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Abstract. Letg > 1be anon-integer. We consider expansions of the fpifti, d; /B, where the

digits (d;);>1 are generated by means of a Borel nigpdefined on0, 1}N x [0, |B]/(B—D]. We
show existence and uniqueness af g-invariant probability measure, absolutely continuous with

respect ton, ® A, wherem,, is the Bernoulli measure o), 1N with parametep (0 < p < 1)

andx is the normalized Lebesgue measure an /(8 — 1)]. Furthermore, this measure is of the
formmp ® ug p, Whereug ,, is equivalent tor. We prove that the measure of maximal entropy
andmp, ® A are mutually singular. In case the number 1 has a finite greedy expansion with positive
coefficients, the measure, ® 11g, , is Markov. In the last section we answer a question concerning
the number of universal expansions, a notion introduced in [EK].

Keywords. Greedy expansions, lazy expansions, absolutely continuous invariant measures, mea-
sures of maximal entropy, Markov chains, universal expansions

1. Introduction

Let 8 > 1 be a non-integer, and denote hy| the integer part of8. In this paper we
consider expansions of numberén Jg := [0, |8]/(B8 — 1)] of the form

00
ai

=P

witha; € {0,1, ..., |B8]},i € N. We shall refer to expansions of this form gs)expan-
sionsor expansions in basg. The largest expansion in lexicographical order of a number
x € Jg is thegreedy expansioaf x ([P], [R1], [R2]), and the smallest is tHazy expan-
sionof x ([JS], [EJK], [DK1]). The greedy expansion is obtained by iteratinggtesdy
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transformationTy : Jg — Jg, defined by

Tg(x) =px —d forx e C(d),

where ——
CU)z[éz%%J, jelo.... 1] — 1.
and 8] L
C = —, —|.
(181 [ﬂ ﬂ_J

The greedy expansion afe Jg is given byx = > "2, d; (x)/B!, whered; (x) = d if and
only if Té‘l(x) € C(d). Lett : Jg — Jg be given by

18l
Z(x)——ﬂ_l X

Then thelazy transformationLg : Jg — Jg is defined by

Lg(x) =px—d forx e A(d) =4(C(lB]l —d)),de{0,..., LB1}-

The lazy expansion of € Jg is given byx = > 72, di(x)/B, whered; (x) = d if and
only if L:1(x) € A(d).

We denote by.g the extendedp-invariantParry measurésee[[P], [G]) on/g which
is absolutely continuous with respect to Lebesgue measure, and with density

— i
hp(x) = F(B) =
0, 1<x=<|Bl/(B-D,

where F(8) is the normalizing constant. Define thezy measurepg on Jg by setting
Pg = Hp o ¢~1 It is easy to see ([DK1]) that is a continuous isomorphism between
(Jg, g, Tg) and(Jg, pg, Lg).

In order to produce other expansions in a dynamical way, a new transfornigion
was introduced in [DK2]. The expansions generated by iterating this map are random
mixtures of greedy and lazy expansions. This is done by superimposing the greedy map
and the corresponding lazy map dp. In this way one obtaingg] intervals on which
the greedy map and the lazy map differ. These intervals are given by

koop k-1
S: —, ) k:].,..., N
¢ [ﬂﬂw—b+ ﬂ} P

which one refers to aswitch regionsOn S, the greedy map assigns the digitvhile the

lazy map assigns the didit- 1. Outside these switch regions both maps are identical, and
hence they assign the same digits. Now define other expansions ii bggandomizing

the choice of the map used in the switch regions. So, wheneb&longs to a switch

ﬁl[O,Té’(l))(x): 0<x<1
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region, flip a coin to decide which map will be appliedicand hence which digit will be
assigned. To be more precise, partition the intefyahto switch regionss; andequality
regionskEy, where

18] k—1 k—i—l)
E, = , , k=1,..., -1,
¢ <ﬂ(ﬂ—1)+ IR 4]

1 Bl 1BI-1 (B]
Eqg=1|0, — d E = s .
° [ /3) and =) (ﬂ(ﬁ—l)+ 5 ﬂ—l]

Let
L8] L8]
S:USk and E:UEk,
k=1 k=0

and consideg2 = {0, 1} with producto-algebrad. Leto : © — € be the left shift,
and defineKg : Q x Jg — Q x Jg by

(w, Bx — k), x€eE, k=0,1,...,|8],
Kg(w,x) =1 (0(w), Bx — k), xeStandwr =1, k=1,..., 8],
(o(w),Bx —k+1), xeSandw1=0,k=1,...,[B].

The elements of2 represent the coin tosses (‘heads’1 and ‘tails’= 0) used every
time the orbit{Kg(w,x) :n>0}hitsQ x S. Let

k ifxeEg, k=0,1,..., 8],
di1 =di(w, x) = or(w,x) e{w1 =1} x S, k=1,..., 81,
k—1 if(w,x) €e{w1=0} xS, k=1,...,|8].

Then
) (0w, Bx —dy) if xekE,
Kp(w,x) = {(o(a)),ﬂx —dy) if xes.

