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Symmetry results for viscosity solutions of
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Abstract. We study uniformly elliptic fully nonlinear equations
F(Dzu, Du,u,x) =0,

and prove results of Gidas—Ni—Nirenberg type for positive viscosity solutions of such equations. We
show that symmetries of the equation and the domain are reflected by the solution, both in bounded
and unbounded domains.
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1. Introduction

In this note we establish symmetry results of Gidas—Ni—Nirenberg type for viscosity so-
lutions of the equation

F(D?u, Du,u,x)=0 in0O,
u>0 in O, (1.1)
u=20 onaO,

where© is a domain ifR”, F is a continuous function defined & (R) x R” x R x O
with values inR andS” (R) denotes the space of realx n, symmetric matrices. More
precise assumptions dn are given later on. The solutianof this nonlinear problem is
scalar andDu, D?u denote respectively the gradient and the Hessian mattix of

A model problem for[(1]1) will be the equations

M A(D%u)+ f) =0, M (D) + f(u) =0, (1.2)

where f is a locally Lipschitz continuous function arym;,\, M;_ 5 are the extremal
Pucci operators[([17].110]), with parametersO. < A, defined by

ME M) =AY ei+a ) e, M (M)=1) e+A) e

;>0 e; <0 ¢;>0 e; <0
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for any symmetria: x n matrix M. Heree; = ¢;(M),i =1, ..., n, denote the eigenvalues
of M. Pucci’s operators are extremal in the senser;iA(M) = SUPye 4, , Ir(AM),

M (M) = infaca, , tr(AM), whereA; A denotes the set of all symmetric matrices
whose eigenvalues lie in the interval [A].

Let us recall the classical result of Gidas, Ni and Nirenberg [15], which states that
positive C2-solutions of the Dirichlet problem for the equation

Au+ f(u) =0, f e COYR), (1.3)

(this is equation[(I]2) correspondingto= A = 1) in a ball are necessarily radial, or
more generally, if the domain is symmetric and convex with respect to a hyperplane then
the solutions have the same symmetry. Related result§ Tgr (1.3) in the whole space and
exterior domains were obtained by C. Li[16], W. Reichel [22], and B. Sirakav [24], under
the supplementary hypothesis thats nonincreasing in a right neighbourhood of zero.

Symmetry results in the spirit of Gidas, Ni and Nirenberg for classical solutions of
fully nonlinear equations of typg (1.1) were obtained by C[ LI [16]. Extensions and simple
proofs of these results are due to Berestycki and Nirenbérg [7].

An essential hypothesis ifll[7] is that the operafiois C* in the matrix of the second
derivatives ofu € C?(©) N C(O). This prevents applying these results to important
classes of equations, such as equations involving Pucci’s operators, Bellman or Isaacs
equations. On the other hand, the symmetry result was proved for viscosity solutions of
(L.7)), without differentiability assumption ofi, by Badiale [2] (see also Badiale—Bardi
[3] for results on general first order equations), under the hypothesis that the operator
F satisfies a comparison principle. This is a quite strong assumption, which essentially
requires that the operatdt is nonincreasing with respect to thevariable or at least
convex in the( Du, D?u) variables (cf. Section 5 if [13]).

It is our purpose here to join together and extend the above quoted results. We are
going to show that the moving planes method of Alexandrov [1] and Sérrin [23], in its
version developed in[7], can actually be adapted to work in the setting of viscosity solu-
tions and general equatiors (1.1).

Before proceeding to the precise statements, let us recall that existence and uniqueness
of viscosity solutions of boundary value problems of type|(1.1) has been very extensively
studied for proper operators, that is, whEris nonincreasing im: see for example [13],

[11], [12]. Quite recently existence of solutions of nonproper equations of fype (1.2) was
established by Felmer—Quaas|[14] and Quaas—Sirakov [19]. In particular]in [14] it was
shown that the Dirichlet problem fof (1.2) in a ball has a positive radial solution when
f has some power growth at infinity. It follows from our result that actually any positive
solution is radial. It is well known that proving symmetry for solutions is an important
step towards proving uniqueness in the nonproper case.

