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Abstract. We establish new estimates for the Laplacian, the div-curl system, and more general
Hodge systems in arbitrary dimensionwith data inL1. We also present related results concerning
differential forms with coefficients in the limiting Sobolev spagé-".
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1. Introduction

The starting point for this work is the following estimate fram [5, Proposition 4] (proven
for n = 3 but the argument generalizes).

Theorem 1. LetT be a closed rectifiable curve iR” with unit tangent vector and let
Y € Cg°(R™). Then
I
r

The proof in [5] relies on a Littlewood—Paley decomposition and the co-area formula;
another proof was given recently by Van Schaftinden [13] which uses only the Morrey—
Sobolev embedding in place of the Littlewood—Paley decomposition.

A more general form of Theorem 1 was givenlin [4, Theorem 1].

< GullHIVY |ln- 1D

Theorem 1. For everyY € C3°(R"),
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Here

LIR",R") = {f € L*®",R") | div f = 0}.
Clearly Theorem Limplies Theorem 1 by taking? = Hr 7 whereHr is the one-
dimensional Hausdorff measure BnConversely, one can deduce Theorérfrdm The-
orem 1 using Smirnov’s theorem [10] on the integral representation of divergence-free
vector fields. More precisely, everfy € L%‘ may be written as a weak limit (in the sense
of measures) of combinations of the form

> L i
o —— 1
l|ri| it

with ¢; > 0andd_«o; < ||f||1.

A totally elementary direct proof of Theorent Wwas given more recently by Van
Schaftingen [14].

Observe that for = 2, Theorem 1is a trivial consequence of Nirenberg’s inequality

IZll2 < CIVE L.
The meaning of Theorent Is thatL} ¢ (W1")*, which has remarkable applications

to linear elliptic PDE’s. [Heré¥ 1" denotes the completion 6fg° for the norm||Vu/|,.].
For example, consider the solutian= E  f, whereE(x) = ¢/|x|""2,n > 2, is the
fundamental solution of A, of the equation

—Aii = f inR™. (1.2)
We have

Theorem 2. Letf € L%(R", R™) withn > 2 and letu be the solution 0f1.2). Then

IViill/m—1) < Call fll1 (13

and hence .
llln/n-2) < Cull fl2. (1.4

Let us remark that the analog of Theorem 2o 2 is

Theorem 3. Let f € LL(RZ R?). Then

IViillz < Cll fll1 (1.5

and _
lilloo < Cll fll1. (1.6)

Indeed, writef = VL¢ with [V¢ll1 = || flla; thusVii = VVE(=A)~1¢. Inequality
(1.5) then follows from standard elliptic estimates and the inequgdity < C||V¢]1.
For inequality (1.6), write by partial integration

- 1
Front| <fae

x|

1
|x|

0]
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and integrate in polar coordinates:

/|§|(x|)|dx://K(reie)ldrde 5//|8&|rdrd9 S/Wf'dx-
X

Remark 1. A ‘natural’ stronger inequality than (1.3) and (1.5), involving second order
derivatives, would be

IV2ill1 < CIl fll1. L7

This inequality however is easily seen to be false, at least in dimenspor8. It is also
false forn = 2, but the argument is more complicated (see Appendix).

In view of Van Schaftingen’s argument in [14], Theorem 2 has now an elementary
proof. Here is a generalized form of Theorem 2 which, so far, requires a much more
involved argument.

Theorem 4. Letu be the solution of1.2) with
- S 9 -
f=rf+> —7 (1.8)
Bxl-
wherefy € LY, f; € L"/®=D anddiv f = 0. Then

19iillnj-1) = Ca{ 7ol + Y 1 illnja- - (19
Remark 2. Theorem 4 is equivalent to the following
Theorem 4. Leth e L1 and letiig be the solution of
—Aiig=fo InR",n>2
Assumaliv fo € W—21/=D Thenig e W"/@=D and
IViiolln/n—1y < ClIl follx + 1AV foll ~2.1/u—1)}- (110
In other words, for everyfy e L1 with div fo € W=21/(1=1)
1 foll~Ln/@u—1) < CUIfolla + 1AWV foll 2.1/}
Indeed, sep = diviig, SO that—Ag = div fp and thusp € L= Let
f = fo+gradg.

Then - - - .
div f =div fo + Ap = div fo — div fo = 0.

Applying Theorem 4 tof yields
IVidlln/n-1) < Clll follr + lelln/m—1)}- (1.1

On the other hand, ..
—A(i —iig) = f — fo = gradg
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and thus, by standard elliptic estimates,

V(@@ — o) llnjin—1) < Cl@lln/m-1)- (112
Combining (1.11) and (1.12) gives (1.10).

As we are going to see in Section 3, Theorem 4 is closely connected to a remark-
able property concerning differential forms with coefficients in the critical Sobolev space
wln ltis slightly more convenient to work first df* instead ofR” and we will do so in
the following. At the end of Section 2 and in Section 3 we will explain how to pass from
T" to R" (see Remark 6).

We denote byA‘T”,0 < ¢ < n, the space of-forms onT”, by W1 (ALT"), or
simply W17 (A?), the ¢-forms with coefficients inW 1" (T"), and byd the exterior dif-
ferential operator (see e.g. [6] for the notations). One of the main results in our paper
is

Theorem 5. If n > 2and1 < ¢ < n — 1we have
d[WhH" (AY)] = d[(WH" 0 L®)(AY)].

More precisely, given any € W1 (A?) there exists somg € (W1" N L®)(AY) such
that
dY = dX (113

and
VY1 + 1Y oo < ClldX]ln. (1.14)

Notice that the conclusion obviously fails fér= 0: given a functionf € W'" there
need not exist a functiog € L* such that gradf — g) = 0.

In the extreme case= n — 1, Theorem 5 asserts that given ai‘nye wln e R
there existy’ € (WL N L®°)(T", R") such that di¥ = div X with

IVY lln + 1Y oo < Clidiv X,
or equivalently,
Corollary 6. Given anyf € L"(T", R) with [ f = 0the equation
divy = f (1.15)
admits a solutior¥ e (Wlm 0 L®)(T", R") with
IVY 1l + 1V lloo < CILf ln- (1.16)

This case was already treated in [3]. As was pointed out in [3] this statement is equivalent
via Hahn—Banach and duality to the estimate
H{ — f; < Cllgrad¢ ;1 y-1mm-1 V¢ € C(T™). (1.17)
n/(n—1)
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It was also proved in_ ]3] that (surprisingly) the construction of soi”neatisfying
(1.15)—(1.16) cannot be linear. More precisely

Proposition 7. There exists no bounded linear operator

/f:O}—>L°°

dvkKf=f Vf

K:{feL"

such that

The other extreme caseé= 1, in Theorem 5 corresponds to

Corollary 8. Given anyX € Wn(T", R") there existy e (WL N L>)(T", R") and
p € W27(T", R) such that o
Y — X =gradp (1.18
and
IVY [l + HY — fyH < Clleurl X[y, (119
o0

wherecurl X = (3X;/dx; — 9X;/3x;).
For example when = 3, Corollary 8 takes the form

Corollary 8’. Let f e L3(T3,R3) with divf = 0and [ f = 0. Then there exists
Y € (WL3n L%°)(T®, R®) such that

culY = f inT® (1.20)

and - _ R
VY3 + 1Y lleo < Cllfll3. (1.2

Remark 3. Equation (1.20) is underdetermined. If we supplement it with the “canonical”
condition R

divy =0 inT® (1.22
the system (1.20)—(1.22) admits a unique (mod constants) solution which, in general, does
not belong toL*°.

Remark 4. One can ensure that obtained in Corollary 8 is moreover continuous. De-
tails of this observation appear in [3] in the context of the div-equation (1.15).

We are going to prove in Section 3 that the constructior of Corollary 8 must also
be nonlinear. More precisely:

Proposition 9. There is no bounded linear operatdf : Wl*(A1) — L>°(Al) such
that
d(KX)=dX VX e Wb al).

