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Vortex collisions and energy-dissipation rates in JEMS
the Ginzburg—Landau heat flow

Part I: Study of the perturbed Ginzburg—Landau equation
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Abstract. We study vortices for solutions of the perturbed Ginzburg—Landau equatians

(u/e2)(1 — |[u?) = f. where f; is estimated inL2. We prove upper bounds for the Ginzburg—
Landau energy in terms dff: ||, 2, and obtain lower bounds fdlf:||; 2 in terms of the vortices

when these form “unbalanced clusters” whafed? # (3; d;)?.

These results will serve in Part Il of this paper to provide estimates on the energy-dissipation
rates for solutions of the Ginzburg—Landau heat flow, which allow one to study various phenomena
occurring in this flow, including vortex collisions; they allow in particular extending the dynamical
law of vortices beyond collision times.

Keywords. Ginzburg-Landau equation, Ginzburg—Landau vortices, vortex dynamics, vortex colli-
sions

1. Introduction and statement of the main results
1.1. Presentation of the problem
In this paper, we study the forced Ginzburg—Landau equation

Au+ :—2(1— w?=f. inQ,

Ju 1.1)

u=g(respa—=0) onog,
1%

where f, is a forcing right-hand side which @iven in L2(Q). Here is a two-dimen-
sional domain, assumed to be smooth, bounded and simply connectedsambmplex-
valuedfunction, assumed to satisfy either one of the boundary conditions

u=g 0no (1.2)
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with g a fixed regular map fror& to S1, in which case we also assume tkats strictly
starshaped with respect to a point; or

d

P _0 onaq, (1.3)

av
in which case no further assumption is made. This equation Witk O is the standard
Ginzburg-Landau equation, which has been intensively studied, in the asymptotic limit
e — 0, in particular since the work of Bethuel-Brezistiein [BBH].

Our motivation for studying the.? perturbed equation, which we will develop in

Part Il of this paper([S1], is to study the two-dimensional parabolic Ginzburg—Landau
equation:

9 1 .

L Au+ Su(—uf?) inQ xRy,
lloge| & (1.4)
u(~,0):u2 in Q,

with the same boundary conditions as above. However, the results we present here have
an interest of their own and can be read independently of Part Il.

The Ginzburg—Landau heat flow is &% gradient flow (or steepest descent) for the
Ginzburg-Landau functional

112)2
Eq(u) = %L('V“'ZJFM)' (1.5)

2¢2

This energy functional is a simplified version (without magnetic field) of the Ginzburg—
Landau model of superconductivity. Such functionals also appear in other models from
physics: for superfluidity, nonlinear optics, Bose—Einstein condensates; and the complex-
valued functioru, called “order parameter”, plays the role of a condensed wave function.

In this model, the interesting objects are tloetices or the zero-set of the complex-
valued functioru carrying a topological degree: singeis complex-valued, it can have
a nonzero integer degree around each of its zeroes. Vortices can also be seen as having a
“core”, where|u| is small, of characteristic length scalgand a “tail” wherelu| is close
to 1, but the phase of still carries a lot of energy; they can be clearly extracted in the
asymptotic limite — 0.

Vortices in the Ginzburg—Landau model have been the object of intensive studies, gen-
erally in the asymptotic limit — O where they become point singularities, in particular
since the work of [BBH] on[(1]5), under the assumptir(u) < C|loge| (bounding the
possible number of vortices); refer also to [$S2] for the analysis of the full model with
magnetic field. In both cases, sofieconvergence type results were obtained.

A very precise description of the vortices and of the energy of (nonminimizing) solu-
tions of the Ginzburg—Landau equation, i[e.[1.1) with= 0, was given by Comte and
Mironescu in [CM1] CM2]. We are interested here in generalizing these results, and in
studying how much the situation can differ from tfie= 0 case. Since we are interested
in studying vortex collisions for solutions df (].4), we focus on understanding static sit-
uations where vortices are very close to each other. We will characterize “pathological
vortex situations” for[(1]1) as those for which we have a group of vortices which are far
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from the others, and have degreksvith (3", d;)? # Y_; d? in the group, which we call
anunbalanced cluster of vortices

We study the equation (1.1) with &7 perturbation term becauﬂlA) is precisely
an L2 gradient flow for[(1.5), and thus far, solving [1.4), we have

2

1
Aug + s (1 lu %)

dE =l
— G Eetuse, ) = foge [

Thus, if we write that[(1}4) holds withf, = d,u./lloge|, we precisely see that
llogel || fe ||i2(m is the energy-dissipation rate for solutions{of (1.4). This will be crucially
used in Part lI[[S1] and this motivates our need for estimates, in particular lower bounds,
on | fellp2. If |l fellz2 is large, then the energy dissipates fast in the flow] (1.4), thus de-
creasing to a point which allows one to rule out certain configurations (for exampje if
decreases so much th&t < C then there can be no more vortices). On the other hand,
if f. is small, then[(1]1) can be seen as a small perturbation of the Ginzburg—Landau
equation

1 2 .
—Au:—zu(1—|u| ) InQ,
&

)
=g or %:0 onag,

for which a number of qualitative facts about vortices are known. The idea is thus to use
this alternative in @uantitativeway, in order to deduce from the static study information
on vortex collisions or other pathological situations in the dynamics.

More precisely, it is known that i is a solution of Ginzburg—Landau in the plane,
with vortices(q;, d;), then we must have

(Xi:dt)z - Xi:d,?, (1.7)

whichis equivalent to the fact that, . ; d;d; = 0, or to the fact that the forces exerted by
the vortices balance each other. This follows from suitable applications of the Pohozaev
identity, as in[BMR]. Similarly, as seen in [BEH. CM1], if,, a solution of [(1.p) in a
bounded domain, has some vortiegsf degreed; accumulating (as — 0) around a
single pointp, then the same rulg_; dp)? = > dl.2 holds. Now, ifu, is a configuration

with say, two vortices, one of degree 1, one of degrde at a distance(1) ase — 0

(which is what happens during a vortex collision oftd with a —1) then this rule is
obviously violated (and it is the same for any situation Wi, dp)? # Y diz), SO we

can trace how much it is violated in the Pohozaev identity[for (1.1), and get a lower bound
for || fell.2. The technique thus relies on some adaptations of the Pohozaev identities
with error term f,.. Observe that Pohozaev identities have already been widely used in
the context of Ginzburg—Landau statics and dynamics ([BMR, EBH, BCPS,[Ru$§, SS2]).
Some similar results and the “balanced cluster” condifior] (1.7) also appear in the recent
preprint of Bethuel-Orlandi—-Smeis [BOS] (see Theorem 5) on the parabolic Ginzburg—
Landau equation.

(1.6)
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1.2. Main results orf1.7)

Before stating the results, let us make a few assumptions. Since we are going to consider
nice initial datau? for ) with a fixed number of vortices as— 0, and since the
energy decreases during the flow, it is natural to restrict ourselves to

Eg¢(ug) < Mlloge| (1.8)

and
lug| < 1, [Vug| < M/e. (1.9

It is well known that[(1.}) is well-posed and that if these estimates are truefahey
remain satisfied at all times for solutions pf (1.4).
We sometimes assume in addition that

1 fel72q < 1/6”  for somep < 2. (1.10)

If this assumption is not true, then clearly we have a large lower bounfgly 2. If
(1.10) holds, then after blow-up at the scajesolutions of[(1.]l) converge to solutions of
Ginzburg-Landau in the plane

—AU=U1—-|UP

which enables us to define a “good collection of vorticesivith degreesi; (depending

on ¢) for u.. Without going into full details of what it means and how they are found,
these are points such that the balls:= B(a;, R.¢) with some 1« R, < |loge| are
disjoint and cover all the zeroes ©f, andd; = dequ., dB(a;, R.c)) # 0. We can then
give a more precise definition (although we will mostly use a slightly weaker condition,
see Theoren]2).

Definition 1. Thega;’s andd;’s being as above, we say that has acluster of vortices at
the scald atxg if

B(xo, 1) N{ai} # 9, (1.11)
dist({a; : a; ¢ B(xo, D)}, B(xo,1)) >1 ase — O. (1.12)

We sayu, has anunbalanced cluster of vortices at the sdad¢ xg if the previous condi-

tions hold and if
2
3 d,.27é< 3 d,-)

i:a;€B(xg,l) i:a;€B(xg,l)

Once these vortices are found, this allows us to define a canonical harmonicdpinase

Q. := Q\U;_; B(ai, R:¢) as the harmonic conjugate @fsolving—A® = 27 )", d;4,,

with suitable boundary conditions. Once this is done, denoting the phase ofi., i.e.

u = pe'? in Q., we may consider the phase excess= ¢ — 0. The first main result
consists in evaluating the energy excess (due to both the phase excess and the modulus of
u), in terms of only one natural quantity: tfi& norm of f., the natural norm to consider

for the study of the parabolic flow.
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The method is inspired by that of Comte—Mironescu_in [CM1, CM2]; however, their
result was for the casg. = 0, and used some precigé€® and decay estimates for so-
lutions of Ginzburg—Landau away from the vortices. Here we retrieve the result with the
only control on|| f¢||,2 and no a priori bounds other thgn (1.8) ahd](1.9). We obtain in
addition a scaled version of the estimate, localized in any (small) ball. The result is

Theorem 1. Letu, satisfy(L.3)and (I.8§)«(1.1Q) Thea;, d;, B; being as above, we have
[ 190l <00+ Cllelg, (113)
/§28(|V|u8| %+ (1_8'—2"2)2> < oL+ 11£:1250)- (1.14)
For anyx € @, and anyl > ¢,/|loge|, we have

/Q e B [Vel? < min(C + CI210g? 1] f: 1125 g (L + 12 10G* 1] £ 17 2 ),
X, i bi

(1.15)
and
(1= Jue[»?
/ﬂ BaD\U B Viuel 12+ =——5— < o) + 0(*10g®l|| fe | 72c))-  (1.16)
NB(x, ; Bi
Moreover,
. E¢(ug)
Va <1, oam Zdiz < “;g; + C|I098|7/281_a||f5||L2(Q) +o(d),. (1.17)
i=1

and

n

n
1
n ;d,? log = + Wa(ax, ... an) + ;y(v,-) +0o(1) < Ee(ue)
1= 1=
n 1 n
<7 ) d}log= + Walas, ... an) + 3 v (Vi) + Cllfelljzq + oD, (1.18)
i=1 i=1

where theV;’s are the (limiting) blown-up profiles af, arounda; at scales, Wy is the
renormalized energy function introducedBBH], relative to the collection of degreés
(see definition in(3.3)) and they (V;) are constants equal whefy = +1 to a universal
constanty introduced in[BBH].

