J. Eur. Math. Soc. 9, 33363 © European Mathematical Society 2007

JEMS

Pietro Donatini Patrizio Frosini
Natural pseudodistances between closed surfaces

Received October 13, 2005 and in revised form October 28, 2005

Abstract. Let us consider two closed surfacss, N of classC! and two functiong : M — R,

¥ 1 N> R of classC?, called measuring functions. The natural pseudodistarizetween the

pairs (M, @), (N, ¥) is defined as the infimum @ (f) := maxpcaq l9(P) — ¥ (f(P))| as f

varies in the set of all homeomorphisms frobi onto . In this paper we prove that the natural
pseudodistance equals either — co|, %|c1 —col, or %|c1 — ¢2|, wherec1 andc; are two suitable

critical values of the measuring functions. This shows that a previous relation between the natural
pseudodistance and critical values obtained in general dimension can be improved in the case of
closed surfaces. Our result is based on a theorem by Jost and Schoen concerning harmonic maps
between surfaces.

Keywords. Natural pseudodistance, measuring function, harmonic map

Introduction

Thenatural pseudodistands a new variational approach to the comparison of manifolds
endowed with real-valued functions defined on them[_In [2] we proved a result about the
values that such a pseudodistadaan take in general dimension. In this work we focus
on the 2-dimensional case, showing that the previous result can be improved in the case
of closed surfaces. Assuming that two homeomorphic closed manifeldsnd N of
classC? are given together with two functions: M — R, ¥ : N' — R of classC?
(calledmeasuring functionswe consider the value
(M, @), N, ¥)) := feHI(r/]\L,N) 152% lp(P) — ¥ (f(P))I,

whereH (M, N') denotes the set of all homeomorphisms frarhonto N'. The number
d = §(M, @), (N, ¥)) is called thenatural pseudodistancieetween the pairéM, ¢)
and(\V, ¥) (calledsize pair3.

The closeness af to zero means that there are homeomorphisms for which the dif-
ference between the values taken by the measuring functions at corresponding points is
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arbitrarily small. On the other hand, if the infimum is large, we find that every homeo-
morphism between the manifolds considered must change the values taken by our mea-
suring function considerably.

In [2] we proved (Theorem 6.2) that a suitable multipledoby a positive integer
k coincides with the distance between two critical values of the functigns. It is
interesting to observe that in every known example, the minimum possible valée for
is 1 or 2. In this paper we shall show that, in the 2-dimensional case, the minimum value
for the integel is either 1, 2, or 3. We remark that an analogous statement has also been
proved in [4] for curves, using different techniques, but in that case we are able to prove
that only the values 1 and 2 are possible.

Besides its intrinsic interest from a purely mathematical point of view, the natural
pseudodistance between closed surfaces associated with measuring functions can also be
used for shape comparison purposes, together with the “twin” and strictly related concept
of size functionFor more theoretical details and examples of practical applications we
refer to [1/ 13| 1/7=20].

In Sectior[ 1 we sketch the main ideas of this paper. In Seftion 2 we give the main
definitions and some examples, while in Secfipn 3 further examples are presented, high-
lighting some characteristic phenomena. In Sedtion 4 the concepts of train and minimal
d-approximating sequence are illustrated, together with some related results. In Bection 5
we prove our main result (Theor¢m b.7) about the natural pseudodistance between closed
surfaces endowed with measuring functions. In Se¢fjon 6 open problems and further re-
search are briefly described.

1. The point of this paper

As reported in the previous section, it was proved_in [2] that the natural pseudodistance
between size pairs always equgls— c2|/ k, wherecy, ¢, are two suitable critical values
of the measuring functions akds an appropriate integer number. The minimum possible
value fork is called theanalytic folding number

It is interesting to observe that in every known example, the analytic folding number
is1or?2.

Two questions naturally arise: Are there examples with an analytic folding number
strictly greater than 27? Is this question related to the dimension of our manifolds?

In this paper we take a first step towards answering these questions.

It is important to observe right now that the attempt to minimize the chang® =
maxpe p |9 (P) — ¥ (f(P))] in the measuring functions under the actionfofloes not,
in general, lead to a homeomorphism, as we are going to show in the next section. De-
generacies can arise, and hence we cannot confine ourselves to studying a single optimal
homeomorphism. Instead of a single homeomorphism, approximating sequences of hom-
eomorphisms must be considered. In some sense, “optimal” approximating sequences
(f;) of homeomorphisms exist, converging to relations that represent the best way to map
one manifold to another with respect to the change in the measuring functions. The study
of these relations leads us to the concept of a “train of lirimps”, describing some
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degeneracies corresponding to the sequérigeAs we are going to see in the following
sections, the properties of these structures imply the properties of the analytic folding
number.

How can we study these properties?

In [2] local deformations were used, based on the flow diffeomorphism of the gradient
of the measuring functions but, unfortunately, this approach does not seem to be sufficient
to answer the questions we posed. The main idea of this paper is to use the theory of
harmonic maps to confront the bidimensional case. A result by Jost and Schoen allows us
to study the case of surfaces.

We shall proceed this way. We shall consider each “optimal”’ sequefit®f hom-
eomorphisms between the manifoldi$ and A/ we are examining, where optimal means
that inf maxpcaq [@(P) — ¥ (f; (P))] equalss (M, @), (N, ¥)). Then we shall describe
the degeneracies related(tfy) using a train of limitZ-jumps, and assume that the degen-
eracies of( f;) are minimal with respect to a suitable ordemwe are going to define.

Finally, we shall apply a local harmonization procedure to eadar away from the
critical points, using Jost and Schoen’s theorem. The key remark will be that the change
we are going to apply produces a new sequence that is “smaller(ffiamwith respect
to <. Since( f;) will already be minimal, some further information about the length of the
trains ofd-jumps for( f;) will be derived, implying our main result.

Some technicalities will be necessary in order to use our ideas in practice, but the
key point is simply the possibility (in some sense unexpected) of reducing the change
of the measuring functions by locally decreasing the energy of the transformations we
use between our manifolds. The following sections will formalize the ideas we have just
described.

