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Abstract. We prove necessary and sufficient conditions for the validity of the classical chain rule
in the Sobolev spaceW1,1

loc (R
N

; Rd ) and in the spaceBVloc(RN ; Rd ) of functions of bounded
variation.
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1. Introduction

The purpose of this paper is to settle a classical problem in the theory of Sobolev spaces,
namely the validity of the chain rule inW1,1

loc (�; Rd) in the vectorial cased > 1. Since
the problem is local, in the rest of the paper we assume, without loss of generality, that
� = RN .

In 1979 Marcus and Mizel [17] proved that given a Borel functionf : Rd → R, the
superposition operator

u 7→ f ◦ u

mapsW1,1
loc (R

N
; Rd) intoW1,1

loc (R
N ) if and only iff is Lipschitz continuous (resp. locally

Lipschitz if N = 1). Sincef ◦ u ∈ W
1,1
loc (R

N ) the next step is to find a formula for the
partial derivatives off ◦ u.

In the scalar case, that is, whend = 1, the problem has been completely solved in
W

1,1
loc (R

N ) by Serrin [21] in an unpublished paper (see also [23], [7] and [15]), where he
showed that iff : R → R is a Lipschitz continuous function, then for every function
u ∈ W

1,1
loc (R

N ),

∇(f ◦ u)(x) = f ′(u(x))∇u(x) for LN -a.e.x ∈ �, (1.1)
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where the right side of (1.1) is always well defined providedf ′(u(x))∇u(x) is interpreted
to be zero whenever∇u(x) = 0, irrespective of whetherf ′(u(x)) is defined. The validity
of (1.1) relies on the fact that by Rademacher’s theorem the set

6f := {u ∈ R : f ′(u) does not exist}

isL1-null and hence, by a result of Serrin and Varberg [22],

∇u(x) = 0 forLN -a.e.x ∈ u−1(6f ), (1.2)

for everyu ∈ W
1,1
loc (R

N ).
The situation is significantly more complicated in the vectorial case, namely when

f : Rd → R is a Lipschitz continuous function withd > 1. In this case, if we fix a basis
{e1, . . . , ed} in Rd (not necessarily orthonormal) then the analog of (1.1) becomes1

∂

∂xj
(f ◦ u)(x) =

d∑
i=1

∂f

∂ei
(u(x))

∂ui

∂xj
(x), (1.3)

where ∂f
∂ei
(u(x))

∂ui
∂xj
(x) is interpreted to be zero whenever∂ui

∂xj
(x) = 0.

By Rademacher’s theorem the set

6f := {u ∈ Rd : f is not differentiable atu} (1.4)

is Ld -null, but the analog of(1.2) is false in general. Hence the right hand side of (1.3)
may be nowhere defined. Indeed, letd = 2, N = 1, and consider the functions (cf. [15])
f (u) := max{u1, u2} andu(x) := (x, x) for x ∈ R. Thenv(x) := (f ◦u)(x) = x so that
v′(x) = 1 while the right hand side of (1.3) is nowhere defined sinceu′(x) = (1,1).

Nevertheless, as shown by Ambrosio and Dal Maso [2], the following weaker form of
the chain rule holds for any Lipschitz continuous functionf : Rd → R:2

Theorem 1.1. Let f : Rd → R be a Lipschitz continuous function. Then for every
functionu ∈ W

1,1
loc (R

N
; Rd) the composite functionv = f ◦ u belongs toW1,1

loc (R
N ) and

for LN -a.e.x ∈ RN the restriction of the functionf to the affine space

T ux := {w ∈ Rd : w = u(x)+ ∇u(x)z for somez ∈ RN }

is differentiable atu(x) and

∇(f ◦ u)(x) = ∇u(f |T ux )(u(x))∇u(x). (1.5)

1 Here for everyu ∈ Rd we writeu = u1e1 + · · · + uded .
2 Theorem 1.1 follows from a more general version for functions of bounded variation. We refer

to [2] for the precise statement.
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An alternative proof of the previous result whenf is a “piecewise”C1 function has been
given in [19], where using the special structure off it is possible to give an explicit
formula for the right hand side of (1.5).

Theorem 1.1 leaves us with an important open problem: to establish under which
additional conditions on the functionf the right side of (1.5) coincides with the right side
of (1.3), in other words, tofind necessary and sufficient conditions onf for the classical
chain rule(1.3) to hold.To be precise, when we say that (1.3) holds for a functionu ∈

W
1,1
loc (R

N
; Rd), we also mean that the partial derivative∂f/∂ei exists atu(x) for LN -a.e.

x in the set where∂ui/∂xj does not vanish.
The main purpose of this paper is to thoroughly investigate the relation between the

validity of the chain rule (1.3) and the structure of the singular set6f (defined in (1.4))
of the Lipschitz continuous functionf .

It is clear from the definition that (1.3) depends on the choice of basis inRd . To
illustrate this, we begin by considering the special cased = 2. Fix a basis{e1, e2} in R2

not necessarily orthonormal and letf : R2
→ R be a Lipschitz continuous function.

It turns out that the classical chain rule (1.3) holds if and only if the singular set6f

has a one-dimensional “rectifiable” part only in the directions{e1, e2}. Precisely, we prove
the following result:

Theorem 1.2. The classical chain rule(1.3) holds inW1,1
loc (R

N
; R2) with respect to the

coordinate system{e1, e2} if and only if for everyH1-rectifiable setE ⊂ 6f and for
H1-a.e.u ∈ E either

Tan1(E, u) = span{e1} or Tan1(E, u) = span{e2}. (1.6)

Here Tan1(E, u) is the approximate tangent space to the setE at the pointu. The deeper
part of the result is the necessary condition, whose proof relies on some new differentia-
bility results for Lipschitz functions (see Theorems 3.1 and 3.3 below), inspired by recent
work of Bessis and Clarke [6]. We recall that anHk-measurable setE ⊂ Rd is called
(countably)Hk-rectifiable,0 ≤ k ≤ d, if there exists a sequence of Lipschitz functions
wn : Rk → Rd such that

Hk
(
E \

∞⋃
n=1

wn(Rk)
)

= 0.

The analog of condition (1.6) is still sufficient whend ≥ 3. Indeed, we show:

Theorem 1.3. Letf : Rd → R be a Lipschitz continuous function, and let{e1, . . . , ed}

be a basis inRd . Assume that for every countablyH1-rectifiable setE ⊂ 6f and for
H1-a.e.u ∈ E, there existsi = 1, . . . , d depending onu such that

Tan1(E, u) = span{ei}. (1.7)

Then the classical chain rule(1.3)holds inW1,1
loc (R

N
; Rd) with respect to the coordinate

system{e1, . . . , ed}.
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Condition (1.7) is no longer necessary whend ≥ 3 since in this case the chain rule may
hold for Lipschitz functions whose singular set isHk-rectifiable with 1≤ k ≤ d − 2.

Indeed, we can prove the following result:

Theorem 1.4. Let {e1, . . . , ed} be an orthonormal basis and letE ⊂ Rd , d ≥ 3, be an
Hd−2-rectifiable Borel set. Then there exists a Lipschitz continuous functionf : Rd → R
such that6f ⊂ E andHd−2(E \ 6f ) = 0, and for which the chain rule holds in
W

1,1
loc (R

N
; Rd) for anyN ∈ N with respect to the coordinate system{e1, . . . , ed}.

It is actually possible to constructf in such a way that the chain rule holds in
W

1,1
loc (R

N
; Rd) with respect toany finite family of basesin Rd .

Note that the casek = d − 2 represents the worst possible situation. Indeed, we can
prove that a necessary (but not sufficient) condition for the validity of the chain rule in
W

1,1
loc (R

N
; Rd) is that for everyHd−1-rectifiable setE ⊂ 6f and forHd−1-a.e.u ∈ E,

there existsi = 1, . . . , d − 1 depending onu such that

Tand−1(E, u) = span{{e1, . . . , ed} \ {ei}}.

Nevertheless, we show that this condition becomes necessary and sufficient for the valid-
ity of the chain rule in the smaller classAd−1(RN ; Rd) of all functionsu∈W

1,1
loc (R

N
; Rd)

such that rank(∇u(x)) is either zero or greater than or equal tod − 1 forLN -a.e.x ∈ RN
(see Theorem 4.1 below). Note thatA1(RN ; R2) = W

1,1
loc (R

N
; R2) so that in particular

we recover Theorem 1.2.
It is important to remark again that all the results presented so far depend on the

particular choice of the coordinate system{e1, . . . , ed}. We next address the case where
the chain rule holds with respect to every coordinate system. In this case Theorem 1.2
clearly indicates that a necessary condition is that the singular set has noH1-rectifiable
part, that is, it ispurelyH1-unrectifiable.

Indeed, the second main result of the paper is given by the following theorem:

Theorem 1.5. Let f : Rd → R be a Lipschitz continuous function. Then a necessary
and sufficient condition for the chain rule(1.3) to hold inW1,1

loc (R
N

; Rd) with respect to
every coordinate system inRd is that6f is purelyH1-unrectifiable.

We remark that the sufficiency part of the theorem was already known (see [15]–[17]),
while the necessity part, which in our opinion is the most interesting, is completely new.
Note that in the two-dimensional case the conclusion of the theorem follows directly
from Theorem 1.2, whereas in the higher dimensional case the proof is significantly more
involved.

A similar result holds in the classAk(RN ; Rd) of all functions u in the space
W

1,1
loc (R

N
; Rd) such that rank(∇u(x)) is either zero or greater than or equal tok for LN -

a.e.x ∈ RN . In this case the appropriate necessary and sufficient condition is the pure
Hk-unrectifiability of the singular set6f . More precisely, we can show the following:
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Theorem 1.6. Let f : Rd → R be a Lipschitz continuous function, let1 ≤ k ≤

min{N, d}. Then a necessary and sufficient condition for the chain rule(1.3) to hold
in Ak(RN ; Rd) with respect to every coordinate system is that6f is purelyHk-un-
rectifiable.

