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Abstract. We consider the level set formulation of the inverse mean curvature flow. We establish a
connection to the problem ofp-harmonic functions and give a new proof for the existence of weak
solutions.

1. The problem

For n ≥ 2, let� ⊂ Rn be an open set with smooth boundary such that its complement,
�c

= Rn
\ �, is bounded. We study the problem

div

(
∇u

|∇u|

)
= |∇u| in �, (1)

u = 0 on∂�. (2)

This can be regarded as a level set formulation of a parabolic evolution problem for hyper-
surfaces inRn: SupposeF : Mn−1

× [0, T ) → Rn is a family of embedded hypersurfaces
evolving by

∂F

∂t
= −

H

|H |2
,

whereH is the mean curvature vector ofMt = F(M, t) (with a sign convention such that
round spheres expand under the flow). If a functionu : � → [0, ∞) exists on a certain
open set� ⊂ Rn, such thatu ≡ t onMt , and if thisu is sufficiently smooth and satisfies
∇u 6= 0, then it is a solution of (1). If, in addition,∂� ⊂ M0, then (2) is satisfied as well.

This evolution problem is called theinverse mean curvature flow. It has been studied
by Gerhardt [1], Urbas [10], Huisken–Ilmanen [3, 2, 4, 5], Smoczyk [8], and others. The
inverse mean curvature flow (on other manifolds thanRn) has been used by Huisken–
Ilmanen [3, 4] to prove the Riemannian Penrose inequality from general relativity. More-
over, a theory of weak solutions of (1) was developed in [3, 4], based on a variational
principle involving the functionals

Ju(w; K) =

∫
K

(|∇w| + w|∇u|) dx

for precompact setsK ⊂ �.
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Definition 1.1. A functionu ∈ C
0,1
loc (�) is called aweak solutionof (1) if for every

precompact setK ⊂ � and everyw ∈ C
0,1
loc (�) with w = u in � \ K, the inequality

Ju(u; K) ≤ Ju(w; K) (3)

holds. A weak solution isproperif

lim
|x|→∞

u = ∞.

One of the main results in [4] is an existence result: For every� ⊂ Rn as above, a proper
weak solutionu ∈ C

0,1
loc (�) of (1) and (2) exists. Moreover, proper weak solutions of the

problem are unique. We give another proof of the existence result in this paper with a
completely different method. Our approach is based on an approximation of (1) by the
equations

div(|∇u|
p−2

∇u) = |∇u|
p in � (4)

for p > 1. We use the following observation: If

v = exp

(
u

1 − p

)
,

then (4) is equivalent to
div(|∇v|

p−2
∇v) = 0 in �. (5)

This, in contrast to (1), is the Euler–Lagrange equation of a variational problem, even a
rather simple one. It is no problem at all to find a function in the homogeneous Sobolev
spaceẆ1,p(Rn) that solves (5) in� and satisfiesv = 1 in �c. If we can find a limit of
such solutions forp → 1, this limit is a natural candidate for a solution of our problem.
It turns out that this strategy is successful.

Theorem 1.1. Suppose� ⊂ Rn is an open set with smooth boundary, such that�c is
bounded. Forp > 1, let v(p)

∈ Ẇ1,p(Rn) solve

div(|∇v(p)
|
p−2

∇v(p)) = 0 in �,

andv(p)
= 1 on�c. Then

(1 − p) logv(p)
→ u

locally uniformly in�, whereu ∈ C
0,1
loc (�) is a proper weak solution of(1) and(2).

This theorem can be interpreted as a result on the behaviour of specialp-harmonic func-
tions (namely the ones giving thep-capacity of�c) asp tends to 1. But of course it also
implies in particular that a weak solution of the inverse mean curvature flow exists. The
proof turns out to be quite simple and direct. In addition to the stated facts, it also gives a
gradient bound and an estimate for the growth ofu at infinity. A maximum principle and a
comparison principle (for solutions constructed with this method) follow directly from the
corresponding facts aboutp-harmonic functions. All of this, however, has already been
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proved for proper weak solutions of the inverse mean curvature flow by Huisken–Ilmanen
[4], in the case of the gradient estimate even a slightly better result.