2. The natural pseudodistance
2.1. The main definition

The definition of natural pseudodistance can be introduced-thmensional manifolds.
Let us consider the set Sjzef all pairs(M, ¢), whereM is a closed:-manifold of class
CF andg : M — Ris a function of clas€*. We shall call(M, ¢) an @-dimensional)
size pairof classC* andg ameasuring function

Assume(M, @), (N, ) are two size pairst (M, N) will denote the set of all hom-
eomorphisms frora\ to V.

Definition 2.1. If H(M, N) # @, the function® : H(M, N) — R given by
O(f) = max|p(P) — ¥ (f(P))I
PeM
is called thenatural size measukeith respect to the measuring functiopgnd .

In other words® measures how mucfi changes the values taken by the measuring
functions, at corresponding points.
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Definition 2.2. Thenatural size pseudodistanisethe pseudodistance: Size, x Sizg,
— R U {400} defined by

5((M, ¢), (N, ) = { e O e T

In the following, the symbod will denote the value of the natural pseudodistafice
computed between the paii$1, ¢) and (N, ) that we are considering. As previously
explained, this pseudodistance gives a method for comparing two manifolds with respect
to the measuring functions chosen.

We point out that is not a distance, since two size pairs can have a vanishing pseu-
dodistance without being equal. On the other hand, the symmetry property and the triangle
inequality can be trivially proved.

Remark 2.3. The word “size” in our definitions is due to the link between the pseudodis-
tances, size functions and size homotopy groups (cf/ 7, 15]). However, for the sake of
simplicity, we shall often drop the word “size” in the expressions “natural size measure”
and “natural size pseudodistance”. The term “natural” is used in order to distinguish the
pseudodistance studied here from some pseudodistances we can define between submani-
folds of the Euclidean space (df. [6]) and from other pseudodistances between manifolds
paired with measuring functions.

In spite of the considerable difficulty in computing natural size pseudodistances, the
following result holds for the general dimensiarfcf. [2]):

Theorem 2.4. Assume thatM and A are two homeomorphic closed manifolds of class
cland thaty : M — Randy : N — R are two functions of clas€l. Then, if

d denotes the natural pseudodistance between the size (peits) and (N, ), there
exists a positive integer for which one of the following properties holds:

(i) kis odd andkd equals the distance between a critical value@nd a critical value
of y;

(i) k is even andkd equals either the distance between two critical valueg of the
distance between two critical valuesiof

The smallest positive integérfor which either (i) or (ii) of Theorerp 2]4 holds is called
the analytic folding numbefor the pairs(M, ¢) and(N, ¥). It is interesting to observe
that in every known example, the analytic folding number is 1 or 2.

In this paper we shall prove that in the case of two homeomorphic closed surfaces
of classC?, endowed withC! measuring functions, the analytic folding number al-
ways equals either 1, 2 or 3. This fact, besides showing a particular property of the 2-
dimensional case, simplifies a direct computation of natural pseudodistances for closed
surfaces.

However, the hypothesis= 2 will not be used until Sectidn 5.
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In Sectior{ B, we shall show that the infimum®f /) for f varying in H(M, N) is
not always attained. When it is, we shall say that each homeomorphisnt (M, N)
with d = ©(f) is anoptimal homeomorphism

In the case where an optimal homeomorphism exists, the following result holds (The-
orem 6.3 in[[2]).

Theorem 2.5. Assume that and A are twoC* closed homeomorphic manifolds and
thaty : M — Randy : NV — R are of classC?. If there exists an optimal homeo-
morphismf € H (M, N) between the size paifs\, ¢) and (N, ¥), then the natural
pseudodistancé = §((M, ¢), (N, ¥)) equals the distance between a critical value of
¢ and a critical value ofy.

N.B.: For simplicity, throughout this paper we shall use the expression “closed surface”
to mean a closed 2-manifold (we shadit require this manifold to be connected).

In order to simplify our notations, we shall assume that the manifaiiand A\
are disjoint, and that the corresponding measuring functions are obtained by restricting a
functionw : M UN — R, so thaty = wp andy = w). In this way we can use
just one symbol to denote both measuring functions. These hypotheses are not restrictive,
since we can always replace the size gaif, ) with a new size pail(J\A/, V), having
vanishing pseudodistance from the previous one and suchMhat\’ = ¢. Sometimes,
when no confusion can arise, we shall use the symidoldenote botlw»( andw .
Moreover, it is easy to prove that, for every 2-dimensional size (pedr ) of class
Ck, there exists an integer and an embedding : M — R™ of classC¥ such that
xm(P) = w(g~1(P)) for each pointP € g(M). If w is Morse (i.e., smooth and having
invertible Hessian at each critical point), we can assumexdhas also Morse org (M).
In other words, there is no loss of generality in assuming that the measuring functions
associated with the closed surfaces A in question are obtained by restricting thg-
coordinate inR™. Sometimes, when no confusion can arise, we shall use the symbol
to denote both,, o4 andx,, o and use the expression “height of a point”. For the sake
of clarity, in our examples and figures we shall often assume that our measuring function
is thez-coordinate irR3,

Example 2.6. In R3 consider the unit sphei® of equationx? + y2 + z2 = 1 and the
ellipsoid £ of equationx? + 4y2 + 9z2 = 1. OnS and £ consider respectively the
measuring functiong andy that assign to every point & and€ the Gaussian curvature
of the relevant manifold at that point. We hav€(S, ¢), (£, ¥)) = 35. In facte(S) =
{1}, while v (£) = [4/9, 36], and therefor® (/) = 35 for everyf € H(S, &).

Example 2.7. Consider the two tori7, 7/ ¢ R3 generated by the rotation around the
y-axis of the circles lying in thez-plane, with centredt = (0,0, 3) andB = (0, 0, 4),

and radii 2 and 1, respectively (see Figme 1). As a measuring fungtipesp.¢’) on

T (resp. on7”’) we take the restriction t& (resp. to7”) of the functionz : R® — R,
¢(x,y,z) = z. We point out that, for botd” and7”, the image of the measuring function

is the closed interval{5, 5]. We can easily prove that the natural size pseudodistance
betweenT, ¢) and(7’, ¢’) is 2 (for the proof involving size homotopy groups se€ [15]).
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Fig. 1. In this case an optimal homeomorphism (i.e. one minimizngxists and/ = 2; d equals
the distance between a critical valuegoénd a critical value of’.