The final part of the paper is devoted to the extension of some of the results presented
above to the space of functions of bounded variation. More precisely, we prove neces-
sary and sufficient conditions for the validity of the classical chain rule in the space of
functions of bounded variationBVloc(RN ; Rd).

Besides the intrinsic interest of these results, we hope that the techniques introduced
in this paper will be useful in the study of transport equations and hyperbolic systems of
conservation laws in several space dimensions, where one is often led to the problem of
justifying some kind of chain rule for functions with low regularity, and for which there
has been a remarkable and renewed interest in the last few years (see e.g. [3] and [8]).

2. Preliminaries

In this section we collect some preliminary results which will be used in the sequel. We
start with some notation. HereLk andHk are, respectively, thek-dimensional Lebesgue
measure and thek-dimensional Hausdorff measure in Euclidean spaces. We denote by
Sd−1 the unit sphere inRd . Givenf : Rd → R, for everyu, v ∈ Rd the directional
derivative∂f

∂v
(u) is defined by

∂f

∂v
(u) := lim

t→0

f (u+ tv)− f (u)

t
.

Given a basis{e1, . . . , ed} in Rd we denote by(u1, . . . , ud) the components of a given
u ∈ Rd , that is,

u = u1e1 + · · · + uded .

The directional derivatives in the directionei are also denoted∂f
∂ui
(u). If all the derivatives

∂f
∂ui
(u) exist atu ∈ Rd , we define the vector∇f (u) ∈ Rd by

∇f (u) :=

(
∂f

∂u1
(u), . . . ,

∂f

∂ud
(u)

)
.

Of course, the existence of∇f (u) does not imply the differentiability off at u when
d > 1.

For 1≤ k < d we shall use the standard notation for ordered multi-indices:

I (k, d) := {α = (α1, . . . , αk) ∈ Nk : 1 ≤ α1 < · · · < αk ≤ d}.

If α ∈ I (k, d) we denote bȳα ∈ I (d − k, d) the multi-index which complementsα in
{1, . . . , d} in the natural increasing order.
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With an abuse of notation we write

u = (uα, uᾱ) ∈ Rk × Rd−k,

whereuα := (uα1, . . . , uαk ) anduᾱ := (uᾱ1, . . . , uᾱd−k ).
Givenf : Rd → R, we define

∇αf :=

(
∂f

∂uα1

, . . . ,
∂f

∂uαk

)
, ∇ᾱf :=

(
∂f

∂uᾱ1

, . . . ,
∂f

∂uᾱd−k

)
.

Next we introduce some basic ingredients in geometric measure theory that will be
useful in the rest of the paper. We refer to [4], [14] and [18] for more details.

An Hk-measurable setE ⊂ Rd is called(countably)Hk-rectifiable,0 ≤ k ≤ d, if
there exists a sequence of Lipschitz functionswn : Rk → Rd such that

Hk
(
E \

∞⋃
n=1

wn(Rk)
)

= 0.

It can be shown thatE is Hk-rectifiable if and only there exists a sequence{Mn} of k-
dimensionalC1 manifolds such that

Hk
(
E \

∞⋃
n=1

Mn

)
= 0. (2.1)

Moreover, ifE is Hk-rectifiable then it admits an approximate tangent space (see Def.
2.86 in [4]), which we denote by Tank(E, u), for Hk-a.e.u ∈ E, and it can be shown
that forHk-a.e.u ∈ E ∩Mn the approximate tangent space toE atu coincides with the
tangent space to the manifoldMn atu, that is,

Tank(E, u) = Tank(Mn, u). (2.2)

We refer to [4] for more details.
Let f : Rd → R be Lipschitz and letM ⊂ Rd be ak-manifold of classC1. We

say thatf is tangentially differentiableat u ∈ M if the restriction to the affine space
u+ Tank(M, u) is differentiable atu. The tangential differential, denoted bydMf (u), is
a linear map between the space Tank(M, u) andR.

Remark 2.1. Let f : Rd → R be Lipschitz and letM ⊂ Rd be ak-manifold of class
C1. If f is tangentially differentiable atu ∈ M then for every curve3 γ : (−δ, δ) → Rd
with γ (0) = u andγ ′(0) ∈ Tank(M, u) we have

(f ◦ γ )′(0) = dMf (u)[γ ′(0)].

Indeed, by takingδ smaller if necessary we can write

γ (t) = γ1(t)+ o(t)

whereγ1 : (−δ, δ) → M. Sincef is Lipschitz we have(f ◦ γ )(t) = (f ◦ γ1)(t)+ o(t),
from which the conclusion follows.

3 Note that the support ofγ is not contained inM.
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Theorem 2.2. Let f : Rd → R be Lipschitz and letM ⊂ Rd be ak-manifold of class
C1. Thenf is tangentially differentiable atHk-a.e.u ∈ M.

Proof. For everyu∈M consider a local parametrizationψ :D→M ofM, withψ(0)=u,
whereD ⊂ Rk is an open neighborhood of the origin. By Rademacher’s theorem the func-
tion f ◦ψ is differentiableLk-almost everywhere inD. Using the Lipschitz continuity, it
is easy to see that iff ◦ψ is differentiable atv ∈ D, thenf is tangentially differentiable
atψ(v) ∈ M. Hencef is tangentially differentiableHk-almost everywhere inψ(D). ut

In a similar way we may define tangential differentiability of a Lipschitz functionf at
pointsu ∈ E whereE ⊂ Rd is anHk-rectifiable set, 1≤ k < d. In this case, the
tangential differential, denoted bydEf (u), is a linear map between the space Tank(E, u)

andR. It can be shown thatdEf (u) exists forHk-a.e.u ∈ E.Moreover iff : Rd → Rm
with m ≥ k then the following Generalized Area Formula holds:∫

E

JEk f (u) dH
k(u) =

∫
f (E)

H0(f−1(v) ∩ E) dHk(v), (2.3)

where

JEk f (u) :=
√

det((dEf (u))∗ ◦ dEf (u)),

with (dEf (u))∗ the adjoint ofdEf (u).
AnHk-measurable setE ⊂ Rd is purelyHk-unrectifiableif

Hk(E ∩ w(Rk)) = 0

for any Lipschitz functionw : Rk → Rd .

Theorem 2.3. Consider a setE ⊂ Rd of finiteHk measure. ThenE can be decom-
posed into the disjoint union of a BorelHk-rectifiable setEk- rect and of a purelyHk-
unrectifiable setEk- unrect. The decomposition is unique, up to sets ofHk measure zero.

PurelyHk-unrectifiable sets with finite (orσ -finite) Hk measure may be characterized
in a simple way by virtue of the Structure Theorem of Besicovitch–Federer (see [18]).
In what follows for 0< k < d we denote byγd,k the Haar measure defined on the
Grassmannian manifoldG(d, k) of all k-dimensional planes inRd (see [18]). We identify
each elementL ∈ G(d, k) with the orthogonal projectionπL : Rd → L.

Theorem 2.4 (Structure Theorem). LetE ⊂ Rd be anHk-measurable set withHk(E)
< ∞. Then

(i) E isHk-rectifiable if and only if

Hk(πLE1) > 0 for γd,k-a.e.L ∈ G(d, k),

for all Hk-measurable subsetsE1 ofE withHk(E1) > 0.
(ii) E is purelyHk-unrectifiable if and only if

Hk(πLE) = 0 for γd,k-a.e.L ∈ G(d, k).
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Remark 2.5. If 0 is a rectifiable curve on the planeR2 then it may be proved that any
H1-measurable subset of0 with positiveH1 measure can project into a set of length zero
in at most one direction. Hence ifE ⊂ R2 is H1-measurable withH1(E) < ∞ and if
there exist two linesL,L1 ∈ G(2,1) such thatH1(πLE) = H1(πL1E) = 0 thenE is
purelyH1-unrectifiable. From the previous theorem we then deduce thatH1(πLE) = 0
for γ2,1-a.e.L ∈ G(2,1).

Next we present some simple properties of the differentiability of Lipschitz functions.
It is well known that if a functionf is differentiable at some point, say the origin, then
necessarily

• f is continuous at 0;
• the directional derivatives∂f

∂v
(0) exist for everyv ∈ Sd−1;

• for everyv ∈ Sd−1,

∂f

∂v
(0) =

d∑
i=1

∂f

∂ei
(0)vi . (2.4)

These properties are in general not sufficient to guarantee differentiability at 0. Indeed the
functionf : R2

→ R defined by

f (v1, v1) :=

{
v1 if v2 = (v1)

2,

0 otherwise,

is clearly continuous at 0, ∂f
∂v
(0) = 0 for everyv ∈ Sd−1, but f is not differentiable at

the origin.
The situation is quite different if the functionf is Lipschitz continuous, as in this

case it is easy to verify that if (2.4) holds for everyv in a dense subset ofSd−1 thenf is
differentiable at the origin. More precisely we have:

Proposition 2.6. Letf : Rd → R be a Lipschitz function. Then the following conditions
are equivalent:

(1) f is differentiable at0;

(2) there exists a linear operatorL : Rd → R such that the limit

lim
h→0+

f (hν)− f (0)

h
= L(ν)

exists for allν in a countable dense subset ofRd ;
(3) there exists a countable dense familyB of orthonormal bases such that

d∑
i=1

∂f

∂ei
(0)ei =

d∑
i=1

∂f

∂εi
(0)εi

for any two bases{e1, . . . , ed} and{ε1, . . . , εd} in B.

Finally, the following Lusin-type theorem holds (see [14]):
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Theorem 2.7. Letu ∈ W1,1(RN ). Givenλ > 0, there exist a closed setCλ and a function
vλ ∈ C1(RN ) such thatu = vλ and∇u = ∇vλ onCλ, and

|RN \ Cλ| ≤
C(N, d)

λ
‖u‖W1,1(RN ), ‖vλ‖W1,∞ ≤ λ.

Moreover,

‖vλ‖W1,∞(RN )|R
N

\ Cλ| → 0, ‖u− gλ‖W1,1 → 0 asλ → ∞.

3. Differentiability criteria for Lipschitz functions

In this section we prove some differentiability criteria for Lipschitz functions.

