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Abstract. We prove necessary and sufficient conditions for the validity of the classical chain rule

in the Sobolev spaché’Cl(RN; R9) and in the space Vioc(RY: RY) of functions of bounded
variation.
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1. Introduction

The purpose of this paper is to settle a classical problem in the theory of Sobolev spaces,
namely the validity of the chain rule iW,52(2; R) in the vectorial case > 1. Since
the problem is local, in the rest of the paper we assume, without loss of generality, that
Q =RV,

In 1979 Marcus and Mizel[17] proved that given a Borel functipn R — R, the
superposition operator

ut fou

mapszé’cl(]R{N : RY) into Wlé'cl(RN )ifand only if f is Lipschitz continuous (resp. locally
Lipschitz if N = 1). Sincef o u € Wis1(RY) the next step is to find a formula for the
partial derivatives off o u.

In the scalar case, that is, whén= 1, the problem has been completely solved in
W (RY) by Serrin [21] in an unpublished paper (see also [23], [7] and [15]), where he
showed that iff : R — R is a Lipschitz continuous function, then for every function
1 € Wigg (RY),

V(fou)(x) = f'(ux)Vu(x) forLVN-aexeq, (1.1)
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where the right side of (11 1) is always well defined provigéd: (x)) Vu(x) is interpreted
to be zero wheneve¥u(x) = 0, irrespective of whethef’ (u(x)) is defined. The validity
of (1.7)) relies on the fact that by Rademacher’s theorem the set

>/ :={u e R: f'(u) does not exigt
is £1-null and hence, by a result of Serrin and Varbérg [22],
Vux)=0 forlN-aex e u Xz, (1.2)

for everyu e W,%)’Cl(RN ).

The situation is significantly more complicated in the vectorial case, hamely when
f :R? - Ris a Lipschitz continuous function with > 1. In this case, if we fix a basis
{e1, ..., eq} in R (not necessarily orthonormal) then the analo(l.l) becﬁmes

3 4. af du;
o onw = > 5 UV 5 @, (1.3)

i=1 aei

of Wi (+yis i B () —
where 5o (u(x)) ;- (x) is interpreted to be zero Whene\%f (x)=0.

Xj

By Rademacher’s theorem the set
v/ :={u e R? : fis not differentiable at} (1.4)

is £4-null, butthe analog of) is false in generalHence the right hand side .3)

may be nowhere definebhdeed, led = 2, N = 1, and consider the functions (cf. [15])

f ) == maxXuy, up} andu(x) := (x, x) for x € R. Thenv(x) := (f ou)(x) = x so that

v/(x) = 1 while the right hand side df (1.3) is nowhere defined sirice) = (1, 1).
Nevertheless, as shown by Ambrosio and Dal Maso [2], the following weaker form of

the chain rule holds for any Lipschitz continuous functipnR? — RE]

Theorem 1.1. Let f : RY — R be a Lipschitz continuous function. Then for every
functionu € Wli’cl(]RiN; R?) the composite function = f o u belongs toW,é’Cl(RN) and
for £LN-a.e.x € R" the restriction of the functiorf to the affine space

T" = {weR?: w=u(x)+ Vu(x)z for somez € RV}

is differentiable at«(x) and

V(fou)(x) = Vu(flrw) ux)Vu(x). (1.5

1 Here for every € RY we writeu = uieq + - - - + ugeq.
2 Theoren] L1t follows from a more general version for functions of bounded variation. We refer
to [2] for the precise statement.
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An alternative proof of the previous result wheris a “piecewise’C? function has been
given in [19], where using the special structure fofit is possible to give an explicit
formula for the right hand side df (1.5).

Theorem 1.]L leaves us with an important open problem: to establish under which
additional conditions on the functiofithe right side of[(1J5) coincides with the right side
of (1.3), in other words, téind necessary and sufficient conditions pifor the classical
chain rule (I.3) to hold. To be precise, when we say that (1.3) holds for a function
ng’cl(RN : R?), we also mean that the partial derivativg/de; exists atu(x) for LV -a.e.
x in the set wher@u; /dx; does not vanish.

The main purpose of this paper is to thoroughly investigate the relation between the
validity of the chain rule3) and the structure of the singularset(defined in ))
of the Lipschitz continuous functiofi.

It is clear from the definition tha@S) depends on the choice of basR?inTo
illustrate this, we begin by considering the special ease 2. Fix a basige1, e»} in R?
not necessarily orthonormal and lét R2 — R be a Lipschitz continuous function.

It turns out that the classical chain rul.3) holds if and only if the singulaEéet
has a one-dimensional “rectifiable” part only in the directignse,}. Precisely, we prove
the following result:

Theorem 1.2. The classical chain rul) holds in W,é’cl(RN; R?) with respect to the
coordinate systenfes, e»} if and only if for everyH!-rectifiable setE ¢ =/ and for
H1-a.e.u € E either

Tan'(E, u) = sparfer} or Tan'(E,u) = sparies)}. (1.6)

Here Tart(E, u) is the approximate tangent space to thefset the point:. The deeper

part of the result is the necessary condition, whose proof relies on some new differentia-
bility results for Lipschitz functions (see Theorejms|3.1[an{l 3.3 below), inspired by recent
work of Bessis and Clarké|[6]. We recall that &ft-measurable sef ¢ R is called
(countably)H*-rectifiable,0 < k < d, if there exists a sequence of Lipschitz functions

wy, : R¥ > RY such that

Hk(E \ G wn(Rk)) —o.
n=1

The analog of conditior (1].6) is still sufficient wher> 3. Indeed, we show:

Theorem 1.3. Let f : R? — R be a Lipschitz continuous function, and {et, .. ., es}
be a basis inR?. Assume that for every countaldty*-rectifiable setE ¢ =/ and for
Hl-a.e.u € E, there exists = 1, ..., d depending om such that

Tan'(E, u) = spare;}. (1.7)

Then the classical chain ru) holds in Wlé’cl(RN; R¥) with respect to the coordinate
systemes, ..., eq}.
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Condition [1.T) is no longer necessary wher 3 since in this case the chain rule may
hold for Lipschitz functions whose singular sef#4-rectifiable with 1< k < d — 2.
Indeed, we can prove the following result:

Theorem 1.4. Let{ey, ..., es} be an orthonormal basis and lé&t ¢ R4, d > 3, be an
H4—2-rectifiable Borel setThen there exists a Lipschitz continuous functionR¢ — R
such thatx/ ¢ E and H?"2(E \ =/) = 0, and for which the chain rule holds in
W l(RY; RY) for any N € N with respect to the coordinate systéa, . . ., eq).

It is actually possible to construct in such a way that the chain rule holds in
W LR RY) with respect tany finite family of baseis R?.

Note that the cask = d — 2 represents the worst possible situation. Indeed, we can
prove that a necessary (but not sufficient) condition for the validity of the chain rule in
ng;cl(RN; RY) is that for everyH¢~1-rectifiable sett ¢ £/ and forH?l-a.e.u € E,
there exists =1, ...,d — 1 depending om such that

Tarf~Y(E, u) = sparifex, ..., eq} \ {ei}}.

Nevertheless, we show that this condition becomes necessary and sufficient for the valid-
ity of the chain rule in the smaller clagk;_1(R"; R?) of all functionsu e W,é’cl(RN; R?)

such that raniu (x)) is either zero or greater than or equalite- 1 for £LV-a.e.x € RY

(see Theore@.l below). Note thdi(R"; R?) = Wlf;cl(IR{N : R?) so that in particular

we recover Theorein 1.2.

It is important to remark again that all the results presented so far depend on the
particular choice of the coordinate systéem, . .., e;}. We next address the case where
the chain rule holds with respect to every coordinate systerthis case Theorein 1.2
clearly indicates that a necessary condition is that the singular set Ha$-rectifiable
part, that is, it igpurely H1-unrectifiable

Indeed, the second main result of the paper is given by the following theorem:

Theorem 1.5. Let f : R? — R be a Lipschitz continuous function. Then a necessary
and sufficient condition for the chain ru@) to hold in Wlé’cl(RN; R?) with respect to
every coordinate system Rf is that =/ is purelyH!-unrectifiable.

We remark that the sufficiency part of the theorem was already known[(see [15]-[17]),
while the necessity part, which in our opinion is the most interesting, is completely new.
Note that in the two-dimensional case the conclusion of the theorem follows directly
from Theorenj 1.2, whereas in the higher dimensional case the proof is significantly more
involved.

