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Abstract. This paper addresses two problems lying at the intersection of geometric analysis and
theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good
approximate distance oracles for large distortion. We introduce the notion of Ramsey partitions of a
finite metric space, and show that the existence of good Ramsey partitions implies a solution to the
metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic
Dvoretzky theorem, as introduced by Bourgain, Figiel, and Milmari_in [8]). We then proceed to
construct optimal Ramsey partitions, and use them to show that for ever@, 1), everyn-point

metric space has a subset of siZe® which embeds into Hilbert space with distortian(1/¢).

This result is best possible and improves part of the metric Ramsey theorem of Bartal, Linial,
Mendel and Naor [5], in addition to considerably simplifying its proof. We use our new Ramsey
partitions to design approximate distance oracles with a universal constant query time, closing a gap
left open by Thorup and Zwick in [32]. Namely, we show that for evefyoint metric spacél, and

k > 1, there exists a (k)-approximate distance oracle whose storage requirementis™1/%),

and whose query time is a universal constant. We also discuss applications of Ramsey partitions to
various other geometric data structure problems, such as the design of efficient data structures for
approximate ranking.

Keywords. Metric Ramsey theorem, approximate distance oracle, proximity data structure

1. Introduction

Motivated by the search for a non-linear version of Dvoretzky’s theorem, Bourgain, Figiel
and Milman [8] posed the following problem, which is known today astie¢ric Ramsey
problem Given a target distortion > 1 and an integet, what is the largest such that
everyn-point metric space has a subset of sizaghich embeds into Hilbert space with
distortiona? (Recall that a metric spac&, dy) is said toembed into Hilbert space with
distortion « if there exists a mapping : X — L> such that for every, y € X, we
havedx(x,y) < || f(x) — f()ll2 < adx(x, y)). This problem has since been investi-
gated by several authors, motivated in part by the discovery of its applications to online
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algorithms—we refer td [5] for a discussion of the history and applications of the metric
Ramsey problem.

The most recent work on the metric Ramsey problem is due to Bartal, Linial, Mendel
and Naor[[5], who obtained various nearly optimal upper and lower bounds in several
contexts. Among the results inl[5] is the following theorem which deals with the case of
large distortion: For every € (0, 1), anyn-point metric space has a subset of size¢
which embeds into an ultrametric space with distorti@log(2/¢)/¢) (recall that arul-
trametric space X, dy) is a metric space satisfyinty (x, y) < maX{dx (x, z), dx (v, 2)}
for everyx, y, z € X). Since ultrametric spaces embed isometrically into Hilbert space,
this is indeed a metric Ramsey theorem. Moreover, it was shown in [5] that this result is
optimal up to the lo¢R/¢) factor, i.e. there exist arbitrarily largepoint metric spaces,
every subset of which of siz€—¢ incurs distortiorf2 (1/¢) in any embedding into Hilbert
space. The main result of this paper closes this gap:

Theorem 1.1. Let (X, dx) be ann-point metric space and € (0, 1). Then there exists
a subset C X with |Y| > n1~¢ such that(Y, dx) is equivalent to an ultrametric space
with distortion at mosi28/¢.

In the four years that elapsed since our work[dn [5] there has been remarkable develop-
ment in the structure theory of finite metric spaces. In particular, the theory of random
partitions of metric spaces has been considerably refined, and was shown to have numer-
ous applications in mathematics and computer science (see for examplel[17, [25, 24, 1]
and the references therein). The starting point of the present paper was our attempt to
revisit the metric Ramsey problem using random patrtitions. It turns out that this approach
can indeed be used to resolve the metric Ramsey problem for large distortion, though it
requires the introduction of a new kind of random partition, an improved “padding in-
equality” for known partitions, and a novel application of the random partition method

in the setting of Ramsey problems. In Secfigpn 2 we introduce the notion of Ramsey par-
titions, and show how they can be used to address the metric Ramsey problem. We then
proceed in Section|3 to construct optimal Ramsey partitions, yielding Théorém 1.1. Our
construction is inspired in part by Bartal's probabilistic embedding into tiees [4], and is
based on a random partition due to Calinescu, Karloff and Rabani [9], with an improved
analysis which strengthens the work of Fakcharoenphol, Rao and Talwar [17]. In partic-
ular, our proof of Theorein 1.1 is self-contained, and considerably simpler than the proof
of the result from([5] quoted above. Nevertheless, the construction of [5] is deterministic,
while our proof of Theorern 1} 1 is probabilistic. Moreover, we do not see a simple way to
use our new approach to simplify the proof of another main resuli of [5], namely the phase
transition at distortiorx = 2 (we refer to[[5] for details, as this result will not be used
here). The results of [5] which were used crucially in our worK [27] on the metric version

of Milman’s Quotient of Subspace theorem are also not covered by the present paper.

Algorithmic applications to the construction of proximity data structures. The main
algorithmic application of the metric Ramsey theoreniin [5] is to obtain the best known
lower bounds on the competitive ratio of the randomikzesgrver problem. We refer tol[5]

and the references therein for more information on this topic, as Thgorém 1.1 does not



Ramsey partitions and proximity data structures 255

yield improvedk-server lower bounds. However, Ramsey partitions are useful to obtain
positive results, and not only algorithmic lower bounds, which we now describe.

A finite metric space can be thought of as given by:itsn distance matrix. However,
in many algorithmic contexts it is worthwhile to preprocess this data so that we store
significantly fewer tham? numbers, and still be able to quickly find @giproximatelythe
distance between two query points. In other words, quoting Thorup and Zwick [32], “In
most applications we are not really interestedlindistances, we just want the ability to
retrieve them quickly, if needed”. The need for such “compact” representation of metrics
also occurs naturally in mathematics; for example the methods developed in theoretical
computer science (specifically [11,]120]) are a key tool in the recent work of Fefferman
and Klartag[[18] on the extension 61" functions defined on points inR¢ to all of R¥.

An influential compact representation of metrics used in theoretical computer sci-
ence is thepproximate distance orac[8,[14,[32] 20]. Stated formally, @, S, Q, D)-
approximate distance oracle on a finite metric spately) is a data structure that takes
expected timeP to preprocess from the given distance matrix, takes spamestore,
and given two query points, y € X, computes in timg) a numberE(x, y) satisfying
dx(x,y) < E(x,y) < Ddx(x, y). Thus the distance matrix itself is(® = 0(1), § =
0m?, 0 = 0(1), D = 1)-approximate distance oracle, but clearly the interest is in
compacidata structures in the sense tl§at o(n?). In what follows we will depart from
the above somewhat cumbersome terminology, and simply didetssproximate dis-
tance oracles (emphasizing the distortibp and state in words the values of the other
relevant parameters (namely the preprocessing time, storage space and query time).