Moreover, all the constant§ and o(1) above depend only of, M, @ and g (if
applicable).

This result allows us to bound the phase excess (with scaled versions of [it, ¢f. (1.15)—
(1.18)), and in turn to bound the energy excess in termsfof, 2 and of the vortices of
ue only, in (1.18). This way, it provides a lower bound fpf; || ;2 and it allows us, for so-
lutions of [1.4), to bound from below the energy-dissipation rate, and to bound from above
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the number of vortices through (1]17). Let us mention that the “energy-quantization” re-
sult for solutions of[(T}4) shown in [BOS] (Theorem 6 and appendix) is equivalent at
leading order td (1.38).

From this first theorem, we may implement the Pohozaev strategy described above
and obtain the following.

Theorem 2. There exist constanig > 0 and Ko > 0 such that, assuming that is as
in Theoren@r and that there exists a nonempty subcollectﬁn.‘)’n}f;l of the balls{B;}
which are included imB(xo, [/2), e/|loge| < | < lp ase — 0, and such that for some
K > Ky, either

(i) B(xo, KI) C € andB(xg, K!) intersects no other ball in the collectidiB; }, and

Zk:d? ) (Xk:d,-)z, (1.19)
i=1 i=1

or
(i) xo € 92 and B(xg, K1) intersects no other ball in the collectidB; }.

Then c c
2 > min(— — ). 1.20
”fe ”LZ(Q) jtl 12||098| ) 12 Iogzl ( )
All the constants above depend onlygnV, 2 andg.

This is exactly the desired lower bound pfi.||,: it shows it blows up like 1(/[loge])
in most cases, as the scale of the unbalanced cluster of vartieds small.
As a byproduct, in the casg = 0 we retrieve

Corollary 1.1. Let u, be solutions of the Ginzburg-Landau equatifing) such that
E.(us) < Clloge|. Then there exists a constalgt > 0 such that fore small enough,
u, has no unbalanced cluster of vortices at any sdale lp; and has no vortex at dis-
tance< Ip from the boundary.

Some sharper (but of the same order) lower boundmﬁg;:wi2 will be given in Proposition

5.1 in [S1], by blowing up at the scalein the case wheréis not too small (lo§/ <
Clloge]).

Observe that all these results (in particufar (1L.20)) can be viewed as obtaining lower
bounds for the higher-order energy functiofaku) = [, [Au + (u/e?)(1 — |u|?)??
under the assumptiof;(z,) < Cl|loge|. It was proved in|[[Li,[ SS1] that (denoting
here and in the rest of the paper by-) the scalar product i identified withR?) if
curl(iug, Vug) — 27 Y 74 D;8,, ase — 0 (i.e. the limiting vortices ofi, ase — 0 are
the p;'s with degrees);), then

n

. 1
liminf(lloge|Fe(ue)) > — Z IViWb(pa, - -, Pn)|2,
e—0 b4 -

This is the lower bound part of B-convergence result (the upper bound should not be
hard to prove). The lower bounds we obtain here (and in Proposition 5.1 of Part Il) are in
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agreement with this, but in general sharper since they involve the locations and degrees
of the vortices at the level, and blow up when these get very close.

Let us point out that such a study of forced equations, with its “dliatbnvergence
point of view, was performed for the Allen—Cahn equation (the same equati¢n hs (1.1)
but with real-valued functions—an important model for phase transitions) with a lower
bound by the Wilmore functional (see [To, RS] and the references therein). We are not
aware of any other singularly perturbed equation for which this has been done.

In this first paper, we start by performing a “Pohozaev ball construction” which is
an adaptation of that done in [SS2] but with nonzero error tgrmrhis allows us to
bound the number of vortices and define a good collection of vortices. Then we prove
Theorem$§l and 2.

In the second part [$1], we will present applications of both of these theorems to the
dynamics and collisions of vortices under {1.4).

2. A“Pohozaev ball construction” for (I.1) and applications

This construction, which is a combination of the Pohozaev identity with the ball-growth
method of Jerrard/Sandier, consists in an adjustment of the one presented in [SS2], taking
into account the nonzero right-hand side{in{(1.1). The main result is

Proposition 2.1. Letu, satisfy(L.1)and (T.gT.10) Then

2\2
A—uP? _

/ . C, (2.1)
{xeQ: [u(x)|<1-1/|loge?} €

whereC depends only of in (1.10) M, Q andg.

2.1. Pohozaev identities f@f.1)

The Pohozaev identity consists in multiplyifg (1.1) by Vu and integrating by parts.
However, because of the boundary conditions, we will need a more general version of it,
as in [SS2, Chapter 5].

Introducing the associated stress-energy tensor

1 1
T = 5(|Vu|2+ 5= |u|2)2)s,;,~ — (B, dju0), (2.2)
an easy computation yields
v Ty = = (a0 At 0= 1)) = =G £ 23)

where divT;; denoteszl?:1 0; T;;. Multiplying the relation ) by a vector field, we
find
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Lemma 2.1. Let u satisfy (I.1)). For any open subset/ of Q@ and any smooth vector
field X, we have

[ S xmt = [ Y@xon; - [ gxev (2.4)
iU i,j U i,j U

wherev denotes the outer unit normal td/ and the indicesg, j run over{1, 2}.

The most standard Pohozaev identity follows by applying thi§ ie= 2 N B(xg, s) to

X = x — xp; ityields
2 (1—|u?? o | du du
2¢2 SRR (PR

1
Lo
2 J3(B(x0,9)NQ)

(1 —[u?)?
+f 2c2 = / (fe, (x —x0) - Vu). (2.5)
B(x0,5)NQ & B(x0,5)NS

In particular, if B(xg, s) does not interse@<2, one obtains
u

/ 2 / (1 — u®)?
—_ +_ —2
9B(xo.) | OF S JB(x0.5) 3

> AP\ 1
:/ (u L |u|))
dB(xg,s)

- ,(x —x0)-Vu). (2.6
ot 262 * ./I;(xo,s)(fs G~ Va).  (28)
We deduce the following lemma.

2

ou

av

ou
ot

N

Lemma 2.2. Letu satisfy(L.d). Then, ifR is such thatB(xo, R) C 2 and0 < r < R,
we have
u

fR 1f (1—|u|2)2d /
< — d4s+ rw
r S JB(xo,s) € B(xo,R)\B(xo,r)| 07

ul®>  (A—|uP? Rq
= +—3— |+ - ((x — x0) - Vu, fe)ds,
B(x0, R)\B(x0,7) 2e r S JB(xos)

at
(2.7)
with

R1
/ —/ (fe, (x —x0) - Vu) ds
r S B(xg,s)
R2

4 JB(o,R\B(xo,r)

2

du |?

or

<),
B(x0,R)\ B(xo,r)

R
2
| fel“+rlog 7||f6‘||L2(B(xo,r)) IVull 2B (xo.r)) - (2.8)
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Proof. (2.7) follows from integrating (2]6) far € [r, R]. For (2.§), we write

R
/ —/ (fe, (x — x0) - Vu)
r 8 JB(xg.s)

R ou
=[ - |x — xol
r S B(xg,r)

u

av av

|fs|+/ |x — xol Ifsl>ds
B(x0.5)\B(x0.r)

R ou u
<rlogX ou Ife|+R/ % . (2.9)

r JB(xo,m | 0V B(xo,R)\B(xo,r) | OV

Inserting the fact that for every > 0,
ou 1 awul|® A

/ Ml < —/ du —/ L2 (210

B(x0,R)\B(xo,r) | OV 2% J B(xo, R)\B(xo,r) | OV 2 J B(xo, R\ B(x0,r)
applied tox = R/2, we are led td (2]8). O

Another standard relation consists in writing in the Dirichlet case, ds in [BBH], a global
Pohozaev identity using (3.4) on the whéteUsing the fact tha2 is strictly starshaped,
one obtains

Lemma 2.3. Let<2 be strictly starshaped and letsatisfy(L.T)withu = g ond<. Then

Jo

where the constant depends only of andg.

du |2 (1= u®?
oy /Q = CQ+ IVull g fll ) (2.11)

Proof. AssumeX2 is strictly starshaped with respect to the paigthence(x — xg) - v >
B > 00ndQ), and apply[(Z]4) t&/ = Q andX = x — xo. This yields

1/ 2 / (1— |u|?)?

— ﬂ _|_ - 7

2 IQ Q 282
g

2 1 /ou ag
Scfm(af +'<a—vva—f)‘)+f9|x—xo||fg||w|, (2.12)

from which the result follows easily. O

ou
av

2.2. Proof of Propositiop 2|1—interior case

For simplicity, we start with the proof of Propositipn .1 assuming no balls inteésct

Proof of Propositio]f 2]1.The proof is a ball construction that is very similar to that
presented in [SS$2, Chapter 4]. Following [Sal], sifice| (1.8) holds, by the coarea formula,
one may cover the sék : |u(x)| < 1 — 1/|loge|?} by a finite union of disjoint closed

balls B; (0) of radii r; suchthad_; r; < Ce|loge|3. We increase all these balls in parallel
according to the method of Jerrard and Sandier, presented for example In [SS2], which
yields:
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Lemma 2.4. For everyt > 0 there exists a finite collectioB(¢) of disjoint closed balls
such that:

() BO) = {Bi(0)};.
(i) r(B(t)) = e'r(B(0)) for everyr > 0, wherer (B(¢)) denotes the sum of the radii of
the balls in the collection.
(i) For everyt > s,

U Bc U B

BeB(s) BeB(t)

There exists a finite séf c Ry such that if[t1,2] € Ry \ T, thenB(rp) =
e27"1B(11), whererB denotes the collection of balls obtained frdhiby keeping the
same centers and multiplying all the radii by

The times € T correspond to “merging times” when some of the balls have intersecting
closures. Assuming first the balls remain disjoint through the growing, we may apply
(2.7) tor = r; andR = ¢'r; to find

/‘eir; 1/ (l— |M|2)2
5 B
ri S JBi(log(s/ri)) €

< vu+ EEBE0) IVull (2.13)
= Jeo\ 262 e TillJelL2B; ) N VI L2(B; (1)) -

where

R
/ —/ ((x—xo)-Vu,fg)dsz/ | fel IVul
r 8 JB(xg,s) B(xo,R)

=< Rl fell2cganIVull L2¢8, 1))

We easily deduce

(1 — |uf?)?
o s 2E, (u, Bi (1)) 4+ r(BiO)| fell L2, ) | VUl 123, ryy.  (2.14)
B;(0)

where we write, for any sef,

1 1
E:(u,U) = E/U<|W|2+@(1— |u|2)2>.