Next we list our assumptions on the nonlineatity

(H1) (Regularity) For all R > 0 there exists a constatz > 0 and a functionog :
R* — RT, with wg(0") = 0 such that, forany,y € O, p,g € R*, M,N ¢
Sn(R)a Ui, U2 € [_Ra R]l
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|[F(M, p,u1,x) — F(N,q,uz, y)| < Kg{lp —ql+ IM — N|
+luy —uz| + |x — y[(IM || + INID}
+or(x —y|(A+|pl+1gD).

(H?2) (Uniform ellipticity) There exist& > 0 such that, forany € O, u € R, p € R",
M,N e S"(R) with N > 0,

F(M+ N, p,u,x)—F(M, p,u,x) > «tr(N) .

It is standard to show that{ 1) and(H 2) imply the following assumption (actually,
(H1)—(H?2) reduce ta H3) whenF is independent of):

(H3) ForanyR > 0 there exists a constaktz > 0 such that for eacM, N € S"(R),
p,q €R" x € O,u,v € [—R, R], we have

F(M,p,u,x)—F(N,q,v,x) > M, (M —N)—Kgr(lp —ql| + |u—v]),
F(M, p,u,x) = F(N,q,v,x) < M (M = N)+ Kr(Ip — q| + |u = v]),
with A, A depending orKz andx.
Another example we have in mind is the standard quasilinear equation
tr[B(x)D?u] + H(x,u, Du) =0 inO, (1.4)

where B is ann x n real symmetric matrix and/ a continuous function. In this case
(H?2) is satisfied ifB(x) > « Id for all x € O, and(H1) is satisfied if

(i) B is abounded and locally Lipschitz continuous functior: pf

(i) the function H satisfies: for any® > 0, there are a constaftz > 0 and a function
wg: Rt — RT with wg(0™) = 0 such that, forany,y € O, p,g € R*, u,v €
[_Ra R]y

|H(x,u1, p) — H(y, u2, )| < or(|x — y|(1+|pl+1gD)) + Kr(Ip — q| + |u —v]).

For any matrix¥ = (m;;) € S"(R) we denote by ®) the matrix obtained frond/
by replacingm;, andmy; by —m;;, and—my; respectively, for any # k, j # k. Note
thatM andM® always have the same eigenvalues.

For any vectorp € R" we write p® = (p1,..., px—1, —Pk> Pks1s ---» PN). We
consider the following hypothesis.

(0r) O is convex in the directiom;, symmetric with respect to the hyperplang = 0},
and forallM € S"(R), p e R", u € (0, 00),x € O,

FM, p,u,x) = FM®, p® y, x®),

andF is nonincreasing in for x; > O.

Then we have the following theorem.
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Theorem 1.1. Suppos&® C R" is bounded, and assuni# 1), (H2), and(0Oy) for some
kef{l,...,N}. Letu € C(O) be a viscosity solution (@). Thenu is symmetric inv,
that is,u(x) = u(x®) for all x € ©. In addition,« is strictly decreasing i > O.

Corollary 1.1. Supposé&?) is a ball centred at the originF is radial in x and nonin-
creasing in|x|, and satisfieH1), (H2), and (Oy) forall k € {1,..., N}. Then every
viscosity solution ofI.1)is radial and strictly decreasing ifx|.

Next, we turn to symmetry in unbounded domains for autonomous equations.

In [4] Badiale and Bardi showed that positive solutions of a large class of (not neces-
sarily uniformly) elliptic equations ifR"” or exterior domains are asymptotically radial,
that is, level sets of the solutions approach spheres|ages to infinity. The following
theorems can be seen as completion of these results for uniformly elliptic equations and
symmetric domains, for which we can show that all level sets are spheres.

Theorem 1.2. AssumeOy) forall k € {1, ..., N} and supposé does not depend on
satisfies(H1)—(H?2) and is nonincreasing in € [0, §) for somes > 0. Letu € C(R")
be a viscosity solution of

F(D?u, Du,u) =0 inR",
u>0 inR", (1.5)
u—0 as|x| — oo.

Thenu is radial and strictly decreasing ifx|.

The proof of Theorerp 1} 2 is a particular case of the proof of the following more general
result on symmetry in exterior domains.