A similar result holds in the classly(RY;R?) of all functionsu in the space
W,é’cl(RN; R?) such that rankVu(x)) is either zero or greater than or equaktéor £V -
a.e.x € RY. In this case the appropriate necessary and sufficient condition is the pure
H*-unrectifiability of the singular st /. More precisely, we can show the following:
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Theorem 1.6. Let f : RY — R be a Lipschitz continuous function, l&t < k <
min{N, d}. Then a necessary and sufficient condition for the chain (0I&) to hold
in A (RN; R?) with respect to every coordinate system is tlat is purely H*-un-
rectifiable.

The final part of the paper is devoted to the extension of some of the results presented
above to the space of functions of bounded variation. More precisely, we prove neces-
sary and sufficient conditions for the validity of the classical chain rule in the space of
functions of bounded variatioB Vioc(RY ; RY).

Besides the intrinsic interest of these results, we hope that the techniques introduced
in this paper will be useful in the study of transport equations and hyperbolic systems of
conservation laws in several space dimensions, where one is often led to the problem of
justifying some kind of chain rule for functions with low regularity, and for which there
has been a remarkable and renewed interest in the last few years (sek e.g.[[3] and [8]).

2. Preliminaries

In this section we collect some preliminary results which will be used in the sequel. We
start with some notation. He* and+* are, respectively, the-dimensional Lebesgue
measure and the-dimensional Hausdorff measure in Euclidean spaces. We denote by
$4=1 the unit sphere ilR?. Given f : R? — R, for everyu, v € R? the directional
derivative 2L (u) is defined by

8 —
—f(u) = lim ACREL) f(u).
v t—0 t
Given a basigey, ..., ¢4} in R? we denote byuz, ..., us) the components of a given

u € R4, that is,
Uu=uie1+ - --+uqgeq.
The directional derivatives in the directienare also denote@bf—; (u). If all the derivatives
%(M) exist atu € R?, we define the vectov f (u) € RY by
af of )

Of course, the existence &f f (1) does not imply the differentiability of atu when
d>1.
For 1< k < d we shall use the standard notation for ordered multi-indices:

Ik,d) ={a=(a1,...,00) ENF:1<ag < < <d}.

If « € I(k,d) we denote byx € I(d — k, d) the multi-index which complementsin
{1, ...,d} inthe natural increasing order.
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With an abuse of notation we write

U= (g, ug) € RF x RI7*,

whereu, = (Ugy, - - ., Uey) ANAug = (Uay, - - ., Uay ;)-
Given f : R? — R, we define
a a a )
Vaf:=< f f), V&f:=< f f )
Oty Oty dug, Qg

Next we introduce some basic ingredients in geometric measure theory that will be
useful in the rest of the paper. We referlto [4],[14] and [18] for more details.

An H*-measurable sef ¢ R? is called(countably)H*-rectifiable,0 < k < d, if
there exists a sequence of Lipschitz functians: R* — R? such that

Hk(E \ G wn(Rk)) —0.
n=1

It can be shown thak is H*-rectifiable if and only there exists a sequensg,} of k-
dimensionalC! manifolds such that

Hk(E \ fj M,,) —0. 2.1)
n=1

Moreover, if E is H*-rectifiable then it admits an approximate tangent space (see Def.
2.86 in [4]), which we denote by TAGE, u), for H*-a.e.u € E, and it can be shown
that forH*-a.e.u € E N M, the approximate tangent spaceAat u coincides with the
tangent space to the manifald, atu, that is,

Tarf(E, u) = Tarf (M,,, u). (2.2)

We refer to[[4] for more details.

Let f : R? — R be Lipschitz and led/ c R¢ be ak-manifold of classCt. We
say thatf is tangentially differentiableatu € M if the restriction to the affine space
u + Tarf (M, u) is differentiable ai. The tangential differential, denoted BY f (), is
a linear map between the space ‘iai, ) andR.

Remark 2.1. Let f : R? — R be Lipschitz and let/ ¢ R? be ak-manifold of class
CL.If f is tangentially differentiable at € M then for every cur\@y :(—8,8) - R?
with y (0) = u andy’(0) € Tarf (M, u) we have

(f o) @ =a" faly O]
Indeed, by taking smaller if necessary we can write
y () = y1(1) +o(t)

whereys : (—8,8) — M. Sincef is Lipschitz we havé f o y)(#) = (f o y1)(t) + 0o(2),
from which the conclusion follows.

3 Note that the support of is not contained ir.
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Theorem 2.2. Let f : R? — R be Lipschitz and led/ ¢ R? be ak-manifold of class
Cl. Thenf is tangentially differentiable at(*-a.e.u € M.

Proof. For everyu € M consider a local parametrizatign: D — M of M, with ¢ (0) =u,
whereD c R is an open neighborhood of the origin. By Rademacher’s theorem the func-
tion f o ¥ is differentiablec-almost everywhere i®. Using the Lipschitz continuity, it

is easy to see that if o v is differentiable ab € D, then f is tangentially differentiable

aty (v) € M. Hencef is tangentially differentiablét*-almost everywhere ig (D). O

In a similar way we may define tangential differentiability of a Lipschitz functfoat
pointsu € E whereE c RY is anH*-rectifiable set, 1< k < d. In this case, the
tangential differential, denoted b f(x), is a linear map between the spacefdh u)
andR. It can be shown that” f (u) exists forH*-a.e.u € E. Moreover if f : R — R™
with m > k then the following Generalized Area Formula holds:

/J,ff(u)dﬁk(u)zf HO(F1(v) N E) dH* (v), (2.3)
E f(E)

where

JE F@) = \Jdet(@® fw)* o dE fu)),

with (dF f (u))* the adjoint ofd® f (u).
An H*-measurable sef ¢ R is purely H*-unrectifiableif

HYE Nw®)) =0
for any Lipschitz functionw : R — R9.

Theorem 2.3. Consider a sett ¢ R? of finite H* measure. TherE can be decom-
posed into the disjoint union of a Boré{*-rectifiable sete* " and of a purely}*-
unrectifiable sef2*-U""eCt The decomposition is unique, up to sets+f measure zero.

Purely H*-unrectifiable sets with finite (os-finite) #* measure may be characterized

in a simple way by virtue of the Structure Theorem of Besicovitch—Federer[(ske [18]).
In what follows for 0 < k < d we denote by, , the Haar measure defined on the
Grassmannian manifol@ (d, k) of all k-dimensional planes iR? (see[18]). We identify
each elemenk € G(d, k) with the orthogonal projection; : R — L.

Theorem 2.4 (Structure Theorem)Let E C R? be anH*-measurable set with(* (E)
< 00. Then

() E is H*-rectifiable if and only if
H(w E1) > 0 for ygr-a.e.L € G(d, k),

for all H*-measurable subsefg; of E with H*(E1) > O.
(i) E is purelyH*-unrectifiable if and only if

H(rLE) =0 for ygi-a.e.L € G(d, k).
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Remark 2.5. If T is a rectifiable curve on the plaf®? then it may be proved that any
H'-measurable subset bfwith positive {1 measure can project into a set of length zero
in at most one direction. Hence # ¢ R? is H1-measurable with{1(E) < oo and if
there exist two lined., L1 € G(2, 1) such that{(n E) = Hl(nLlE) = O thenkE is
purely 7 -unrectifiable. From the previous theorem we then deducethat; £) = 0

for yo1-a.e.L € G(2,1).

Next we present some simple properties of the differentiability of Lipschitz functions.
It is well known that if a functionf is differentiable at some point, say the origin, then
necessarily

e fis continuous at0
« the directional derivative&. (0) exist for everyv € $9-1;
o for everyv e 971,

f af
—(0 —(0 2.4
-(0) = ; 7, O (2.4)
These properties are in general not sufficient to guarantee differentiability at 0. Indeed the
function f : R?2 — R defined by

_ Jvrifva= (w02,
flogv) = {0 otherwise,
is clearly continuous at,Og—{(O) = 0 for everyv € $9~1, but f is not differentiable at
the origin.
The situation is quite different if the functiofi is Lipschitz continuous, as in this
case it is easy to verify that mA) holds for evaryn a dense subset ¥ 1 then f is
differentiable at the originMore precisely we have:

Proposition 2.6. Let f : R — R be a Lipschitz function. Then the following conditions
are equivalent:

(1) f is differentiable aD;
(2) there exists a linear operatdt : RY — R such that the limit
lim fhv) — f(0) — L)
h—0t h
exists for allv in a countable dense subsetR®f;
(3) there exists a countable dense fanfilpf orthonormal bases such that

d d
Z 8—6l<0) P = ; B—El(mel
for any two basesges, ..., e } and{eq, ..., €4} in B.