An important paper of Thorup and Zwidk [32] constructs the best known approximate
distance oracles. Namely, they show that for every intégereryn-point metric space
has a(2k — 1)-approximate distance oracle which can be preprocessediR) time,
requires storag® (knt1/%), and has query timé@ (k). Moreover, it is shown i [32] that
this distortion/storage tradeoff is almost tight: A widely believed combinatorial conjec-
ture of Erdbs [16] is shown in[32] (see also [26]) to imply that any data structure support-
ing approximate distance queries with distortion at m@st21 must be of size at least
Q (') bits. Since for large values @fthe query time of the Thorup—Zwick oracle is
large, the problem remained whether there exist good approximate distance oracles whose
query time is a constant independent of the distortion (i.e., in a sense, true “oracles”).
Here we use Ramsey partitions to answer this question positively: For any distortion,
every metric space admits an approximate distance oracle with storage space almost as
good as the Thorup—Zwick oracle (in fact, for distortions larger alogn /log logn)
our storage space is slightly better), but whose query time is a universal constant. Stated
formally, we prove the following theorem:

Theorem 1.2. For any k > 1, everyn-point metric spacgX, dx) admits anO (k)-
approximate distance oracle whose preprocessing tinigig /¥ logn), requiring stor-
age space& (n1+1/%), and whose query time is a universal constant.

Another application of Ramsey partitions is to the construction of data structurap-for
proximate ranking This problem is motivated in part by web search and the analysis of
social networks, in addition to being a natural extension of the ubiquitous approximate
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nearest neighbor search problem (see [2] 23, 13] and the references therein). In the ap-
proximate nearest neighbor search problem we are giveri, a metric spaceéX, dy),

and a subseY C X. The goal is to preprocess the data poiritso that given a query
pointx € X \ Y we quickly return a pointy € Y which is ac-approximate nearest
neighbor ofx, i.e.dx(x,y) < cdx(x,Y). More generally, one might want to find the
second closest point to in Y, and so forth (this problem has been studied extensively

in computational geometry, see for example [2]). In other words, by ordering the points
in X in increasing distance from € X we induce groximity rankingof the points ofX.

Each point ofX induces a different ranking of this type, and computing it efficiently is a
natural generalization of the nearest neighbor problem. Using our new Ramsey patrtitions
we design the following data structure for solving this problem approximately:

Theorem 1.3. Fix k¥ > 1, and ann-point metric spacé&X, dy). Then there exists a data
structure which can be preprocessed in ti@ekn>Y* logn), uses onlyO (kn'+1/k)
storage space, and supports the following type of queries: GivenX, have “fast ac-
cess” to a permutation of ) of X satisfying foreverfl <i < j < n,dx(x, n™®(i)) <

O (k) - dx (x, 1) (j)). By “fast access” tar*) we mean that we can do the following:

1. Given a pointr € X, andi € {1, ..., n}, findz ™ (i) in constant time.
2. Foranyx,u € X, computej € {1, ..., n} such thatr ™ (j) = u in constant time.

As is clear from the above discussion, the present paper is a combination of results in pure
mathematics, as well as the theory of data structures. This exemplifies the close interplay
between geometry and computer science, which has become a major driving force in
modern research in these areas. Thus, this paper “caters” to two different communities,
and we put effort into making it accessible to both.

2. Ramsey partitions and their equivalence to the metric Ramsey problem

Let (X, dx) be a metric space. In what follows fere X andr > O we letBx(x,r) =

{y € X :dx(x,y) < r} be theclosedball of radiusr centered at. Given a partition??

of X andx € X we denote by??(x) the unique element of? containingx. ForA > 0

we say that? is A-boundedf for every C € &2, diam(C) < A. A partition treeof X

is a sequenceZ}i2 , of partitions of X such that?y = {X}, for all k > 0 the partition

2P, is 8% diam(X)-bounded, and?,_ 1 is a refinement of#?, (the choice of 8 as the
base of the exponent in this definition is convenient, but does not play a crucial role here).
For 8, y > 0 we shall say that a probability distribution Pr over partition tree%}72

of X is completelys-padded with exponent if for everyx € X,

PriVk € N, Bx(x, B -8 Fdiam(X)) € Z(x)] = |X|7".

We shall call such probability distributions over partition tr&ssnsey partitions

The following lemma shows that the existence of good Ramsey partitions implies
a solution to the metric Ramsey problem. In fact, it is possible to prove the converse
direction, i.e. that the metric Ramsey theorem implies the existence of good Ramsey
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partitions (with appropriate dependence on the various parameters). We defer the proof
of this implication to Appendik B as it will not be used in this paper due to the fact that
in Sectior] B we will directly construct optimal Ramsey partitions.

Lemma 2.1. Let (X, dy) be ann-point metric space which admits a distribution over
partition trees which is completeff~padded with exponent. Then there exists a subset
Y C X with|Y| > n1~7 which isS/ﬁ-equivaIerﬁto an ultrametric space.

Proof. We may assume without loss of generality that didn= 1. Let {2}, be a
distribution over partition trees of which is completelys-padded with exponent. We
define an ultrametrip on X as follows. Forx, y € X letk be the largest integer for which
P (x) = P (y), and sefo(x, y) = 87, It is straightforward to check that is indeed
an ultrametric. Consider the random subset X given by

Y={xeX:VkeN, By(x,B -85 c 2 (x).
Then

E|Y|=) PrVk e N, Bx(x, - 87" diam(X)) € Z4(x)] = n'77.

xeX

We can therefore chooge € X with |Y| > nl~7 such that for alkk € ¥ and allk > 0
we haveBy(x, 8 - 87X € 2 (x). Fix x,y € X, and letk be the largest integer for
which Z,(x) = 2 (y). Thendx (x, y) < diam(Z(x)) < 8% = p(x, y). On the other
hand, ifx € X andy € Y then, sinceZ,1(x) # Pr11(y), the choice oY implies that
x ¢ Bx(y,B-8%1). Thusdx(x,y) > B-8 %1 = (B/8)p(x, y). It follows that the
metricsdx andp are equivalent oy with distortion § 8. O

3. Constructing optimal Ramsey partitions

The following lemma gives improved bounds on the “padding probability” of a distribu-
tion over partitions which was discovered by Calinescu, Karloff and Rabani in [9].

Lemma 3.1. Let (X, dx) be a finite metric space. Then for eveky> 0 there exists a
probability distributionPr over A-bounded partitions oK such that for every) < ¢ <
A/8and everyr € X,

|Bx(x, A/8)[\'*/%
— A 1)

PriBx(x,1) € Z(0)] = ( |Bx (x, A)]

1 Here, and in what follows, fob > 1 we say that two metric spacéxX, dy) and(Y, dy) are
D-equivalentif there exists a bijectiory : X — Y and a scaling facto€ > 0 such that for all
x,y € X we haveCdy (x, y) < dy(f(x), f(y)) < CDdx(x, y).
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Remark 3.1. The distribution over partitions used in the proof of Lenjma 3.1 is precisely
the distribution introduced by Calinescu, Karloff and Rabani in [9][1n [17] Fakcharoen-
phol, Rao and Talwar proved the following estimate for the same distribution:

Pr[Bx(x,t) € Z(x)] > 1— O<L log |Bx(x, B)] > 2

AT |Bx(x, A/8)|

Clearly the bound{1) is stronger than (2), and in particular it yields a non-trivial estimate
even for large values affor which the lower bound irf {2) is negative. This improvement

is crucial for our proof of Theorem 1.1. The use of the “local ratio of balls” (or “lo-
cal growth”) in the estimatg [2) of Fakcharoenphol, Rao and Talwar was a fundamental
breakthrough, which, apart from their striking applicatiori in [17], has since found several
applications in mathematics and computer science [(séé [25, 24, 1]).

