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the Ginzburg–Landau heat flow
Part I: Study of the perturbed Ginzburg–Landau equation
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Abstract. We study vortices for solutions of the perturbed Ginzburg–Landau equations1u +

(u/ε2)(1 − |u|2) = fε wherefε is estimated inL2. We prove upper bounds for the Ginzburg–
Landau energy in terms of‖fε‖L2, and obtain lower bounds for‖fε‖L2 in terms of the vortices
when these form “unbalanced clusters” where

∑
i d

2
i

6= (
∑
i di)

2.
These results will serve in Part II of this paper to provide estimates on the energy-dissipation

rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena
occurring in this flow, including vortex collisions; they allow in particular extending the dynamical
law of vortices beyond collision times.

Keywords. Ginzburg–Landau equation, Ginzburg–Landau vortices, vortex dynamics, vortex colli-
sions

1. Introduction and statement of the main results

1.1. Presentation of the problem

In this paper, we study the forced Ginzburg–Landau equation
1u+

u

ε2
(1 − |u|2) = fε in �,

u = g (resp.
∂u

∂ν
= 0) on ∂�,

(1.1)

wherefε is a forcing right-hand side which isgiven inL2(�). Here� is a two-dimen-
sional domain, assumed to be smooth, bounded and simply connected, andu is acomplex-
valuedfunction, assumed to satisfy either one of the boundary conditions

u = g on ∂� (1.2)
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with g a fixed regular map from� to S1, in which case we also assume that� is strictly
starshaped with respect to a point; or

∂u

∂ν
= 0 on∂�, (1.3)

in which case no further assumption is made. This equation withfε = 0 is the standard
Ginzburg–Landau equation, which has been intensively studied, in the asymptotic limit
ε → 0, in particular since the work of Bethuel–Brezis–Hélein [BBH].

Our motivation for studying theL2 perturbed equation, which we will develop in
Part II of this paper [S1], is to study the two-dimensional parabolic Ginzburg–Landau
equation: 

∂tu

|logε|
= 1u+

1

ε2
u(1 − |u|2) in �× R+,

u(·,0) = u0
ε in �,

(1.4)

with the same boundary conditions as above. However, the results we present here have
an interest of their own and can be read independently of Part II.

The Ginzburg–Landau heat flow is anL2 gradient flow (or steepest descent) for the
Ginzburg–Landau functional

Eε(u) =
1

2

∫
�

(
|∇u|2 +

(1 − |u|2)2

2ε2

)
. (1.5)

This energy functional is a simplified version (without magnetic field) of the Ginzburg–
Landau model of superconductivity. Such functionals also appear in other models from
physics: for superfluidity, nonlinear optics, Bose–Einstein condensates; and the complex-
valued functionu, called “order parameter”, plays the role of a condensed wave function.

In this model, the interesting objects are thevortices, or the zero-set of the complex-
valued functionu carrying a topological degree: sinceu is complex-valued, it can have
a nonzero integer degree around each of its zeroes. Vortices can also be seen as having a
“core”, where|u| is small, of characteristic length scaleε; and a “tail” where|u| is close
to 1, but the phase ofu still carries a lot of energy; they can be clearly extracted in the
asymptotic limitε → 0.

Vortices in the Ginzburg–Landau model have been the object of intensive studies, gen-
erally in the asymptotic limitε → 0 where they become point singularities, in particular
since the work of [BBH] on (1.5), under the assumptionEε(u) ≤ C|logε| (bounding the
possible number of vortices); refer also to [SS2] for the analysis of the full model with
magnetic field. In both cases, some0-convergence type results were obtained.

A very precise description of the vortices and of the energy of (nonminimizing) solu-
tions of the Ginzburg–Landau equation, i.e. (1.1) withfε ≡ 0, was given by Comte and
Mironescu in [CM1, CM2]. We are interested here in generalizing these results, and in
studying how much the situation can differ from thefε ≡ 0 case. Since we are interested
in studying vortex collisions for solutions of (1.4), we focus on understanding static sit-
uations where vortices are very close to each other. We will characterize “pathological
vortex situations” for (1.1) as those for which we have a group of vortices which are far
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from the others, and have degreesdi with (
∑
i di)

2
6=

∑
i d

2
i in the group, which we call

anunbalanced cluster of vortices.
We study the equation (1.1) with anL2 perturbation term because (1.4) is precisely

anL2 gradient flow for (1.5), and thus foruε solving (1.4), we have

−
d

dt
Eε(uε(x, t)) = |logε|

∫
�

∣∣∣∣1uε +
1

ε2
uε(1 − |uε|

2)

∣∣∣∣2.
Thus, if we write that (1.4) holds withfε = ∂tuε/|logε|, we precisely see that
|logε| ‖fε‖2

L2(�)
is the energy-dissipation rate for solutions of (1.4). This will be crucially

used in Part II [S1] and this motivates our need for estimates, in particular lower bounds,
on ‖fε‖L2. If ‖fε‖L2 is large, then the energy dissipates fast in the flow (1.4), thus de-
creasing to a point which allows one to rule out certain configurations (for example ifEε
decreases so much thatEε ≤ C then there can be no more vortices). On the other hand,
if fε is small, then (1.1) can be seen as a small perturbation of the Ginzburg–Landau
equation 

−1u =
1

ε2
u(1 − |u|2) in �,

u = g or
∂u

∂ν
= 0 on∂�,

(1.6)

for which a number of qualitative facts about vortices are known. The idea is thus to use
this alternative in aquantitativeway, in order to deduce from the static study information
on vortex collisions or other pathological situations in the dynamics.

More precisely, it is known that ifu is a solution of Ginzburg–Landau in the plane,
with vortices(ai, di), then we must have(∑

i

di

)2
=

∑
i

d2
i , (1.7)

which is equivalent to the fact that
∑
i 6=j didj = 0, or to the fact that the forces exerted by

the vortices balance each other. This follows from suitable applications of the Pohozaev
identity, as in [BMR]. Similarly, as seen in [BBH, CM1], ifuε, a solution of (1.6) in a
bounded domain, has some vorticesai of degreedi accumulating (asε → 0) around a
single pointp, then the same rule(

∑
i di)

2
=

∑
i d

2
i holds. Now, ifuε is a configuration

with say, two vortices, one of degree 1, one of degree−1, at a distanceo(1) asε → 0
(which is what happens during a vortex collision of a+1 with a −1) then this rule is
obviously violated (and it is the same for any situation with(

∑
i di)

2
6=

∑
i d

2
i ), so we

can trace how much it is violated in the Pohozaev identity for (1.1), and get a lower bound
for ‖fε‖L2. The technique thus relies on some adaptations of the Pohozaev identities
with error termfε. Observe that Pohozaev identities have already been widely used in
the context of Ginzburg–Landau statics and dynamics ([BMR, BBH, BCPS, RuS, SS2]).
Some similar results and the “balanced cluster” condition (1.7) also appear in the recent
preprint of Bethuel–Orlandi–Smets [BOS] (see Theorem 5) on the parabolic Ginzburg–
Landau equation.
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1.2. Main results on(1.1)

Before stating the results, let us make a few assumptions. Since we are going to consider
nice initial datau0

ε for (1.4) with a fixed number of vortices asε → 0, and since the
energy decreases during the flow, it is natural to restrict ourselves to

Eε(uε) ≤ M|logε| (1.8)

and
|uε| ≤ 1, |∇uε| ≤ M/ε. (1.9)

It is well known that (1.4) is well-posed and that if these estimates are true foru0
ε , they

remain satisfied at all times for solutions of (1.4).
We sometimes assume in addition that

‖fε‖
2
L2(�)

≤ 1/εβ for someβ < 2. (1.10)

If this assumption is not true, then clearly we have a large lower bound on‖fε‖L2. If
(1.10) holds, then after blow-up at the scaleε, solutions of (1.1) converge to solutions of
Ginzburg–Landau in the plane

−1U = U(1 − |U |
2)

which enables us to define a “good collection of vortices”ai with degreesdi (depending
on ε) for uε. Without going into full details of what it means and how they are found,
these are points such that the ballsBi := B(ai, Rεε) with some 1� Rε ≤ |logε| are
disjoint and cover all the zeroes ofuε, anddi = deg(uε, ∂B(ai, Rεε)) 6= 0. We can then
give a more precise definition (although we will mostly use a slightly weaker condition,
see Theorem 2).

Definition 1. Theai ’s anddi ’s being as above, we say thatuε has acluster of vortices at
the scalel atx0 if

B(x0, l) ∩ {ai} 6= ∅, (1.11)

dist({ai : ai /∈ B(x0, l)}, B(x0, l)) � l asε → 0. (1.12)

We sayuε has anunbalanced cluster of vortices at the scalel at x0 if the previous condi-
tions hold and if ∑

i : ai∈B(x0,l)

d2
i 6=

( ∑
i : ai∈B(x0,l)

di

)2
.

Once these vortices are found, this allows us to define a canonical harmonic phaseθ in
�ε := �\

⋃n
i=1B(ai, Rεε) as the harmonic conjugate of8 solving−18 = 2π

∑
i diδai

with suitable boundary conditions. Once this is done, denoting byϕ the phase ofuε, i.e.
u = ρeiϕ in �ε, we may consider the phase excessψ = ϕ − θ . The first main result
consists in evaluating the energy excess (due to both the phase excess and the modulus of
u), in terms of only one natural quantity: theL2 norm offε, the natural norm to consider
for the study of the parabolic flow.
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The method is inspired by that of Comte–Mironescu in [CM1, CM2]; however, their
result was for the casefε ≡ 0, and used some preciseL∞ and decay estimates for so-
lutions of Ginzburg–Landau away from the vortices. Here we retrieve the result with the
only control on‖fε‖L2 and no a priori bounds other than (1.8) and (1.9). We obtain in
addition a scaled version of the estimate, localized in any (small) ball. The result is

Theorem 1. Letuε satisfy(1.1)and(1.8)–(1.10). Theai , di , Bi being as above, we have∫
�ε

|∇ψε|
2

≤ o(1)+ C‖fε‖
2
L2(�)

, (1.13)∫
�ε

(
|∇|uε| |

2
+
(1 − |uε|

2)2

ε2

)
≤ o(1 + ‖fε‖

2
L2(�)

). (1.14)

For anyx ∈ �, and anyl � ε
√

|logε|, we have∫
�∩B(x,l)\

⋃
i Bi

|∇ψε|
2

≤ min(C + Cl2 log2 l‖fε‖
2
L2(�)

, o(1 + l2 log4 l‖fε‖
2
L2(�)

)),

(1.15)
and ∫

�∩B(x,l)\
⋃
i Bi

|∇|uε| |
2
+
(1 − |uε|

2)2

ε2
≤ o(1)+ o(l2 log2 l‖fε‖

2
L2(�)

). (1.16)

Moreover,

∀α < 1, απ

n∑
i=1

d2
i ≤

Eε(uε)

|logε|
+ C|logε|7/2ε1−α

‖fε‖L2(�) + o(1), (1.17)

and

π

n∑
i=1

d2
i log

1

ε
+Wd(a1, . . . , an)+

n∑
i=1

γ (Vi)+ o(1) ≤ Eε(uε)

≤ π

n∑
i=1

d2
i log

1

ε
+Wd(a1, . . . , an)+

n∑
i=1

γ (Vi)+ C‖fε‖
2
L2(�)

+ o(1), (1.18)

where theVi ’s are the (limiting) blown-up profiles ofuε aroundai at scaleε, Wd is the
renormalized energy function introduced in[BBH] , relative to the collection of degreesd
(see definition in(3.3)) and theγ (Vi) are constants equal whendi = ±1 to a universal
constantγ introduced in[BBH] .

Moreover, all the constantsC and o(1) above depend only onβ, M, � and g (if
applicable).

This result allows us to bound the phase excess (with scaled versions of it, cf. (1.15)–
(1.16)), and in turn to bound the energy excess in terms of‖fε‖L2 and of the vortices of
uε only, in (1.18). This way, it provides a lower bound for‖fε‖L2 and it allows us, for so-
lutions of (1.4), to bound from below the energy-dissipation rate, and to bound from above
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the number of vortices through (1.17). Let us mention that the “energy-quantization” re-
sult for solutions of (1.4) shown in [BOS] (Theorem 6 and appendix) is equivalent at
leading order to (1.18).

From this first theorem, we may implement the Pohozaev strategy described above
and obtain the following.

Theorem 2. There exist constantsl0 > 0 andK0 > 0 such that, assuming thatuε is as
in Theorem1, and that there exists a nonempty subcollection{Bi}

k
i=1 of the balls{Bi}

which are included inB(x0, l/2), ε
√

|logε| � l < l0 asε → 0, and such that for some
K > K0, either

(i) B(x0,Kl) ⊂ � andB(x0,Kl) intersects no other ball in the collection{Bi}, and

k∑
i=1

d2
i 6=

( k∑
i=1

di

)2
, (1.19)

or
(ii) x0 ∈ ∂� andB(x0,Kl) intersects no other ball in the collection{Bi}.