Theorem 1.3. Suppos&? = R" \ B for some ballB, F does not depend on satisfies

(HD)—(H2) and (Oy) for all k € {1,..., N}, and F is nonincreasing int € [0, §) for
somes > 0. Letu € C(O) be a viscosity solution of

F(D?u, Du,u) =0 in0O,

u>0 in O,
u=a onoB, (1.6)
u—0 as|x| — oo,

for somez > 0. Suppose in addition that for atl € d B and for all directionsy € R"\ {0}
such thatv - n(x) > 0, wheren(x) = x/|x|, we have

lim supw <0.

st t (1.7)
t

Thenu is radial and strictly decreasing itx|.
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2. Proofs

We first show that undefH 1)—(H 2) the difference of a lower semicontinuous superso-
lution and an upper semicontinuous subsolutior of| (1.1) is a supersolution of an equation
involving a positively homogeneous uniformly elliptic operator.

In the following we will denote byBU SC(O) and BLSC (O) respectively the set of
bounded upper and lower semicontinuous functior®.in

Proposition 2.1. Assume thaf satisfies(H1)—(H2). Letu; € BUSC(O) anduy €
BLSC(O) be respectively a viscosity subsolution and a viscosity supersolution of
F(D?u, Du,u, x) = 0in O. Then there exist positive constantsA, b (depending on

the L°°-norms ofu1 andu») and a bounded functio(x) (whoseL>°-norm depends only

on theL*°-norms ofu; andu2, and on the local Lipschitz norm &f with respect ta: on

the ranges ofi1, uz) such that the functiom = us — uj is a viscositysupersolutiorof

M)T,A(Dzw) —b|Dw|+c(x)w=0 in0O. (2.8)
If in addition F is nonincreasing with respect iothenc < 0in O.

We first make some comments. The strategy of the proof of Propofsitipn 2.1 is similar to
the one of the comparison principle for fully nonlinear operators (se€e [13]). A difficulty
comes from(H1)—(H?2) and can be seen on a term likéR(x)D?u) (in the case of
quasilinear equations): in general, one assumesAhss the formB = oo’ for some
Lipschitz continuous matrix and the uniqueness proof usesn an essential way, both

in the degenerate and nondegenerate case. Here we want just to dssare elliptic

and Lipschitz continuous and we do not want to asdo this end we use Lemma 2.2 of
Barles and Ramaswamiyi [6], which we recall within the proof of Propositign 2.1.

Proof of Propositiol.Let¢ € C%(0) andx € O be a local minimum ofv — ¢, say
in B(x, r) for somer > 0.
For alle > 0, we introduce the auxiliary function
Dy (x, y) = uz(x) —ur(y) — p(x) + |x — y[>/e? + |x — 7|*. (2.9)

Let (x¢, ye) be the minimum point ofb, (x, y) in B(x,r) x B(x, r). Sincex is a strict
local minimum point oft — w(x) — ¢(x) + |x — x|*, standard arguments show that

(Xe, ye) = (£, %) and |x, — ys|?/e> —> 0 ase — 0.

Moreover, ifz, (x, y) := ¢ (x) — |x — y|?/e2 — |x — %|*, we know that (cf.[[1B]), for every
a > 0, there exis, Y € S"(R) such that

(Dxe(xe, ye), X) € 725_”2(x8)’ (_Dygs(xs’ Ye), ¥Y) € 7%4_”1()’8),
—-X
~(/ot + D¢ (xe yo) D 1d < ( 5 2) < —(1d — D% (xe. ye) D (xe. ye).
and
F(Xs Dx{s(xe» y&‘)v MZ(XS), xs) S 0»
F(Yv _Dyé'a(x& y&‘)v ul(y8)7 yE) > 0.
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The key point is to estimate

F(X, Dy8e(xe, ye), u2(xe), xe) — F (Y, =Dyle(xe, ye), u1(ye), ye).

To this end we first choose = ¢ and we use Lemma 2.2 inl[6] which says the following :
if the matricesX, Y satisfy

K -X 0 K (1d -Id
_8_2'd5<o Y)58_2<—|d Id) (2.10)

Y-X< —T(IX+ 1-0nY)- foralls e]0,1].

then

A slight modification of the arguments in [6] allows one to take into accounbthigand
D?(|x — x|*) terms and yields
/ [282 ’ 2
Y-X < —?(IX + 1 =0nY)°+ 0(s) ase — 0, (2.11)

forall r € [0, 1], whereX’ = X + || D?%¢| 1d +0(|x — x|?).

