApL(f)) = HMy).



Rational string topology 127

2.4. Semifree modules

Let A be a differential graded algebra. A differential gradednodule P is calledsemi-
freeif P is equipped with a filtrationr? = (.o P(n) satisfyingP(0) = 0, P(n) C
P(n + 1) and such thaP (n)/P(n — 1) is free on a basis of cyclels [12, §6].

For any A-module N, there exists a semifree moduke and a quasi-isomorphism
¢ . P — N.The moduleP is called asemifree resolutionf N.

3. The dual of the loop product
3.1. A convenient definition of the dual of the loop product

While M. Chas and D. Sullivan_[6] have defined the loop product by using “transversal
geometric chains” it is convenient for our purpose to define directhdtie of the loop
productin the following way. First we replace the spaté/ (respectivelyM! andQM)

by a Hilbert manifold ([1] or[[¥, Proposition 2.3.1]). Secondly, we consider the commu-
tative diagram

i Comp
LM*X2<—— LM xpy LM —— LM

poxml pol lpo )
A

MxM~<—— Eaa———l
where

Comp denotes composition of free loops,

po is the evaluation at 0 and is thus a locally trivial fibre bundle [3],

the left hand square is a pullback diagram of locally trivial fibrations,

the inclusioni is the smooth embedding of the Hilbert manifold of composable loops
into the product of the two Hilbert manifoldsM x LM.

The embedding& andi both have codimensiom. Thus, using the Thom—Pontryagin
theory (see 4.5 for a precise definition), we obtain the Gysin maps

A HN M) - HY (<P, it HYLM x o LM) — HY(LM*?).

Thus diagram (1) yields the following diagram:

;! H*(Comp
H*m(LM*2) <——— HN(LM xp LM) <~——— H*(LM)
H*(po)‘@zT H*(PO)T TH*(po) )
!
Hk+m(MX2) < A Hk(M) 7Hk(M)

Following [22], [8] or [2], thedual of the loop produds defined by composition of maps
in the upper line:

i' o H*(Comp : H*(LM) — H**"™(LM*?)
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while the map in the lower line is the dual of the intersection product. The commuta-
tivity of this diagram expresses the fact thdt (pg) is a homomorphism between two
cocommutative graded coalgebras.

3.2. Why is it possible to express this definition in terms of Sullivan models?

First we remark that diagram (1) is the pullback diagram of the diagram

Comg

(MI)XZ < i’ MI X M MI >M1

’

(POvﬂl)xzi ql l(!’o,m) )
MX4 a3 MX3 nt3 Mx2

along the diagram

4 A23 3 JTl‘S 2
M*4<— M3 —— pM*

AXZT A,T TA
MxZé M—M
whereA’ = (A®id) o A, 713(x, y, 2) = (x,2), g (e, B) = (2(0), (1) = B(0), B(1))

andA%3(x, y, z) = (x, y, y, z). The other maps are the obvious ones. The second obser-
vation that once again the Thom—Pontryagin theory yields the commutative diagram

it H*(Comp)
Hk+m((MI)X2)éHk(MI X M MI)<7H]<(MI)
H*(po,pl)@)zT H*(q)T TH*(PO’Pl) 2)
Hk+m(MX4) idy @A ®idy, Hk(ng) H*(13) Hk(sz)

with H*(7z13) (@ ®@b) =a ® 1 Q b.

It is then natural to define theath productas the composition of the maps in the
upper line of the diagran®).

Since the loop product appears as a “pullback” of the path product it is worthwhile
to determine the path product. This is the purpose of the last observation: There is a
commutative diagram

. C
MIY<2 < gl sy S g

OXO‘T U’T TU (3)

M2~ Y ——nm
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whereo (x) is the constant path ate M ando’(x) = (o (x), o (x)). From the properties
of the Thom—Pontryagin construction, diagram (3) converts into a commutative diagram

! C
Hk+Wl((M1)><2) - Hk(MI X M MI) ﬂ Hk(MI)
H*(0)®2T H*(o’)T TH*(U) 3)
Hk+m(M><2) < A Hk(M) R — Hk(M)

SinceA' is the multiplication by the Euler class of the diagonal embedding (see 4.3)
and sinces is a homotopy equivalence we obtain a description of the path product in
terms of Sullivan models.

4. Theorem A. The dual of the loop product in terms of Sullivan models
4.1. Relative Sullivan model for loop fibrations
It is convenient to consider a cofibrant Sullivan representative of afnaf — Y called

arelative Sullivan modef12, §14]:17 : My — My ® A V. d) = M. Our primary
example is the following diagram:

Mm! z M
4
(PON / @
MX2

which describes the fibration associated to the diagonal map, and wheres the con-
stant path at € M. This diagram converts into

mez == Dﬁ;%[z

% W* (M (4)
= My

WMI = (Wsz ® /\SV, d)

In this diagram:

a) My = (/\ 'V, d) is a Sullivan model oi1.

b) w is the product o\ V.

c) The differential in(A\ V)®2® A sV, d) = 9, is defined as if[12, §15, Example 1]:
forve V,svesV,

dv®lel =dvelel
dlevel) =1dvel,

_ O (sd)t -
delem=wel-1onel-Y “Poeied
i=1 ’
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Here 1 andl denote respectively the unit gf V and of A sV, ands is the unique
degree-1 derivation of A V @ AV ® A sV defined by

sOR1I®D=191Qsv=s1Q v 1),
s(1l®1®sv) =0.

d M, = pn®e: (AV)®2® AsV,d) = My — My = (A\V,d) is a quasi-
isomorphism withe the canonical augmentation pfsV .

The use of relative Sullivan models is interesting because it converts a pullback diagram
of fibrations into a pushout diagram in the category of differential graded commutative
algebrasl[12, Proposition 15.8]: Each pullback diagram

rEL ok
p,l l ) (%)
B/ # B

wherep is any fibration, converts into the pushout diagram in the category of differential
graded commutative algebras,

My
Mp M p

A,,l lx,,, M)

imf®id

Mg =DMp AW, d)

Mp @ AW, d') =Ms«g

The differential ort;« ¢ is explicitly defined by the canonical isomorphism of graded
algebras

My @an, Mg = My @an, (Mp @ A W) > My @ AW = M.
As a first example, the pullback diagram
LM J . m!
poJ{ J/(po,m) ®)
M L. M x M
converts into the pushout diagram

Ma=p
M2 My

)“(1)0,1J1) J/ l)hpo (W(S))

m’t.
My = M2 A\sV.d) —= My = DMy @ A\sV,d)
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wherel,, is a Sullivan relative model fopg [12, 8§12, c]. The differential oty =
(A\V ® AsV,d) is defined byds = —sd wheres denotes the degreel derivation
which extends the linear isomorphisth — sV and satisfies o s = 0. In particular
Sﬁj =pu®id.