Now these relations add up nicely over all balls in the collectigr), including through
possible merging of balls, and we have for evergind everyBy (r) € B(t),

(1— [uf?)?
! 2 = 2E8(”7 Bk(t)) + V(Bk(t))”fs”LZ(Bk(t))||VM||L2(Bk(l)).
Ui 8, 0cB o) Bi(0) &
(2.15)
Summing this ovek, using [I.8), and applying this relation te= « log(1/¢) for some
O0<a<1,wefind
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(1—|u?»?

alloge| >
\U; Bi(0) €

< 2E, (M, U Bk(f)) + Cel™ Il fell L2, B.oylloge 2,
x

(2.16)
where we observe thatB(r)) < Cs1~*|log¢|3. Since [(1.1) is satisfied, we may choose
a > 0 such that 2- 2o — g > 0, and find

22
/ ¢ '2”' 2B gy <c (2.17)
U B € a|loge|

We conclude thay‘Uv 50— lu|?)2/e? < C and since theB; (0) were constructed to

cover the sefx € Q : |u(x)| < 1 — 1/|loge|?} we deduce[(2]1). This proof is valid if
none of the ballsB () intersect9H Q2. O

2.3. Proof of Propositiop 2]1—boundary issues

The method follows that of [S$2, Chapter 4], with the only modifications due tgithe
term. We sketch the main steps.

2.3.1. Dirichlet case. In the Dirichlet case, instead of using (2.6) ahd(2.7), we use
(2.5). Decomposing(B(xo, s) N ) into d B(xg, s) N 2 andd2 N B(xg, s), we find

2 2\2 2 252
1 1—|u ou 1—|u
/ 1 / ( |2| ) / ( (L — [ul?) )
dB(x0,5)N2 § JB(xg,5)NQ & dB(xg,5)N

T 262
1 og 2 |ou
+ - (x —x0) - v| |==
s Ja@nB(xo.s) ot

ou
av

2 ( ) ag Ju
J— E— J— x _x . ‘L' _’ —
ov 0 at dv

+}/ 2((x — x0) - Vu, f.).  (2.18)
S JB(xg,5)NQ

ou

Using Lemma 23, we deduce
wml®> (1- |u|2)2)
+ -
av

2
1 (1 — [u??
+t3 2 = a7 2
dB(xg,s)NQ s B(xg,s)N2 & dB(xg,s)NQ 0T 2¢

+ CA+ IVull 2l fell L2 (2.19)
Integrating gives

k1 1— [u?)?
f 1 / ( |2| ) s+ /
r S JB(x0,5)NQ) € (B(x0,R)\ B(xg,r))NS2

2 11242
N / ( ou (1 —ul?)
(B(x0, R)\B(x0,r))N2

T 2¢2
and we may reproduce the proof above with this relation instedd df (2.7).

du |?

e

) + CRA+ IVull 2yl fell2)
(2.20)
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2.3.2. Neumann case.ln the Neumann case, we extendy performing a reflection
with respect td Q2. Let Q denote a large enough tubular neighborhoogpie. 2 c .
Let v be a smooth mapping & onto the unit disc. It can be extended to a mapping
from $2 to a domain strictly containing the unit disc. Let tHRrdenote the reflection with
respect to the unit circle defined in complex coordinate®Rlty) = z/|z|2. The mapping
¢ = ¥~ Lo R oy then maps2 \ € to Q. One can check that it is the identity 6€2, that
itis C2in Q\ Q, and thatDg(x) converges to the orthogonal symmetry relative to the
tangent tadQ2 atxp asx — xp € 9%2, at a rate bounded hy dist(x, 9€2).

We can then extend with du/9v = 0 ond<2, by settingy = u in  and

u(x) =u(px)) ifxeQ\Q.

Since Dy converges to a reflection with respect to the boundary as 92 andou/dv
= 0 0nd<, we find thatz is C1 in 2. We also defingf, = f.(p(x)) in Q\Qandf, = f.
in €. We will use the same proof as above through ball growtf ifor z. The relation
(2.7) still applies inside2. For the balls that interseét2, we need to replace it with a
variant foru.

Let B(xo, s) be a ball intersecting$2 and letD; = B(xp, s)NQ2 and D2 = B(xg, 5)\ 2.
From [2.5), we have

(1 — [u?)? / < du |? (1—|u|2)2)
- = x—x0) v(|—| + — 2
D g2 QN B(x0,5) T 262
aul? |oul?> (1= |ul®?
+/ S< S +%> + | ((x=x0)-Vu, fs). (2.21)
3B (x0,5)NQ ot av 2¢ D

In order to get the analogue in2, we apply [2.4) inD, = ¢(D2) with X (¢(x)) =
Do(x)(x — xg). Arguing as in[[SS2], this leads to

(A a5 oul? (A uP)?
— A+ O(s)):f (x=x0) - v||=| +——53—
Dy ¢ B(x0,5)NIQ ot 2¢
dul? |oul® (1—|ul?)? ) )
o = oyt )OS Ee@.dDY) |+ | (fe, X-Vu).
appne \| 0T v 2 oD, D,

(2.22)

If we add this to the relation (2.21), the contributionsasa cancel and we find

1— 2y\2
[ S avown=s [ (
D1ND) & 9D1Ud D)

+ O(s®Ec(u, DY) + O(s/ 1Vul Ifsl)-

D1UD;,

2

ou
ot

ou

e 2¢2

2+ (1- |u|2>2>

After a change of variables, and sing@pproaches a reflection, we find (aslin [5S2])
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/ (1 — [u]?)? / (
— a2 =9
B(x0,5) & 9B(x0,s)

(1—[u]?)? ) iz
+Ols — + O(G“Ec(u, 0B(xp,5))) + O s [Vul | fel ).
B(xg,s) € B(xo,s)

Dividing by s and integrating, we find

k1 1— [u]?)? 1— [712)2
/ _f ( |2u| ) dsf/ (|Vﬁ|2+( Ibél ) )
r S JBGos) € B(xo0,R)\B(x0.r) 2e

A —Ja*? _ -
oz TCRIVUl 2@l fell L2

(2.23)

2

ou
aT

u

s 2e2

2 L a- |ﬁ|2>2)

+CRE¢(u, B(xo, R)\ B(x0,7))+R /
B(xo,R)

Replacing[(2]7) by this relation, and increasing the balls the same way, we are led to the
same result for, and Proposition 2}1 is proved.

2.4. Application: construction of the vortex collection

We now show how to define a good collection of vortex-balls for solutions of (1.1).
If lu(xo0)| < 1/2, the assumptior (1.9) implies standardly thét< 3/4 in some ball
B(xo, &) and thus that there exists a constant 0 such that

1— 22
[acmt., .20
B(xq,A¢) &

If we use this, the result of Propositipn P.1 suffices to conclude asin[BBH] that the set

{lu(x)| < 3/4} can be covered by a bounded (independentb) alumber of disjoint balls

of centersy; and radiiRe (whereRr is fixed), and changing if necessary, we may always

assume thai; — a;| > ¢ fori # j. We may also assume that each ball contains a point

xo where|u(xg)| < 1/2 (otherwise the ball can simply be removed from the collection).
The next step is to perform a blow-up analysis[Tf (1.10) is satisfied, then the pertur-

bation termf; in (1.]]) disappears after blow-up at the scgland we can use the known

results on[(16).

Lemma 2.5. Letu, satisfy(1.7)and(T.g§/L.10) If a, is a sequence of points such that
dist(a., Q) > ¢ and dequ, dB(a., Re)) = d, then up to a subsequence,(x) =
ug(as + ex) converges uniformly over compact subset&®fise — 0 to a solutionlU
of

—AU =UA—-|UP) inR? (2.25)
with

/ 1—|U%? = 2rd> (2.26)
R2

If a. is such thatdist(a., 92) < Ce then up to a subsequencg,(x) = u.(a. + ex)
converges locally uniformly to a constant of modulus
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Proof. Settingv, (x) = u.(a. + £x) we have
Ave + ve(1— [0,]?) = €2 fu(ae + ex), (2.27)

and we also know tha¥V v, (x)| < C and|v,| < 1. Thus,v, is compact inL> by Ascoli’s
theorem. But we havigs? f; (ae + &)l 12(5,) < €1l fell 12y < o(1) by (1.19); thusAu,

is strongly compact irL2(Bg) for every R. In the first case, up to a subsequence, we
thus find thatv, converges locally uniformly and iHlf)C to a solutionU of ). It was
proved in [BMR] that under our assumptiorjs, (2.26) holds. In the cagedist?) < Cs,

up to translation and taking a subsequence, we findithabnverges to a solution of
—AU = U(1— |UJ? on the half-plandk? , with boundary condition eitheil/| = 1 or
aU/dv = 0. In the Dirichlet case, a result of Sandier [Sa2] allows us to conclude that
U is a constant; in the Neumann case, a simple reflection yields a solutipn t (2.25) of
degree zero, hence a constant of modulus 1 (ftom [BMRY]). O

For a solutionU of (2.25), following [BMR], we have

2\2
}/ <|VU|2 + w) =nd?logR + y(U) asR — oo (2.28)
2 Jpo.r) 2

whered is the degree ot/ andy(U) is a constant depending on the solution. When
d = %1, it has been proved by Mirones¢ul[M] that there exists a unique solutipn i@ (2.25)
(up to multiplication by a constant of modulus 1), which is the radial solutiop of(2.25)
and theny (U) = y, a universal constant first defined in [BBH].

Proposition 2.2. Let u, satisfy (1.1) and (1.8/1.10) Then, after extraction of a se-
gquences — 0, we can findR, — +oo with R, < Clloge| and a family of balls
B; = B(a;, Ree),i = 1,...,n, with a; depending orr andn bounded independently
of ¢, such that

() 11— luel L@\, Bar, Ree)) = 0@Se — 0.