Finally, the following Lusin-type theorem holds (seel[14]):
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Theorem 2.7. Letu € WLL(RY). Giveni > 0, there exist a closed sé€% and a function
v, € CYRY) such thatx = v, andVu = Vv, onC,, and

C(N,d
RV ;) < XD

lullwiiwnyy,  Mvallwie < A.
Moreover,

loallwroe @y IRV \ Cal = 0, Ju — gallyis — 0 asi — oo.

3. Differentiability criteria for Lipschitz functions

In this section we prove some differentiability criteria for Lipschitz functions.

Theorem 3.1. Let f : RY — R, d > 1, be a Lipschitz function, lefe1, ..., es} be a
basis inR? and letl < k < d. Then the following two conditions are equivalent:

(1) for everyu € I(k, d) the set
2) = {u = (uy, uz) € R x RY7*: f(u,, ) is not differentiable atiz}  (3.1)

is purelyH*-unrectifiable;
(2) the singular set

v/ :={u e R?: f is not differentiable at} (3.2)
is purelyH*-unrectifiable.

Proof. The implication(2)=>(1) is trivial. To prove the converse, l&f c R? be a
k-manifold of clas<CL. We claim that

H'MmM Nz =o0.

Fix ug € M N =/. By the implicit function theorem, we can find an open neighborhood
U of ug such that

MNU C{u= (g, uz) € R x R 1 uz = ¢(uq))}

for someyp : R¥ — R4* of classC?! and for somex € I(k, d). To prove the claim it is
enough to show that _
HMNnE/ NnU)=0.

By hypothesis (1), foft*-a.e.(uq, ¢(uq)) € RF x RY4*, the function f (i, -) is differ-
entiable atp(u,). Since the projection is Lipschitz continuous, it follows that f8ra.e.
uy € R¥, the function f (u,, -) is differentiable atp(uy). Consider the change of vari-
ablesh : RF x R4~* — Rk x R?=k given by

(e, ug) = (Wo, Wg) = (Ug, g — ¢(Ug)),
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define the functiorg : R* x R~* — R by
g(We, wa) = f(we, p(wa) + wa),
and letL > 0 denote its Lipschitz constant. It is clear that
LF({wq € R¥ : the functiong (w, -) is not differentiable atP = 0. (3.3)
We claim that
LF({wq € R¥ : the functiong is not differentiable atw,, 0)}) = O. (3.4)

Fix v = (v, v3) € $971, r € R, andn e N. Following [6] we define the set

g(wy, tvg) — g(wy, 0)
; >r

C(v,r,n) .= {wa e RF:
> 3,8(wg, 0) — dyg(wa, 0)(vy) for all t € (0, 1/n)},

where

_ ,SVg) — ,0
Qvg(waa 0) := liminf 8wy + sVy, SV5) — g(wy )’
s—0t s
andd, g(wy, 0) denotes the differential of the functigy(-, 0) at the pointw,, which
exists for-a.e.w, € R¥, by Rademacher’s theorem and the fact ghat Lipschitz.
We claim that for everyw, € C(v,r, n) there exist a constant € (0,1) and a

sequence; \ 0 such that
Bk(wa+tjva,ktj)ﬂC(v, r,n) =40, (3.5)

where By (wy, p) denotes the open ball iR with centerw,, and radiuso. The proof of
the claim follows closely the argument of Bessis and Clarke (See [6]). We present it here
for the convenience of the reader. ki € C(v, r, n) and let; \, 0 be such that

. FiVy, tiVg) — 0
3. g(we, 0) = lim SWa T hVa: Va) = §(Wa, O)

Jj—00 I
By definition of C (v, r, n) we can find O< § < 2L such that for all; sufficiently large,

r>25+9,8(wa, 0) — dog(wg, 0)(vy)
g(wy + [jVa, th&) — g(wg, 0) . g(wy + IjVy, 0) — g(wa, 0)
lj lj
g(wy + LjVa, th&) — g(wy + 1jVy, 0
lj

> 8+

— 5+

(3.6)

while for z, € C(v, r, n) we have

8(Za»tjva) — g(2a, 0)
. >r
J
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forallz; < 1/n. Combining this inequality witH (3]6) we obtain

8(za, tj"'&) — g(wy + LjVy, tj‘)&) + g(wy + 1jVy, 0) — g(za, 0)
lj lj

6 <

= |2a — (Wo + tjva)|v

2L
J
which gives|[(3.p) withh := §/(2L).
Let noww, € C(v,r, n) be a Lebesgue point for the characteristic functien,, ).
Since

Bi(wg + tjvy, Atj) C Br(wg, 2¢),
by (3.3) we have

. L5(Bi(wg, 2t;) N C(v, r, n))
0=1— ycor — im (1- - 2l 1
xCwrm (We) ijoo( CF(By(war 21))) )

— i LX(Bi(wy, 2) \ C(v, 1, n))

j—oo LK (B (we, th))
> lim supﬁk(Bk(w“ :‘tj"a» i)\ C(v, r,n))
j—o0 LF(Bi(wq, 217))
k B o i Mo )\ . )\' k
j—o0 LK(By(wq, 2t;)) 2
which is clearly a contradiction. Hence
£k, r,n) =0. 3.7)

Let E c $%~1 be a countable dense set. In view|of [3.7) the set

{wg € R¥: Vg(we,0)-v>9,8(wy,0)forallv e E} C U U U C(v,r,n)
veE reQneN

has zeraC* measure. By applying the same argument to the functigrand taking into
account|(3.B), for*-a.e.w, € R* we obtain

Vg(wy,0)-v=20,g(wy,0) forallvekE.
Using now the fact thag is Lipschitz and Propositidn 3.6 yields (B.4). Since
fua, ug) = (g oh)(ua, ua),
andg is of classC! we have
H'MNE NU) < H ' H(we, 0) t wg € R} N ET)
< Lip(h HH ((we, 0) : wg € RN 'T¥)
= Lip(h L (wy € R*: (e, 0) € £8)) =0,
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where
¥8 := {w € R? : g is not differentiable atv}.

This concludes the proof. O

Remark 3.2. From the proof of the previous theorem it is clear thavif ¢ R? is a
k-manifold of classC! and Il is a (d — k)-plane such thaff restricted tou + IT is
differentiable au for #*-a.e.u € M and

Tarf (M, u) + 1 = R?
for everyu € M, then f is differentiable att*-a.e.u € M.

For the applications to the chain rule in Sobolev spaces we will need the following
variant of the previous theorem.

Theorem3.3. Let f : RY — R, d > 1, be a Lipschitz function, lefes, ..., es} be
a basis inR¢ and letl < k < d. Assume that for every € I(k,d) and for every

H*-rectifiable setf E({, wherezgf is the set defined i8.1), we have
Tarf (E, u) = sparfeq,, . . . , eq, ) (3.8)

for H*-a.e.u € E. Then for every*-rectifiable setf ¢ £/ and for+*-a.e.u € E,
there existsr € I (k, d) depending om such that(3.8) holds.

Proof. Fix an*-rectifiable seZ ¢ =/. By (2.1) and[(2.p), we may assume, without
loss of generality, thaE ¢ M, whereM is ak-manifold of clas<C!, and that

Tarf (E, u) = Tarf (M, u)
for all u € E. Thus to prove the theorem it suffices to show that the set
E1:={u € E : Tarf (M, u) # spatiey,, . . ., ey, } for everya € I (k, d)}

hasH* measure zero. Fix € E1. SinceM is of classC?, we may find an open neigh-
borhoodU of u such that

Tarf (M, z) # sparieq,, . . ., €x, ) (3.9)
forall z € M N U and for everyx € I(k, d). Itis enough to show that
H'E NnMNU)=0.
By hypothesis, it follows froni (3]9) that
HYE nMNU)=0

for everya € I(k, d). We can now continue as in the proof of Theoifenj 3.1. ]
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Remark 3.4. We remark that ik = 1 then condition[(3]8) is equivalent to the following
one: for everyr € 1(1, d) and for everyH-rectifiable sett Eo{ we have

HY(Tz(E)) =0, (3.10)
wherell; : R? — R?~1 s the projection defined by
U= (Ug,uz) — Ug.