Setd, = dy(w,x) = dl(Kg‘l(w,x)), and letry : Q x Jg — Jg be the canonical
projection onto the second coordinate. Then

ﬂz(Kg(a), x)) =pB"x — ﬁ"‘ldl — oo — Bdy_1—dp,
and rewriting yields
dr - d, N m2(K(w, x))
X = — PPN _ - =
p B" B

This shows that for alb € © and for allx € Jg one has

i i
i=1 i=1 ’8

The random procedure just described shows that to @ael®2 corresponds an algorithm
that produces an expansion in bgse~urthermore, if we identify the poir, x) with
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(w, (di(w, x), d2(w, x), .. .)), then the action oK 4 on the second coordinate corresponds
to the left shift.

Let <jex and <jex denote the lexicographical ordering on béthand{o, ..., [8]}Y.
We recall from [DdV] the following basic properties of randgyexpansions.

Theorem 1. Suppose, o’ € Q are such thatv <jex @’. Then
(dl(a)v .x), dz(ws x)v . ) §|EX (dl(w/v .x), dZ(CU/s x)v .. )

Theorem 2. Letx € Jg and letx = > {2, a; /B witha; € {0,1, ..., B8]} be an expan-
sion ofx in baseB. Then there exists an € Q such thats; = d;(w, x) forall i > 1.

In [DdV] it is shown that there exists a uniqgue measure of maximal entrgyr the

map Kg. It is the main goal of this paper to investigate the relationship between this
measure and the measung ® A, wherea is the normalized Lebesgue measureJjgn
andm,, is the Bernoulli measure ol with parametep (0 < p < 1):

mp({wr = i1, ..., 04 = in}) = poi=ti(L— p)""Li=tl iy ... i, €{0,1}.

In this paper, the parametpre (0, 1) is fixed but arbitrary, unless stated otherwise.
In order to prove that the measungsandm, ® A are mutually singular, we introduce
in the next section anothetg-invariant probability measure. It is a product measure
mp, ® ug,p and we show in Section 3 thalg is ergodic with respect to it. Furthermore,
the measures, ® A andm, ® ug, , are shown to be equivalent. These facts enable us
to conclude that the measurgsandm, ® A are mutually singular. Moreover, it follows
thatm, ® ug, , is the unique absolutely continuokg-invariant probability measure with
respect ton, @ A. The measurgg , satisfies the important relationship

ppp=p-wppoTyt+@L—p)-pugpoly’.

In Section 4 we show that if 1 has a finite greedy expansion with positive coefficients,
then the measune, ® ug, , is Markov, and we determine the measprge,, explicitly. In
Section 5 we discuss some open problems. As an application of some of the results in this
paper, we also show that fara.e.x € Jg, there exist 20 so-called universal expansions

of x in bases.

2. The skew product transformation Rg

Define theskew productransformationRg onQ x Jg as follows:

| (o), Tgx) if w1 =1,
Rp(w, x) = { (0(w), Lgx) if o1 =0.

On the sef2 x Jg, we consider the-algebrad ® B, whereA is the product -algebra on
Q andB is the Borelo-algebra onJg. Let i be an arbitrary probability measure dp.

The following result shows that a product measure of the far® 1 is Kg-invariant if
and only if it is Rg-invariant.
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Lemmal. m,® poKyt=m,®uoRy" =m,®v, where

v=p-poTy '+ (A—p)-poly".

Proof. Denote byC an arbitrary cylinder irf2 and let [z, b] be an interval in/g. It suffices
to verify that the measures coincide on sets of the f6rm [a, b], because the collection
of these sets forms a generatimgsystem. Furthermore, let [C] = {w1 = i} N o ~(C)
fori =0, 1. Note thatt N T, [a, b] = E N L5 [a, b], and that

Kﬁ_l(C x [a,b]) = C x (EN Tﬁ_l[a, B UIO, C] x (SN L,gl[a, b))
U[L. C] x (SN T a. b)).

Hence,

mp ® po KyH(C x[a.b]) = p-mp(C) - u(Ty a. b])

+ 1= p)-my(C) - u(Ly'a, b])
=mp, ® v(C x [a, b]).

On the other hand,
RZMC x [a,b]) = [0, C] x Ly*[a, b] U[1, C] x Ty *a. b,
and the result follows. O

Let® = D(Jg, B, 1) denote the space of probability density functions/gnvith respect
to . A measurable transformatidh : Jz — Jj is callednonsingularif A(T~1B) = 0
whenevei.(B) = 0.