(i) lai —ajl > Reefori # j anddist(a;, 92) > R, for everyi.
(i) Thed; = dedu, dB(a;, R.¢)) are all nonzero.

(iv)
lim ||ue — v( - “") -0 (2.29)
e=0 € L®(B(a;, Ree))
whereV; is some solution of degreg of (2.25)
V) a a
lim f Auel| _ g, / Yl < c. (2.30)
e>0J3B(a; Ree)| OV dB(ai.Ree)| IV
(vi)
1 14.12)2
lim / # = 2nd?, (2.31)
e—0 B(a;j,Re€) &

) 1 1—1V;1%)2
|m<&WmM%R&D——/ (W%F+L—iil>)=a (2.32)
e—0 2 B(O,R;) 2
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Moreover, for every < 1, and every subsdtof[1, n], we have

1—
anZdzf ES(MEa UIEI B(aivREE Ul))

[loge| +C||098|7/2817a||fs||L2(Q)+0(1). (2.33)

iel
Proof. We have already found the poings. In view of Lemmd 2.p, we may blow up
around them to find that, (x) = u, (a; + ex) converges irH2(B(0, R)) for everyR > 0
to some solutiorV; of (2.25). Now, following [CM2], we may find by an abstract argu-
mentR, — oo, with R, < C|loge| and (ii), such thafuc| < 3/4} ¢ U*_, B(ai, Ree)
and
g”Lno lve — Vi||1—12(B(O,R5)) =0.

We deduce](2.39)-(2.8272 convergence implies/ /2 convergence of the derivatives
on the boundary (by trace). (iii) comes from the fact thak i= 0 then [[2.3]1) contradicts
(2.24). But the choice of 8 was arbitrary, the same can be done to céuer > m} for
anym < 1. By a diagonal argument, one can then obtain (i).

It remains to prove[ (2.33). In the previous subsection, we may apply the method of
Propositiof 2.JL with initial balls; (0) equal to theB(a;, R.¢), and deduce exactly as in

(2.18) that for everyr < 1,

(1—|ul??

alloge| 2

< 2E,(u, By) + Ce**| fol 25, llog | /2,
Ui, 0)cB, Bi(O)

where theB; are disjoint balls with sum of radik ¢*°9¢/R,e = R,e1~®. Combining
this with (2.31) leads td (2.33) and thusfio (1.17). i
3. Canonical phase and energy lower bounds

We introduce the Green kern@l(x, y) which solves

—AG(x,y) =4y in Q,
G a .
e (ig, a—g> (resp.G = 0 for Neumann boundary conditipn on 92, (3.1)
% T
andS(x, y) defined by
S(x,y) =27G(x,y) +log|x — y|. (3.2)

Itis standard tha is symmetric, and is aC? function in§2 x . Also the renormalized
energyW, as introduced ir [BBH], can be written with these notations as

Wa(as, ....an) = — »_didjlogla; —aj| + 7 Y did; S(ai. ay)
i# i
1 .
3 [ (- dioglr—al+ Y dsea)ig g (@I
a2 i i
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where they;’s are distinct points ir2, thed;’s are integers, and the last integral is taken
to be 0 in the Neumann case. If there are no vortices then we consider instead

W0=/Q|V<I>|2 (3.4)

where® = 0 in the Neumann case, anbl is a harmonic function withh® /v =
(ig, dg/0t) on a2 in the Dirichlet case.

3.1. Estimates for the canonical phase

The ballsB; = B(a;, R.¢) being given by Proposition 3.2, we defiigz. = Q \
U, B(ai, Re¢). We consider

—AD =27 Zd,-aa,. in Q,
i

3.5)
od 0 (
— =g, o8 (resp.® = 0 for Neumanh o0ona,
av ot

with [, ® = 0 in the Dirichlet case.

Then we conside#, the “canonical phase associated to thg d;)”, the harmonic
conjugate of® in .. It is not single-valued, bu¢’? is well defined. Observe that
depends implicitly orz since the pointg; do. We will use the estimate

IVO(x)| < C/r where r =dist(x,{a;}U3Q), (3.6)
and the following result:

Lemma 3.1. Let B(b;, p;) be any finite collection of disjoint balls (bounded in number
ase — 0), with p; > R.e depending om, such that

() U; B(ai, Ree) C U, By, pj),
(i) p;j < |bj — bj| foreveryi # j andp; < dist(|;{b;}, 992),
(i) Va; € B(bj, pj), lai — bj| <K pj

(these hypotheses allow in particular taking= a; andp; = R.¢). Then

1

1
/ IVO|? =7y D?log— + Wp (b1, ... by) + o(D) (3.7)
2 Ja\U; B0 ; Pj

whereD; = dege’’, dB(bj, p))) = ;. we;.pp bi-

Proof. The proof is quite standard, similar to results|in [BBH] (except that hereithe
depend or) or to [SS2, Chap. 10]. From (3.2), we have

®(x) =—» diloglx —ail + Y diS(x, a). (3.8)
i=1 i=1
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Using the fact thata; — bj| < p; < |bj — by| for j # k, anda; € B(bj, pj), and
computing explicitly, we find

920 _ =D Loy onaBy. o). (3.9)
av Pj
IV (x)| < P inQ\LjJB(bj,pj). (3.10)

For assertior{ (3]7), integrating by parts using](3.5), we first have
1

> 1
Vo2 =
2 \U; B®;.0)) 2 Q\U; B(bj,0))

1 0 1 oo
= __Z c1>—+—/ o—, (3.11)
2 ] dB(bj.pj) av 2 IQ av

Vo

wherev denotes the outer unit normalda@(b;, p;). Inserting @), we find

od
_/ q>_=_/ (- > diloglx — al
aB(bj.p) OV B(bj,p))

i:aiEB(bj,pj)
I
- > 4 |og|x—a,-|Jer,-S(x,ai)>E
i1ai¢B(bj.pj) i
1 dP
=- Djlog——Y " Diloglbj—bel+ Y DiS(x,b)+o(l) )| —, (312
3B(b;j.0)) Ty % v

where we have used the continuity$fand the facts that ohB (b;, p;), if a; € B(b;, p;)),

bj—ai

log|x —a;| =log|x — b;| + log|1 + =log|x — b;| + 0(1) =log p; + o(1),

J

becauséx — b;j| = p; > |a; — bj|; and similarly ifa; € B(by, px), then loglx — a;| =
log|b; — br| + o(1) ondB(b;, p;). On the other hand,

0P
—/ = / —A® =27D;.
aBb;.0) IV JB®;0)

Inserting this into[(3.7]2) and using the regularitySofve get

00 1
—/ CI>—=27TD/2|09——271 E D; Dy log|b; — by|
aBbj.op OV ' Pi k#j

+27 ZDjDkS(bj,bk) +o(1). (3.13)
k
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Combining [3.1]L) and (3.13), we conclude that
1

1
Vo2 =27 D?log— —27 Y D;Dilog|b; — byl
Zfsz\UjB(bj,pj) Z]: ! Oj Z ’ !

j =y

+2r DD uSby b+ [ (= loabe = b1+ 3 0505, g, de) o)
" j : (3.14)

and thus[(3]7) holds. ]

With the same kind of techniques, we can get the following result, which will be useful
later on.

Lemma 3.2. Let B; be a family of balls as in Propositig&2, and let9 be the canonical
phase associated to the;, d;)'s. If Bg and B; are two concentric balls such th#g \
By 2 is included in2 and does not intersect any of the bafls then

271( 3 d,»)zlog§§/ |V9|2§27r( 3 di>zlog§+0(1), (3.15)

i:B;CB; BR\B; i:B;CB

/I;R\BI or

If B and B; are two concentric balls centered @2 such thatByr \ B> does not
intersect any of thé;’s, then

2

0  _ o). (3.16)

f [VO|? = 0(1). (3.17)
Br\B;

Here theO (1) depends only o, on the number of pointg and on some upper bound
ony ; |dil.

Proof. Let us first deal with the interior case, and the left-hand side inequalify in|(3.15).
SinceBar \ B2 does not intersect any bafl,is well defined inBg \ B; and the degree
is constant equal td_; . 5 - 5 d;; thatiis, for every <r < R, we have

00
/ —=2r Y d.
a8, 9T i BiCB

Then, using the Cauchy—Schwarz inequality, we have

R

00

L[ L

Br\B 1 Jas, |07
R

1 36\2 2 R
— — ) dr=2 d;) log—. 3.18
2/1 21y (/3& 81’) " 71(. Z l) °d l ( )

i:B;CB

2
dr

This proves the left-hand inequality in (3]15).
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For the other inequality, for both the interior and boundary case, let us evaluate

/ Vo2 =/ Vo2,
Br\B; Br\Bi

Clearly, sinceBg \ B; does not contain any;, integrating by parts yields

D
f V|2 =/ >—, (3.19)
Br\B a(Bg\B) OV

wherev is the outer unit normal to each disc. Let us now studelcloser. For each
point g;, let us denote by:” its symmetric image with respect @2 (there might be
several choices, but it does not matter). Let then

W(x)=—)Y dilog|x —a;|+»_d;loglx — af|. (3.20)

One can check thak andaW¥/dv remain bounded o2 by some constant independent
of theg;’s. On the other hand\ (® — W) = 0in 2, so in view of the boundary conditions
for @ (see[(3.5)) we find, by the maximum principle, tiiat- ¥ is bounded irf2 (in both
Dirichlet and Neumann cases). Thus, we may write

®(x) =—» d;loglx —a;| + Y _dilog|x — af| + O(1). (3.21)
i i
Let us now first focus on the interior case. Denotecpyhe center of the ball8; and Bg,
and letx € 9B; anda; € B;/2. We have
1Ty
X — X0

log|x — a;] = log|x — xo| + log

But, sinces; € By/2, we have “"x°| <3 L thus log1— “"X°| remains uniformly bounded
and we can write lofx — a;| = Iogl + 0(1) Assume now that € dB; anda; ¢ By2;
that means that; is outside ofBog. Then

X — X
1— 0

log|x — a;| = log|a; — xo| + log
a; — Xo

X—Xg

and sincex — xo| < R and|a; — xg| > 2R we have|ﬁ| < % and thus logfl — p—
remains uniformly bounded. The same holdsdpwhich is always in2 \ Bzg. We can
thus write

®(x)=— Y dilogl— > di(logla; — xo| —log|a; — xol)
i:BiCB2 i:B;CQ\B2r
+0() for x €9B;. (3.22)

Similarly, forx € 9 Bg, we have

®(x)=— Y dilogR— > di(logla; — xo| —logla} — xol) + O(D).
i:BiCBjp2 i:B;CQ\Bag
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Thus,
/ 0P
o
9B, ov
| — 0P 0P
:(_ Z d;logl — Z dﬂogM)/ —+0</ —)
i1BiCBy2 i1 B;CR?\Byp lai" = xol / Jog, 9v oB;| OV
- (_ Y dlogi— Y & Iog@)(—Zn > 4)+ow,
i:BiCBy2 i ZB,'CRZ\BZR |ai )C()| Jj/BjCBi2

(3.23)

where we have usefl (3.5) and the estimiatg (3.6) or in other Woidls < C/I on d B;.
Similarly,

b la; — xol / Rl
bd—=|(-— d;logR — dilog ——— — 4+ 0Q).
[, o5=(- X awor- ¥ awg %0 [ 20

i:BiCB2 i:B;CR2\Byp B v
Subtracting those two relations and returning to (3.19), we find

2 R
/ |VCI>|2=27T< Z di> log— 4+ O0(1).
BR\B[ i :B,'CBl/z l

This finishes the proof of (3.15). Comparing it fo (3.18), we conclude [hat](3.16) must
hold.