Moreover, the homeomorphistf, taking each point of to the point having the same
toroidal coordinates if’, has natural size measugs 1) = 2.

In generald is far from being easily computable as in the previous Exanjplgs 2.6
and[2.7. In Examplé 2,6, for every homeomorphigme H(S, ), ©(f) equals the
Hausdorff distancé g (¢(S), ¥ (£)) between the setg(S) and ¢ (£) in R. Now it is
clear that the natural size pseudodistadte\, ¢), (N, ¥)) is always greater than or
equal tosy (p(M), ¥ (N)) and therefored (f) must be the natural size pseudodistance
we want to compute. We also point out that, in Exanjplé 2.6, the imagesofly are
different sets and so the natural size pseudodistance is trivially positive.

In Examplg 2. the natural size pseudodistance is strictly greater than the (vanishing)
Hausdorff distance between the images of the two measuring functions.

Computing natural size pseudodistances is usually difficult. For this reason the con-
cepts ofsize functiorandsize homotopy groupave been developed, making it easier to
compute the valué, using some lower-bound theorems. Anyway, here we cannot illus-
trate these closely related concepts, and we refér td [6, 7, 13, 15] for more details.

3. Some interesting examples about curves and surfaces

For the sake of clarity, even if this paper focuses on the bidimensional case, we shall begin
our formal treatment from 1-dimensional examples.

Example 3.1. The first example we give is shown in Figlife 2. Hareand " are smooth
closed curves ifR3, embedded in thez-plane. It is clear that the natural pseudodistance
d between the size pais\, z) and (V, z) equalsz(B) — z(A), that is, the distance
between a critical value af », and a critical value of .

In this example no optimal homeomorphism exists, since it would have to map both
the maximum points fog 4 to A, contrary to injectivity.
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M N
Fig. 2. The natural pseudodistance between the size paitsz) and(\, z) is z(B) — z(A).

T max 2

1 omin z

Fig. 3. Construction of the homeomorphisgp for which®(gs) < d + ¢.

Example 3.2. Let us consider the smooth closed cursdsand\ in Figurg 3. The points
A and B are critical points of the functiop andz(C) = %(z(A) + z(B)) = z(G). We
want to prove that the natural pseudodistance between the sizg pairg) and (N, z)
takes the value

1
d= E(Z(A) —z(B))

and that no optimal homeomorphism exists. In order to do that we shall construct a se-
qguence( f;) of homeomorphisms for which lip® (f;) = %(z(A) — z(B)), and show that
Qf) > %(z(A) — z(B)) for every homeomorphisii € H(M, N).

Let us start by proving that, for every > 0, there exists a homeomorphigp :
M — N such tha®d(g,) < %(z(A) — z(B)) + 2¢. Consider the point®,, E., H, and
F. in Figurg3, satisfying(D;) = z(H;) = z(C) +¢ andz(E;) = z(F;) = z(C) —¢. We
choose a homeomorphisgp, taking the ard, CE; to the arcH, G F, in such a way that
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g:(D;) = H, andg.(E.) = F.. Outside the ar®,CE. in M we defineg, by mapping
every pointP to a pointg, (P) satisfyingz(P) = z(g.(P)).
For everyi e N — {0} we setf; = g1/;. Itis easy to prove that

. 1
I|En O(fi) = 5(z(A) — 2(B)).

Now we only have to verify tha® () < %(z(A) —z(B)) for no homeomorphism between
M andN. If such a homeomorphism existed, for evéty= M we would have
Z(A) — z(B)

2

and hence(f(A)) > z(G) > z(f(B)). Therefore we could easily find poins ¢ M
for which |z(P) — z(f(P))| > %(z(A) — z(B)), contradicting our assumption.

l2(P) —z(f(P)| =

Example 3.3. Consider the size paifs\1, ) and(\V, w) in Figure[4, whereM and A/
are smooth surfaces embedded iRfo We want to prove that the natural pseudodistance
between these size pairs ig21

M N

Fig. 4. The natural pseudodistance between these size pairsi%/2.

The critical pointsP, Q € M for whichw(P) = 1 andw(Q) = 0 belong to the
displayed closed sek c »~1([0, 1]). First of all, we shall prove thai > 1/2, by
showing that

o L 1
(f) > 5(@(P) —w(Q) = 7

for every homeomorphisnt : M — N. Supposef (K) contains no point ofV" that is
critical for o (otherwise® (f) would be at least 1 and our inequality would be satisfied).
Let A be the point off (K) at which the measuring functian ¢ attains its maximum.
Since A belongs to the boundary gf(K), we must haves(f~1(A)) = 0, and asP is
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internal toK, w(f(P)) < w(A). Consequentlyd(f) > w(A) > o(f(P)) and hence
O(f) = w(P) — w(f(P)) > w(P) — O(f). It follows that®(f) > w(P)/2 = 1/2.

In order to complete our proof that the natural pseudodistance is red|yie still
have to give a suitable sequeng®) of homeomorphisms such that

lime(f) = 1/2.
l
Since the construction of such a sequence is conceptually similar to the one we gave for
the previous example about curves, we skip its analytic expression.

Example 3.4. Consider the smooth surfaceg and.\ displayed in Figur¢]5 and the
corresponding measuring functian The dotted lines are level curves for the measuring
functionw.

foy

Fig. 5. An example of vanishing natural pseudodistance.

Property 1. The natural pseudodistance between the two size pairs is zero.

It is easy to see that we can isotopically deform the left surface to the right one by “tor-
sion”, exchanging the positions of the two smallest humps. This deformation can be per-
formed by an arbitrarily small change in the values of the heightherefore, we can
construct a sequence of homeomorphigs from M to N such tha®(f;) — O.

Property 2. No optimal homeomorphism exists between the two size pairs.

Suppose there exists a homeomorphigrsuch that® (f) = 0. Consider a path as in
Figure[$, chosen in such a way that, in the image of the path) = w(A) for no point

P different from A. We can easily verify that the image of the pgtl y must contain
more than one point at which takes the valua (A). This contradicts our assumptions,
since®(f) = 0 impliesw (f(P)) = w(P) for every P in the image ofy.
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4. Some technical tools and definitions
4.1. The concept of “train of limit-jumps”

In order to prove our main theorem, we need some new definitions and technical results.
Assume two size paireM, o), (N, o) are given.