In the same way, the pullback diagram

IM*2 <~ LM xy LM
poxpol pol ()
MxM<—2m

converts into the pushout diagram

me2 M

Wml lxpo (M(6))

NIdi

MEZ = (M @ (\sV)®2, d) L 9 ® (\sV)®2, )

The differential o,y ,, 2 = My ® (A\sV)®?, d) is defined by

dvelel)=dvelel B
d(l®s_v®1)=—s(dv®1_®l_), veV,veV.
dl®1l®sv)=—s'dv®1x1),

Heres ands’ are the unique degreel derivations of\ V ® (/\ sV)®2suchthat os =
O0=s"os"andforv e V,sv e sV,

sR1Ie)=10sv®1,
SOR11)=11® sv,
sAesve)=0=s1®sv® 1),
s1®1®sv)=0=s(1®1Q sv).

These two examples provide us with relative Sullivan modelsZfbf 2 M and

LM xy LM 28 M as well as fo; = p®id®id : My — Missyim =
Mrm Qonyy MLy

In a similar way, the pullback diagram which appears as the left part in dia@fan
call it (7)—converts into the pushout diagram

ideuid

®4

g'nM
)”(I)o,pl)xzi l)‘q (m(7))
2 ideueideid
_—

®3
ED’tM

MmO = (MG ® (\sV)®2, d)®

82 MG @ (A\sV)®2.d)
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where the differential 0801, p1 = (9)2;‘@3 ® (/\sV)®2, d) is defined forv € V and
v eV by:

dv®1elelel) =dielelelel,
dlevelelel) =1edvelelel,
dl®1vel1®l) =191R1dvel®1l,

- - - & (sd) -
d(1®1®1®sv®1)Z(U®1—1®U)®1®1®1—Z(il) 1e1e1e1el),
i= )
e’} ! NI
_ - (s'd) -
d(1®1®1®1®sv)=1®(v®1—1®v)®1®1—z g 1levelelel).
i=1 )

Heres ands’ are the unique degreel derivations of( A V)®3 ® (A sV)®? such that
sos=0=s"0os"and

sR119191)=10119sv1=s5101ve11x1),
s1e1levelel)=0=s0el®l®1ll),
SA1R11e]D)=190101R1sv=s101vR1x1).

In particular)t; = id @ 1 ® id ® id.

4.2. Sullivan representatives of compositions of free paths and free loops

Consider the next diagram which relates the right parts of diagrams (X19nd

LM Xy LM < M x oy M!
A o ~ A
LM < Mm! q

8

M><3

=
o
=
(=]
I2§%4
~
=
@
<
[
¥ j

M MX2

Lemma 1. There exists a unique homomorphisiig,nyg of differential graded algebras
such that, in the next diagram, the upper square commutes while the lower square com-
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mutes up to homotopy:

My ———— My

M T Tm” =/.E
mComd

Myt Qonyy Myt <— My (9)

Aq T Tk(poypl)
m

®3 13 ®2
My My,

MoreoverI,, = u.¢ ® w.€ is a surjective quasi-isomorphism.

Proof. Let us introduce the following notation:

a)V=svV,V=V,

b) (AV ® A V,d) is the acyclic Sullivan algebra whose differentiais defined by
d(v) = v andd(v) = 0,

c)m: (ANVRAV®AV,.d) — (/\V.d)is the quasi-isomorphism defined byv) =
vandz(v) =7 (v) =0,

d) s isthe derivation oA\ V, )@ (A VA V., d) defined by (v)=v, s(v) =s(0)=0.

Following [12, 815 Example 1], there is an isomorphigrdefined by
pv®11) =v,
. R _ . 00
9 My = AV.)@NVOAV. ), el@v@D =v+d+ )
n=1
p(1R1®sv) =w.

(sd)" (v
n!

),

This isomorphism gives the relative Sullivan model(pf, p1) considered in diagram
(4). The composite
PRy, ¢ — N — N
My @y Myt —— (A V, QA VAV, DNV ANV, HR(A\VRAV,d)
iid@/\ v
AV.DRNVIAV,d)@p v (AV.d)
lﬂ@/\ vid

(AV.d) L AV.DSpv(AV.d)

is preciselydt, . From the lifting lemmal[12, Lemma 12.4], we deduce that there exists
a unique homomorphis®coyg such thatlcoyg o M,y = M, . It follows from [12,
Proposition 14.6] that the lower square of (9) is commutative up to homotopy. O
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Therefore, using diagra(5)) of 4.1, we obtain the commutative diagram

9ﬁComﬁ

Myt ——= Mgt Qomyy Mgt = NG @ (A sVI®2, d) = Mygr g

fmj—u@idl lfm_/@zmM oM J{Mow@id)@id

Mcom
mLM ;meM ®gth EUILMg (f),nM ® (/\ SV)®2, d) = mLMXMLM

Thus we have proved:

Proposition 1. The homomorphismicomp is a Sullivan representative o€omp :
LM xpy LM — LM.

4.3. Arepresentative fat : H*(LM xp LM) — H*t"(LM)®?

First recall [2, VI, Theorem 12.4] that the Euler class of the diagonal embedsling
M — M x M (also called the diagonal class) is the cohomology class

ea=Y (-D¥If @ p e H™(M x M) = (H*(M) ® H*(M))"
1

where{s;} denotes a homogeneous linear basigtM) and{Bl} its Poincaée dual basis
((Bi U Bj, [M]) = §/1).

Observe here thdi *(M) is anH* (M)®2-module via the multiplicatiodf*(A). Thus
A' is mutiplication bye, and anH*(M)®2-linear map.

The crucial point in our construction of a representative s the following resuilt:

Proposition 2. There exists amt;?jlz—linear map
[y =@M A\sV,d) — mE?

of degreen such thatf (d(x)) = (—1)"d o f(x). Moreover,f is unique up to am;?f-
linear homotopy and

A'=H(f)oH(o) ™%

Proof. The homomorphism defined in 4%, : 9,1 = (smj?f & A\sV,d) - My,
is anim%z—semifree resolution (see 2.4). Thus (<e€ [11, Appendix]) we have the Moore
spectral sequence

Extyidy (H, H ® H) = Ext) My, MGF) 1= H* (HOMype2 My, D)),
M

with H = H(/\ V,d). The spectral sequence can also be constructed by replacing the
minimal models by Halperin—Stasheff filtered models ([16]) and by using the induced
filtration on the Hom complex. SincH ® H is a Poincag duality algebra of formal
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dimension 2, by [11, Theorem 3.1] we have

P.q ~ {0} if p+gq #2m,
Induction on the dimension of proves that EX{ ,(E. H ® H) = 0if0 < p+¢q <
2m — d for any finite-dimensionaH ® H-module E concentrated in degrees d. In
particular,

Ext)jgy(H.H®H) =0 #f0<p+q<m. (€1)

On the other hand, sind¥ is simply connected, we havé” 1 = 0, and from the long
exact sequence associated to the short exact sequencédild' — H — H/H™ — 0O
we deduce that

0 ifp+g=m+1,

Q for (p,q) suchthatp + g = m. (€2)

Ext);e ,(H .H® H) = {

Conditions(C1) and(C>) and the convergence of the Moore spectral sequence imply that

Ext’g”n%Z(SUIM, me2) = Q.