This follows from the Generalized Area Formyla (2.3)
/ Jilg ) dH () = / HOM; (w) N E) dH (v). (3.11)
E Mo (E)

A simple calculation shows that
J1llg(u) = |(z(u))al, (3.12)
wherert (1) is the tangent unit vector t8 atu.
Assume now thaf (3.10) holds. Then frgm (3.11) gnd (3.12) we have
/E |(x(u))al dH (u) =0,

which implies that(z («)); = 0 for H-a.e.u € E, thatis, [3.8). Conversely, if (3.8) is
satisfied therit 1))z = 0 for H1-a.e.u € E, and therefore

/ HO(T; () N E)dH (v) = 0.
Ma (E)

SinceHO(Hgl(v) N E) > 1 for everyv € I15(E), we deduce thO) holds.

4. Chain rule in Wi (R ; RY)

In this section we prove the main results of the paper, namely we give sufficient and
necessary conditions for the validity of the chain ruleW} (R"; R%). We begin by
studying the validity of the chain rule with respect to a fixed bésis. . ., ¢} in R¢. We

recall thatA (RY; RY) is the class of all functions in the spaceré’Cl(RN; R?) such

that ranKVu(x)) is either zero or greater than or equaktfor £V-a.e.x € RV,

Theorem 4.1. Let f : RY — R be a Lipschitz continuous function, lgt, ..., e} be
a basis inR¢, and letl < k < min{N, d}. Assume that for evert*-rectifiable set
E c =/ and forH*-a.e.u € E there existsx € I (k, d) depending om such that

Tarf (E, u) = spatieq,, . . ., €, ). (4.1)

Then the classical chain ruI) holds in the class4; (R"; R¢) with respect to the
coordinate systerfey, ..., eq}.

Moreover, ifk = d — 1, then condition(4.])) is also necessary for the validity (.3)
in the classAdy_1(RY; RY).
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Remark 4.2. (i) SinceH? = £¢ it follows by Rademacher’s theorem tHat (/) = 0
and so conditionf4.]) is automatically satisfied for every Lipschitz functigh Hence
Theoren 4.]l implies in particular that for any Lipschitz functifrthe classical chain
rule always holds itd; (RY; R?).

(ii) Note that if £/ haso-finite H* measure then in view of Theordm P.3 it suffices
to verify condition(4.1) for the 7*-rectifiable part ofs/, that is, for(x /)% rect

We begin with some preliminary lemmas.

Lemma 4.3. Under the hypotheses of Theor@hd] the chain rule holds in the class
Ac(RY; R9) if and only if for every functiom € CL(RY;R?) it holds £V-a.e. in the
set

{x € RV : either rank(Vu(x)) > k or Vu(x) = 0}. (4.2)

Proof. Assume that the chain rule holds in the claggR"; R?) and letx € CL(RY ; RY).
Since f is Lipschitz, for everyx € RY such thatVu(x) = 0 it is clear thatv(f o u)(x)
= 0, so that the chain rule always holds on the{set RY : Vu(x) = 0}. To prove it in
the setA := {x € RV : rankVu(x)) > k} fix xo € A and letm = rank(Vu(xg)). We
claim that there exist®(xg, ) CC A and a functionv € A; (RY: R?) such thatt = v
on B(xg, r) and rankVv) > m in RV Indeed, it is enough to take

v(x) == px)u(x) + (1 — o)) (w(xo) + Vu(xo)(x — xo0))
wheregp € Ccl(B(xo, 2r)) is such thaty = 1 on B(xg, r) and||Vg|l,, < C/r. Then

Vu(x) = Vu(xo) + ¢ (x)(Vu(x) — Vu(xo))
+ Vo (x) @ (u(x) — u(xo) — Vu(xo)(x — x0)). (4.3)

Clearly rankVu(x)) = m for all x € RN \ B(xo, 2r). Sinceu is of classC? for every
& > 0 we may findr > 0 so small that

[Vu(x) — Vu(xo)l <&, |u(x)—u(xo) — Vu(xp)(x — x0)| < elx — xol
for all x € B(xo, 2r). Hence from[(4]3) we obtain
[Vu(x) — Vu(xg)| < Ce (4.4)

forall x € B(xgp, 2r).
Finda € I(m, N) andg € I (m, d) such that, with the usual notatian= (x, x3) €
R" xR¥ " andu = (up,upg) € R™ xR,

detVqug(xo) # 0.
Using the inequality

|detA — detB| < C(m)|A — B|(|A|’”_1 + |B|’”_1),
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which holds forA, B € R"™>*™, from (4.3) and[(4}4) we obtain
|detVyvg(x) — detVyug(xo)| < Ce

for all x € B(xp, 2r). By takinge (and in turnr) sufficiently small, we conclude that
rank(Vv(x)) > m for all x € RV,

To prove the opposite implication assume by contradiction that there exists a function
u € Ar(RY; R?) for which the chain rule fails in a sét ¢ RV of positive measure. By
Theoren] 2.J7 there exists a functiore C1(R"; R?) which coincides with: in a subset
of F of positive measure. This is clearly a contradiction. O

Lemma 4.4. Under the hypotheses of Theorghd] if ©/ contains anH"-rectifiable
subsetE with H™ (E) > 0then, necessarilyy < k.

Proof. Indeed, letE be as above and assume by contradiction that m > k. By
(2.7) and[(Z.R), we may assume, without loss of generality, Ehat M, whereM is an
m-dimensional manifold of clasg?, and that

Tan™(E, u) = Tard* (M, u)

forallu € E. Clearly,
H"MNES) >0, (4.5)

After a translation and a rotation, and by takikgsmaller if necessary we may assume
that O is a point of{” density 1 inM N £/ and that

M c Graphg, (4.6)

where
Graphg = {v = (vg, v5) € R" x RY™" 1 vz = g(vp)},

andg : R™ — R s a function of clas€! with g(0) = 0, Vg(0) = 0, andg =
(1,...,m). Itis also clear that without loss of generality we may assume that-thane

Lo:={v:(vl,...,vk,O,...,O)eRd:vl,...,vkeR}

is not a coordinate plane with respect to the old coordinate sygtem. ., e;}. Forw =
(W41, - .., wy) € Rk et L,, andM,, denote respectively theplane

Lw ::{v:(UJ.v'--»vkswk—Flv~--»wm907~-'»o)ERd:U].’"'!UkER}

and thek-manifold
M, := M N Graphglr,)-

Since Tafi(Mo, 0) = Lo, by continuity we can assume that Tam,,, «) is not a coordi-
nate plane with respect to the old coordinate system. . ., e;} for all w € R”* and
allu € M, with |u|, |lw| < go for someeg > 0. To conclude the proof it suffices to show
that there isw € R”™~* with |w| < gg such that*(M,, N =/ N B(0, £g)) > 0. Indeed,
this would contradic{(4]1).
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By condition (4.5) and by the fact that 0 is a point 61" density 1 inM N =/ it
follows that the projectior? of M N £/ on them-planevs = 0 has positiveC™ measure
and that 0Oe R™ is a point of £ density 1 forP. By Fubini’s theorem there exists
w = (Wkil, - .., wWu) € R % with |w| < &o such that*(L,, N P N B(0, g9)) > O.
HenceH*(M,, N =/ N B(0, ¢g)) > 0 and the proof is concluded. O

Lemma4.5. Letu € Wlé’cl(RN; R?) and assume that there exists a measurabld-set
positive measure such that
rankVu(x)) > k

forall x € F, for somel < k < min{N, d}. Then there exists &dimensional manifold
M c R? of classC* such that

HY (M Nu(F)) > 0.

Proof. Asin Lemma 4.8 we may assume without loss of generalityithaiCt(RY ; R?).
Letx € F be a Lebesgue point for the characteristic funcfign Since rankVu(x)) > k
we may finda € I(k, N) ande > 0 such that, with the usual notatian= (x4, x3) €
RE xRV,

rank(Vyu (xy, x3)) = k 4.7)

for everyx, € By(Xy, ¢) andxg € By_i(Xg, ). Set
A = By (Xy, &) X By_r(xg, ).
Note that since is a Lebesgue point we have
LN(ANF) > 0. (4.8)

By Fubini’s theorem and (4.8) it is easy to see that there eXists By_x(Xz, €) such
that
LF({xq € Bi(Xq, €) 1 (xq, %5) € F}) > 0. (4.9)

Itis clear that
M = {u(xq, 3251) i Xy € Br(xq, €)}

is ak-dimensional manifold such that
HY(M N u(F)) > 0. O

As a corollary of the previous lemma we obtain the following characterization of purely
H*-unrectifiable Borel sets, which can be considered as an extension of a classical result
of Serrin and Varberd [22].