Proof of Lemm@a 3|1 Write X = {x1, ..., x,}. Let R be chosen uniformly at random from
the interval A /4, A /2], and letr be a permutation ofl, ..., n} chosen uniformly at

random from all such permutations (here, and in what folldvandr are independent).

DefineC1 := By (xz(1), R) and inductively for 2< j <n,

j—1

Cj = Bx(xz(jy, R)\ U Ci.
i=1

Finally, we letZ? = {C1, ..., C,} \ {4}. Clearly £ is a (random)A-bounded partition
onXx.

A

Fig. 1. A schematic description of the lower bound{@). The clusters that are induced by points
which lie outside the balBx (x, r + t), such as, cannot touch the balBx (x, t). On the other
hand, if a point fromBx (x, r — t), such as:, appeared first in the random order among the points
in Bx (x, r +t) then its cluster will “swallow” the balBx (x, t). The probability for this to happen
is|B(x,r —1)|/|B(x, r +t)|. Only points in the shaded region can split the BH(x, 1).
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For everyr € [A/4, A/2],

B —

|Bx (x, r t)l_ 3)

|Bx (x,r +1)]

Indeed, ifR = r, then the triangle inequality implies that if in the random order induced
by the partitiorrr on the points of the balBy (x, » + ¢) the minimal element is from the

ball Bx(x,r — 1), thenBx(x,1) € £ (x) (see Figur¢]l for a schematic description of
this situation). This event happens with probabiliBy (x, r —¢)| / |Bx (x, r + )|, im-
plying (3).

Write A/(8t) = k + 8, whereg < [0, 1) andk is a positive integer. Then

4 [A2Bx(x,r—1)
PriB - — — — d
Bx(x.0) € 0l = 1 fm Byt 4

4 = AJA+2(j+ 1)t B r—t 4 A/J2 B r—t
__Z |Bx (x,r )ldr |Bx (x,r )ldr
A =

Pr[Bx(x,1) € Z(x)|R=r] >

(4)

—0JA/4+2)t |Bx (x,r+1)]| A Jajavone |Bx (x, r+1)|

v

+ —(A/4—2kt
< [Bx(x, A/4+2ji+s+1)] ds+ 38/ ) By(x. A/240)]

4/”‘ Y Bx(x, AJA+2jt+s— Ol o, 4 |Bx (x, A A+ 2kt —1)|
A

v

4 (21t 1|BX(x AJa+2jt+s—1)|Y*
X/ [ U Bx(x, A/4+21t+s+t)|i|
+<1_%>|BX(X,A/4+2kt—t)|
A |Bx (x, A/2+1)]
Ak (Z |Bx(x, A/4+s—1)]| Yk
N |:|Bx(x,A/4+2t(k—1)+s+t)|j|
(1_%>|Bx(x,A/4+2kt—z)|
A [Bx (x, A/2+1)]
>@[ |Bx(x. A/4=0)| ]1/" (1_@>|3x<x,A/4+2kz—t>|
|Bx (x, A A+ 2kt +1)] A ) IBx(x, Aj2+1)
>[ |Bx(x, A/4—1)] ]SI/A.[lBX(x,A/4+2kt—t)|:|l_8kl/A
|Bx (x, A4+ 2ki +1)] |Bx (x, AJ2+1)]
|Bx(x, AJA—1)|  |Bx(x, A/4+2ki—1)|1¥/4
:[|Bx(x,A/4+2kt+z)|' |Bx(x, A/2+1)| ]
|Bx (x, A /4+2kt —r)| &/ DA/E—k=1)
[ |Bx(x, A/2+1)] }
. [|Bx(x,A/4—r>|T&/A’ -
|Bx (x, A/2+1)]
where in [4) we used[3), ii[(5) we used the arithmetic mean/geometric mean inequality,

in (6) we used the elementary inequality + (1 — )b > a’b=?, which holds for all
6 € [0, 1] anda, b > 0, and in[[7) we used the fact that/(8r) — k — 1 is negative. O

(%)

(6)
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The following theorem, in conjunction with LemrpaP.1, implies Theofer 1.1.

Theorem 3.2. For everya > 1, every finite metric spaceX, dx) admits a completely
1/a-padded random partition tree with expondiy/c.

Proof. Fix @« > 1. Without loss of generality we may assume that dign= 1. We
construct a partition tre@s; }7° , of X as follows. Setp = {X}. Having defineds; we
let #+1 be a partition as in Lemnfa 3.1 with = 8% andr = A/« (the random
partition #1 is chosen independently of the random partitics, . . ., %%). Define
&r+1 to be the common refinement §f and %11, i.e.

k41 ={CN C':Ceé, C e Pryq).

The construction implies that for evey € X and everyk > 0 we havedi1(x) =
& (x) N P41(x). Thus one proves inductively that

Vk € N, Bx(x,8 ¥ /a) € P (x) = Vk € N, Bx(x,8%/a) C & (x).
From Lemml and the independenc¢. & }?° ; it follows that
Privk € N, Bx(x,87%/a) C &(x)] = Prlvk € N, By(x,8 % /a) € 2 (x)]

= l_[ PriBx(x, 8% /a) € P (x)]

k=1
|By(x, 87717
- H[ |Bx(x,8%)]| }
= |Bx(x,1/8)| 71 > |x |10/, O

4. Applications to proximity data structures

In this section we show how Theor¢m 3.2 can be applied to the design of various proxim-
ity data structures, which are listed below. Before doing so we shall recall some standard
facts about tree representations of ultrametric spaces, all of which can be found in [5].
Any finite ultrametric spacéX, p) can be represented by a rooted tfee- (V, E) with
labelsA : V — (0, 00), whose leaves ar¥, and such that ifi, v € V andv is a child
of u thenA(v) < A(u). Givenx, y € X we then haven(x, y) = A(lca(x, y)), where
Ica(x, y) is the least common ancestorofandy in T. Fork > 1 the labeled tree de-
scribed above is calledkaHST (hierarchically well separated tree) if its labels satisfy the
stronger decay conditioA (v) < A(u)/k whenevew is a child ofu. The treeT is called
an exactk-HST if we actually have an equalith (v) = A(u)/k whenever is a child
of u. Lemma 3.5 in[[5] implies that any-point ultrametric isk-equivalent to a metric on
k-HST which can be computed in tin@(n).

We start by proving several structural lemmas which will play a crucial role in the
design of our new data structures.
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Lemma 4.1 (Extending ultrametrics).Let (X, dx) be a finite metric space, ard> 1.
Fix @ £ Y C X, and assume that there exists an ultrametrion Y such thatdy (x, y) <
p(x,y) <adx(x,y) foreveryx, y € Y. Then there exists an ultrametigcdefined on all
of X such that for every, y € X we havedx(x, y) < p(x, y),andifx € X andy € Y
thenp(x, y) < Badx (x, y).