Theorem 5 is easily deduced from a considerably more general statement that has a num-
ber of other applications (as will be clear later on).
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Theorem 10. LetS : P, wln(T") — Y be a bounded operator into a Banach
spaceY with closed range Assume further that for each= 1, ..., r there is an index
iy €{1,...,n}suchthat

ISFI < C max max||d; f; .. (123
1<s<r i#ig

Then, for all f € @_, Wi, there isg € @_,(WL" N L™) satisfying
Sf=Sg (1.24)
and . _
IVEln+ 18lloc < CISFI < CIIV flln- (1.25)

The proof of Theorem 10 depends on Theorem 11 which is the main analytical tool of the
paper. It is an approximation result féf-”-functions onT™.

Theorem 11. Givens > 0, there isC; such that the following holds. Lgt € W1*(T").
Then there isF € W N L™ satisfying

1Fll1n + 1 Flloo < Csll fll1n, (1.26)
Z 19; (f — F)lln < Sl fllL,n- (1.27)
1<i<n-1

Theorems 10 and 11 are proved in Section 2. In Section 3 we discuss Theorem 5 and its
variant onR” (instead ofl™). We will explain the connections between Theorem 4 and the
special casé = 1 of Theorem 5 (i.e., Corollary 8). We will present further applications

to Hodge systems. Here are some typical examples in 3-d.

Corollary 12. Consider the system

culZ=f inT?, (1.28)
dvZ =0 inTS, (1.29)
/T . Z =0. (1.30)

Then for everyf € L + W~L3/2withdiv f = 0and [ f = 0, the unique solutio of
(1.28)—(1.30}katisfies R _

1Zll3/2 < Cll fll p2qw-132. (1.3
Remark 5. Note that curl and div do not play a symmetric role; a similar conclusion for
the system

curlZ=0 inTS, (1.32
dvZ =g inTS (1.33)
/T . 7Z =0, (1.34)

fails even forg € L1 (with [ g = 0). Indeed the solution of (1.32)—(1.34) is given by
Z = gradA~'g,andZ ¢ L%? wheng = § + C.
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Standard Hodge theory gives, for afiye L3(T3, R3) with [ = 0, a unique de-
composition

-

f =g+gradp
with g € L3, divg = 0 andp € W13, Combining this with Corollary 8yields

Corollary 13. Any f € L3(T3, R3) with [ f = 0 admits a (nonunique) decomposition
f =curlY + gradp (1.35)

with
IVY 3+ I¥lls < ClIf 3. (1.36)

In Section 3 we will discuss variants and higher dimensional generalizations of Corollar-
ies 12 and 13.

As an application of Theorem 5, we present in Section 4 a proof of the endpoint
regularity result for Ginzburg—Landau minimizers due to Bethuel, Orlandi and Smets [1]
(see the comments in Section 4 on the background).

In Section 5, further applications of Theorem 10 are given. Firstly we obtain the fol-
lowing generalization of Theorem 2, which answers a question raisedlin [15, Open Prob-
lem 2].

Corollary 14. Letf e LY(R", R") satisfy the differential relation

n
Z ai“)f,- =0 (in the distributional sense)
i=1

with £ > 1 an arbitrary integer. Then the solutiohof (1.2) satisfies

IViilln/n-1 < Cll flla-

Thus Theorem 2 corresponds to the casel.

Secondly, we establish certain estimates for linear elliptic systems of first order gen-
eralizing the classical Korn inequality as extended by M. Strauss [11] to thepcas#
(see also R. Temam [12, Theorem 1.2]):

n
litllnj-1) < C Y 19iuj + djuilla
i,j=1

whereu = (u1, ..., uy) is a vector field oR”.
In the Appendix, we show the failure of inequality (1.7) fore Li(R”, R"),n > 2.
Most of the results in Sections 1-3 of this paper were announced in [4].
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2. The main tool. Proofs of Theorems 10 and 11

Our primary goal in this section is to prove Theorem 11. But we will first explain how to
deduce Theorem 10 from Theorem 11. We will then prove Lemma 1 below which is the
main technical tool and which clearly implies Theorem 11. At the end of this section we
will discuss some variants involving boundary conditions.

Proof of Theorem 10 assuming Theorem BinceS has closed range, there is a constant
A such thatify e ImS C Y, theny = S f with

I £l < Allyll- 2.1)

Apply now Theorem 11 to each coordinate € W (T") of f = (fu. ..., f;), where
we takex;, as the ‘exceptional variable’. This givgs € W N L™ satisfying

2.1)
Igslan + 18 lloo < Csll fillLn < CsAllyl (2.2)
and
D N8 (fs = 8)lln < 81l fsllna < SAIlYII. 23
i

Letg = (g1, ..., &) € @i_ (WL N L>®). From (1.23) and (2.3),

o - 1
Iy = Sgll = 11S(f — &) = CAdlIyll = Syl 2.4

if we lets = 1/2CA.
Theorem 10 follows by standard iterations as in the classical proof of the Open Map-
ping Principle.

We now turn to the proof of Theorem 11. Theorem 11 strengthens a similar result
obtained in [3] where (1.27) is replaced by the weaker statement

19; (f = F)lln < 811 f lnn 2.5

wherei = 1,...,n is a single index preliminary chosen (afiddependent o). The
argument in [3] does not seem to give (1.27) in a straightforward way. The proof of
Theorem 11 given below is based on a similar approach, but presents additional technical
complications.

Theorem 11 is clearly a consequence of

Lemmal. If f e Wb (T") with I fll1n < cn < 1, then there igF satisfying

IFllo < Cs, (2.6)
IF L0 < Csll f |1, 27
D7 N0 = F)lln <81l + Csll £1Z,- (2.8)

1<i<n—-1
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Proof. For the sake of notational simplicity, we take= 3, the general case being com-
pletely similar.

Let f = Zfio A; f be a Littlewood—Paley decomposition. We assuféy 3 <
1073, Fix a large integeR > 0. PartitioningZ. into R cosets{RZ, + g}, q = 0,1,
..., R —1 we may assume

f=Y_Ajf. ljr—Jjal = Rfor ju # ja. (2.9)
provided the bound (2.6) is multiplied .
Define .
0j(0) =e 21l forg e T. (2.10)

Lettingo < R be another large integer, set

wj(x) = sud|A; fI(y1, y2, y3)@j (x1 — y1D@j—6 (X2 — ¥2)@j 5 (x3 — y3)].  (2.11)
y

Thus clearly
1Ajfl <w; and [ojllec = 14 flleo < 100
and
. (2,3 .
|ij|§21wj, | ij|§2~’_”wj.
Let K; be the trapezoidal Fourier multiplier satisfying
Ki=1 on[-2/,2/], suppK; c[-2/*1 271 |K;| < 3F;

with F; the Fegr kernel. Decompose

Ajf =gj+h;
with
8 =80 - o=y, 2w} * KT (212
hy = 8] Koo 3, 2] * K (213

Recall that all indices are restricted ® - Z,. Here we have denoteﬂ’]@(x) =
K;j(x1)K;(x2)K;(x3). For notational simplicity, we denote in what followsj?e’ (resp.
F?) also byK; (resp.F;), with now|K;| < 27F;.

In order to construcF, we treat{g;} and{h;} separately.

Sequenceg;}. It follows from (2.11), (2.12) that
lgjl <27 2o xFj=Gj < 1.

k<j
Thus|g;| + (1 — G;) < 1 and the functions

=g ]‘[ (1-Gj) (2.14)
J'>i
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satisfy) " |g;| < 1. Write

D (& —&) =) HyGj.

where
Hy =gy 1+A-Gy1)gy—2+A—-Gy-1)1—-Gj_2)8-3+ -

satisfies

Since supf; G, C [—2/+2, 2/+2], we have
Y-8, s D mtvanen?) 7], @19
s>0 Jj

whereP; is a Fourier projection of§| ~ 2/.
Fixing s, decompose&; = Gj(-l) + GJ(Z) where

L »
GV =27 Y 2T(axxK)
j—s<k<j

ands depends on in a way to be specified.
We estimate the contribution 0}’](.1) in (2.15):

. a2\ 12 B )2\ M2
|(Camae) ™, <2 | (o anar) ]
J J
. 1/2
sc2e Y 2 (A 5?)
R<t<§ Jj 3
CN1/2
2
(=),
J
The contribution OGJ(.Z) in (2.15) is estimated by

1/2 1/2
[(Svmeid) ], = [ (Svmrene) ],

(S, - eans e

<C27%

Here

12 12
(2.18) < H IVG®@)2 H <c Y 2 Voo |2 H
(; j ) 3 tg_sz (X/: @it ) 3

< 2GR H (Z 4/'@]?) Y 2”3_ (2.19)
7
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To estimate (2.17), write

IVHj| <Y (Vg +IVGyD) < > IVgpl+ Y 2772y

J'<j J'<j k<j'<j
L
<> IVerl+ Y 2 ay
J'<ij J'<j

where® denotes the Hardy—Littlewood maximal functionsfHence

@10 s (S w6 e) , + S (4ot e,
=00 =0
= (2.20) J]r (2.2), !

where

(2.20) < Z Z 2!

