

Roger Moser

The inverse mean curvature flow and p**-harmonic functions**

Received October 12, 2005

Abstract. We consider the level set formulation of the inverse mean curvature flow. We establish a connection to the problem of p -harmonic functions and give a new proof for the existence of weak solutions.

1. The problem

For $n \geq 2$, let $\Omega \subset \mathbb{R}^n$ be an open set with smooth boundary such that its complement, $\Omega^c = \mathbb{R}^n \setminus \Omega$, is bounded. We study the problem

$$
\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) = |\nabla u| \quad \text{in } \Omega,\tag{1}
$$

$$
u = 0 \qquad \text{on } \partial \Omega. \tag{2}
$$

This can be regarded as a level set formulation of a parabolic evolution problem for hypersurfaces in \mathbb{R}^n : Suppose $F: M^{n-1} \times [0, T) \to \mathbb{R}^n$ is a family of embedded hypersurfaces evolving by

$$
\frac{\partial F}{\partial t} = -\frac{H}{|H|^2},
$$

where H is the mean curvature vector of $M_t = F(M, t)$ (with a sign convention such that round spheres expand under the flow). If a function $u : \Omega \to [0, \infty)$ exists on a certain open set $\Omega \subset \mathbb{R}^n$, such that $u \equiv t$ on M_t , and if this u is sufficiently smooth and satisfies $\nabla u \neq 0$, then it is a solution of [\(1\)](#page-0-0). If, in addition, $\partial \Omega \subset M_0$, then [\(2\)](#page-0-0) is satisfied as well.

This evolution problem is called the *inverse mean curvature flow*. It has been studied by Gerhardt [\[1\]](#page-6-1), Urbas [\[10\]](#page-6-2), Huisken–Ilmanen [\[3,](#page-6-3) [2,](#page-6-4) [4,](#page-6-5) [5\]](#page-6-6), Smoczyk [\[8\]](#page-6-7), and others. The inverse mean curvature flow (on other manifolds than \mathbb{R}^n) has been used by Huisken– Ilmanen [\[3,](#page-6-3) [4\]](#page-6-5) to prove the Riemannian Penrose inequality from general relativity. Moreover, a theory of weak solutions of [\(1\)](#page-0-0) was developed in [\[3,](#page-6-3) [4\]](#page-6-5), based on a variational principle involving the functionals

$$
J_u(w; K) = \int_K (|\nabla w| + w|\nabla u|) dx
$$

for precompact sets $K \subset \Omega$.

R. Moser: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom; e-mail: r.moser@maths.bath.ac.uk

Definition 1.1. A function $u \in C_{\text{loc}}^{0,1}(\Omega)$ is called a weak solution of [\(1\)](#page-0-0) if for every *precompact set* $K \subset \Omega$ and every $w \in C_{\text{loc}}^{0,1}(\Omega)$ with $w = u$ in $\Omega \setminus K$, the inequality

$$
J_u(u; K) \le J_u(w; K) \tag{3}
$$

holds. A weak solution is proper *if*

$$
\lim_{|x|\to\infty}u=\infty.
$$

One of the main results in [\[4\]](#page-6-5) is an existence result: For every $\Omega \subset \mathbb{R}^n$ as above, a proper weak solution $u \in C^{0,1}_{loc}(\overline{\Omega})$ of [\(1\)](#page-0-0) and [\(2\)](#page-0-0) exists. Moreover, proper weak solutions of the problem are unique. We give another proof of the existence result in this paper with a completely different method. Our approach is based on an approximation of [\(1\)](#page-0-0) by the equations

$$
\operatorname{div}(|\nabla u|^{p-2}\nabla u) = |\nabla u|^p \quad \text{in } \Omega \tag{4}
$$

for $p > 1$. We use the following observation: If

$$
v = \exp\biggl(\frac{u}{1-p}\biggr),\,
$$

then [\(4\)](#page-1-0) is equivalent to

$$
\operatorname{div}(|\nabla v|^{p-2}\nabla v) = 0 \quad \text{in } \Omega. \tag{5}
$$

This, in contrast to [\(1\)](#page-0-0), is the Euler–Lagrange equation of a variational problem, even a rather simple one. It is no problem at all to find a function in the homogeneous Sobolev space $\dot{W}^{1,p}(\mathbb{R}^n)$ that solves [\(5\)](#page-1-1) in Ω and satisfies $v = 1$ in Ω^c . If we can find a limit of such solutions for $p \to 1$, this limit is a natural candidate for a solution of our problem. It turns out that this strategy is successful.