Now we are ready to estimate( X, p, uz, x)— F(Y, g, u1, y) With p = D, ¢ (x¢, ye)
andg = —Dy&e(xe, ye). By using (H1)~(H?2) together with the inequality (2.11) for
t =0, we get

0= F(X,p,u2,x) — F(Y,q,u1,y)
> F(X', p,u1,x) = F(Y, p,u1, x)
—Kr(p —ql +|x = yl(pl + gl + 1Y D) + wr(x — yI(1+ |p| +14q1)
+ M A (ID?%¢)1d+0(1x — %1%) + F(X. p.uz.x) — F(X, p,u1, x)
Ke? _ 2 -2
> KTU‘(Y )+ 0(@e) + M; (1Dl ld+O0(lx — x]|9))
—Kr(p —ql+ Ix = yl(pl + Ig] + 1Y D) + or(lx — y[(X1+ [pl + lg])
+F(X, p,u2,x) — F(X, p,u1, x) ,
whereR = max(||lu1lco, llu2]lo0). IN the last inequality, the “bad” term Eg|x — y| | Y|
since the estimates on the test functiprdo not ensure that this term converges to 0.

However, this term is controlled by the “good” term(¥?) in the following way: by
Cauchy—-Schwarz’s inequality,

Ke? 5 2,2
Kix —yl|IY] > —K?U(Y ) — O(lx — y|/€).

And this estimate is now sufficient since we know that- y|2/¢2 — 0 ase — O.
Thus by lettings — 0 we are led to

M™(D?¢ (%)) — bID$()| + c(Hw(F) <0,
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whereb = K and

F(X9 p’ 142()2), )E) - F(Xv P, ul(i)v -i)
c(x) = u2(x) — ua(x)

if up(x) # ua(x),
otherwise
so the conclusion follows. |

A fundamental tool in the theory of strong and viscosity solutions of elliptic equations is
the Alexandrov—Bakelman—Pucci (ABP) estimate, a version of which we quote next.

Proposition 2.2. Let® c R” be a bounded domain and let € C(O) be a viscosity
solution of
M A (D?w) = b|Dw| + c(x)w < f(x), (2.12)

whereb € R andec, f € L®(0). Suppose(x) < 0in O. Then there exists a constant
C,, depending only on, A, |b|, anddiam(©), such that

sup(—w) < supw™ + Cy|l fllLr ).
o 90

Proof. This is a consequence of Proposition 2.12[in [11] (the proof of which is due to
Trudinger). To link the notations in this paper with those in [11] we noteAHé}A(X) =

—P~(X) and M, (X) = —P*(X), where

P (X)=—Atr(XT) +Atr(X),
PHX) = =2 tr(XT) + 1tr(X7),

andX ™, X~ denote the positive and negative partsfo€ S"(R). O
It is trivial to deduce a maximum principle in small domains from the ABP inequality.

Proposition 2.3. Let O C R" be a bounded domain and suppdse> 0 and c(x) €
L*>(0). There exists a constant> 0, depending or, A, b, diam(O), ||C||Lo<>(6)v such

that any viscosity solutiom € C(O) of

w>0 onao, (2.13)

{MM(DZw) —b|Dw| + c(x)w <0 in0O,
is nonnegative irQ, provided|O| < r.
Proof. We apply Propositioh 2|2 to

M;,A(Dzw) —b|Dw| —c” (N)w < —ctw < ctw™

and get
Sgpw_ < C*||C+||L°°(O)||w_||L°°(O)|O|1/",

from which the result follows. O
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The following regularity result is a variation of tt{él’“-regglarity result proven by Caf-
farelli [9] in the case wherF depends only oD?: and bySwigch [25] and Wand [26]
in the general case of a proper equation, i.e. whés nonincreasing with respect o

Proposition 2.4. LetO C R" be a bounded domain and assume tRatatisfies(H 1)—
(H2). Letu € C(O) be a viscosity solution of

F(Dzu, Du,u,x)=0 in0O.

Thenu € C:%(O) for somex € (0, 1).

loc

Proof. This theorem was proven ih_[25] under the supplementary assumptions that the
constantKg in (H1)—(H?2) is independent oR and thatF is nonincreasing im.

In order to reduce to the result of [25], suppose that the solution satjgfies K.
We setFp = Fif lul| < K, Fo= F(M, p,K,x)ifu > K,andFy = F(M, p, —K, x)
if u < —K. Then Fy is globally Lipschitz with respect ta. We notice that: is also a
solution of Fo(D?u, Du, u, x) — ku = —ku € C(O). If k is large enough the operator
Fo — ku is proper, thus we can apply the resultlinl[25] to conclude the proof. O

The next proposition asserts the existence of a principal eigenvalue and a principal eigen-
function for an operator without zero order term. We shall also use the fact that the prin-
cipal eigenvalue goes to infinity as the measure of the domain goes to zero.