Corollary 4.6. A Borel setE ¢ R? is purelyH*-unrectifiable,1 < k < d, if and only if
for everyN >k,
Vu=0 [N-ae inuXE)

for everyu € A (RV; RY).
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Proof. Assume that c R? is purely+*-unrectifiable. We claim that
LY HE)N{Vu #£0) =0 (4.10)

for everyu e A(RYN;R?). Indeed, if ¥ (uY(E) N {Vu # 0}) > O for someu €
Ar(RN: R?) then, since ranlu) > k £N-a.e. inu=1(E) N {Vu # 0}, by the previous
lemma, we may find &-dimensional manifold c R¢ such that

HY(MNE) > 0,

which contradicts the fact thdt is purely*-unrectifiable.
Conversely, assume that (4/10) holds andet- R? be ak-dimensional manifold.
We claim that
HKM N E) =0.

If not then we can find a local parametrizatign. D ¢ R¥ — M of classC? such that
HY(W(D)NE)>0 and rankVu) = k.

This implies thatc¥(D N v ~1(E)) > 0. Reasoning as in the first part of the proof of
Lemmd 4.8, without loss of generality we may assumehat 4, (R*; R¢) and thus we
have a contradiction t (4.]10). O

We are now ready to prove Theorém|4.1.

Proof of Theorerh 4|1By Lemmd 4.8 it suffices to prove that for evere CY(RY; RY)
the chain rule hold£" -a.e. in the set

{x € R" : either rankVu(x)) > k or Vu(x) = 0}.

Sincef is Lipschitz it is clear that

i(f ou)(x) =0 whenever Vu(x) =0.
3xj'

Moreover, ifu(x) ¢ =/ then there is nothing to prove. Hence it remains to show the
chain rule in the set

Ry i=u" Y (=) n{x e RY :rank(Vu(x)) > k}. (4.11)

We claim that forC¥-a.e.x € Ry the rank ofVu(x) is k. Indeed, if this is not the case
then there exist a sét c Ry with £V (F) > 0 andm > k such that ranVu(x)) = m
in F. Then by Lemma 4|5 there exists andimensional manifold c R? of classC?
such that

H"M N >0,

which contradicts Lemma4.4.
Next we prove that foC”-a.e.x € R the affine space

T" ;= {w e R?: w = u(x) + Vu(x)v for somev € RV}
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is parallel to a coordinaté-plane. For everk € Ry there exists8 € I(k, N) such
that ranKVgu(x)) = k. Sinceu is of classC? it follows that rankVgu(x)) = k for all
x € A= Bi(xg, &) X By—r(Xg, &) for somes > 0. By the previous claim it follows that

for LV-a.ex € Ry N A,
T ={we RY:w = u(x) + Vgu(x)v for somev € R¥Y.
Therefore by Fubini’s theorem, f@#" *-a.e.z € By_k(xg, €),
u(y, 2) + Tarf (M, u(y, 2) = T¢, ) (4.12)
for LF-a.e.y € By (xg, €) such that(y, z) € Ry, whereM, is thek-dimensional manifold
M; = {u(y,z) .y € Br(xg, e)}.

Fix z € By (g, ¢) for which @) holds. By the assumpti@.l) it follows that for
Lk-a.e.y € Br(xg, &) with (y, z) € Ry there exists € I (k, d) such that

T = u(y, 2) + spareq,, . .., eq}- (4.13)

Moreover by Theorerp 2.2 we may assume that for the same sés tiiere exists the
tangential differentiad™: f (u(y, z)). Hence, by Remaik 2.1 applied to the cupve) :=
u(x + te;), by (4.12), and[(4.13), for all such points= (y, z) we have

i) I 1 & of g,
oy (oW =d f(u(x))[a—xj(x)} = w5 ),

=1 Jug, J
which, since by[(4.13)

9
My=0 foralll ¢ {a1, ...,
3)6/'

implies that the chain rule holds f@¥-a.e.y € By (i, &) with x = (y, z) € Ry. As this
is true for£N *-a.e.z € Bn_i(Xg, &), the proof of the first part of the theorem follows
from Fubini’'s theorem.

Finally, we show that it = 4 — 1, then condition(4.]) is also necessary for the

classical chain rule to hold in the clagy_1(R"; R¢). By Theorenj 38 it is enough to

show that for every € I(d — 1, d) and for everyH¢~1-rectifiable setF Eg{, where

v/ = {u e R?: 9f/duz does not exist at},

we have
Tarf~Y(F, u) = sparieq,, . . ., €y ;) (4.14)

for HY~l-a.eu € F.
Assume by contradiction that there exist I(d — 1, d) and a(d — 1)-dimensional
manifold M ¢ R? such that
HTYMNnEl)>0
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and ) fails on a subs&tC M N = with #?~1(E) > 0. Consider a local parametr-
izationy : R~ 5 D — M of classC? such that

HY W (D)NE) >0 (4.15)
and
rankVy) =d — 1 (4.16)
in D. Since [4.1}) fails irE we have
Vys #0  iny NE). (4.17)

Reasoning as in the first part of the proof of Lenimg 4.3, without loss of generality we
may assume that € A;_1(RY~1; RY). Let

u(x) = y(x1, ..., x4-1), xRN, (4.18)
Thenu € Ag_1(RY; R?) and by [(4.1]),
Vug #0  iny Y(E) x RV=4+1)

while by {4.1%), [(4.16) we have" (y ~1(E) x RN=4+1) > 0. Hence in this set the chain
rule fails since by definition oEg: the partial derivativeé f/dug does not exist ai(x).
O

The previous proof implies:

Corollary 4.7. Let F be a Borel subset dk and leta € I(k, d). Then the following
two conditions are equivalent:

(i) for everyH*-rectifiable subseE ¢ F and for+*-a.e.u € E we have
Tarf (E, u) = spareq,, . . ., ex }; (4.19)
(i) foreveryu € Ay(RN;R?) and for£N-a.e.x € u=1(F) we haveVug(x) = 0.

Corollary 4.8. Let f : R?2 — R be a Lipschitz continuous function and let, >} be
a basis inR2. Then the classical chain rule holds wr,ﬁ’cl(RN; R?) with respect to the
coordinate systenfe1, e»} if and only if for everyH!-rectifiable setE ¢ =/ and for
Hl-a.e.u € E either

Tan'(E,u) = spafe1} or Tan(E,u) = sparfez}. (4.20)

Remark 4.9. By Remark condition{4.20) is equivalent to requiring that for all
H1-rectifiable sets; C £/, i =1,2,

HY(IM1(E2) =0 and H(Mz(E1) =0
wherell; : R? — R is the projection: = (u1, uz) — u;, and we recall that

5/ = {u € R?: 3f/de; does not exist at}.



238 Giovanni Leoni, Massimiliano Morini

If k < d — 1, then conditionf4.T) is not necessary for the validity of the chain rule,
as the following theorem shows:

Theorem 4.10. Let {eq, ..., es} be a basis and leE ¢ R?, d > 3, be anH?2-
rectifiable Borel setThen there is a bounded Lipschitz continuous funcfianR? — R
such thatx/ ¢ E and H?=2(E \ ©/) = 0, and for which the chain rule holds in
W,é’cl(RN : R?) for any N € N with respect to the coordinate systée, . . ., e4}.

Proof. For simplicity we assume théts, ..., e;} is an orthonormal basis.

Step 1. Assume first thaE is a compact set contained in
{ueR: ) =0},

wheregp : RY — R?is a function of clas€'! with rankVg) = 2 in E. We show that
for everyug € E it is possible to construct a bounded Lipschitz continuous funcfion
such thatt/ = E N B(ug, r) for some small and for which the chain rule holds. For
simplicity we also assume that the vectors

=
S

=5

U

Il
=
&

’

=2
S

[

=5

are all distinct. The general case can be treated similarly.

Consider a bounded Lipschitz continuous functipn R® — R such thatg €
CL(R3\ {0}, g(-, -, 0) is not differentiable at the origin but admits all directional deriva-
tives,

a
250) = Vg(0)-v (4.21)
v
forallv e (U, A;) x {0} where
A; = {w = (COSH, SiNB) 1 |0 — ;| <&, |0+6] < e},

0; are the angles corresponding to the vec%s{uo), ande is chosen so small that the
setsA; are pairwise disjoirﬁ]Sincecp is of classC?, for r sufficiently small we have
3¢ (u)

ou;
L e A (4.22)
|5 )

forallu € B(uog, r).