Multiplication by ex defines a generator of Bkt ,,(H, H ® H) which survives in
Ext’g‘ﬁﬁz(imM, zm;?f) = Q. Any cocycle in Horgﬁ?}z(imMz, M) can be viewed as a

map f satisfying the conclusion of Proposition 2.fifand f’ are two such cocycles then
f — f/ = Dh andh is the required homotopy betwegnand 1. O

The proof of the next result is postponed to Subsection 4.5.

Proposition 3. The mapimi., defined as the composition of the following natural maps:

~ ®2
Myt @omy MLy oyt — Myt ®9ﬁ;\’3}2 Mo

o

®2 ®2
My g2 M

mey
is such that

i'=HOM) o HM, @id) ™1 : HY(LM xp LM) — H* ™ (LM*?).
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4.4. Statement of Theorem A and Examples

From diagram (2) and Propositions 1 and 3 we deduce our first result:

Theorem A. The dual of the loop product

H*(Comp
_

1
H*(LM) H*(LM xy LM) 5> H*T™(LM*?)

is induced in homology by the maps

Mrm

mCOmpl
M, id

Memxprm =My Qg Memxpyrm <—— Myt @y Memxpyrmt = MLmxyLm

sml

My @ MLy

Example: Formal spaces.Let M be a formal space, i.e. a spagt whose minimal
modelMy, = (/\ V, d) is quasi-isomorphic t¢H = H*(M), 0). Examples of formal
spaces are given by connected compéaittli€r manifolds ([10]) and quotients of compact
connected Lie groups by closed subgroups of the same rank. Whsra formal space
the dual of the loop product is induced in homology by the maps

(H® /\SV, D)
H(mComp)i
(H® (A\sV)®2 d) 2228 (192 @ A\ sV) @ (H ® (\ sV)%2)

zmi.i

(H®?® (A\sV)®2, d)

Let us describe explicitly the particular cak& = CP". The minimal model ofCP" is
given by (A (x, y).d), d(y) = x"*1, |x| = 2, |y| = 2n + 1. Thus the relative Sullivan
model of the free loop space(g\(x, x, y, ¥),d),d(x) = 0,d(y) = —(n + 1)x"x. Since
we have a quasi-isomorphis(y\ (x, y), d) — (A(x)/(x"*1),d) =: H, the spac& P"
is formal. A linear basis of

H*(LM) = HAMX, %, 9)/0"™), d) 2 Q- 1® (A" (x, ©)/(" L x"8) @ A7)

is formed by the elements 17514, andx"x31), p = 1,...,n,¢ = 0,5 > 0,r =
0,...,n—1, with 51 = 55 /s1.
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A Sullivan representative of the composition of free loops CompM x LM
— LM is given by

1
wx"—l)‘”;/.

Meomp(®) = ¥ + &, Mcomp(y) =+ — >

The dual of the loop product is induced by the map

0 (H*(M) ® \(%,5),d) > (H* M) ® \(*, y),d) ® (H*(M) ® \(%, y), d),

n s

0o ® ) = Z Zaxp)-,[j] ® x"Pyl]

p=0,=0

1) & s—1 - ‘
- n(n—z—i—) Z Z ax" M g5Ul @ yr-pgyls=il,
p=0,=0
n S
0eRieih=1lei+iol)- (Z 3 ax?sll ®xnfpy[s7,-]>,
p=0;=0

with « € H*(M). The dual basis
Lapg,brs, p=1...,n,g>0,5>0,r=0,...,n—-1

with |ap, 4| = 2p+2qn, |b. | = 2r + 14 2sn, is a linear basis off, (L M). Thus the loop
productH, (LM x LM) — H,_,(LM),x ® y — x ey, is described by the formulae

Ap,qg ®Ar,s = Ap+tr—n,q+s, Aap.q ‘br,s = bp+r—n,q+57 (an—l,O)” =1, 1‘an,1 =0.

This shows that
H,(L(CP"); Q) = A(a, b, 1)/(@" ", a"b, a"r),

with |a| = =2, 1b] = =1 and|t| = 2n, a = ap—1,0, b = bu—1,0, 1 = an,1 (cf. [9]).

4.5. Proof of Proposition 3

Let M and N be (smooth Banach and without boundary) connected manifolds'and
M — N be a (smooth) closed embeddingl[18, Il, §2]. Then we have the exact sequence
of fiber bundles

T
0— TM—J;TN‘M—>Vf—>O

whereT M andT N are the tangent bundles ang is thenormal fiber bundle off. By
definition of an immersion, this exact sequence split$ [18, I, Proposition 2.3]. Hereafter
we will identify v, with a factor bundle off’ Njy,. When the fiber ofi; is of finite di-
mensionk, the embedding has codimensibnConsider the associated disk and sphere
bundles,y?, vS, and theThom clasof the oriented normal fiber bundle pair?, v5).

The exponential ma@p C TN — N restricted tovy is a local isomorphism on the zero
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section of the bundl&@ N — N. Sincef is a closed embedding and singeadmits a par-
tition of unity, by [18, IV, Theorem 5.1], there exists an open neighborhibodthe zero
section ofvy, an open neighborhodd of (M) in N, and an isomorphism : Z — U
which identifies the zero section of with f(M). Since f has finite codimensioh we

identify Z with v , and the |somorph|sm b U= tubef restricts to an isomor-

phlsmvf = 9(\15) =: dtubef. The above dlscussmn is summarized in the commutative
diagram

JNN= )
H*(N,N — f(M)) —— H*(N)

=3 l Excision J/
j (tube f,dtube f)
H*(tubef, dtubef) — H*(tubef)

/(u o)
H* P v — L B 0P)

D -1
T” ofrim
ﬂS

H*(nDof)(—)Ur_/TE

The H*(N)-linear mapf' defined as the composition of the natural homomorphisms

H*+k(vf ) = H*(tube f, dtubef) % H*(N,N — f(M))

H*<n00f)()Uth ijuv.zvfw))

H*(M) s H*(N)

is called thecohomology Gysin maand f'(1) = ef € H¥(N) is called theEuler class
of the embedding ([20]).