Theorem 1.1. *Suppose* $\Omega \subset \mathbb{R}^n$ *is an open set with smooth boundary, such that* Ω^c *is bounded. For* $p > 1$ *, let* $v^{(p)} \in \dot{W}^{1,p}(\mathbb{R}^n)$ *solve*

$$
\operatorname{div}(|\nabla v^{(p)}|^{p-2}\nabla v^{(p)}) = 0 \quad \text{in } \Omega,
$$

and $v^{(p)} = 1$ *on* Ω^c *. Then*

$$
(1-p)\log v^{(p)} \to u
$$

locally uniformly in $\overline{\Omega}$ *, where* $u \in C_{\text{loc}}^{0,1}(\overline{\Omega})$ *is a proper weak solution of* [\(1\)](#page-0-0) *and* [\(2\)](#page-0-0)*.*

This theorem can be interpreted as a result on the behaviour of special p-harmonic functions (namely the ones giving the *p*-capacity of Ω^c) as *p* tends to 1. But of course it also implies in particular that a weak solution of the inverse mean curvature flow exists. The proof turns out to be quite simple and direct. In addition to the stated facts, it also gives a gradient bound and an estimate for the growth of u at infinity. A maximum principle and a comparison principle (for solutions constructed with this method) follow directly from the corresponding facts about p -harmonic functions. All of this, however, has already been proved for proper weak solutions of the inverse mean curvature flow by Huisken–Ilmanen [\[4\]](#page-6-5), in the case of the gradient estimate even a slightly better result.

The method we use gives a link between two problems of different types: the inverse mean curvature flow on the one hand, which is parabolic and not a variational problem, and p -harmonic functions on the other hand, which are solutions of an archetypal elliptic variational problem. Moreover, we obtain a construction of solutions of [\(1\)](#page-0-0) and [\(2\)](#page-0-0) with elliptic rather than parabolic methods, which may be helpful when equation [\(1\)](#page-0-0) is studied independently of the inverse mean curvature flow, as a problem in its own right.

2. Construction of the solutions

In this section we give the proof of Theorem [1.1.](#page-1-2) Let thus $\Omega \subset \mathbb{R}^n$ be open with smooth boundary, such that Ω^c is bounded. We denote the open ball in \mathbb{R}^n with centre x_0 and radius r by $B_r(x_0)$. Let $R > 0$ be the supremum of all numbers $r > 0$ such that each $x \in \partial \Omega$ is on a sphere $\partial B_r(x_0)$ with $B_r(x_0) \subset \Omega^c$.

Fix $p > 1$, and suppose that $v \in \dot{W}^{1,p}(\mathbb{R}^n)$ is a minimizer of the functional

$$
E_p(w) = \frac{1}{p} \int_{\mathbb{R}^n} |\nabla w|^p \, dx
$$

among all $w \in \dot{W}^{1,p}(\mathbb{R}^n)$ with $w \ge 1$ in Ω^c . Then v solves equation [\(5\)](#page-1-1) with boundary data $v = 1$ on $\partial \Omega$. If $B_r(x_0) \subset \Omega^c$, the function

$$
w(x) = \left(\frac{|x - x_0|}{r}\right)^{(n-p)/(1-p)}
$$

is another solution of [\(5\)](#page-1-1) with $w \le 1$ on $\partial \Omega$. Since the equation is subject to a comparison principle (see, e.g., Tolksdorf [\[9\]](#page-6-8)), we have

$$
v(x) \ge \left(\frac{|x - x_0|}{r}\right)^{(n-p)/(1-p)}, \quad x \in \Omega.
$$

Similarly, if $B_s(y_0)$ is a ball with $\Omega^c \subset B_s(y_0)$, we conclude

$$
v(x) \le \left(\frac{|x - y_0|}{s}\right)^{(n-p)/(1-p)}, \quad x \in \Omega \setminus \{y_0\}.
$$

According to the results of Lewis [\[6\]](#page-6-9), we have $v \in C_{\text{loc}}^{1,\alpha}(\Omega)$ for some $\alpha > 0$ (depending on *n* and *p*). Since $\partial \Omega$ is smooth, we can even show that $v \in C_{\text{loc}}^{1,\alpha}(\overline{\Omega})$ by the application of a reflection principle and arguments as in [\[6\]](#page-6-9).

