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Abstract. We consider the level set formulation of the inverse mean curvature flow. We establish a
connection to the problem gf-harmonic functions and give a new proof for the existence of weak
solutions.

1. The problem

Forn > 2, letQ2 c R" be an open set with smooth boundary such that its complement,
Q¢ =R"\ @, is bounded. We study the problem

div<&> —|Vu| inQ, 1)
[Vul
u=0 onoQ. (2)

This can be regarded as a level set formulation of a parabolic evolution problem for hyper-
surfaces irR": Suppose” : M"~1x[0, T) — R" is a family of embedded hypersurfaces
evolving by

oF H

ar  |HIZ
whereH is the mean curvature vector df, = F (M, t) (with a sign convention such that
round spheres expand under the flow). If a function2 — [0, co) exists on a certain
open sef2 C R”", such thau = r on M,, and if thisu is sufficiently smooth and satisfies
Vu # 0, then itis a solution of (1). If, in additiod2 C Mo, then [2) is satisfied as well.

This evolution problem is called thaverse mean curvature flow has been studied

by Gerhardt[[1], Urbas [10], Huisken—limanen[[3[ 2, 4, 5], SmocZzyk [8], and others. The
inverse mean curvature flow (on other manifolds tfi has been used by Huisken—
llImanen [3] 4] to prove the Riemannian Penrose inequality from general relativity. More-
over, a theory of weak solutions ¢f|(1) was developed Iri [3, 4], based on a variational
principle involving the functionals

Ju(w; K) = / (IVw| + w|Vul) dx
K

for precompact set& c Q.
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Definition 1.1. A functionu € CIOO’Cl(Q) is called aweak solutionof @) if for every

precompact sek C Q2 and everyw € Cl%cl(sz) withw = u in @\ K, the inequality

Ju(u; K) < Jy(w; K) (3)
holds. A weak solution igroperif

lim u = oo.
[x]—00
One of the main results in][4] is an existence result: For egery R” as above, a proper
weak solutiorn: e Cloo’cl(ﬁ) of @) and @) exists. Moreover, proper weak solutions of the
problem are unique. We give another proof of the existence result in this paper with a
completely different method. Our approach is based on an approximatiph of (1) by the
equations

div(|Vul?~?Vu) = |[Vu|?  inQ (4)

for p > 1. We use the following observation: If

o)
v = — ),
1-p

div(|Vu|?7?Vv) =0 inQ. (5)

then [4) is equivalent to

This, in contrast to (1), is the Euler-Lagrange equation of a variational problem, even a
rather simple one. It is no problem at all to find a function in the homogeneous Sobolev
spaceW -7 (R") that solves) i2 and satisfies = 1 in Q°. If we can find a limit of

such solutions fop — 1, this limit is a natural candidate for a solution of our problem.

It turns out that this strategy is successful.

Theorem 1.1. Suppose2 C R” is an open set with smooth boundary, such tétis
bounded. Fop > 1, letv® e W7 (R") solve

div(|Vo?1P=2vy(P)y =0 in Q,

andv® = 10onQ°. Then
(11— p)logv® — u

locally uniformly in<2, whereu Cloo’cl(ﬁ) is a proper weak solution c@) and @)

This theorem can be interpreted as a result on the behaviour of spetéamonic func-

tions (namely the ones giving thecapacity ofQ2¢) asp tends to 1. But of course it also
implies in particular that a weak solution of the inverse mean curvature flow exists. The
proof turns out to be quite simple and direct. In addition to the stated facts, it also gives a
gradient bound and an estimate for the growth af infinity. A maximum principle and a
comparison principle (for solutions constructed with this method) follow directly from the
corresponding facts aboptharmonic functions. All of this, however, has already been
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proved for proper weak solutions of the inverse mean curvature flow by Huisken—limanen
[4], in the case of the gradient estimate even a slightly better result.

The method we use gives a link between two problems of different types: the inverse
mean curvature flow on the one hand, which is parabolic and not a variational problem,
and p-harmonic functions on the other hand, which are solutions of an archetypal elliptic
variational problem. Moreover, we obtain a construction of solution§]of (1)[gnd (2) with
elliptic rather than parabolic methods, which may be helpful when equéfion (1) is studied
independently of the inverse mean curvature flow, as a problem in its own right.

2. Construction of the solutions

In this section we give the proof of Theorém]1.1. Let thus- R" be open with smooth
boundary, such tha®¢ is bounded. We denote the open ballRi with centrexg and
radiusr by B,(xg). Let R > 0 be the supremum of all numbers> 0 such that each
x € 02 is on a spher@ B, (xg) with B, (xg) C Q°.

Fix p > 1, and suppose thate W17 (R") is a minimizer of the functional

1
Ep(w) = —f [Vw|? dx
P n

among allw € WHP(R") with w > 1 in Q¢. Thenv solves equatiorﬂS) with boundary
datav = 1 ond . If B,(xg) C Q°, the function

W) = (Ix—xol

r

>(n—p)/(l—p)

is another solution of {5) witly < 1 ond . Since the equation is subject to a comparison
principle (see, e.g., Tolksdoifl[9]), we have

v(x) > (M

r

(n—p)/(1-p)
) , x €.

Similarly, if By(yo) is a ball withQ¢ c B, (yp), we conclude

v(x) < (M . xeQ\ Dol

(n—p)/(1—=p)
)

According to the results of Lewis [[6], we havee C,})’g‘(sz) for somea > 0 (de-

pending one and p). Sinced2 is smooth, we can even show thate Clt’g‘(ﬁ) by the
application of a reflection principle and arguments aslin [6].