End of proof of Proposition 3First consider the commutative diagram

e T

LM xy LM 52
l PoxXp1

|~ ]

where the front face and the back face of the cube are pullback diagrams.

po

M><2
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Secondly, observe that
H*(E) = HOM Bgpe2 DJT%’I%,I) and H*(F) = HMy @y MLmxon,, 14)-

From Proposition 2 we have the associated commutative diagram

H(f®id)
H*(E) H(LM)®?
/ T H(axld) /
H*
H*(F) (Po) H*(LM Xy LM)
H(f)

H*po  H*(M') H*(M)®?

/ ﬂ /
H*(po)

H*(M") H*(M)

This ends the proof of Proposition 3. O

5. Theorem B. String bracket in terms of Sullivan models
5.1. Statement and proof of Theorem B

The string homology(respectivelystring cohomologyis the desuspended equivariant
homology of the free loop space (respectively the graded dual of the desuspended equiv-
ariant homology)

H, = HS:

*+m

(LM) = Hyy (LM x 1 ESY)  (respectivelyH* = (H,)").
Leté € HX(LM xgq ES') be the characteristic class of the circle bunsife —
LM xESt 2 Lm x ¢1 EST and consider the associated Gysin sequence

H
S,y Sy s M, (10)

Thestring bracketon H,, is the bilinear map (se&l[6])
[— -] Ha @ Hi > Hiz,  a®b > [a, 0] = (1) Hu(p)(M(a) e M (D)),
wheree denotes the loop product dih, (L M).

A
Let 90ty 2 My = My ® \sV,d) be a Sullivan model of. M 2 m (see
diagram (5)). Then a Sullivan representative for the inclugiafi — LM x g1 ES* is
given by thedi, ys-linear map (see [4])

7 My @ Nu, D) > Mry, 1Qur 0,
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where(Mt.y @ /\ u, D) is a Sullivan model for the equivariant free loop spadé x 1

E ST whose differentiab is given byD(«) = 0, |u| = 2, D(v) = d(v) +us(v), D(sv) =
—s(dv). This proves that the dual of the Gysin sequence (10) is the homology long exact
sequence associated to the short exact sequence of cochain complexes

0— (WLM(@/\M,D)&; (WLMQ@/\M,D)AWLM — 0.

The connecting mapis induced by the derivationconsidered in the definition 01, 5
(see 4.1) andk,, denotes multiplication by the cocyde Then Theorem B follows from
Theorem A and the definition of the string bracket:

Theorem B. The dual of the string bracket
is induced in homology by the homomorphisms of complexes:

e

Mrm

SIn(:ompl

MLy @A\ u, D)

n.e®id
My = My @y MLy xyim <—— Myt @y MemxyLm = MLsmxy Ly

MLy M m

MmN\ u, DY@\ u, D)

5.2. Examples

1) Assume that*(M) is equal to/\ u with |u| odd, or to A u/(u"*1) with |u| even.
From [4], we have the following facts:

If H*(M) = A\ u with |u| = 2p + 1 thenHy; = O for all .

If H*(M) = A\ u/@"Tt) with [u| = 2p, then dimy Hz; = 1 for all .

Furthermore, the spac¥ is formal and it is shown ir_[23] that the mgpn — is an
isomorphism.

This proves, in the two cases, the nullity of the maps

E = H,(p) : Hy — Hy and M: Hy —> Hypit1.

Leta € Hpi—1 andb € Hp;_1, for some(, j) € 7Z2. ThenM(a) e M(b) € Ho +j+1), SO
we have §, b] = —E(M(a) e M(b)) = 0. Thus, for such manifold#f the string bracket
is trivial.
2) If M = §%+1 x §%+1 k > 1, then models foM, LM andLM x 1 ES* are given
by

M: (A, »),0),

LM : (N, y, %, 9),0),

1. - - Du = D(x) = D(y) =0,
LM xq ES*: (A(x,y,%,y,u), D), { Dy —uy. Dx = uf.
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A set of cocycles representing a basis of the vector s@i;:eLM) = H;‘l(LM)/Qu is
formed by the elementd ([4])

ear = x50, (a,b) eN?—(0,0), fup= (% —xNF'F’, (a,b) e N2

The vector spacél/*(L M) has the following basis:

€a.bs ey = xyx®y?,  (a,b) € N2,
Jabs fl,=xx5" (a,b) e N?,
=y’ beN.

From the above description of the Gysin sequence we deHuc@) (e, ») = €.,
H*(p)(fap) = fab, M'(f, ) = eat16, M' (€, ) = fap, M'(f})) = eop+1, M'(€ap)
=0, andM’(f,») = 0.

To fix signs, denote byy the fundamental class &f. A straightforward computation
shows that

BY(u") =0,
P4 p q
B\/()EP)_)([) — Z Z (r) (S)(X}’)—}SJrl ® ip7r+l)—;q7s _ X}’+1ys ® )Epfryq*S‘l’l)
r=0s=0

B (fpg) = (fo0®1+1® fo) ¥ ®F—y®X) - B (Z"5).

To describe the string bracket i, we choose the dual basis a, , andb, , tou’,
xPy? and f, ,. In that basis the string bracket satisfies

b ] k+1\[/m+t km — It b
,a = _ _ _1,
k,ts Al,m k " (k+l)(t+m) k+1—1,t+m—1

[ ] k+1\/m+t It —km
akt,a = ——————— Q4 1,
k,t> Al,m k t k + D)t +m) k+1—1,t+m—1

[br,s, bm,n] =0.

In particular the string Lie algebr#., is not nilpotent, since for instanceq[1, a,s] =
(r —s)ay;.

6. Theorem C. Dual of the loop product in terms of cochains on a differential
graded Lie algebra

6.1. Chains and cochains on a differential graded Lie algebra

Let (L, d) be a differential graded Lie algebra with: L; — L;_1 and(P, d) (respec-
tively (Q, d)) be a left (respectively right) differentidl-module. Thetwo-sided chain

complexC,(P; L; Q) is defined as follows:

Ce(P; L; Q) = (PO N'SL® 0, 80 + ).
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A generic element is writtep ® sx1 A - - - A sx;x ® g with degre€ p| + |g| + Zle lsx;].
The differentiald = dg + 91 is defined by

0 0
Ce(P; L; Q) 3 Cu(P; L; Q),  Ci(P;L; Q) 3 Cr_1(P; L; Q),
W(PRc®q)=0p@sx1 N Asxp®q

k
_P®Z(—1)‘p|+e" SXLA - ASOX; A+ ASXp ®q
i=1
+ (=DPFp @ ¢ @ dg,
0M(PpRSXIA-- ASXr ®q)

k
S @ sty A ST A @
i=1

+p® Z (=D)!PI€T slxg, X1 A - 5X5 - 5%7 -+ A sxg ® dg

1<i<j<k

k
+ Z(_1)|P|+€k+1+lxz'l+\sx,-Iek,,-p QSXLA 5K ASXE @ X - q
i=1

wheree; ; = €11+ ¢ fori < jande; =), _; [sxkl.
The chain coalgebraof (L,9) is the graded differential coalgebi@, (L) =
(/\sL, 3o + 91) := C«(Q; L; Q) with coproduct

k
SX1L A o ASXp > Z Z Eo(SXo) N+ ASXe(j)) ® (SXg(j+1) A+ A SXa(k)),
j=00eSh(j)

wheres,, is the graded signature and(@hdenotes the set @fj, k — j)-shuffles.

