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Abstract. We establish new estimates for the Laplacian, the div-curl system, and more general
Hodge systems in arbitrary dimensionn, with data inL1. We also present related results concerning
differential forms with coefficients in the limiting Sobolev spaceW1,n.
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1. Introduction

The starting point for this work is the following estimate from [5, Proposition 4] (proven
for n = 3 but the argument generalizes).

Theorem 1. Let0 be a closed rectifiable curve inRn with unit tangent vectorEt and let
Y ∈ C∞

0 (R
n). Then ∣∣∣∣ ∫

0

Y Et

∣∣∣∣ ≤ Cn|0| ‖∇Y‖n. (1.1)

The proof in [5] relies on a Littlewood–Paley decomposition and the co-area formula;
another proof was given recently by Van Schaftingen [13] which uses only the Morrey–
Sobolev embedding in place of the Littlewood–Paley decomposition.

A more general form of Theorem 1 was given in [4, Theorem 1].

Theorem 1′. For everyY ∈ C∞

0 (R
n),∣∣∣∣∫Rn

Y Ef

∣∣∣∣ ≤ Cn‖ Ef ‖1‖∇Y‖n for all Ef ∈ L1
#(R

n,Rn).
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Here
L1

#(R
n,Rn) = { Ef ∈ L1(Rn,Rn) | div Ef = 0}.

Clearly Theorem 1′ implies Theorem 1 by takingEf = H0 Et whereH0 is the one-
dimensional Hausdorff measure on0. Conversely, one can deduce Theorem 1′ from The-
orem 1 using Smirnov’s theorem [10] on the integral representation of divergence-free
vector fields. More precisely, everyEf ∈ L1

# may be written as a weak limit (in the sense
of measures) of combinations of the form∑

αi
1

|0i |
H0i Eti

with αi ≥ 0 and
∑
αi ≤ ‖ Ef ‖1.

A totally elementary direct proof of Theorem 1′ was given more recently by Van
Schaftingen [14].

Observe that forn = 2, Theorem 1′ is a trivial consequence of Nirenberg’s inequality
‖ζ‖2 ≤ C‖∇ζ‖1.

The meaning of Theorem 1′ is thatL1
# ⊂ (W1,n)∗, which has remarkable applications

to linear elliptic PDE’s. [HereW1,n denotes the completion ofC∞

0 for the norm‖∇u‖n].
For example, consider the solutionEu = E ∗ Ef , whereE(x) = c/|x|n−2, n > 2, is the
fundamental solution of−1, of the equation

−1Eu = Ef in Rn. (1.2)

We have

Theorem 2. Let Ef ∈ L1
#(R

n,Rn) with n > 2 and letEu be the solution of(1.2). Then

‖∇Eu‖n/(n−1) ≤ Cn‖ Ef ‖1 (1.3)

and hence
‖Eu‖n/(n−2) ≤ Cn‖ Ef ‖1. (1.4)

Let us remark that the analog of Theorem 2 forn = 2 is

Theorem 3. Let Ef ∈ L1
#(R

2,R2). Then

‖∇Eu‖2 ≤ C‖ Ef ‖1 (1.5)

and
‖Eu‖∞ ≤ C‖ Ef ‖1. (1.6)

Indeed, write Ef = ∇
⊥ζ with ‖∇ζ‖1 = ‖ Ef ‖1; thus∇Eu = ∇∇

⊥(−1)−1ζ . Inequality
(1.5) then follows from standard elliptic estimates and the inequality‖ζ‖2 ≤ C‖∇ζ‖1.
For inequality (1.6), write by partial integration∥∥∥∥ Ef ∗ log

1

|x|

∥∥∥∥
∞

≤

∥∥∥∥|ζ | ∗
1

|x|

∥∥∥∥
∞
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and integrate in polar coordinates:∫
|ζ(x)|

|x|
dx =

∫∫
|ζ(reiθ )| dr dθ ≤

∫∫
|∂rζ |r dr dθ ≤

∫
|∇ζ | dx.

Remark 1. A ‘natural’ stronger inequality than (1.3) and (1.5), involving second order
derivatives, would be

‖∇
2
Eu‖1 ≤ C‖ Ef ‖1. (1.7)

This inequality however is easily seen to be false, at least in dimensionn ≥ 3. It is also
false forn = 2, but the argument is more complicated (see Appendix).

In view of Van Schaftingen’s argument in [14], Theorem 2 has now an elementary
proof. Here is a generalized form of Theorem 2 which, so far, requires a much more
involved argument.

Theorem 4. Let Eu be the solution of(1.2) with

Ef = Ef0 +

∑ ∂

∂xi
Efi (1.8)

where Ef0 ∈ L1, Efi ∈ Ln/(n−1) anddiv Ef = 0. Then

‖∇Eu‖n/(n−1) ≤ Cn

{
‖ Ef0‖1 +

∑
‖ Efi‖n/(n−1)

}
. (1.9)

Remark 2. Theorem 4 is equivalent to the following

Theorem 4′. Let Ef0 ∈ L1 and letEu0 be the solution of

−1Eu0 = Ef0 in Rn, n ≥ 2.