If 1 is absolutely continuous with respectxawvith probability densityf = du/dx
and if T is a nonsingular transformation, theno 71 is absolutely continuous with
respect to. with probability densityPr f (say). Equivalently, the Frobenius—Perron op-
eratorPr : ® — D is defined as a linear operator such that foe ©, Prf is the
function for which

/Pm‘d)»:/ fdxr forall B eB.
B T-B

Existence and uniqueness-4.e.) follow from the Radon—Nikdan theorem. A nonsin-
gular transformatioT” : Jg — Jj is said to be d asota—Yorke type mafh-Y map) if
T is piecewise monotone ar@. Piecewise monotone ar@? means that there exists a
partition? = {[a;—1,a;] : i = 1, ..., k} such that for each= 1, ..., k, the restriction
of T to (a;_1, a;) is monotone and extends toC® map on f;_1, a;]. For such a trans-
formation the Frobenius—Perron operator can be computed explicitly (sée [BG, p. 86]) by
the formula

f )

"I

Prf)= Y

T(y)=x

1)
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If, in addition, |7'(x)| > o« > 1 for eachx € (a;_1,a;),i = 1, ..., k, then we say that

T is apiecewise expanding L-Y malpet T4, ..., T, be L-Y maps on/g with common
partition of joint monotonicityP? = {[a;—1,a;] : i = 1,...,k}. For f € D, define

Pf =374 pi-Pr,f,where(ps, ..., p,)is aprobability vector. We recall the following
important theorem, due to Peliken [Pel]. For more results concerning invariant densities
of L-Y maps seel[LY],[LiY], [Pel].

Theorem 3. Suppose that for alt € Jg\ {ao, ..., ax}, > j_1 pi/IT/(x)] <y < 1. Then

forall f € ®, the limit
n—1

1 ;
lim =3 P/f =g
n—-oon 4
j=0
exists inL1(Jg, A). Furthermore,Pf* = f* and one can choosg¢* to be of bounded
variation.

SinceTg andLg are both piecewise expanding L-Y maps, it follows at once from Theo-
rem[3 that for allf € D, the limit

1 n—1 )
lim =>"Pif =g
j=0

n—>o0o n

exists inL1(Jg, A), where

szp'PTﬁf‘l'(l_P)'PLﬁf

Define for f € © the probability measurg; by

1r(B) =/ fdr  [BeB].
B
Observe thaP f = f if and only if
pr=p-psolyt+@L—p)-pusolyt

i.e., ifand only ifm, ® uy is Rg-invariant (cf. Lemma[t).
Let 1 denote the constant function equal to Lirand consider the functiati’, given
by
1 n—1 .
«_ s L i1
¥ = lim - ,Z—:o P/1 in Li(Jg, A).

We shall assume that the functitthis of bounded variation. Note that this is possible
by Theorenj B. It follows easily from the definition of bounded variation that the left- and
right-hand limits of1* at every pointc € Jg exist and that the functioh® is continuous
except maybe at countably many points. Now we modify the functioim such a way
that it becomes lower semicontinuous. Repl&t) at every discontinuity point in the
interior of Jg by setting

1*(x) = min{1*(x "), I*(x ")}
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and replacd*(x) by its left- or right-hand limit ifx is an endpoint of/z. In the remainder

of this section we work with this modified version &f which we denote again by*.

In the next theorem, we show that this function is bounded below by a positive constant
d > 0, everywhere oilg.

Theorem 4. The skew product transformatiaty is ergodic with respect to the measure
mp, ® u1+. Furthermore, the measures, ® .1+ andm, ® 1 are equivalent and the density
1* is bounded below by a positive constaneverywhere oug.

Proof. Since P1* = 1*, it follows from Lemm4 ] that the measune, ® 1+ is Rg-
invariant. It is well known that the greedy transformatifnis ergodic with respect to its
unique absolutely continuous invariant measure, which is the Parry meas(gsee Sec-

tion 1). Similarly, the lazy transformation is ergodic with respect to its unique absolutely
continuous invariant measure. This implies [Pel, Corollary 7] that the skew product trans-
formation Ry is ergodic with respect ton, ® u1+. Since the random Frobenius—Perron
operatorP is integral preserving with respecttgwe have

/ I*dr = 1.
Jp

In particular, there exists a poimg in the interior ofJg for which 1*(xg) > 0. By lower
semicontinuity ofL*, there exist an open intervat, b)) C Jg and a constant > 0 such
that1*(x) > ¢ for eachx € (a, b). Rewriting (1) one gets, for-a.e.x,

1 1
Pr /() = ¢ > fo, Py f) =5 DA (2)

Tgy=x Lgy=x
(see also [P, Theorem 1]), and thus
1-—
o =23 ro+—L Y 1.
P Tpy=x p Lpy=x
Hence, forr-a.e.x € Tg(a, b), we have

) > 26

B
By induction, for eacln and fori-a.e.x € Tg (a, b), we have
pc
B

It is easy to verify that there exist a numlder 0 and a positive integer such that

1*(x) >

Té’(a, b) D z,z+9),
wherez is a discontinuity point ofz. Hence,

T;;“(a, b) O [0, B9).
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Moreover, there exists a positive integeisuch that
L% ([0, B3)) = Jp.
Using the same argument as before, we conclude thatfoe.x € Jg,

Pt - p)ne

T*(x) > d = primil

Hence, the functiod* is larger than or equal t@ at every continuity point o1*. Due to
our modification ofl* at discontinuity points, the functioti* is everywhere larger than
or equal tad. The equivalence ofi, ® i1+ andm, @ A is an immediate consequencen

Since any invariant probability measure absolutely continuous with respect to an ergodic
invariant probability measure coincides with this measure, we deduce from Thddrems 3

and4 that for allf € @,

1]1—1 .
1 ip_ e
nILmoonZOPf ¥ in Li(Jg, A).
Jj=

Remarks 1.