Recall that if Q is a left L-module then it is also a right-module for the action
defined bya - x := —(=1)I'*lx . 4, a € Q, x € UL. For any leftL-differential module
Q (respectively for any right differential modul) put

Cu(L: Q) =Cx(Q: L; Q) (respectivelCy(P: L) = Cy(P; L; Q)).

Thus, as graded vector spacés(L; O) = AsL ® Q andC.(P; L) = P ® /\sL. The
cochain complexf L with coefficients in a righf-moduleP is defined by

C*(L; P) = Homy(C«(L; UL), P).

When Q0 = UL with the action induced by left multiplication theh (L; UL) =
(A\sL®UL,d) is a leftC.(L)-comodule and a right/ L-module and both structures
are compatible. Moreover, the inclusi@h < C.(L; UL) is a quasi-isomorphism and
C«(L; UL) is a semifred.-module [12, Proposition 22.3]. Thus,

H(Cs(L; P)) = Tor*(Q, P) and H(C*(L; P)) = Ext.(Q, P).
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6.2. Cochains with coefficients in the adjoint modUlg, and free loop space
Let (L, d) be as in 6.1 and consider tlaejoint modulesU L, and UL with actions
defined by
l-x=[lx] onUL,,
(f -Dx) = f({l,x]) onUL,,

Moreover, sincel L is a Hopf algebra, for any right (respectively left) differential
modules(P, 9) (respectively( Q, 3)) theleft diagonalL-moduleP ® Q is defined by

leL,xeUL, feUL".

x@®b) =Y (D a)® ] b), xeUL aeP beQ,
i

wherex — }; x; ® x; denotes the coproduct TiL.
Now let (L, 3) be such that [([12, Lemma 23.1 and (24.b)]) the differential graded
algebraC*(L) is quasi-isomorphic to a minimal model df:

C*(L) = (A V.d) ~My.

The differential graded Lie algebra is uniquely defined by this condition. We Waxe
s(LY), H(L,d) = m+(QM) and H,(Q2M) = H(UL, 3) as Hopf algebras [12, Theorem
21.15]. Moreover, by the PoindgarBirkhoff—Witt theorem[12, Proposition 21.2], the nat-
ural linear isomorphisny : AL — UL, x1 A -+ Axg = (/K1) D" eoXo(1) - Xo k),
is an isomorphism of graded coalgebras. Therefore we have the following isomorphism
of graded algebras:
ULY = A\sV.

Lemma 4. ConsideringU L, as a rightL-module, the graded linear isomorphisms

C*(L;UL)) =C*(L;ULY)=C"(L)®@ULY =C*"(L) ® \sV

define a structure of graded algebra 6i(L; U L)) which is compatible with the differ-
ential of C*(L; UL))). Moreover, the natural inclusion

C*(L) = C*(L; UL)) ~ (C*(LY® A\sV.d), [ f@1lyLv,
is a relative Sullivan model gfp : LM — M.
Proof. Consider the differential graded Lie algelird defined as follows:

LS=L,®L,, L,=Ly1 di=—-dx, (-1)[a,b]=T[a,b], [a.b]=0.

Then the inclusion
C*(L) — C*(L%) = ANV @®sV),d)=(C"(L)® \sV,d) with d(sv) =—sd(v)

is a relative Sullivan model gfg : LM — M (see 4.1, diagram (5)). The rest of the proof
follows from the following sequence of isomorphisms of differential graded algebras:

C*(L%) := Hom(C«(L; ULy), Q) = Hom(Cy(L; UL) ®ur ULq, Q)
= Homyr(Cx(L; UL), UL)) =:C*(L; UL)). O
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6.3. Statement and proof of Theorem C

The multiplicationv : UL ® UL — UL which induces the Pontryagin product on
H,(2M) is not a morphism of graded algebras. Nonetheles$/L, Q UL, — UL, is

a morphism ofU L-modules wherV L, ® UL, is the diagonal lefi.-module. Thus the
dual of the producto L,v¥ : UL} — UL;/®UL,, is ahomomorphism of differential
graded right/ L-modules whetV L, ® UL, denotes the right diagonal module.

Proposition 4. The morphism of complexes
C*(L;vY): C*(L,UL)) — C*(L,UL) @ ULY) ~ (C*(L) ® (\sV)®2, d)

is a homomorphism of commutative differential graded algebras. This is a Sullivan model

.. Comp
for the composition of free loogsM xy LM —— LM.

Proof. The contractible chain complex€s(L; UL) andC,(UL; L), defined in 6.1, are
differential graded coalgebras via the graded linear isomorphisiiis UL) = C. (L) ®
UL andC,(UL; L) = UL®C.(L). Therefore, the coprodugt” onC, L induces a quasi-
isomorphism of differential graded coalgebras

®:Cu(L) — C(L; UL)®uL C+(UL; L) = (C4(L) @ UL ® Ci(L), d)
defined by®(x) = >, x; ® 1® x; whenp”(x) = >, x; ® x;, and the dual map
QY (C(LY®ULY ®C*(L),d) := (C+«(L; UL) ®ur C(UL; L))" — C*(L) (11

is a quasi-isomorphism of differential graded algebras. This implies that the natural injec-
tion

C*(L) ® C*(L) 5 CHL)®ULY @ C*(L),d) = (C*(L)®? ® \sV.d),
IRy x®1Qy,

is a relative Sullivan model for the prodyct: C*(L) @ C*(L) — C*(L) and thus, by dia-

gram(M(4)) of 4.1, itis a Sullivan relative model for the path fibratitf{ M M2,

This fact allows us to follow the construction performed in 4.2 viith,; = (C*(L) ®
ULY ® C*(L),d) andM, = dV.
First observe that the cochain model of the vertical face on the right in diagram (8),

Comg
MI X M MI 5 MI

t]l \L(po,m)
13

M><3 ﬂ;) MxZ
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is the pushout diagram

id id
E-2Y ey eULY @ C(L)
id@sv®id®sv®idT Tid@av
C*(L)®3 M) C*(L)®2
wheres : UL — Q is the augmentation, : Q < C(L) is the natural inclusion and is
the composition

U\/

ULY S ULY)®2~ULYQQULY idor®id

ULY@C*(L)QUL".
Observe that

E=C"(L)QULY®C"(L)QUL" ®C*(L)
>~ (Co(L; UL) ®ur C+(UL; Ly UL) ®y1 C«(UL; L))" .