Assumediv Ef0 ∈ W−2,n/(n−1). ThenEu0 ∈ W1,n/(n−1) and

‖∇Eu0‖n/(n−1) ≤ C{‖ Ef0‖1 + ‖div Ef0‖−2,n/(n−1)}. (1.10)

In other words, for everyEf0 ∈ L1 with div Ef0 ∈ W−2,n/(n−1),

‖ Ef0‖−1,n/(n−1) ≤ C{‖ Ef0‖1 + ‖div Ef0‖−2,n/(n−1)}.

Indeed, setϕ = div Eu0, so that−1ϕ = div Ef0 and thusϕ ∈ Ln/(n−1). Let

Ef = Ef0 + gradϕ.

Then
div Ef = div Ef0 +1ϕ = div Ef0 − div Ef0 = 0.

Applying Theorem 4 toEf yields

‖∇Eu‖n/(n−1) ≤ C{‖ Ef0‖1 + ‖ϕ‖n/(n−1)}. (1.11)

On the other hand,
−1(Eu− Eu0) = Ef − Ef0 = gradϕ
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and thus, by standard elliptic estimates,

‖∇(Eu− Eu0)‖n/(n−1) ≤ C‖ϕ‖n/(n−1). (1.12)

Combining (1.11) and (1.12) gives (1.10).

As we are going to see in Section 3, Theorem 4 is closely connected to a remark-
able property concerning differential forms with coefficients in the critical Sobolev space
W1,n. It is slightly more convenient to work first onTn instead ofRn and we will do so in
the following. At the end of Section 2 and in Section 3 we will explain how to pass from
Tn to Rn (see Remark 6).

We denote by3`Tn,0 ≤ ` ≤ n, the space of̀ -forms onTn, by W1,n(3`Tn), or
simplyW1,n(3`), the`-forms with coefficients inW1,n(Tn), and byd the exterior dif-
ferential operator (see e.g. [6] for the notations). One of the main results in our paper
is

Theorem 5. If n ≥ 2 and1 ≤ ` ≤ n− 1 we have

d[W1,n(3`)] = d[(W1,n
∩ L∞)(3`)].

More precisely, given anyX ∈ W1,n(3`) there exists someY ∈ (W1,n
∩ L∞)(3`) such

that
dY = dX (1.13)

and
‖∇Y‖n + ‖Y‖∞ ≤ C‖dX‖n. (1.14)

Notice that the conclusion obviously fails for` = 0: given a functionf ∈ W1,n there
need not exist a functiong ∈ L∞ such that grad(f − g) = 0.

In the extreme casè= n − 1, Theorem 5 asserts that given anyEX ∈ W1,n(Tn,Rn)
there existsEY ∈ (W1,n

∩ L∞)(Tn,Rn) such that divEY = div EX with

‖∇ EY‖n + ‖ EY‖∞ ≤ C‖div EX‖n

or equivalently,

Corollary 6. Given anyf ∈ Ln(Tn,R) with
∫
f = 0 the equation

div EY = f (1.15)

admits a solutionEY ∈ (W1,n
∩ L∞)(Tn,Rn) with

‖∇ EY‖n + ‖ EY‖∞ ≤ C‖f ‖n. (1.16)

This case was already treated in [3]. As was pointed out in [3] this statement is equivalent
via Hahn–Banach and duality to the estimate∥∥∥∥ζ − |

∫
ζ

∥∥∥∥
n/(n−1)

≤ C‖gradζ‖L1+W−1,n/(n−1) ∀ζ ∈ C∞(Tn). (1.17)
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It was also proved in [3] that (surprisingly) the construction of someEY satisfying
(1.15)–(1.16) cannot be linear. More precisely

Proposition 7. There exists no bounded linear operator

K :

{
f ∈ Ln

∣∣∣∣ ∫
f = 0

}
→ L∞

such that
divKf = f ∀f.

The other extreme case,` = 1, in Theorem 5 corresponds to

Corollary 8. Given anyEX ∈ W1,n(Tn,Rn) there existEY ∈ (W1,n
∩ L∞)(Tn,Rn) and

p ∈ W2,n(Tn,R) such that
EY − EX = gradp (1.18)

and

‖∇ EY‖n +

∥∥∥∥ EY − |

∫
EY

∥∥∥∥
∞

≤ C‖curl EX‖n, (1.19)

wherecurl EX = (∂Xi/∂xj − ∂Xj/∂xi).

For example whenn = 3, Corollary 8 takes the form

Corollary 8 ′. Let Ef ∈ L3(T3,R3) with div Ef = 0 and
∫

Ef = 0. Then there exists
EY ∈ (W1,3

∩ L∞)(T3,R3) such that

curl EY = Ef in T3 (1.20)

and
‖∇ EY‖3 + ‖ EY‖∞ ≤ C‖ Ef ‖3. (1.21)

Remark 3. Equation (1.20) is underdetermined. If we supplement it with the “canonical”
condition

div EY = 0 in T3 (1.22)

the system (1.20)–(1.22) admits a unique (mod constants) solution which, in general, does
not belong toL∞.