Proof. Let T = (V, E) be the 1-HST representation of with labelsA : V — (0, 00).
In other words, the leaves @f areY, and for everyx, y € Y we haveA(lca(x, y)) =
o(x, y). It will be convenient to augment by adding an incoming edge to the root with
A(parentroot)) = oo. This clearly does not change the induced metrid’oifror every
x € X\ Ylety e Y be its closest point irY, i.e.dx(x, y) = dx(x,Y). Letu be the
least ancestor of for which A(u) > dx(x, y) (such au must exist because we added
the incoming edge to the root). Lete the child ofx along the path connectingandy.
We add a vertexw on the edgdu, v} whose label isix (x, y), and conneck to T as a
child of w. The resulting tree is clearly still a 1-HST. Repeating this procedure for every
x € X \ Y we obtain a 1-HST" whose leaves ar¥. Denote the labels ofi by A.

Fixx,y € X, and letx’, y' € Y be the nearest neighbors ofy (respectively) used
in the above construction. Then

Adlcag(x, y)) = maxA(lcaz(x, x)), Adlcaz(y, ). Adlcaz(x', y))}
> maX{dy (x, x'), dx (v, y"), dx (x', y)}
- dx(x,x") +dx(y,y") +dx (', y)
- 3
In the reverse direction, if € X andy € Y letx’ € Y be the closest point it to
x used in the construction @f. Thendy (x', y) < dx(x’, x) +dx(x, y) < 2dx(x, y). If
Icaz(y, x) is an ancestor dtaz (x, x) then
Adcaz(x, y)) = Adlcaz(x’, y)) = p(x'. y) < adx(x', y) < 20dx(x,y).  (9)
If, on the other handcas (v, x’) is a descendant déas (x, x") then

A(lcaz(x, y)) = Adlcag(x, x')) = dx (x, x') < dx(x, ). (10)

Z3 dx (x, y). 8

Scaling the labels of by a factor of 3, the required result is a combination[f (8), (9)
and [10). ]

The following lemma is a structural result on the existence of a certain distribution over
decreasing chains of subsets of a finite metric space. In what follows we shall call such
a distribution astochastic Ramsey chaiA schematic description of this notion, and the
way it is used in the ensuing arguments, is presented in Higure 2 below.

Lemma 4.2 (Stochastic Ramsey chains).et (X, dx) be ann-point metric space and
k > 1. Then there exists a distribution over decreasing sequences of subset¥y 2
X1 2+ 2 Xy, =0 (s itself is a random variable) such that for gl > —1/%,

s=1
k
B> 0|X"'p] : (max{1+pk’ l}> e ¢y
]:
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Fig. 2. A schematic description of Ramsey chains and the way they are used to construct ap-
proximate distance oracles and approximate ranking data structuResnsey chains are ob-
tained by iteratively applying Theorgm B.2 and Lenfmd 2.1 to find a decreasing chain of subsets
X =Xg2 X122 X; =0 suchthatX; can be approximated by a tree meffig ;. The tree

Tj111s,in a sense, a “distance estimator” for \ X;1—it can be used to approximately evaluate

the distance from a point ilf; \ X; ;1 to any other pointinX;. These trees form an array which is

an approximate distance oracle. In the case of approximate ranking we also need to extend the tree
Tj 1 to a tree on the entire spa&eusing Lemma 4]1. The nodes that were added to these trees are
illlustrated by empty circles, and the dotted lines are their connections to the original tree.

and such that for eachi € {1, ..., s} there exists an ultrametrip; on X satisfying for
all x,y € X, pj(x,y) > dx(x,y),andifx € X andy € X;_1\ X, thenp;(x,y) <
O(k) -dx(x,y).

Remark 4.1. In what follows we will only use the casgs € {0, 1,2} in Lemma[4.D.
Observe that fop = 0, (T1) is simply the estimatBs < kn/*.

Proof of Lemm@ 4]2By Theorenj 3.R and the proof of Lemina]2.1 there is a distribution
over subset§; C Xg such thatE|Y1| > n1~* and there exists an ultrametyg on Y1
such that every, y € Y7 satisfydx (x, y) < p1(x, y) < O(k) - dx(x, y). By Lemmdg 4.1
we may assume that is defined on all ofX, for everyx, y € X we havepy(x, y) >
dx(x,y),andifx € X andy € Y1 thenpi(x, y) < O(k)-dx(x, y). DefineX; = Xo\ 11
and apply the same reasoningXa, obtaining a random subs& C Xg \ Y1 and an
ultrametric po. Continuing in this manner until we arrive at the empty set, we see that
there are disjoint subsels, ..., Y; € X and for eacly an ultrametrigo; on X such that
pj(x,y) = dx(x,y) forx,y € X, andp;(x,y) < O(k) -dx(x,y)forx € X,y € ¥;.
Additionally, writing X; = X \ J/_, ¥, we have the estimaf8[|Y;|| Y1, ..., Y;—1] >
| X;_a |t VE,

The proof of [I1) is by induction on. Forn = 1 the claim is obvious, and if > 1
then by the inductive hypothesis

s

1 k
E[; X1 ) Yl] <nP + (max{ T 1}) X q| P

J
p+1/k
=I’lp+ max: k 1 ,n[H‘l/k ]__ﬂ
1+ pk’ n
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k 1 Y
< n” 4+ | max L) a1 — (mindp + 2,1 LT
14 pk k n

N <max{ 1Jf a 1}> -l Tl — P ),
p

Taking expectation with respect 1§ gives the required result. O

Observation 4.3. If one does not mind losing a factor @f(logr) in the construction
time and storage of the Ramsey chain, then an alternative to L¢mina 4.2 is to randomly
and independently samp(@(n'/* logn) ultrametrics from the Ramsey partitions.

Before passing to the description of our new data structures, we need to say a few
words about the algorithmic implementation of Lermimg 4.2 (this will be the central pre-
processing step in our constructions). The computational model in which we will be work-
ing is the RAM model, which is standard in the context of our type of data-structure prob-
lems (see for example [32]). In fact, we can settle for weaker computational models such
as the “Unit cost floating-point word RAM model’—a detailed discussion of these issues
can be found in Section 2.2. 6f [20].

The natural implementation of the Calinescu—Karloff—Rabani (CKR) random parti-
tion used in the proof of Lemn@.l takegn?) time. Denote byd = & (X) theaspect
ratio of X, i.e. the diameter ok divided by the minimal positive distance ¥. The con-
struction of the distribution over partition trees in the proof of Thedrern 3.2 requires per-
forming O (log ®) such decompositions. This results@n?log ®) preprocessing time
to sample one partition tree from the distribution. Using a standard technique (described
for example in[[20, Sections 3.2-3.3]), we dispense with the dependence on the aspect
ratio and deduce that the expected preprocessing time of one partition @e&iogn).

Since the argument in_[20] is presented in a slightly different context, we shall briefly
sketch it here.