£>0 t>5

sy v

>0 t>5

o\12
(raeir),
7
: 172
—0~2 ~2
(24] ‘“H%H) ”
7

Distinguishing the contribution}_,_,_; = (2.22) and}_, _; ,., = (2.23), we estimate

ez < @pialo ¥ 2| (S4a),

3

>t>5§
< supla; flo) [ (X #007) - (X -927)
j 7 =5
<2 s [ (D ee?) (2.2
J

and similarly

223 < A+527 f||1,3H > 4]-%2)1/2”3. (2.25)

j

Also

ey =y Y2 |(X 41'*@@]?_[@]?_,)1/ ’ I,

>0 t>5 Jj
< a+9271 sl (S e?) (2.26)
7

Hence

@17 £ A+ 927 s (Y #0?) (227)
J
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It remains to bound|(3_; 4/ w?)'/?||3. Recalling (2.11), we have
wj(x) S sup eI flw Fy)(x1+ 1127 xp+ 1227 x3+r327).

r1,r2,r3€Zy

(2.28)

Therefore
(Z4j(|Ajf| « F)2(x +7 - 2*1‘))1/2H3

. 1/2 _
j, 2 —r1—27% (ro+r3)
[(C#e?)],s X
J r1,r2,r3 J

I >
S Y2 log || £l
;

S fls (2.29)
Collecting estimates (2.16), (2.19), (2.27), (2.29) implies

H (; |P;_s[V(H;G))] Iz)l/ZH3

<CE2+ 2R o a7 fllus+ CA+ 525047 112 5. (2.30)

Fors < R,takes =0, i.e. dropG(.l). Fors > R, takes = s. Performing the-summation
in (2.15) using estimate (2.30) gives

1>t -], = CR2 Foa I flns+ Ro4If 1R (2.3

Sequenceh;}. This is the crucial part of our analysis. Consider further bump functions
¥; onT such that

0 <1, i C[-277,277],
=Y < sthpl/fj'C [ ] (2.32)
YO =1 |y S2.
It follows from the definition ofz; in (2.13) that
|/’lj| < 27(wjx[wj>2k<j 2k—jwk]) * Fj < 27(14]' * F;) =Uj (2.33)

upon defining
uj(x) = SUPI®) X{ay >3, 2-i ) V) (41 = YD Vo (62 = ¥2)¥j—o (¥3 = ¥3)]. (2.34)
Observe first, from (2.10), (2.11), that

] (X1 4 y1, X2 + y2, ¥3 + y3) < w; () if [y1] < 277 andlya, Iyl < 277/,

Therefore
uj < 25(1)j)([wj>1(rS qu‘ 2k=J gy ]+ (2.35)
Also, by (2.34),

IVij| S 200 Xy 2103, 2T (2.36)

2,3 .
| 'V u;] <2/7° ®) X[w;>10-3 Yie) 2k ] (2.37)
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Define then again y
hj = h; ]_[(1— Ujr)

=
sothaty” |i;| < 1. We have

Y (hj—hp) =) UV

with
Vi=hjia+QA-Uj—Dhj 2+ QA -U;—)A-U;2)hj 3+---,
We estimate
(2,3

v

From (2.33), (2.37) we obtain
(239 <277

Z(ijjX[szj>1(r3 e, k) * Fj H3
; .

S27°

Z Zja)j X[2) w;>10-3 k<) 2] 3
J

. _ 1/3

S 27 Imax2iojlla 5277 (Y8l f)
J -
J

From(2.28), we may clearly estimate
loil < (Y2 e TN A IR S 47 1A £1
r1,r2,r3

so that va
239 2R(3 814 f13) " S 277 P la
J

(2.38)

Vil = 1.

VI w -], = [V, + [ v, = @39 + @40,

(2.41)

(2.42

(2.43)

This estimate is a key point in our approach. It also follows from the preceding that

il s 4P s
To estimate (2.40), note that
IVViI < Y (VR + VU S Y 2 a.
J'<i J'<i
Thus
(2.40) < Zz—f

>0 Jj

(2.44)

> 2| S suplloylloo) | Y2y
J J

< UPIA; fl1o0) | 3 2 0tpin, 1055, 20t (BY (2:39)
J ] :

SABYfI2 .

(2.45)
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This completes the analysis. Define

F=Y(&+h) (2.46)
satisfying|| F || < 2 and from (2.31), (2.43), (2.45),
2,3

I K4 (f = Plls < HZ(gj—éj)Hl3+ H v [Z(h —h )]Hs
- :

< C(R2 Roa” + 2"’/3)|If|I1,3 + (Rod” +43)| fIlZ5 (247
and from (2.31), (2.44), (2.45),
IFll1z < [ fllLa+ C(R2Z Rod” +4°3)| fllaz+ (R4 +4°3)| fllf4. (248

Recall that since we restrictedto a progressiolRZ + g (0 < g < R), these bounds
need to be multiplied byR. Takingo = R/4, this implies the existence of a functigh
satisfying

IFlleo < 2R, (2.49)
IFl13 < 280 fllns + 281112 5 < 2872 fllas, (2.50)

2,3
IV (f = Plls < 2 ®B3) fllas+ 281 £112 5. (2.51)

This proves Lemma 1 with = 2-R/13 ¢y = 2R+1,

Remark 6. Here is a variant of the previous Theorems 10 and 11.

Corollary 15. The statements of Theorem 11 and hence 10 remain validéfreplaced

by a cubeQ = (0, @)" andW"(T") replaced byW " (Q) or W, (Q). They also remain

valid if WL (T") is replaced byw 1" (R").

Proof We start withw"(Q). If f € W"(Q), it can be extended to a functiofi
(Q) whereQ > Q is a larger cube. Thig' may be viewed as a periodic function

to WhICh previous results apply and the conclusion follows by restrictio® tdNext

let f € W&’"(Q), 0 = (0,1)". Extend f to R" by the usual anti-symmetrization and

periodization. Thug® may be seen as a restriction of a functibrvhich is periodic and
odd in each variable. Lef be the associated function given by Theorem 11. Assume for
simplicity thatn = 2 (the general case is similar). Set

F(x1,x2) = 3(F(x1, x2) — F(x1, —x2) — F(—x1, x2) + F(—x1, —x2)).

ThenF|g isin Wol’”(Q) and has all the required properties.

3. Proofs of Theorems 4, 5 and Proposition 9. Applications to
div-curl and Hodge systems
We start with

Proof of Theorem 5We apply Theorem 10t6 = d : W1"(Af) — L"(A*t]), 0< ¢ <
n — 1. Since? > 0 condition (1.23) is satisfied. For example whea- 3 and? = 1 we
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have

3
ISXlls < DY 19: Xslls vX € Wh(Ah.
s=1i#s

On the other hands has closed range ih” (A**1). More precisely,

o if0 <€ <n—2thenR(S) = {w e L"(A*"!) | dw = 0 and [y, w = O},
o if {=n—1,thenR(S) = {w € L"(T") | f. & = O}.

We may also state variants of Theorem 5 wfinis replaced by = (0, 1)"” or R".

Theorem 5. AssumeV = (0,1)" or M = R" withn > 2, and1l < ¢ <n — 1. Then
d[WI(A*M)] = d[(WE" N L) (A M.

More precisely, given any € W1 (AfM) there exists somg e (WL N L®)(A*M)
such that
dYy =dX 3.1
and
VY1l + 1Y lloo < ClldX|ln- (3.2

Proof. Apply the variant of Theorem 10 stated as Corollary 15. Once rfidras closed
range:

e if0 < ¢ <n—2,thenR(S) = {w € L"(A*™M) | dw = 0},
o if £ =n—1,thenR(S) = L"(M).