(i) From now on we writeug , instead ofi.1+, since the measure depends on bgth
andp. It is the unique probability measure, absolutely continuous with respéct to
satisfying the relationship

Mﬂ,p=P‘Mf3,pOTﬁ_l+(1_p)'Mﬂ,pOLgl' (3)

(i) Recallthat : Jg — Jg givenbyf(x) = [B]/(B —1) — x satisfiesTg o £ = £ o Lg.

It follows from the previous remark thats , o £~ = 151_,. In particular, we see
that the invariant density* is symmetric orn/g if p = 1/2.

(iii) Let T1,..., T, be piecewise expanding L-Y maps dp and let(py, ..., p,) be a
probability vector. Recently it has been shown by BoyarskiraGand Islam (see
[BGI)) that functionsf € D satisfyingf = Pf = Y!_; pi - Pr; f are bounded
below by a positive constant on their supporta.e.). Hence, the fact that is
bounded below by a positive constant #snican also be deduced from their result
combined with the equivalence af, ® » andm, ® ug p.

(iv) Itis well known that the Parry measuge; is the unique probability measure, abso-
lutely continuous with respect ta. and satisfying equatiof8) with p = 1. Note
however thaj.g andi arenotequivalent on/g. Similarly, the lazy measures and

A are not equivalent. For this reason, we restrict ourselves to values of the parameter

p in the open interva(0, 1).

3. Main Theorem

It is the object of this section to show that the measyref maximal entropy for the map
Kg and the measure, ® A are mutually singular.
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Let D = {0,1,..., |81} be equipped with the produst-algebraD and lets’ be
the left shift onD. Define the functiorp : Q@ x Jg3 — D by

¢(w, x) = (di(w, x), d2(w, x), . ..).

Clearly,¢ is measurable ango Kg = ¢’ o ¢. Furthermore, Theore[ﬂ 2 implies thais
surjective. Let

Z={(w,x) e QxJg: Kg(a), x) € Q x § for infinitely manyn > 0},

m . .
D = {(al, as,..)€D: Z a’Zi_l e S for infinitely many j > 1}.
i=1

Observe thaKﬁ‘l(Z) = Z, (¢))"X(D’) = D’ and that the restrictiop’ : Z — D’ of

¢ to Z is a bimeasurable bijection. L&tdenote the uniform product measure Bn\We
recall from [DdV] that the measung defined ond ® B by vg(A) = P(¢(Z N A)) is the
uniguek g-invariant measure of maximal entropy ldgr- | 8]). It was also shown that the
projection ofvg on the second coordinate is an infinite convolution of Bernoulli measures
(see [E1], [E2]). More precisely, consider the purely discrete probability mea@uyes
defined on/g and determined by

Sk~ = fork=0,1,..., Al

1
1Bl +1
Let 84 be the corresponding infinite Bernoulli convolution, i.e.,

Slg: lim 81 % - %3y,
n—0oo
TheI"IVﬁ o 7'[2_1 = dg.
Forw € Q, letw be given by
w=(ow1,w2,..)=1—w1,1—w,...).

Concerning the projection; : Q x Jg —  of the measureg on the first coordinate,
we have the following lemma.

Lemma 2. Forn > 1andiy, ..., i, € {0, 1}, we have
vg oy M{w1 = i1, ..., wp = in}) = vg oy *({@1 = i1, ..., By = in)).
Proof. Define the map : D — D by
r(ay, az,...) = (Bl —ay, 1Bl —a2,...).
It follows easily by induction that for > 1 and(w, x) € Q x Jg,
di(w, x) = [B] — di(@, £(x)).

Hence,
p(w,x) =71 o, £(x)).
Since the map is clearly invariant with respect t, the assertion follows. O
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In particular, it follows from LemmE|2 thatg o nl’l({w,- =1} = 1/2foralli > 1.
However, in general, the measurg o nl‘l is not the uniform Bernoulli measure on

{0, 1}, For instance, using the techniques in [DdV, Section 4], one easily shows that if
the greedy expansion of 1 in bagesatisfies 1= 1/8 + 1/83, thenvg o nfl provides a
counterexample. In the case that 1 has a finite greedy expansion with positive coefficients,
it has been shown in [DdV, Theorem 8] that o nl_l is the uniform Bernoulli measure.

The next lemma shows that ti#&;-invariant measuresg andm,, ® g, , are different.

Lemma3. vg #m, Q@ ug,p-

Proof. According to Theorer|4, there exists a constast 0 such thatl*(x) > ¢ for all
x € Jg. Choosen € N such that 18 + 1/8" € S1. Now, suppose the converse is true,
i.e., that the measureg andm, ® ug,, coincide. In particularyg is a product measure
and(Sﬁ = UB,p-

On the one hand, we infer from Lemia 2 that

v<{w—1}xJ'Qx[EE+i>>—}
A P BB p)) 2

On the other hand, since the digits);>1 form a uniform Bernoulli process undeg,

v ({a) =1} x J, 'Qx[E E—i—i))—u <{d —1}‘QX|:E E+i>>
B 1= B ﬁ’ﬂ ,Bn = VB 1= ﬂ’ﬂ IB”

_vpUdi=1d2=0,...,dy =0, 3721 dnsi/B" € [0, D))
we.p(1/B,1/B +1/8")

1 B n
= Z(L/ﬂ +1) %00, 1)-

Passing to the limit, we get a contradiction. O

Define the magF : Q x Jg — D by
F(w, x) = (di(w, x), d1(Rg(w, x)), dl(R/%(a), X)), ...).