Then

‖fε‖
2
L2(�)

≥ min

(
C

l2|logε|
,

C

l2 log2 l

)
. (1.20)

All the constants above depend only onβ,M,� andg.

This is exactly the desired lower bound on‖fε‖
2
L2: it shows it blows up like 1/(l2|logε|)

in most cases, as the scale of the unbalanced cluster of vorticesl gets small.
As a byproduct, in the casefε = 0 we retrieve

Corollary 1.1. Let uε be solutions of the Ginzburg–Landau equation(1.6) such that
Eε(uε) ≤ C|logε|. Then there exists a constantl0 > 0 such that forε small enough,
uε has no unbalanced cluster of vortices at any scalel < l0; and has no vortex at dis-
tance< l0 from the boundary.

Some sharper (but of the same order) lower bounds for‖fε‖
2
L2 will be given in Proposition

5.1 in [S1], by blowing up at the scalel in the case wherel is not too small (log4 l ≤

C|logε|).
Observe that all these results (in particular (1.20)) can be viewed as obtaining lower

bounds for the higher-order energy functionalFε(u) =
∫
�

|1u + (u/ε2)(1 − |u|2)2|2

under the assumptionEε(uε) ≤ C|logε|. It was proved in [Li, SS1] that (denoting
here and in the rest of the paper by(·, ·) the scalar product inC identified withR2) if
curl(iuε,∇uε) ⇀ 2π

∑n
i=1Diδpi asε → 0 (i.e. the limiting vortices ofuε asε → 0 are

thepi ’s with degreesDi), then

lim inf
ε→0

(|logε|Fε(uε)) ≥
1

π

n∑
i=1

|∇iWD(p1, . . . , pn)|
2,

This is the lower bound part of a0-convergence result (the upper bound should not be
hard to prove). The lower bounds we obtain here (and in Proposition 5.1 of Part II) are in
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agreement with this, but in general sharper since they involve the locations and degrees
of the vortices at theε level, and blow up when these get very close.

Let us point out that such a study of forced equations, with its “dual”0-convergence
point of view, was performed for the Allen–Cahn equation (the same equation as (1.1)
but with real-valued functions—an important model for phase transitions) with a lower
bound by the Wilmore functional (see [To, RS] and the references therein). We are not
aware of any other singularly perturbed equation for which this has been done.

In this first paper, we start by performing a “Pohozaev ball construction” which is
an adaptation of that done in [SS2] but with nonzero error termfε. This allows us to
bound the number of vortices and define a good collection of vortices. Then we prove
Theorems 1 and 2.

In the second part [S1], we will present applications of both of these theorems to the
dynamics and collisions of vortices under (1.4).

2. A “Pohozaev ball construction” for (1.1)and applications

This construction, which is a combination of the Pohozaev identity with the ball-growth
method of Jerrard/Sandier, consists in an adjustment of the one presented in [SS2], taking
into account the nonzero right-hand side in (1.1). The main result is

Proposition 2.1. Letuε satisfy(1.1)and(1.8)–(1.10). Then∫
{x∈� : |u(x)|≤1−1/|logε|2}

(1 − |u|2)2

ε2
≤ C, (2.1)

whereC depends only onβ in (1.10),M,� andg.

2.1. Pohozaev identities for(1.1)

The Pohozaev identity consists in multiplying (1.1) byx · ∇u and integrating by parts.
However, because of the boundary conditions, we will need a more general version of it,
as in [SS2, Chapter 5].

Introducing the associated stress-energy tensor

Tij =
1

2

(
|∇u|2 +

1

2ε2
(1 − |u|2)2

)
δij − (∂iu, ∂ju), (2.2)

an easy computation yields

div Tij = −

(
∂ju,1u+

u

ε2
(1 − |u|2)

)
= −(∂ju, fε), (2.3)

where divTij denotes
∑2
i=1 ∂iTij . Multiplying the relation (2.3) by a vector fieldX, we

find
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Lemma 2.1. Let u satisfy (1.1). For any open subsetU of � and any smooth vector
fieldX, we have∫

∂U

∑
i,j

XjνiTij =

∫
U

∑
i,j

(∂iXj )Tij −

∫
U

(fε, X · ∇u) (2.4)

whereν denotes the outer unit normal to∂U and the indicesi, j run over{1,2}.

The most standard Pohozaev identity follows by applying this inU = � ∩ B(x0, s) to
X = x − x0; it yields

1

2

∫
∂(B(x0,s)∩�)

(
(x − x0) · ν

(∣∣∣∣∂u∂ν
∣∣∣∣2 −

∣∣∣∣∂u∂τ
∣∣∣∣2 −

(1 − |u|2)2

2ε2

)
+ (x − x0) · τ

(
∂u

∂τ
,
∂u

∂ν

))
+

∫
B(x0,s)∩�

(1 − |u|2)2

2ε2
=

∫
B(x0,s)∩�

(fε, (x − x0) · ∇u). (2.5)

In particular, ifB(x0, s) does not intersect∂�, one obtains

∫
∂B(x0,s)

∣∣∣∣∂u∂r
∣∣∣∣2 +

1

s

∫
B(x0,s)

(1 − |u|2)2

ε2

=

∫
∂B(x0,s)

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+

1

s

∫
B(x0,s)

(fε, (x − x0) · ∇u). (2.6)

We deduce the following lemma.

Lemma 2.2. Let u satisfy(1.1). Then, ifR is such thatB(x0, R) ⊂ � and0 < r < R,
we have

∫ R

r

1

s

∫
B(x0,s)

(1 − |u|2)2

ε2
ds +

∫
B(x0,R)\B(x0,r)

∣∣∣∣∂u∂r
∣∣∣∣2

=

∫
B(x0,R)\B(x0,r)

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+

∫ R

r

1

s

∫
B(x0,s)

((x − x0) · ∇u, fε) ds,

(2.7)

with

∣∣∣∣∫ R

r

1

s

∫
B(x0,s)

(fε, (x − x0) · ∇u) ds

∣∣∣∣ ≤

∫
B(x0,R)\B(x0,r)

∣∣∣∣∂u∂r
∣∣∣∣2

+
R2

4

∫
B(x0,R)\B(x0,r)

|fε|
2
+ r log

R

r
‖fε‖L2(B(x0,r))

‖∇u‖L2(B(x0,r))
. (2.8)
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Proof. (2.7) follows from integrating (2.6) fors ∈ [r, R]. For (2.8), we write∣∣∣∣∫ R

r

1

s

∫
B(x0,s)

(fε, (x − x0) · ∇u)

∣∣∣∣
≤

∫ R

r

1

s

(∫
B(x0,r)

|x − x0|

∣∣∣∣∂u∂ν
∣∣∣∣|fε| +

∫
B(x0,s)\B(x0,r)

|x − x0|

∣∣∣∣∂u∂ν
∣∣∣∣|fε|) ds

≤ r log
R

r

∫
B(x0,r)

∣∣∣∣∂u∂ν
∣∣∣∣|fε| + R

∫
B(x0,R)\B(x0,r)

∣∣∣∣∂u∂ν
∣∣∣∣|fε|. (2.9)

Inserting the fact that for everyλ > 0,∫
B(x0,R)\B(x0,r)

∣∣∣∣∂u∂ν
∣∣∣∣|fε| ≤

1

2λ

∫
B(x0,R)\B(x0,r)

∣∣∣∣∂u∂ν
∣∣∣∣2 +

λ

2

∫
B(x0,R)\B(x0,r)

|fε|
2 (2.10)

applied toλ = R/2, we are led to (2.8). ut

Another standard relation consists in writing in the Dirichlet case, as in [BBH], a global
Pohozaev identity using (2.4) on the whole�. Using the fact that� is strictly starshaped,
one obtains

Lemma 2.3. Let� be strictly starshaped and letu satisfy(1.1)with u = g on∂�. Then∫
∂�

∣∣∣∣∂u∂ν
∣∣∣∣2 +

∫
�

(1 − |u|2)2

ε2
≤ C(1 + ‖∇u‖L2(�)‖fε‖L2(�)) (2.11)

where the constantC depends only on� andg.

Proof. Assume� is strictly starshaped with respect to the pointx0 (hence(x − x0) · ν ≥

β > 0 on∂�), and apply (2.4) toU = � andX = x − x0. This yields

1

2

∫
∂�

β

∣∣∣∣∂u∂ν
∣∣∣∣2 +

∫
�

(1 − |u|2)2

2ε2

≤ C

∫
∂�

(∣∣∣∣∂g∂τ
∣∣∣∣2 +

∣∣∣∣(∂u∂ν , ∂g∂τ
)∣∣∣∣) +

∫
�

|x − x0| |fε| |∇u|, (2.12)

from which the result follows easily. ut

2.2. Proof of Proposition 2.1—interior case

For simplicity, we start with the proof of Proposition 2.1 assuming no balls intersect∂�.

Proof of Proposition 2.1.The proof is a ball construction that is very similar to that
presented in [SS2, Chapter 4]. Following [Sa1], since (1.8) holds, by the coarea formula,
one may cover the set{x : |u(x)| ≤ 1 − 1/|logε|2} by a finite union of disjoint closed
ballsBi(0) of radii ri such that

∑
i ri ≤ Cε|logε|3. We increase all these balls in parallel

according to the method of Jerrard and Sandier, presented for example in [SS2], which
yields:



186 Sylvia Serfaty

Lemma 2.4. For everyt ≥ 0 there exists a finite collectionB(t) of disjoint closed balls
such that:

(i) B(0) = {Bi(0)}i .
(ii) r(B(t)) = et r(B(0)) for everyt ≥ 0, wherer(B(t)) denotes the sum of the radii of

the balls in the collection.
(iii) For everyt ≥ s, ⋃

B∈B(s)
B ⊂

⋃
B∈B(t)

B.

There exists a finite setT ⊂ R+ such that if[t1, t2] ⊂ R+ \ T , thenB(t2) =

et2−t1B(t1), whereλB denotes the collection of balls obtained fromB by keeping the
same centers and multiplying all the radii byλ.

The timest ∈ T correspond to “merging times” when some of the balls have intersecting
closures. Assuming first the balls remain disjoint through the growing, we may apply
(2.7) tor = ri andR = et ri to find∫ et ri

ri

1

s

∫
Bi (log(s/ri ))

(1 − |u|2)2

ε2
ds

≤

∫
Bi (t)

(
|∇u|2 +

(1 − |u|2)2

2ε2

)
+ et ri‖fε‖L2(Bi (t))

‖∇u‖L2(Bi (t))
, (2.13)

where ∫ R

r

1

s

∫
B(x0,s)

((x − x0) · ∇u, fε) ds ≤ R

∫
B(x0,R)

|fε| |∇u|

≤ R‖fε‖L2(Bi (t))
‖∇u‖L2(Bi (t))

.

We easily deduce

t

∫
Bi (0)

(1 − |u|2)2

ε2
≤ 2Eε(u, Bi(t))+ r(Bi(t))‖fε‖L2(Bi (t))

‖∇u‖L2(Bi (t))
, (2.14)

where we write, for any setU ,

Eε(u, U) =
1

2

∫
U

(
|∇u|2 +

1

2ε2
(1 − |u|2)2

)
.

Now these relations add up nicely over all balls in the collectionB(t), including through
possible merging of balls, and we have for everyt , and everyBk(t) ∈ B(t),

t

∫
⋃
i :Bi (0)⊂Bk(t)

Bi (0)

(1 − |u|2)2

ε2
≤ 2Eε(u, Bk(t))+ r(Bk(t))‖fε‖L2(Bk(t))

‖∇u‖L2(Bk(t))
.

(2.15)
Summing this overk, using (1.8), and applying this relation tot = α log(1/ε) for some
0< α < 1, we find
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α|logε|
∫

⋃
i Bi (0)

(1 − |u|2)2

ε2
≤ 2Eε

(
u,

⋃
k

Bk(t)
)

+ Cε1−α
‖fε‖L2(

⋃
k Bk(t))

|logε|7/2,

(2.16)
where we observe thatr(B(t)) ≤ Cε1−α

|logε|3. Since (1.10) is satisfied, we may choose
α > 0 such that 2− 2α − β > 0, and find∫

⋃
i Bi (0)

(1 − |u|2)2

ε2
≤

2Eε(u)

α|logε|
+ o(1) ≤ C. (2.17)

We conclude that
∫⋃

i Bi (0)
(1 − |u|2)2/ε2

≤ C and since theBi(0) were constructed to

cover the set{x ∈ � : |u(x)| ≤ 1 − 1/|logε|2} we deduce (2.1). This proof is valid if
none of the ballsBk(t) intersects∂�. ut

2.3. Proof of Proposition 2.1—boundary issues

The method follows that of [SS2, Chapter 4], with the only modifications due to thefε
term. We sketch the main steps.