4 An example of a function satisfying all the desired properties is given by

x2y3 T4 (y cos(;4£)—x SinG; +£))2(y oSO, —&)—x Sin(6; —e))2 .
gx,y,2) = (. xA+ad 4 yA+ad | 72 if (x,y) ¢ D,

otherwise,

whereD is the set of all points oRk? whose angle belongs t; for somei.
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Foru € R? define
) = glo), 82(u)),

whereé (-) is the regularized distance from the &&t= E N B(ug, r) (seel24]). Itis well
known thats is a Lipschitz continuous function withe C®° (R4 \ K),

1 . .
Edlst(u, K) <8@) < Cdist(u, K)

forallu e R\ K.
We claim thatz/ = K. Itis clear thatz/ c K. To prove the opposite inclusion fix
i€ K and lett € $9-1. Then

f+18) — [@) _ 8 +1GE@ +0(0), 0(0) — glp(@), 0
t t
_8(p@) + 15 @), 0) — g(p(@). 0)
B t

+o(D) (4.23)
where we have used the facts tigas Lipschitz,¢ is of classC?!, ands? € C1(R?) with

V$2 =0onk. Hence
of

g( = (ﬂ((/)( u, 0)'—(u)

( % (it) O)
Vy = .
RN

Sinceg(-, -, 0) is not differentiable at the origin, by Proposition|2.6 we may find a direc-
tionv = (w, 0) € $2\ | J?_,(A; x {0}) such that

(4.24)

where

0
8—g<0> #Vg(0) - v,
Vv

Using the fact that rar®¥¢)(@) = 2 we may find a directiofy € S9! such that
a%(ﬁ) = w|§—g;(a)| + 0. Moreover by(|4.21|), q4.221), andq4.24|),

a
Vf@)-§ =Vg)- (%(ﬁ), 0> = Vg0 v

0o _
3_50(M)

()‘ ()‘ —()

and sof is not differentiable ai. This shows thaE/ = K

Next we prove that the chain rule holds fgr As in the proof of Theorerh 4.1, to
show the validity of the chain rule |thI (]RN RY) it is enough to prove it for any
u € CL(RYN; RY). Moreover it is clear that we can assume, without loss of generality, that
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N =1.Ifu(x) ¢ =/ then there is nothing to prove, hence assumeithat e /. Asin

(4.23) we have

flu+0) = fu@) _ gllpow)(x) +i(pou)(x),0 —g(wou)(x),0)
t t
_ 8llpou)(x +1),0) — gllp ou)(x), 0)
t

+0(1)

+0(1).

Hence(f ou)'(x) = (g(-, -, 0) o (¢ ou))'(x) for everyx € u~1(=/). Since the chain rule
is valid for g(-, -, 0) by Theorenj 4]1, and recalling th@t o u)(x) = 0, it follows that for
Llaex eui(z)),
(f o) (x) = Vag(0) - (9 ou) (x) = (Vo g(0) Ve (u(x)))u'(x)
=V f(ux))-u'(x)
wherea = (1, 2) and in the last equality we have used the fact that

0 0
8—f<u<x>> = Vag(0)—2 (u(x), 0),
U; du;

which follows from@.27), (4.22), and(4.24). Therefore the chain rule holds.

Step 2. Assume now thak ¢ R¢ is anH?~2-rectifiable set, that is,

o0
E=JKkjuN
j=1

J

whereH?=2(N) = 0 and the setX; are disjoint compact subsets @f — 2)-manifolds
of classC.

Fix j € N. By Step 1 it is clear that for each € K; we can findr, > 0 such
that for all 0 < r < r, there exists a bounded Lipschitz continuous functfpn with
>fur = K; N B(u, r) and for which the chain rule holds. The union of all such balls for
u € K; is afine cover foiK; and hence, by the Vitali-Besicovitch covering theorem (see
e.g. Thm. 2.19 in[4]) we can find a countable sequence of disjoint closedRyalls,,)
such that

o
H2 (K \ | Bl r)) =0.
n=1
By repeating the same procedure for e&hit is clear that we can find a sequence of

bounded Lipschitz continuous functioifs for which the chain rule holds, and such that
the setse/» are pairwise disjoint compact subsetsfvith

o0
Hd_z(E U zf"> —0.
n=1

Moreover we can assume that the partial derivatives of eyiggxist everywhere ifR¢
(see Step 1).
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We may now define

o0

1
f@) =Y == fu@), Ly =l fallyroga-
n=1 ZnLn
Itis clear thatf is bounded and Lipschitz continuous. We claim that

o
=z (4.25)
n=1

Indeed, ifu ¢ | J°°,; £/» then for anyt € $971,

Py=3 2 Yy o3 L vpw s =viw-e (4.26)
o8 T g, 0 T &, ST S '
where we repeatedly used the fact that we can differentiate term-by-term. By Propo-
sition[2.6 and sincef is Lipschitz continuous it follows that ¢ /. Conversely, if

u € | J32, =/ then there exists a unique € N such thau € /%0, Write

F= ot Y g i

n#ng

Arguing as in ) we deduce that the functidt), ., 7 /» is differentiable att.
Sinceu € ¥/ it follows thatu € =7 Hence) holds.

Finally, to show that the chain rule holds fgrlet u € C1(R; R?). Since for£t-a.e.
x € R the functionsf;, o u are differentiable at and

(faouw)' (x) =V fu(ux)) - u'(x)
for all n, using once more term-by-term differentiation we conclude that
(fow) (x) =V fu(x))-u'(x)
for £1-a.e.x € R. This concludes the proof. O

Remark 4.11. (i) It is clear from the previous proof that given any finite famélyof
bases iR? and anyH“¢~2-rectifiable sett ¢ R¢, d > 3, one can construct a Lipschitz
continuous functionf : RY — R such thats/ ¢ E andH?"%(E \ £/) = 0, and
for which the chain rule holds iWé’cl(RN; R?) with respect to every coordinate system
{e1, ..., eq} in&.

(ii) It is clear that the above construction can be carried out for everykl< d — 2.
We considered the cage= d — 2 because in a sense it represents the worst possible
situation.

All the results presented so far depend on the particular choice of the coordinate sys-
tem{e1, ..., eq}. We next address the case where the chain rule holds with respect to
every coordinate system.
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Theorem 4.12. Let f : RY — R be a Lipschitz continuous function, and let<
k < min{N,d}. Assume that the s&t/ is not purerH"-unrectifiabIe. Then there
exists a coordinate system ¢ for which the classical chain ruI) fails in the
class A; (RY; R?). Hence a necessary and sufficient condition for the chain @)
to hold in A (RY; RY) with respect to every coordinate system is thdtis purelyH*-
unrectifiable.

Remark 4.13. Note that ifk = d — 1 then the result follows immediately from Theorem
[4.1. Indeed, sinc¢ (4.1) must hold for every coordinate system, it is cleat thatust be
purely ¢~ -unrectifiable

Proof of Theorer 4.12The sufficiency part of the statement follows immediately from
Theorenj 4.]L. The rest of the proof is devoted to showing the necessity part.

Step 1. We consider the cage= 1. Lety : [0, 1] — R< be aC regular curve. For every
t € [0, 1] denote the unit tangent vector byr) := y'(¢)/|y'(t)|. Fix to € [0, 1] and a
unit vectore different from=t (19) and not orthogonal to(). Let e+ be the hyperplane
orthogonal toe and leto (1) be the unit vector obtained by projectingr) on e and
normalizing.

We claim that forc1-a.e.r in a neighborhood of rg the functionf restricted to the
planey (¢t) + sparie, 7(¢)} is differentiable at (¢).