Proposition 2.5. Suppose) is a bounded smooth domain. Then there exists a number
A1 = A1(0) > 0and a functionp; € C2(0) N C(O) which satisfy

M;,A(DZSOI) —b|Dp1| + 2191 =0 inO,
p1>0 in O,
¢1=0 ona0.

In addition, we have.1(O) — oo as|O| — 0.

Proof. Inthe casé = 0 this result was proved by Quaaslin|[18] (see &lso [8]). Essentially
the same proof works for ardy since, by the known existence, uniqueness and regularity
results for fully nonlinear operators (séel[11],][25]) the operﬂtt)IA(D2~) —b|D-| has

the same properties asl; A(D2-), namely, its inverse exists and is positivity preserving.
Thus Krein—Rutman theory applies to the former just as to the latter. O

We note that in a very recent work [20], [21], the authors established the existence of a
principal eigenvalue and eigenfunction for any positively homogeneous operator, convex
or concave inD?y and satisfying a condition of typ@f3). In addition, in[21] a multitude
of properties of these objects are proven, Proposjtion 2.5 being a very particular case of
these.

We shall make use of a simple lemma, concerning products of viscosity solutions and
test functions.
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Lemma 2.1. Letu € C(O), u > 0, satisfy
M A (D%u) = b(x)|Dul + c(x)u < f(x) inO, (2.14)

whereb, ¢, f € L>®(O). Suppose) € C%(©O) N C(O) is strictly positive in®. Then
u = u/y satisfies the inequality

M.\ (D%0) — b(x)| D] + 20 < f(x), (2.15)
where

= (D?¥) — b|D _
M A( 11/;) |I/f|+c(x), f:%

Proof. Suppose: € C2(0), so thatM , (D?u) — b(x)| Du|+c(x)u < f(x) is satisfied
in the classical sense. We have

b=b+2Any DY|,  Cx) =

Du =y Du+uDy, D= yD% + 2Dy Q D +uD>y. (2.16)

Here and belowg denotes the symmetric tensor product, i.ez,if € R” thenp ® g =
3(pigj + pjai)i,;- By putting ) into4) and by using

M A(M A+ N) = M (M) + M (N), M (nM) = pM; (M),

for n > 0, we obtain the statement of the lemma. Note thattp ® ¢9)) < |A| |p R ¢q| <
JnA|p||gl, whereA is a matrix whose eigenvalues lie in,[A], and|A| ;= /tr(ATA).

Let u be only continuous. If(2.15) does not hold then there exjise © and¢ €
C2(0) such thaw (xg) = u(xp), ¢ < uin O and

M4 (D?$(x0)) — b(x0)| D (x0)| +T(x0) (x0) > f (x0). (217)

An easy computation then shows that this implies
M A (D*(¢9) (x0)) — bID(¢¥) (x0)| + c(x0)¢ (x0) ¥ (x0) > f (x0).

This contradicts4), sinagy € C2(O) is a test function such that(xg)y (xg) =
u(xp) andegy < uin O. O

Next, we state a strong maximum principle for nonproper operators. In the literature there
are more general results in the proper case, for example, a weak Harnack inequality is
proven in [26], while in[[5] a strong maximum principle is proven for degenerate opera-
tors.

Proposition 2.6. Let O C R" be a smooth domain and lét ¢ € L>®(0). Suppose
w € C(O) is a viscosity solution of

{Mx,Amzw) —bWIDw| +cw <0 inO, (2.18)

w>0 in O.
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Then eitherw = 0in O or w > 0in O and at any poinkg € a0 at whichw(xg) = Owe
have
liminf w(xp + tv) — w(xo) -
1\ t
wherev € R" \ Ois such that - n(x) < 0; heren(x) denotes the exterior normal 810
at xo.

07

Proof. If ¢(x) < 0in O this follows from Theorems 1 and 2 ihl[5]. Note that in that
paper the operataf is supposed to be continuousiinbut the arguments there are very
easy to adapt to an operator like the ond in (2.18), in which the first order and zero order
coefficients are only measurable and bounded.