We start by constructing an ultrametyoon X, represented by an HSH, such that
foreveryx,y € X, dx(x,y) < p(x,y) < ndx(x,y). The fact that such a tree exists is
contained in[[5, Lemma 3.6], and it can be constructe@! {n®) time using the Minimum
Spanning Tree algorithm. This implementation is doné& in [20, Section 3.2]. We then apply
the CKR random partition with diameter as follows: Instead of applying it to the points
in X, we apply it to the vertices of H for which

A(u) < A/n? < A(parentu)). (12)

Each such vertex represents all the subtree rooteduain particular, we can choose
arbitrary leaf descendants to calculate distances—these distances are calculated using the
metricdy), and all the vertices in this subtree are assigned to the same clustér tee

resulting partition. This is essentially an application of the algorithm to an appropriate
guotient of X (see the discussion ih [27]). We actually apply a weighted version of the
CKR decomposition in the spirit of [25], in which, in the choice of random permutation,
each vertexu as above is chosen with probability proportional to the number of leaves
which are descendants of(note that this change alters the guarantee of the partition
only slightly: We will obtain clusters bounded g + 1/1n%) A, and in the estimate on

the padding probability the radii of the balls are changed by only a factordofl1n).
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We also do not process each scale, but rather work in “event driven mode”: Vertiges of
are put in a non-decreasing order according to their labels in a queue. Each time we pop
a new vertex, and partition the spaces at all the scales in the range)[ n2A («)], for

which we have not done so already. In doing so we effectively skip “irrelevant” scales.
To estimate the running time of this procedure note that the CKR decomposition at scale
8/ takesO(miZ) time, wherem; is the number of vertices of H satisfying [I2) with

A = 8. Note also that each vertex &f participates in at mosP (logn) such CKR de-
compositions, s@ _; m; = O(nlogn). Hence the running time of the sampling procedure

in Lemm is, up to a constant factdr, m? = O (n?logn).

The Ramsey chain in Lemnjia #.2 will be used in two different ways in the ensuing
constructions. For our approximate distance oracle data structure we will just need that
the ultrametrigo; is defined onX;_; (and not all ofX). Thus, by the above argument, and
Lemm, the expected preprocessing time in this Ca@Q]]EZ‘;;i |Xj|2 log|X;|) =
0 (n?tY*logn) and the expected storage spac@igt Z;;i 1X;) = om*V*). For
the purpose of our approximate ranking data structure we will really need the metrics
p;j to be defined on all oX. Thus in this case the expected preprocessing time will be
Om?logn - Es) = 0(kn?tYklogn), and the expected storage spac®ig: - Es) =
O(kn1+1/k).

1) Approximate distance oracles. Our improved approximate distance oracle is con-
tained in Theorer 1]2, which we now prove.

Proof of Theorerp T]2We shall use the notation in the statement of Lerpmp 4.27}) et

(Vj, E;) andA; 1 V; — (0, 00) be the HST representation of the ultramepjo(which

was actually constructed explicitly in the proofs of Lemtnas 2.1/and 4.2). The usefulness
of the tree representation stems from the fact that it is very easy to handle algorithmically.
In particular there exists a simple scheme that takes a tree and preprocesses it in linear
time so that it is possible to compute the least common ancestor of two given nodes in
constant time (see [21] 6]). Hence, we can preprocess any 1-HST so that the distance
between any two points can be computedi(L) time.

For every pointr € X leti, be the largest index for which € X;__1. Thus, in par-
ticular,x € ¥; . We further maintain for every € X a vector (in the sense of data struc-
tures)vec, of lengthi, (with O (1) time direct access) such that foe {0, ..., i, — 1},
vec,[i] is a pointer to the leaf representingn 7;. Now, given a query, y € X assume
without loss of generality that < i,. It follows thatx, y € X; _1. We locate the leaves
X = veclix], andy = veg[i,] in T;,, and then computa (Ica(x, )) to obtain ano (k)
approximation talx (x, y). Observe that the above data structure only requifes be
defined onX;_; (and satisfying the conclusion of Lemrpal4.2 fary € X;_1). The
expected preprocessing timedn?t/* logn). The size of the above data structure is
0(Xj_o|X;]), which is in expectatiom (n1+1/%). o

Remark 4.2. Using the distributed labeling for the least common ancestor operation on
trees of Peleg [29], the procedure described in the proof of Thejorgm 1.2 can be easily
converted to aistance labelinglata structure (we refer to [B2, Section 3.5] for a descrip-
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tion of this problem). We shall not pursue this direction here, since while the resulting
data structure is non-trivial, it does not seem to improve over the known distance labeling
schemel[32].

2) Approximate ranking. Before proceeding to our-approximate ranking data struc-

ture (Theorerh 1]3) we recall the setting of the problem. Thinking @k a metric space
on{l,...,n}, and fixinga > 1, the goal here is to associate with evarye X a
permutationt® of {1, ..., n} such thatdy (x, 7)) < adx(x, ¥ (j)) for every

1 <i < j < n. This relaxation of the exact proximity ranking induced by the meitgic
allows us to gain storage efficiency, while enabling fast access to this data. By fast access
we mean that we can perform the following tasks:

1. Givenx € X andi € {1, ..., n}, find 7™ () in O(1) time.
2. Givenx € X andy € X, findi € {1,..., n} such thatt ™ (i) = y in O(1) time.

We also require the following lemma.

Lemma4.4. LetT = (V, E) be a rooted tree with leaves. Forv € V, let £y (v) be
the set of leaves in the subtree rooted aand defind 7 (v) = |.Zr (v)|. Then there exists
a data structure, that we calbize-Ancestor, which can be constructed i@ (n) time,
so as to answer 0 (1) time the following query: Giveh € N and a leafx € V, find
an ancestom of x such that¢y (u) < ¢ < ¢(parentu)). Here we use the convention
£(parentroot)) = oo.

To the best of our knowledge, the data structure described in L¢mina 4.4 has not been pre-
viously studied. We therefore include a proof of Lenima 4.4 in Appendlix A, and proceed
at this point to conclude the proof of Theorpm]|1.3.

Proof of Theoreni I|3We shall use the notation in the statement of Lenima 4.2. Let
T; = (Vj, Ej) andA; : V; — (0, c0) be the HST representation of the ultramejsjc

We may assume without loss of generality that each of these trees is binary and does not
contain a vertex which has only one child. Before presenting the actual implementation
of the data structure, let us explicitly describe the permutatihthat the data structure

will use. For every internal vertex e V; assign arbitrarily the value 0 to one of its
children, and the value 1 to the other. This induces a unique (lexicographical) order on
the leaves of;. Next, fixx € X andi, such that € ¥; . The permutatiomr ) is defined

as follows. Starting from the leafin 7; , we scan the path from to the root of7; . On

the way, when we reach a vertexXrom its childv, let w denote the sibling o, i.e. the

other child ofu. We next output all the leafs which are descendantis atcording to the

total order described above. Continuing in this manner until we reach the r@pt we
obtain a permutationr ) of X.

We claim that the permutation™) constructed above is an(k)-approximation to the
proximity ranking induced by. Indeed, fixy, z € X such thatCkdx (x, y) < dx(x, z),
whereC is a large enough absolute constant. We claim thaill appear aftery in the
order induced byr ™). This is true since the distances franare preserved up to a factor
of O(k) in the ultrametric spac&; . Thus for large enouglf’ we are guaranteed that
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dr, (x,y) < dr, (x,2), and therefordcar, (x,z) is a proper ancestor dfaz; (x, y).
Hence in the order just described aboyayill be scanned before.