Theorem 3.1. Let f : Rd → R, d > 1, be a Lipschitz function, let{e1, . . . , ed} be a
basis inRd and let1 ≤ k < d. Then the following two conditions are equivalent:

(1) for everyα ∈ I (k, d) the set

6fα := {u = (uα, uᾱ) ∈ Rk × Rd−k : f (uα, ·) is not differentiable atuᾱ} (3.1)

is purelyHk-unrectifiable;
(2) the singular set

6f := {u ∈ Rd : f is not differentiable atu} (3.2)

is purelyHk-unrectifiable.

Proof. The implication(2)⇒(1) is trivial. To prove the converse, letM ⊂ Rd be a
k-manifold of classC1. We claim that

Hk(M ∩6f ) = 0.

Fix u0 ∈ M ∩ 6f . By the implicit function theorem, we can find an open neighborhood
U of u0 such that

M ∩ U ⊂ {u = (uα, uᾱ) ∈ Rk × Rd−k : uᾱ = ϕ(uα)}

for someϕ : Rk → Rd−k of classC1 and for someα ∈ I (k, d). To prove the claim it is
enough to show that

Hk(M ∩6f ∩ U) = 0.

By hypothesis (1), forHk-a.e.(uα, ϕ(uα)) ∈ Rk × Rd−k, the functionf (uα, ·) is differ-
entiable atϕ(uα). Since the projection is Lipschitz continuous, it follows that forLk-a.e.
uα ∈ Rk, the functionf (uα, ·) is differentiable atϕ(uα). Consider the change of vari-
ablesh : Rk × Rd−k → Rk × Rd−k given by

(uα, uᾱ) 7→ (wα, wᾱ) := (uα, uᾱ − ϕ(uα)),
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define the functiong : Rk × Rd−k → R by

g(wα, wᾱ) := f (wα, ϕ(wα)+ wᾱ),

and letL > 0 denote its Lipschitz constant. It is clear that

Lk({wα ∈ Rk : the functiong(wα, ·) is not differentiable at 0}) = 0. (3.3)

We claim that

Lk({wα ∈ Rk : the functiong is not differentiable at(wα,0)}) = 0. (3.4)

Fix ν = (να, νᾱ) ∈ Sd−1, r ∈ R, andn ∈ N. Following [6] we define the set

C(ν, r, n) :=

{
wα ∈ Rk :

g(wα, tνᾱ)− g(wα,0)

t
> r

> ∂νg(wα,0)− dαg(wα,0)(να) for all t ∈ (0,1/n)

}
,

where

∂νg(wα,0) := lim inf
s→0+

g(wα + sνα, sνᾱ)− g(wα,0)

s
,

anddαg(wα,0) denotes the differential of the functiong(·,0) at the pointwα, which
exists forLk-a.e.wα ∈ Rk, by Rademacher’s theorem and the fact thatg is Lipschitz.

We claim that for everywα ∈ C(ν, r, n) there exist a constantλ ∈ (0,1) and a
sequencetj ↘ 0 such that

Bk(wα + tjνα, λtj ) ∩ C(ν, r, n) = ∅, (3.5)

whereBk(wα, ρ) denotes the open ball inRk with centerwα and radiusρ. The proof of
the claim follows closely the argument of Bessis and Clarke (see [6]). We present it here
for the convenience of the reader. Fixwα ∈ C(ν, r, n) and lettj ↘ 0 be such that

∂νg(wα,0) = lim
j→∞

g(wα + tjνα, tjνᾱ)− g(wα,0)

tj
.

By definition ofC(ν, r, n) we can find 0< δ < 2L such that for allj sufficiently large,

r > 2δ + ∂νg(wα,0)− dαg(wα,0)(να)

> δ +
g(wα + tjνα, tjνᾱ)− g(wα,0)

tj
−
g(wα + tjνα,0)− g(wα,0)

tj

= δ +
g(wα + tjνα, tjνᾱ)− g(wα + tjνα,0)

tj
, (3.6)

while for zα ∈ C(ν, r, n) we have

g(zα, tjνᾱ)− g(zα,0)

tj
> r
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for all tj < 1/n. Combining this inequality with (3.6) we obtain

δ <
g(zα, tjνᾱ)− g(wα + tjνα, tjνᾱ)

tj
+
g(wα + tjνα,0)− g(zα,0)

tj

≤
2L

tj
|zα − (wα + tjνα)|,

which gives (3.5) withλ := δ/(2L).
Let nowwα ∈ C(ν, r, n) be a Lebesgue point for the characteristic functionχC(ν,r,n).

Since
Bk(wα + tjνα, λtj ) ⊂ Bk(wα,2tj ),

by (3.5) we have

0 = 1 − χC(ν,r,n)(wα) = lim
j→∞

(
1 −

Lk(Bk(wα,2tj ) ∩ C(ν, r, n))

Lk(Bk(wα,2tj ))

)
= lim
j→∞

Lk(Bk(wα,2tj ) \ C(ν, r, n))

Lk(Bk(wα,2tj ))

≥ lim sup
j→∞

Lk(Bk(wα + tjνα, λtj ) \ C(ν, r, n))

Lk(Bk(wα,2tj ))

= lim sup
j→∞

Lk(Bk(wα + tjµα, λtj ))

Lk(Bk(wα,2tj ))
=

(
λ

2

)k
,

which is clearly a contradiction. Hence

Lk(C(ν, r, n)) = 0. (3.7)

LetE ⊂ Sd−1 be a countable dense set. In view of (3.7) the set

{wα ∈ Rk : ∇g(wα,0) · ν > ∂νg(wα,0) for all ν ∈ E} ⊆

⋃
ν∈E

⋃
r∈Q

⋃
n∈N

C(ν, r, n)

has zeroLk measure. By applying the same argument to the function−g and taking into
account (3.3), forLk-a.e.wα ∈ Rk we obtain

∇g(wα,0) · ν = ∂νg(wα,0) for all ν ∈ E.

Using now the fact thatg is Lipschitz and Proposition 2.6 yields (3.4). Since

f (uα, uᾱ) = (g ◦ h)(uα, uᾱ),

andϕ is of classC1 we have

Hk(M ∩6f ∩ U) ≤ Hk(h−1
{(wα,0) : wα ∈ Rk} ∩6f )

≤ Lip(h−1)Hk({(wα,0) : wα ∈ Rk} ∩6g)

= Lip(h−1)Lk({wα ∈ Rk : (wα,0) ∈ 6g}) = 0,
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where
6g := {w ∈ Rd : g is not differentiable atw}.

This concludes the proof. ut

Remark 3.2. From the proof of the previous theorem it is clear that ifM ⊂ Rd is a
k-manifold of classC1 and5 is a (d − k)-plane such thatf restricted tou + 5 is
differentiable atu forHk-a.e.u ∈ M and

Tank(M, u)+5 = Rd

for everyu ∈ M, thenf is differentiable atHk-a.e.u ∈ M.

For the applications to the chain rule in Sobolev spaces we will need the following
variant of the previous theorem.

Theorem 3.3. Let f : Rd → R, d > 1, be a Lipschitz function, let{e1, . . . , ed} be
a basis inRd and let 1 ≤ k < d. Assume that for everyα ∈ I (k, d) and for every
Hk-rectifiable setE ⊂ 6

f
α , where6fα is the set defined in(3.1), we have

Tank(E, u) = span{eα1, . . . , eαk } (3.8)

for Hk-a.e.u ∈ E. Then for everyHk-rectifiable setE ⊂ 6f and forHk-a.e.u ∈ E,
there existsα ∈ I (k, d) depending onu such that(3.8)holds.

Proof. Fix anHk-rectifiable setE ⊂ 6f . By (2.1) and (2.2), we may assume, without
loss of generality, thatE ⊂ M, whereM is ak-manifold of classC1, and that

Tank(E, u) = Tank(M, u)

for all u ∈ E. Thus to prove the theorem it suffices to show that the set

E1 := {u ∈ E : Tank(M, u) 6= span{eα1, . . . , eαk } for everyα ∈ I (k, d)}

hasHk measure zero. Fixu ∈ E1. SinceM is of classC1, we may find an open neigh-
borhoodU of u such that

Tank(M, z) 6= span{eα1, . . . , eαk } (3.9)

for all z ∈ M ∩ U and for everyα ∈ I (k, d). It is enough to show that

Hk(6f ∩M ∩ U) = 0.

By hypothesis, it follows from (3.9) that

Hk(6fα ∩M ∩ U) = 0

for everyα ∈ I (k, d). We can now continue as in the proof of Theorem 3.1. ut
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Remark 3.4. We remark that ifk = 1 then condition (3.8) is equivalent to the following
one: for everyα ∈ I (1, d) and for everyH1-rectifiable setE ⊂ 6

f
α we have

H1(5ᾱ(E)) = 0, (3.10)

where5ᾱ : Rd → Rd−1 is the projection defined by

u = (uα, uᾱ) 7→ uᾱ.

This follows from the Generalized Area Formula (2.3)∫
E

J15ᾱ(u) dH1(u) =

∫
5α(E)

H0(5−1
ᾱ (v) ∩ E) dH1(v). (3.11)

A simple calculation shows that

J15ᾱ(u) = |(τ (u))ᾱ|, (3.12)

whereτ(u) is the tangent unit vector toE atu.
Assume now that (3.10) holds. Then from (3.11) and (3.12) we have∫

E

|(τ (u))ᾱ| dH1(u) = 0,

which implies that(τ (u))ᾱ = 0 forH1-a.e.u ∈ E, that is, (3.8). Conversely, if (3.8) is
satisfied then(τ (u))ᾱ = 0 forH1-a.e.u ∈ E, and therefore∫

5ᾱ(E)

H0(5−1
ᾱ (v) ∩ E) dH1(v) = 0.

SinceH0(5−1
ᾱ (v) ∩ E) ≥ 1 for everyv ∈ 5ᾱ(E), we deduce that (3.10) holds.