We haved 2, dl(Rg_l(w, x))/B! = x forall (w, x) € Q x Jg. Moreover, the mag is
surjective and’ o F = F o Rg. HenceF is a factor map and’ is ergodic with respect

to the measurg = m, ® ug , o F~1. Note, however, thaF is not injective, even if

we restrict it to the set for whicl®g hits @ x § infinitely many times; this is due to the
fact that in equality regions only one digit can be assigned. It follows from Theoyem 4
and Birkhoff’s ergodic theorem that is concentrated o®’. Therefore, the measuyg
defined ond ® B by p'(A) = p(¢(A N Z)) is a Kg-invariant probability measure and

K g is ergodic with respect tp'.

Lemmad. p' =m, ® ug,p.
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Proof. Let
Apo={w1 =0} x 81, Ag)1={w1 =1} x Sp),
Ag2 = Q2 x Ep, Agle =Q x Eg,
and
Ajo = {w1 = 0} x Sj41,
Ajp = {w1 =1} x §;,
Ajz = QX Ej,
forl<i < |B] — 1. Note thatforall0O< i < 8], ¢~ 1({d1 = i}) is the union of the sets
Ajj. Itis enough to show that’ = m, ® ug,, on sets of the form
o {di=1i1.....dy =in)), i1.....0n €{0,.... [B]}.

Now,
e M dr=ir ... dy=ia) = | Anp -0 Kz"A
J1seees Jn
where the union is taken over gll, .. ., j, forwhichthe sets\;, ;,, ..., A;,;, are defined.
Hence, it is enough to show that

P (Aigjy N MK AL ) = mp ® pp p(Aigjy 0o N KG" A ).

Itis easy to see that;,; N--- N K;"“Ainh is a product set. Denote its projection on
the second coordinate By, , ., ;,- Define

U=1{0,0, (B DIULG )H:1=i=<[B]-1)<{01}

and
{el""aEL}Z{K (167.][) GM} - {17'--5’1}7 El < - <£L'
Then
AjjjpN---nN K,g_"+lAinjn ={w1=Jju, - oL = ji } X Vigjyinju- 4)
Note that for allv € Vi, j, i,
Flog(lwr = jey. ... oL = jo,} x (x}) = {we, = jog. ... 00, = je, } x {x}.
Therefore,

Flop(Ayjn---n KEHlAi,,jn) ={we, = jeys - 00, = Jer} X Vigjainju- (9)
The assertion follows immediately frofn] (4) and (5). |

From Theoren |4, Lemma4g 3 ahl 4, and the ergodiciti pfwith respect tqo’ andpg,
we arrive at the following theorem.

Theorem 5. The measuresg andm, ® A are mutually singular.

Remark 2. If 8 € (1, 2) is a Pisot number, the mutual singularity\gf andm, ® A is a
simple consequence of the fact that in this csandi are mutually singular (seg [E1],
[E2]).
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4. Finite greedy expansion ofl with positive coefficients, and the Markov property
of the random S-expansion

In this section we assume that the greedy expansion of 1 inpaatisfies 1= b1/8 +
bo/B2 + -+ b,/B" Withb; > 1fori =1,...,nandn > 2 (note that ]| = by). It
has been shown in [DdV] that in this case the dynamic& pfcan be identified with a
subshift of finite type with an irreducible adjacency matrix.

We exhibit the measure, ® g, , obtained in the previous section explicitly. More-
over, it turns out thaK g is exact with respect te, ® g ,. The mutual singularity of
vg andm, ® 1, i.e., Theorem 5, will be derived by elementary means, independent of the
results established in the previous sections.

The analysis of the cag#? = b1 + 1 needs some adjustments. For this reason, we
assume here tha? # b1 + 1, and refer the reader to [DdV, Remarks 6(2)] for the
appropriate modifications needed for the ca8e= b1 + 1. We first briefly recall some
results obtained in [DdV].

We begin with a proposition which plays a crucial role in finding the Markov partition
describing the dynamics dfg.

Proposition 1. Supposd. has a finite greedy expansion of the fotra: b1/8 + b/ B% +
-+ b,/B". Ifb; > 1forl < j <n,then

() Tjl=LyleEp,, O<i<n-2

B
, _ _ b
(i) 14 1= Ly 1= F” €Sy, Tyl=0, and Ljl=1
( b1 S b1 .
(|||) Té(m —1) :L%<m —1) S Ebl—bH—l’ Ofl Sn—2
. _ by _1f b1 b1 b1 — by
(iv) T4 1( — 1> =LY ( — 1) = + € Shi—by+1,
A A1 #o\p-1 FE-D B o
T? 1 —— -1, and L” 1 -1
P\ -1 g—1 P\ B -1 g—1

To find the Markov chain behind the mdy, one starts by refining the partition
5 = {E07 Sl7 El’ AR Sbl’ Ebl}

of [0, b1/(B — 1)], using the orbits of 1 andl; /(B — 1) — 1 under the transformatiof.
We place the endpoints &f together withT41, T;(b1/(8 — 1) — 1),i = 0,...,n — 2,
in increasing order. We use these points to form a new partitiaich is a refinement
of £, consisting of intervals. We writé as

C={Co,C1,...,CL}.