We now turn to the description of the actual data structure, which is an enhancement of
the data structure constructed in the proof of Thedrein 1.2. As in the proof of Thigojem 1.2
our data structure will consist of a “vector of the trels, where we maintain for each
x € X apointer to the leaf representingin each7;. The remaining description of our
data structure will deal with each tr@e separately. First of all, with each vertexe T;
we also store the number of leaves which are the descendantsef 27, (v)| (note that
all these numbers can be computedifrn) time using, say, depth-first search) With each
leaf of 7; we also store its index in the order described above. There is a reverse indexing
by a vector for each tre€; that allows, given an index, to find the corresponding leaf
of 7; in O(1) time. Each internal vertex contains a pointer to its leftmost (smallest) and
rightmost (largest) descendant leaves. This data structure can be clearly constructed in
O (n) time using, e.g., depth-first transversal of the tree. We now give details on how to
answer the required queries using the “ammunition” we have listed above.

1. Using Lemma 414, find an ancestoof x such thattr, (v) < i < L7, (parentv)) in
0O(1) time. Letu = parentv) (note that cannot be the root). Lat be the S|bI|ng of
v (i.e. the other child ofi). Next we pick the leaf numbered— ¢7, (v)) + left(w) —
where leftw) is the index to the leftmost descendanuof

2. Findu = Ica(x, y) (in O(1) time, using [21[ B]). Leb andw be the children of,
which are ancestors afandy, respectively. Returaz, (v) + ind(y) — left(w), where
ind(y) is the index ofy in the total order of the Ieaves of the tree.

This concludes the construction of our approximate ranking data structure. Because
we need to have the ultrametrjg; defined on all ofX, the preprocessing time is
O (kn®t1/k logn) and the storage size &(kn1t1/*), as required. o

Remark 4.3. Our approximate ranking data structure can also be used in a nearest neigh-
bor heuristic called “Orchard Algorithm[ [28] (see al$o [13, Sec. 3.2]). In this algorithm
the vanilla heuristic can be used to obtain the exact proximity ranking, and requires stor-
age2(n?). Using approximate ranking the storage requirement can be significantly im-
proved, though the query performance is somewhat weaker due to the inaccuracy of the
ranking lists.

3) Computing the Lipschitz constant. Here we describe a data structure for computing
the Lipschitz constant of a functiofi : X — Y, where(Y, dy) is an arbitrary metric
space. When(X, dx) is adoubling metric spacésee [22]), this problem was studied
in [20]. In what follows we shall always assume thyats given inoracle form i.e. it is
encoded in such a way that we can compute its value on a given point in constant time.

Lemma 4.5. There is an algorithm that, given arpoint ultrametric spaceéU, dy) de-
fined by the HST = (V, E) (in particular U is the set of leaves df), an arbitrary
metric spaceY, dy), and a mappingf : U — Y, returns inO (n) time a numberd > 0
satisfying]l fllLip = A > 55 f llLip-
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Proof. We assume théf is 4-HST. As remarked at the beginning of Secfipn 4, this can
be achieved by distorting the distancedirby a factor of at most 4, ir© (n) time. We
also assume that the tr@&estores for every vertex € V an arbitrary leak, € U which
is a descendant af (this can be easily computed d(n) time). For a vertex: € V we
denote byA (u) its label (i.eVx, y € U, dy(x, y) = A(lca(x, y))).

The algorithm is as follows:

Lip-UM (T, f)
A<«0
For every vertexs € T do
Letvs, ... v, be the children of:.

A« max{A, max dy (f (xyy), f(x,)) }

2<i<r A(u)
OutputA.

Clearly the algorithm runs in linear time (the total number of vertices in the tree is
O (n) and each vertex is visited at most twice). Furthermore, by construction the algorithm
outputsA < || fllLip- It remains to prove a lower bound onh Letxy, x» € U be such
that|l fllLip = dy (f (x1), f(x2))/dy (x1, x2), and define: = Ica(x, y). Letwy, wp be the
children ofu such thatx; € 2 (wy) andxo € Zr(w2). Let vy be the “first child” ofu
as ordered by the algorithm Lip-UM (notice that this vertex has a special role). Then

A> max{ dY(f()Cwl)7 f(xul)) dY(f(xwz), f(xvl)) }

s

Au) A(u)
1 dy(f ). [ Guy)
-2 A(u)
o1 dr(f(x), f(x2)) — diam(f (L7 (w1) — diam(f(‘ZT(wz))).
-2 A(u)

If max{diam( f (Zr (w1))), diam(f (L1 (w2)))} < 7dy (f (x1), f (x2)), then we conclude

that
4> 1 dy(f(m),f(Xz))’
— 4 A(u)
as needed. Otherwise, if we assume that dig@¥r (w1))) > %dy(f(xl), f(x2)), there
existz, 7/ € Zr(w1) such that

dy (f(2), [@) _ 3dy (f (x1), f(x2))
dy(z,7) A(u)/4
which is a contradiction. ]

= I flLip,

Theorem 4.6. Givenk > 1, anyn-point metric space€X, dy) can be preprocessed in
O (%Y *logn) time, yielding a data structure requiring storage(n*+1/%) which can
answer inO (n*t/%) time the following query: Given a metric spag@é dy) and a map-
ping f : X — Y, compute a valug > Osuch that] flLip > A > || fllLip/ O (k).
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Proof. The preprocessing is simply computing the tre{é;}jzl as in the proof of
Theoren] 1.p. Denote the resulting ultrametric spacesthy p1), ..., (Us, ps). Given
f X — Y, represent it ag; : U; — Y (as a mapping; is the same mapping
as the restriction off to U;). Use Lemm@S to compute an estimateof ||g; l|Lip,
and returnA := max A;. Since all the distances ifti; dominate the distances iK,
I flltip = llgilltp > Ai, SOl flLp > A. On the other hand, let,y € X be such
that || fliLip = dy(f(x), f(»))/dx(x,y). By Lemma@, there exists € {1, ..., s}
such thatdy, (x, y) < O(k) - dx(x,y), and hence|g;llLp > Il flLip/O k). There-

fore A > 1—16||g,-|||_ip > | fllLip/O k), as required. Since we once more only need
that the ultrametri; is defined onX;_; and not on all ofX, the preprocessing time
and storage space are the same as in Thepregm 1.2. By Leémma 4.2 the query time is
O(ij 1X;) = Om¥*Y*) (we have anO(|X;|) time computation of the Lipschitz

constant on eack;). |

5. Concluding remarks

An s-well separated pair decompositigiSPD) of arm-point metric spacéX, dy) is a
collection{(4;, B,-)}f‘il of pairs of subsetd;, B; C X such that

1. Vx,ye Xif x # ythen(x, y) € U,’Ail(Ai x By;).
2. Foralli # j,(A; x B))N (Aj x Bj) =10.
3. Foralli € {1,..., M},dx(A;, B;) > s - max{diam(4;), diam(B;)}.

The notion ofs-WSPD was first defined for Euclidean spaces in an influential paper
of Callahan and Kosaraju_[L1], where it was shown thatfgooint subsets of a fixed
dimensional Euclidean space there exists such a collection of)izethat can be con-
structed inO (n logn) time. Subsequently, this concept has been used in many geometric
algorithms (e.g.[133,.10]), and is today considered to be a basic tool in computational
geometry. Recently the definition and the efficient construction of WSPD were general-
ized to the more abstract setting of doubling metiics [31, 20]. These papers have further
demonstrated the usefulness of this tool (see also [18] for a mathematical application).