Now let $B_r(x_0) \subset \Omega$ be a fixed ball. With arguments from J. Moser [\[7\]](#page-6-10) (which are easily adapted to our situation) or with other standard arguments, we prove the Harnack inequality

$$
\sup_{B_{r/2}(x_0)} v \le C_1 \inf_{B_{r/2}(x_0)} v
$$

for a certain constant C_1 that depends only on n and p. If $\eta \in C_0^{\infty}(\Omega)$ is a cut-off function, we compute

$$
\int_{\Omega} \eta^{p} |\nabla v|^{p} dx = -p \int_{\Omega} \eta^{p-1} v |\nabla v|^{p-2} \nabla v \cdot \nabla \eta dx
$$

\n
$$
\leq p \bigg(\int_{\Omega} \eta^{p} |\nabla v|^{p} dx \bigg)^{(p-1)/p} \bigg(\int_{\Omega} v^{p} |\nabla \eta|^{p} dx \bigg)^{1/p}.
$$

Thus

$$
\int_{\Omega} \eta^p |\nabla v|^p \, dx \le p^p \int_{\Omega} v^p |\nabla \eta|^p \, dx.
$$

Together with the Harnack inequality this gives

$$
r^{p-n} \int_{B_{r/4}(x_0)} |\nabla v|^p \, dx \le C_2 \inf_{B_{r/2}(x_0)} v^p
$$

for a constant C_2 that depends only on n and p. Now we apply the results of Lewis [\[6\]](#page-6-9) again. They imply the existence of a constant C_3 , depending on n and p, such that

$$
\sup_{B_{r/8}(x_0)} |\nabla v| \leq \frac{C_3}{r} \inf_{B_{r/2}(x_0)} v.
$$

In particular we have

$$
\lim_{|x| \to \infty} \frac{|\nabla v|}{v} = 0.
$$

Next we define

$$
u = (1 - p) \log v.
$$

If $B_r(x_0) \subset \Omega^c$, we have

$$
u(x) \le (n-p)\log\left(\frac{|x-x_0|}{r}\right), \quad x \in \Omega,\tag{6}
$$

and if $\Omega^c \subset B_s(y_0)$,

$$
u(x) \ge (n-p)\log\left(\frac{|x-y_0|}{s}\right), \quad x \in \Omega \setminus \{y_0\}.
$$
 (7)

We know that $u \in C^{1,\alpha}_{loc}(\overline{\Omega})$ and

$$
\lim_{|x| \to \infty} |\nabla u| = 0.
$$

Most importantly, u satisfies equation [\(4\)](#page-1-0) and $u = 0$ on $\partial \Omega$.

Inequality [\(6\)](#page-3-0) together with the definition of R implies

$$
|\nabla u| \le \frac{n-p}{R} \quad \text{on } \partial \Omega.
$$

Thus for every $\beta > (n - p)/R$, the set

$$
\Omega_{\beta} = \{x \in \Omega : |\nabla u(x)| > \beta\}
$$

is a bounded, open set with $\overline{\Omega}_{\beta} \cap \partial \Omega = \emptyset$. On $\partial \Omega_{\beta}$, we have $|\nabla u| = \beta$. Differentiating equation (4) , we obtain

$$
\operatorname{div}[|\nabla u|^{p-2}\nabla u_{x_i} + (p-2)|\nabla u|^{p-4}(\nabla u \cdot \nabla u_{x_i})\nabla u] = p|\nabla u|^{p-2}\nabla u \cdot \nabla u_{x_i}
$$