We choosé to satisfy the following. For < i <n — 2,

e T41le C;ifand only if 741 is a left endpoint of’;,
o Tlg'(bl/(ﬁ —1)—1) e Cj ifand only if Tﬁf(bl/(ﬂ —1) — 1) is aright endpoint of’;.
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Note that this choice is possible, because the pdfpﬁs Té (b1/(B—1) — 1) for0 <
i < n — 2 are all different. From the dynamics &f on this refinement, one reads the
following properties of’.

pl. Co=[0,b1/(B — 1) — 1] andCy = [1, b1/(B — D].

p2. Fori = 0,1,..., b1, E; can be written as a finite disjoint union of the forflp =
UjeM[_ C;j with Mg, My, ..., M,, disjoint subsets of0, 1, ..., L}. Further, the num-
ber of elements if; equals the number of elementsi),, ;.

p3. For eachs; there is exactlyong € {0, 1, ..., L} \ Uiio M. such thatS; = C;.

p4. It C; C E;, thenTg(C;) = Lg(C;) is a finite disjoint union of elements df, say
Tg(Cj) = CiyU---UC;,. Sincet(Cj) = Cp—j C Ep,—, itfollows thatTg(Cr— ;) =
Cr—iyU---UCpr—j.

p5. If C; = S;, thenTg(Cj) = CoandLg(Cj) = Cr.

To define the underlying subshift of finite type associated with the fapwve con-
sider the(L 4+ 1) x (L 4+ 1) matrix A = (g;, ;) with entries in{0, 1} defined by
if i e Iy My anda(Cj N T(Ch)) = A(C)),
if i € ULy M andC; NT;7C; = 0,
if i €{0,...,L}\UyMrandj =0, L,
if i €{0,...,L}\ Uy My andj £0, L.

aj =

O r O Bk

Let Y denote the topological Markov chain (or the subshift of finite type) determined
by the matrixA. Thatis,¥ = {y = (») € {0,1,....L}N : ay, ,,,, = 1}. We let
oy be the left shift onY. For ease of notation, we denote by ..., s;, the stateg <
{O,..., L}\ Uflzo M. corresponding to the switch regioSs, . . ., Sp, respectively.

To eachy € Y, we associate a sequen@e) € {0,1,...,51}" and a pointx €
[0, b1/(B — 1)] as follows. Let

i if yi e M;,
ej = i if yi =i andyj+1 =0, (6)
i—1 if yy=s;andyj1=1L.
Now set
00 ¢j
j=1

Our aimisto defineamap : ¥ — Q x [0, b1/(8 — 1)] that intertwines the actions of

Kg andoy. Giveny e Y, equations[(6) and'[7) describe what the second coordinate of
¥ should be. In order to be able to associatevan 2, one needs that; € {s1, ..., sp,}
infinitely often. For this reason it is not possible to definen all of Y, but only on an
invariant subset. To be more precise, let

Y ={y=(1y2...) €Yy €{s1,...,sp} forinfinitely manyi’s}.
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Definey : Y — Q x [0,b1/(B — 1)] as follows. Lety = (y1,y2,...) € Y/,
and definex as in 7). To define a poinb € Q corresponding t, we first locate the
indicesn; = n;(y) where the realizatiory of the Markov chain is in state. for some
r € {1,...,b1}. Thatis, letny < na < --- be the indices such tha;, = s, for some
r=1,..., by Define

Wi = {1 |f ynj+1:O,
S 0 |f yn‘/-_;,_]_ = L
Now setyr (y) = (w, x).

The following two lemmas reflect the fact that the dynamicKgfis essentially the

same as that of the Markov chaln

Lemmab5. Lety € Y’ be such thai/(y) = (w, x). Then:

(i) y1 =k for somek € Ufio M; = x € Cy.
(i) yp=si,y2=0=>x€ S;andw; =1fori =1,...,b1.
(i) yr=s;,y2=L=x¢€ S;jandw; =0fori =1,...,b1.

Lemma 6. For y € Y/, we have
Yooy(y) =Kgoy(y).