2.3.1. Dirichlet case. In the Dirichlet case, instead of using (2.6) and (2.7), we use
(2.5). Decomposing∂(B(x0, s) ∩�) into ∂B(x0, s) ∩� and∂� ∩ B(x0, s), we find∫
∂B(x0,s)∩�

∣∣∣∣∂u∂ν
∣∣∣∣2 +

1

s

∫
B(x0,s)∩�

(1 − |u|2)2

ε2
≤

∫
∂B(x0,s)∩�

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+

1

s

∫
∂�∩B(x0,s)

(x − x0) · ν

(∣∣∣∣∂g∂τ
∣∣∣∣2 −

∣∣∣∣∂u∂ν
∣∣∣∣2 − (x − x0) · τ

(
∂g

∂τ
,
∂u

∂ν

))
+

1

s

∫
B(x0,s)∩�

2((x − x0) · ∇u, fε). (2.18)

Using Lemma 2.3, we deduce∫
∂B(x0,s)∩�

∣∣∣∣∂u∂ν
∣∣∣∣2 +

1

s

∫
B(x0,s)∩�

(1 − |u|2)2

ε2
≤

∫
∂B(x0,s)∩�

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+ C(1 + ‖∇u‖L2(�)‖fε‖L2(�)). (2.19)

Integrating gives∫ R

r

1

s

∫
B(x0,s)∩�)

(1 − |u|2)2

ε2
ds +

∫
(B(x0,R)\B(x0,r))∩�

∣∣∣∣∂u∂ν
∣∣∣∣2

≤

∫
(B(x0,R)\B(x0,r))∩�

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+ CR(1 + ‖∇u‖L2(�)‖fε‖L2(�))

(2.20)

and we may reproduce the proof above with this relation instead of (2.7).
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2.3.2. Neumann case.In the Neumann case, we extendu by performing a reflection
with respect to∂�. Let �̃ denote a large enough tubular neighborhood of�, i.e.� ⊂ �̃.
Let ψ be a smooth mapping of� onto the unit disc. It can be extended to a mapping
from �̃ to a domain strictly containing the unit disc. Let thenR denote the reflection with
respect to the unit circle defined in complex coordinates byR(z) = z/|z|2. The mapping
ϕ = ψ−1

◦R ◦ψ then maps̃� \� to�. One can check that it is the identity on∂�, that
it is C2 in �̃ \ �, and thatDϕ(x) converges to the orthogonal symmetry relative to the
tangent to∂� atx0 asx → x0 ∈ ∂�, at a rate bounded byC dist(x, ∂�).

We can then extendu with ∂u/∂ν = 0 on∂�, by settingu = u in � and

u(x) = u(ϕ(x)) if x ∈ �̃ \�.

SinceDϕ converges to a reflection with respect to the boundary asx → ∂� and∂u/∂ν
= 0 on∂�, we find thatu isC1 in �̃. We also definefε = fε(ϕ(x)) in �̃\� andfε = fε
in �. We will use the same proof as above through ball growth in�̃ for u. The relation
(2.7) still applies inside�. For the balls that intersect∂�, we need to replace it with a
variant foru.

LetB(x0, s) be a ball intersecting∂� and letD1=B(x0, s)∩� andD2=B(x0, s)\�.
From (2.5), we have

∫
D1

(1 − |u|2)2

ε2
=

∫
∂�∩B(x0,s)

(x − x0) · ν

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+

∫
∂B(x0,s)∩�

s

(∣∣∣∣∂u∂τ
∣∣∣∣2 −

∣∣∣∣∂u∂ν
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+

∫
D1

((x − x0) · ∇u, fε). (2.21)

In order to get the analogue inD2, we apply (2.4) inD′

2 = ϕ(D2) with X(ϕ(x)) =

Dϕ(x)(x − x0). Arguing as in [SS2], this leads to

∫
D′

2

(1 − |u|2)2

ε2
(1 +O(s)) =

∫
B(x0,s)∩∂�

(x − x0) · ν

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+s

∫
∂D′

2∩�

(∣∣∣∣∂u∂τ
∣∣∣∣2−

∣∣∣∣∂u∂ν
∣∣∣∣2+

(1 − |u|2)2

2ε2

)
+O

(
s2

∫
∂D′

2

Eε(u, ∂D
′

2)

)
+

∫
D′

2

(fε, X·∇u).

(2.22)

If we add this to the relation (2.21), the contributions on∂� cancel and we find∫
D1∩D

′

2

(1 − |u|2)2

ε2
(1 +O(s)) = s

∫
∂D1∪∂D

′

2

(∣∣∣∣∂u∂τ
∣∣∣∣2 −

∣∣∣∣∂u∂ν
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+O(s2Eε(u, ∂D

′

2))+O

(
s

∫
D1∪D

′

2

|∇u| |fε|

)
.

After a change of variables, and sinceϕ approaches a reflection, we find (as in [SS2])
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∫
B(x0,s)

(1 − |u|2)2

ε2
= s

∫
∂B(x0,s)

(∣∣∣∣∂u∂τ
∣∣∣∣2 −

∣∣∣∣∂u∂ν
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+O

(
s

∫
B(x0,s)

(1 − |u|2)2

ε2

)
+O(s2Eε(u, ∂B(x0, s)))+O

(
s

∫
B(x0,s)

|∇u| |fε|

)
.

Dividing by s and integrating, we find∫ R

r

1

s

∫
B(x0,s)

(1 − |u|2)2

ε2
ds ≤

∫
B(x0,R)\B(x0,r)

(
|∇u|2 +

(1 − |u|2)2

2ε2

)
+CREε(u, B(x0, R)\B(x0, r))+R

∫
B(x0,R)

(1 − |u|2)2

ε2
+CR‖∇u‖L2(�̃)‖fε‖L2(�̃).

(2.23)

Replacing (2.7) by this relation, and increasing the balls the same way, we are led to the
same result foru, and Proposition 2.1 is proved.

2.4. Application: construction of the vortex collection

We now show how to define a good collection of vortex-balls for solutions of (1.1).
If |u(x0)| < 1/2, the assumption (1.9) implies standardly that|u| ≤ 3/4 in some ball

B(x0, λε) and thus that there exists a constantµ > 0 such that∫
B(x0,λε)

(1 − |u|2)2

ε2
≥ µ. (2.24)

If we use this, the result of Proposition 2.1 suffices to conclude as in [BBH] that the set
{|u(x)| ≤ 3/4} can be covered by a bounded (independently ofε) number of disjoint balls
of centersai and radiiRε (whereR is fixed), and changingR if necessary, we may always
assume that|ai − aj | � ε for i 6= j . We may also assume that each ball contains a point
x0 where|u(x0)| < 1/2 (otherwise the ball can simply be removed from the collection).

The next step is to perform a blow-up analysis. If (1.10) is satisfied, then the pertur-
bation termfε in (1.1) disappears after blow-up at the scaleε, and we can use the known
results on (1.6).

Lemma 2.5. Letuε satisfy(1.1)and(1.8)–(1.10). If aε is a sequence of points such that
dist(aε, ∂�) � ε and deg(u, ∂B(aε, Rε)) = d, then up to a subsequence,vε(x) =

uε(aε + εx) converges uniformly over compact subsets ofR2 asε → 0 to a solutionU
of

−1U = U(1 − |U |
2) in R2 (2.25)

with ∫
R2
(1 − |U |

2)2 = 2πd2. (2.26)

If aε is such thatdist(aε, ∂�) ≤ Cε then up to a subsequence,vε(x) = uε(aε + εx)

converges locally uniformly to a constant of modulus1.
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Proof. Settingvε(x) = uε(aε + εx) we have

1vε + vε(1 − |vε|
2) = ε2fε(aε + εx), (2.27)

and we also know that|∇vε(x)| ≤ C and|vε| ≤ 1. Thus,vε is compact inL∞ by Ascoli’s
theorem. But we have‖ε2fε(aε + εx)‖L2(BR)

≤ ε‖fε‖L2(�) ≤ o(1) by (1.10); thus1uε
is strongly compact inL2(BR) for everyR. In the first case, up to a subsequence, we
thus find thatvε converges locally uniformly and inH 2

loc to a solutionU of (2.25). It was
proved in [BMR] that under our assumptions, (2.26) holds. In the case dist(aε, ∂�) ≤ Cε,
up to translation and taking a subsequence, we find thatvε converges to a solution of
−1U = U(1 − |U |

2) on the half-planeR2
+, with boundary condition either|U | = 1 or

∂U/∂ν = 0. In the Dirichlet case, a result of Sandier [Sa2] allows us to conclude that
U is a constant; in the Neumann case, a simple reflection yields a solution to (2.25) of
degree zero, hence a constant of modulus 1 (from [BMR]). ut

For a solutionU of (2.25), following [BMR], we have

1

2

∫
B(0,R)

(
|∇U |

2
+
(1 − |U |

2)2

2

)
= πd2 logR + γ (U) asR → ∞ (2.28)

whered is the degree ofU andγ (U) is a constant depending on the solution. When
d = ±1, it has been proved by Mironescu [M] that there exists a unique solution to (2.25)
(up to multiplication by a constant of modulus 1), which is the radial solution of (2.25)
and thenγ (U) = γ , a universal constant first defined in [BBH].

Proposition 2.2. Let uε satisfy (1.1) and (1.8)–(1.10). Then, after extraction of a se-
quenceε → 0, we can findRε → +∞ with Rε ≤ C|logε| and a family of balls
Bi = B(ai, Rεε), i = 1, . . . , n, with ai depending onε andn bounded independently
of ε, such that

(i) ‖1 − |uε| ‖L∞(�\
⋃
i B(ai ,Rεε))

→ 0 asε → 0.
(ii) |ai − aj | � Rεε for i 6= j anddist(ai, ∂�) � Rεε for everyi.

(iii) Thedi = deg(u, ∂B(ai, Rεε)) are all nonzero.
(iv)

lim
ε→0

∥∥∥∥uε − Vi

(
· − ai

ε

)∥∥∥∥
L∞(B(ai ,Rεε))

= 0 (2.29)

whereVi is some solution of degreedi of (2.25).
(v)

lim
ε→0

∫
∂B(ai ,Rεε)

∣∣∣∣∂|uε|∂ν

∣∣∣∣ = 0,
∫
∂B(ai ,Rεε)

∣∣∣∣∂uε∂ν
∣∣∣∣ ≤ C. (2.30)

(vi)

lim
ε→0

∫
B(ai ,Rεε)

(1 − |uε|
2)2

ε2
= 2πd2

i , (2.31)

lim
ε→0

(
Eε(uε, B(ai, Rεε))−

1

2

∫
B(0,Rε)

(
|∇Vi |

2
+
(1 − |Vi |

2)2

2

))
= 0. (2.32)
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Moreover, for everyα < 1, and every subsetI of [1, n], we have

απ
∑
i∈I

d2
i ≤

Eε(uε,
⋃
i∈I B(ai, Rεε

1−α))

|logε|
+C|logε|7/2ε1−α

‖fε‖L2(�)+o(1). (2.33)

Proof. We have already found the pointsai . In view of Lemma 2.5, we may blow up
around them to find thatvε(x) = uε(ai + εx) converges inH 2(B(0, R)) for everyR > 0
to some solutionVi of (2.25). Now, following [CM2], we may find by an abstract argu-
mentRε → ∞, with Rε ≤ C|logε| and (ii), such that{|uε| ≤ 3/4} ⊂

⋃k
i=1B(ai, Rεε)

and
lim
ε→0

‖vε − Vi‖H2(B(0,Rε)) = 0.

We deduce (2.29)–(2.32):H 2 convergence impliesH 1/2 convergence of the derivatives
on the boundary (by trace). (iii) comes from the fact that ifdi = 0 then (2.31) contradicts
(2.24). But the choice of 3/4 was arbitrary, the same can be done to cover{|uε| ≥ m} for
anym < 1. By a diagonal argument, one can then obtain (i).

It remains to prove (2.33). In the previous subsection, we may apply the method of
Proposition 2.1 with initial ballsBi(0) equal to theB(ai, Rεε), and deduce exactly as in
(2.16) that for everyα < 1,

α|logε|
∫

⋃
i :Bi (0)⊂Bk

Bi (0)

(1 − |u|2)2

ε2
≤ 2Eε(u, Bk)+ Cε1−α

‖fε‖L2(Bk)
|logε|7/2,

where theBk are disjoint balls with sum of radii≤ eα|logε|Rεε = Rεε
1−α. Combining

this with (2.31) leads to (2.33) and thus to (1.17). ut

3. Canonical phase and energy lower bounds

We introduce the Green kernelG(x, y) which solves−1xG(x, y) = δy in �,
∂G

∂ν
=

(
ig,

∂g

∂τ

)
(resp.G = 0 for Neumann boundary condition) on ∂�,

(3.1)

andS(x, y) defined by

S(x, y) = 2πG(x, y)+ log |x − y|. (3.2)

It is standard thatG is symmetric, andS is aC1 function in�×�. Also the renormalized
energyW , as introduced in [BBH], can be written with these notations as

Wd(a1, . . . , an) = −π
∑
i 6=j

didj log |ai − aj | + π
∑
i,j

didjS(ai, aj )

+
1

2

∫
∂�

(
−

∑
i

di log |x − ai | +

∑
i

diS(x, ai)
)
(ig, ∂τg) (3.3)
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where theai ’s are distinct points in�, thedj ’s are integers, and the last integral is taken
to be 0 in the Neumann case. If there are no vortices then we consider instead

W0 =

∫
�

|∇8|
2 (3.4)

where8 = 0 in the Neumann case, and8 is a harmonic function with∂8/∂ν =

(ig, ∂g/∂τ) on ∂� in the Dirichlet case.