The method we use gives a link between two problems of different types: the inverse
mean curvature flow on the one hand, which is parabolic and not a variational problem,
andp-harmonic functions on the other hand, which are solutions of an archetypal elliptic
variational problem. Moreover, we obtain a construction of solutions of (1) and (2) with
elliptic rather than parabolic methods, which may be helpful when equation (1) is studied
independently of the inverse mean curvature flow, as a problem in its own right.

2. Construction of the solutions

In this section we give the proof of Theorem 1.1. Let thus� ⊂ Rn be open with smooth
boundary, such that�c is bounded. We denote the open ball inRn with centrex0 and
radiusr by Br(x0). Let R > 0 be the supremum of all numbersr > 0 such that each
x ∈ ∂� is on a sphere∂Br(x0) with Br(x0) ⊂ �c.

Fix p > 1, and suppose thatv ∈ Ẇ1,p(Rn) is a minimizer of the functional

Ep(w) =
1

p

∫
Rn

|∇w|
p dx

among allw ∈ Ẇ1,p(Rn) with w ≥ 1 in �c. Thenv solves equation (5) with boundary
datav = 1 on∂�. If Br(x0) ⊂ �c, the function

w(x) =

(
|x − x0|

r

)(n−p)/(1−p)

is another solution of (5) withw ≤ 1 on∂�. Since the equation is subject to a comparison
principle (see, e.g., Tolksdorf [9]), we have

v(x) ≥

(
|x − x0|

r

)(n−p)/(1−p)

, x ∈ �.

Similarly, if Bs(y0) is a ball with�c
⊂ Bs(y0), we conclude

v(x) ≤

(
|x − y0|

s

)(n−p)/(1−p)

, x ∈ � \ {y0}.

According to the results of Lewis [6], we havev ∈ C
1,α
loc (�) for someα > 0 (de-

pending onn andp). Since∂� is smooth, we can even show thatv ∈ C
1,α
loc (�) by the

application of a reflection principle and arguments as in [6].
Now let Br(x0) ⊂ � be a fixed ball. With arguments from J. Moser [7] (which are

easily adapted to our situation) or with other standard arguments, we prove the Harnack
inequality

sup
Br/2(x0)

v ≤ C1 inf
Br/2(x0)

v
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for a certain constantC1 that depends only onn andp. If η ∈ C∞

0 (�) is a cut-off function,
we compute∫

�

ηp
|∇v|

p dx = −p

∫
�

ηp−1v|∇v|
p−2

∇v · ∇η dx

≤ p

(∫
�

ηp
|∇v|

p dx

)(p−1)/p(∫
�

vp
|∇η|

p dx

)1/p

.

Thus ∫
�

ηp
|∇v|

p dx ≤ pp

∫
�

vp
|∇η|

p dx.

Together with the Harnack inequality this gives

rp−n

∫
Br/4(x0)

|∇v|
p dx ≤ C2 inf

Br/2(x0)
vp

for a constantC2 that depends only onn andp. Now we apply the results of Lewis [6]
again. They imply the existence of a constantC3, depending onn andp, such that

sup
Br/8(x0)

|∇v| ≤
C3

r
inf

Br/2(x0)
v.

In particular we have

lim
|x|→∞

|∇v|

v
= 0.

Next we define
u = (1 − p) logv.

If Br(x0) ⊂ �c, we have

u(x) ≤ (n − p) log

(
|x − x0|

r

)
, x ∈ �, (6)

and if�c
⊂ Bs(y0),

u(x) ≥ (n − p) log

(
|x − y0|

s

)
, x ∈ � \ {y0}. (7)

We know thatu ∈ C
1,α
loc (�) and

lim
|x|→∞

|∇u| = 0.

Most importantly,u satisfies equation (4) andu = 0 on∂�.
Inequality (6) together with the definition ofR implies

|∇u| ≤
n − p

R
on ∂�.
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Thus for everyβ > (n − p)/R, the set

�β = {x ∈ � : |∇u(x)| > β}

is a bounded, open set with�β ∩ ∂� = ∅. On∂�β , we have|∇u| = β.
Differentiating equation (4), we obtain

div[|∇u|
p−2

∇uxi
+ (p − 2)|∇u|

p−4(∇u · ∇uxi
)∇u] = p|∇u|

p−2
∇u · ∇uxi

for i = 1, . . . , n, at least in�β . Thus

div[|∇u|
p−2uxi

∇uxi
+ (p − 2)|∇u|

p−4uxi
(∇u · ∇uxi

)∇u]

= p|∇u|
p−2uxi

∇u · ∇uxi
+ |∇u|

p−2
|∇uxi

|
2
+ (p − 2)|∇u|

p−4 (
∇u · ∇uxi

)2
.