It would be clearly desirable to have a notion similar to WSPD in general metrics.
However, as formulated above, no non-trivial WSPD is possible in “high dimensional”
spaces, since any 2-WSPD of aspoint equilateral space must be of si2¢n?). The
present paper suggests that Ramsey partitions might be a partial replacement of this no-
tion which works for arbitrary metric spaces. Indeed, among the applications of WSPD in
fixed dimensional metrics are approximate ranking (though this application does not seem
to have appeared in print—it was pointed out to us by Sariel Har-Peled), approximate dis-
tance oracles [19, 20], spanners|[31, 20], and computation of the Lipschitz cohstant [20].
These applications have been obtained for general metrics using Ramsey partitions of the
present paper (spanners were not discussed here since our approach does not seem to beat
previously known constructions). We believe that this direction deserves further scrutiny,
as there are more applications of WSPD which might be transferable to general metrics
using Ramsey partitions. With this in mind it is worthwhile to note here that our proce-
dure for constructing stochastic Ramsey chains, as presented in $éction 4, takes roughly
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n?t1/k time (up to logarithmic terms). For applications it would be desirable to improve
this construction time t® (n?). The construction time of certain proximity data structures
is a well studied topic in the computer science literature—see for example [34, 30].

Appendices
A. The Size-Ancestor data structure

In this appendix we prove Lemnja #.4. Without loss of generality we assume that the
tree T does not contain vertices with only one child. Indeed, such vertices will never be
returned as an answer for a query, and thus can be eliminat@d:intime in a prepro-
cessing step.

Our data structure is composed in a modular way of two different data structures, the
first of which is described in the following lemma, while the second is discussed in the
proof of Lemmd 4.} that will follow.

LemmaA.l. Fixm € N, and letT be as in Lemmid.4 Then there exists a data structure
which can be preprocessed ®(n + (nlogn)/m) time, and answers i (1) time the
following query: Givern¥ € N and a leafx € V, find an ancestor of x such that
L7 (u) < €m < L(parentu)). Here we use the conventidparentroot)) = co.

Proof. Denote byX the set of leaves of'. For every internal vertex € V, order its
children non-increasingly according to the number of leaves in the subtrees rooted at
them. Such a choice of labels induces a unique total ordét @he lexicographic order).
Denote this order by and letf : {1,...,n} — X be the unique increasing map in
the total order<. For everyv € V, f~1(%Zr(v)) is an interval of integers. Moreover,
the set{ f (% (v)) : v € V} of intervals islaminar, i.e. for every pair of intervals in
this set either one is contained in the other, or they are disjoint. For every write
Y% (v) =1, =[A,, B,], whereA,, B, e NandA, < B,.Fori € {1,..., |n/m]|}
andj € {1,..., [n/(im)]} let F;(j) be the set of vertices € V such thatl,| > im,

I, N[(j — Dim + 1, jim] # ¥, and there is no descendantw8atisfying these two
conditions. Since at most two disjoint intervals of length at leastan intersect a given
interval of lengthim, we see thatF;(j)| < 2 foralli, j.

Claim A.2. Letx € X be aleaf ofl’, and¢ € N. Letu € V be the least ancestor af
for whichZr (1) > ¢m. Then

ue {Ica(x, v)ivE Fg(’rfzz)—‘)}.

Proof. If u € F;([ f(x)/(¢m)]) then sincex = Ica(x, u) there is nothing to prove. If on
the other hand ¢ Fy([ f(x)/(¢m)]) then since we are assuming that(x) > ¢m, and
LN [([f(x)/(tm)] — Dem + 1, [ f(x)/(tm)1m] # @ (becausef (x) € 1), it follows
thatu has a descendantin Fy([ f(x)/(¢m)]). Thusu = Ica(x, v), by the fact thatny
ancestomw of v satisfiey(w) > £r(v) > ¢m, and the minimality of. O




270 Manor Mendel, Assaf Naor

The preprocessing of the data structure begins with ordering the children of vertices non-
increasingly according to the number of leaves in their subtrees. The following algorithm
achieves it in linear time.

SORT-CHILDREN (u)
Compute{f7 (u)},cv using depth-first search.
SortV non-increasingly according %y (-) (use bucket sort—see [15, Ch. 9)).
Let (v;); be the seV¥ sorted as above.
Initialize Yu € V, the listChildrenSortedList, = @.
Fori < 1to|V|do
Add v; to the end ofChildrenSortedListparenty;) -

Computing f and the intervalgl,},cv is now done by a depth-first search of
T that respects the above order of the children. We next comfldte) : i €
{1,...,n/ml}, j €{l,...,[n/(im)]} using the following algorithm:

SUBTREE-COUNT ()
Letvy, ..., v, be the children of with |I,,| > --- > |I,,|.
Fori < [|I,|/m] downtol||l,,|/m] + 1do
For j < |A,/(im)] to [B,/(im)] do
Add u to F; ()
Forh < 1tor —1do
Fori < [|1y,|/m] downtol||],, ,|/m]+ 1do
Forj < [B,,/(im)] +1to[B,/(im)] do
Add u to F;(j)
Forh < 1tor docall SUBTREE-COUNTuwy).

Here is an informal explanation of the correctness of this algorithm. The only relevant
setsF; (-) which will contain the vertex € V are those in the rangee [||1,,|/m] + 1,
LI1,]/m]]. Above this rangd, does not meet the size constraint, and below this range any
F; (j) which intersectd,, must also intersect one of the childrerugfvhich also satisfies

the size constraint, in which case one of the descendaniswfl be in F;(j). In the
aforementioned range, we addo F; () only for j such that the intervalj — 1)im + 1,

jim] does not intersect one of the children:ofn a set of size larger thaim. Here we

use the fact that the intervals of the children are sorted in non-increasing order according
to their size. Regarding running time, this reasoning implies that each ver&xafd

each entry inF; (), is accessed by this algorithm only a constant number of times, and
each access involves only a constant number of computation steps. So the running time is

Ln/m] [n/Gim)]

nlogn
0( Y Y IR ):0 .
n+ | Fi ()] (”+ - )

i=1 j=1

We conclude with the query procedure. Given a querg X and{ € N, access
Fo([f(x)/€]) in O(1) time. Next, for eachv € Fo([ f(x)/£]), check whethelca(x, v)
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is the required vertex (we are thus using here also the data structure for computiogy the
of [21,,[6]; observe also that sin¢E; ()| < 2, we only have a constant number of checks
to do). By Clain A.2 this will yield the required result. O

By settingm = 1 in Lemma[A.l, we obtain a data structure for tBize-Ancestor
problem withO (1) query time, butD (n logn) preprocessing time. To improve upon this,
we setm = @ (logn) in Lemmg A.], and deal with the resulting gaps by enumerating all
the possible ways in which the remaining— 1 leaves can be added to the tree. Exact
details are given below.