3.1. Estimates for the canonical phase

The ballsBi = B(ai, Rεε) being given by Proposition 2.2, we define�ε = � \⋃
i B(ai, Rεε). We consider

−18 = 2π
∑
i

diδai in �,

∂8

∂ν
=

(
ig,

∂g

∂τ

)
(resp.8 = 0 for Neumann) on ∂�,

(3.5)

with
∫
�
8 = 0 in the Dirichlet case.

Then we considerθ , the “canonical phase associated to the(ai, di)”, the harmonic
conjugate of8 in �ε. It is not single-valued, buteiθ is well defined. Observe thatθ
depends implicitly onε since the pointsai do. We will use the estimate

|∇θ(x)| ≤ C/r where r = dist(x, {ai} ∪ ∂�), (3.6)

and the following result:

Lemma 3.1. LetB(bj , ρj ) be any finite collection of disjoint balls (bounded in number
asε → 0), with ρj ≥ Rεε depending onε, such that

(i)
⋃
i B(ai, Rεε) ⊂

⋃
j B(bj , ρj ),

(ii) ρj � |bi − bj | for everyi 6= j andρj � dist(
⋃
i{bi}, ∂�),

(iii) ∀ai ∈ B(bj , ρj ), |ai − bj | � ρj

(these hypotheses allow in particular takingbi = ai andρi = Rεε). Then

1

2

∫
�\

⋃
j B(bj ,ρj )

|∇θ |2 = π
∑
i

D2
i log

1

ρj
+WD(b1, . . . , bn)+ o(1) (3.7)

whereDj = deg(eiθ , ∂B(bj , ρj )) =
∑
i : ai∈B(bj ,ρj ) di .

Proof. The proof is quite standard, similar to results in [BBH] (except that here theai
depend onε) or to [SS2, Chap. 10]. From (3.2), we have

8(x) = −

n∑
i=1

di log |x − ai | +

n∑
i=1

diS(x, ai). (3.8)
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Using the fact that|ai − bj | � ρj � |bj − bk| for j 6= k, andai ∈ B(bj , ρj ), and
computing explicitly, we find

∂8(x)

∂ν
=

−Dj

ρj
(1 + o(1)) on ∂B(bj , ρj ), (3.9)

|∇8(x)| ≤
C

minj |x − bj |
in � \

⋃
j

B(bj , ρj ). (3.10)

For assertion (3.7), integrating by parts using (3.5), we first have

1

2

∫
�\

⋃
j B(bj ,ρj )

|∇θ |2 =
1

2

∫
�\

⋃
j B(bj ,ρj )

|∇8|
2

= −
1

2

∑
j

∫
∂B(bj ,ρj )

8
∂8

∂ν
+

1

2

∫
∂�

8
∂8

∂ν
, (3.11)

whereν denotes the outer unit normal to∂B(bj , ρj ). Inserting (3.8), we find

−

∫
∂B(bj ,ρj )

8
∂8

∂ν
= −

∫
∂B(bj ,ρj )

(
−

∑
i : ai∈B(bj ,ρj )

di log |x − ai |

−

∑
i : ai /∈B(bj ,ρj )

di log |x − ai | +

∑
i

diS(x, ai)

)
∂8

∂ν

= −

∫
∂B(bj ,ρj )

(
Dj log

1

ρj
−

∑
k 6=j

Dk log |bj−bk|+
∑
k

DkS(x, bk)+o(1)

)
∂8

∂ν
, (3.12)

where we have used the continuity ofS, and the facts that on∂B(bj , ρj ), if ai ∈ B(bj , ρj ),

log |x − ai | = log |x − bj | + log

∣∣∣∣1 +
bj − ai

x − bj

∣∣∣∣ = log |x − bj | + o(1) = logρj + o(1),

because|x − bj | = ρj � |ai − bj |; and similarly ifai ∈ B(bk, ρk), then log|x − ai | =

log |bj − bk| + o(1) on ∂B(bj , ρj ). On the other hand,

−

∫
∂B(bj ,ρj )

∂8

∂ν
=

∫
B(bj ,ρj )

−18 = 2πDj .

Inserting this into (3.12) and using the regularity ofS, we get

−

∫
∂B(bj ,ρj )

8
∂8

∂ν
= 2πD2

j log
1

ρj
− 2π

∑
k 6=j

DjDk log |bj − bk|

+ 2π
∑
k

DjDkS(bj , bk)+ o(1). (3.13)
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Combining (3.11) and (3.13), we conclude that

1

2

∫
�\

⋃
j B(bj ,ρj )

|∇8|
2

= 2π
∑
j

D2
j log

1

ρj
− 2π

∑
k 6=j

DjDk log |bj − bk|

+ 2π
∑
j,k

DjDkS(bj , bk)+
1

2

∫
∂�

(
−

∑
j

log |x− bj | +
∑
j

DjS(x, bj )
)
(ig, ∂τg)+ o(1)

(3.14)

and thus (3.7) holds. ut

With the same kind of techniques, we can get the following result, which will be useful
later on.

Lemma 3.2. LetBi be a family of balls as in Proposition2.2, and letθ be the canonical
phase associated to the(ai, di)’s. If BR andBl are two concentric balls such thatB2R \

Bl/2 is included in� and does not intersect any of the ballsBi , then

2π
( ∑
i :Bi⊂Bl

di

)2
log

R

l
≤

∫
BR\Bl

|∇θ |2 ≤ 2π
( ∑
i :Bi⊂Bl

di

)2
log

R

l
+O(1), (3.15)

∫
BR\Bl

∣∣∣∣∂θ∂r
∣∣∣∣2 = O(1). (3.16)

If BR andBl are two concentric balls centered on∂� such thatB2R \ Bl/2 does not
intersect any of theBi ’s, then ∫

BR\Bl

|∇θ |2 = O(1). (3.17)

Here theO(1) depends only on�, on the number of pointsai and on some upper bound
on

∑
i |di |.

Proof. Let us first deal with the interior case, and the left-hand side inequality in (3.15).
SinceB2R \ Bl/2 does not intersect any ball,θ is well defined inBR \ Bl and the degree
is constant equal to

∑
i :Bi⊂Bl di ; that is, for everyl ≤ r ≤ R, we have∫

∂Br

∂θ

∂τ
= 2π

∑
i :Bi⊂Bl

di .

Then, using the Cauchy–Schwarz inequality, we have∫
BR\Bl

|∇θ |2 ≥

∫ R

l

∫
∂Br

∣∣∣∣∂θ∂τ
∣∣∣∣2 dr

≥

∫ R

l

1

2πr

(∫
∂Br

∂θ

∂τ

)2

dr = 2π
( ∑
i :Bi⊂Bl

di

)2
log

R

l
. (3.18)

This proves the left-hand inequality in (3.15).
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For the other inequality, for both the interior and boundary case, let us evaluate∫
BR\Bl

|∇θ |2 =

∫
BR\Bl

|∇8|
2.

Clearly, sinceBR \ Bl does not contain anyai , integrating by parts yields∫
BR\Bl

|∇8|
2

=

∫
∂(BR\Bl)

8
∂8

∂ν
, (3.19)

whereν is the outer unit normal to each disc. Let us now study8 closer. For each
point ai , let us denote bya∗

i its symmetric image with respect to∂� (there might be
several choices, but it does not matter). Let then

9(x) = −

∑
i

di log |x − ai | +

∑
i

di log |x − a∗

i |. (3.20)

One can check that9 and∂9/∂ν remain bounded on∂� by some constant independent
of theai ’s. On the other hand,1(8−9) = 0 in�, so in view of the boundary conditions
for8 (see (3.5)) we find, by the maximum principle, that8−9 is bounded in� (in both
Dirichlet and Neumann cases). Thus, we may write

8(x) = −

∑
i

di log |x − ai | +

∑
i

di log |x − a∗

i | +O(1). (3.21)

Let us now first focus on the interior case. Denote byx0 the center of the ballsBl andBR,
and letx ∈ ∂Bl andai ∈ Bl/2. We have

log |x − ai | = log |x − x0| + log

∣∣∣∣1 −
ai − x0

x − x0

∣∣∣∣.
But, sinceai ∈ Bl/2, we have

∣∣ ai−x0
x−x0

∣∣ ≤
1
2, thus log

∣∣1−
ai−x0
x−x0

∣∣ remains uniformly bounded
and we can write log|x − ai | = log l +O(1). Assume now thatx ∈ ∂Bl andai /∈ Bl/2;
that means thatai is outside ofB2R. Then

log |x − ai | = log |ai − x0| + log

∣∣∣∣1 −
x − x0

ai − x0

∣∣∣∣
and since|x − x0| ≤ R and|ai − x0| ≥ 2R we have

∣∣ x−x0
ai−x0

∣∣ ≤
1
2 and thus log

∣∣1−
x−x0
ai−x0

∣∣
remains uniformly bounded. The same holds fora∗

i which is always in� \ B2R. We can
thus write

8(x) = −

∑
i :Bi⊂Bl/2

di log l −
∑

i :Bi⊂�\B2R

di(log |ai − x0| − log |a∗

i − x0|)

+O(1) for x ∈ ∂Bl . (3.22)

Similarly, for x ∈ ∂BR, we have

8(x) = −

∑
i :Bi⊂Bl/2

di logR −

∑
i :Bi⊂�\B2R

di(log |ai − x0| − log |a∗

i − x0|)+O(1).
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Thus,∫
∂Bl

8
∂8

∂ν

=

(
−

∑
i :Bi⊂Bl/2

di log l −
∑

i :Bi⊂R2\B2R

di log
|ai − x0|

|a∗

i − x0|

) ∫
∂Bl

∂8

∂ν
+O

(∫
∂Bl

∣∣∣∣∂8∂ν
∣∣∣∣)

=

(
−

∑
i :Bi⊂Bl/2

di log l −
∑

i :Bi⊂R2\B2R

di log
|ai − x0|

|a∗

i − x0|

)(
−2π

∑
j/Bj⊂Bl/2

dj

)
+O(1),

(3.23)

where we have used (3.5) and the estimate (3.6) or in other words|∇8| ≤ C/l on ∂Bl .
Similarly,∫
∂BR

8
∂8

∂ν
=

(
−

∑
i :Bi⊂Bl/2

di logR −

∑
i :Bi⊂R2\B2R

di log
|ai − x0|

|a∗

i − x0|

) ∫
∂Bl

∂8

∂ν
+O(1).

Subtracting those two relations and returning to (3.19), we find∫
BR\Bl

|∇8|
2

= 2π
( ∑
i :Bi⊂Bl/2

di

)2
log

R

l
+O(1).

This finishes the proof of (3.15). Comparing it to (3.18), we conclude that (3.16) must
hold.

For the boundary case, one may check with similar ideas that (3.21) implies that8 is
bounded (independently of the location of the points andR andl) in BR \ Bl . Therefore∫

∂(BR\Bl)

8
∂8

∂ν
=

∫
∂�∩(BR\Bl)

8
∂8

∂ν
+O

(∫
∂BR∩�

∣∣∣∣∂8∂ν
∣∣∣∣) +O

(∫
∂Bl∩�

∣∣∣∣∂8∂ν
∣∣∣∣).

The contribution on∂� is zero in the Neumann case and is bounded in the Dirichlet case
(in view of the bound on8 and the boundary condition on∂8/∂ν). The contributions on
∂BR and∂Bl are bounded by the same argument as above (using|∇8| ≤ C/R or C/l).
We conclude that (3.17) holds. ut

3.2. Lower bounds on the energy

Returning touε, we introduceρε = |uε|, andϕε such that

uε = ρεe
iϕε in �ε. (3.24)

We also introduce the phase-excessψε = ϕε − θ in �ε, and observe it is a single-valued
function. Afterwards, we most often drop the subscriptsε. We claim that from (2.29), for
eachi, there exists a constantci such that

ψ = ϕ − θ = ci + o(1) on ∂B(ai, Rεε). (3.25)

Also,ψ = const on∂� in the case of the Dirichlet boundary condition, and∂ψ/∂ν = 0
on ∂� in the case of the Neumann boundary condition.
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In the next section, we will work alternatively in�ε or inB(x, l)\
⋃
i Bi whereB(x, l)

is some ball of radiusl (possibly depending onε) included in� such that∂B(x, l) ⊂ �ε.
In what follows,Dε denotes either�ε or any subset of�ε of the form�∩B(x, l)\

⋃
i Bi ,

andD denotes� orB(x, l) ∩� respectively.