The symbolSy (M, N) will denote the set of all sequences) of homeomorphisms
in H(M, N) such that®(f;) — d. Every sequence iy (M, N) will be called ad-
approximating sequendeom (M, ) to (N, w).

Let (f;) € Sg(M,N). We shall say that a pair of point®®, ) €¢ M x N isin
relation with respect td@ f;) if there exists a sequen€®,) in M and a strictly increasing
sequencéi,) in N such that

(P, Q) =1lim (P, fi, (Pr)).

In this case we shall write eithétp Q or Q p P.
In the remaining part of this section we assume that @ < +oo. The following
compact sets are defined for eatlapproximating sequencg;):

Ni =N (i) ={PeM|IQeN:PpQ, o(Q)—w(P)=d},
Ny =Ny (fi)={PeM|IQeN:PpQ, o(P)—w(Q)=d},
N =NA((fi) ={QeN|IPeM:PpQ, o(P)—w(Q)=d},
Ny =Ny ((fi) ={QeN | P e M:PpQ, w(Q) —w(P)=d}.

In other words, the point® in Nj\r/l are those for which there exists a pote N
such that the paitP, Q) can be approximated arbitrarily well by a pa&®., f; (P.))
whose “‘jump”w(f;, (Pr)) — w(P;) is arbitrarily close tal. Hence, if we think ofw as
a “height” function (cf. the examples in the previous section), the pdiptsave images
with height approximated by (P,) + d. In NL, the symbolM recalls the manifold to
which P belongs, while thet indicates that, by mapping to Q, we increase the value
of the measuring function, i.e. the “jump” starting from the nod@ns “upwards”. The
notations for the other three sets are quite analogous. The syibdicates nodes from
which “downward jumps” start (the starting node belonging to the manifold shown as
subscript).

It is clear that, for everyP € NL, there existeD € N}, such that? p Q (and vice
versa), and that an analogous relation holds for thel\d;ﬂsande(/. For every sequence
of homeomorphisms iy (M, N) the setdN = Nj/l U _N/_w andNy = Nj(/ UN},
are non-empty because of the compactness of the manifolds.

Now we define the concept of “train” for&approximating sequence:

Definition 4.1. Let (Ng, N1, ..., Ni) be an orderedk + 1)-tuple of points inM U N
with & > 1such that, forj =0, ..., k — 1 the following properties hold:

(@) o(Nj+1) = o(Nj) +d,

(b) NjpNji1.
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In this case the ordered séNg, N1, ..., Ni) will be called atrain of limit d-jumpsfor

the sequencéf;) (or, for short, atrain) and its points will be calledhodes The pairs
(Nj, Nj+1) will be known as thavagonsof the train. The numbet will be calledthe
length of the trairand each train that is not included (in the obvious sense) in any other
train will be said to bemaximal If (No, ..., Ni) is a maximal train, its wagon&Vo, N1)

and (Ny—1, Ny) will be calledinitial andfinal train wagongrespectively), whileVp and

Ny will be theinitial andfinal train nodesThe remaining nodes will be calledternal
nodes The symboW (( f;)) will denote the set of all the train wagons (for all the existing
trains).

Since each point belonging either kb, or to N is a node for at least one train,
the set of all trains is not empty. Notice that the pahis an initial node for at least one
maximal train if and only if eithe® € N}, — N, or P € N}, — N}, whereas it is a
final node if and only if eithe® € Ny, — N} or P € N, — N ..

In Figure[§ we provide a graphic representation of a maximal {t&inB, C, D). In
this particular case, we havee N}, B € Nj, NN, C € Ni, NN andD € N .
Hence,A is the initial node and is the final train node, whil8 and C are internal
nodes. The three ordered pai, B), (B, C), (C, D) are the three wagons in the train;
(A, B) and(C, D) are its initial and final wagons, respectively.

M N
Fig. 6. A train of limit d-jumps given by the quadrupl&, B, C, D).

In Figure[ T we can find the maximal traji®, G, A) associated with thé-approxim-
ating sequence we described in Exanjipl¢ 3.2. In fact, we can easily progpiiaGp A,
2(G) — z2(B) = d andz(A) — z(G) = d. HenceB € N}, G € N\, NN andA € N .

Remark 4.2. The example described in Figdrg 7 shows that the existence of a train of
length 2 such that its initial node (in this caB¢ and its final node (in this cast) are
critical points of the measuring functianguarantees that the natural pseudodistahce
equals half the distance between two critical values of the measuring function.
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- ’ 2d =2(A)—=2(B)

Fig. 7. An example of a train of limit/-jumps given by the tripl€B, G, A).

Our main goal will be to show that in the case of closed surfaces it is always possible to
construct a sequencedfapproximating homeomorphisms for which we can demonstrate
the existence of a train of length 1, 2 or 3, beginning and ending at critical heights for the
measuring functions. We shall do that in the next subsegtioh, 4.2, and in Sgction 5. The
example we have just seen justifies our task, since it points out a simple relation between
d and the critical values of.

Now, in order to attain our goal, we need to introduce the conceptioimal d-
approximating sequence

4.2. Minimald-approximating sequences

The concept of train that we have just introduced allows us to prove Th¢orgm 2.4 cited in
Sectior] 2, and will be central in the following sections, devoted to the proof of the main
result in this paper (Theorein 5.7). In this subsection we shall assumgtizatd \" are
smooth homeomorphic closed manifolds andndyr are Morse measuring functions on

M andN, respectively. We shall weaken these hypotheses at the end of this paper.

As explained in the introduction, the main goal of this paper is to show that the ana-
lytic folding number is either 1, 2 or 3 in the case of closed surfaces.

The idea is to extend the reasoning applied in Rerpark 4.2, about the example de-
scribed in Figur€]7. In order to do that, from a constructive point of view we need to take
ad-approximating sequence and improve it by shortening its trains as much as possible,
until we get a train of length 1, 2 or 3, beginning and ending at critical heights for the
measuring functions.

This procedure will be carried out in two steps. The first will consist in a reduc-
tion of trains applicable in any dimension, which has been developed and applied in [2]
(Lemmd 4.6 in this paper) in order that only trains beginning and ending at critical points
for the measuring functions remain.