4. Chain rule in W1,1
loc (R

N
; Rd)

In this section we prove the main results of the paper, namely we give sufficient and
necessary conditions for the validity of the chain rule inW1,1

loc (R
N

; Rd). We begin by
studying the validity of the chain rule with respect to a fixed basis{e1, . . . , ed} in Rd . We
recall thatAk(RN ; Rd) is the class of all functionsu in the spaceW1,1

loc (R
N

; Rd) such
that rank(∇u(x)) is either zero or greater than or equal tok for LN -a.e.x ∈ RN .

Theorem 4.1. Let f : Rd → R be a Lipschitz continuous function, let{e1, . . . , ed} be
a basis inRd , and let 1 ≤ k ≤ min{N, d}. Assume that for everyHk-rectifiable set
E ⊂ 6f and forHk-a.e.u ∈ E there existsα ∈ I (k, d) depending onu such that

Tank(E, u) = span{eα1, . . . , eαk }. (4.1)

Then the classical chain rule(1.3) holds in the classAk(RN ; Rd) with respect to the
coordinate system{e1, . . . , ed}.

Moreover, ifk = d − 1, then condition(4.1) is also necessary for the validity of(1.3)
in the classAd−1(RN ; Rd).



232 Giovanni Leoni, Massimiliano Morini

Remark 4.2. (i) SinceHd = Ld it follows by Rademacher’s theorem thatHd(6f ) = 0
and so condition(4.1) is automatically satisfied for every Lipschitz functionf. Hence
Theorem 4.1 implies in particular that for any Lipschitz functionf the classical chain
rule always holds inAd(RN ; Rd).

(ii) Note that if6f hasσ -finiteHk measure then in view of Theorem 2.3 it suffices
to verify condition(4.1) for theHk-rectifiable part of6f , that is, for(6f )k- rect.

We begin with some preliminary lemmas.

Lemma 4.3. Under the hypotheses of Theorem4.1 the chain rule holds in the class
Ak(RN ; Rd) if and only if for every functionu ∈ C1(RN ; Rd) it holdsLN -a.e. in the
set

{x ∈ RN : either rank(∇u(x)) ≥ k or ∇u(x) = 0}. (4.2)

Proof. Assume that the chain rule holds in the classAk(RN ; Rd) and letu∈C1(RN ; Rd).
Sincef is Lipschitz, for everyx ∈ RN such that∇u(x) = 0 it is clear that∇(f ◦ u)(x)

= 0, so that the chain rule always holds on the set{x ∈ RN : ∇u(x) = 0}. To prove it in
the setA := {x ∈ RN : rank(∇u(x)) ≥ k} fix x0 ∈ A and letm := rank(∇u(x0)). We
claim that there existsB(x0, r) ⊂⊂ A and a functionv ∈ Ak(RN ; Rd) such thatu ≡ v

onB(x0, r) and rank(∇v) ≥ m in RN . Indeed, it is enough to take

v(x) := ϕ(x)u(x)+ (1 − ϕ(x))(u(x0)+ ∇u(x0)(x − x0))

whereϕ ∈ C1
c (B(x0,2r)) is such thatϕ ≡ 1 onB(x0, r) and‖∇ϕ‖∞ ≤ C/r. Then

∇v(x) = ∇u(x0)+ ϕ(x)(∇u(x)− ∇u(x0))

+ ∇ϕ(x)⊗ (u(x)− u(x0)− ∇u(x0)(x − x0)). (4.3)

Clearly rank(∇v(x)) = m for all x ∈ RN \ B(x0,2r). Sinceu is of classC1 for every
ε > 0 we may findr > 0 so small that

|∇u(x)− ∇u(x0)| ≤ ε, |u(x)− u(x0)− ∇u(x0)(x − x0)| ≤ ε|x − x0|

for all x ∈ B(x0,2r). Hence from (4.3) we obtain

|∇v(x)− ∇u(x0)| ≤ Cε (4.4)

for all x ∈ B(x0,2r).
Findα ∈ I (m,N) andβ ∈ I (m, d) such that, with the usual notationx = (xα, xᾱ) ∈

Rm×RN−m andu = (uβ , uβ̄) ∈ Rm×Rd−m,

det∇αuβ(x0) 6= 0.

Using the inequality

|detA− detB| ≤ C(m)|A− B|(|A|
m−1

+ |B|
m−1),
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which holds forA,B ∈ Rm×m, from (4.3) and (4.4) we obtain

|det∇αvβ(x)− det∇αuβ(x0)| ≤ Cε

for all x ∈ B(x0,2r). By taking ε (and in turnr) sufficiently small, we conclude that
rank(∇v(x)) ≥ m for all x ∈ RN .

To prove the opposite implication assume by contradiction that there exists a function
u ∈ Ak(RN ; Rd) for which the chain rule fails in a setF ⊂ RN of positive measure. By
Theorem 2.7 there exists a functionv ∈ C1(RN ; Rd) which coincides withu in a subset
of F of positive measure. This is clearly a contradiction. ut

Lemma 4.4. Under the hypotheses of Theorem4.1 if 6f contains anHm-rectifiable
subsetE withHm(E) > 0 then, necessarily,m ≤ k.

Proof. Indeed, letE be as above and assume by contradiction thatd > m > k. By
(2.1) and (2.2), we may assume, without loss of generality, thatE ⊂ M, whereM is an
m-dimensional manifold of classC1, and that

Tanm(E, u) = Tanm(M, u)

for all u ∈ E. Clearly,
Hm(M ∩6f ) > 0. (4.5)

After a translation and a rotation, and by takingM smaller if necessary we may assume
that 0 is a point ofHm density 1 inM ∩6f and that

M ⊂ Graphg, (4.6)

where
Graphg := {v = (vβ , vβ̄) ∈ Rm × Rd−m : vβ̄ = g(vβ)},

andg : Rm → Rd−m is a function of classC1 with g(0) = 0, ∇g(0) = 0, andβ =

(1, . . . , m). It is also clear that without loss of generality we may assume that thek-plane

L0 := {v = (v1, . . . , vk,0, . . . ,0) ∈ Rd : v1, . . . , vk ∈ R}

is not a coordinate plane with respect to the old coordinate system{e1, . . . , ed}. Forw =

(wk+1, . . . , wm) ∈ Rm−k letLw andMw denote respectively thek-plane

Lw := {v = (v1, . . . , vk, wk+1, . . . , wm,0, . . . ,0) ∈ Rd : v1, . . . , vk ∈ R}

and thek-manifold
Mw := M ∩ Graph(g|Lw ).

Since Tank(M0,0) = L0, by continuity we can assume that Tank(Mw, u) is not a coordi-
nate plane with respect to the old coordinate system{e1, . . . , ed} for all w ∈ Rm−k and
all u ∈ Mw with |u|, |w| < ε0 for someε0 > 0. To conclude the proof it suffices to show
that there isw ∈ Rm−k with |w| < ε0 such thatHk(Mw ∩ 6f ∩ B(0, ε0)) > 0. Indeed,
this would contradict (4.1).
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By condition(4.5) and by the fact that 0 is a point ofHm density 1 inM ∩ 6f it
follows that the projectionP ofM ∩6f on them-planevβ̄ = 0 has positiveLm measure
and that 0∈ Rm is a point ofLm density 1 forP. By Fubini’s theorem there exists
w = (wk+1, . . . , wm) ∈ Rm−k with |w| < ε0 such thatHk(Lw ∩ P ∩ B(0, ε0)) > 0.
HenceHk(Mw ∩6f ∩ B(0, ε0)) > 0 and the proof is concluded. ut

Lemma 4.5. Letu ∈ W
1,1
loc (R

N
; Rd) and assume that there exists a measurable setF of

positive measure such that
rank(∇u(x)) ≥ k

for all x ∈ F , for some1 ≤ k ≤ min{N, d}. Then there exists ak-dimensional manifold
M ⊂ Rd of classC1 such that

Hk(M ∩ u(F )) > 0.

Proof. As in Lemma 4.3 we may assume without loss of generality thatu ∈ C1(RN ; Rd).
Let x̄ ∈ F be a Lebesgue point for the characteristic functionχF . Since rank(∇u(x̄)) ≥ k

we may findα ∈ I (k,N) andε > 0 such that, with the usual notationx = (xα, xᾱ) ∈

Rk×RN−k,
rank(∇αu(xα, xᾱ)) = k (4.7)

for everyxα ∈ Bk(x̄α, ε) andxᾱ ∈ BN−k(x̄ᾱ, ε). Set

A := Bk(x̄α, ε)× BN−k(x̄ᾱ, ε).

Note that sincēx is a Lebesgue point we have

LN (A ∩ F) > 0. (4.8)

By Fubini’s theorem and (4.8) it is easy to see that there existsx̂ᾱ ∈ BN−k(x̄ᾱ, ε) such
that

Lk({xα ∈ Bk(x̄α, ε) : (xα, x̂ᾱ) ∈ F }) > 0. (4.9)

It is clear that
M := {u(xα, x̂ᾱ) : xα ∈ Bk(x̄α, ε)}

is ak-dimensional manifold such that

Hk(M ∩ u(F )) > 0. ut

As a corollary of the previous lemma we obtain the following characterization of purely
Hk-unrectifiable Borel sets, which can be considered as an extension of a classical result
of Serrin and Varberg [22].

Corollary 4.6. A Borel setE ⊂ Rd is purelyHk-unrectifiable,1 ≤ k ≤ d, if and only if
for everyN ≥ k,

∇u = 0 LN -a.e. inu−1(E)

for everyu ∈ Ak(RN ; Rd).
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Proof. Assume thatE ⊂ Rd is purelyHk-unrectifiable. We claim that

LN (u−1(E) ∩ {∇u 6= 0}) = 0 (4.10)

for everyu ∈ Ak(RN ; Rd). Indeed, ifLN (u−1(E) ∩ {∇u 6= 0}) > 0 for someu ∈

Ak(RN ; Rd) then, since rank(∇u) ≥ k LN -a.e. inu−1(E) ∩ {∇u 6= 0}, by the previous
lemma, we may find ak-dimensional manifoldM ⊂ Rd such that

Hk(M ∩ E) > 0,

which contradicts the fact thatE is purelyHk-unrectifiable.
Conversely, assume that (4.10) holds and letM ⊂ Rd be ak-dimensional manifold.