Now let B, (xg) C 2 be a fixed ball. With arguments from J. Moser [7] (which are
easily adapted to our situation) or with other standard arguments, we prove the Harnack
inequality

sup v<C; inf v
By/2(x0) Brj2(x0)
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for a certain constant; that depends only amandp. If n € C3°(2) is a cut-off function,
we compute

/ n?|Vul? dx = —p/ n? | Vu|P2Vy - Vi dx
Q Q
(p=D/p 1/p
§p</ n”IVvlf’dx) (f v/’|vn|l’dx) ,
Q Q

/r}p|Vv|pdx §pp/ vP|Vn|P dx.
Q Q

Together with the Harnack inequality this gives

Thus

rp_”/ |Vv|Pdx < Cy inf P

By4(x0) By 2(x0)

for a constanC; that depends only onm and p. Now we apply the results of Lewis|[6]
again. They imply the existence of a constast depending om and p, such that

Csz .
sup |Vu| < = inf .
B,/8(x0) ' Brja(xo)

In particular we have

. \
lim ﬂ =0.

|[x|]—>00 v

Next we define
u=(1- p)logv.

If B,(xo0) C QF, we have

ulx) < (m—p) |Og(|)C —x0|>’ x € Q, (6)
r
and if Q¢ C By (yo),
u(x) > (n — p) Iog(@), x € Q\ {yo}. (7
We know thaty € C,%;g‘ () and
lim |Vu| =0.
|x]—o00

Most importantlyu satisfies equatiofi (4) and= 0 ond<.
Inequality [6) together with the definition & implies

onog.

n—
Vul <
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Thus for eveny8 > (n — p)/R, the set
Qg ={x e Q: |Vulx)| > B}

is a bounded, open set wiflg N 92 = ¥. OnIQE, we haveVu| = B.
Differentiating equatiory (4), we obtain

diV[|Vu|p_2Vux, +(p— 2)|Vul?~*(Vu - Vuy, )Vu] = p|Vu|”_2Vu - Vi,
fori =1,...,n, atleasting. Thus

div[|Vu|P~2uy, Vs, + (p — 2)|Vul?~4uy, (Vu - Vi, ) Vil
= p|Vu|”_2ux,.Vu - Vuy, + |Vu|p_2|Vuxi|2 +(p—2)|VulP™? (Vu - Vuxi)z.

For the functionf = |Vu/|?, this means
11 /2 /2-1 p_ P=1 0o .0
div| =V P2 £ (Vu - VP2 Yy | —vu - v P szP IV fI2.
p

If we write
A\ A%
A:id+(p—2)$,

the last inequality is equivalent to

p—1

2 P22V f12,

div(fP/* AV ) = PPtV -V f >

Sincep > 1, the matrixA is uniformly positive definite. Regarding?/?~1A and
—pfP?2=1vy as the coefficients of a linear partial differential operator, we find that this
operator is elliptic and subject to a maximum principle. Hence

supf < supf < 2
Qﬁ 39;3

We conclude that

n—
sup|Vu| < =2
Q
We also note that is a minimizer of the functional
P (w: K) = f

1
(—|Vw|” + w|Vu|”> dx
K\P

for every precompact sé&f C Q2 in the sense that

JY(u; K) < I (w; K) (8)



82 Roger Moser

wheneverw € W,ég’(sz) satisfiesw = u in Q \ K. Indeed, for every such, we have,

by (4),
t/(u—-wnvauu:zt/|VuVFQVu-(Vw-—Vu)dx
K Q

1
< —/ (IVw|?” — [Vul?)dx.
pJk

Itis now easy to complete the proof of Theo@ 1.2 e WbP(R") are solutions
of (8) with v = 1 in Q¢, they coincide in2 with the functions considered above,
for the solutions are unique. Thus we have uniform gradient bounds for the functions
u® = (1 - p)logv®, namely

e <"" P nq.

R
There exists a sequengg — 1 such thatwP?) — u locally uniformly in Q for a
functionu € C,OO’Cl(ﬁ). With practically the same arguments that were used|in [4] to prove
a compactness result for weak solutions[df (1), we can showtigg weak solution
of (). We include a version of these arguments below for completeness. First, however,
we note the following: Once it is proved thatis a weak solution of {1), we see that it
is proper because df(7). Another result lof [4] states that proper weak solutions of the
problem are unique. Thus does not depend on the choice gf, and we have in fact
u® — u locally uniformly inQ asp — 1.

It remains to show thaf 3) holds for every precompactiSet 2 and everyw €
C,OO’Cl(Q) with w = u in Q \ K. Suppose such a s&t and such a functiom are given.
Choosen € C°(R2) with0 < n < 1andy = 1in K, and insertyw + (1 — nu'? as a
test function into];’(p)(~ ; suppn) in inequality @5). It follows that

1
/ <—|Vu(/’)|1’ + U(M(p) _ w)|Vu(f")|”> dx
suppn \ P

1
< —/ InVw + (L= n)Vu® + (w — u'P)Vy|P dx
P Jsuppy

3r-1
<

/ (P IVw|? + L= )P |Vu PP + |w — uP|P|Vy|P)dx.  (9)
P Jsuppy

Choosing firstw = u and lettingp — 1, we obtain

/‘mvuhh:szSUp NI Vu PPk dx,
Q

k—>o0 JQ

and we infer Vu(PV|Pk — |Vu|in LL (Q). Considering) again, we conclude t@t ©))

loc

holds. This completes the proof of Theorem|1.1.
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