For the boundary case, one may check with similar ideas|thaf (3.21) implied that
bounded (independently of the location of the points &rahd!) in Bg \ B;. Therefore

ad o 1o 0o
b— = d>—+0 —| ]+ 0 —1 ).
3(Br\B) OV 9QN(Br\B) OV aBrnQ| OV agna| 0V
The contribution ord<2 is zero in the Neumann case and is bounded in the Dirichlet case
(in view of the bound ord and the boundary condition @b /dv). The contributions on
dBgr andd B; are bounded by the same argument as above (USitt < C/R or C/1).

We conclude thaf(3.17) holds. o

3.2. Lower bounds on the energy

Returning tou,, we introduceo, = |u.|, andg, such that
up = pee'? N Q. (3.24)

We also introduce the phase-excégss= ¢, — 0 in ., and observe it is a single-valued
function. Afterwards, we most often drop the subscripté/e claim that from[(2.29), for
eachi, there exists a constantsuch that

Y =¢—60=ci+0(1) ondB(a;, Rse). (3.25)

Also, ¥ = const ond2 in the case of the Dirichlet boundary condition, an@/ov = 0
on a2 in the case of the Neumann boundary condition.
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In the next section, we will work alternatively {2, or in B(x, [)\|J; B; whereB(x, )
is some ball of radius (possibly depending o#) included inQ2 such tha® B(x, ) C €2,.
In what follows,D, denotes eithe2, or any subset a2, of the formQN B(x, D\ J; Bi,
andD denotes2 or B(x, [) N Q respectively.

Lemma 3.3. Assumex, satisfieq(I.1) and (1.8)-(1.10) and hence the results of Propo-
sition[2.2 Then

E¢(ug)

v

1
E/ IVOI2+ 7Y d?logR: + Y y(V;) +o(D)
Qe i i
1
= 2log = s : 1 2
nEi dflog~ + Wa(as, ..., an) + Ei y (Vi) + o(1) (3.26)

whereV; is given by(2.29)

Proof. This follows arguments of [BMR., CM1]. LeD, = @, or D, = B; \ |J; Bi. We
claim that

i 1 2 2, 1 (1-p?? 2
Ec(ug, De) > Ec(e”, De)+ PIVY T+ = —2+ pVO-Vir+o(D).
2 Jp, 5J)p. ¢ D,

’ (3.27)
Indeed,

/ p2|w|2=/ p2|V<e+w>|2=/ (P2IVO 2+ 02|V 24+207V6- V). (3.28)
D, D, D,

232\ 172 1/2
§a< (1—2’))> (/ |ve|4) . (3.29)
De & De

By definition of@, we havefQE |VO|* < C/(R.¢)?, thus, sinceR, — +o00,

NN
/D(pz—l)|V9|2:0<< i (18—2’))> ) (3.30)

_ 522
/p2|V9|22[ |V9|2+0</ (1—£)>+0(1). (3.31)
D, D, D, €

This yields [3.2]). Arguing similarly, we also have

(1—,02)2 1/2 1/2
ssnveumwg( - / IVy|?
Dy & D;
c (1-p?? 2
< = — L 4|V
< /D< 7+ 191

1- 2)2
< 0</D (5—2" + |w|2)> (3.32)

But, by Cauchy—Schwarz,

(p? = 1)|Vo)?
D,

Hence,

V (0% —1)VO - Vi
DE



198 Sylvia Serfaty

where we have usefl (3.6). Combining this wjth (8.27), we find
Ec(ue, D) > Ec(e, Dy) +/ VO - Vi +o(1). (3.33)
D;

Specializing toD, = €., using the fact that is harmonic, we also have

a0
Vo -Vy = —.
/Qg w Xi:fagiwav

Inserting [3:2), and usingj , 3% = [, 5% =0, we find that

Vo -V =o0(1
fge " 0(),21;3,-

Using ) again, we conclude thg V6 - Vi = o(1) and hence, fro3), we get

a6
vl

Ee(ue, Q) = Ee(€”, Q) + (D). (3.34)
On the other hand, from (2.32) arjd (2.28), we have
Ee(ue, B;) = wd?log R, + y(V;) + o(1). (3.35)
Adding to [3.34) and combining with Lemrha B.1, we have the result. O
As a corollary, we get the lower bound:

Lemma 3.4. Assume that, satisfies the results of Propositipn P.2 aBdby, o) is a
family of balls satisfying hypothes@y(iii) of Lemmd3.1 Let thep;’s be the points of
accumulation of the;'s with nonzero total degree. Then, with the same notations as in

Lemmd3.]

Ee(ue) > 7 Y |Dillloge| + Wp(p))
k

—xd Y Dubeloglbe— byl + (Y IDdl )y + oD, (3.36)
J k#k/:bk%pj,bk/ﬁpj k

whereD; =3, _,, Di. Moreover, if there is equality i)then eachD; = +1and
eachB (b, pr) contains only one;.

Proof. From the results of Propositign 2.2, we have a family of small balls;, d;).
Applying Lemmg 3.B, we have

1
Ec(ue) =7 Y d?log ~+ Walar,....an) + > v (Vi) +o(D). (3.37)
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On the other hand, one can check that

Wa(ar,....an) = Wp(pp)=m ) Y didylogla; —ay| +o(1). (3.38)

Joi#i ap,al— pj
For each givery, let us now study

b4 Z di2|logs| -7 Z didy log|a; — ajr|.

ilaj—p; i’ a;,a]— p;

The pointsz; converging to the samg; belong to several of thB (b, o). It is again
easy to check from the properties of tBéy, pr) that

—m ). didyloglaj—ayl=-n ) DiDyloglb — byl
i#i"a;,a;—> p; k#k' by, by — p;
Y 3 did; 10g|a; — a,|) +o(l). (3.39)

k:bx—pj i#i’ aj,a,€Bbr,pr)
So we are led to studying, for eath

T Z d?|loge| — 7 Z didy logla; — ay|. (3.40)

i :a;€B(bk,px) i’ a;,a; €B(by,pr)

We examine they;’s belonging to oneB(by, o). Letl1 be the smallest distance be-
tween two of they;’s. Let us group together all the’s that are at distancé® (/1) from
each other. This makes several clusters of points. Over each dljstsince the total
number of vortices is bounded, we have

) didi/log|ai—a,-/|=—n( 3 d,-di/>log11+ 0(1)

i#i'€Cp i£i'eCp
2
=7(3 2= (Y d))logh + 0.
ieCp ieCp
Therefore,
T Z d? Iog} -7 Z didy logla; — a;r|

) ! 3 £ ! !
ieCp i#i'eCpy

—7 ) d,?logl;1 . n(z d,-)zlogll +0@Q). (3.41)

ieCy ieCy

We now need to sum this over alls and add the interactions between the clusters them-
selves, which have total degrég = 2 icc, di- Since they are all at a distange I;
from each other, we may consider>> /1 the minimum of their distance. Let us again
group the clusters into clusters of siz&ly), at a distancés > [> from the others.
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The interaction within each cluster of sizecan be counted asz " 8182, logl, =
n(Z(S,}l)Z - 3,}1)2) logl,. Adding up over all clusters of siZe, we find an energy

™ Zdl? Iogl;l +r ;(5}”)%09% - n(; 5,}1)2|oglz + 0.

Again it remains to add this over all clusters of clusters, and add the interaction between
them, which is at the scalg > [, etc. Iterating this process (which stops after a finite
number of steps since the total number of balls is bounded) we are left with an energy
bounded from below by

T Z di2||0g8| -7 Z didy logla; — a;r|
i:a;eB(by,pr) i#i"a;,a;r€B(by,pr)
ll 12
> 7 Z d?log = +n2(8,}1)zlogl—
i ta;eBby.px) 2 m 1

I3 1
7 Z(S,Z,,,)ZIOQE +.--4+7D? Iogg +0(@1), (3.42)

where Dy is the total degree o8B (by, px) and eachs”, the total degree of a cluster at
scaldy, is the sum of the degrees over all the clusters at ¢gajehat it contains. In other
words, we have"; d? > 3", |d;| > |Di| and similarly}",, (8%)2 > 3, 181 > |Dxl.
This means we can bour[d (3}42) from below by

m Y dflogel—x > didrlogla; —ay|

i:a;€B(bi,pr) i#i' aj,a;€B(b,pr)

l l 1 1
> 7r|Dk|(Iog;1 + Iogf +-~-+Iogl—) +01) = n|Dk|Iogg +0@1). (3.43)
q

Moreover, this inequality is sharp if and only¥f, d? = 3", |d;| = |Di| andy_,, (8%)% =