We claim that
Hk(M ∩ E) = 0.

If not then we can find a local parametrizationψ : D ⊂ Rk → M of classC1 such that

Hk(ψ(D) ∩ E) > 0 and rank(∇u) = k.

This implies thatLk(D ∩ ψ−1(E)) > 0. Reasoning as in the first part of the proof of
Lemma 4.3, without loss of generality we may assume thatψ ∈ Ak(Rk; Rd) and thus we
have a contradiction to (4.10). ut

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1.By Lemma 4.3 it suffices to prove that for everyu ∈ C1(RN ; Rd)
the chain rule holdsLN -a.e. in the set

{x ∈ RN : either rank(∇u(x)) ≥ k or ∇u(x) = 0}.

Sincef is Lipschitz it is clear that

∂

∂xj
(f ◦ u)(x) = 0 whenever ∇u(x) = 0.

Moreover, ifu(x) /∈ 6f then there is nothing to prove. Hence it remains to show the
chain rule in the set

Rk := u−1(6f ) ∩ {x ∈ RN : rank(∇u(x)) ≥ k}. (4.11)

We claim that forLN -a.e.x ∈ Rk the rank of∇u(x) is k. Indeed, if this is not the case
then there exist a setF ⊂ Rk with LN (F ) > 0 andm > k such that rank(∇u(x)) = m

in F . Then by Lemma 4.5 there exists anm-dimensional manifoldM ⊂ Rd of classC1

such that
Hm(M ∩6f ) > 0,

which contradicts Lemma 4.4.
Next we prove that forLN -a.e.x ∈ Rk the affine space

T ux := {w ∈ Rd : w = u(x)+ ∇u(x)v for somev ∈ RN }
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is parallel to a coordinatek-plane. For everȳx ∈ Rk there existsβ ∈ I (k,N) such
that rank(∇βu(x̄)) = k. Sinceu is of classC1 it follows that rank(∇βu(x)) = k for all
x ∈ A := Bk(x̄β , ε)×BN−k(x̄β̄ , ε) for someε > 0. By the previous claim it follows that

for LN -a.e.x ∈ Rk ∩ A,

T ux = {w ∈ Rd : w = u(x)+ ∇βu(x)v for somev ∈ Rk}.

Therefore by Fubini’s theorem, forLN−k-a.e.z ∈ BN−k(x̄β̄ , ε),

u(y, z)+ Tank(Mz, u(y, z)) = T u(y,z) (4.12)

for Lk-a.e.y ∈ Bk(x̄β , ε) such that(y, z) ∈ Rk, whereMz is thek-dimensional manifold

Mz := {u(y, z) : y ∈ Bk(x̄β , ε)}.

Fix z ∈ BN−k(x̄β̄ , ε) for which (4.12) holds. By the assumption (4.1) it follows that for

Lk-a.e.y ∈ Bk(x̄β , ε) with (y, z) ∈ Rk there existsα ∈ I (k, d) such that

T u(y,z) = u(y, z)+ span{eα1, . . . , eαk }. (4.13)

Moreover by Theorem 2.2 we may assume that for the same set ofy’s there exists the
tangential differentialdMzf (u(y, z)). Hence, by Remark 2.1 applied to the curveγ (t) :=
u(x + tej ), by (4.12), and (4.13), for all such pointsx = (y, z) we have

∂

∂xj
(f ◦ u)(x) = dMzf (u(x))

[
∂u

∂xj
(x)

]
=

k∑
i=1

∂f

∂uαi
(u(x))

∂uαi

∂xj
(x),

which, since by (4.13)

∂ul

∂xj
(x) = 0 for all l /∈ {α1, . . . , αk},

implies that the chain rule holds forLk-a.e.y ∈ Bk(x̄β , ε) with x = (y, z) ∈ Rk. As this
is true forLN−k-a.e.z ∈ BN−k(x̄β̄ , ε), the proof of the first part of the theorem follows
from Fubini’s theorem.

Finally, we show that ifk = d − 1, then condition(4.1) is also necessary for the
classical chain rule to hold in the classAd−1(RN ; Rd). By Theorem 3.3 it is enough to
show that for everyα ∈ I (d − 1, d) and for everyHd−1-rectifiable setF ⊂ 6

f
α , where

6fα := {u ∈ Rd : ∂f/∂uᾱ does not exist atu},

we have
Tand−1(F, u) = span{eα1, . . . , eαd−1} (4.14)

forHd−1-a.e.u ∈ F.

Assume by contradiction that there existα ∈ I (d − 1, d) and a(d − 1)-dimensional
manifoldM ⊂ Rd such that

Hd−1(M ∩6fα ) > 0
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and (4.14) fails on a subsetE ⊂ M ∩6
f
α withHd−1(E) > 0. Consider a local parametr-

izationψ : Rd−1
⊃ D → M of classC1 such that

Hd−1(ψ(D) ∩ E) > 0 (4.15)

and
rank(∇ψ) = d − 1 (4.16)

in D. Since (4.14) fails inE we have

∇ψᾱ 6= 0 inψ−1(E). (4.17)

Reasoning as in the first part of the proof of Lemma 4.3, without loss of generality we
may assume thatψ ∈ Ad−1(Rd−1

; Rd). Let

u(x) := ψ(x1, . . . , xd−1), x ∈ RN . (4.18)

Thenu ∈ Ad−1(RN ; Rd) and by (4.17),

∇uᾱ 6= 0 inψ−1(E)× RN−d+1,

while by (4.15), (4.16) we haveLN (ψ−1(E)× RN−d+1) > 0. Hence in this set the chain
rule fails since by definition of6fα the partial derivative∂f/∂uᾱ does not exist atu(x).

ut

The previous proof implies:

Corollary 4.7. Let F be a Borel subset ofRd and letα ∈ I (k, d). Then the following
two conditions are equivalent:

(i) for everyHk-rectifiable subsetE ⊂ F and forHk-a.e.u ∈ E we have

Tank(E, u) = span{eα1, . . . , eαk }; (4.19)

(ii) for everyu ∈ Ak(RN ; Rd) and forLN -a.e.x ∈ u−1(F ) we have∇uᾱ(x) = 0.

Corollary 4.8. Let f : R2
→ R be a Lipschitz continuous function and let{e1, e2} be

a basis inR2. Then the classical chain rule holds inW1,1
loc (R

N
; R2) with respect to the

coordinate system{e1, e2} if and only if for everyH1-rectifiable setE ⊂ 6f and for
H1-a.e.u ∈ E either

Tan1(E, u) = span{e1} or Tan1(E, u) = span{e2}. (4.20)

Remark 4.9. By Remark 3.4 condition(4.20) is equivalent to requiring that for all
H1-rectifiable setsEi ⊂ 6

f
i , i = 1,2,

H1(51(E2)) = 0 and H1(52(E1)) = 0

where5i : R2
→ R is the projectionu = (u1, u2) 7→ ui, and we recall that

6
f
i := {u ∈ R2 : ∂f/∂ei does not exist atu}.
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If k < d − 1, then condition(4.1) is not necessary for the validity of the chain rule,
as the following theorem shows:

Theorem 4.10. Let {e1, . . . , ed} be a basis and letE ⊂ Rd , d ≥ 3, be anHd−2-
rectifiable Borel set. Then there is a bounded Lipschitz continuous functionf : Rd → R
such that6f ⊂ E andHd−2(E \ 6f ) = 0, and for which the chain rule holds in
W

1,1
loc (R

N
; Rd) for anyN ∈ N with respect to the coordinate system{e1, . . . , ed}.

Proof. For simplicity we assume that{e1, . . . , ed} is an orthonormal basis.

Step 1. Assume first thatE is a compact set contained in

{u ∈ Rd : ϕ(u) = 0},

whereϕ : Rd → R2 is a function of classC1 with rank(∇ϕ) = 2 in E. We show that
for everyu0 ∈ E it is possible to construct a bounded Lipschitz continuous functionf

such that6f = E ∩ B(u0, r) for some smallr and for which the chain rule holds. For
simplicity we also assume that the vectors

∂ϕ
∂ui

|
∂ϕ
∂ui

|
, i = 1, . . . , d,

are all distinct. The general case can be treated similarly.
Consider a bounded Lipschitz continuous functiong : R3

→ R such thatg ∈

C1(R3
\ {0}), g(·, ·,0) is not differentiable at the origin but admits all directional deriva-

tives,
∂g

∂v
(0) = ∇g(0) · v (4.21)

for all v ∈ (
⋃d
i=13i)× {0} where

3i := {w = (cosθ, sinθ) : |θ − θi | < ε, |θ + θi | < ε},

θi are the angles corresponding to the vectors∂ϕ
∂ui
(u0), andε is chosen so small that the

sets3i are pairwise disjoint.4 Sinceϕ is of classC1, for r sufficiently small we have

∂ϕ
∂ui
(u)

|
∂ϕ
∂ui
(u)|

∈ 3i (4.22)

for all u ∈ B(u0, r).

4 An example of a function satisfying all the desired properties is given by

g(x, y, z) :=

{
x2y3 ∏d

i=1(y cos(θi+ε)−x sin(θi+ε))2(y cos(θi−ε)−x sin(θi−ε))2

x4+4d+y4+4d+z2 if (x, y) /∈ D,

0 otherwise,

whereD is the set of all points ofR2 whose angle belongs to3i for somei.
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Foru ∈ Rd define
f (u) := g(ϕ(u), δ2(u)),

whereδ(·) is the regularized distance from the setK := E∩B(u0, r) (see [24]). It is well
known thatδ is a Lipschitz continuous function withδ ∈ C∞(Rd \K),

1

C
dist(u,K) ≤ δ(u) ≤ C dist(u,K)

for all u ∈ Rd \K.
We claim that6f = K. It is clear that6f ⊂ K. To prove the opposite inclusion fix

ū ∈ K and letξ ∈ Sd−1. Then

f (ū+ tξ )− f (ū)

t
=

g(ϕ(ū)+ t
∂ϕ
∂ξ
(ū)+ o(t), o(t))− g(ϕ(ū),0)

t

=

g(ϕ(ū)+ t
∂ϕ
∂ξ
(ū),0)− g(ϕ(ū),0)

t
+ o(1) (4.23)

where we have used the facts thatg is Lipschitz,ϕ is of classC1, andδ2
∈ C1(Rd) with

∇δ2
= 0 onK. Hence

∂f

∂ξ
(ū) =

∂g

∂νϕ
(ϕ(ū),0)

∣∣∣∣∂ϕ∂ξ (ū)
∣∣∣∣, (4.24)

where

νϕ :=

( ∂ϕ
∂ξ
(ū)

|
∂ϕ
∂ξ
(ū)|

,0

)
.