Lemma 3.3. Assumeuε satisfies(1.1)and (1.8)–(1.10), and hence the results of Propo-
sition2.2. Then

Eε(uε) ≥
1

2

∫
�ε

|∇θ |2 + π
∑
i

d2
i logRε +

∑
i

γ (Vi)+ o(1)

= π
∑
i

d2
i log

1

ε
+Wd(a1, . . . , an)+

∑
i

γ (Vi)+ o(1) (3.26)

whereVi is given by(2.29).

Proof. This follows arguments of [BMR, CM1]. LetDε = �ε orDε = Bl \
⋃
i Bi . We

claim that

Eε(uε,Dε) ≥ Eε(e
iθ ,Dε)+

1

2

∫
Dε

ρ2
|∇ψ |

2
+

1

5

∫
Dε

(1 − ρ2)2

ε2
+

∫
Dε

ρ2
∇θ ·∇ψ+o(1).

(3.27)
Indeed,∫
Dε

ρ2
|∇ϕ|

2
=

∫
Dε

ρ2
|∇(θ+ψ)|2 =

∫
Dε

(ρ2
|∇θ |2+ρ2

|∇ψ |
2
+2ρ2

∇θ ·∇ψ). (3.28)

But, by Cauchy–Schwarz,∣∣∣∣∫
Dε

(ρ2
− 1)|∇θ |2

∣∣∣∣ ≤ ε

(∫
Dε

(1 − ρ2)2

ε2

)1/2(∫
Dε

|∇θ |4
)1/2

. (3.29)

By definition ofθ , we have
∫
�ε

|∇θ |4 ≤ C/(Rεε)
2, thus, sinceRε → +∞,∫

Dε

(ρ2
− 1)|∇θ |2 = o

((∫
Dε

(1 − ρ2)2

ε2

)1/2)
. (3.30)

Hence, ∫
Dε

ρ2
|∇θ |2 ≥

∫
Dε

|∇θ |2 + o

(∫
Dε

(1 − ρ2)2

ε2

)
+ o(1). (3.31)

This yields (3.27). Arguing similarly, we also have∣∣∣∣∫
Dε

(ρ2
− 1)∇θ · ∇ψ

∣∣∣∣ ≤ ε‖∇θ‖L∞(Dε)

(∫
Dε

(1 − ρ2)2

ε2

)1/2(∫
Dε

|∇ψ |
2
)1/2

≤
C

Rε

∫
Dε

(
(1 − ρ2)2

ε2
+ |∇ψ |

2
)

≤ o

(∫
Dε

(
(1 − ρ2)2

ε2
+ |∇ψ |

2
))

(3.32)
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where we have used (3.6). Combining this with (3.27), we find

Eε(uε,Dε) ≥ Eε(e
iθ ,Dε)+

∫
Dε

∇θ · ∇ψ + o(1). (3.33)

Specializing toDε = �ε, using the fact thatθ is harmonic, we also have∫
�ε

∇θ · ∇ψ =

∑
i

∫
∂Bi

ψ
∂θ

∂ν
.

Inserting (3.25), and using
∫
∂Bi

∂θ
∂ν

=
∫
∂Bi

∂8
∂τ

= 0, we find that∫
�ε

∇θ · ∇ψ = o(1)
∑
i

∫
∂Bi

∣∣∣∣∂θ∂ν
∣∣∣∣.

Using (3.6) again, we conclude that
∫
�ε

∇θ · ∇ψ = o(1) and hence, from (3.33), we get

Eε(uε, �ε) ≥ Eε(e
iθ , �ε)+ o(1). (3.34)

On the other hand, from (2.32) and (2.28), we have

Eε(uε, Bi) = πd2
i logRε + γ (Vi)+ o(1). (3.35)

Adding to (3.34) and combining with Lemma 3.1, we have the result. ut

As a corollary, we get the lower bound:

Lemma 3.4. Assume thatuε satisfies the results of Proposition 2.2 andB(bk, ρk) is a
family of balls satisfying hypotheses(i)–(iii) of Lemma3.1. Let thepj ’s be the points of
accumulation of theai ’s with nonzero total degree. Then, with the same notations as in
Lemma3.1,

Eε(uε) ≥ π
∑
k

|Dk| |logε| +WD(pj )

− π
∑
j

∑
k 6=k′ : bk→pj , bk′→pj

DkDk′ log |bk − bk′ | +

(∑
k

|Dk|
)
γ + o(1), (3.36)

whereDj =
∑
bk→pj

Dk. Moreover, if there is equality in(3.36)then eachDk = ±1 and
eachB(bk, ρk) contains only oneai .

Proof. From the results of Proposition 2.2, we have a family of small ballsB(ai, di).
Applying Lemma 3.3, we have

Eε(uε) ≥ π
∑
i

d2
i log

1

ε
+Wd(a1, . . . , an)+

∑
i

γ (Vi)+ o(1). (3.37)
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On the other hand, one can check that

Wd(a1, . . . , an) = WD(pj )− π
∑
j

∑
i 6=i′ : ai ,a′

i→pj

didi′ log |ai − ai′ | + o(1). (3.38)

For each givenj , let us now study

π
∑

i : ai→pj

d2
i |logε| − π

∑
i 6=i′ : ai ,a′

i→pj

didi′ log |ai − ai′ |.

The pointsai converging to the samepj belong to several of theB(bk, ρk). It is again
easy to check from the properties of theB(bk, ρk) that

− π
∑

i 6=i′ : ai ,a′
i→pj

didi′ log |ai − ai′ | = −π
∑

k 6=k′ : bk,bk′→pj

DkDk′ log |bk − bk′ |

− π
∑

k : bk→pj

( ∑
i 6=i′ : ai ,ai′∈B(bk,ρk)

didi′ log |ai − ai′ |
)

+ o(1). (3.39)

So we are led to studying, for eachk,

π
∑

i : ai∈B(bk,ρk)

d2
i |logε| − π

∑
i 6=i′ : ai ,ai′∈B(bk,ρk)

didi′ log |ai − ai′ |. (3.40)

We examine theai ’s belonging to oneB(bk, ρk). Let l1 be the smallest distance be-
tween two of theai ’s. Let us group together all theai ’s that are at distanceO(l1) from
each other. This makes several clusters of points. Over each clusterCm, since the total
number of vortices is bounded, we have

−π
∑

i 6=i′∈Cm
didi′ log |ai − ai′ | = −π

( ∑
i 6=i′∈Cm

didi′
)

log l1 +O(1)

= π
(∑
i∈Cm

d2
i −

(∑
i∈Cm

di

)2)
log l1 +O(1).

Therefore,

π
∑
i∈Cm

d2
i log

1

ε
− π

∑
i 6=i′∈Cm

didi′ log |ai − ai′ |

= π
∑
i∈Cm

d2
i log

l1

ε
− π

(∑
i∈Cm

di

)2
log l1 +O(1). (3.41)

We now need to sum this over allm’s and add the interactions between the clusters them-
selves, which have total degreeδ1

m =
∑
i∈Cm di . Since they are all at a distance� l1

from each other, we may considerl2 � l1 the minimum of their distance. Let us again
group the clusters into clusters of sizeO(l2), at a distancel3 � l2 from the others.
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The interaction within each cluster of sizel2 can be counted as−π
∑
δ1
mδ

1
m′ log l2 =

π(
∑
(δ1
m)

2
− (

∑
δ1
m)

2) log l2. Adding up over all clusters of sizel2, we find an energy

π
∑
i

d2
i log

l1

ε
+ π

∑
m

(δ1
m)

2 log
l2

l1
− π

(∑
m

δ1
m

)2
log l2 +O(1).

Again it remains to add this over all clusters of clusters, and add the interaction between
them, which is at the scalel3 � l2, etc. Iterating this process (which stops after a finite
number of steps since the total number of balls is bounded) we are left with an energy
bounded from below by

π
∑

i : ai∈B(bk,ρk)

d2
i |logε| − π

∑
i 6=i′ : ai ,ai′∈B(bk,ρk)

didi′ log |ai − ai′ |

≥ π
∑

i : ai∈B(bk,ρk)

d2
i log

l1

ε
+ π

∑
m

(δ1
m)

2 log
l2

l1

+π
∑
m′

(δ2
m′)

2 log
l3

l2
+ · · · + πD2

k log
1

lq
+O(1), (3.42)

whereDk is the total degree on∂B(bk, ρk) and eachδh, the total degree of a cluster at
scalelh, is the sum of the degrees over all the clusters at scalelh−1 that it contains. In other
words, we have

∑
i d

2
i ≥

∑
i |di | ≥ |Dk| and similarly

∑
m(δ

h
m)

2
≥

∑
m |δhm| ≥ |Dk|.

This means we can bound (3.42) from below by

π
∑

i : ai∈B(bk,ρk)

d2
i |logε| − π

∑
i 6=i′ : ai ,ai′∈B(bk,ρk)

didi′ log |ai − ai′ |

≥ π |Dk|

(
log

l1

ε
+ log

l2

l1
+ · · · + log

1

lq

)
+O(1) = π |Dk| log

1

ε
+O(1). (3.43)

Moreover, this inequality is sharp if and only if
∑
i d

2
i =

∑
i |di | = |Dk| and

∑
m(δ

h
m)

2
=∑

m |δhm| for everyh. The first relation implies that eachdi is equal to±1, the sign being
equal to that ofDk. The second relation implies that eachδhm = ±1, which means that
there is only one cluster at each scale, so in fact there can be at most one vortexai of
degree±1 inB(bk, ρk), andDk = ±1 (or 0). In that case, the lower bound above can be
replaced simply byπ |Dk| |logε|. If this is not the case, then we have dropped some term
in (3.42) of sizeπ log(lh/lh−1) which tends to+∞ by construction of thelj ’s. Thus, in
all cases, we may replace (3.43) by

π
∑

i : ai∈B(bk,ρk)

d2
i |logε| − π

∑
i 6=i′ : ai ,ai′∈B(bk,ρk)

didi′ log |ai − ai′ | ≥ π |Dk| log
1

ε
+ Rε,

(3.44)
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whereRε → +∞, unlessDk = ±1 or 0, with at most one vortex of degree±1 in each
B(bk, ρk), in which caseRε = 0. Combining this with (3.37), (3.38) and (3.40), we find

Eε(uε) ≥ π
∑
k

|Dk| |logε| +WD(pj )− π
∑
j

∑
k 6=k′ : bk→pj ,bk′→pj

DkDk′ log |bk − bk′ |

+Rε +

∑
i

γ (Vi)+ o(1). (3.45)

If Rε → +∞ this implies the desired relation (3.36). If not then all the small vortices are
of degree±1, soγ (Vi) = γ for eachi, which again implies (3.36). ut

4. The substitution lemma and Theorem 1

This section is inspired by the analysis of [CM1, CM2]. It needs to be readjusted to the
case where only (1.1) is known, and also to be localized in small balls. The main result
we obtain by this method is the following (we recall we work inDε which is alternatively
�ε = � \

⋃
i Bi orB(x, l) \

⋃
i Bi).

Proposition 4.1. Assumeuε satisfies(1.1)and(1.8)–(1.10)and the results of Proposition
2.2. Then, with the same notations as above, asε → 0,∫

�ε

(
|∇ψ |

2
+ |∇ρ|

2
+

1

2ε2
(1 − ρ2)2

)
≤ C‖fε‖

2
L2(�)

+ o(1), (4.1)

and

Eε(uε, �ε) ≤ Eε(e
iθ , �ε)+ C‖fε‖

2
L2(�)

+ o(1). (4.2)

Letx be a given point in�, and

F(l) =

∫
B(x,l)∩�\

⋃
i Bi

(
|∇ψ |

2
+

1

2
|∇ρ|

2
+

2

5

(1 − ρ2)2

ε2

)
. (4.3)

If either

(i) x ∈ �, l ≤ dist(x, ∂�) anddist(
⋃
i{ai}, ∂B(x, l)) � ε

√
|logε|, or

(ii) x ∈ ∂� anddist(
⋃
i{ai}, ∂B(x, l)) � ε

√
|logε|,

then the functionF satisfies a relation of the form

F(l) ≤
l +Kl2

2
F ′(l)+K(l‖fε‖L2(B(x,l)) + 1)

√
F(l)+ o(1), (4.4)

whereK (and the constant ino(1) above) is a constant depending only onβ,M,� andg.

The proof requires many steps which we separate into lemmas.
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Lemma 4.1 (Substitution lemma). Under the hypotheses of Proposition4.1,

Eε(e
iθ ,Dε) = Eε(uε,Dε)+

1

2

∫
Dε

(fε, e
iϕ)

1

ρ
(1−ρ2)+

1

2

∫
Dε

ρ2
∣∣∣∣∇ 1

ρ

∣∣∣∣2 +
1

2

∫
Dε

|∇ψ |
2

−

∫
Dε

∇ϕ · ∇ψ +
1

4ε2

∫
Dε

(1 − ρ2)2 +
1

2

∫
∂D

(
1

ρ
− ρ

)
∂ρ

∂ν
+ o(1), (4.5)

where we recallu = ρeiϕ in �ε.