Theorem 5’. AssumeM = (0, 1)". Thenforn > 2andl < ¢ <n —1,
A[WE" (A'M)] = d[(WE" 0 L) (A M)].

More precisely, given an¥ < W&’”(AEM) there exists SOME ¢ (Wg’" N L®)(A‘M)
such that
dY =dX 3.1

and
VY] + 1Y oo < Clld XI5 3.2

Proof. Following the same argument as above it remains to verifyShatd : Wol’”(A()
— L"(AY has closed range. It is well known thia[tW%’p(Af)] is closed inL” (A1)

forany 1< p < oo, whereW%’p(A[) denotes thé-forms with vanishing tangential part
ondM (see [6]). To complete the proof it suffices to establish

Lemma 2. Givenanyl < p < ocoandl < ¢ <n — 1, we have

d[WoP (A M)] = d[Wy P (ACM)).
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Proof. Given anyw € W%”’(AKM), we will construct somey € W2P(A~1M) such
that
n=0 and w+dn=0 onoM.

We start with the casé = 1 which is quite transparent. We are giwere W;’p(AlM),

i.e., o= X € WLr(M, R") is a vector field such that its tangential component vanishes
ondM. We look for a functiom € W2P (M, R) = W27 (A°M) such that

- .0
n=0 and X-u+a—n=0 onoM,
v

wherev denotes the normal t&M. The existence of follows from a general result of
Lions and Magenes [9] asserting that the ngap> (v ]5ar, %—‘f|3M) mapsW?P (M) onto
w2=Yr.pdM) x Wi-YP.r(3M). Observe thak - v € Wi-1/7P-P(3M). (The additional
difficulties arising from the corners @ can be handled as inl[3].)

We now assume thdt> 2. Sincewr = 0 (by assumption) and/n)7 = 0 (because
we look forn = 0 ondM), we have

wr + (dn)r = 0.
Therefore it suffices to achieve
n=0 and (dn)y =—-wny ONIM.

In local coordinates near a point @M we assume that, is the normal direction and set
y = x,. Write

wN = Z Wiq,...ig_1 dx,-l VANRERIVAN dxihl AN dy

1<ii<-<ip_1<n

and
n= Z Niy,..., ig—1 dxil ZANRERIVAN dxig,l
1<iy<--<ig_1<n

+ Z Njtyojo—pon AXjg A= A dxj,_, Ndy.

1sji<<je—z<n
Using the fact that = 0 onaM, we have, ord M,

3,7. i
dmnv= Y %dm Ao A dxi g Ady.

1<ii<-<ig_1<n
We are thus led to fing satisfyingn = 0 onaM and
3771'1,..‘,1'5,1

dy

The existence of follows again from the result of Lions and Magenes [9].

= —Wjj,..,i;.; ON oM.



New estimates for elliptic equations 293

Remark 7. With the help of Theorem’5we may now state a slightly sharper version
of Theorem 1

Theorem 1”. For everyf( € Cg°(R", R"),

JxT

wherecurl X = (0X;/dx; — 0X;/0x;).

<Clfllcur X[, forall f e LER", R™),

Proof. Let M be a large cube containing suﬁp We may viewX as an element of
Wé’”(AlM). By Theorem 5 there existy e (W&’” N L®)(A1M) such thatlY = dX
and .

1Ylloo < ClldX|ln = Cllcurl X|l,.

HenceY — X = gradp for somep € (W2" N WL>)(M). Moreover gragh = 0 ondM;
thusp is constant o® M and we may assume that= 0 ondM. We have

[ 7= [ @+oadp) f=[ 77
M M M

since divf = 0andp = 0 ondM. Hence
‘/Xf _ '/?.f

We now turn to
Proof of Theorem 4Let f be given by (1.8). In view of standard elliptic estimates it
suffices to prove thaf ¢ wW—17/=D(R" R") with

= 1 f 1Y llee = Cll fllalicurl X,

171 = {0l + Y Fillaja-n]- (33)

Let thusX e wLn(R", R™) with ||f(||1,,, < 1. We may assume that is smooth and has
compact support, say suppc Q.

According to Theorem’5there is some e (WLn N L) (R", R") with suppY C Q
and ||17||1,n + ||l7||OQ < C, such thadY = dX. HenceX — Y = gradp and since
div f =0,

.. - I Y -
(X, =¥, )] < [i¥. fo)l +Z‘<g’ f>‘
< 1ol fol + 1¥ 0 3 1 illasa— = C{ ol + 31 fllajnn |

which is the desired estimate (3.3).

Remark 8. In fact, Theorem 4 and Theorerh(@ith £ = 1 andM = R") are equivalent.
Here is a proof of the implication Theorem=4 Theorem & Fix X € W1"(R", R");
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we have to find’ satisfying (3.1) and (3.2). We are going to define a linear functional on
(LY 4+ w—Ln/0=Dy, Givenf e (L1 4+ w~17/@=D), letu be the solution of (1.2) given

by Theorem 4. Set
IX i
()= /Z ax; ox;

By Theorem 4 we have
IT(O < CUXN1all £l 14 -t -

Applying Hahn-Banach we may exteffdto a continuous linear functiondl on all of
L+ w=bn/0=D "with | T < C||X||1... Hence there is somié e W N L satisfying
(3.2) and moreover

5z 2 X du .. o
/Y'fZT(f)Z/ aaZ/Xf VfG(Ll-i-Wl’”/(” 1))#.
1 l

Thus (3.1) holds.

Similarly, the weaker version, Theorem 2, of Theorem 4 corresponds to_a weaker
form of Theorem 5assert|ng only that glveH € win(®R", R™), there exists SOME €
L*®(R", R") such that! — X = gradp and ||Y||OO < C||X||1,, Hence this weaker
statement admits an elementary pradé Van Schaftingen [14].

The above construction of (starting fromf() relies on Hahn—Banach and need not
be linear inX. In fact, we now prove Proposition 9 which asserts that the construction
must be nonlinear. For simplicity we return to the cage= T".

Proof of Proposition 9.Assume, by contradiction, that there exists a bounded linear op-
eratork : Wi (AlT") — L®°(AYT") such that

d(KX)=dX VX ewbrah.

Whenn = 2 this is impossible from the div-case proved in [3] and recalled as Proposi-
tion 7. Assume: > 3. We are going to construct a bounded linear operator

K :whra"™t > L2 (3.4

such that 3
d(Kw)=dw VYo e WH (A" 1) (3.5

and this again contradicts the div-case (Proposition 7). GivenW " (A" 1) write
w= alzl}l/\ dxoA---ANdxy,+axdxi A c/z'}z/\' ANdxy - tapdxiAdxon- - -/\gl}n.
Applying the operatoK to the 1-formX = «; dx; —«a; dx;j,i # j, and writingd (K X) =

dX we obtain in particular some functiog¥’, y'/ € L>°(T") such that

ad g 0 .
(i = pY)+ —(j —yY)=0. (3.6)
8xi ax]‘
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Moreover i/ and '/ depend linearly ony; and «;; thus they define bounded linear
operators fronW 1" into L>. Adding all the equations (3.6) for j we obtain

(n—1div@—5)=0

for somes = K (@) = K (w) whereK is a bounded linear operator satisfying (3.4) and
(3.5). Impossible by Proposition 7.

We now turn to div-curl and Hodge systems. We start with

Proof of Corollary 12 Using the formula
curl curl = —A + grad div 3.7
we see that the solutia of (1.28)—(1.30) is given by
Z =curl(-A)7Lf

where(—A)~1is the inverse of-A on T3. We may then apply Theorem 4 (or rather its
variant onT? instead ofR3) to conclude thaZ e L3/2 with the corresponding estimate.

In connection with Corollary 12, let us mention an open problem. Consider the div-
curl system (1.28)—(1.30) withf € L1(T3), div f = 0 and f = 0. We know that the
solution Z belongs toL3/2 and thatZ doesnot belong towl! (see Remark 1 and the
Appendix).

Open Problem 1. Is it true thatZ belongs to the Lorentz spaég3/2, 1)? In particular,
is it true thatZ (x)/|x — a| € L for everya € T3?

WhenM = T" or M = R” recall the classical Hodge decomposition. Anye
L"(A*M),1< ¢ <n—1, (with [ @ = 0if M = T") may be written as
w=doa+d*B (3.8

with @ € Wt (Af=1M) andpg € WIH(AHIM). Hered* = (—1)"¢+1xdx wherex
denotes the Hodge-operatorA‘M — A"~tM. In addition one can choose and
satisfying the bounds

lallsn + 1Bl < Clloll,.