Remark 4. One can ensure thatEY obtained in Corollary 8 is moreover continuous. De-
tails of this observation appear in [3] in the context of the div-equation (1.15).

We are going to prove in Section 3 that the construction ofEY in Corollary 8 must also
be nonlinear. More precisely:

Proposition 9. There is no bounded linear operatorK : W1,n(31) → L∞(31) such
that

d(KX) = dX ∀X ∈ W1,n(31).

Theorem 5 is easily deduced from a considerably more general statement that has a num-
ber of other applications (as will be clear later on).
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Theorem 10. Let S :
⊕r

s=1W
1,n(Tn) → Y be a bounded operator into a Banach

spaceY with closed range. Assume further that for eachs = 1, . . . , r there is an index
is ∈ {1, . . . , n} such that

‖S Ef ‖ ≤ C max
1≤s≤r

max
i 6=is

‖∂ifs‖n. (1.23)

Then, for all Ef ∈
⊕r

s=1W
1,n, there isEg ∈

⊕r
s=1(W

1,n
∩ L∞) satisfying

S Ef = S Eg (1.24)

and
‖∇ Eg‖n + ‖Eg‖∞ ≤ C‖S Ef ‖ ≤ C′

‖∇ Ef ‖n. (1.25)

The proof of Theorem 10 depends on Theorem 11 which is the main analytical tool of the
paper. It is an approximation result forW1,n-functions onTn.

Theorem 11. Givenδ > 0, there isCδ such that the following holds. Letf ∈ W1,n(Tn).
Then there isF ∈ W1,n

∩ L∞ satisfying

‖F‖1,n + ‖F‖∞ ≤ Cδ‖f ‖1,n, (1.26)∑
1≤i≤n−1

‖∂i(f − F)‖n ≤ δ‖f ‖1,n. (1.27)

Theorems 10 and 11 are proved in Section 2. In Section 3 we discuss Theorem 5 and its
variant onRn (instead ofTn). We will explain the connections between Theorem 4 and the
special casè = 1 of Theorem 5 (i.e., Corollary 8). We will present further applications
to Hodge systems. Here are some typical examples in 3-d.

Corollary 12. Consider the system

curl EZ = Ef in T3, (1.28)

div EZ = 0 in T3, (1.29)∫
T3

EZ = 0. (1.30)

Then for everyEf ∈ L1
+W−1,3/2 with div Ef = 0 and

∫
Ef = 0, the unique solutionEZ of

(1.28)–(1.30)satisfies
‖ EZ‖3/2 ≤ C‖ Ef ‖L1+W−1,3/2. (1.31)

Remark 5. Note that curl and div do not play a symmetric role; a similar conclusion for
the system

curl EZ = 0 in T3, (1.32)

div EZ = g in T3, (1.33)∫
T3

EZ = 0, (1.34)

fails even forg ∈ L1 (with
∫
g = 0). Indeed the solution of (1.32)–(1.34) is given by

EZ = grad1−1g, and EZ 6∈ L3/2 wheng = δ + C.
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Standard Hodge theory gives, for anyEf ∈ L3(T3,R3) with
∫

Ef = 0, a unique de-
composition

Ef = Eg + gradp

with Eg ∈ L3, div Eg = 0 andp ∈ W1,3. Combining this with Corollary 8′ yields

Corollary 13. Any Ef ∈ L3(T3,R3) with
∫

Ef = 0 admits a (nonunique) decomposition

Ef = curl EY + gradp (1.35)

with

‖∇ EY‖3 + ‖ EY‖∞ ≤ C‖ Ef ‖3. (1.36)

In Section 3 we will discuss variants and higher dimensional generalizations of Corollar-
ies 12 and 13.

As an application of Theorem 5, we present in Section 4 a proof of the endpoint
regularity result for Ginzburg–Landau minimizers due to Bethuel, Orlandi and Smets [1]
(see the comments in Section 4 on the background).

In Section 5, further applications of Theorem 10 are given. Firstly we obtain the fol-
lowing generalization of Theorem 2, which answers a question raised in [15, Open Prob-
lem 2].

Corollary 14. Let Ef ∈ L1(Rn,Rn) satisfy the differential relation

n∑
i=1

∂
(`)
i fi = 0 (in the distributional sense)

with ` ≥ 1 an arbitrary integer. Then the solutionEu of (1.2) satisfies

‖∇Eu‖n/(n−1) ≤ C‖ Ef ‖1.

Thus Theorem 2 corresponds to the case` = 1.
Secondly, we establish certain estimates for linear elliptic systems of first order gen-

eralizing the classical Korn inequality as extended by M. Strauss [11] to the casep = 1
(see also R. Temam [12, Theorem 1.2]):

‖Eu‖n/(n−1) ≤ C

n∑
i,j=1

‖∂iuj + ∂jui‖1

whereEu = (u1, . . . , un) is a vector field onRn.
In the Appendix, we show the failure of inequality (1.7) forEf ∈ L1

#(R
n,Rn), n ≥ 2.