The second step will be a reduction process, specifically developed for the case of
surfaces, allowing us to get a further shortening of trains.
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Our goal requires a formal definition of “improving"&approximating sequence.
Hence we need to define the following preorderingn the setSy (M, N) of d-
approximating sequences.

Definition 4.3. If (f;) and(g;) are twod-approximating sequences, we write
(i) = (fi) (or,equivalently (fi) = (g:))
if o(NT((8))) € o(NT,((f))) and (N7 ((8))) S @(N L, ((f))).

Definition 4.4. Let (f;) and (g;) be twod-approximating sequences. We wriig) <
(/i) (or, equivalently f;) > () if (¢i) < (f;) and eitherp(N} () # (N} (/)
or (N, ((8i))) # e(N () (i.e., at least one of the two inclusions in Defini4.3
is proper).

We shall say thatf;) € Sy (M, N) is aminimal sequenci there exists no sequence
(i) € SH(M, N) such that(g;) < (f).

Remark 4.5. The relations< and< could be defined by referring to the nodes\inin
place of the nodes itM. In fact, our definitions immediately imply that the inclusion
P(NJ () S o(NJ(((f)) is equivalent toy (N-((¢1))) S ¥ (N((f;))) and the
inclusiong(N, ((g:))) € @(N\((fi))) is equivalent IOP(NXf((gi))) < w(Nj{f((fi)))-
An analogous statement holds for proper inclusions.

We observe that, in our definitiong;) < (f;) does notmean that eithefg;) < (f;)
or (gi) = (fi)-

The minimal sequences fot are, in some way, the best sequences of homeomor-
phisms whose measure approximates the natural size pseudodistance, since they minimize
the setsp(N ) ande(N7, ) (and hence alsg (N7,) and (N}), i.e. the sets of node
heights for the four types of nodes we have considered). We shall see that it is always
possible to construct@approximating sequence of homeomorphisms such that the sets
@(N ) andy (N ) are finite, and that this can also be done by using minimal sequences.

The existence of minimal sequences with respect to the preordenwigf be impor-
tant in Sectiofb.

The following lemma is the main tool used [n [2] to prove Theofen 2.4 cited in this
paper (for a proof of this lemma see [2, p. 710]).

Lemma 4.6. Assume thaD < d < 400 and the measuring functions  are Morse.
For every(f;) € Sy (M, N) there existgg;) € Sy (M, N) such that all maximal trains
begin and end at critical points of the measuring functions 8h@dg;)) € W((f;)).

Remark 4.7. We observe that in Lemnfa 4.6 the relati@n) =< (f;) follows easily from
the inclusionW ((g;)) € W((f})).

The following proposition shows some properties of the minimal sequences we are
going to use, under the hypotheses that our measuring functions are Morse. In the next
pages the symbol&, and K, will represent the sets of critical points of the measuring
functionsg andyr, respectively. The sets of critical valuesgéndys will be denoted by
o(Kp) andyr (Ky ).
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Proposition 4.8. Assume thaD < d < +oo and the measuring functiong, v are
Morse, andsetd = {z e R | dc1,c2 € p(Kp)UY(Ky), r,s eNiz—c1=rd, co—z =
sd}. Then the following statements hold:

(a) If a train for a d-approximating sequence begins and ends at critical points of the
measuring functions, the heights of its nodes belong to the finitd.set

(b) For everyd-approximating sequencgf;), there exists a minimal sequen@e) <
(fi) whose maximal trains begin and end at critical points of the measuring functions.

(c) If a d-approximating sequendag;) is minimal, the height of every node of its trains
belongs taA.

Proof. (a) follows trivially from the definition of train. The finiteness df follows from
the finiteness oK, and Ky, and hence op(K,) andy (Ky) (here we are using the
hypothesis that the measuring functions are Morse).

(b) Lemma[4.p ensures that we can take a sequénge=< (f;) whose maximal
trains begin and end at critical points of the measuring functions. The previous state-
ment (a) and the definition of the relaticn imply that no infinite descending chain
(gi) > (g}) . (gl?) > ... beginning at(g;) can exist. Let us consider the last term
(g)) in a maximal descending chain beginning(gt). Obviously,(g;) is a minimald-
approximating sequence. Unfortunately, statement (b) is still not proved, since some max-
imal train of (g/) could either begin or end at regular points of the measuring functions,
as opposed to what happens fgf). However, by applying Lemn@.G @) we get
a newd-approximating sequendé;) that is still minimal and has the required property
regarding maximal trains.

(c) By (b), there exists a minimal sequen@g) < (g;) whose maximal trains be-
gin and end at critical points of the measuring functions. Sigggis already minimal,
it follows thate(NJ (7)) = ¢(N3,((8))) ande(Nyy,((hi))) = (N} (((g))) (and
hencey (N ((hi))) = ¥ (N-((g))) andyr (NT-((h:))) = ¥ (N3-((¢:)))). Statement (a)
ensures thap(N4 (h;)) U ¥ (Nar(h;)) is included in the finite setl, and therefore so is
@(NA1((8)) U (NA((8i)))- O

5. Our main result

In Sectior] 2 we have recalled (Theorem]| 2.4) that the natural pseudodistance between two
size pairs is related to the critical values of their measuring functions.

However, the examples we have displayed suggest that our results can be improved.
In fact, in our examples the analytic folding numbeis never greater than 2. In the
first part of this section we shall prove (Theorgm| 5.4) that the analytic folding number is
never greater than 3, under the assumptionAaand\ are two homeomorphic smooth
closed surfaces and the measuring functipng are Morse. These hypotheses will make
our proofs easier from the technical point of view. In Subse¢tioh 5.1 we shall weaken our
assumptions and return to the case of ctak§Theoren] 5.7).

Now we introduce two lemmas. The first one is trivial and clarifies the local nature of
the concept of node.
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Lemmab5.1. Assumé) < d < +oo. LetU be an open subset g1 and (f;) and (g;)
be twod-approximating sequences such that, for evegyN, f; coincides withg; in U.
ThenNT ((f)) NU = N}, ((¢)) N U andN () N U = Ny ((g)) N U.

Proof. This follows immediately from the definitions of the sét§/l andN, ;. O

A similar result obviously holds for an open subsebf A/, and can easily be obtained
by interchanging the roles of the sequencgs, (g;) and(fi_l), (g,-_l) in Lemm.