For the functionf = |∇u|
2, this means

div

[
1

p
∇f p/2

+ (∇u · ∇f p/2−1)∇u

]
− ∇u · ∇f p/2

≥
p − 1

4
f p/2−2

|∇f |
2.

If we write

A = id + (p − 2)
∇u ⊗ ∇u

f
,

the last inequality is equivalent to

div(f p/2−1A∇f ) − pf p/2−1
∇u · ∇f ≥

p − 1

4
f p/2−2

|∇f |
2.

Since p > 1, the matrixA is uniformly positive definite. Regardingf p/2−1A and
−pf p/2−1

∇u as the coefficients of a linear partial differential operator, we find that this
operator is elliptic and subject to a maximum principle. Hence

sup
�β

f ≤ sup
∂�β

f ≤ β2.

We conclude that

sup
�

|∇u| ≤
n − p

R
.

We also note thatu is a minimizer of the functional

J
p
u (w; K) =

∫
K

(
1

p
|∇w|

p
+ w|∇u|

p

)
dx

for every precompact setK ⊂ � in the sense that

J
p
u (u; K) ≤ J

p
u (w; K) (8)
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wheneverw ∈ W
1,p

loc (�) satisfiesw = u in � \ K. Indeed, for every suchw, we have,
by (4), ∫

K

(u − w)|∇u|
p dx =

∫
�

|∇u|
p−2

∇u · (∇w − ∇u) dx

≤
1

p

∫
K

(|∇w|
p

− |∇u|
p) dx.

It is now easy to complete the proof of Theorem 1.1. Ifv(p)
∈ Ẇ1,p(Rn) are solutions

of (5) with v(p)
= 1 in �c, they coincide in� with the functions considered above,

for the solutions are unique. Thus we have uniform gradient bounds for the functions
u(p)

= (1 − p) logv(p), namely

|∇u(p)
| ≤

n − p

R
in �.

There exists a sequencepk → 1 such thatu(pk) → u locally uniformly in � for a
functionu ∈ C

0,1
loc (�). With practically the same arguments that were used in [4] to prove

a compactness result for weak solutions of (1), we can show thatu is a weak solution
of (1). We include a version of these arguments below for completeness. First, however,
we note the following: Once it is proved thatu is a weak solution of (1), we see that it
is proper because of (7). Another result of [4] states that proper weak solutions of the
problem are unique. Thusu does not depend on the choice ofpk, and we have in fact
u(p)

→ u locally uniformly in� asp → 1.
It remains to show that (3) holds for every precompact setK ⊂ � and everyw ∈

C
0,1
loc (�) with w = u in � \ K. Suppose such a setK and such a functionw are given.

Chooseη ∈ C∞

0 (�) with 0 ≤ η ≤ 1 andη ≡ 1 in K, and insertηw + (1 − η)u(p) as a
test function intoJp

u(p)( · ; suppη) in inequality (8). It follows that∫
suppη

(
1

p
|∇u(p)

|
p

+ η(u(p)
− w)|∇u(p)

|
p

)
dx

≤
1

p

∫
suppη

|η∇w + (1 − η)∇u(p)
+ (w − u(p))∇η|

p dx

≤
3p−1

p

∫
suppη

(ηp
|∇w|

p
+ (1 − η)p|∇u(p)

|
p

+ |w − u(p)
|
p
|∇η|

p) dx. (9)

Choosing firstw = u and lettingp → 1, we obtain∫
�

η|∇u| dx ≥ lim sup
k→∞

∫
�

η|∇u(pk)|
pk dx,

and we infer|∇u(pk)|
pk → |∇u| in L1

loc(�). Considering (9) again, we conclude that (3)
holds. This completes the proof of Theorem 1.1.
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