Most of the results in Sections 1–3 of this paper were announced in [4].
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2. The main tool. Proofs of Theorems 10 and 11

Our primary goal in this section is to prove Theorem 11. But we will first explain how to
deduce Theorem 10 from Theorem 11. We will then prove Lemma 1 below which is the
main technical tool and which clearly implies Theorem 11. At the end of this section we
will discuss some variants involving boundary conditions.

Proof of Theorem 10 assuming Theorem 11.SinceS has closed range, there is a constant
A such that ify ∈ Im S ⊂ Y , theny = S Ef with

‖ Ef ‖1,n ≤ A‖y‖. (2.1)

Apply now Theorem 11 to each coordinatefs ∈ W1,n(Tn) of Ef = (f1, . . . , fr), where
we takexis as the ‘exceptional variable’. This givesgs ∈ W1,n

∩ L∞ satisfying

‖gs‖1,n + ‖gs‖∞ ≤ Cδ‖fs‖1,n
(2.1)
≤ CδA‖y‖ (2.2)

and ∑
i 6=is

‖∂i(fs − gs)‖n ≤ δ‖fs‖1,n ≤ δA‖y‖. (2.3)

Let Eg = (g1, . . . , gr) ∈
⊕r

s=1(W
1,n

∩ L∞). From (1.23) and (2.3),

‖y − S Eg‖ = ‖S( Ef − Eg)‖ ≤ CAδ‖y‖ ≤
1

2
‖y‖ (2.4)

if we let δ = 1/2CA.
Theorem 10 follows by standard iterations as in the classical proof of the Open Map-

ping Principle.

We now turn to the proof of Theorem 11. Theorem 11 strengthens a similar result
obtained in [3] where (1.27) is replaced by the weaker statement

‖∂i(f − F)‖n ≤ δ‖f ‖1,n (2.5)

wherei = 1, . . . , n is a single index preliminary chosen (andF dependent oni). The
argument in [3] does not seem to give (1.27) in a straightforward way. The proof of
Theorem 11 given below is based on a similar approach, but presents additional technical
complications.

Theorem 11 is clearly a consequence of

Lemma 1. If f ∈ W1,n(Tn) with ‖f ‖1,n < cn < 1, then there isF satisfying

‖F‖∞ ≤ Cδ, (2.6)

‖F‖1,n ≤ Cδ‖f ‖1,n, (2.7)∑
1≤i≤n−1

‖∂i(f − F)‖n ≤ δ‖f ‖1,n + Cδ‖f ‖
2
1,n. (2.8)
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Proof. For the sake of notational simplicity, we taken = 3, the general case being com-
pletely similar.

Let f =
∑

∞

j=01jf be a Littlewood–Paley decomposition. We assume‖f ‖1,3 <

10−3. Fix a large integerR > 0. PartitioningZ+ into R cosets{RZ+ + q}, q = 0,1,
. . . , R − 1, we may assume

f =

∑
1jf, |j1 − j2| ≥ R for j1 6= j2, (2.9)

provided the bound (2.6) is multiplied byR.
Define

ϕj (θ) = e−2j ‖θ‖ for θ ∈ T. (2.10)

Lettingσ < R be another large integer, set

ωj (x) = sup
y

[|1jf |(y1, y2, y3)ϕj (x1 − y1)ϕj−σ (x2 − y2)ϕj−σ (x3 − y3)]. (2.11)

Thus clearly

|1jf | ≤ ωj and ‖ωj‖∞ = ‖1jf ‖∞ <
1

100
and

|∇ωj | ≤ 2jωj , |

(2,3)
∇ ωj | ≤ 2j−σωj .

LetKj be the trapezoidal Fourier multiplier satisfying

K̂j = 1 on [−2j ,2j ], suppK̂j ⊂ [−2j+1,2j+1], |Kj | ≤ 3Fj

with Fj the Fej́er kernel. Decompose

1jf = gj + hj

with

gj = {1jf · χ[ωj≤
∑
k<j 2k−jωk ]} ∗K⊗

j , (2.12)

hj = {1jf · χ[ωj>
∑
k<j 2k−jωk ]} ∗K⊗

j . (2.13)

Recall that all indices are restricted toR · Z+. Here we have denotedK⊗

j (x) =

Kj (x1)Kj (x2)Kj (x3). For notational simplicity, we denote in what followsK⊗

j (resp.

F⊗

j ) also byKj (resp.Fj ), with now |Kj | ≤ 27Fj .
In order to constructF , we treat{gj } and{hj } separately.

Sequence{gj }. It follows from (2.11), (2.12) that

|gj | ≤ 27
∑
k<j

2k−jωk ∗ Fj ≡ Gj < 1.

Thus|gj | + (1 −Gj ) ≤ 1 and the functions

g̃j = gj
∏
j ′>j

(1 −Gj ′) (2.14)
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satisfy
∑

|g̃j | ≤ 1. Write ∑
(gj − g̃j ) =

∑
Hj ′Gj ′ ,

where

Hj ′ = gj ′−1 + (1 −Gj ′−1)gj ′−2 + (1 −Gj ′−1)(1 −Gj ′−2)gj ′−3 + · · ·

satisfies
|Hj ′ | ≤ 1.