>, 185 | for everyh. The first relation implies that eaeh is equal to+1, the sign being
equal to that ofDy. The second relation implies that eath = +1, which means that
there is only one cluster at each scale, so in fact there can be at most oneayarfex
degreetl in B(bg, pr), andD; = +1 (or 0). In that case, the lower bound above can be
replaced simply byr | Dy | |loge|. If this is not the case, then we have dropped some term
in @) of sizer log(l4/1x—1) which tends to+oo by construction of thé;’s. Thus, in

all cases, we may replade (3143) by

1
m ), dillogel—x > didylogla; — ayr| > 7| Dx|10g = + R,
ira;€B(by.pr) i’ a;,a; €B(bi,pr) £
(3.44)
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whereR, — +o0, unlessD; = 41 or 0, with at most one vortex of degreel in each
B(bx, px), in which caseR, = 0. Combining this with[(3.37)[ (3.38) and (3]40), we find

Ee(ue) > 7 Y | Dyl lloge| + Wp(pj) =7 ) > DDy log |bx — by|
k j k;ék/:bkﬁpj,bk/—)pj

+R.+ Y y(Vi) +o(D). (3.45)

If R, — +oo this implies the desired relation (3]36). If not then all the small vortices are
of degreet1, soy (V;) = y for eachi, which again implieq (3.36). O

4. The substitution lemma and Theorent L

This section is inspired by the analysis lof [CM1, CM2]. It needs to be readjusted to the
case where only (1].1) is known, and also to be localized in small balls. The main result
we obtain by this method is the following (we recall we workiip which is alternatively

Q. =Q\ U, Bior B(x,)\ U, B:).

Proposition 4.1. Assume, satisfieq(I.1)and(1.8§)«1.10)and the results of Proposition
[2.2 Then, with the same notations as aboveg as 0,

1
fQ (WW +1Vpl*+ 51— p2>2> < CllfelZ2iq) +0(D), (4.1)
and

Ee(us, Q) < Ec(¢", Q) + Cll fell 25 g, + 0(D). (4.2)
Letx be a given point ir2, and

1 2(1— p?)?
F(l)=/ <|V¢|2+—|VP|2+‘(—2/))~ (4.3)
B(x.HN\U,; Bi 2 5 ¢
If either

(i) x € Q,1 <dist(x, 32) anddist(_J;{a;}, B(x, 1)) > ¢,/|loge|, or
(i) x € 0Q anddist(|J,{a;}, dB(x,1)) > ¢,/|loge],

then the functiorF satisfies a relation of the form

F() < F'() + K fell 21y + DV FD +0(D), (4.4)

I+ KI?
2

whereK (and the constantin(1) above) is a constant depending onlygnV, Q andg.

The proof requires many steps which we separate into lemmas.
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Lemma 4.1 (Substitution lemma). Under the hypotheses of Proposit{drd]

+l/ IV |?
2D5

_ . 1 _ 22 E/ (E_ )3_/)
/D£V<p Vw+482/D£(1 0°) +2 o\ 5 0 av—l—o(l), (4.5)

where we recalli = pe'? in Q,.

12

i0 = 1 ipy 1 1— 52 1 2ly
Eg (e, D) = Ec(ue, D) + (fe, ') —( po)+ P
2 Jp, P 2 Jp,

Proof. For any real-valued functions and /2 < n < 4/3 in D, we may consider
v = ne'u, = npe'?t¢, and we have

1 1
Ee(v. Dy) = 5 / (|V<pn>|2 + p%n? Vo + V¢ + 57 (1- n2p2)2>. (4.6)
D,

Expanding all the terms, we find

1
E:(v, D¢) = Ec(ue, De) + 5/ ((n2 — DIVpl? + p2IVn2 + 21pVp - Vi

D,
+ 2% = DIV 2 + p?n?|V¢ 12+ 20%0* Vg - Vi
1
+ §<—2p2<1 - =D+ p*A - n2)2)>- 4.7)

But, taking the scalar product gf (1.1) wief¥ yields
—8p+pIVel = 5= p?) + (fe ) inD. (4.8)

Multiplying (4.8) by (12 — 1)p and integrating, we find
2 ap 2 2
- " —Dp—+ n° = DIVpl*+2noVn-Vp
9D, v Jp,
2 .
+p?(* = DIVel® + fj—zu— pH (L - n2)> = fD (fes €9)pMm* =1).  (4.9)
Inserting this into[(4]7), and using (2]30), we find

1 i 2
Eo(v, Dy) = E8<u,Dg>+§/D o @)% = 1)

1 ot
+5 f <p2|Vn|2 + P VE P+ 5 (=) + 20%0° Vg - V:)

&

1
+—/ (nz—l)pa—erO(l). (4.10)
2 9D av

Choosing specifically = —y andn = 1/p, we find [4.5). |
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Lemma 4.2. Under the same hypotheses,

1 2 [ (1-p?? 1/
2 2 2
-l =|V Vo -V — 4+ = \
/Ds(p )(2| v+ w)+5/DE 23, 1
J
sc n-pt
aD v

+[ Vo V¢ +ol). (4.12)
D,

‘ +0o(1) (4.11)
and

; 0
Eo(ue. Dy) < Es(e19,08>+c/ 1 2| 2
oD

Proof. Adding up the relationg (3.27) ar{d (4.5), we find

_ 12\2
oz}/ (,02+1)|V1ﬁ|2+(}+}> il
2 D, D, &

5 4
1 2
Z v
—|—2/DEp

1/1
2 Jsplp

a
——pH—p —c/ el 1p% = 1 + o). (4.13)
ov D,
Hence, splittingy asé + ¥, we get

— 1
/(p —1)(V9 w+—|vw|z> 5/ (—” 5|Vp|2

‘ + cf fill6? =1 +o(D).,  (4.14)

2
+ f (P2V6 — V) - Vi
D,

<C

where [, | fe| 1p? =1 < ||stIL2(D£)|Ip g2y = Cellogel | fell2(p,) < o(1) by
(T.10), hence the result.

Similarly (4.3) implies[(4.1R). o

Lemma 4.3. Under the same hypotheses,

V p?Vo - VY
o,

(VO — p?Vo) - Vi
Qe

= Cllifellpz@ V¥l 2,y + oD, (4.15)

< Clfell 2@V iiz2q,) + o), (4.16)

and

/ (V6 — p2Yg) - Wf’
Bx.HN2\U; Bi

I+CI? 2(1 — p?)2
< / <|V¢|2 + (—f)>
2 IB(x.HNQ 5S¢

+ ClI fell L2eap IVV | L2y, ) 0D (4.17)
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Proof. Taking the inner product of (1.1) anid, we find
div(p®Ve) = (fe. iu). (4.18)
Thus,
div(p?>Ve — V) = (fs, iu) in D,.

We now lety denote, ifD is a ball not intersecting<2, the average value af on 3 D; if
D is a ball intersecting<2, in the Dirichlet case, the constant valueyofon 92, and in
the Neumann case, the mean valugyain 0 D N ; finally, if D = €, the value ofyr on
d<2 in the Dirichlet case, and the averagefobn <2 in the Neumann case.

Let us then multiply[(4.18) by — ¥, and integrate by parts. We find

—_ (06 0 _
(V9—02V¢)-VW=/ (w—w)(a——pz—“’)w(/ Ifelll//—1/f|>- (4.19
Dy 9D, v dv D;

Moreover,

——;l7 a6 — 0P
(1/f—1/f)8—= W—c)—+ [ (ci—y¥)—=0
B; v av at

3 3B;

by (3.6) and[(3.25). Also,
dg

_ 0 — 0
/ ¢t —w>p2—a‘” - f W — L + f (i — P)p2=L
3B; v 3B; ov 9B ov

=o) —(c; — V) fB_(fg, iu),

3B;

where we have usefl (2]30) afd (4.18). We may always exgeingide D N | J; B; to a
function ¢ in such a way thaf,, p ., IV¥[? < C [ ptar 28,00\ Bla Res) |V |2 (see for
example[BMR]), so that we havf, |V/|? < C /b, IV¥|%. Moreover, we can do it in
such a way that

IV = cilles) < 1Y = cillx@s,) = o(D).

Using this, we find

(Ci—W)/B_(fg,iu) s/B_ |&—$||fs|+/3_|&—c,~||fg|

< /B 10— TSl + 0(Ree ] il 2.

We may thus conclude fror (4]19) afid (1.10) (combined WRith< |log ¢[) that

0p
v

- — (060
(VQ—,OZVQD)'VW=0</ |fe||‘ﬂ—1/f|>+/ (Iﬂ—l/f)<——102 >+0(1)-
D, D oD 8\) 8

(4.20)
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In the caseD = , in view of the boundary conditions/( = v or d¢/dv = 0), the
second term on the right-hand side vanishes identically, so

/ (Vo — ,OZV<P) -V = 0(/ A —Wl) +o(D). (4.21)
Qe Q

Following the exact same steps, we can deduce that

/Q p*Veg - Vi = 0(/Q | fel I —WI) +o(D). (4.22)
But, by a Poincar type inequality, we always have

/D |fel 1§ = W1 < CIDI fell L2 I V¥ Dl 22, (4.23)

where|D| denotes the half-diameter @&f (a constant ifD = Q and!l if D = B(x, l)).
(Recall that if D intersectsd<2, then it is a ball centered at a point of the boundary,
essentially a half-disc if is small, by smoothness 6f2). From [4.2]) and[(4.22), we
already deduce thdt (4]16) afd (4.15) hold.

It remains to bound the other term of the right-hand sid¢ of {4.20). In thease
B(x,1) N Q (the only one left to consider) we observe that sipce 6 + , in view of
the boundary conditions and the choice/afwe have

0 — 00 — o)
/(w w( 2¢> / (wﬂwu—&r——/ w-p2.
IB(x.)NQ v Japux.nne ov
(4.24)

Let us now distinguish between the cases whefe, /) intersectsd2 and not. IfD =
B(x,1) C 2, we may use, as in [BMR], a sharp scaled Poigdaequality ord B(x, [):
observe that

2
_ oy
/ |¢—¢Fsﬂ/' i
3B(x,0) aB(x,1)| 0T
and 2\ 1/2 2\ 1/2
Iy Iy 1
L 51) (Lol ) =2, v
aB(x.0)| 0T 3B(x,)| OV 2 JaBix.n

Inserting this this into the above, and using: 1, we are led to

0 0
f (W — wm L4 Ld
dB(x,l)

2\ 1/2
) (/83(x,l)

ov

2)1/2
l
55/' VY2 (4.25)
dB(x,l)

If D= B(x,])NQandx € 322, then we may calculate explicitly

L

1% 2 2
min fOL( r_r (4.26)
heH¢(O.L) [y h2 L

</83(x.l)

ot




206 Sylvia Serfaty

and
L
1% 2 2
min Jo 7 _ 7 (4.27)
o Joh? L%

Applying this to the curve B(x, ) N Q parametrized by arclength, we find, usipg (4.26)
in the Dirichlet case andl (4.27) in the Neumann case, in view of the choige of

_ |0B(x, ) N Q2
/ W -9P s ——u—
dB(x,[)NQ T dB(x,H)NQ

where|d B(x, [) N 2| denotes the length ofB(x, [) N Q2. Using the fact thad2 is smooth,
we can write

2

Wi (4.28)

ot

10B(x, ) N Q| < nl + CI?