Proof of Lemm@a 44 Fix m = | (logn)/4]. Each subset C {0, ..., m—1} is represented

asanumber# € {0,...,2" — 1} by #A = Y ,_, 2'. We next construct in memory a
vectorenum of size 2", whereenum[#A] is a vector of sizen, with integer index in the
range{l, ..., m}, such thaenum[#A][i] = |AN {0, ...,i — 1}|. Clearlyenum can be

constructed ir0D (2"m) = o(n) time.

For each vertex we compute and store:
e depth(u) which is the edge’s distance from the rootto
e ¢7(u), the number of leaves in the subtree rooted.at
e The number #,,, where

A, ={k €{0,...,m—1} : u has an ancestor with exactly (u) + k descendant leavgs

We also apply the level ancestor data structure, that aftan preprocessing time, an-
swers in constant time queries of the form: Given a verteand an integed, find an
ancestor of: at depthd (if it exists) (such a data structure is constructed.in [7]). Lastly,
we use the data structure from LemmalA.1.

With all this machinery in place, a query for the least ancestor of addwfving at
least¢ leaves is answered in constant time as follows. First compete £/m . Apply a
query to the data structure of Lemfna A.1, wittandg, and obtain, the least ancestor
of x such thatty (u) > gm. If £7(u) > ¢ thenu is the least ancestor withleaves, so
the data structure returms Otherwisef7 (1) < ¢, and leta = enum[#A,][¢ — £7(w)].

Note that deptti) — a is the depth of the least ancestondhaving at least leaves, thus
the query uses the level ancestor data structure to return this ancestor. Clearly the whole
query takes a constant time.

It remains to argue that the data structure can be preprocessed in linear time. We
already argued about most parts of the data structure!ata and deptlu) are easy to
compute in linear time. Thus we are left with computing,#or each vertex:. This is
done using a top-down scan of the tree (e.g., depth-first search). The root is assigned 1.
Each non-root vertex, whose parent is, is assigned

1 if £7(v) > L7 (u) +m,

H#HA, <~
“ {#Av L2tr)—tr@) 4 1 (mod 2")  otherwise.

Itis clear that this indeed computed # The relevant exponents are computed in advance
and stored in a lookup table. O
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Remark A.1. This data structure can be modified in a straightforward way to answer
gueries to the least ancestor of a given size (in terms of the number of vertices in its
subtree). It is also easy to extend it to queries which are non-leaf vertices.

B. The metric Ramsey theorem implies the existence of Ramsey partitions

In this appendix we complete the discussion in Sediijon 2 by showing that the metric
Ramsey theorem implies the existence of good Ramsey patrtitions. The results here are
not otherwise used in this paper.

Proposition B.1. Fix ¢ > 1andy € (0, 1), and assume that evenypoint metric space
has a subset of siz¢” which isa-equivalent to an ultrametric space. Then evefgoint

metric space(X, dx) admits a distribution over partition treeg%}7°, such that for
everyx € X,

1-y

nl-v -’

Pr[‘v’k €N, By (x, % -8kdiam(X)> C %’k(x):| >
Proof. Let (X, dx) be ann-point metric space. The argument starts out similarly to the
proof of Lemma 4.p. Using the assumptions and Lefnmia 4.1 iteratively, we find a decreas-
ing chain of subsetX = Xg 2 X1 2 --- 2 X; = ¥ and ultrametricgy, ..., ps on X
such that if we defing; = X;_1 \ X; then|Y;| > |X;_1|Y, pj(x,y) > dx(x,y) for
x,y € X,andp;(x, y) < 6adx(x,y) forx € X, y € ¥;. As in the proof of Lemm@Z,
it follows by induction that < n1=¥ /(1 — ).

By [5, Lemma 3.5] we may assume that the ultrametfican be represented by an
exact 2-HSTI; = (V}, Ej), with vertex labelsAr;, at the expense of replacing the factor
6 above by 12. Let\; be the label of the root df;, and defineAj? ={veViiAp(v) =

27k A} for k € N. For everyv € V; let % (v) be the leaves of; which are descendants
of v. Thus Zf := {Z;(v) : v € A}}is a2*A;-bounded partition o (boundedness

is in the metricdy). Fix x € Y;, k € N and letv be the unique ancestor af in Aj?. If
z € X is such thatlx (x, z) < 137 - 2% A; thenAg (Icar; (x, 7)) = p;j(x,2) < 27¥A;.
It follows that z is a descendant af, so thatz € ng(x) = % (v). Thus @f(x) )

Bx(x, 13 - 27%A)).
Passing to powers of 8 (i.e. choosing for eakhthe integer ¢ such that

8-¢~ldiamx) < 27%A; < 8 “diam(X) and indexing the above partitions usifgn-

stead ofk), we have thus shown that for evejye {1, ..., s} there is a partition tree

{%,{},fio such that for every € Y; we have for alk,

1 ko j
Bx<x, o5 8 kdlam(X)) C R (x).
Since the setss,..., Y, cover X, ands < nl ¥/l — ), the required distri-
bution over partition trees can be obtained by choosing one of the partition trees
{.%’,}},‘jio, o AZLN o uniformly at random. O
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Remark B.1. Motivated by the re-weighting argument [n [12], it is possible to improve
the lower bound in Propositign B.1 fgr in a certain range. We shall now sketch this argu-
ment. It should be remarked, however, that there are several variants of this re-weighting
procedure (like re-weighting again at each step), so it might be possible to slightly im-
prove upon Propositidn Bl.1 for a larger rangeyofWe did not attempt to optimize this
argument here.

Fix n € (0, 1) to be determined in the ensuing argument, andXet/y ) be an:-point
metric space. Duplicate each pointXm:” times, obtaining a (semi-) metric spakéwith
n™t" points (this can be made into a metric by applying an arbitrarily small perturbation).
We shall define inductively a decreasing chain of subs€ts= X, 2> X} 2 --- as
follows. Forx € X, let h;(x) be the number of copies af in X! (thusho(x) = n").
Having defineXm/., letY;y1 C le be a subset which ig-equivalent to an ultrametric
space andY; 1| > |le|‘/’. We then definex;_ , via

Lh; (x)/2] if there exists a copy of in Y;,1,

h; = .
+1(x) {h,-(x) otherwise

Continue this procedure until we arrive at the empty set. Observe that

|1X] |<|X’|—3|X’|"’<|X’| -t
i+1l = 1A= SIAT = 14 2@+ A-y) )

Thus

l i—1
’ 1+n | e
I Xil =n (1 2n<1+n><1w>) '

It follows that this procedure terminates aft@n1*"1=¥) logn) steps, and by con-
struction each point oX appears in®(nlogn) of the subsetd;. As in the proof of
Propositior] B.[L, by selecting each of tlie uniformly at random we get a distribution
over partition tree$% };° , such that for every € X,

1 . 0
Pr[Vk €N, By <x, o6y 8 diam(X)) < %k(X)} = Q(m)

Optimizing overn € (0, 1), we see that as long as1vy > 1/logn we can choose
n = 1/((1 — v)logn), yielding the probabilistic estimate

1 1 1
Pr|:Vk e N, BX(X, @ -8 dlam(X)> c ﬁk(x):| = Q((l— ) |Ogl’l : n]__w)'

This estimate is better than ProposiB.l whélodgn < 1— v < 0(1/4/logn).
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