Sinceg(·, ·,0) is not differentiable at the origin, by Proposition 2.6 we may find a direc-
tion ν = (w,0) ∈ S2

\
⋃d
i=1(3i × {0}) such that

∂g

∂ν
(0) 6= ∇g(0) · ν.

Using the fact that rank(∇ϕ)(ū) = 2 we may find a directionξ0 ∈ Sd−1 such that
∂ϕ
∂ξ0
(ū) = w|

∂ϕ
∂ξ0
(ū)| 6= 0. Moreover by(4.21), (4.22), and(4.24),

∇f (ū) · ξ0 = ∇g(0) ·

(
∂ϕ

∂ξ0
(ū),0

)
= ∇g(0) · ν

∣∣∣∣ ∂ϕ∂ξ0 (ū)
∣∣∣∣

6=
∂g

∂ν
(0)

∣∣∣∣ ∂ϕ∂ξ0 (ū)
∣∣∣∣ =

∂f

∂ξ0
(ū)

and sof is not differentiable at̄u. This shows that6f = K.
Next we prove that the chain rule holds forf . As in the proof of Theorem 4.1, to

show the validity of the chain rule inW1,1
loc (R

N
; Rd) it is enough to prove it for any

u ∈ C1(RN ; Rd). Moreover it is clear that we can assume, without loss of generality, that
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N = 1. If u(x) /∈ 6f then there is nothing to prove, hence assume thatu(x) ∈ 6f . As in
(4.23) we have

f (u(x + t))− f (u(x))

t
=
g((ϕ ◦ u)(x)+ t (ϕ ◦ u)′(x),0)− g((ϕ ◦ u)(x),0)

t
+ o(1)

=
g((ϕ ◦ u)(x + t),0)− g((ϕ ◦ u)(x),0)

t
+ o(1).

Hence(f ◦u)′(x) = (g(·, ·,0)◦ (ϕ ◦u))′(x) for everyx ∈ u−1(6f ). Since the chain rule
is valid forg(·, ·,0) by Theorem 4.1, and recalling that(ϕ ◦ u)(x) = 0, it follows that for
L1-a.e.x ∈ u−1(6f ),

(f ◦ u)′(x) = ∇αg(0) · (ϕ ◦ u)′(x) = (∇αg(0)∇ϕ(u(x)))u
′(x)

= ∇f (u(x)) · u′(x)

whereα = (1,2) and in the last equality we have used the fact that

∂f

∂ui
(u(x)) = ∇αg(0)

∂ϕ

∂ui
(u(x),0),

which follows from(4.21), (4.22), and(4.24). Therefore the chain rule holds.

Step 2. Assume now thatE ⊂ Rd is anHd−2-rectifiable set, that is,

E =

∞⋃
j=1

Kj ∪N

whereHd−2(N ) = 0 and the setsKj are disjoint compact subsets of(d − 2)-manifolds
of classC1.

Fix j ∈ N. By Step 1 it is clear that for eachu ∈ Kj we can findru > 0 such
that for all 0< r < ru there exists a bounded Lipschitz continuous functionfu,r with
6fu,r = Kj ∩ B(u, r) and for which the chain rule holds. The union of all such balls for
u ∈ Kj is a fine cover forKj and hence, by the Vitali–Besicovitch covering theorem (see
e.g. Thm. 2.19 in [4]) we can find a countable sequence of disjoint closed ballsB(un, rn)

such that

Hd−2
(
Kj \

∞⋃
n=1

B(un, rn)
)

= 0.

By repeating the same procedure for eachKj it is clear that we can find a sequence of
bounded Lipschitz continuous functionsfn for which the chain rule holds, and such that
the sets6fn are pairwise disjoint compact subsets ofE with

Hd−2
(
E \

∞⋃
n=1

6fn
)

= 0.

Moreover we can assume that the partial derivatives of everyfn exist everywhere inRd
(see Step 1).
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We may now define

f (u) :=
∞∑
n=1

1

2nLn
fn(u), Ln := ‖fn‖W1,∞(Rd ).

It is clear thatf is bounded and Lipschitz continuous. We claim that

6f =

∞⋃
n=1

6fn . (4.25)

Indeed, ifu /∈
⋃

∞

n=16
fn then for anyξ ∈ Sd−1,

∂f

∂ξ
(u) =

∞∑
n=1

1

2nLn

∂fn

∂ξ
(u) =

∞∑
n=1

1

2nLn
∇fn(u) · ξ = ∇f (u) · ξ, (4.26)

where we repeatedly used the fact that we can differentiate term-by-term. By Propo-
sition 2.6 and sincef is Lipschitz continuous it follows thatu /∈ 6f . Conversely, if
u ∈

⋃
∞

n=16
fn then there exists a uniquen0 ∈ N such thatu ∈ 6fn0 . Write

f = fn0 +

∑
n6=n0

1

2nLn
fn.

Arguing as in (4.26) we deduce that the function
∑
n 6=n0

1
2nLn

fn is differentiable atu.

Sinceu ∈ 6fn0 it follows thatu ∈ 6f . Hence (4.25) holds.
Finally, to show that the chain rule holds forf let u ∈ C1(R; Rd). Since forL1-a.e.

x ∈ R the functionsfn ◦ u are differentiable atx and

(fn ◦ u)′(x) = ∇fn(u(x)) · u′(x)

for all n, using once more term-by-term differentiation we conclude that

(f ◦ u)′(x) = ∇f (u(x)) · u′(x)

for L1-a.e.x ∈ R. This concludes the proof. ut

Remark 4.11. (i) It is clear from the previous proof that given any finite familyE of
bases inRd and anyHd−2-rectifiable setE ⊂ Rd , d ≥ 3, one can construct a Lipschitz
continuous functionf : Rd → R such that6f ⊂ E andHd−2(E \ 6f ) = 0, and
for which the chain rule holds inW1,1

loc (R
N

; Rd) with respect to every coordinate system
{e1, . . . , ed} in E .

(ii) It is clear that the above construction can be carried out for every 1≤ k ≤ d − 2.
We considered the casek = d − 2 because in a sense it represents the worst possible
situation.

All the results presented so far depend on the particular choice of the coordinate sys-
tem {e1, . . . , ed}. We next address the case where the chain rule holds with respect to
every coordinate system.
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Theorem 4.12. Let f : Rd → R be a Lipschitz continuous function, and let1 ≤

k ≤ min{N, d}. Assume that the set6f is not purelyHk-unrectifiable. Then there
exists a coordinate system inRd for which the classical chain rule(1.3) fails in the
classAk(RN ; Rd). Hence a necessary and sufficient condition for the chain rule(1.3)
to hold inAk(RN ; Rd) with respect to every coordinate system is that6f is purelyHk-
unrectifiable.

Remark 4.13. Note that ifk = d − 1 then the result follows immediately from Theorem
4.1. Indeed, since (4.1) must hold for every coordinate system, it is clear that6f must be
purelyHd−1-unrectifiable.

Proof of Theorem 4.12.The sufficiency part of the statement follows immediately from
Theorem 4.1. The rest of the proof is devoted to showing the necessity part.

Step 1. We consider the casek = 1. Letγ : [0,1] → Rd be aC1 regular curve. For every
t ∈ [0,1] denote the unit tangent vector byτ(t) := γ ′(t)/|γ ′(t)|. Fix t0 ∈ [0,1] and a
unit vectore different from±τ(t0) and not orthogonal toτ(t0). Let e⊥ be the hyperplane
orthogonal toe and letσ(t) be the unit vector obtained by projectingτ(t) on e⊥ and
normalizing.

We claim that forL1-a.e.t in a neighborhoodI of t0 the functionf restricted to the
planeγ (t)+ span{e, τ (t)} is differentiable atγ (t).

Indeed, considering an orthonormal basis{e1, . . . , ed−1, e}, from the chain rule and
the fact thate · τ(t0) 6= 0 it follows that the partial derivative∂f

∂e
(γ (t)) exists forL1-a.e.t

neart0. If τ(t) ≡ τ(t0) for all t neart0 then since by Rademacher’s theorem∂f
∂τ(t0)

(γ (t))

exists forL1-a.e.t neart0 the conclusion follows from Remark 3.2 applied tof restricted
to the plane

γ (t)+ span{e, τ (t)} = γ (t0)+ span{e, τ (t0)}.

If τ(t) is not constant neart0 then as in the proof of Theorem 3.1 we can reduce to the
previous case by using a local diffeomorphism. We omit the details.