Combining this with Theorem 5 (wheW = T") or Theorem 5(whenM = R") we may
improve the conclusion.

Corollary 16. Assume > 3andl < ¢ <n—2.Thenany» € L"(A*M) (with [ @ =0
whenM = T") may be written as

w=da+dp
witha € W (AIM), B e (W N L®) (A 1M), and

lellan +1Bl1n + 1Bllcc = Clllln. (39
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Ifn >4and2 < ¢ <n—2 thenanyw e L"(A*M) (with [ @ = 0whenM = T") may
be written as
w=da+dp

witha € (W N L®)(A"1M) andB € (WL N L®)(Af*1M) and

leellen + llelloo + 1Bl + 1Bllec < Cllella- (310

In order to apply Theorem 5 to th&term, we need thus to assume that ¢ — 1 > 0,
i.e., <n — 2. Similarly for thex-term we need — 1 > 0, i.e.,£ > 2.

Corollary 17. Assume: > 4and2 < ¢ < n — 2. Then for evenX € WL1(A‘R") we
have
1X1ln/n-1) < CUAX N 1y w-1m/m-v + 1d* X || 114 w1001} (3.1

and in particular

1XNln/-1 < CUdX N1+ 14X 1) (312
Proof. If w € L"(A'R") we may writew = da + d* 8 with «, 8 satisfying (3.10). Then
(X, )] = [{d* X, &) + (dX, B)| < CUId* XI| 1y -1mo-v + 1dX | L1y y-1m/e-n @]l
Remark 9. The weaker assertion (3.12) of Corollary 17 was obtained independently by
Lanzani and Stein [7] with an elementary approach in the spirit of [14].

Remark 10. Notice that Corollary 17 does not imply anything foe= 3. Indeed (3.12)
does not hold in the div-curl setting as was already pointed out in Remark 5.

Next, we present another example &h= (0, 1)" involving a boundary condition.
It will be used in the context of Ginzburg—Landau minimizers (as discussed in the next
section).

Corollary 18. Assume: > 3andM = (0, 1)". Then anyX € L"(A*M) = L"(M,R")
may be written as
X=d¢+dk

for somep € Wy" (A°M) = Wy" (M, R) and somek € (WL" N L) (A%M) satisfying
lollsn + lkllsn + lklloo < ClIX|In-

Proof. By standard Hodge theory we may write= d¢+d* g for somep € W&*”(AOM)
and somg8 € W1 (A2M) with control of norms. The additional information comes from
Theorem 5which applies since — 2 > 0.

We also have a ‘dual’ form:

Corollary 18’. Assume: > 3andM = (0, 1)". Then anyX € L"(A*M) = L"(X,R")
may be written as
X =d¢ +d*k

for somep € WL (A°M) = WL (M, R) and some € (W,”" N L=)(A2M) satisfying
ldllen + llklle, + llklloo < CIX |-
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Proof. By standard Hodge theory we may write= d¢+d* B for somep € WL (A°M)
and someg € Wy"(A2M). Thenxp € Wi"(A""2M) and we may apply Lemma 2,
together with Theorem’5for ¢ = n — 2, to conclude thai*8 = d*k for somek €
(Wo™" N L®)(AZM).

Remark 11. Instead of the limiting Sobolev spa#&l”, one can consider similar ques-
tions in the fractional Sobolev spaB€’-? with sp = n, p > 1. For example, as an analog
of Theorem 1 we have
Iz
r

f.7

for everyf € Li(R”, R™") andY e C3°(R"). This can be proved by the same argument
as in [4], [5], or by the argument due to Van Schaftinden [13], [14].

Turning to differential forms, this shows that¥ € W*?(Al), there exists some
Y € L®(AY) such thaX = dY. Here we do not claim that thig is in W*7. In fact we
leave it as

= CITNY [Is,p

and hence
< ClIf 1Y Is.p

Open Problem 2. Let0O<s <n,s #1,p=n/sand 1< ¢ < n — 1. Is it true that
givenX € WP (AY), thereisy € (WP N L®)(A%) such that/X = dY? The question
can be asked in particular whers an integer, for example= 2, andp = n/2.

Remark 12. It is easily verified that Theorem 1 fails if in (1.1) we replateY||,, by
Y lemo. In fact, a natural seminorm afiy°(R") can be defined considering

/Y?
r

with the sup taken over all closed rectifiable curVes$t has been shown by Van Schaftin-
gen [16] that

(Y) = SUIOi
T

Yllemo < C(Y)
(and the corresponding embedding is strict).

Finally, we express some of the above results as simple but general estimates for
¢-forms.

Let M c R" be a smooth, compact, orientabkedimensional manifold without
boundary, 1< ¢ < n — 1. Letw € Cgo(AeR”). Recall that the quantity”Mw is well

defined.
Corollary 19. We have
L
M

= CIM||ldo|

whereC depends only on.
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Proof. Let Q be a cube containing U suppw. By Theorem 8 there exists somé ¢
(Wy™" N L®) (AL Q) such that

do=do and [dlec = Clldwll,

whereC is independent of the size ¢f (by scale invariance). Then

fir=fo

sincew — @ = d¢ for somet € W2"(A**1Q) and [, d¢ = 0. Hence

f

Next, we work onM = T" (for simplicity). Let X, w € C®(A*M) with 1 < ¢ <
n — 1. Recall the standard definition

= Ml lollee = CIM| lldw|ly.

(X, o) =/ X A (xw).
M
Corollary 20. Assumef;, X = 0. Then
(X, 0)| < ClllwllalldXln + d* ol 2.0/ (-1 IV X1}, (3.13
with C depending only on.

Proof. By Theorem 5 there exists soniiec (W1 N L>)(AfM) such that

dy = dX, (3.14)
f Y=o, (3.15)
M
VY [l + ¥ lloo < ClldX . (3.16)

Sinced(Y — X) = 0and/,, (Y — X) = 0 we may solve the elliptic system
ds=X-Y, d'€=0

with the estimate
1Ell2,n < Clld*(X = Y)|ln < CIVX]|n. (3.17)

Then
(X,0) =(X =Y, 0+ (Y,0) = {dE, w) + (Y, 0) = £, d*o) + (Y, w).

Therefore
X, w)| < [&ll2nlld* ol —2,n/(—1) + 1Y o ll@]l1.

Combining this with (3.16) and (3.17) yields the desired estimate (3.13).
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Remark 13. One cannot replacgV X ||, by ||d*X||, in (3.13). Indeed, if we could, we
would infer that
(X, w)| < CllolllldX],

whenever* X = 0. Consequently,
[Xlloo = ClldX|ln

for every X with 4*X = 0. But such an estimate fails: it suffices to find & W2”" with
£ ¢ Wb and to choosé& = d*¢.
Similarly, there is failure of the estimate

(X, )| < Cllldoll—11lldX [lx + ld*©ll-2,n/ (-1 IV X ||} (318

Indeed, (3.18) would imply
1dY ln/im-1) < ClIAY|l1 (3.19
for everyY € C*(A‘M). To see this lek € L"(A**1) with [ i = 0. Using Hodge write
h=doa+d*p
with ||[da|, < C|lhll,. Then
(h,dY) = (da,dY) = (a, d*dY).

Applying (3.18) toX = « andw = d*dY would give

[(h,dY)| < Clldd*dY ||-11lldell, < Clldd*dY |11kl
= Cl|lAdY || —p1llhlln = CIIAY [[2]|A]]n-

Thus (3.19) would hold. From (3.19) we would deduce that ! is a bounded operator
from {f € L' | [ f = O} into L"/®~Y and by duality tha* A~ is bounded from
{f eL"| [ f=0}into L. But we already observed that this is not true.