(thatis,d B(x, 1) N Q tends to a half-circle as— 0). Inserting this into[(4.8), we find,
in place of [4.2p),

oy oy 2\ 12 oy 2\ 12
/ W — P> < ((12+cz3) v ) / w
IB(x.D) v aB(x.HNQ| 0T aB(x,HNQ| IV
1
<Z(1+Cl? |V |2, (4.29)
2 IB(x.HNQ

On the other hand, for both cases (boundary and interior), Usifjg (3.6), wéWrtve
C/\/llogele ondB(x, [), hence

— 00
/ w—w)(l—p%a—’
IB(x,HNR v
1 o 1— p2)2 1/2
<20 (/ =i [ %)
Vlloge| \JaBx.nne 9B(x,[)N €
_ 52y2\1/2
<D (l/ |W|2f e f))
Vilogel \ JB.n BN &

where we have used a trace inequality. Using the fact }hgatvwz < /o |Vu|? +

Ja. V6|2 < Clloge|, we deduce
! (1—p??
< o(1)<1 + - / =22
2 Jopay €2

Combining this with[(4.20) and (4.23), we conclude that ($.17) holds. O

_ 00
/ W —NA-pHo
dB(x,) %
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Lemma 4.4. Under the same hypotheses, we have the estimates

= ClIV¥li2p,) + o), (4.30)

(0% —1) <2ve + §Vl/f> VY
D 2

‘/ (0% — 1)(2V9 + g’vw) . vw‘
Q. 2

<o [ ga-st2+ [ 1vei)row. @3
2¢ Q

Proof. For the first relation, let us write
/ (1— pA)|Vy 2
D;

5/ (1—p2>|W|2+f (1— oDV 2
Den{jul=1-1/lloge|2) DeNflu|<1-1/|loge|?)

- C f VRt </ (1_p2)2)1/2</ sz)l/z @32)
~ |logel? Jg, Den{lul<1-1/llogel2} €2 D '

where we have used the fact th&ty| < C/e. Now, applying the estlmatgﬁQ |V |2
< Clloge| and combining the above with the result of Proposifiof 2.1, we conclude that
Jp, (1~ PAHIVY 2 < o(1) + ClIVY i 2(p,) A similar reasoning (usingve| < C/e in
Q.) works for [, (1— p?)V6 - Vi, and we deducO).
The other refation is a direct consequencd of (3:32)@andl — o(1) in .. O

Lemma 4.5. Under the same hypotheses,

22
/ <|v | +( p) )
B(x,HN\U; Bi g2

< c[ 11— 0% Vol +o<1+/ |vw|2), (4.33)
dB(x,HNQ B(x,DNQ\U; B

. 2\2
f <|V,0|2+ (1—2’))> < 0(1)<1+/ |vw|2>. (4.34)
Qe € Qe

Proof. Indeed, returning tq (4.11), we find

2

— d
/(|V|+—( p))sc/ 11— 2|2
D &2 aD, av

/ (p? = 1Vo - w‘ +C/ 11— p?| V|2
D,

€

and

’ +0(1)

+C

Using [3.32) and the fact th&t — p?| = o(1) in D, (from Proposition 2.2(i)) an-O)
to get rid of the terms o6 B;, we easily find tha{ (4.33) anf (4]34) hold.
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These relations will be used later. We are now in a position to give the full

Proof of Propositioff 4]1.The control of the excess energy comes frpm (4.11). We just
observe that

2 1 2
(p° — 1)(V9 Vi + EIVWI )
= VY2 + (VO — p2Vg) - Vi + (02 — 1) <2V9 VY + gwmz), (4.35)

and combing[(4.11) with (4.16) ar[d (4]31), to find

2 1
=0y [ vy +a-o) [ Spa-pt [ 9P
Q Q. O¢ . 4

< ClIVYIi 2@ ll fell 2y + 0. (4.36)

The relation[(4.]1) follows directly. Similarly, using (4]30), we are led to

1 2
|V¢F+—Wm2+——u—p%ﬁ
/B(x,l)msz< 2 5¢2

1+C12/ , 1_ 5, 2 22
< IVY1°+ SIVol®+ 51— p%)
2 dB(x,]) 2 582

+CIVY L2y, By U fell2en + D + o). (4.37)

SettingF (1) = [5, e, 5 (V912 + 31V012 + 29257%), we deduce tha satisfies

@.4).

Also, returning to[(4.12), and using (4]15) and the same other arguments, and com-
bining this with [4.1), we find (4]2). o

4.1. ODE approach

Here, we give estimates fdf given that it satisfies the differential inequalify (4.4).

Lemma 4.6. Let f be a nondecreasing function on an interyalR] with R < L, satis-
fying

x+cx2

Vx e[r,R], f(x) = 5 f1x) + gy fx) +b (4.38)
for some continuous functign Then
2
1) < C%f(R) + 2°2(G(R) — G(r)? + 2b<1 - %) (4.39)

whereG is an antiderivative of (x)/x2 andC = 2(1+ Lc)2.
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Proof. Dividing (4.38) byx2y/7(x), we find

VI®) ') ef'w) g b
S VLR VST N S SV (O)

Settingh(x) = —fo(") we observe that'(x) = VAETR /0 and thus

2x/F(x) x2
/ / g(x) b
0<h'(x)+c(/ ) x) + = N (4.40)

Integrating between and R, and using the monotonicity gf for the last term, we find

V@) _VfR) b (1 1
= Y o/ f(R) e/ F) + GR) ~ G() + _f(r)<;—;>.

Thus

V) 1 Lc b 1 1

We observe that this is of the fora? < a1 + ap» wherex = \/f (). Using the fact that
for such an equation we hawé < a? + 2a,, we deduce

2
fr) < (’(”TLC)\/f(R) +r(G(R) — G(r))) n 2b<1— %)

and the relatior{ (4.39) follows directly. O

4.2. Proof of Theoreifn 1

Proof of (T.13) (T.14) (I:I8)and (T.17) (I.13) follows directly from[(4]1), and (1.]L4)
from (1.13) combined witH (4.34). Fdr (1]18), we start frgm|(4.2), which, combined with
Lemmd 3.1 (applied to thB(a;, R.¢)), yields

2 1 2
Ee(ug, Q) <7 ) _dflog—— + Walas, ..., an) + Cll fell72 + o).
i &€

But, from [2.32) and(2.28), we find

Ee(ue, B(aj, Ree)) = md?log R, + y (Vi).

By Lemmd 3.3, the result (1.]L8) follows.
Finally, (I.17) was proved in Propositipn P.2.
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Localized estimateswWe recall that > ¢,/[log¢|, so we can find a quantity|logele «
Q. < l. Let us first consider the boundary case, i.&s 92, and letF (/) be defined as
in (@.3). Since the number of points remains bounded by som®, the setS = {I €
R : 8B(x,) N |Y; B(ai, Q:) # ¥} is a finite union of fewer thamg intervals, with
total length< CQ,. Let us writeS N [0, R] = [r1, 1] U [r2, 5] U - - - U [, 1;], Where
n<t)<ta<ty<---<tip1=R <1 Assume now is given, € [t/ #;11], and )
holds in that interval. We may use Lem@]4.6 with= F, g(1) = K|l fell L2(g(x.r)) +1
andb theo(1) found in @). TherG(l) = K log!|| fell L2(p(x. ryy — 1/1, thus we find

12 2 tix1
F(l) < C—F(tl+l) + 2<l Iog ||fg||L2(B(x R)) + 1) + Zb(l - %)
I+1
But F(fj11) < F(tl./+l) andr; 11 <1, so
F1<CZZF/ a(1+ 2l 2| 1.2 2b 4.41
() +1 ([i+1) + + 0og 7”f5”L2(B(x,R)) + . ( . )
l
Similarly, using ) onf ;. ti12], we have
F(i] )<c(’+1) F(tl, ) +4[1+ )2Iog ||f|| +2b. (4.42)
+1 t»+2 i+2 i+1 e LZ(B(x R)) . .
1
The same relation holds for any< j < k+ 1. Now observe that singg; > t —Qe,
we have
12 (t,)? (t,Q)Z 12 14 €O 210 C12
2. 2, R = R? l =R
i+1 Yi+42

in view of the assumptioh>>> Q.. Using this and combining all the relations of the type
(4.42), we are led, after some calculations, to

12 2
F() < cﬁF(R) + Cl?log? ||f8||L2(B(x &y TC (4.43)

whereC is a constant (depending @g). On the other hand, frori (4.1), we haké¢R) <
C”fg”LZ(Q) + 0(1), thUS, takingR = 1,

F() < CP|| ;125 log?l + C. (4.44)

||L2(Q)
If I belongs to some intervat [ /], then we may ge4) faf, and usingF (1) < F(t))
andt! <1+ Q. < 2/, we deduce that a relation like (4{44) still holds.

For the interior case, lat € Q and letR = dist(x, d2). DenoteF by F, to keep track
of the center point. If > R, then there existsg € a2 such thatB(x, ) C B(xo, 2/) and
thus F (I) < Fy,(2]), and the result follows from the boundary casel Kk R, then,
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arguing exactly as above, singéx, R) C © and [4.4) holds in the interior case, we can
get [4.43) similarly, that is,
I? 212 L 2

If R > 1, using [(4.1), we are done. If not, we can fingl € 9Q2 such thatB(x, R) C
B(xo, 2R), thus, using the result (4.44) for the boundary case, we have

1
Fr(R) < Fyo(@R) < CR?| fe |7 log” — + C.
Combining this withR > [ and [4.45), we find
1
Fe(l) < CI?| £.)1%; log? THC

that is, [4.4%) is proved in the interior case as well, and we always have
(1 —Jul?)?