The useful property described by the following key lemma justifies the introduction
of the concept of minimal sequence in the case of closed surfaces.

Lemma 5.2. Assume that, A/ are smooth homeomorphic closed surfaces@nd are
Morse measuring functions o and \V, respectively. Suppose that< d < +oo, and
(f) is a minimald-approximating sequence frooM, ¢) to (N, ¥). If N € Nao((f;))
andg(N) is not a critical value forp, then at least one @f(N) —d, ¢(N) +d is a critical
value fory.

In other words, under the hypotheses of the lemma (possibly by exchanging the roles
of the two surfaces), if we consider the heights of three consecutive nodes in a train of
a minimal sequence, at least one of them is a critical value. The proof of this property
involves Jost and Schoen’s theorem about harmonic maps between surfaces and is the
key to proving the main result of this paper (Theofen} 5.7).

Proof. We shall prove that ip(N) is a regular value fop and bothp(N)—d andg(N)+d
are regular values fap then we can get a nes-approximating sequendg;) such that
(f) < (fi), contradicting the assumption thaf;) is minimal. So, in the following we
assume thap(N) & ¢(K,) ande(N) +d, o(N) —d & ¥ (Ky).

Let us define the open sefs = {P € M : |p(P) — ¢(N)| < e} andV, = {Q €
N . minQeKw W (Q) — ¥ (Q)| < €} (in other wordsD; is the set of all points of\1
whose height differs less thanfrom the height ofv, while V; is the set of all points of
N whose height differs less tharfrom the height of a critical point of’). Moreover, let
us choose > 0 so small that

(1) D, does not contain critical points far,
(2) 9D, does not contain nodes belongingNa((fi)); .
(3) fori large enough, iD € f;(D,) and|p(N) — ¥ (Q)| > d — 2e thenQ ¢ V..

The existence of an > 0 satisfying(1) and(2) is ensured by the assumption th&iV) ¢

¢(K,) and the fact that the set of heights of the nodes is finite (see Propgsitjon 4.8(c));
recall that the measuring functions are Morse. As regeBisf for every positives we

could find an arbitrarily IargEand aQ e V.Nfi(D, )satlsfy|ng|<p(N) V(0)| > d—2e,

then there would exist a wagajN 0) for (f), with w(Q) equal to a critical value of,
cp(N) o(N) and|<p(N) 1//(Q)| =d, since lim ©(f;) = d. Therefore eithep(N) +d

or o(N) — d would be a critical value fotr, contrary to our hypothesis.

Note. As a matter of fact, the expression “folarge enough” in3) can be replaced with
“for i > i”, wherei is a natural numbendependentf ¢. We just requires to be strictly
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less thany /3, with n being the minimum distance between the finite set of all critical
values of the (Morse) functiofr and the sefp(N) + d, ¢(N) — d}. In order to proceed
this way we only have to takieso large that for every> i the inequality® ( ;) < d+n/3
holds, implyingl¢(N) — ¥ (Q)| < d +n/3+¢ < d + 2n/3 for everyQ € fi(D,). If we
also assume th&p(N) — v (Q)| > d —2¢,thend —2n/3 < |(N) — ¥ (Q)| < d+2n/3

and hence the distance betwel(Q) and the setp(N) + d, ¢(N) — d} must be strictly
less than 3/3. Thereforey (Q) is at a distance more thayy3 > ¢ from the set of all
critical values ofy and henc& ¢ V.. Anyway, this change of statement is not necessary
for our proof, and we maintain the simpler version(8y.

Now, we are going to prove that there exists a sequeﬁOee Sy (M, N) such that
fi = fi in the closed setM — D, andN (((f;) )N D, = @ (in other words, we can
eliminate all wagons froriM to \V, beginning inDy).

So, we start by setting; (P) = f;(P) for P € M — D,.

In order to definef; in D, we have to consider each connected compo@esftD;.
Because of hypothesid), C is (homeomorphic to) a cylinder. Gh= ST x (¢(N) — ¢,
@(N) +¢) let us define the product metid®? + d¢?, so that the functiog is linear inC
(i.e. V¢ = 0). Here 462 anddy? are an arbitrarily chosen Riemannian metrictdrand
the Riemannian metric on the interv@(N) — &, ¢(N) + ¢) induced by the Euclidean
distance, respectively (cf.|[8]).

Then consider a Riemannian metfig, on A/ such that the measuring functian
is harmonic at each point 0¥ — V.. In other words, we require that is harmonic
in AV, with the possible exception of the closure of the set of those points whose height
has a distance smaller tharfrom some critical height ofy. We can get this by using
the construction in the previous paragraph. TheNSet V, is a union of cylinders, and
the level sets of/ slice each cylinder into circles. The construction in the last paragraph
yields a metric so thap is harmonic o\ — V.. We refer to[[8] and [9] for alternative
proofs of the existence of such a Riemannian metric.

In order to apply Jost and Schoen’s theorem we need to work with diffeomorphisms.
This implies that we have to approximate our homeomorphigniyy diffeomorphisms,
without changing the trains of odrapproximating sequence.

Claim A. There exists a sequen¢g) of diffeomorphisms such th#t((g;)) = W((f;)).-

Proof of Claim A. Since M and A are smooth surfaces, for each indewe can find a
diffeomorphismg; : M — N such thatdn (f;(P), gi(P)) < 1/i for everyP € M,
whered s is the distance o/ induced by the Riemannian metyigy (cf., e.g., Corollary
1.18in [21], and([15]). Henc®p Q with respect tq f;) if and only if Pp Q with respect
to (g;) (recall Subsection 4]1). This implies thHat((g;)) = W((f)).

Because of Claim A, we can assume without loss of generality that gasha dif-
feomorphism.
The following theorem holds (cfl. [12]):

Theorem 5.3 (Jost and Schoen)Let 2 C M3 be a domain with non-empty boundary
a2 consisting ofc! Jordan curves. Lek : Q@ — M, extend to a diffeomorphism 6f
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ontoh($2). Suppose the curvégd<) are of classC2+* and are locally convex with re-
spect tah (2), i.e. h(3£2) has non-negative geodesic curvature with respect to the normal
pointing into 2(2). There exists a harmonic diffeomorphigm © — A(€2) which is
homotopic tok and satisfies: = h on 9S2. Moreover,i is of least energy among all
diffeomorphisms homotopic toand assuming the same boundary values.