4. Consequences for Ginzburg—Landau minimizers

Let M c R" (n > 3) be a domain, say a cube for simplicity. Roe- 0, the Ginzburg—
Landau functionaFE, (1) is defined by

1 1
E.(u) = 5 /M |Vul? + " /M(|u|2 — 12 4.1)

Theorem 21. Letg € HY?(dM, S1). Then

(a) If u. is a minimizer ofE, subject to the Dirichlet boundary conditian |y, = g,
then
IVuelln/m-1 < C(g) ase — 0. (4.2)

(b) In particular, any weak limit point,, of {u.} belongs tow /=1 (p1).
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It was shown inl[[5] that|Vu.||, < C,(g) for p < n/(n — 1) (results for speciag
displaying only finitely many point singularities of a certain type were obtained earlier by
Lin and Riviere [8]).

Forn = 3, Theorem 21(b) was first obtained in [5]. Theorem 21(a) is due to Bethuel,
Orlandi and Smets [2]. Below we present a proof, based on Corollary 18, that is concep-
tually particularly pleasing. .

Consider first a larger cub@ such thatM C Q. Using the fact thati.[sy = g €
HY?(M, S1), we may construct an extensiarof u, to Q satisfying

la] <1, 4.3
E.(u; Q) < Clog(1/e), (4.4)
lallwrro\my < Cp(g) forallp <2 (4.5

(seel®, Lemma 30]).
Next, we apply to the functio@ on Q the following approximation result due to
Bethuel, Orlandi and Smets [2] (with roots in the work of Jerrard and Sooner).

Proposition 22([2]). Letu on Q satisfyE.(u) < Clog(1/¢). Then there i® satisfying

lv| <1, (4.6)
E;(v) < CEc(u), (4.7
E.(u)
[TvllL1) = CW =C, (4.9
where
Jv=dw Adv) = Z(aw x 0jv)dx; A dx; 4.9

i<j
denotes the Jacobian, and
lu — vl 20 <&* (for some constant > 0). (4.10
Sketch of thav1"/»=D_regularity property. It suffices to show that
lu A dull pnjo-2pp < C (4.11)

(cf. [B]). By duality, we need to controlu A du, X) with X € L*(A*M), | X, < 1.
According to Corollary 18,

X=d¢+d'% (4.12)
where
¢ € Wo" (M), ligllan = C, 413
ke WY AL®)AZM),  (kllLn + IKloo < C. (4.14)
Thus

(undu,X) = (undu,dd) + (u Adu,d"k).
Since¢p = 0onaM,
(u ndu,dp) = / (ImitAu)ygp =0 (4.15
M
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because satisfies the Ginzburg—Landau equation
1
—Au= S (1— [ulPu. (4.16)
&

It remains to controlu A du, d*k). y
Let k be an extension df to R" such that supp c Q and

Ikllyrn + 1Ko < CUKIw1nan + kllo) < C. (4.17)

Then

lu A du, d*k)| < |(id A dit, d*k)]| +/ |Vi| | VK.

o\M
By (4.5),
IVi| V| < il oo Ikl g < C.

o\m (O\M) Q)

Next write

[ Adi, d*k)| = |(Jit, k)| < |[(Jv, k)| + |(Jit — Jv, k)| = (4.18) + (4.19)

with v taken according to Proposition 22.
Estimate (4.18) from (4.8) and (4.17):

(Jv, k) < vl 1oy IklL=g) < C.

Write
Jiu —Jv=d((i —v) Ad@@i +v)),

hence

(419 = [((@ — v) Ad(i +v), d*k)| < it = vl20/-2) 1 + vilyr2 [k s
< Clii — vll; "[Ec(@) + E- ()] Y2
< C(log(1/e)Y?e21=2/m  (by (4.4), (4.7), (4.10))
This completes the argument.

Remark 14.1f n = 2, the conclusion of Theorem 21 is well known to fail and the estimate
luellwer <cp(g) forp <2 (4.20

is the optimal regularity result here.

5. Some other applications

Let j be an integer and ¥ p < oo. As usual the Sobolev spad&’/-” (T") is equipped
with the norm

lellwioen = Y ID@llLrcrn,

lee|<j

and its dual spac®# —/-?'(T") is equipped with its dual norm.
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Theorem 23. LetX ¢ L2(T", R") be an invariant function space and assume that the
orthogonal projectionP on X’ satisfies

1Pfll, <Cp > Y IIRifll, (forall 1< p < oo) (5.1)
s=1 i#i

for some choice of indices € {1, ...,n} (1 < s < r), whereR; denotes thé-th Riesz
transform. Then, for eveny ¢ W—17/(t=D (T Rr),

lullw-1n/@-n < C(|lull 1 + dist(u, X)) (5.2
wheredistdenotes the distance i —1/#—1

Proof. It follows in particular from (5.1) that the projectiof is bounded onL” and
hence the operatdt = P o (—A)Y2: W — L" has closed range. Moreover

1SFlIe < CY Y NR=A) Y2 )l = D> 118 filln-
s=1izis s=1i#ig

Thus Theorem 10 applies.
Let f € WL"(T", R") with || f|l1., < 1. By Theorem 10, there ig € (W'" N

L%)(T", R") such thatf — g € KerS$. But sinceP is invariant, als&§ = (—A)Y20 P,
henceP(f — g) = 0. Therefore, ifv € X then

[, /)l = v, @) < vl gy w—rma-n(lglize + lIglwin).

Thus, forallv € X,
lvlly-10/a-v < Cllvll 2y -10/0-D. (5.3)

Write, foru € w—1%/@=1D andy € X,

lully-1n/m-2 < llu — vlly-10/60-1 + V]l y-12/0-D
(5.3)
< llu = vlly-1n/@-v + Cllvll g1y y-10/0-2)
< llu — vily-1m0-n + C(lv — ully-1n/0-0 + ullp1). (3.4
Taking the infimum in (5.4) over € X yields (5.2).

Let¢ > 1 be an integer. Set
n
Au = Zai(@)u[, u=Wy,...,uy),
i=1

so thatA may be viewed as a bounded operator fram= W—1/=D (T R") into
F = w—&Dhn/=Dn R). Itis also convenient to consider the unbounded operator

Ao D(Ag) C LYT",R") > F, Ap=A,
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with domain
D(Ag) = {u € L* | Au € F in the sense oD’ (T")}.

Corollary 24. We haveD(Ag) C E and, for everyt € D(Aop),
lulle = Clullzr + Il AullF). (5.5
Proof. Consider the invariant space
X ={ueL%T",R") | Au=0inD'(T")}.

The original projectionP on X’ is given by

_ n o glE!
Pu(§) = {fti(f) L5l (S)}
12;_ Zké 1..n
Zk;ﬁl Sk . & fz }
= (&) — i) : (5.6)
{ > & ;zks” =1....m
Write
526 526 1|$|
$E) = &) (5.7)
Zké é st j‘P é

with R; the j-th Riesz transformation and observe that the Fourier multiplier

£271e|/ Y €2 acts boundedly oil? (1 < p < o) (since it satisfies Brmander's
condition). Hence (5.6) shows that fordl p < oo,

IPull, < Z{Z I R + Z IR} S YD IRuill,  (68)
ki i=1j#i

Thus condition (5.1) holds with, = s (1 < s < n) and Theorem 23 applies.
Next we claim that, for the bounded operator E — F,

R(A) is closed inF. (5.9

More precisely, we have
R(A):{feF‘ f:O}.
’]Tn

Indeed, fixf € F with [ f = 0.
If £ =2k, takeu; = ¢,i =1, ..., n, whereg is the solution of the elliptic equation

n
Y o®p=rf inT"
i=1

Note thaty € W—1/®=1 py elliptic regularity. Thus: € E satisfiesAu = f.
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If £ =2k + 1, takeu; = 9;¥,i = 1,...,n, wherey is the solution of the elliptic
equation

n
> 9Py = finT

i=n

Note thatyr e L"/=D by elliptic regularity. Thus: € E satisfiesdAu = f and the proof
of (5.9) is complete.
From (5.9) and standard functional analysis we know that

distg (u, N(A)) < C||AullF. (5.10)
On the other hand, it is clear that
N(A) ={u € E | Au =0}
is the closure oft in E and thus
distz (u, N(A)) = distg (u, X) Vu € E. (5.11)
Combining (5.2), (5.10) and (5.11) yields the desired conclusion (5.5).