for $i = 1, \ldots, n$, at least in Ω_{β} . Thus

$$
\begin{split} \operatorname{div} [|\nabla u|^{p-2} u_{x_i} \nabla u_{x_i} + (p-2)|\nabla u|^{p-4} u_{x_i} (\nabla u \cdot \nabla u_{x_i}) \nabla u] \\ &= p |\nabla u|^{p-2} u_{x_i} \nabla u \cdot \nabla u_{x_i} + |\nabla u|^{p-2} |\nabla u_{x_i}|^2 + (p-2)|\nabla u|^{p-4} \left(\nabla u \cdot \nabla u_{x_i} \right)^2. \end{split}
$$

For the function $f = |\nabla u|^2$, this means

$$
\operatorname{div}\left[\frac{1}{p}\nabla f^{p/2} + (\nabla u \cdot \nabla f^{p/2-1})\nabla u\right] - \nabla u \cdot \nabla f^{p/2} \ge \frac{p-1}{4}f^{p/2-2}|\nabla f|^2.
$$

If we write

$$
A = id + (p - 2) \frac{\nabla u \otimes \nabla u}{f},
$$

the last inequality is equivalent to

$$
\operatorname{div}(f^{p/2-1}A\nabla f) - pf^{p/2-1}\nabla u \cdot \nabla f \ge \frac{p-1}{4}f^{p/2-2}|\nabla f|^2.
$$

Since $p > 1$, the matrix A is uniformly positive definite. Regarding $f^{p/2-1}A$ and $-pf^{p/2-1}\nabla u$ as the coefficients of a linear partial differential operator, we find that this operator is elliptic and subject to a maximum principle. Hence

$$
\sup_{\Omega_{\beta}} f \le \sup_{\partial \Omega_{\beta}} f \le \beta^2.
$$

We conclude that

$$
\sup_{\overline{\Omega}} |\nabla u| \leq \frac{n-p}{R}.
$$

We also note that u is a minimizer of the functional

$$
J_u^p(w; K) = \int_K \left(\frac{1}{p} |\nabla w|^p + w |\nabla u|^p\right) dx
$$

for every precompact set $K \subset \Omega$ in the sense that

$$
J_u^p(u; K) \le J_u^p(w; K) \tag{8}
$$

whenever $w \in W^{1,p}_{loc}(\Omega)$ satisfies $w = u$ in $\Omega \setminus K$. Indeed, for every such w, we have, by [\(4\)](#page-1-0),

$$
\int_{K} (u - w) |\nabla u|^p dx = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot (\nabla w - \nabla u) dx
$$

$$
\leq \frac{1}{p} \int_{K} (|\nabla w|^p - |\nabla u|^p) dx.
$$

It is now easy to complete the proof of Theorem [1.1.](#page-1-2) If $v^{(p)} \in \dot{W}^{1,p}(\mathbb{R}^n)$ are solutions of [\(5\)](#page-1-1) with $v^{(p)} = 1$ in Ω^c , they coincide in Ω with the functions considered above, for the solutions are unique. Thus we have uniform gradient bounds for the functions $u^{(p)} = (1-p) \log v^{(p)}$, namely

$$
|\nabla u^{(p)}| \leq \frac{n-p}{R} \quad \text{in } \overline{\Omega}.
$$

There exists a sequence $p_k \to 1$ such that $u^{(p_k)} \to u$ locally uniformly in $\overline{\Omega}$ for a function $u \in C_{loc}^{0,1}(\overline{\Omega})$. With practically the same arguments that were used in [\[4\]](#page-6-5) to prove a compactness result for weak solutions of (1) , we can show that u is a weak solution of [\(1\)](#page-0-0). We include a version of these arguments below for completeness. First, however, we note the following: Once it is proved that u is a weak solution of [\(1\)](#page-0-0), we see that it is proper because of [\(7\)](#page-3-1). Another result of [\[4\]](#page-6-5) states that proper weak solutions of the problem are unique. Thus u does not depend on the choice of p_k , and we have in fact $u^{(p)} \to u$ locally uniformly in $\overline{\Omega}$ as $p \to 1$.