We now consider orY the Markov measur@g , with transition matrix?P = (p; ;),
given by

MCNTICH/MCH i i e Ug Mr

p ifi €{0,..., LY\ Uy My andj =0,
Pri=1-p if i €{0,..., L}\ U™y My andj = L,
0 ifief0,...,L}\UltyMyandj #0, L,

and initial distribution the corresponding stationary distribution

Theorem 6. Qg p, o ¥ ~1is a product measure of the form, @ 1.
Proof. Define the measure on [0, b1/(8 — 1)] by
L
MBNC)) ]
B) = —_ B € B].
1(B) ; w0 [BeBl
Define the Markov partitiofPy of 2 x [0, b1/(8 — 1)] by
b1
Poz{Qij:je UMk}U{{wlzi}ij =01 j=1..., b
k=0

and letP, = PoVv K;1PyVv -+ v K/g”??o. It is straightforward to see that the inverse
images of elements i?,, underys are cylinders inY and that for each elemett € P,,,
my ® W(P) = Qp.p o Yy~ 1(P). It follows thatQp , o ¥t =m, ® p. O
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SinceP is an irreducible transition matrixy is ergodic with respectt@g , andn (i) >0
foralli € {0, ..., L}. Itfollows from LemmeS thaK g is ergodic with respect ta, ® p.
Furthermore, it is immediately seen from the definition thas equivalent to.. Hence,
the measur@g , o 1 is equivalent ton, ® A.

Proposition 2. The mapK is exact with respect ta, ® ug, ,. Moreoveru = ug ,.

Proof. It follows from Lemmg 1 and Remarks 1(i) that= 4, ,. Since the transition
matrix P is also aperiodicgy Is exact with respect t@g ,. It follows from Lemmg §
that Kg is exact with respect ta, ® g, p. ]

It also follows from the above proposition that the dengityassumes the constant value
m(j)/A(C;) ontheintervalC;, j € {0,..., L}.

Example 1. Let 3 = G = 3(1+ +/5) and letg = G — 1 = 1(+/5 - 1). Note that

1 = 1/8 + 1/B2. In this case, we lef = &, since 1 and (8 — 1) — 1 are already
endpoints of intervals ii. Using the techniques in this section it is easily verified that

the dynamical systent2 x Jg, A® B,m, ® uug, ,, Kg) is measurably isomorphic to the
Markov chain with transition matrix, given by

g g 0
0 g% ¢
and stationary distribution determined byr P = 7.

It remains to prove tha@g , o vl andvg are mutually singular. SincEg is ergodic
with respect to both measures, it suffices to show that the measures do not coincide.

Lemma7. vg # Qp po ¢ L,

Proof. We distinguish between the cages= 1/2 andp # 1/2.
Suppose = 1/2. On the one hand, for alle {1, ..., | 8]} we have

i >, d; X dit1
-+ Zes & 222 ¢ Co,
Rt Ly

o0 o

i—1 d,' di—i—l
+ — eS8 & — € CL.
B Zﬂ’ T &

Using the fact that the digit&/;);~1 form a uniform Bernoulli process undeg, a simple
calculation yields

18] 18]
Bl 1 POt T

Sincevg (2 x Co) = vg(R2 x Cp), it follows that

vg (2 x S) _ 28]
vp(Q2x Co) B+ 1

vg(R x §) = V(2 x Cp).
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On the other hand, it follows from P = = that

1 1
7(0) = EJT(O) + E(N(Sl) + - spy)).

Rewriting one gets

mls) + -+ wle) _ Qppo yHR x S) _28-D
7(0) 0p.p o ¥y~ x Co) B

However,
26-1 28]

B 7éLﬁJJrl

for all non-integers, in particular for thed’s under consideration.

Supposep # 1/2. In this case, the assertion follows from the fact that the projection
of vg on the first coordinate is the uniform Bernoulli measure{onL}N [DdV| Theo-
rem 8]. Note that this result is applicable because 1 has a finite greedy expansion with
positive coefficients. O

The mutual singularity ofg andm, ® A follows as before.

5. Open problems and final remarks

1. We have not been able to find an explicit formulaXdr Recall that the Parry density
hg = Pryhg is given by

1 1
=5 2

< T/;‘ (@8]

(see Section 1). We expect that the dengditycan be expressed in a similar way, but
now the random orbits of 1 as well as the random orbits of the complementary point
LB1/(B — 1) — 1 are involved. Let us consider an example.

Example 2.Let p = 1/2 and8 = 3/2. Note that in this casg8]/(8 — 1) — 1 = 1.
Rewriting [2) one gets

13 j 1 1
Pr i =23 f(x ; ’) () + Ef(%) (),
i=0

1 1< j
Pr, f(x) = Ef(%> - 1o, 13(x) + B Zf(x ;—l> <L, 2(x).
i=0

It is easy to verify thall € © satisfiesP1 = 1, hencel* = 1. It follows thatmy/, ® X is
K3 p-invariant.
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2. We have not been able to give an explicit formulaiQr s, , (Kz). However, in the
special case that? = b1 8 + 1, the entropy is already calculated in [DK2]:

b
Iy, (Kp) =109 = =25 (plog p + (1= p)log(L = p).

Since in this case (s;) = i=1,..., by, itfollows that

1
1+82’

himyous , (Kp) =1098 — g p(S)(plog p + (1 = p)log(l — p)).
One might conjecture that this formula holds in general.