Proof. For any real-valued functionsζ and 1/2 ≤ η ≤ 4/3 in Dε, we may consider
v = ηeiζuε = ηρeiϕ+ζ , and we have

Eε(v,Dε) =
1

2

∫
Dε

(
|∇(ρη)|2 + ρ2η2

|∇ϕ + ∇ζ |2 +
1

2ε2
(1 − η2ρ2)2

)
. (4.6)

Expanding all the terms, we find

Eε(v,Dε) = Eε(uε,Dε)+
1

2

∫
Dε

(
(η2

− 1)|∇ρ|
2
+ ρ2

|∇η|2 + 2ηρ∇ρ · ∇η

+ ρ2(η2
− 1)|∇ϕ|

2
+ ρ2η2

|∇ζ |2 + 2ρ2η2
∇ϕ · ∇ζ

+
1

2ε2
(−2ρ2(1 − ρ2)(η2

− 1)+ ρ4(1 − η2)2)

)
. (4.7)

But, taking the scalar product of (1.1) witheiϕ yields

−1ρ + ρ|∇ϕ|
2

=
ρ

ε2
(1 − ρ2)+ (fε, e

iϕ) in Dε. (4.8)

Multiplying (4.8) by(η2
− 1)ρ and integrating, we find

−

∫
∂Dε

(η2
− 1)ρ

∂ρ

∂ν
+

∫
Dε

(
(η2

− 1)|∇ρ|
2
+ 2ηρ∇η · ∇ρ

+ ρ2(η2
− 1)|∇ϕ|

2
+
ρ2

ε2
(1 − ρ2)(1 − η2)

)
=

∫
Dε

(fε, e
iϕ)ρ(η2

− 1). (4.9)

Inserting this into (4.7), and using (2.30), we find

Eε(v,Dε) = Eε(u,Dε)+
1

2

∫
Dε

(fε, e
iϕ)ρ(η2

− 1)

+
1

2

∫
Dε

(
ρ2

|∇η|2 + ρ2η2
|∇ζ |2 +

ρ4

2ε2
(1 − η2)2 + 2ρ2η2

∇ϕ · ∇ζ

)
+

1

2

∫
∂D

(η2
− 1)ρ

∂ρ

∂ν
+ o(1). (4.10)

Choosing specificallyζ = −ψ andη = 1/ρ, we find (4.5). ut
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Lemma 4.2. Under the same hypotheses,∫
Dε

(ρ2
− 1)

(
1

2
|∇ψ |

2
+ ∇θ · ∇ψ

)
+

2

5

∫
Dε

(1 − ρ2)2

ε2
+

1

2

∫
Dε

|∇ρ|
2

≤ C

∫
∂D

|1 − ρ2
|

∣∣∣∣∂ρ∂ν
∣∣∣∣ + o(1) (4.11)

and

Eε(uε,Dε) ≤ Eε(e
iθ ,Dε)+ C

∫
∂D

|1 − ρ2
|

∣∣∣∣∂ρ∂ν
∣∣∣∣ +

∫
Dε

∇ϕ · ∇ψ + o(1). (4.12)

Proof. Adding up the relations (3.27) and (4.5), we find

0 ≥
1

2

∫
Dε

(ρ2
+ 1)|∇ψ |

2
+

(
1

5
+

1

4

) ∫
Dε

(1 − ρ2)2

ε2

+
1

2

∫
Dε

ρ2
∣∣∣∣∇ 1

ρ

∣∣∣∣2 +

∫
Dε

(ρ2
∇θ − ∇ϕ) · ∇ψ

−
1

2

∫
∂D

∣∣∣∣ 1

ρ
− ρ

∣∣∣∣∣∣∣∣∂ρ∂ν
∣∣∣∣ − C

∫
Dε

|fε| |ρ
2
− 1| + o(1). (4.13)

Hence, splittingϕ asθ + ψ , we get∫
Dε

(ρ2
− 1)

(
∇θ · ∇ψ +

1

2
|∇ψ |

2
)

+
2

5

∫
Dε

(1 − ρ2)2

ε2
+

1

2
|∇ρ|

2

≤ C

∫
∂

|1 − ρ2
|

∣∣∣∣∂ρ∂ν
∣∣∣∣ + C

∫
Dε

|fε| |ρ
2
− 1| + o(1), (4.14)

where
∫
Dε

|fε| |ρ
2

− 1| ≤ ‖fε‖L2(Dε)
‖ρ2

− 1‖L2(�) ≤ Cε|logε| ‖fε‖L2(Dε)
≤ o(1) by

(1.10), hence the result.
Similarly (4.5) implies (4.12). ut

Lemma 4.3. Under the same hypotheses,∣∣∣∣∫
�ε

ρ2
∇ϕ · ∇ψ

∣∣∣∣ ≤ C‖fε‖L2(�)‖∇ψ‖L2(�ε)
+ o(1), (4.15)

∣∣∣∣∫
�ε

(∇θ − ρ2
∇ϕ) · ∇ψ

∣∣∣∣ ≤ C‖fε‖L2(�)‖∇ψ‖L2(�ε)
+ o(1), (4.16)

and∣∣∣∣∫
B(x,l)∩�\

⋃
i Bi

(∇θ − ρ2
∇ϕ) · ∇ψ

∣∣∣∣
≤
l + Cl2

2

∫
∂B(x,l)∩�

(
|∇ψ |

2
+

2(1 − ρ2)2

5ε2

)
+Cl‖fε‖L2(B(x,l))‖∇ψ‖L2(B(x,l)∩�\

⋃
i Bi )

+ o(1). (4.17)
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Proof. Taking the inner product of (1.1) andiu, we find

div(ρ2
∇ϕ) = (fε, iu). (4.18)

Thus,
div(ρ2

∇ϕ − ∇θ) = (fε, iu) in Dε.

We now letψ denote, ifD is a ball not intersecting∂�, the average value ofψ on∂D; if
D is a ball intersecting∂�, in the Dirichlet case, the constant value ofψ on ∂�, and in
the Neumann case, the mean value ofψ on∂D ∩�; finally, if D = �, the value ofψ on
∂� in the Dirichlet case, and the average ofψ on ∂� in the Neumann case.

Let us then multiply (4.18) byψ − ψ , and integrate by parts. We find∫
Dε

(∇θ−ρ2
∇ϕ)·∇ψ =

∫
∂Dε

(ψ−ψ)

(
∂θ

∂ν
−ρ2∂ϕ

∂ν

)
+O

(∫
Dε

|fε| |ψ−ψ |

)
. (4.19)

Moreover, ∫
∂Bi

(ψ − ψ)
∂θ

∂ν
=

∫
∂Bi

(ψ − ci)
∂θ

∂ν
+

∫
∂Bi

(ci − ψ)
∂8

∂τ
= o(1)

by (3.6) and (3.25). Also,∫
∂Bi

(ψ − ψ)ρ2∂ϕ

∂ν
=

∫
∂Bi

(ψ − ci)ρ
2∂ϕ

∂ν
+

∫
∂Bi

(ci − ψ)ρ2∂ϕ

∂ν

= o(1)− (ci − ψ)

∫
Bi

(fε, iu),

where we have used (2.30) and (4.18). We may always extendψ insideD ∩
⋃
i Bi to a

function ψ̃ in such a way that
∫
B(ai ,Rεε)

|∇ψ̃ |
2

≤ C
∫
B(ai ,2Rεε)\B(ai ,Rεε)

|∇ψ |
2 (see for

example [BMR]), so that we have
∫
D

|∇ψ̃ |
2

≤ C
∫
Dε

|∇ψ |
2. Moreover, we can do it in

such a way that
‖ψ̃ − ci‖L∞(Bi ) ≤ ‖ψ − ci‖L∞(∂Bi ) = o(1).

Using this, we find∣∣∣∣(ci − ψ)

∫
Bi

(fε, iu)

∣∣∣∣ ≤

∫
Bi

|ψ̃ − ψ | |fε| +

∫
Bi

|ψ̃ − ci | |fε|

≤

∫
Bi

|ψ̃ − ψ | |fε| + o(Rεε‖fε‖L2(�)).

We may thus conclude from (4.19) and (1.10) (combined withRε ≤ |logε|) that∫
Dε

(∇θ − ρ2
∇ϕ) · ∇ψ = O

(∫
D

|fε| |ψ̃ − ψ |

)
+

∫
∂D

(ψ − ψ)

(
∂θ

∂ν
− ρ2∂ϕ

∂ν

)
+ o(1).

(4.20)
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In the caseD = �, in view of the boundary conditions (ψ = ψ or ∂ϕ/∂ν = 0), the
second term on the right-hand side vanishes identically, so∫

�ε

(∇θ − ρ2
∇ϕ) · ∇ψ = O

(∫
�

|fε| |ψ̃ − ψ |

)
+ o(1). (4.21)

Following the exact same steps, we can deduce that∫
�ε

ρ2
∇ϕ · ∇ψ = O

(∫
�

|fε| |ψ̃ − ψ |

)
+ o(1). (4.22)

But, by a Poincaŕe type inequality, we always have∫
D

|fε| |ψ̃ − ψ | ≤ C|D| ‖fε‖L2(D)‖∇ψ‖L2(Dε)
(4.23)

where|D| denotes the half-diameter ofD (a constant ifD = � andl if D = B(x, l)).
(Recall that ifD intersects∂�, then it is a ball centered at a point of the boundary,
essentially a half-disc ifl is small, by smoothness of∂�). From (4.21) and (4.22), we
already deduce that (4.16) and (4.15) hold.

It remains to bound the other term of the right-hand side of (4.20). In the caseD =

B(x, l) ∩ � (the only one left to consider) we observe that sinceϕ = θ + ψ , in view of
the boundary conditions and the choice ofψ , we have∫
∂D

(ψ−ψ)

(
∂θ

∂ν
−ρ2∂ϕ

∂ν

)
=

∫
∂B(x,l)∩�

(ψ−ψ)(1−ρ2)
∂θ

∂ν
−

∫
∂B(x,l)∩�

(ψ−ψ)ρ2∂ψ

∂ν
.

(4.24)
Let us now distinguish between the cases whereB(x, l) intersects∂� and not. IfD =

B(x, l) ⊂ �, we may use, as in [BMR], a sharp scaled Poincaré inequality on∂B(x, l):
observe that ∫

∂B(x,l)

|ψ − ψ |
2

≤ l2
∫
∂B(x,l)

∣∣∣∣∂ψ∂τ
∣∣∣∣2

and (∫
∂B(x,l)

∣∣∣∣∂ψ∂τ
∣∣∣∣2)1/2(∫

∂B(x,l)

∣∣∣∣∂ψ∂ν
∣∣∣∣2)1/2

≤
1

2

∫
∂B(x,l)

|∇ψ |
2.

Inserting this this into the above, and usingρ ≤ 1, we are led to∣∣∣∣∫
∂B(x,l)

(ψ − ψ)ρ2∂ψ

∂ν

∣∣∣∣ ≤ l

(∫
∂B(x,l)

∣∣∣∣∂ψ∂τ
∣∣∣∣2)1/2(∫

∂B(x,l)

∣∣∣∣∂ψ∂ν
∣∣∣∣2)1/2

≤
l

2

∫
∂B(x,l)

|∇ψ |
2. (4.25)

If D = B(x, l) ∩� andx ∈ ∂�, then we may calculate explicitly

min
h∈H1

0 ([0,L])

∫ L
0 (h

′)2∫ L
0 h2

=
π2

L2
(4.26)
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and

min∫ L
0 h=0

∫ L
0 (h

′)2∫ L
0 h2

=
π2

L2
. (4.27)

Applying this to the curve∂B(x, l) ∩� parametrized by arclength, we find, using (4.26)
in the Dirichlet case and (4.27) in the Neumann case, in view of the choice ofψ ,

∫
∂B(x,l)∩�

|ψ − ψ |
2

≤
|∂B(x, l) ∩�|

2

π2

∫
∂B(x,l)∩�

∣∣∣∣∂ψ∂τ
∣∣∣∣2, (4.28)

where|∂B(x, l)∩�| denotes the length of∂B(x, l)∩�. Using the fact that∂� is smooth,
we can write

|∂B(x, l) ∩�| ≤ πl + Cl2

(that is,∂B(x, l) ∩ � tends to a half-circle asl → 0). Inserting this into (4.28), we find,
in place of (4.25),

∣∣∣∣∫
∂B(x,l)

(ψ − ψ)ρ2∂ψ

∂ν

∣∣∣∣ ≤

(
(l2 + Cl3)

∫
∂B(x,l)∩�

∣∣∣∣∂ψ∂τ
∣∣∣∣2)1/2(∫

∂B(x,l)∩�

∣∣∣∣∂ψ∂ν
∣∣∣∣2)1/2

≤
1

2
(l + Cl2)

∫
∂B(x,l)∩�

|∇ψ |
2. (4.29)

On the other hand, for both cases (boundary and interior), using (3.6), we have|∇θ | �

C/
√

|logε|ε on ∂B(x, l), hence∣∣∣∣∫
∂B(x,l)∩�

(ψ − ψ)(1 − ρ2)
∂θ

∂ν

∣∣∣∣
≤

o(1)√
|logε|

(∫
∂B(x,l)∩�

|ψ − ψ |
2
∫
∂B(x,l)∩�

(1 − ρ2)2

ε2

)1/2

≤
o(1)√
|logε|

(
l

∫
B(x,l)

|∇ψ |
2
∫
∂B(x,l)∩�

(1 − ρ2)2

ε2

)1/2

where we have used a trace inequality. Using the fact that
∫
�ε

|∇ψ |
2

≤
∫
�

|∇u|2 +∫
�ε

|∇θ |2 ≤ C|logε|, we deduce

∣∣∣∣∫
∂B(x,l)

(ψ − ψ)(1 − ρ2)
∂θ

∂ν

∣∣∣∣ ≤ o(1)

(
1 +

l

2

∫
∂B(x,l)

(1 − ρ2)2

ε2

)
.