By using Propositiof 2]5 and Lemia2.1 we can show that we can always reduce the
problem to a proper one, that is, to a problem in whi¢h) < 0. Indeed, suppose € O
is a point at whichw(xg) = 0. By Propositiof 2]5 there exists a sufficiently small izl
aroundxp such that the first eigenvalue M;.A(D?) — b|D - | in this ball is larger than
the L°°-norm ofc. By settingyr = ¢1 (¢1 is the first eigenfunction of this operator i
see Proposition 25) and by applying Lenmg 2.1 in a smaller concentri@pall B we
obtain a proper equation far/y in B1. Then from the result iri[5] it follows that = 0
in the small ball. This means each poinat whichu vanishes has a neighbourhood in
whichu is identically zero, sa vanishes everywhere if?. We argue in a similar way if
xo € 0 and we conclude the proof. O

We are now ready to show that the argument$ of [7] adapt to our setting, and permit us to
prove Theorerp I]1, and, in a similar manner, that the argumentslirom [24] can be used to

prove Theoremis 1.2 apd 1.3.

Proof of Theorenj I]1The following argument, due to Berestycki and Nirenberg, is
given here for completeness. Suppd2es convex in the direction of the vectef =
(1,0, ...,0) and is symmetric with respect to the hyperpldpe= {x | x1 = 0}. We want

to show that

u(—x1,x2,...,xy) = u(x1, x2,...,xy) foranyx e O.
For anyA € R we define

T)LZ{X|X1=)»}, D)LZ{X|X1>)\.}, E)LZD)\QO,

x* = (20 — x1, x2, ..., x,), the reflexion ofr with respect tdl},
nx) =u@x?),  wi(x) =u@t) —ulk), forxex;,

d=infxeR|T,NO=¢forall x> A}.

With this notation, our goal is to show that = 0 in Xo.
By hypothesis (1) the functionv,, satisfies the same equationagience, by Propo-
sition[2.1,w; satisfies

Lywy, = M, (D®w;) — b|Dw,| + ¢, (0w, <0 in%;, (2.19)

wherec; is a measurable function which is bounded independently of
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We say the hyperplanE, has reached a position< d providedw,, is nonnegative
in X, for all u € [A,d). The planeT), “starts” atA = d and “moves" to the left as
decreases. If we prove that reaches position zero we are done, since then we can take a
hyperplane coming from the other side, that is, starting fradnand moving to the right.
The situation is totally symmetric so the second hyperplane would also reach position
zero. This means thaty > 0 andwg < 0 in g, hencewg = 0 in Xo.

We first show that the above procedure can begin, that is, there &xists! such
thatw, > 0in X, for all x € [, d). By using Propositio3 we can find a number
r > 0 such that the operatdr, defined above satisfies the maximum principle in any
subdomain®’ c O with |0’] < r. We fix A < d so close tad that|%;| < r for any
1 € [A, d). Hence, by Propositi.3, inequali.19) implies that> 0in X, for all
w e [x, d).

Note that, by the definition ofv,, we havew, > 0 ondX, N JdO for any r» €
(0, d) (sinceu vanishes ord O and is strictly positive in0D). Hence, by Hopf’'s lemma
(Propositioll 26)w;. > 0in T, for A € (%, d).

We can define the number

M=Iinf{A>0|w, >0inX, forall u > A}.

Note that, by continuity with respect #g w,, > 0 in X;,. By Hopf's lemma, ifAg > O
thenw;, > 0in ;,. Further, we claim thalu/dx; < 0 in 3;, (recall thatu € C1, by
Propositiorf 2.4). Indeed, latbe an arbitrary point irg;,, with x; = & > . Then, by
the preceding remarksy;, > 0 in X,. Sincew, = 0 onT;, Proposition 2.6 implies

3w)L
< —
0x1

0< 2y = 22 ()
0x1
(recall thatw; (x) = u(x*) — u(x)).

Suppose for contradictiohy > 0. We are going to “push” the moving plane to the
left of Ag. Let K be a compact subset &f; , such thaiX;, \ K| < r/2 (r is the number
from Propositiorf 213). Since;,, is continuous and strictly positive iB,,, there exists
a numbers > 0 such thatw,, > ¢ in K. Fix a number; with 0 < A1 < Ao such that
X, \ K| < 8 for A € [A1, Ap). By continuity, if A1 is sufficiently close to.p we have
wy, > ¢/2 > 0in K foranyi € [A1, Ag). In the remaining part oE, the functionw;,

A € [M1, Ao), satisfies the equation

Low, <0 inX;\ K,
wy, >0 ona(x; \ K).