Corollary 24 carries over If” is replaced byR” provided we use the spa@e/-? (R")
defined as the completion 6f°(R") for the norm

lellwirgn = > 1D%0llp.

la|=j

and its dual spac® —/-7 (R") is equipped with its dual norm. As above set

n
A=Y o"u;.
i—1
Corollary 24’. Letu € LY (R", R") be such thatiu ¢ W—¢+D.n/(n=D(R") jn the sense
of D'(R"). Thenu ¢ W—17/0=D(R" R") and
lwlly-1n/0-1 < Clullp1 + |Aully-ervn/o-2). (5.12

Proof. SetQ = (-1/2, +1/2)" andfix a cut-off functions € C3°(R") such that 0<
¢ <land
¢(x)=1 for|x| <1/4 (5.13)

Letu € LY([R", R") with Au € W—“HD-n/n=D (R and lety € C5°(R™). We claim that
for every integek > 1,
‘ /R %(x/k)yu(x)e(x) dx

< Clull L1 rny + 1 Aully—ervn/o-1gey + o(D)UIV@lLr@®ny +0(1)),  (5.14)
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with o(1) — 0 ask — oo. In (5.14), and in all the estimates below, the cons@ntay
depend ort (but it is independent af, ¢ andk). Passing to the limit in (5.14) yields

[
Rn

which corresponds to the desired conclusion (5.12).
We have

= C(||M||L1(Rn) + ||AM||Wf(i+1),n/<nfl>(Rn))||V(P||L"(]R"),

/R 0/ dx = K" fQ () dy (5.15)

whereuy (y) = u(ky) andgg(y) = ¢(ky). Applying the periodic case (Corollary 24) to
the functions; u andz g, onT" = Q we find

‘/ C2upgr
0

< Clcurl o) + IACUD v o) IE @l yinggy.  (5.16)

Clearly
1
Cukllpry < k_n”u”Ll(]Rn) (5.17)
and L
I erllwincgy < C(IIqulan(Rm + E”@”L"(R”))- (5.18)

Next we claim thatd (Cuy) € W—¢+Dn/=1(Tmy and

1
A ui) |y~ +0.n/0-1) Ty < k—n(llAM||W—<2+1>,n/<n—1>(Rn) +o(D). (5.19

Combining (5.15)—(5.19) gives (5.14). Therefore it remains to prove (5.19).
With obvious notation write

AQCup) = A+ Y capD uDPE. (5.20)

| +18|=¢
1Bl1=1

Note that fory € C*(Q),

k€
‘/ é“(AMk)lﬁ‘ = / (Au()(CY)(y/k) dy‘
0 N

< 2 aul D" (cy)

= W €+D.n/=1) Rl Sl Ln (rey
C

= k_n||Au”wf(Hl),n/(nfl)(]Rn)||1ﬁ||W5+l,n('ﬁ‘n),

and therefore

C
1S Auillyy—e+0,n/0-1) (ny < k_n”AM||W7(l+l),n/(n71)(]Rn). (5.21)
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Finally, for || + |B8] = ¢, |8] = 1, andyr € C*®(Q), we have
‘ fQ (D“uk)(Dﬂc)w‘ - ‘ /Q ukD“((Dﬂ;)w‘

sc [ wol ¥ iovvoid. 622
ly[=1/4

since|] > 1 and¢(y) = 1for|y| < 1/4.
On the other hand, by Sobole¥?"(Q) c L>®(Q) and thus, foly| < ¢ — 1,

IDY Yllzoe(g) < Cl¥llwestngg)- (5.23

From (5.22) and (5.23) we deduce that
(D) (DP ) | yy—e+0m/0-1) piy

C
<c / a0l dy = / uldx.  (5.24)
yeQ |x|=k/4
ly|=1/4
Combining (5.20), (5.21) and (5.24) yields (5.19).

Next, returning to Theorem 11 and considering function®6ér{rather tharill”*; see
Remark 6), notice that by a linear change of variables, condition (1.27) may be replaced

by
ANV — F)lln <8l fllan (5.25

whereA is any giverm x n matrix of zero determinant (we are considering®fesetting
here to allow the coordinate change).
Hence, Theorem 10 may be restated as follows:

Theorem 10. LetS : W1 (R", R") — Y be a bounded operator with closed range.
Assumed® (1 < s < r) are singularn x n matrices such that

IS < C max |[A“)(V f)ll,. (5.26)
1<s<r

Then, for anyf € Wl (R", R"), there isg € (WL N L>®)(R", R") such that

18110 + 18llco < Cll f 10 (5.27)

and R
f—geKerS. (5.28)

Theorem 25. Assumel = (L®))1-,<, C R™ " satisfies

max|(L®€, n)| #£0 if & n e R"\(0}, (5.29)
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detL® =0 foreachs=1,...,r. (5.30)
DefineL® (D)ii = Y} ;_ lL“ dju;. Then
Iillnn-1 < € max|| L (D)1, (5.3D)

Proof. It follows from the ellipticity condition (5.29) that the operator

L Ln/(n l)(R” Rn)_) @W—ln/(n 1)(Rn R) : i (L(‘)(D)u)s 1
s=1

.....

satisfies

r
litllnjn-1) ~ I Lillyy-nso-v = D NLO DYl -1.0jn-1)- (5.32)
s=1

Hence the adjoint operator

-
S=rL*:PwWR" R - L"(R",R")
s=1
is onto and satisfies
-

IS Flln = _Z ZL“)(a £)

i=1 s=1 j=

Z 1LV f)lln- (5.33)

By (5.30), the matrice&®) are singular so that (5.26) holds wit" = L*). Therefore,
given f e W (R R, I fllLa < 1, thereisg € W N L® with g1, + 18l < C
such thatSf = Sg.

Returning to (5.32) and proceeding by duality, write

L g =@ L V)| =1 ST =1 SBI= 3L D). g0

<> 1LY (Dyidll1lgs lloo < € Max||L® (D)1,
N

proving (5.31).

Remark 15. Obviously condition (5.32) may be reformulated by requiring that the linear
subspace[®); s = 1, ..., r] of R"™" generated by, is also generated by its singular
elements.

Theorem 25 implies in particular Korn's inequalities in plasticity theory (seé [11],
[12]).

Corollary 26. One has the inequality
n
lidlln/n—1) < C Z l0;u; + dju;ll1 (5.39)
i,j=1

foru = (uq, ..., u,) onR",
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Proof. LetL = {e; ® ¢j +¢j Q¢ | 1 < i, j < n}, thus [£] = symmetricn x n matrices.
Condition (5.29) clearly holds. Obviously (5.30) holdsif> 3. Forn = 2, observe that

a={(o 9o 2)-(2 9)]=[(6 0)-(o (" 3]

and apply the previous remark.

Remark 16. In Corollary 26, dmE] = n + n(n —1)/2 = n(n + 1)/2. It was already
pointed out in [11] that, for > 3, the result is not optimal, in the sense that there is

a system(L®))1-,<2,_1 Of n x n matrices satisfying (5.29) and (5.30). Following an
earlier idea of D. G. de Figueiredo, M. Strauss [11] constructed such a family consisting
of n matrices of rank 1 and — 1 matrices of rank — 1. A different family composed of

2n — 1 matrices of rank 1 can be obtained using a simple observation communicated to
us by J. Van Schaftingen. Let= 2n — 1. Choose vector®;)1<; <, in R” such that every
subset of: vectors is a basis fdR". DefineL") = v; ® v;. Assumet, n € R” are such

that

(LDg my=0 Vi=1...,r

Then(v; - &€)(v; -n) = 0foralli. Lettingl ={i |v;-& =0}andJ = {i | v; - n = 0} we
havel U J = {1, ..., r} and therefore card > n or card/ > n. In the first cas¢& = 0
and in the second cage= 0.

Open Problem 3. What is the smallest = r(n) for which there is a systeri. )<<,
c R"*" satisfying the assumptions of Theorem 25?

Obviouslyr(n) > n + 1 and from the precedingn) < 2n — 1.

Open Problem 4. When is a subspace &**" generated by its singular elements?

Appendix: Proof of Remark 1

Our purpose is to show that the inequality
I(=A)" Fllwzs < Cl flla (1)

fails also forf € LER", R").
By Smirnov’s result cited earlier, this statement is equivalent to disproving that

(=AY (Hr Dl yea < C ()

holds, whenever is a closed rectifiable curve iR" of length|I'| = 1 and7 the unit
tangent vector t@'.
As mentioned in the Introduction, far> 3 this is quite easily seen.
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Letrn = 3 and takd" to be any simple closed curve containing the segri@r, x3),
|x3| < 1. For example,

€3

€1 -1

Let # be the solution of- Ai = Hr7. On a neighborhood of 0, we get
ii = C(log(1/r))é3 + R 3)

with R smooth and? = x? + x3. Recall that logl/r) ¢ W2(R?) and hencei ¢
W2L(R3).