Since supp̂HjGj ⊂ [−2j+2,2j+2], we have∥∥∥∑
(gj − g̃j )

∥∥∥
W1,3

.
∑
s≥0

∥∥∥(∑
j

|Pj−s [∇(HjGj )]|
2
)1/2∥∥∥

3
(2.15)

wherePj is a Fourier projection on|ξ | ∼ 2j .

Fixing s, decomposeGj = G
(1)
j +G

(2)
j where

G
(1)
j = 27

∑
j−s̄<k<j

2k−j (ωk ∗Kj )

ands̄ depends ons in a way to be specified.
We estimate the contribution ofG(1)j in (2.15):∥∥∥(∑

j

4j−s |HjG
(1)
j |

2
)1/2∥∥∥

3
≤ 2−s

∥∥∥(∑
j

4j |G(1)j |
2
)1/2∥∥∥

3

≤ C2−s
∑
R≤t<s̄

2−t
∥∥∥(∑

j

4j (ωj−t ∗ Fj )
2
)1/2∥∥∥

3

≤ C2−s s̄

∥∥∥(∑
j

4jω2
j

)1/2∥∥∥
3
. (2.16)

The contribution ofG(2)j in (2.15) is estimated by∥∥∥(∑
j

|Pj−s [∇(HjG
(2)
j )]|2

)1/2∥∥∥
3

≤

∥∥∥(∑
j

|∇Hj |
2
|G

(2)
j |

2
)1/2∥∥∥

3

+

∥∥∥(∑
j

|Hj |
2
|∇G

(2)
j |

2
)1/2∥∥∥

3
= (2.17) + (2.18).

Here

(2.18) ≤

∥∥∥(∑
j

|∇G
(2)
j |

2
)1/2∥∥∥

3
≤ C

∑
t>s̄∨R

2−t
∥∥∥(∑

j

|∇ωj−t |
2
)1/2∥∥∥

3

≤ C2−(s̄∨R)
∥∥∥(∑

j

4jω2
j

)1/2∥∥∥
3
. (2.19)
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To estimate (2.17), write

|∇Hj | ≤

∑
j ′<j

(|∇gj ′ | + |∇Gj ′ |) ≤

∑
j ′<j

|∇gj ′ | +

∑
k<j ′<j

2k−j
′

2kω̃k

≤

∑
j ′<j

|∇gj ′ | +

∑
j ′<j

2j
′

ω̃j ′

whereω̃ denotes the Hardy–Littlewood maximal function ofω. Hence

(2.17) .
∑
`≥0

∥∥∥(∑
j

|∇gj−`|
2
|G

(2)
j |

2
)1/2∥∥∥

3
+

∑
`≥0

∥∥∥(∑
j

4j−`ω̃2
j−`|G

(2)
j |

2
)1/2∥∥∥

3

= (2.20)+ (2.21),

where

(2.20) ≤

∑
`≥0

∑
t>s̄

2−t
∥∥∥(∑

j

|∇gj−`|
2ω̃2
j−t

)1/2∥∥∥
3

.
∑
`≥0

∑
t>s̄

2−t
∥∥∥(∑

j

4j−`ω̃2
j−` ω̃

2
j−t

)1/2∥∥∥
3
.

Distinguishing the contributions
∑
`>t>s̄ = (2.22) and

∑
t>s̄, `≤t = (2.23), we estimate

(2.22) ≤ (sup
j

‖ω̃j‖∞)
∑
`>t>s̄

2−`
∥∥∥(∑

j

4j ω̃2
j

)1/2∥∥∥
3

. (sup
j

‖1jf ‖∞)

∥∥∥(∑
j

4jω2
j

)1/2∥∥∥
3
·

(∑
`>s̄

(`− s̄)2−`
)

. 2−s̄
‖f ‖1,3

∥∥∥(∑
j

4jω2
j

)1/2∥∥∥
3

(2.24)

and similarly

(2.23) . (1 + s̄)2−s̄
‖f ‖1,3

∥∥∥(∑
j

4jω2
j

)1/2∥∥∥
3
. (2.25)

Also

(2.21) ≤

∑
`≥0

∑
t>s̄

2−t
∥∥∥(∑

j

4j−`ω̃2
j−`ω̃

2
j−t

)1/2∥∥∥
3

. (1 + s̄)2−s̄
‖f ‖1,3

∥∥∥(∑
j

4jω2
j

)1/2∥∥∥2

3
. (2.26)

Hence

(2.17) . (1 + s̄)2−s̄
‖f ‖1,3

∥∥∥(∑
j

4jω2
j

)1/2∥∥∥
3
. (2.27)
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It remains to bound‖(
∑
j 4jω2

j )
1/2

‖3. Recalling (2.11), we have

ωj (x) . sup
r1,r2,r3∈Z+

e−r1−2−σ (r2+r3)(|1jf | ∗ Fj )(x1 + r12−j , x2 + r22−j , x3 + r32−j ).