By Propositiorf 2ZBw; > 0in X, \ K. Hencew; > 0in X, for anyA € [A1, o). This
contradicts the definition ofp. O

Proof of Theorerh 1|3Now we defines; = {x1 > A} \ B*, whereB* is the reflexion of
B with respect tdl; . As before the difference function, is defined inX; and we need
to show thatwg > 0.

Let us prove that for sufficiently largie we havew, > 0 in X,. Suppose this is not
true, that is, there exists a sequenge— oo such thatw,,, takes negative values i, , .
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Let m be large enough so that® u < a = ulyp in D;,,. Takex™ € ¥; to be such
that

w;, (x™) = minw,,, <0
(the minimum is clearly attained for fixed sincew,, > 0 ondx,, andw,, — 0 as
|x] = oo, x € %,,). Note that 0< u(x*) < u(x) wheneverw;(x) < 0 so that for
m large enough each point™ has a neighbourhodd,, in which bothu(x), u(x*)
(0, 8) (sincex — 0 at infinity), where$ is the number from Theorefn 1.3. Hence in this
neighbourhood;,, < 0, by Propositiof 2]1, and

M):A(Dzwkm) —b|Dwy, | <0 inUy,.

Sincew,,, attains an interior minimum i&,,, we obtain a contradiction with Proposition
[2.6, applied to the last inequality.

This reasoning shows that we can define the critical positipas before. We again

aim to show thakg = 0. Note that, as in the bounded domain case, we have
u <0 inX%,,. (2.20)
0x1

First, we claim thakg < R, whereR is the radius oB. Suppose this is not true. Then
there exist sequences, andx™ e %, such thatR < A, < Ao, Am — Ao, andw;,,
attains its negative minimum i, atx.

The point is thate™ cannot be on the boundary &, . Indeed, note thalZ;,, is
regulardx,, = T, UdB*, and writed B*» = S, U S,, whereS; (the left part ofg B*»)
contains the points oAB*» which are such that starting from these points and moving
to the left along the directior-x; one enters, . Each point: € S, has its counterpart
7 € S with z/ = 7/, where for all; € R", 7/ = (z2, . . ., z,). Note that, by[(2.20),

Wy, () =a—u@) >a—u@ =w, @), z€S5,

sow,,, does not attain its minimum of}.. On the other hand, by (2.20) and hypothesis
(L.7), for anyz € S; the differencew;,, decreases strictly to the left of so thatw;,,, does
not attain its minimum or$; either.

Further, as above we can show th& cannot tend to infinity, s8™ — xo € X;,,
wherexg is such thatw;,(xo) = 0 andDw;y(xo) = 0. This contradicts Propositign 2.6,
applied tow,, > 0.

We have shown that the moving plane “enteBs”In particular, repeating this argu-
ment for all directions, it follows fron{ (2.20) that each poing 9 B has a neighbourhood
U, such that is strictly decreasing it¥, along all directions which make an acute angle
with x. This implies that if7, meetsd B atx, thenw,_is positive inl{, N3, for anyx > 0.

Suppose now & 1o < R. We again take sequences — Ao andx at whichw;,,
attains its negative minimum. In order to show th&® cannot be on the boundary of
¥;,, we now have to distinguish three types of pointsid: the two types considered
above, which are treated in the same way, and the poiat8 B*» which are such that if
one starts fromy and moves to the left alongx; one enter3*» and meets$ B before
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meeting7;,,. Sincex = a on 3B, for any such: we haveu(z) < a, by (2.20), so
w;,, (z) > 0.

Hencex™ — xg € X;,. If xo belongs to the regular part &f, , we have a contradic-
tion with Propositiofi 26. Ifo is on the singular part at;,,, that is,xo is a point at which
T,, meetsd B, we have a contradiction with the positivity of the comparison functions in
a neighbourhood di B, for sufficiently largen. O

Proof of Theorerf I]2We use exactly the same argument as for Thegrein 1.3 (this ar-
gument is now considerably simpler) replacing by a point of local maximum of. It
then follows that: is radially symmetric with respect to this point. O
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