Jost and Schoen’s theorem guarantees the existence of a diffeomofphigiC) — C
that is harmonic inf; (C) and coincides witkf[l at the boundary of; (C).

Now, we are ready to defin@(P) in the caseP € D,, by settingf; (P) = h~1(P) for
every P € C andC varying in the set of all the connected component®gofPractically,
we are going to changg into 2~1 inside each cylindef. Notice that every/; is a hom-
eomorphism fromM to A satisfying the equalitieg; (D,) = f;(D,) and f; (dD;) =
Ji(0Ds).

——— fi
N
CcD.eM fi(C)eN

Fig. 8. The cylinderC inside the seD, and its imagef; (C). The subseV, N f; (C) is highlighted
(in grey).

The key property of the new sequencg) is that its “jumps” starting fronD, are
controlled because of our hypotheses and the use of harmonic maps, and the “largest”
jumps of( f;) are not larger than the corresponding jumpgff. Formally, the following
Claims B and C hold.

- 71 71
ClaimB. max; ) l¢ o i~ = ¥| = MaX; op, ) 7.nfpon [ 0 fi ™ — V1.

Proof of Claim B. The key remark is that the (continuous) functi,amflfl—l// N —-R
is harmonic onf; (D,) — V. In fact, on the one hand, singeis linear onD, and fi‘l
is harmonic onf; (D,) it follows immediately thaty o flfl is harmonic onf; (D;) (cf.,
e.g., Corollary 8.7.4 in [11]). On the other hand,s harmonic onf; (D,) — V., by the
choice of the Riemannian metric dvi. Hence, by the maximum principle, the restriction
of o fi 1=y to fi(D:) — V. must take its maximum also at a pointaiff; (D;) — Vo).
The same holds for the minimum value. This implies that the restricti@rbgf._l —yto

the compact sef; (D,) attains each extremum either f(dD,) orin V., N f;(D,). The
conclusion of our claim follows immediately.



348 Pietro Donatini, Patrizio Frosini

Claim C. Foreveryi large enough, ifnaxﬁg lp—Vofil>d—e thenmaxﬁs lp—ofil
<maxp, l¢ — ¥ o fil. Therefore®(f;) < O(f;), and hence the new sequerige) is a
d-approximating sequence frogM, ¢) to (N, ).

Proof of Claim C. By Claim B, there gxistsQ e £;(0D,) U (Ve N fi(D,)) such that
lpo fi Q) =¥ (Q) =max, 55, lpo f; t — ¥ = maxg | — v o fil = d— e, under
our hypothesis. Sincg (Q) € D, we havelp o £, 1(Q) — ¢(N)| < &. It follows that
lp(N)— ¥ (Q)| > d—2¢ and henc& ¢ V, (for i large enough), because of the assump-
tion (3) aboutD,. ThereforeQ € f;(3D;). Since the dif‘feomorphisnﬁi‘l coincides with

fi_l in f;(0D,), maxs_ lp— Yo fi| < maxyp, l¢ — ¥ o fi|. So our claim is proved.

Lem_m (local nature of the concept of node) and the coincidenge aiid f;
outsideD, immediately imply the next claim.

Claim D. The set of all wagons frooM — D, to \ is the same fox f;) and (f,-). In
particular,

NT(((f)) N (M = De) = N} (((fi)) N (M — D),
N (/i) N (M =De) = N ((fi) N (M — D).

Finally, we can prove that under our hypotheses the new sequgncis “better” than
(fi) in the sense expressed by the following statement, saying that there exists no wagon
from M to N beginning inD;.

(5.0.1)

Claim E. The seN((f;)) N D, is empty.

Proof of Claim Elfan N’ ¢ NM((ﬁ)) N D, existed, then there would exist a sequence
(P,) of points of M converging toN’ and a strictly increasing sequen@g) in N such
that the sequencef;, (P,)) converges antlo(P,) — ¥ (fi, (P,))| — d. Sincef; and f;
coincide outsidéD, anddD, does not contain nodes fof;) (hypothesig2) aboutD,),

we can assume that all poin®s belong toD,. Then, by Claim C, there would also exist
a converging sequendgd,) such thalo(B,) — ¥ (fi,(B;))| — d, where eactB, is in
9D,. This would imply the existence of a node fof;) belonging todD,, once more
contradicting hypothesi).

In summary, we have seen thRt does not meeN \(((f;)), but contains at least
one node oN 4 ((f;)), while N}A((f})) N (M —D,) = Nj((f)) N (M —D,) and
N ((fi)) N (M =D,) = N, ((f)) N (M — D) (Claim D). It follows that(f;) < (f;).
This contradicts the hypothesis thgt) is a minimal sequence. O

Let us apply Lemmp 5|2 to prove that the analytic folding number is never greater than 3
for closed surfaces.

Theorem 5.4. Assume thatM and N are two homeomorphic smooth closed surfaces
and thaty : M — Randy : N/ — R are two Morse functions. Then, df denotes
the natural pseudodistance between the size gais ¢) and (N, ¥), at least one of the
following properties holds:
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(i) d equals the distance between a critical valugyafnd a critical value ofy;
(i) d equals half the distance between two critical valueg;of
(iii) d equals half the distance between two critical valueg pf
(iv) d equals one third of the distance between a critical valug ahd a critical value

of yr.

Proof. If d = 0, theny andy have the same global minimum Henced = |u — u|
and our assertion is trivial.

So let us assume > 0. Let (k;) be a minimal sequence whose maximal trains begin
and end at critical points of the measuring functions (Proposition 4.8(b)) and suppose
N1 € M is the initial node of a maximal train (if no maximal train beginsi, it is
sufficient to exchange the roles of our surfaces; in this case (ii) and (iii) interchange in
the following). Thereforeo(N1) is a critical value forp. Let No € A be the next node
in the train. Ify(N>) is a critical value foryr, then condition (i) holds. Otherwise, let
N3 € M be the next node in the traiVg exists becausg (N») is not a critical value for
¥, and henceV, is not the final node of the train). #(N3) is a critical value for, then
(i) holds. Otherwise, letv4 € A be the next node in the trainvg exists because(N3)
is not a critical value fop, and henceVs is not the final node of the train). Lemrpab.2
applied forN = N3 ensures that (N4) = ¢(N1) + 3d is a critical value fory. Therefore
d = 3(¥(Na) — ¢(N1)) and (iv) holds. O

Remark 5.5. It may be interesting to note that Example]|3.4 can be used to show that
the hypothesis ot (0€2) being locally convex with respect #oQ2) is necessary in Theo-
rem5.3. In fact, consider the open surfade$, A'* displayed in Figurg]9, obtained from
the two surfaces\t, N of Figure[$ by deleting suitable closed neighbourhoods of the
critical points. OnM* and A'* consider two Riemannian metrigsy+ and ua+ such
that and+ are linear functions with respect for(« and uas+, respectively (cf.[[B]).