Indeed, considering an orthonormal bagis, .. ., e;—1, ¢}, from the chain rule and
the fact that - 7 (zg) # O it follows that the partial derivativ%é(y(t)) exists forLl-a.e.r

neartg. If 7(t) = 1(¢p) for all ¢t nearrg then since by Rademacher’s theor%(y(r))

exists for£1-a.e.r nearrg the conclusion follows from Remafk 3.2 appliedftaestricted
to the plane
y (1) + spare, T(1)} = y (10) + sparie, T (10)}.
If 7(z) is not constant neap then as in the proof of Theorem B.1 we can reduce to the
previous case by using a local diffeomorphism. We omit the details.
Hence the claim holds and therefore fot-a.e.r € I we have
af of of
== . — . . 4.27
97 () (y(®) %% (@) (@) -e) + 20(1) (@) (@) -o(1) (4.27)
Moreover by the chain rule for every orthonormal basis . . ., e4_1, ¢} and for£1-a.e.
tel,

3 =1y
(foy) ()= a—f()/(t))()/’(t) ce) + Z—f(y(t))(y’(t) - €;)
e = de;
—%( Y1) - e) d_li( ) (o) - e)(y (1) - o)
=, O ~e+;861_y o(t)-e)(y (1) - o)),
or equivalently,
of of & of

9
r(t)(l/(l)) = %(V(l))(f(l) o) + ; a—ei(V(l))(G(f) ~e)(T(1) - o(1)).
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Hence also by| (4.27) for every orthonormal basis . . ., e4_1, ¢} and for£t-a.e.r € I
we have

af _d 1 af |
= (t)( y(1) = ;a—ei(ym)(o(r)-e». (4.28)

Define the invertible linear transformatidn: R — R? by
Lu) =u+ (u-ew, (4.29)

wherew € e is a unit vector different froreto (fo) and letf; := folL, yr := L™ 1oy.
Since the chain ruI (4.3) holdsi/biI LR, R?) with respect to every coordinate system
it is clear that it also holds foy; Wlth respect to every coordinate system. Therefore
we can also assume that for every orthonormal bgsis.. ., e;—1, ¢} and forcl-a.e.
t € [0, 1],
f ofL

(L) = Z = (L) (oL(t) - e),
or(t) = de;
where as before; (¢) is the unit vector obtained by projecting the tangent unit vector
7..(t) onet and normalizing. Since by (4.p9) for amye ¢ NS¢~ we have

9
i()/L(t)) = —f(y(t))

the above identity can be rewritten as

of S
T (t)( y(1) = ;a_e,-(y(t”(“(” -e). (4.30)

Let B be a countable dense family of orthonormal basestinand, for every e I, let
B(t) be the dense subfamily formed by all ba&gs. . ., e;—1} € Bsuchthat (r)-¢; # 0
fori =1,...,d — 1. From [4.2B) and from our conventions on the validity of the chain
rule it follows that(3f/de;)(y (1)) exists forLl-a.e.r € I, for everyles, ..., eq_1} €
B(r), and for everyi = 1,...,d — 1. By (4.28) and[(4.30) there exists a s¢t C I
with £1(N) = 0 such that for alt € 7 \ A/ and for any two baseg;, ..., e;_1} and
{e1,...,€q_1} In B(r) we have

d-1 d-1
> %(V(f))(ﬁ(l‘) )= g—fi()’(l‘))(a(t) L),

i=1 ! =
¢t af d—1 of
; a_el_(V(t))(GL(t) ce) = ; B—Ei()/(t))(aL(t) &)

Since for every nearrg the space is generated by vectors of the foem (1) — o (1) for
a suitable choice of linear mayssatisfying [(4.2p), it follows that

d—1 9 d-1 9
> a—f(y(r»ei => a—fi(y(r»ei

i=1 "t i=1
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forallr € 1\ NV. As this holds for any pair of orthonormal based3), Propositionf 2.6
shows thatf restricted to the hyperplane(r) + ¢+ is differentiable for alk € 1\ V.
By Remar this implies thaf is differentiable aty (r) for £1-a.e.r nearrg. Since
this is true for anyro € [0, 1] a compactness argument allows us to conclude that
is differentiable atH{!-a.e. point ofy. Given the arbitrariness of the curgewe may
conclude that/ is purelyH!-unrectifiable.

Step2.1f1 <k <d — 1, let M c R? be ak-dimensional manifold such that
Mnz! £y

and leti € MNT/. We claim that there exists> 0 such thatf is differentiable for*-
a.e.u € B(ii; &) N M. Fix anyii € M N =/ and consider a local regular parametrization
v : D c R¥ — M of classC! such thati € v (D), where D is an open set and
¥ (0) = ii. Lete € 91 be a vector transversal to Tai/, i), that is,e is not orthogonal
and it does not belong to TafM, i1). Taking a smallemD if necessary, we may assume
that g—)‘f’l(x) is not parallel toe for everyx € D. Let e be the hyperplane orthogonal

to ¢ and letB be a countable dense family of orthonormal bases'inand, for every
x € D, let B(x) be the dense subfamily composed of all bgges. . ., e;—1} € B such
that%(x) -e; 20fori =1,...,d — 1. Leto (x) be the vector obtained by projecting
g—)‘f’l(x) onet and normalizing. Define the invertible linear transformationR? — R4
as

Lw)=u+u-ew,

wherew € e is a unit vector different fromto (0) and letf; = f o L andy =
—1 6 4. Without loss of generality assume that

D = B1(0; r) x Bx_1(0; 1),

wherer > 0 is so small thaiv # +o(x) for everyx € D and writex = (x1,x') €
R x R¥1 Sincef and f; satisfy the chain rule in the clas§ (R¥; R?) with respect to
every coordinate system of the foffen, . . ., es—1, eq} Wheree; := e and{ey, ..., eq—1}
isin B, we have

9 L of i
FrA 2l ;a—wf( )57 @
d
—<fLow><x) Zai (W (x >)ﬁ( )
i=1
for £¥-a.e.x € D, where 5~ of (1/f(x)) exist nearx := ¥~ 1(iz) whenever{eq, ..., eq_1}

€ B(x), asol L (x) # 0 by the definition of3(x). By Fubini's theorem and using the fact
that3 is Countable, there exists a skt C By_1(0; r) with £51(M) = 0 such that for
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all x’ € By_1(0; r) \ M and for every coordinate system of the fofea, ..., es_1, ¢4},
wheree; ;= e and{es, ..., eq—1} isin B, we have
G L nOf o
o) = ; P AT el IR
d
S (fL oY) x) = i (¥ (xe, x ))i(xl,x ),
X1 3

for £1-a.e.x; € B1(0;r). Fix x' € By_1(0;r) \ M and consider the curve (-, x’).
Reasoning as in the previous step we deduce from the above identities tiftdce.

x1 € B1(0; r) and for every coordinate systefay, ..., es—1} in B we have
of XS : ,
m(w(xl,x ) = ; 8—Q(¢(X1,x N(o(x1,x7) - e),
ofrL
aa(j (Yr(x1, x')) = Z aiefm (x1, X)) (o (x1, X) - €;).

i=1

We may continue as in the previous step to conclude thaftea.e.x; € B1(0;r) the
function f is differentiable aty (x1, x’). Since this is true for alk’” € B;_1(0; r) \ M,
Fubini’s theorem implies thaf is differentiable aty (x) for £f-a.e.x € D. Hencef is
differentiable?{*-almost everywhere igr (D). This concludes the proof. O

Remark 4.14. It is clear from the previous proof that fat/ to be purelyH*-unrectifi-
able it is enough to assume that the chain (1.3) hold&ii®R" ; R?) with respect to
a dense set of coordinate systems.

5. Chain rule in BV (Q; R%)

In this section we extend the results of the previous section to the space of functions of
bounded variation. We refer tol[4] for the definition and main properties. As already men-
tioned in the introduction a weak form of the chain ruleiioc(RY ; R?) was established
by Ambrosio and Dal Maso iri [2] for any Lipschitz continuous functipn RY — R
(see also[10] for a different proof in the scalar cdse 1).

We study here the classical chain rule. Since by a result of Albérti [1] the Cantor part
of the distributional derivative of a function of bounded variation has rank one, to extend
the results of the previous section we can only consider thekcasg.

Theorem 5.1. Let f : R — R be a Lipschitz continuous function, et ..., eq} be a
basis inR¢, and assume that for evety!-rectifiable setz ¢ £/ and forH!-a.e.u € E,
there exists € {1, ..., d} depending om such that

Tan'(E, u) = spare;}. (5.1)
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Then for everyi € BVioc(RY; RY) andj =1,..., N we have

d
a
Dj(f 0w RV \ Sw) =) a—f(u*wju,- LARY \ S(u)), (5.2)

i=1
where%(u*)[)jui is interpreted to vanish on sets whei;u;| vanishes, and

D(fow)[S) = (fu™) — f )vLSw). (5.3)

We present some preliminary results which extend to functions of bounded variation the
lemmas of the previous section. The main difficulty is the treatment of the Cantor part of
the distributional derivative.

The next two results are well known. We give their proofs for the convenience of the
reader.

Lemma5.2. Letu : (a, b) — R4 be a function of bounded variation. Then there exists
a continuous function of bounded variation (a, » + 1) — R¢ such that

u(a,b) Cv(a,b+1).