Secondly, we use the machinery developed in (4.2) to translate diagram (8) in terms of
Sullivan models. We deduce the explicit model of the map Comp by considering the
pushout

(C*(L)@(ULV)®2, ) id®e” ®id E
Mcomp T mCode
A
NMc
C*(LYQULY, d) C*(LYQULYQC*(L),d) = My x
x
* * ®3
A C*(L) P ' C*(L)
/ =
9:nM m C*(L)®2

The mapicomp: (C*(L) ® ULY,d) — (C*(L) ® (ULY)®2, d) is preciselyC(L; vY).
O

Remark. Denote byL; andL3 two copies ofLS, andL” = L{ @, L3 = L& L1® Lo.
We denote byr : LT — L% the projection obtained by mapping identically eaﬂﬁ
to LS. We observe that, (L) isisomorphic ta,(L; ULY®U L) and that the following
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diagram commutes:

C*(L;vY)

C*(L; UL))

Hom(C,.(L; ULy), @ "2 T fomCu(L: ULy ® ULy). Q)

C*(LS) cr(LT)

C*(L; UL, QUL})

C*(m)

This shows thatr : LT — L is a “Lie representative” for the composition of free loops
LM xy LM — LM.
Proposition 4 and Theorem A yield

Theorem C. If C*(L) is a Sullivan model oM then the dual of the loop product

*(Comp

H ;!
H*(LM) ——= H*(LM xy LM) > H*™"(LM*?)

is induced in homology by the maps

C* , Vv
c*(L; ULY) L 0L ULYQULY) = C*(L)®c+1)C* (L; ULYQULY)
Tq)v@id

e
C*(L; ULY)®C*(L; ULY) < (C*(L)®U LY ®C*(L), d)®c+1,C*(L; ULYQULY)

(C*(L; UL)®CH(L; ULY)® A\ sV, d)

with &V defined in(11).

6.4. Example

Recall that acoformal spaceV is a space that admits a Sullivan minimal model with
a purely quadratic differential. In this ca6&(L) = (A V,d), L = n.(QM) ® Q and
H*(QM) = A\ sV. Thus,

If M is a coformal manifold with minimal modél\ V, d), then a model for the path
compositionLM xy LM — LM is given by

id®@vY :  (AVRAV.d) = (AV&AV)®2 d),

wherev is the Pontryagin product ofl,.(QM) and (A V ® /\V, d) is the model of the
free loop space, defined #nl.
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As a particular case consider the 11-dimensional maniféldbtained by taking the
pullback of the tangent sphere bundle$® along the mapf : $° x $% — 56 that
collapses the 3-skeleton into a point

M —— 1358

L

SB % S3 *f> S6
The minimal model ofM is
(A, y,2),d), dx=dy=0,dz=xy, |x|=1y|=3, |z|=5
Thus M is a coformal space. A model for the path compositksh x ; M! — M! is
given by
¢ (N y, 2, x', ¥y, 2, %,9,2),d)
= (AN, y, z,x, 0y, 2 X"y 2 %, 9,2, %, 5,2, d),
with d(X) = x —x',d() = y =y, d@) = z -2 = 350 + ) + 5 + 27,
d()f/) =x —x, d()_)/) — y/ _ y//' d(Z/) =7 — 7 = %i/(y/ + y//) + %(x/ + x//))—)/,
e =X+, 9(F) =5+, 93 =7+7 + 3%y — 3&'5. The induced model for the
path compositiol M x LM — LM is then given by
¢ (AKX, Y, 2,%,5,2),d) - (AN, y,2,%, 5,2, 5,5, 7), ),

with d(x) = 0,d(¥) = 0,d(?) = =Xy + x7,d(x) = 0,d(y') =0,d (') = —%'y + x¥/,
p®) =45, 0F) =7 +7,9@) =7+7 + 355 — 377

7. Dual of the loop product in terms of chains on a differential graded Lie algebra
7.1. The cap-homomorphism

Let (L, 9) be a differential graded Lie algebr#, be a differential graded-module and
C«(L; N),C*(L; N)ybeasin6.1l.Let = >, sxiy A+ A sxi, € Cq(L) be a cycle of
degreen. We define theap product by:

cap. : C?7"(L; N) = Homy (Cy—(L; UL), N) = C.(L; N),  f+ fNec,

where
fNec=En" Z Z (_1)\fl'\sxa(fl)A~--/\5xa(i,)Igg
i o€y,
CSXg (i) N A SXg (i) ® f(sx(,(,-rﬂ) Ao A ng(iq)).
A standard computation proves:

Lemma 5. The morphisntap. is a homomorphism of complexes which is natural with
respect to homomorphisms of differential gradedhodules.
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7.2. Statement of Theorem D

Since the dual of the multiplication” : UL, — UL ® UL, is a morphism oV L-
modules, Lemma 5 implies:

Proposition 5. The following diagram commutes:

Ci(L;vY
co(L:uL) S e ULy @ ULY)

capCT cag,T
C*(L;vY)

C*(L; ULY) ——=C*(L; ULy @ ULY)

The next result, whose proof is postponed to Subsection 7.3, furnishes a representative of
the Gysin map' : H*(LM ®y LM) — H*™(LM*?) at the level of chains.

Let (L, d) be such thaC*(L) ~ 9. The algebraH*(C*(L)) = H*(M) is a
Poincaé duality algebra with a fundamental clagd][ € H,,(M). We denote by a
cycle inC, (L) representing /]. Then an easy spectral sequence argument shows that
cap, : C*(L; N) — C«(L; N) is a quasi-isomorphism.

Proposition 6. With the notation 06.2, the following diagram commutes in homology:

Cy(8:id
C.(L;ULY @ ULY) D (L ULY) ®Cu(L; ULY)
Tcagl
C*(L; UL, QUL)) cap,®cap,

(¢/)V®idT;
(CHL; UL))®C*(L; UL))® \'V,d) ii'>C"‘(L; UL,))®C*(L;ULY)

Here§ : L - L@ L, x — (x, x).