Hence the claim holds and therefore forL1-a.e.t ∈ I we have

∂f

∂τ(t)
(γ (t)) =

∂f

∂e
(γ (t))(τ (t) · e)+

∂f

∂σ(t)
(γ (t))(τ (t) · σ(t)). (4.27)

Moreover by the chain rule for every orthonormal basis{e1, . . . , ed−1, e} and forL1-a.e.
t ∈ I ,

(f ◦ γ )′(t) =
∂f

∂e
(γ (t))(γ ′(t) · e)+

d−1∑
i=1

∂f

∂ei
(γ (t))(γ ′(t) · ei)

=
∂f

∂e
(γ (t))(γ ′(t) · e)+

d−1∑
i=1

∂f

∂ei
(γ (t))(σ (t) · ei)(γ

′(t) · σ(t)),

or equivalently,

∂f

∂τ(t)
(γ (t)) =

∂f

∂e
(γ (t))(τ (t) · e)+

d−1∑
i=1

∂f

∂ei
(γ (t))(σ (t) · ei)(τ (t) · σ(t)).
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Hence also by (4.27) for every orthonormal basis{e1, . . . , ed−1, e} and forL1-a.e.t ∈ I

we have
∂f

∂σ(t)
(γ (t)) =

d−1∑
i=1

∂f

∂ei
(γ (t))(σ (t) · ei). (4.28)

Define the invertible linear transformationL : Rd → Rd by

L(u) := u+ (u · e)w, (4.29)

wherew ∈ e⊥ is a unit vector different from±σ(t0) and letfL := f ◦L, γL := L−1
◦ γ.

Since the chain rule (1.3) holds inW1,1
loc (R

N
; Rd) with respect to every coordinate system

it is clear that it also holds forfL with respect to every coordinate system. Therefore
we can also assume that for every orthonormal basis{e1, . . . , ed−1, e} and forL1-a.e.
t ∈ [0,1],

∂fL

∂σL(t)
(γL(t)) =

d−1∑
i=1

∂fL

∂ei
(γL(t))(σL(t) · ei),

where as beforeσL(t) is the unit vector obtained by projecting the tangent unit vector
τL(t) on e⊥ and normalizing. Since by (4.29) for anyν ∈ e⊥ ∩ Sd−1 we have

∂fL

∂ν
(γL(t)) =

∂f

∂ν
(γ (t)),

the above identity can be rewritten as

∂f

∂σL(t)
(γ (t)) =

d−1∑
i=1

∂f

∂ei
(γ (t))(σL(t) · ei). (4.30)

Let B be a countable dense family of orthonormal bases ine⊥, and, for everyt ∈ I, let
B(t) be the dense subfamily formed by all bases{e1, . . . , ed−1} ∈ B such thatσ(t)·ei 6= 0
for i = 1, . . . , d − 1. From (4.28) and from our conventions on the validity of the chain
rule it follows that(∂f/∂ei)(γ (t)) exists forL1-a.e.t ∈ I, for every{e1, . . . , ed−1} ∈

B(t), and for everyi = 1, . . . , d − 1. By (4.28) and (4.30) there exists a setN ⊂ I

with L1(N ) = 0 such that for allt ∈ I \ N and for any two bases{e1, . . . , ed−1} and
{ε1, . . . , εd−1} in B(t) we have

d−1∑
i=1

∂f

∂ei
(γ (t))(σ (t) · ei) =

d−1∑
i=1

∂f

∂εi
(γ (t))(σ (t) · εi),

d−1∑
i=1

∂f

∂ei
(γ (t))(σL(t) · ei) =

d−1∑
i=1

∂f

∂εi
(γ (t))(σL(t) · εi).

Since for everyt neart0 the spacee⊥ is generated by vectors of the formσL(t)−σ(t) for
a suitable choice of linear mapsL satisfying (4.29), it follows that

d−1∑
i=1

∂f

∂ei
(γ (t))ei =

d−1∑
i=1

∂f

∂εi
(γ (t))εi
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for all t ∈ I \N . As this holds for any pair of orthonormal bases inB(t), Proposition 2.6
shows thatf restricted to the hyperplaneγ (t) + e⊥ is differentiable for allt ∈ I \ N .
By Remark 3.2 this implies thatf is differentiable atγ (t) for L1-a.e.t neart0. Since
this is true for anyt0 ∈ [0,1] a compactness argument allows us to conclude thatf

is differentiable atH1-a.e. point ofγ . Given the arbitrariness of the curveγ we may
conclude that6f is purelyH1-unrectifiable.

Step 2. If 1 < k < d − 1, letM ⊂ Rd be ak-dimensional manifold such that

M ∩6f 6= ∅

and letū ∈ M∩6f .We claim that there existsε > 0 such thatf is differentiable forHk-
a.e.u ∈ B(ū; ε) ∩M. Fix any ū ∈ M ∩ 6f and consider a local regular parametrization
ψ : D ⊂ Rk → M of classC1 such thatū ∈ ψ(D), whereD is an open set and
ψ(0) = ū. Let e ∈ Sd−1 be a vector transversal to Tank(M, ū), that is,e is not orthogonal
and it does not belong to Tank(M, ū). Taking a smallerD if necessary, we may assume
that ∂ψ

∂x1
(x) is not parallel toe for everyx ∈ D. Let e⊥ be the hyperplane orthogonal

to e and letB be a countable dense family of orthonormal bases ine⊥, and, for every
x ∈ D, let B(x) be the dense subfamily composed of all bases{e1, . . . , ed−1} ∈ B such
that ∂ψ

∂x1
(x) · ei 6= 0 for i = 1, . . . , d − 1. Letσ(x) be the vector obtained by projecting

∂ψ
∂x1
(x) on e⊥ and normalizing. Define the invertible linear transformationL : Rd → Rd

as

L(u) := u+ (u · e)w,

wherew ∈ e⊥ is a unit vector different from±σ(0) and letfL := f ◦ L andψL :=
L−1

◦ ψ. Without loss of generality assume that

D = B1(0; r)× Bk−1(0; r),

wherer > 0 is so small thatw 6= ±σ(x) for everyx ∈ D and writex = (x1, x
′) ∈

R × Rk-1. Sincef andfL satisfy the chain rule in the classAk(Rk; Rd) with respect to
every coordinate system of the form{e1, . . . , ed−1, ed} whereed := e and{e1, . . . , ed−1}

is inB, we have

∂

∂x1
(f ◦ ψ)(x) =

d∑
i=1

∂f

∂ei
(ψ(x))

∂ψi

∂x1
(x),

∂

∂x1
(fL ◦ ψ)(x) =

d∑
i=1

∂fL

∂ei
(ψ(x))

∂ψi

∂x1
(x)

for Lk-a.e.x ∈ D, where ∂f
∂ei
(ψ(x)) exist nearx̄ := ψ−1(ū) whenever{e1, . . . , ed−1}

∈ B(x), as ∂ψi
∂x1
(x) 6= 0 by the definition ofB(x). By Fubini’s theorem and using the fact

thatB is countable, there exists a setM ⊂ Bk−1(0; r) with Lk-1(M) = 0 such that for
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all x′
∈ Bk−1(0; r) \M and for every coordinate system of the form{e1, . . . , ed−1, ed},

whereed := e and{e1, . . . , ed−1} is inB, we have

∂

∂x1
(f ◦ ψ)(x1, x

′) =

d∑
i=1

∂f

∂ei
(ψ(x1, x

′))
∂ψi

∂x1
(x1, x

′),

∂

∂x1
(fL ◦ ψ)(x1, x

′) =

d∑
i=1

∂fL

∂ei
(ψ(x1, x

′))
∂ψi

∂x1
(x1, x

′),

for L1-a.e.x1 ∈ B1(0; r). Fix x′
∈ Bk−1(0; r) \ M and consider the curveψ(·, x′).

Reasoning as in the previous step we deduce from the above identities that forL1-a.e.
x1 ∈ B1(0; r) and for every coordinate system{e1, . . . , ed−1} in B we have

∂f

∂σ(x1, x′)
(ψ(x1, x

′)) =

d−1∑
i=1

∂f

∂ei
(ψ(x1, x

′))(σ (x1, x
′) · ei),

∂fL

∂σ(x1, x′)
(ψL(x1, x

′)) =

d−1∑
i=1

∂fL

∂ei
(ψL(x1, x

′))(σL(x1, x
′) · ei).

We may continue as in the previous step to conclude that forL1-a.e.x1 ∈ B1(0; r) the
functionf is differentiable atψ(x1, x

′). Since this is true for allx′
∈ Bk−1(0; r) \M,

Fubini’s theorem implies thatf is differentiable atψ(x) for Lk-a.e.x ∈ D. Hencef is
differentiableHk-almost everywhere inψ(D). This concludes the proof. ut

Remark 4.14. It is clear from the previous proof that for6f to be purelyHk-unrectifi-
able it is enough to assume that the chain rule (1.3) holds inAk(RN ; Rd) with respect to
a dense set of coordinate systems.

5. Chain rule in BV (�; Rd)

In this section we extend the results of the previous section to the space of functions of
bounded variation. We refer to [4] for the definition and main properties. As already men-
tioned in the introduction a weak form of the chain rule inBVloc(RN ; Rd)was established
by Ambrosio and Dal Maso in [2] for any Lipschitz continuous functionf : Rd → R
(see also [10] for a different proof in the scalar cased = 1).

We study here the classical chain rule. Since by a result of Alberti [1] the Cantor part
of the distributional derivative of a function of bounded variation has rank one, to extend
the results of the previous section we can only consider the casek = 1.

Theorem 5.1. Letf : Rd → R be a Lipschitz continuous function, let{e1, . . . , ed} be a
basis inRd , and assume that for everyH1-rectifiable setE ⊂ 6f and forH1-a.e.u ∈ E,
there existsi ∈ {1, . . . , d} depending onu such that

Tan1(E, u) = span{ei}. (5.1)
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Then for everyu ∈ BVloc(RN ; Rd) andj = 1, . . . , N we have

Dj (f ◦ u)b(RN \ S(u)) =

d∑
i=1

∂f

∂ei
(u∗)Djuib(RN \ S(u)), (5.2)

where ∂f
∂ei
(u∗)Djui is interpreted to vanish on sets where|Djui | vanishes, and

D(f ◦ u)bS(u) = (f (u+)− f (u−))νbS(u). (5.3)

We present some preliminary results which extend to functions of bounded variation the
lemmas of the previous section. The main difficulty is the treatment of the Cantor part of
the distributional derivative.

The next two results are well known. We give their proofs for the convenience of the
reader.

Lemma 5.2. Let u : (a, b) → Rd be a function of bounded variation. Then there exists
a continuous function of bounded variationv : (a, b + 1) → Rd such that

u(a, b) ⊂ v(a, b + 1).