(2.28)
Therefore∥∥∥(∑

j

4jω2
j

)1/2∥∥∥
3

.
∑
r1,r2,r3

e−r1−2−σ (r2+r3)
∥∥∥(∑

j

4j (|1jf | ∗ Fj )
2(x + Er · 2−j )

)1/2∥∥∥
3

.
∑

Er

2−r1−2−σ (r2+r3) log |Er| · ‖f ‖1,3

. σ4σ‖f ‖1,3. (2.29)

Collecting estimates (2.16), (2.19), (2.27), (2.29) implies∥∥∥(∑
j

|Pj−s [∇(HjGj )]|
2
)1/2∥∥∥

3

≤ C(s̄2−s
+ 2−(s̄∨R))σ4σ‖f ‖1,3 + C(1 + s̄)2−s̄σ4σ‖f ‖

2
1,3. (2.30)

Fors ≤ R, takes̄ = 0, i.e. dropG(1)j . Fors > R, takes̄ = s. Performing thes-summation
in (2.15) using estimate (2.30) gives∥∥∥∑

(gj − g̃j )

∥∥∥
1,3

≤ CR2−Rσ4σ‖f ‖1,3 + Rσ4σ‖f ‖
2
1,3. (2.31)

Sequence{hj }. This is the crucial part of our analysis. Consider further bump functions
ψj onT such that {

0 ≤ ψj ≤ 1, suppψj ⊂ [−2−j ,2−j ],

ψj (0) = 1, |ψ ′

j | . 2j .
(2.32)

It follows from the definition ofhj in (2.13) that

|hj | ≤ 27(ωjχ[ωj>
∑
k<j 2k−jωk ]) ∗ Fj ≤ 27(uj ∗ Fj ) ≡ Uj (2.33)

upon defining

uj (x) = sup[(ωjχ[ωj>
∑
k<j 2k−jωk ])(y)ψj (x1 − y1)ψj−σ (x2 − y2)ψj−σ (x3 − y3)].(2.34)

Observe first, from (2.10), (2.11), that

ωj (x1 + y1, x2 + y2, x3 + y3) ≤ e3ωj (x) if |y1| < 2−j and|y2|, |y3| < 2σ−j .

Therefore
uj ≤ 25ωjχ[ωj>10−3

∑
k<j 2k−jωk ] . (2.35)

Also, by (2.34),

|∇uj | . 2jωjχ[ωj>10−3
∑
k<j 2k−jωk ], (2.36)

|

(2,3)
∇ uj | . 2j−σωjχ[ωj>10−3

∑
k<j 2k−jωk ] . (2.37)
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Define then again
h̃j = hj

∏
j ′>j

(1 − Uj ′) (2.38)

so that
∑

|h̃j | ≤ 1. We have ∑
(hj − h̃j ) =

∑
UjVj

with

Vj = hj−1 + (1 − Uj−1)hj−2 + (1 − Uj−1)(1 − Uj−2)hj−3 + · · · , |Vj | ≤ 1.

We estimate∥∥∥(2,3)∇

[∑
(hj − h̃j )

]∥∥∥
3

≤

∥∥∥∑
|Vj | |

(2,3)
∇ Uj |

∥∥∥
3
+

∥∥∥∑
|∇Vj |Uj

∥∥∥
3

= (2.39)+ (2.40).

From (2.33), (2.37) we obtain

(2.39) . 2−σ
∥∥∥∑
j

(2jωjχ[2jωj>10−3
∑
k<j 2kωk ]) ∗ Fj

∥∥∥
3

. 2−σ
∥∥∥∑
j

2jωjχ[2jωj>10−3
∑
k<j 2kωk ]

∥∥∥
3

. 2−σ
‖max

j
2jωj‖3 . 2−σ

(∑
j

8j‖ωj‖
3
3

)1/3
. (2.41)

From(2.28), we may clearly estimate

‖ωj‖
3
3 .

( ∑
r1,r2,r3

e−3(r1+2−σ (r2+r3))
)
‖1jf ‖

3
3 . 4σ‖1jf ‖

3
3 (2.42)

so that

(2.39) . 2−σ/3
(∑
j

8j‖1jf ‖
3
3

)1/3
. 2−σ/3

‖f ‖1,3. (2.43)

This estimate is a key point in our approach. It also follows from the preceding that∥∥∥∑
|Vj | |∇Uj |

∥∥∥
3

. 4σ/3‖f ‖1,3. (2.44)

To estimate (2.40), note that

|∇Vj | ≤

∑
j ′<j

(|∇hj ′ | + |∇Uj ′ |) .
∑
j ′<j

2j
′

ω̃j ′ .

Thus

(2.40) .
∑
t>0

2−t
∥∥∥∑
j

2j ω̃j−tUj
∥∥∥

3
. (sup

j

‖ωj‖∞)

∥∥∥∑
j

2j (uj ∗ Fj )

∥∥∥
3

. (sup
j

‖1jf ‖∞)

∥∥∥∑
j

2jωjχ[2jωj>10−3
∑
k<j 2kωk ]

∥∥∥
3

(by (2.35))

. 4σ/3‖f ‖
2
1,3. (2.45)
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This completes the analysis. Define

F =

∑
(g̃j + h̃j ) (2.46)

satisfying‖F‖∞ ≤ 2 and from (2.31), (2.43), (2.45),

‖

(2,3)
∇ (f − F)‖3 ≤

∥∥∥∑
j

(gj − g̃j )