Combining this with (4.20) and (4.23), we conclude that (4.17) holds. ut
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Lemma 4.4. Under the same hypotheses, we have the estimates∣∣∣∣∫
Dε

(ρ2
− 1)

(
2∇θ +

3

2
∇ψ

)
· ∇ψ

∣∣∣∣ ≤ C‖∇ψ‖L2(Dε)
+ o(1), (4.30)∣∣∣∣∫

�ε

(ρ2
− 1)

(
2∇θ +

3

2
∇ψ

)
· ∇ψ

∣∣∣∣
≤ o

(∫
�ε

1

2ε2
(1 − ρ2)2 +

∫
�ε

|∇ψ |
2
)

+ o(1). (4.31)

Proof. For the first relation, let us write∫
Dε

(1 − ρ2)|∇ψ |
2

≤

∫
Dε∩{|u|≥1−1/|logε|2}

(1 − ρ2)|∇ψ |
2
+

∫
Dε∩{|u|≤1−1/|logε|2}

(1 − ρ2)|∇ψ |
2

≤
C

|logε|2

∫
�ε

|∇ψ |
2
+

(∫
Dε∩{|u|≤1−1/|logε|2}

(1 − ρ2)2

ε2

)1/2(∫
Dε

|∇ψ |
2
)1/2

(4.32)

where we have used the fact that|∇ψ | ≤ C/ε. Now, applying the estimate
∫
�ε

|∇ψ |
2

≤ C|logε| and combining the above with the result of Proposition 2.1, we conclude that∫
Dε
(1 − ρ2)|∇ψ |

2
≤ o(1) + C‖∇ψ‖L2(Dε)

. A similar reasoning (using|∇θ | ≤ C/ε in

�ε) works for
∫
Dε
(1 − ρ2)∇θ · ∇ψ, and we deduce (4.30).

The other relation is a direct consequence of (3.32) andρ ≥ 1 − o(1) in �ε. ut

Lemma 4.5. Under the same hypotheses,∫
B(x,l)∩�\

⋃
i Bi

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤ C

∫
∂B(x,l)∩�

|1 − ρ2
| |∇ρ| + o

(
1 +

∫
B(x,l)∩�\

⋃
i Bi

|∇ψ |
2
)
, (4.33)

and ∫
�ε

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤ o(1)

(
1 +

∫
�ε

|∇ψ |
2
)
. (4.34)

Proof. Indeed, returning to (4.11), we find∫
Dε

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤ C

∫
∂Dε

|1 − ρ2
|

∣∣∣∣∂ρ∂ν
∣∣∣∣ + o(1)

+ C

∣∣∣∣∫
Dε

(ρ2
− 1)∇θ · ∇ψ

∣∣∣∣ + C

∫
Dε

|1 − ρ2
| |∇ψ |

2.

Using (3.32) and the fact that|1 − ρ2
| = o(1) in Dε (from Proposition 2.2(i)) and (2.30)

to get rid of the terms on∂Bi , we easily find that (4.33) and (4.34) hold. ut
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These relations will be used later. We are now in a position to give the full

Proof of Proposition 4.1.The control of the excess energy comes from (4.11). We just
observe that

(ρ2
− 1)

(
∇θ · ∇ψ +

1

2
|∇ψ |

2
)

= |∇ψ |
2
+ (∇θ − ρ2

∇ϕ) · ∇ψ + (ρ2
− 1)

(
2∇θ · ∇ψ +

3

2
|∇ψ |

2
)
, (4.35)

and combine (4.11) with (4.16) and (4.31), to find

(1 − o(1))
∫
�ε

|∇ψ |
2
+ (1 − o(1))

∫
�ε

2

5ε2
(1 − ρ2)2 +

∫
�ε

1

4
|∇ρ|

2

≤ C‖∇ψ‖L2(�)‖fε‖L2(�) + o(1). (4.36)

The relation (4.1) follows directly. Similarly, using (4.30), we are led to∫
B(x,l)∩�

(
|∇ψ |

2
+

1

2
|∇ρ|

2
+

2

5ε2
(1 − ρ2)2

)
≤
l + Cl2

2

∫
∂B(x,l)

|∇ψ |
2
+

1

2
|∇ρ|

2
+

2

5ε2
(1 − ρ2)2

+C‖∇ψ‖L2(B(x,l)\
⋃
i Bi )

(l‖fε‖L2(B(x,l)) + 1)+ o(1). (4.37)

SettingF(l) =
∫
B(x,l)∩�\

⋃
i Bi

(
|∇ψ |

2
+

1
2|∇ρ|

2
+

2
5
(1−ρ2)2

ε2

)
, we deduce thatF satisfies

(4.4).
Also, returning to (4.12), and using (4.15) and the same other arguments, and com-

bining this with (4.1), we find (4.2). ut

4.1. ODE approach

Here, we give estimates forF given that it satisfies the differential inequality (4.4).

Lemma 4.6. Letf be a nondecreasing function on an interval[r, R] withR ≤ L, satis-
fying

∀x ∈ [r, R], f (x) ≤
x + cx2

2
f ′(x)+ g(x)

√
f (x)+ b (4.38)

for some continuous functiong. Then

f (r) ≤ C
r2

R2
f (R)+ 2r2(G(R)−G(r))2 + 2b

(
1 −

r

R

)
, (4.39)

whereG is an antiderivative ofg(x)/x2 andC = 2(1 + Lc)2.



Ginzburg–Landau heat flow 209

Proof. Dividing (4.38) byx2√f (x), we find

√
f (x)

x2
≤

f ′(x)

2x
√
f (x)

+
cf ′(x)

2
√
f (x)

+
g(x)

x2
+

b

x2
√
f (x)

.

Settingh(x) =

√
f (x)
x

, we observe thath′(x) =
f ′(x)

2x
√
f (x)

−

√
f (x)

x2 , and thus

0 ≤ h′(x)+ c(
√
f )′(x)+

g(x)

x2
+

b

x2
√
f (x)

. (4.40)

Integrating betweenr andR, and using the monotonicity off for the last term, we find

√
f (r)

r
≤

√
f (R)

R
+ c

√
f (R)− c

√
f (r)+G(R)−G(r)+

b
√
f (r)

(
1

r
−

1

R

)
.

Thus

√
f (r)

r
≤

√
f (R)

(
1

R
+
Lc

R

)
+G(R)−G(r)+

b
√
f (r)

(
1

r
−

1

R

)
.

We observe that this is of the formλ2
≤ a1λ+ a2 whereλ =

√
f (r). Using the fact that

for such an equation we haveλ2
≤ a2

1 + 2a2, we deduce

f (r) ≤

(
r(1 + Lc)

R

√
f (R)+ r(G(R)−G(r))

)2

+ 2b

(
1 −

r

R

)
,

and the relation (4.39) follows directly. ut

4.2. Proof of Theorem 1

Proof of (1.13), (1.14), (1.18)and (1.17). (1.13) follows directly from (4.1), and (1.14)
from (1.13) combined with (4.34). For (1.18), we start from (4.2), which, combined with
Lemma 3.1 (applied to theB(ai, Rεε)), yields

Eε(uε, �ε) ≤ π
∑
i

d2
i log

1

Rεε
+Wd(a1, . . . , an)+ C‖fε‖

2
L2 + o(1).

But, from (2.32) and (2.28), we find

Eε(uε, B(ai, Rεε)) = πd2
i logRε + γ (Vi).

By Lemma 3.3, the result (1.18) follows.
Finally, (1.17) was proved in Proposition 2.2.
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Localized estimates.We recall thatl � ε
√

|logε|, so we can find a quantity
√

|logε|ε �

Qε � l. Let us first consider the boundary case, i.e.x ∈ ∂�, and letF(l) be defined as
in (4.3). Since the number of pointsai remains bounded by somen0, the setS = {l ∈

R : ∂B(x, l) ∩
⋃
i B(ai,Qε) 6= ∅} is a finite union of fewer thann0 intervals, with

total length≤ CQε. Let us writeS ∩ [0, R] = [t1, t ′1] ∪ [t2, t ′2] ∪ · · · ∪ [tk, t ′k], where
t1 < t ′1 < t2 < t ′2 < · · · < tk+1 = R ≤ 1. Assume nowl is given,l ∈ [t ′i , ti+1], and (4.4)
holds in that interval. We may use Lemma 4.6 withf = F , g(l) = Kl‖fε‖L2(B(x,R)) + 1
andb theo(1) found in (4.4). ThenG(l) = K log l‖fε‖L2(B(x,R)) − 1/l, thus we find

F(l) ≤ C
l2

t2i+1

F(ti+1)+ 2

(
l log

ti+1

l
‖fε‖L2(B(x,R)) + 1

)2

+ 2b

(
1 −

ti+1

l

)
.

But F(ti+1) ≤ F(t ′i+1) andti+1 ≤ 1, so

F(l) ≤ C
l2

t2i+1

F(t ′i+1)+ 4

(
1 + l2 log2 1

l
‖fε‖

2
L2(B(x,R))

)
+ 2b. (4.41)

Similarly, using (4.4) on [t ′i+1, ti+2], we have

F(t ′i+1) ≤ C
(t ′i+1)

2

t2i+2

F(t ′i+2)+ 4

(
1 + (t ′i+1)

2 log2 1

t ′i+1
‖fε‖

2
L2(B(x,R))

)
+ 2b. (4.42)

The same relation holds for anyi ≤ j ≤ k+1. Now observe that sincetj+1 ≥ t ′j+1 −Qε,
we have

l2

t2i+1

(t ′i+1)
2

t2i+2

· · ·
(t ′k)

2

R
≤
l2

R2

(
1 +

CQε

l

)2n0

≤
Cl2

R2

in view of the assumptionl � Qε. Using this and combining all the relations of the type
(4.42), we are led, after some calculations, to

F(l) ≤ C
l2

R2
F(R)+ Cl2 log2 1

l
‖fε‖

2
L2(B(x,R))

+ C (4.43)

whereC is a constant (depending onn0). On the other hand, from (4.1), we haveF(R) ≤

C‖fε‖
2
L2(�)

+ o(1), thus, takingR = 1,

F(l) ≤ Cl2‖fε‖
2
L2(�)

log2 l + C. (4.44)

If l belongs to some interval [ti, t ′i ], then we may get (4.44) fort ′i , and usingF(l) ≤ F(t ′i)

andt ′i ≤ l +Qε ≤ 2l, we deduce that a relation like (4.44) still holds.
For the interior case, letx ∈ � and letR = dist(x, ∂�). DenoteF byFx to keep track

of the center point. Ifl ≥ R, then there existsx0 ∈ ∂� such thatB(x, l) ⊂ B(x0,2l) and
thusFx(l) ≤ Fx0(2l), and the result follows from the boundary case. Ifl ≤ R, then,
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arguing exactly as above, sinceB(x,R) ⊂ � and (4.4) holds in the interior case, we can
get (4.43) similarly, that is,

Fx(l) ≤ C
l2

R2
Fx(R)+ Cl2 log2 1

l
‖fε‖

2
L2(B(x,R))

+ C. (4.45)

If R ≥ 1, using (4.1), we are done. If not, we can findx0 ∈ ∂� such thatB(x,R) ⊂

B(x0,2R), thus, using the result (4.44) for the boundary case, we have

Fx(R) ≤ Fx0(2R) ≤ CR2
‖fε‖

2
L2 log2 1

R
+ C.