/;K(x,l)ﬂQ\Ui B; 2¢2
In order to prove[(1.16), let us ude (4.33) Bux, s):

(1-p??
f (|Vp|2+—2 <cC 11— %1Vl
B(x,5)NQ\U; Bi 2 9B (x,5)N

+0o(1) ~|—0</ IWfIz). (4.47)
B(x,s)NQ\UJ; Bi

Let us recall that > e,/[loge| > . Thus, from ),

/ <|V,0|2+M> <C5f (|Vp|2+(1_—p2)2)
B(x,s)NQ\U; B; &? - 3B(x,5)NQ &2

+0(1)+0(/ |v¢|2).
B(x,9)NQ\UJ; Bi

Integrating this relation for € [/, 2/], we easily deduce that

7 (wor+ Cf ) sce [ (1wor+ S5
B(x.HN\U; Bi € B(x.2)NQ €

+o(D) +o<zf |wf|2>.
B(x.2)n2\U; B;

Inserting|(4.46) and the factthﬁ,;i(|Vp|2+(l;—§22)2) = 0(1) (from [BMR] for example),
we are led to

1-p?»? e AP
Vo4 —F 7 € 1 o2 .
»/B(x,l)\U,. B; <| pImF g2 = Cl +o(D) |({%log I ||fs||L2(Q) +C )+ o0

and since we assumed/ — 0, we conclude thaf (1.16) holds.

(|vw€|2 + Vol + ) < C+ CPI0g || fell 72, (4.46)
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We now prove that the second upper bound in (1.15) holds. For that, let us return to
the proof of Proposition 4] 1. Inserting (1]16) info (4.32), we have

1
/ |1—p2||wf|2so<1>(1+lIog7||f€||Lz<B(x,2,>>||wf||Lz<D€)+o<1>. (4.48)

D,

In place of [4.3]) we can now write

1 2
/ <|V¢|z+—|v/o|2+—2(1—p2)2)
B(x.HNQ\U; Bi 2 5e
1+ CI? f < , 1 5 2 22
< VY =+ 51Vl + (1 — p°)
2 JaBune 2 5¢2

1
+ C”Vw”IAZ((B(x,l)\U,- B,‘))0<l |Og 7 ||fg ”LZ(Q) + 1) + 0(1) (449)

Then, we apply the same reasoning as before, i.e.[use] (4.39) this time @jth=
c(l Iog%||f8||Lz(Q) + 1), wherec = o(1), and the same method. Sin¢Hl), the an-

tiderivative forg/12, is equal toc(—(log®1)/2 — 1/1), we find in the end, in place of

@.49),
F() < o()(PlogHl]| foll 72, + 1.

and we may conclude as before that (1.15) holds.
Remark 4.1. When f, = 0, Theorenj [ reproves the resultlof [CM2] without the need of

L% estimates on t |u|? in €2,.

5. Proof of Theorem(2

As we mentioned, the proof relies on the Pohozaev identity (2.7) orlasinl[BMR],
combined with Lemmpg_3] 2.

5.1. Interior case

CaseY ", d? > (Y, d;)?. We denote byB the ball centered af of radiusR. Let us
apply Lemma 22 with = [ andR < K1/2 so thatBag \ B;/ intersects ndB;. Setting

f() =[50 —u?)?/¢% and combining?) an.8), we find

2 R 2 2\2
1-—
/ / f(S)dsff ( ( Ibél)> /
Bgr\B l S Br\B; 2e BRr\B

R? 5 R
t7 [ fel +1|Og7||fs||L2(B,)||VM||L2(B,),
Br\B;

ou 2

at

ou

u
ar

ar
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hence

ou

2 2\2
A - |ul?)

2e2

[0
) s Br\ By

R2 R
+ 5 IfelZ2q, + Cllog —/llogell fell 2a,- (5.1)

But, in B \ B;, we have

2
< |Vul? = |Vp|? + p2|V6 + V|2

5
We claim that

1
/ |ve|2—CRzlogZ—||fs||§z—cs/ P21V + V|2
Bg\B R Br\B

1
5/ V62 + CRZlog? =1 el +C. (5.2)
Br\B R

Assuming this holds, let us insert this relation ifto [5.1), and[use](1.16). We are led to

R
f(s) R 1
/l ds < | y V01*+Cllog +/l0gelll fel L2 + C R?10g® 21l fell72(g) +C-
R\D|

S
(5.3)
Now observe that for all > |,

_ 22 k
foz [ B2 0y iz - o
B € i=1

in view of (2.31). Thus, using the relation< x2 + 1 and [3.15), and inserting this into
(5-3), we obtain

k k
R 2 R 1
(27'[ Zldlz — 0(1)) log 7 < 27'[(2 1di> log 7 +C+ CR? |og2 E”fe”%z(g)
1= i=

R
+ Cllog 7\/||Ogg|||f8“L2(Q)'

But we assumeﬂzi.‘:1 di)? < Zle d?, and because these involve integers, the differ-
ence is at least 1. We deduce

R 1 R
log — — € = CR?log® — I fe |72 + Cll0g —/I0gell fell 2y (5.4)

where again the constants depend only8oM, 2, andg.
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We then distinguish two cases. Either the first term on the right-hand side is less than
the second, in which case we deduce

R R
|097 —C < Cllog 7V llogelll fell L2(q)

and takingR = Kol /2 with Kg large enough K thus depends only o, M,  andg),
we find

1felZ20q) = (5.5)

2|loge|
In the other caseCR?log? £ f:112, > 1log & /llogell .|l ;2(c)- Taking againRk =
Kol/2, we find

C C

I el = = . (5.6)
HEO T R2log? ¢ KGIPlog® £

The theorem is thus proved in this case.

Proof of (5.2). As in the proof of Theorerp|1, we can extettdinside B; in such a way
that

1
/ |vw|zsc/ V92 < CR?log? = | ful12, + C
Br Br\By R

(from Theorenﬂl). Then, using the fact thag 2% = [,, 3% =0, we get

R OV

/ p2|ve+vw|2=/ p2|ve|2+p2|w|2+2/ Vo vy
Br\B; BR\B; Br\B;

+2/ (p°> — 1)VO - Vyr
BRr\B;

=/ p2|ve|2+p2|w|2+2/ (b2~ 1)V6 - Vy
Br\B; Br\B;

00 00
+2/ —(Iﬂ—l/fR)—Z/ 9w~
3BR8V BBIBV

wherey i andy; are the averages ¢f on 9 Bz andd B; respectively. On the other hand,
by the trace theorem and Theorgn 1,

1
/aB ¥ = il < CUVW 2 < C2I0G T 11 fell2 + 0(),
A

while [VO| < C/1 ond By, thus

a0
/ B—(IP — V)
B, OV

and the same holds @Br. Arguing as in Lemmp 4]4, we also have

1
=Cl |097||fs||L2 +C

2 2 1 2 2 1 2
(P =D(IVO|°+2V0 - V) < CRIog — | fell 2+ C < CRlog” — || fell72+C.
Bg\B R R

Using [I.15%) again, we deduce that (5.2) holds.
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Case(Y_f_; d:)? Y_¢_; d?. We start again fron{ (2]7) anfi (2.8) and are led to

2 2,2 R 2 2
1— R
/ < +( |b;|)>§/ f(S)ds+/
Br\B; 2e 1S Br\Bi

+— | f?
R
+ Cllog 7~/|Ioge|||fs||Lz(Bl). (5.7)

4 JBa\B
First, using[(3.16) and Theorgm 1, we have

oo

On the other hand, from (3.2), we have

ou
ot

ou

or

|’ 9 0 2<c CR2Iog? S| £.2 5.8

1
f |W|Zz/ IV6[2 - CR?log? = | .12, — C.
Br\B; Br\B R

But if we combine this with[(5]8), we must have

/BR\BI

Combining this with[(3.15) and inserting it arid (.8) irffto {5.7), we are led to

du |?

ot

1
zf V612 — CR?log? || f2I12, — C.
Br\B R

k 2 R R (S) 1
2e(3d) t0g N < [T LDy ¢k CRZ0G T g
i=1

I N
R

Meanwhile for alls < R,

B (1— |ul?)? (1— |ul?)?
f(S)_/U" B & +/Bs\uf-‘_13i e?

i=1"2i
k

1
<2r Zdl.z + o(R2 log? i||f€||iz> +o(1) (5.10)
i=1

where we have usefl (2131) and (].16). After integrating, this yields
ko2 R r L .
' — 2 21002 = 2 R
2 (Y i) oo} = (2 D +oRog LI +oh) log

1 R
+C + CR?log? — 11 fel22g, + Cllog - Vll0gel | fell 2.

and hence

k 2 k 1 c
2 2 2 2
2”(;di) —Zﬂ;di < CRog? Z 15z + CIYIOGEIl ol ooy + o o + oD



216 Sylvia Serfaty

Since the left-hand side is at least equal 1o, #ve find, if R = Kol/2 with Kq large
enough, that

1
C = CR?log® | fell 2 + Cly/llogelll el 2.

Distinguishing two cases as previously, we may conclude that

C C
A zmin< . 21).
I#llogel I2log® 7

5.2. Boundary case

The proof is roughly the same. AssumiRg< 1/2, we may us€g (2.20) dr (Z.3) to get in

any case
R 1— 2,2
f fs) < C/ <|Vu|2+( |;4| ) )
l S (BR\B)N €

+CRA+ /logelll fell L2(q))- (5.11)

Arguing as in the interior case and usifg (3.17), we get

(1— |ul?)? 1
[ <|Vu|2+—2 < C+CR?log? 11 /e 12,
(Br\B)N2 € R

and also

R
S (s) 2 R R
/l " z<2n2i:d,- —o(l))logTEnlogT
Inserting this into[(5.7]11), we find

R 1
7log - = C+ CR?log® ZI|felI7. + Ry/llogell fell 2

and arguing as above, we deduce, takihg: Kol /2 with Kg large enough, that

. C C
Ifell?, > mm( )

R2|logel|’ Rzlogz%

from which the result follows.
Applying Theorenj R in the casg = 0, i.e. for a solution of Ginzburg—Landau, we
obtain Corollary 11

AcknowledgmentsWe wish to thank warmly Petru Mironescu and Etienne Sandier for helpful
discussions.
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