Proof. Step 1. Assume first that is scalar-valued and monotone andlet (a, b) be
any countable set such that
S(w) C I

Write I asI = {t,} and define
1
s(t) ==t +tZt > [€@b).
Thens : (a, b) — (a, b + 1) is a one-to-one function whose discontinuity set.iket
I, :=[a,,b,], neN,

and
1 1
an :=tn+zga by :=t"+Z§’
tj<tp tjft,,

and letr = ¢ (s) be the inverse function af Define

u(t(s)), se(ab+D\UL,

vis) = {2"(u(rn+) — U@ —by) +u(t?), s €I, =[an, by].

Clearly
u(a,b) Cv(a,b+1).

The functionv is strictly monotone and hence of bounded variation. Moreover, sifice
continuous ona, b) \ I and¢(s) is continuous ora, b + 1) \ | I, it follows thatv is
continuous ora, b + 1) \ | J I,,. The functionv is also continuous in the interior of each
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I, and thus it remains to check continuity at the endpoints of dacbut this follows
immediately since

lim v(s) = |im+ 2'uh) —u,))(s —by) +uth) =u,)),

s%a,f s—ay,
lim v(s) = lim u(t(s)) = u(t,)
s—a, s—a,

and similarly forb,,. Thusw is continuous.

Step 2. In the general case where: (a,b) — R? letu = (u1,...,uq). For each
i =1,...,d we may writeu; asu; = w; — z;, wherew;, z; are monotone functions.
Let I be the union of points of discontinuity ab;, z; foralli = 1,...,d. Clearly

S(u) C I. By Step 1 we may construct functiods, z; : (a, b + 1) — R¢, continuous
and monotone, such that

w;(a,b) Cwi(a,b+1), =zi(ab)Cziab+1

foralli = 1,...,d. The functionv = (w1 — Z1,..., ws — Z¢) has all the desired
properties. O

Corollary 5.3. Letu : I — R? be a function of bounded variation, whereis an
interval. Theru (1) is H1-rectifiable.

Proof. By the previous lemma there exists a continuous function of bounded variation
v : J — R4 such thaw(1) c v(J) for some interval/. The result now follows from
Theorem 16 in[[0]. O

As a consequence of the previous lemma we deduce the following result, which although
not needed in the remainder of this section, is of interest in its own right since it completes
Proposition 3.92(c) of [4].

Proposition 5.4. Let E be a subset dk?. Then the following properties are equivalent:

(i) E is purelyH!-unrectifiable;
(i) HYE Nnw(R)) = Ofor anyw € BVioc(R; RY);
(i) forall N € N and for anyu € BVioc(RY; RY) the measuréDu| vanishes on the set
u;l(E)m(RN \ S(u)), where|Du|, u, andS(u) are, respectively, the total variation
of the distributional derivativebu, a specific representative and the jump set of

Proof. We begin by showing that & (ii). Let w € BVioc(R; RY) and considexa, b)
C R. By the previous lemma there exists a continuous function of bounded variation
v:(a,b+ 1) — RY such that

u(a,b) Cv(a,b+1).

SinceH(E Nv(a, b + 1)) = 0 (seel[9],[11]) the result follows.
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To prove the implication (i (iii) let E be purelyH -unrectifiable and consider
BVioe(RY; R?). We follow the proof of Lemma 2.1 in[15]. Fike {1, ..., N}. For every

x = (x1,...,xn) € RN we denote by’ € RV~ the vector
(X1, 0oy Xio1, Xi41, ..., xy) Ifl <i <N,
x'=1(x1,...,xny-1) if i =N,
(-x25'-'a-xN) |fl=1,

and we write, with an abuse of notation,
x = (', xp).

By Theorem 3.108 ir [4] foV ~1-a.e.x’ € RN~ the function

u¥ (1) = u, 1), teR,
belongs toB Vioc(R; R?), and

v(t) 1= )" (1) = uax', 1), 1 ER,
is a good representative fot . By (ii),
HYE Nv(R)) = 0.

By Proposition 3.92(c) in [4],

|IDv|(M N (R\ S(v))) =0,
whereM := v~1(E N v(R)) and so

D™ 1M N R\ S((u)™)) =0

for £N~1-a.e.x’ € RV~1 Since this is true forall = 1, ..., N by Theorems 3.107 and
3.108 in [4] we have

| Du|(u; }(E) N RN\ Su))) = 0. O

Lemma5.5. LetE ¢ R? beH!-rectifiable and letr = 1, ..., d. Then the following two
conditions are equivalent:

(i) for H'-a.e.u € E,
Tan'(E, u) = spafey}; (5.4)

(i) foreveryu € BVioc(RY; RY),

| Dug|(uy Y(E) N (RY \ S(u))) = 0.
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Proof. By Corollary[4.T we only need to show that (i) implies (ii). Assume (i), fix
BVioc(RY; R?) and letE; be the set ot € E for which ) does not hold. Then
H1(E1) = 0 and so by Proposition 3.92(c) in [4],

|Du|(u;(E1) N (RN \ S(u))) = 0.
LetT c R? be aC? curve such that
HYT N (E\ E1)) > 0.

By taking ' small enough we may assume that there exists an ope getR? and a
function® : D — R?~ of classC? such thatD® has ranki — 1 for everyx € D and

I'={weD:dw)=0}.

By Proposition 3.92 in [4] the measui(® o u) vanishes on all subsets ufl(l“) N
RN\ S(u)) € (® ou);1(0) N (RN \ S(® o u)). By the classical chain rule iBV (see
Theorem 3.96 in[4]) we havB(® o u) = V& (u,) Du, hence

DCD(u*(x))dﬂ(x) =0 for|Dul-a.e.x € u;l(l“) N RN\ Su)).
d|Du|
Hence
dDu _
4D I(x) € Tanl(l", uy(x)) for|Dul-a.ex € u, Toyn@®Y \ S(u))
u

and by (i) we have

dDM&

_ _ -1 N
dlDul(x) =0 for|Dul-a.ex € u; (E)N R\ Sw)).

This shows (ii). O

Proof of Theorer 5]1For the proof of[(5.3) we refer to Step 2 of the proof of Theorem
3.96 in [4].

Step 1. Consider first the cas®¥ = 1. By Theorem 2.1 in [2] fotDul-a.e.x € R\ S(u)
the restriction of the functioif to the affine space

dDu
TV = RY:y =u, , f R .
" {ye y=u (x)—i—zd'Du'(x) or somez € } (5.5)
is differentiable at..(x) and
D(f ou) =V (f|ru)(us)Du as measures dR \ S(u). (5.6)

Onu;1(RY\ /) the right hand side 0.6) coincides wWithf (us) Du. Let

T, = us (RN



250 Giovanni Leoni, Massimiliano Morini

By Corollary{5.3 the seE, is H -rectifiable. By[(5.1) we may decompose it as

d
o= JziuN,
i=1
where
Tan (S, u) = sparfe;} forallu e ¥; and HYW) =0.

By Proposition 3.92 in[4] the measufa: vanishes on all subsetsof 1(NV) N (R\ S (u))
and so it is enough to show that for every fixed= 1, ..., d the chain rule holds on
u;H(Z) N R\ Sw)). Since by Lemmf 5|5,

dDu

Z1Dal (x) € Tan'(Z;, ux(x)) = sparie;}

for [Dul-a.e.x € u;1(Z;) N (R \ S(u)) it follows that for all j # i,

dDuj
d|Du|

(x) =0 (5.7)
for | Dul-a.e.x € u;*(E) N (R\ S@)), and, from[5.1), that
af
V(flre)(us(x)) = g(u*(X))

for |Dul-a.e.x € u;l(Ei) N R\ S(u)), and hence fr06) we conclude that

9 4
D(f ou) = 8—£(u*>Dui =y a—fw*)Du,-
i j=19¢

on u;l(Z,») N @R\ S)), since g—fj(u*)DuJ- is interpreted to be zero whenevBy;
vanishes.

Step 2. The general case follows exactly from the previous step by a slicing argument
entirely similar to Step 2 of the proof of Theorem 2.1[ih [2]; we omit the details. O

From the previous theorem and Theofem .12 we deduce the following result:

Theorem 5.6. Let f : R — R be a Lipschitz continuous function. Assume that the
set>/ is not purelyH1-unrectifiable. Then there exists a coordinate systerdrfor
which the classical chain rulgs.2) fails in BVioc(RY; R?). Hence a necessary and suf-
ficient condition for the chain ruI@) to hold in BVioc(RY ; RY) with respect to every
coordinate system is that/ is purelyH -unrectifiable.
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