Proof. Step 1. Assume first thatu is scalar-valued and monotone and letI ⊂ (a, b) be
any countable set such that

S(u) ⊂ I.

Write I asI = {tn} and define

s(t) := t +
∑
tn<t

1

2n
, t ∈ (a, b).

Thens : (a, b) → (a, b + 1) is a one-to-one function whose discontinuity set isI. Let

In := [an, bn] , n ∈ N,

and

an := tn +

∑
tj<tn

1

2j
, bn := tn +

∑
tj≤tn

1

2j
,

and lett = t (s) be the inverse function ofs. Define

v(s) :=

{
u(t (s)), s ∈ (a, b + 1) \

⋃
In,

2n(u(t+n )− u(t−n ))(s − bn)+ u(t+n ), s ∈ In = [an, bn] .

Clearly
u(a, b) ⊂ v(a, b + 1).

The functionv is strictly monotone and hence of bounded variation. Moreover, sinceu is
continuous on(a, b) \ I andt (s) is continuous on(a, b + 1) \

⋃
In it follows thatv is

continuous on(a, b + 1) \
⋃
In. The functionv is also continuous in the interior of each
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In and thus it remains to check continuity at the endpoints of eachIn, but this follows
immediately since

lim
s→a+

n

v(s) = lim
s→a+

n

2n(u(t+n )− u(t−n ))(s − bn)+ u(t+n ) = u(t−n ),

lim
s→a−

n

v(s) = lim
s→a−

n

u(t (s)) = u(t−n )

and similarly forbn. Thusv is continuous.

Step 2. In the general case whereu : (a, b) → Rd let u = (u1, . . . , ud). For each
i = 1, . . . , d we may writeui asui = wi − zi , wherewi, zi are monotone functions.
Let I be the union of points of discontinuity ofwi, zi for all i = 1, . . . , d. Clearly
S(u) ⊂ I . By Step 1 we may construct functionsw̃i, z̃i : (a, b + 1) → Rd , continuous
and monotone, such that

wi(a, b) ⊂ w̃i(a, b + 1), zi(a, b) ⊂ z̃i(a, b + 1)

for all i = 1, . . . , d. The functionv := (w̃1 − z̃1, . . . , w̃d − z̃d) has all the desired
properties. ut

Corollary 5.3. Let u : I → Rd be a function of bounded variation, whereI is an
interval. Thenu(I) isH1-rectifiable.

Proof. By the previous lemma there exists a continuous function of bounded variation
v : J → Rd such thatu(I) ⊂ v(J ) for some intervalJ . The result now follows from
Theorem 16 in [9]. ut

As a consequence of the previous lemma we deduce the following result, which although
not needed in the remainder of this section, is of interest in its own right since it completes
Proposition 3.92(c) of [4].

Proposition 5.4. LetE be a subset ofRd . Then the following properties are equivalent:

(i) E is purelyH1-unrectifiable;
(ii) H1(E ∩ w(R)) = 0 for anyw ∈ BVloc(R; Rd);

(iii) for all N ∈ N and for anyu ∈ BVloc(RN ; Rd) the measure|Du| vanishes on the set
u−1

∗ (E)∩(RN \S(u)), where|Du|, u∗ andS(u) are, respectively, the total variation
of the distributional derivativeDu, a specific representative and the jump set ofu.

Proof. We begin by showing that (i)⇒(ii). Let w ∈ BVloc(R; Rd) and consider(a, b)
⊂ R. By the previous lemma there exists a continuous function of bounded variation
v : (a, b + 1) → Rd such that

u(a, b) ⊂ v(a, b + 1).

SinceH1(E ∩ v(a, b + 1)) = 0 (see [9], [11]) the result follows.
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To prove the implication (i)⇒(iii) let E be purelyH1-unrectifiable and consideru ∈

BVloc(RN ; Rd).We follow the proof of Lemma 2.1 in [15]. Fixi ∈ {1, . . . , N}. For every
x = (x1, . . . , xN ) ∈ RN we denote byx′

∈ RN−1 the vector

x′
=

 (x1, . . . , xi−1, xi+1, . . . , xN ) if 1 < i < N,

(x1, . . . , xN−1) if i = N,

(x2, . . . , xN ) if i = 1,

and we write, with an abuse of notation,

x = (x′, xi).

By Theorem 3.108 in [4] forLN−1-a.e.x′
∈ RN−1 the function

ux
′

(t) := u(x′, t), t ∈ R,

belongs toBVloc(R; Rd), and

v(t) := (u∗)
x′

(t) = u∗(x
′, t), t ∈ R,

is a good representative forux
′

. By (ii),

H1(E ∩ v(R)) = 0.

By Proposition 3.92(c) in [4],

|Dv|(M ∩ (R \ S(v))) = 0,

whereM := v−1(E ∩ v(R)) and so

|D(u∗)
x′

|(M ∩ (R \ S((u∗)
x′

))) = 0

for LN−1-a.e.x′
∈ RN−1. Since this is true for alli = 1, . . . , N by Theorems 3.107 and

3.108 in [4] we have

|Du|(u−1
∗ (E) ∩ (RN \ S(u))) = 0. ut

Lemma 5.5. LetE ⊂ Rd beH1-rectifiable and letα = 1, . . . , d. Then the following two
conditions are equivalent:

(i) forH1-a.e.u ∈ E,

Tan1(E, u) = span{eα}; (5.4)

(ii) for everyu ∈ BVloc(RN ; Rd),

|Duᾱ|(u
−1
∗ (E) ∩ (RN \ S(u))) = 0.
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Proof. By Corollary 4.7 we only need to show that (i) implies (ii). Assume (i), fixu ∈

BVloc(RN ; Rd) and letE1 be the set ofu ∈ E for which (5.4) does not hold. Then
H1(E1) = 0 and so by Proposition 3.92(c) in [4],

|Du|(u−1
∗ (E1) ∩ (RN \ S(u))) = 0.

Let 0 ⊂ Rd be aC1 curve such that

H1(0 ∩ (E \ E1)) > 0.

By taking0 small enough we may assume that there exists an open setD ⊂ Rd and a
function8 : D → Rd−1 of classC1 such thatD8 has rankd − 1 for everyx ∈ D and

0 = {w ∈ D : 8(w) = 0}.

By Proposition 3.92 in [4] the measureD(8 ◦ u) vanishes on all subsets ofu−1
∗ (0) ∩

(RN \ S(u)) ⊂ (8 ◦ u)−1
∗ (0) ∩ (RN \ S(8 ◦ u)). By the classical chain rule inBV (see

Theorem 3.96 in [4]) we haveD(8 ◦ u) = ∇8(u∗)Du, hence

D8(u∗(x))
dDu

d|Du|
(x) = 0 for |Du|-a.e.x ∈ u−1

∗ (0) ∩ (RN \ S(u)).

Hence

dDu

d|Du|
(x) ∈ Tan1(0, u∗(x)) for |Du|-a.e.x ∈ u−1

∗ (0) ∩ (RN \ S(u))

and by (i) we have

dDuᾱ

d|Du|
(x) = 0 for |Du|-a.e.x ∈ u−1

∗ (E) ∩ (RN \ S(u)).

This shows (ii). ut

Proof of Theorem 5.1.For the proof of (5.3) we refer to Step 2 of the proof of Theorem
3.96 in [4].

Step 1. Consider first the caseN = 1. By Theorem 2.1 in [2] for|Du|-a.e.x ∈ R \ S(u)

the restriction of the functionf to the affine space

T ux :=

{
y ∈ Rd : y = u∗(x)+ z

dDu

d|Du|
(x) for somez ∈ R

}
(5.5)

is differentiable atu∗(x) and

D(f ◦ u) = ∇(f |T ux )(u∗)Du as measures onR \ S(u). (5.6)

Onu−1
∗ (Rd \6f ) the right hand side of (5.6) coincides with∇f (u∗)Du. Let

6u := u∗(R) ∩6f .
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By Corollary 5.3 the set6u isH1-rectifiable. By (5.1) we may decompose it as

6u =

d⋃
i=1

6i ∪N ,

where
Tan1(6u, u) = span{ei} for all u ∈ 6i and H1(N ) = 0.

By Proposition 3.92 in [4] the measureDu vanishes on all subsets ofu−1
∗ (N )∩(R\S(u))

and so it is enough to show that for every fixedi = 1, . . . , d the chain rule holds on
u−1

∗ (6i) ∩ (R \ S(u)). Since by Lemma 5.5,

dDu

d|Du|
(x) ∈ Tan1(6i, u∗(x)) = span{ei}

for |Du|-a.e.x ∈ u−1
∗ (6i) ∩ (R \ S(u)) it follows that for allj 6= i,

dDuj

d|Du|
(x) = 0 (5.7)

for |Du|-a.e.x ∈ u−1
∗ (6i) ∩ (R \ S(u)), and, from (5.1), that

∇(f |T ux )(u∗(x)) =
∂f

∂ei
(u∗(x))

for |Du|-a.e.x ∈ u−1
∗ (6i) ∩ (R \ S(u)), and hence from (5.6) we conclude that

D(f ◦ u) =
∂f

∂ei
(u∗)Dui =

d∑
j=1

∂f

∂ej
(u∗)Duj

on u−1
∗ (6i) ∩ (R \ S(u)), since ∂f

∂ej
(u∗)Duj is interpreted to be zero wheneverDuj

vanishes.

Step 2. The general case follows exactly from the previous step by a slicing argument
entirely similar to Step 2 of the proof of Theorem 2.1 in [2]; we omit the details. ut

From the previous theorem and Theorem 4.12 we deduce the following result:

Theorem 5.6. Let f : Rd → R be a Lipschitz continuous function. Assume that the
set6f is not purelyH1-unrectifiable. Then there exists a coordinate system inRd for
which the classical chain rule(5.2) fails in BVloc(RN ; Rd). Hence a necessary and suf-
ficient condition for the chain rule(5.2) to hold inBVloc(RN ; Rd) with respect to every
coordinate system is that6f is purelyH1-unrectifiable.
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