It follows directly from Propositions 5 and 6 that the coproduct

C*(Li‘)v) C*(SQid)
e e

Co(L; ULY) Co(L; ULY @ ULY) Co(L; ULY) ® Cu(L; ULY)
induces onH, (L M) a coproduct
H.(LM) — H.(LM) ® H.(LM)
which is identified via the linear mafd (cap,) with the dual of the loop product
H*(LM) — (H*(LM) @ H*(LM))*™™.

Now, observe that this coproduct éa(L; UL,/) coincides with the coproduct ob-
tained by the tensor product of the coalgeBtaL) with the coalgebraU LY, vY). Thus
we have proved the following result:
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Theorem D. The homology of the differential graded coalgeBt&L; UL)) is isomor-
phic, via the isomorphism induces bgp,, to the coalgebradl*(LM) := H* " (LM)
equipped with the dual of the loop product.

It is worthwhile to observe here that there exists an isomorphism of differential graded
algebras between the dual algebra H6pL; U L)), Q) and the differential graded alge-
braC*(L; UL,). The structure of graded algebra@h(L; UL,) is defined by the tensor
product of the two graded algebr&s: (L) ® (UL, v).

7.3. Proof of Proposition 6

We will use the following general result about modules over differential graded algebras.

Lemma 6. Let R be a differential graded algebra, be a left semifre®-module, and let
f,g : N — P be homomorphisms of riglR-modules. IfH(f) = H(g) then the maps
fRLg®RL:NQr(R®V)— P Qg (R® V) induce the same map in homology.

Proof. Recall from 2.4 that =Y, . R® W(n) withdW®n) C R® >, _, W(k) and
where eacl (n) is a graded vector space. The subcomplexeeV @ S) = stp N®
(R ® W(k)) (respectivelyF”(P Qg S) = stp P ® (R ® W(k))) form a filtration that
induces a spectral sequence convergingtoV ®r S) (respectivelyH (P ®z S)). Since
Ei(f®id) = H(f) ®id = H(g) ® id = E1(g ® id) we deduce thaH (f ® id) =
H(g ®id). ]

The next result specifies the relation between the Gdp) and the Gysin map of the
diagonal embedding (see 4.3).

Lemma 7. With the previous notations the following diagram is commutative:

H,.(8)
Hy(Cx(L)) —— H(C«(L D L))
T cap,; T cap,;®cap,

H*(L; Q) —>> H*(L; Q) ® H*(L; Q)

Proof. By direct computation using definitions introduced in 4.3. O

End of proof of Proposition 6 We defineR = C*(L) ® C*(L). We remark thaR @ V

= C*(L; UL)) @ C*(L; UL)) is a semifreeR-module. Note also that the diagram in
Proposition 6 is the tensor product of a diagramRefmodules byR ® V over R. By
Lemma 7, this diagram commutes in homology wheén= Q. It then commutes in ho-
mology by Lemma 6. This completes the proof. O
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8. Loop product and Gerstenhaber product
8.1. Bar construction and chains of a differential graded Lie algebra

Let (A, d) be a differential graded supplemented algeldraz Q @ A, and(P, d) (resp.
(0, d)) be aright (respectively left) differential gradddmodule. Thgnormalized) two-
sided bar constructiof®(P; A; Q) is defined as follows:

Bi(P; A; Q)= PRT'sA® Q

whereT*V = V®_ A generic element is writtem[a1|az| - - - |ax]n with degreelm| +
In| + 3%, |sa;|. The differentiald = do + dy is defined by

Bi(P: A: Q) B Bu(Pi A Q). By(P; A; Q) B Bi_1(P: A; Q).
do(plailaz| - - - laxlq) = d(p)lailaz| - - - lak]qg

k
— > (=P plagfag] - - d(a)] - - lailq
i=1

+ (=Dt plag|ay)| - - - |lak]d (),
di(platlaz| - - lalg) = (=D)P pafaz| - - - lalq
k
+ Y (=DIP€ plas]ag| - ai-1ai] -+ |axlq
=2
— (=P plaglag| - - - |lax_1]arg

wheree; = Zj<i |saj|. The(normalized) bar constructioan A is the differential graded

coalgebraB(A) := B(k; A; k) = (T(sA), d). The relation between the bar construction
onU L and the chains oh is given by the following result:

Proposition 7 ([12, Proposition 22.7]) The canonical homomorphism

C.(P; L; Q) > B(P; UL; Q),
PRSXIN - NSX Qq p®<z 80[X5(1)|"'|Xo(k)])®q,

oeEX)

is a quasi-isomorphism. In particular:

a)if P = N = UL is the canonicalL-bimodule then® : C,(UL;L;UL) —
B(UL; UL; UL) is also a quasi-isomorphism of differential grad€d.-bimodules,

b) if P = Q = Qs the trivial L-module then) : C.(L) — B(UL) is a quasi-isomor-
phism of differential graded coalgebras.
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8.2. The Hochschild complex and chains with coefficients in an adjoint module

Let A = Q @ A be a supplemented algebrP be the opposite algebra and = A ®
A°P be the enveloping algebra df, thus A¢-modules aret-bimodules. Thédochschild
cochain complewnf A with coefficients in thed-bimoduleP is the differential module

CC*(A; P) = (Hom(T“(sZ), P), Do+ D1) = Homye(B(A; A; A), P)
where the differentiaDg + D1 of f € Hom(T¢(sA), P) is defined by

Do(f)([a1laz| - - - lax]) = dm (f ([a1laz| - - - |ax]))
- ’kl(—1>f'+fff<[a1| c-ldaai] - |ax]),

Di(f)([latlaz] - la]) = — ;:1)'”1' Flay f(az] - - lax])

’k =DV f(laa] - - lai—aail - - Jax])

i=2
+ (=D f([aglag] - - - lax—1])ax.

TheHochschild cohomology of with coefficients inV is
HH*(A; M) = H(CC*(A; M)) = H((Hom(T“(A), M), Do + D1)).

The product defined on Hofi‘(sUL), UL) (see 2.2) commutes with the differential

Do + D1. This is theGerstenhaber produdfLl5]. The next result specifies how the Ger-
stenhaber product o6C*(U L; U L) and the differential graded coalgelff&L; UL))),

as considered in Theorem D, are related. The proof of this result relies upon the “inverse
process” of Cartan—Eilenberg|[5].

Proposition 8. Let L be a connected differential graded Lie algebra. Then there exists a
canonical isomorphism of graded algebras

HH*(UL; UL) = Hom(H,(C«(L; UL))), Q).
Proof. We form the commutative diagram

Homw 1y B(UL; UL; UL), UL) 2D

Hom(B(UL), UL) Homiy.UL) Hom(C,(L), UL)

Hom 1y (Co(UL; L; UL), UL)

where the vertical maps are the canonical isomorphisms of graded vector spaces. These
isomorphisms define the graded algebra structure on

Hom(UL)e(IB%(UL; UL;UL),UL) and HomUL)e(C*(UL; L;UL),UL).
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Therefore they can be viewed as isomorphisms of graded algebras (but not as iso-
morphisms of differential graded algebras). Since kgnU L) is a homomorphism of
graded algebras the map HO#n U L) is a quasi-isomorphism of differential graded al-
gebras.