∥∥∥
1,3

+

∥∥∥(2,3)∇

[∑
j

(hj − h̃j )
]∥∥∥

3

≤ C(R2−Rσ4σ + 2−σ/3)‖f ‖1,3 + (Rσ4σ + 4σ/3)‖f ‖
2
1,3 (2.47)

and from (2.31), (2.44), (2.45),

‖F‖1,3 ≤ ‖f ‖1,3 + C(R2−Rσ4σ + 4σ/3)‖f ‖1,3 + (Rσ4σ + 4σ/3)‖f ‖
2
1,3. (2.48)

Recall that since we restrictedj to a progressionRZ+ + q (0 ≤ q < R), these bounds
need to be multiplied byR. Takingσ = R/4, this implies the existence of a functionF
satisfying

‖F‖∞ ≤ 2R, (2.49)

‖F‖1,3 ≤ 2R‖f ‖1,3 + 2R‖f ‖
2
1,3 ≤ 2R+1

‖f ‖1,3, (2.50)

‖

(2,3)
∇ (f − F)‖3 ≤ 2−R/13

‖f ‖1,3 + 2R‖f ‖
2
1,3. (2.51)

This proves Lemma 1 withδ = 2−R/13, Cδ = 2R+1.

Remark 6. Here is a variant of the previous Theorems 10 and 11.

Corollary 15. The statements of Theorem 11 and hence 10 remain valid ifTn is replaced
by a cubeQ = (0, a)n andW1,n(Tn) replaced byW1,n(Q) orW1,n

0 (Q). They also remain
valid if W1,n(Tn) is replaced byW1,n(Rn).
Proof. We start withW1,n(Q). If f ∈ W1,n(Q), it can be extended to a functioñf ∈

W
1,n
0 (Q̃) whereQ̃ ⊃ Q is a larger cube. This̃f may be viewed as a periodic function

to which previous results apply and the conclusion follows by restriction toQ. Next
let f ∈ W

1,n
0 (Q), Q = (0,1)n. Extendf to Rn by the usual anti-symmetrization and

periodization. Thusf may be seen as a restriction of a functionf̃ which is periodic and
odd in each variable. Let̃F be the associated function given by Theorem 11. Assume for
simplicity thatn = 2 (the general case is similar). Set

F(x1, x2) =
1
4(F̃ (x1, x2)− F̃ (x1,−x2)− F̃ (−x1, x2)+ F̃ (−x1,−x2)).

ThenF |Q is inW1,n
0 (Q) and has all the required properties.

3. Proofs of Theorems 4, 5 and Proposition 9. Applications to
div-curl and Hodge systems

We start with

Proof of Theorem 5.We apply Theorem 10 toS = d : W1,n(3`) → Ln(3`+1), 0< ` ≤

n − 1. Sincè > 0 condition (1.23) is satisfied. For example whenn = 3 and` = 1 we
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have

‖SX‖3 ≤

3∑
s=1

∑
i 6=s

‖∂iXs‖3 ∀X ∈ W1,n(31).

On the other hand,S has closed range inLn(3`+1). More precisely,

• if 0 < ` ≤ n− 2, thenR(S) = {ω ∈ Ln(3`+1) | dω = 0 and
∫
Tn ω = 0},

• if ` = n− 1, thenR(S) = {ω ∈ Ln(Tn) |
∫
Tn ω = 0}.

We may also state variants of Theorem 5 whenTn is replaced byM = (0,1)n or Rn.

Theorem 5′. AssumeM = (0,1)n or M = Rn with n ≥ 2, and1 ≤ ` ≤ n− 1. Then

d[W1,n(3`M)] = d[(W1,n
∩ L∞)(3`M)].

More precisely, given anyX ∈ W1,n(3`M) there exists someY ∈ (W1,n
∩ L∞)(3`M)

such that
dY = dX (3.1)

and
‖∇Y‖n + ‖Y‖∞ ≤ C‖dX‖n. (3.2)

Proof. Apply the variant of Theorem 10 stated as Corollary 15. Once moreS has closed
range:

• if 0 < ` ≤ n− 2, thenR(S) = {ω ∈ Ln(3`+1M) | dω = 0},
• if ` = n− 1, thenR(S) = Ln(M).

Theorem 5′′. AssumeM = (0,1)n. Then forn ≥ 2 and1 ≤ ` ≤ n− 1,

d[W1,n
0 (3`M)] = d[(W1,n

0 ∩ L∞)(3`M)].

More precisely, given anyX ∈ W
1,n
0 (3`M) there exists someY ∈ (W

1,n
0 ∩ L∞)(3`M)

such that
dY = dX (3.1)

and
‖∇Y‖n + ‖Y‖∞ ≤ C‖dX‖n. (3.2)

Proof. Following the same argument as above it remains to verify thatS = d : W1,n
0 (3`)

→ Ln(3`) has closed range. It is well known thatd[W1,p
T (3`)] is closed inLp(3`+1)

for any 1< p < ∞, whereW1,p
T (3`) denotes thè-forms with vanishing tangential part

on ∂M (see [6]). To complete the proof it suffices to establish

Lemma 2. Given any1< p < ∞ and1 ≤ ` ≤ n− 1, we have

d[W1,p
T (3`M)] = d[W1,p

0 (3`M)].
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Proof. Given anyω ∈ W
1,p
T (3`M), we will construct someη ∈ W2,p(3`−1M) such

that
η = 0 and ω + dη = 0 on∂M.