Combining this withR ≥ l and (4.45), we find

Fx(l) ≤ Cl2‖fε‖
2
L2 log2 1

l
+ C,

that is, (4.44) is proved in the interior case as well, and we always have∫
B(x,l)∩�\

⋃
i Bi

(
|∇ψε|

2
+ |∇ρ|

2
+
(1 − |u|2)2

2ε2

)
≤ C + Cl2 log2 l‖fε‖

2
L2(�)

. (4.46)

In order to prove (1.16), let us use (4.33) onB(x, s):∫
B(x,s)∩�\

⋃
i Bi

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤ C

∫
∂B(x,s)∩�

|1 − ρ2
| |∇ρ|

+ o(1)+ o

(∫
B(x,s)∩�\

⋃
i Bi

|∇ψ |
2
)
. (4.47)

Let us recall thatl � ε
√

|logε| � ε. Thus, from (4.47),∫
B(x,s)∩�\

⋃
i Bi

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤ Cε

∫
∂B(x,s)∩�

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
+ o(1)+ o

(∫
B(x,s)∩�\

⋃
i Bi

|∇ψ |
2
)
.

Integrating this relation fors ∈ [l,2l], we easily deduce that

l

∫
B(x,l)∩�\

⋃
i Bi

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤ Cε

∫
B(x,2l)∩�

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
+ o(1)+ o

(
l

∫
B(x,2l)∩�\

⋃
i Bi

|∇ψ |
2
)
.

Inserting (4.46) and the fact that
∫
Bi

(
|∇ρ|

2
+
(1−ρ2)2

2ε2

)
= O(1) (from [BMR] for example),

we are led to∫
B(x,l)\

⋃
i Bi

(
|∇ρ|

2
+
(1 − ρ2)2

ε2

)
≤

(
C
ε

l
+ o(1)

)(
l2 log2 1

l
‖fε‖

2
L2(�)

+ C

)
+ o(1)

and since we assumedε/l → 0, we conclude that (1.16) holds.
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We now prove that the second upper bound in (1.15) holds. For that, let us return to
the proof of Proposition 4.1. Inserting (1.16) into (4.32), we have∫

Dε

|1 − ρ2
| |∇ψ |

2
≤ o(1)

(
1 + l log

1

l
‖fε‖L2(B(x,2l)

)
‖∇ψ‖L2(Dε)

+ o(1). (4.48)

In place of (4.37) we can now write∫
B(x,l)∩�\

⋃
i Bi

(
|∇ψ |

2
+

1

2
|∇ρ|

2
+

2

5ε2
(1 − ρ2)2

)
≤
l + Cl2

2

∫
∂B(x,l)∩�

(
|∇ψ |

2
+

1

2
|∇ρ|

2
+

2

5ε2
(1 − ρ2)2

)
+C‖∇ψ‖L2((B(x,l)\

⋃
i Bi ))

o

(
l log

1

l
‖fε‖L2(�) + 1

)
+ o(1). (4.49)

Then, we apply the same reasoning as before, i.e. use (4.39) this time withg(l) =

c(l log 1
l
‖fε‖L2(�) + 1), wherec = o(1), and the same method. SinceG(l), the an-

tiderivative forg/l2, is equal toc(−(log2 l)/2 − 1/l), we find in the end, in place of
(4.44),

F(l) ≤ o(1)(l2 log4 l‖fε‖
2
L2(�)

+ 1),

and we may conclude as before that (1.15) holds.

Remark 4.1. Whenfε = 0, Theorem 1 reproves the result of [CM2] without the need of
L∞ estimates on 1− |u|2 in �ε.

5. Proof of Theorem 2

As we mentioned, the proof relies on the Pohozaev identity as in (2.7) or as in [BMR],
combined with Lemma 3.2.

5.1. Interior case

Case
∑k
i=1 d

2
i > (

∑
i di)

2. We denote byBR the ball centered atx0 of radiusR. Let us
apply Lemma 2.2 withr = l andR ≤ Kl/2 so thatB2R \ Bl/2 intersects noBi . Setting
f (s) =

∫
Bs∩�

(1 − |u|2)2/ε2, and combining (2.7) and (2.8), we find

∫
BR\Bl

∣∣∣∣∂u∂r
∣∣∣∣2 +

∫ R

l

f (s)

s
ds ≤

∫
BR\Bl

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+

∫
BR\Bl

∣∣∣∣∂u∂r
∣∣∣∣2

+
R2

4

∫
BR\Bl

|fε|
2
+ l log

R

l
‖fε‖L2(Bl)

‖∇u‖L2(Bl)
,
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hence ∫ R

l

f (s)

s
ds ≤

∫
BR\Bl

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
+
R2

4
‖fε‖

2
L2(�)

+ Cl log
R

l

√
|logε|‖fε‖L2(Bl)

. (5.1)

But, inBR \ Bl , we have∣∣∣∣∂u∂τ
∣∣∣∣2 ≤ |∇u|2 = |∇ρ|

2
+ ρ2

|∇θ + ∇ψ |
2.

We claim that∫
BR\Bl

|∇θ |2 − CR2 log2 1

R
‖fε‖

2
L2 − C ≤

∫
BR\Bl

ρ2
|∇θ + ∇ψ |

2

≤

∫
BR\Bl

|∇θ |2 + CR2 log2 1

R
‖fε‖

2
L2 + C. (5.2)

Assuming this holds, let us insert this relation into (5.1), and use (1.16). We are led to

∫ R

l

f (s)

s
ds ≤

∫
BR\Bl

|∇θ |2+Cl log
R

l

√
|logε|‖fε‖L2(Bl)

+CR2 log2 1

R
‖fε‖

2
L2(�)

+C.

(5.3)
Now observe that for alls ≥ l,

f (s) ≥

∫
Bl

(1 − |u|2)2

ε2
≥ 2π

k∑
i=1

d2
i − o(1)

in view of (2.31). Thus, using the relationx ≤ x2
+ 1 and (3.15), and inserting this into

(5.3), we obtain

(
2π

k∑
i=1

d2
i − o(1)

)
log

R

l
≤ 2π

( k∑
i=1

di

)2
log

R

l
+ C + CR2 log2 1

R
‖fε‖

2
L2(�)

+Cl log
R

l

√
|logε|‖fε‖L2(�).

But we assumed(
∑k
i=1 di)

2 <
∑k
i=1 d

2
i , and because these involve integers, the differ-

ence is at least 1. We deduce

log
R

l
− C ≤ CR2 log2 1

R
‖fε‖

2
L2(�)

+ Cl log
R

l

√
|logε|‖fε‖L2(�), (5.4)

where again the constants depend only onβ,M,�, andg.
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We then distinguish two cases. Either the first term on the right-hand side is less than
the second, in which case we deduce

log
R

l
− C ≤ Cl log

R

l

√
|logε|‖fε‖L2(�)

and takingR = K0l/2 withK0 large enough (K0 thus depends only onβ,M, � andg),
we find

‖fε‖
2
L2(�)

≥
C

l2|logε|
. (5.5)

In the other case,CR2 log2 1
R

‖fε‖
2
L2 ≥ l log R

l

√
|logε|‖fε‖L2(�). Taking againR =

K0l/2, we find

‖fε‖
2
L2(�)

≥
C

R2 log2 1
R

=
C

K2
0 l

2 log2 1
K0l

. (5.6)

The theorem is thus proved in this case.

Proof of (5.2). As in the proof of Theorem 1, we can extendψ insideBl in such a way
that ∫

BR

|∇ψ |
2

≤ C

∫
BR\Bl

|∇ψ |
2

≤ CR2 log2 1

R
‖fε‖

2
L2 + C

(from Theorem 1). Then, using the fact that
∫
∂BR

∂θ
∂ν

=
∫
∂Bl

∂θ
∂ν

= 0, we get∫
BR\Bl

ρ2
|∇θ + ∇ψ |

2
=

∫
BR\Bl

ρ2
|∇θ |2 + ρ2

|∇ψ |
2
+ 2

∫
BR\Bl

∇θ · ∇ψ

+ 2
∫
BR\Bl

(ρ2
− 1)∇θ · ∇ψ

=

∫
BR\Bl

ρ2
|∇θ |2 + ρ2

|∇ψ |
2
+ 2

∫
BR\Bl

(ρ2
− 1)∇θ · ∇ψ

+ 2
∫
∂BR

∂θ

∂ν
(ψ − ψR)− 2

∫
∂Bl

∂θ

∂ν
(ψ − ψl),

whereψR andψl are the averages ofψ on ∂BR and∂Bl respectively. On the other hand,
by the trace theorem and Theorem 1,∫

∂Bl

|ψ − ψl | ≤ Cl‖∇ψ‖L2(Bl)
≤ Cl2 log2 1

l
‖fε‖L2 + o(1),

while |∇θ | ≤ C/l on ∂Bl , thus∣∣∣∣∫
Bl

∂θ

∂ν
(ψ − ψl)

∣∣∣∣ ≤ Cl log
1

l
‖fε‖L2 + C

and the same holds on∂BR. Arguing as in Lemma 4.4, we also have∫
BR\Bl

(ρ2
−1)(|∇θ |2 +2∇θ · ∇ψ) ≤ CR log

1

R
‖fε‖L2 +C ≤ CR2 log2 1

R
‖fε‖

2
L2 +C.

Using (1.15) again, we deduce that (5.2) holds.
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Case(
∑k
i=1 di)

2 ∑k
i=1 d

2
i . We start again from (2.7) and (2.8) and are led to∫

BR\Bl

(∣∣∣∣∂u∂τ
∣∣∣∣2 +

(1 − |u|2)2

2ε2

)
≤

∫ R

l

f (s)

s
ds +

∫
BR\Bl

∣∣∣∣∂u∂r
∣∣∣∣2 +

R2

4

∫
BR\Bl

|fε|
2

+Cl log
R

l

√
|logε|‖fε‖L2(Bl)

. (5.7)

First, using (3.16) and Theorem 1, we have∫
BR\Br

(∣∣∣∣∂ρ∂r
∣∣∣∣2 +

∣∣∣∣ ∂∂r (θ + ψ)

∣∣∣∣2) ≤ C + CR2 log2 1

R
‖fε‖

2
L2(�)

. (5.8)

On the other hand, from (5.2), we have∫
BR\Bl

|∇u|2 ≥

∫
BR\Bl

|∇θ |2 − CR2 log2 1

R
‖fε‖

2
L2 − C.

But if we combine this with (5.8), we must have∫
BR\Bl

∣∣∣∣∂u∂τ
∣∣∣∣2 ≥

∫
BR\Bl

|∇θ |2 − CR2 log2 1

R
‖fε‖

2
L2 − C.

Combining this with (3.15) and inserting it and (5.8) into (5.7), we are led to

2π
( k∑
i=1

di

)2
log

R

l
≤

∫ R

l

f (s)

s
ds + C + CR2 log2 1

R
‖fε‖

2
L2(�)

+Cl log
R

l

√
|logε|‖fε‖L2(�). (5.9)

Meanwhile for alls ≤ R,

f (s) =

∫
⋃k
i=1Bi

(1 − |u|2)2

ε2
+

∫
Bs\

⋃k
i=1Bi

(1 − |u|2)2

ε2

≤ 2π
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i=1

d2
i + o
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R2 log2 1

R
‖fε‖

2
L2

)
+ o(1) (5.10)

where we have used (2.31) and (1.16). After integrating, this yields

2π
( k∑
i=1

di

)2
log

R

l
≤

(
2π

k∑
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d2
i + o(1)R2 log2 1
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2
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+ Cl log
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and hence
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−2π
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i ≤ CR2 log2 1
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2
L2 +Cl
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|logε|‖fε‖L2(�)+

C

log R
l

+ o(1).
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Since the left-hand side is at least equal to 2π , we find, if R = K0l/2 with K0 large
enough, that

C ≤ CR2 log2 1

R
‖fε‖

2
L2 + Cl

√
|logε|‖fε‖L2.

Distinguishing two cases as previously, we may conclude that

‖fε‖
2
L2 ≥ min

(
C

l2|logε|
,

C

l2 log2 1
l

)
.

5.2. Boundary case

The proof is roughly the same. AssumingR < 1/2, we may use (2.20) or (2.23) to get in
any case ∫ R

l

f (s)

s
≤ C

∫
(BR\Bl)∩�

(
|∇u|2 +

(1 − |u|2)2

ε2

)
+CR(1 +

√
|logε|‖fε‖L2(�)). (5.11)

Arguing as in the interior case and using (3.17), we get∫
(BR\Bl)∩�

(
|∇u|2 +

(1 − |u|2)2

ε2

)
≤ C + CR2 log2 1
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and also ∫ R

l

f (s)
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(
2π

∑
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)
log

R

l
≥ π log

R

l
.

Inserting this into (5.11), we find

π log
R

l
≤ C + CR2 log2 1

R
‖fε‖

2
L2 + R

√
|logε|‖fε‖L2

and arguing as above, we deduce, takingR = K0l/2 withK0 large enough, that

‖fε‖
2
L2 ≥ min

(
C

R2|logε|
,

C

R2 log2 1
R

)
,

from which the result follows.
Applying Theorem 2 in the casefε = 0, i.e. for a solution of Ginzburg–Landau, we

obtain Corollary 1.1.
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ity. Ann. Inst. H. Poincaŕe Anal. Non Lińeaire12, 243–303 (1995) Zbl 0842.35119
MR 1340265
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