Considering the commutative diagram

Homy)e (C+«(UL; L; UL), UL) —*> Hom(C,(UL; L; UL) @1y UL, Q)

l; l;

Hom(C,(L), UL) Hom(C.(L) @ ULV, Q)

one proves, in the same manner, that the canonical isomorhisran isomorphism of
differential graded algebras.
Finally, a straightforward computation shows that the canonical linear isomorphism

Co(L:ULY) L CUL; L UL) @iy ULY

is an isomorphism of chain complexes. From the commutative diagram

HOMC,(UL: L: UL) ®ype ULY, Q) —— Hom(Cy(L: ULY), Q)

% |

Hom(C.(L) @ UL", Q) === Hom(C«(L; UL"), Q)

1R

we deduce thag" is an isomorphism of differential graded algebras.
The compositiomY o « o Hom(¥, U L) induces a canonical isomorphism of graded
algebras
HH*(UL; UL) = Hom(H,(C«(L; ULZ)),Q). O

8.3. Statement and proof of Theorem E

Assume that*(L) is a Sullivan model oM. Using the natural isomorphism of graded
algebras ([183])
HH*(UL;UL) = HH*(C*(L); C*(L)),

and the existence of quasi-isomorphisms of differential graded algebids), Za3
C*(M), we deduce from Proposition 8 and Theorem D:

Theorem E. Let M be a simply connected closed oriented manifold. There exists a nat-
ural isomorphism of graded algebras

ik3

J :H (LM) > HH*(C*(M); C*(M)).
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9. I-homomorphism and Hochschild homology
9.1. A convenient definition of tHiehomomorphism

For each subspacg — M, we denote byl.; M the space of loops if M with base
point in Z. We thus have the commutative pullback diagram

LM — 1M

|

ZC—M

Denote now byD a closed disk around the base paigt Since D is contractible,
LpM is homotopy equivalent t&® x QM. The I-homomorphism/ : H.(LM) —
H,_,(QM) is the composition

A.(LM) — Hy(LM, Lyy—xoM) Z22% H,(LpM, Lgu-1M)

= Hy(D, "1 ® Hy_n(QM).

Therefore thel-homomorphism is precisely the Gysin map of the embedding —
LM.

Let(A V®/\ sV, d) be arelative Sullivan model for the free loop space (4.1, diagram
(5)), and lew € (/\ V)™ be a cocycle representing the fundamental class. Then the direct
sumJ = (A V)" @ S, where(\ V)" = Q- o & S, is an acyclic differential ideal in
/\ V; the quotient mag : (A V,d) - (A,d) = (A\V/J,d) is a quasi-isomorphism.

We form the tensor product

(A® \sV,d) = (A, d)®pv (\V & \sV,d).

Lemma 7. The natural injectioni : (AsV,0 — (A ® AsV.d) defined byi(a) =
(—1)"w ® a is a morphism of complexes of degreénducing in cohomology the dual of
the I-homomorphismi¥ : H*(QM) — H*T"™(LM).

Proof. A model for the injectionLy_,M — LM is given by the quotient map :
(A® N\sV,d) - (A/(w) ® \sV,d). Therefore a model for the cochain complex
C*(LM, Ly—x,M) is given by Kelg = (Q - v ® /\ 'V, 0). This implies that a model for
the composition

H*(QM) = H*™™ (LM, Ly—x,M) — H*™™(LM)

a—(—1D)"w®a
—_—

is given by the compositiof\ sV Q- wdN\V— H*A® AsV,d). O
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9.2. Statement and proof of Theorem F

Theorem F. LetJ be as in Theorem E. There exists a canonical isomorphism of graded
algebras,/, making the diagram
H(LM) —L> HH*(C*(M); C*(M))
Il iHH*(C*(M),s)

H,(QM) 4

HH*(C*(M))
commutative, where: C*M — Q denotes the usual augmentation.

Proof. Let (L, 3) be such tha€*(L) = 9My,. The algebr&*(L; UL)) = C*(L)Q UL
is then a relative Sullivan model for the free loop spadd, and we can apply Lemma
6 (see 7.3) to this model to have a model for the restriction morphism. Now, since the
projectiong : C*(L; UL]) — A ® UL, is a quasi-isomorphisny admits a lifting
q' :ULY — C*(L; ULY).
Letu be acycle irC(L) representing the orientation clagg]such thatw, [M]) = 1.
We obtain a commutative diagram

ULY ——=C*(L; ULY)

i(l)mﬂc

ULY —==Ci«(L; ULY)

wheree(a) = 1 ® a. The dual diagram yields in homology a diagram of graded algebras
whose vertical maps are isomorphisms:

H,(QM) ~<——— H,{,,(LM)

fT TJ (%)

H, (UL) < H*(HOM(C,(L; ULY), Q)) = H*(C*(L: ULy))

Note that the twd, (L)-bicomodule.(L; UL) ®u C+«(UL; L) andC,(L) are quasi-
isomorphic. Therefore we have by duality a quasi-isomorphisn@*@f.)-bimodules
C*LY®ULY @ C*(L) = (C+(L; UL)®y C+(UL; L)Y — C*(L). We deduce the
isomorphism of differential graded vector spaces
CC*(UL; UL) = Homypye(C+(UL; L; UL), UL),
CC*(C*(L); C*(L)) = Homex (e (C4(L: UL) ®ur Cu(UL; L), C*(L)).

The isomorphisms

Hom )e (C«(UL; L; UL), UL) = Hom(Cx(L), UL),
Homex(1)e ((C+(L; UL) Qur C«(UL; L))", C*(L)) = Hom(UL", C*(L))
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induce differentials on the right hand side terms. Now a simple computation (see for
instancel[18]) shows that the ma&pthat associates to a map in HéM.(L), U L) the dual

map in HomU LY, C*(L)) is an isomorphism of complexes. This induces the following
commutative diagram of complexes:

Py

UL Homy 1) (C«(UL; L; UL),UL)
UL ¢ Hom(C(L). UL)
;l ;iD
H v,
Hom(UL", Q) omuL”e) HoM(U LY, C*(L))

CC*(C*(L),e)

Homes (1)e (C«(L; UL)®u1C(UL; L))", Q) =<———— CC*(C*(L), C*(L))

ccr(er(L), Q)

wheree : C*(L) — Q denotes the canonical augmentation. The result follows now
directly from the induced diagram in cohomology, combined with diagtam O
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