3. Fix p € (0,1). Itis a direct consequence of Birkhoff’s ergodic theorem, Thedrem 4
and the ergodicity oK g with respect ton, ® i, , that form, ® r-a.e.(w, x) € Q x Jg,

. 1 n—1 .
lim = E loxs(Kg(w,x)) = pup,p(S) > 0. (8)
i—0

n—oon

In particular, we infer from[(8) that the set
G = {x € Jg : x has a unique expansion in ba%g

has Lebesgue measure zero, sirKc;‘St(w,x) € Q x E forall (w,x) € 2 x G and all
n>0.LetTo = Lg, Ty = Tg, and let

o0
N = U{x €Jg:Tyo--oTy,x e Gforsomeu, ..., u, € {0,1}}).
n=1

Since the greedy map and the lazy map are nonsingulal), = 0. Note that2 x Jg\N C

Z and that forx € Jg \ N, different elements of2 give rise to different expansions of
in baseg. We conclude that fok-a.e.x € Jg, there exist Do expansions of in bases.

For a more elementary proof of this fact in cgse (1, 2), we refer to [S1].

4. Erdbs and Komornik introduced in [EK] the notion of universal expansions. They called
an expansioridy, da, .. .) in basep of somex e Jg universalif for each (finite) block
b1...b, consisting of digits in the s€0, ..., | 8]}, there exists an indek > 1 such
thatdy .. .dgy+n—1 = b1...b,. They proved that there exists a numiggre (1, 2) such

that for eachB € (1, Bo), everyx € (0,1/(8 — 1)) has a universal expansion in base
Subsequently, Sidorov proved in [S2] that for a givere (1, 2) and forir-a.e.x € Jg,
there exists a universal expansionxoin baseg. We now strengthen his result and the
conclusion of the preceding remark by the following theorem.

Theorem 7. For any non-integep > 1, and fori-a.e.x € Jg, there exise™ universal
expansions af in baseg.

In order to prove Theorefr] 7 we need the following lemma.
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Lemma8. Let 8 > 1 be a non-integer and lep € (0,1). Then, forn > 1 and
i1,...,ip €{0,..., 8]}, we have

mp ® ug,p({dr =i1,...,d, =iy}) > 0.
Proof. By Theorenj #, it suffices to show that
my, @A({dyr =1i1,...,dy, =i,}) > 0.

It is easy to verify that there exists a sequenge jo2,...) € D, starting withiy .. .i,,
such that the numbens, ..., x,, given by

o J 1
’++’ r=1,.
i=1 ﬁ
are elements ofg \ 3(S), whered(S) denotes the boundary ¢f Form > 1, consider
the set . .
n-rm - n-m - o0
Ji Ji L8]
zmz[zf, LS _}.
i=1 ﬁl i=1 ﬁl i=n+m+1 ﬂl
Lety € I, and let(as, az, ...) be an expansion of, starting withj1 . .. j,,. Define

X, = .,n,

e8]

Ai+r-1
J’r=Z B r=1...,n.

i=1
Choosen large enough, so that for each= 1, ..., n, x, andy, are elements of the same

equal or switch region, regardless of the values of the digit§ > n + m, and hence
regardless of the chosen element [,,,. Note that this is possible because¢ a(S) for

r =1,...,n. Denote the set of indicese {1, ..., n} forwhichx, € Sby{¢1,...,¢.}.
Then, for suitably chosemy, ..., u; € {0, 1}, we have

{w1=wu1,...,0op =up} x I, Cldr=1i1,...,d, =in}
and the conclusion follows. O

Proof of Theorem|7Fix p € (0, 1) and letb; ... b, be an arbitrary block. Using Birk-
hoff's ergodic theorem, Theorehj 4, Leminia 8 and the ergodiciti pfwvith respect to
mp ® ug,p, We may conclude that forn, ® 1-a.e.(w, x) € Q x Jg, the blockb; ... b,
occurs in

(di(w, x), d2(w, x), ...) 9)
with positive limiting frequencyn, ® ug, ,({d1 = b1, ...,d, = b,}). In particular, for
m, @ r-a.e.(w,x) € Q x Jg, the blockb; ...b, occurs in@). Since there are only
countably many blocks, we deduce thatfioy ® r-a.e.(w, x) € Q x Jg, the expansion
(9 is universal in basg. An application of Fubini’s theorem shows that there exists
a Borel setB C Jg \ N of full Lebesgue measure and there exist setse A with
mp(Ax) = 1 (x € B) such that for alk € B and(w, x) € A, x {x}, the expansior@
is universal in basg. Since the setd, have necessarily the cardinality of the continuum
and since different elements ©f give rise to different expansions efin bases for any
x € Jg \ N, the assertion follows. ]
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5. An expansior(ay, ap, .. .) in baseg of some numbex e Jj is callednormalif each
blockiy ... i, with digits in {0, ..., | 8]} occurs in(a1, az, ...) with limiting frequency
(L8] + 1)~". Note that a normal expansion is in particular universal.

Fix p € (0,1). Sincevg # m, ® ug,p, and since both measureg andm, ® ug, p
are concentrated an, there exists a block . . ., such that

mp ® up,p(ldi =i1,....dp =in}) # (Bl + D"

Hence, form, ® r-a.e.(w, x) € Q x Jg, the expansior@ is universal bunot normal.
On the other hand, Sidorov proved n [S2] that there exists a Bord set(1, 2) of full
Lebesgue measure such that for egch vV and fori-a.e.x € Jg, there exists a normal
expansion ok in baseg.
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