Consider now the case = 2. Producing a counterexample seems less obvious and
requires curve§ with a more complicated structure.

Notice that if I" is smooth with nonvanishing curvature amdé) a 0-order even
Fourier multiplier, then by the stationary phase principle

(THD) (&) - m(&) = (it - THp) (&) + O (&™) 4
as|&| — oo, wherem is the function onl™ defined by (x) = m(¢,) whereg, is the

normal vector td" atx.
Returning to (2), apply (4) withz(¢) one of the multipliers

512 522 &1&1
£2+€2  E24E8 g2+&2

Sincem is a bounded density dn, it follows in particular from (4) that
0P[(—A) N (HrD] € L®(Hr) + L? 5)

and hence a bounded measure.

We produce a counterexample to (2) using a rectifiable clirvdth a multi-scale
structure.

Fix a large integeR. Letn; < --- < ng be a sequence of integers that are very
lacunary (the precise conditions will become clear later on).
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I will be obtained as a polygonal ling joining (0, 0) to (1, 0) which we close by

A

(only A is relevant for our purpose).
Next we specifyA. Let Ag be the segment(, 0), (1, 0)]. We takeA; to be a ‘saw-
tooth’ perturbation ofA ¢ with n; teeth and inclination A/R:
L __
VR g/\1 1

S

ThusA1 is a polygonal line consisting ofi2 segments.
To obtain A, perturb each segmeiitof A; by a saw-tooth line withe, teeth and
again relative inclination 4v/R (with respect ta/):

|1 no
2V R|na|

The continuation of the process is clear and weAlet Ag.

Obviously
1\? 1 \? 1
A1l =2n — ] +|—=) =1+ =,
A4l 1\/(2”1> (2n1«/ﬁ> R

1\ 12
Ao =1+ — A1],
|A2| <+R> [A1]

1\ k2
ARl = <l+ E) <e. (6
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Notice also that, from the construction, the Hausdorff distance satisfies

d(As—ls As) S./ (7)

1
bs—lns\/ﬁ

whereb; = 2°n1 - - - ng is the number of segmenis, of A;. These segments are of equal
length| 1y o| ~ 1/b;.
Our next claim is that
(=&)Y Hrilly2s 2 VR, ®

This contribution will be obtained near and hence (8) amounts to
”(_A)_lHAR?“WZJ(nearAR) Z \/E, (8/)

Let us next construct a sequence of disjoint regi@gs<21, ..., Qg_1 that in some
sense will ‘'shadowAq, A1, ..., Ap—_1.
Let Qo = {x € R | 1073/2n1 < dist(x, Ag) < 1073/n1}:

10-3
ni

and in general foy < R,

Qsz{xeRz

03 : 103
< dist(x, Ay) < .
s+1bs ns41bg

Hence, ifs > s/, by (7),

. . 10-3
dist(Qy, Q) > dist(Ay, Q) —
ns—&-lbs
. 1073
> dlSt(As’a Qs’) - d(ASa As’) -
nsy1bg
s 10 A A e d(Agn, Ay -~
= 2ns’+1bs’ sy Lxg—1 s/+1, L)s ns+lbs
1073 1 < 1 1 ) 1073 103
> —— 4+ + — >
2ng 11by \/ﬁ ng 1 1by ngbs—1 ns41bg 3ngry1by
and the; are disjoint.
Returning to (8), write
R
I(=A) " (HagDllwea = D I(=A) " (Ha Dllwzg,)- (9)

s=1
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Decompose furthef2, into the b, rectangular regions, , parallel tol;, of length
|15« ~ 1/bs and width~ 1/ng41b;.

Let Q{ , C Q4 be the sub-rectangle projecting ontc% H;.« |-neighborhood of the
centerc; o Of I . Write

bs
=2 HarDllwary = D =D HarDllwargy,)- (10)
a=1

Next, we analyze furthe—A)~1(H 1) on <, ,, for a fixeda.

~ L
by

First, we restricfH,AR?to a neighborhoo®(c; o, |I5.«|/2) = Bs.o in thea-summand
of (10).
Indeed, forx € @ , one has

- 1
0@ (= 8) " (Happ,. DI S Ha<2> <Iog —) S
el oo x> 310 aly
and hence
_ - 1
1@ (=A) " (Hap oDl ) S —- 11
s Ng+1
Summing (11) ovew = 1, ..., by gives the contribution of at most
b 1
<= (12
Ns+1 R
provided we take:, 1 large enough.
Thus in (10), we may replace thesummand by
I(=2)" (Harnn, Dllwrgy - (13)

Next, we replace\ g by As41 in (13). Takingx €

s.a» it follows from the construction
of the polygonal lines\; that
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1(02(=A) ™ O(Hapns, o) — (Ha, a0, oI

82<Iog i)
x|

1

s+11s+2

< 1

b—”s,a'
Lip(1x|>1/bgy 1) Ps+1Ms+2

2
banl

Ns+2

3
5 bS-‘rlb

1o
by ™

Hence

2
1 bsns+l _ Ng41

19%(—=A) " (HagnBo?) — Hay s DIver ) S = (14
ROBs sa0Bs ] L8 ns+le2 Ng+2 bsngyo
and summing ovex = 1, ..., b, gives the contributio nsz < %.
Therefore (13) can further be replaced by
||(—A)_l(HAﬁmBS,J)|IW2~1(sz,;,a)‘ (15)

Clearly, (15) is independent afand performing an affine transformation with expansion
factor~ by, we see that

1 -
19 ~ =1(=4) H Tl w2t q1/0,3/41x110-3/2n, 11,10-% /g 4] (16)

s

where. is a saw-tooth polygonal line alorig with n, 1 teeth and inclination Av/R.

Y

Nst1

I
X
Ns41 1

Consider in (16) the coordinatg of 7 given by
t 1 signsin 2r an
y = ﬁ ng41X
and the contribution

1,
bs—\/ﬁ || 8xy(—A) [(Slgn Sin 2Tn5+1x)HE] ”Ll([l/4,3/4]X[10_3/2n5+1,10_3/nj+1]) . (18)

Next, replace{s by || - Hp,1j¢, Projecting on thec-axis. Clearly
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192, (=) [(signsin Zrng 1) Hz ]l L.

= |2][192,(—A) " (sign sin 2rn, 1 10)Hjo,13e, Il 1. (19
1 Xy
0{ ) [ } } (20)
VR 7 LG62 + 22 1 L1gyi=10-3 /30,0
and 1
(20 < — (21

~ VR

By partial integration

! x—x ; : / /
(19) ~ y[fo m(ﬂgn Sin ZTnH_lx )dx :|

2n541

N /m(Z( D’ 5//2ns+1)(dx)

L)

L(-)
(8; = Dirac measure ate R)
r+l

y
= Z( 1)1 -

TS =1 (22
2”_+1) +y

L1([1/4,3/4]x[1073/2n,,1,1073/ny1])

Summanzmg, it follows that

18 >

)

hence

S
I—‘;‘

(13, (15 2

C 3

by

100 > —
<>Nf
9 > VR,

providing the lower bound (8
Remark Al. Another way of stating the failure of (2) far= 2 is to say that ift solves

—Au = o (23

whereQ hasI” as boundary, then its characteristic functigg, is a BV function and:
fails to haved®u bounded as measure.

Therefore the same conclusion holds in any dimensidbonsequently, letting = 3
say, (1) fails also on the ‘smaller’ class pfe L1(R3, R3) for which curl f = 0.

Remark A2. Returning to equation (23), let us observe tha®iis a circle, then it is
true (and somewhat surprising) tH# « is a bounded measure (as is checked easily by
explicit computation). From this, one deduces that the equatitn = f with f radial
and BV has its solution with 9®u a measure.

More generally, assume for instance tkathas smooth boundagg2 with nonvanish-
ing curvature. Then again the solutierof (23) is such thad®« is a bounded measure.
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This is a consequence of (5). (But the construction shows that this may failsifonly
Lipschitz.)
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