It remains to show that [\(3\)](#page-1-3) holds for every precompact set $K \subset \Omega$ and every $w \in$ $C_{\text{loc}}^{0,1}(\Omega)$ with $w = u$ in $\Omega \setminus K$. Suppose such a set K and such a function w are given. Choose $\eta \in C_0^{\infty}(\Omega)$ with $0 \le \eta \le 1$ and $\eta \equiv 1$ in K, and insert $\eta w + (1 - \eta)u^{(p)}$ as a test function into J_{μ}^{p} $u_{\mu(p)}^{\mu}(\cdot; \text{supp }\eta)$ in inequality [\(8\)](#page-4-0). It follows that

$$
\int_{\text{supp}\,\eta} \left(\frac{1}{p} |\nabla u^{(p)}|^p + \eta (u^{(p)} - w) |\nabla u^{(p)}|^p \right) dx
$$
\n
$$
\leq \frac{1}{p} \int_{\text{supp}\,\eta} |\eta \nabla w + (1 - \eta) \nabla u^{(p)} + (w - u^{(p)}) \nabla \eta|^p dx
$$
\n
$$
\leq \frac{3^{p-1}}{p} \int_{\text{supp}\,\eta} (\eta^p |\nabla w|^p + (1 - \eta)^p |\nabla u^{(p)}|^p + |w - u^{(p)}|^p |\nabla \eta|^p) dx. \tag{9}
$$

Choosing first $w = u$ and letting $p \to 1$, we obtain

$$
\int_{\Omega} \eta |\nabla u| dx \ge \limsup_{k \to \infty} \int_{\Omega} \eta |\nabla u^{(p_k)}|^{p_k} dx,
$$

and we infer $|\nabla u^{(p_k)}|^{p_k} \to |\nabla u|$ in $L^1_{loc}(\Omega)$. Considering [\(9\)](#page-5-0) again, we conclude that [\(3\)](#page-1-3) holds. This completes the proof of Theorem [1.1.](#page-1-2)

References

- [1] Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differential Geom. **32**, 299– 314 (1990) [Zbl 0708.53045](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:0708.53045&format=complete) [MR 1064876](http://www.ams.org/mathscinet-getitem?mr=1064876)
- [2] Huisken, G., Ilmanen, T.: A note on the inverse mean curvature flow. In: Proc. Workshop on Nonlinear Part. Diff. Equ. (Saitama Univ.) (1997)
- [3] Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. **1997**, no. 20, 1045–1058 [Zbl 0905.53043](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:0905.53043&format=complete) [MR 1486695](http://www.ams.org/mathscinet-getitem?mr=1486695)
- [4] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom. **59**, 353–437 (2001) [Zbl 1055.53052](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:1055.53052&format=complete) [MR 1916951](http://www.ams.org/mathscinet-getitem?mr=1916951)
- [5] Huisken, G., Ilmanen, T.: Higher regularity of the inverse mean curvature flow. Preprint (2002)
- [6] Lewis, J. L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. **32**, 849–858 (1983) [Zbl 0554.35048](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:0554.35048&format=complete) [MR 0721568](http://www.ams.org/mathscinet-getitem?mr=0721568)
- [7] Moser, J.: On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math. **14**, 577–591 (1961) [Zbl 0111.09302](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:0111.09302&format=complete) [MR 0159138](http://www.ams.org/mathscinet-getitem?mr=0159138)
- [8] Smoczyk, K.: Remarks on the inverse mean curvature flow. Asian J. Math. **4**, 331–335 (2000) [Zbl 0989.53040](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:0989.53040&format=complete) [MR 1797584](http://www.ams.org/mathscinet-getitem?mr=1797584)
- [9] Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Comm. Partial Differential Equations **8**, 773–817 (1983) [Zbl 0515.35024](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:0515.35024&format=complete) [MR 0700735](http://www.ams.org/mathscinet-getitem?mr=0700735)
- [10] Urbas, J. I. E.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. **205**, 355–372 (1990) [Zbl 0691.35048](http://www.zentralblatt-math.org/zmath/en/advanced?q=an:0691.35048&format=complete) [MR 1082861](http://www.ams.org/mathscinet-getitem?mr=1082861)