The metricsu g+ and s+ are the ones induced by the embeddings\éf and V* in

Fig. 9. There exists a diffeomorphism: N** — M* preserving the height of the boundary points
(thick).
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M* NF
Fig. 10. The metricsu o4+ and uar+ are the ones induced by the displayed embedding$16f
and\/* into R3.

RR3 displayed in FigurE]]O. Notice thatM™* is not locally convex with respect ta1*.
We observe that there exists a diffeomorphismA* — M* preserving the height of
the boundary points. If there existed a diffeomorphismA* — M* harmonic in\*
and coinciding withz at aAN*, it should preserve the height of every pointhff, since
the functiong — ¥ o h : N* — R would be harmonic ioV* and take its maximum and
minimum at points 0B\ * wherep — ¥ o h vanishes. Moreover, we could easily extend
h to a diffeomorphismk’ : N — M that preserves the height of every point outside
Therefore, there would exist an optimal diffeomorphism between the size(péirs),
(M, w), contradicting what we said in Example [3.4.

Remark 5.6. Lemmd 5.2 may be considered analogous to Lemma 3.2 proved in [4] for
curves, but the techniques used in the proof are substantially different, since here we
have to handle harmonic maps in place of linear maps in dimension 1. As a consequence,
because of the hypotheses required in Jost and Schoen’s theorem, problems about the po-
sition of images of critical points arise after the harmonization process, since, in contrast
to what happens in the case of curves, we do not know this position. As a result, in both
the 1-dimensional and 2-dimensional cases we can prove that if we consider the heights
of m consecutive nodes in a train of a minimal sequence, at least one of them is a crit-
ical value, but we have to set = 2 for curves andn = 3 for surfaces, depending on

the different techniques and dimensional constraints involved in our proofs. This differ-
ence explains why the conclusion of Theorem 3.4 In [4] (for curves) is stronger than the
conclusion of Theorein 5.7 in this paper, concerning surfaces.

5.1. Weakening the hypotheses about the regularity of surfaces and measuring functions

Until now we have considered smooth closed surfaces and Morse measuring functions. By
repeating the proofs used in [2] to weaken our hypotheses about regularity (see Section 6
in that paper), we can get our main result via an approximation procedure:
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Theorem 5.7. Assume thatM and N are two homeomorphic closed surfaces of class
clandthaty : M — Randy : N — R are two functions of clas€®. Then, ifd
denotes the natural pseudodistance between the size @&irg) and (N, ¥), at least
one of the following properties holds:

() d equals the distance between a critical valugoafnd a critical value ofy;
(ii) d equals half the distance between two critical valueg;of
(iii) d equals half the distance between two critical valueg pf
(iv) d equals one third of the distance between a critical value ahd a critical value

of .

6. Conclusions and further research

In this paper we have proved that for closed surfaces the relation between the natural
pseudodistance and the critical values of the measuring functions is stronger than the
one we proved in [2] for general dimension. In fact, Theofem 5.7 shows that the natu-
ral pseudodistance between two homeomorghiaclosed surfaces associated With
measuring functions is always either the distance or half the distance or one third of the
distance between two suitable critical values of the measuring functions.

Unfortunately, our techniques cannot be used for larger dimensions, since the state-
ment of Jost and Schoen’s theorem fails in dimension strictly greater than 2 (cf. [10,
Section 5.8], and |5, Section 12]). Moreover, the application of this theorem requires the
approximability of homeomorphisms by means of diffeomorphisms. This procedure is
not available for dimensions strictly larger than 3 (cf., elg.] [14]). As a consequence we
do not know if results analogous to Theorfem 5.7 hold for dimensions strictly larger than 2.
In other words, we wonder if there exist twemanifolds equipped with regular measur-
ing functionsy, ¥ such that their pseudodistance equals neitheor D /2 nor D/3, for
D varying in the set of all distances between the critical valuesafidy.

We intend to study this problem and the availability of new techniques for studying
the generak-dimensional case.

However, it is interesting to note that we do not know of any examples where the
analytic folding number equals 3, also in the bidimensional case. On the other hand,
we are not able to improve our result by proving that the analytic folding number never
equals 3, also in the case of surfaces (see Remdrk 5.6).

The difficulty in finding examples where the analytic folding humber equals 3 de-
serves some further remarks. One technique that can be used for computing natural size
pseudodistances is basedsire functiongcf. [3]). The computation of size functions is
usually easy and gives us a lower bounfbr natural size pseudodistances. Obviously,
when we are able to exhibit a sequeri¢ge of homeomorphisms for which lin® ( f;) =s
we can claim that the natural size pseudodistance equatse key point is that the best
lower bounds we can obtain is either the distance or half the distance between two suit-
able critical values of the measuring functions (cf. Theorem 2Jin [3]). Therefore, if an
example where the analytic folding number equals 3 really exists, we are not able to find
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and recognize it using the previously described technique. Apparently, new techniques
should be developed.

As regards the use of harmonic maps in our study, this corresponds to the property
that the deformation due to tension fields decreases both the energy and the maximum
change of the measuring functions, provided that we are far from their critical points.
The use of different kinds of deformations (e.g. curvature evolution of level lines of the
measuring functions) might be investigated. The main problem seems to be the possible
birth of degeneracies.

Furthermore, it might be interesting to examine the possibility of moving from the
study of trains of limitd-jumps to the study of relations obtained as limitsiedpprox-
imating sequences of homeomorphisms, with respect to the Hausdorff (or another more
suitable) topology.

In conclusion, various interesting questions remain open and deserve further study.
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