We start with the casè = 1 which is quite transparent. We are givenω ∈ W
1,p
T (31M),

i.e.,ω = EX ∈ W1,p(M,Rn) is a vector field such that its tangential component vanishes
on ∂M. We look for a functionη ∈ W2,p(M,R) = W2,p(30M) such that

η = 0 and EX · Eν +
∂η

∂ν
= 0 on∂M,

whereEν denotes the normal to∂M. The existence ofη follows from a general result of
Lions and Magenes [9] asserting that the mapψ 7→ (ψ |∂M ,

∂ψ
∂ν

|∂M)mapsW2,p(M) onto

W2−1/p,p(∂M)×W1−1/p,p(∂M). Observe thatEX · Eν ∈ W1−1/p,p(∂M). (The additional
difficulties arising from the corners ofM can be handled as in [3].)

We now assume that̀≥ 2. SinceωT = 0 (by assumption) and(dη)T = 0 (because
we look forη = 0 on∂M), we have

ωT + (dη)T = 0.

Therefore it suffices to achieve

η = 0 and (dη)N = −ωN on ∂M.

In local coordinates near a point of∂M we assume thatxn is the normal direction and set
y = xn. Write

ωN =

∑
1≤i1<···<i`−1<n

ωi1,...,i`−1 dxi1 ∧ · · · ∧ dxi`−1 ∧ dy

and

η =

∑
1≤i1<···<i`−1<n

ηi1,...,i`−1 dxi1 ∧ · · · ∧ dxi`−1

+

∑
1≤j1<···<j`−2<n

ηj1,...,j`−2,n dxj1 ∧ · · · ∧ dxj`−2 ∧ dy.

Using the fact thatη = 0 on∂M, we have, on∂M,

(dη)N =

∑
1≤i1<···<i`−1<n

∂ηi1,...,i`−1

∂y
dxi1 ∧ · · · ∧ dxi`−1 ∧ dy.

We are thus led to findη satisfyingη = 0 on∂M and

∂ηi1,...,i`−1

∂y
= −ωi1,...,i`−1 on ∂M.

The existence ofη follows again from the result of Lions and Magenes [9].
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Remark 7. With the help of Theorem 5′′ we may now state a slightly sharper version
of Theorem 1′:

Theorem 1′′. For every EX ∈ C∞

0 (R
n,Rn),∣∣∣∣ ∫Rn

EX · Ef

∣∣∣∣ ≤ C‖ Ef ‖1‖curl EX‖n for all Ef ∈ L1
#(R

n,Rn),

wherecurl EX = (∂Xi/∂xj − ∂Xj/∂xi).

Proof. Let M be a large cube containing suppEX. We may view EX as an element of
W

1,n
0 (31M). By Theorem 5′′ there existsY ∈ (W

1,n
0 ∩ L∞)(31M) such thatdY = dX

and
‖Y‖∞ ≤ C‖dX‖n = C‖curl EX‖n.

HenceEY − EX = gradp for somep ∈ (W2,n
∩W1,∞)(M). Moreover gradp = 0 on∂M;

thusp is constant on∂M and we may assume thatp = 0 on∂M. We have∫
M

EX · Ef =

∫
M

( EY + gradp) · Ef =

∫
M

EY · Ef ,

since divf = 0 andp = 0 on∂M. Hence∣∣∣∣∫ EX · Ef

∣∣∣∣ =

∣∣∣∣∫ EY · Ef

∣∣∣∣ ≤ ‖ Ef ‖1‖ EY‖∞ ≤ C‖ Ef ‖1‖curl EX‖n.

We now turn to

Proof of Theorem 4.Let Ef be given by (1.8). In view of standard elliptic estimates it
suffices to prove thatEf ∈ W−1,n/(n−1)(Rn,Rn) with

‖ Ef ‖−1,n/(n−1) ≤ C
{
‖ Ef0‖1 +

∑
‖ Efi‖n/(n−1)

}
. (3.3)

Let thus EX ∈ W1,n(Rn,Rn) with ‖ EX‖1,n ≤ 1. We may assume thatEX is smooth and has
compact support, say suppX ⊂ Q.

According to Theorem 5′′ there is someEY ∈ (W1,n
∩L∞)(Rn,Rn) with suppY ⊂ Q

and ‖ EY‖1,n + ‖ EY‖∞ ≤ C, such thatdY = dX. Hence EX − EY = gradp and since
div Ef = 0,

|〈 EX, Ef 〉| = |〈 EY , f 〉| ≤ |〈 EY , Ef0〉| +

∑∣∣∣∣〈 ∂ EY

∂xi
, Efi

〉∣∣∣∣
≤ ‖ EY‖∞‖ Ef0‖1 + ‖ EY‖1,n

∑
‖ Efi‖n/(n−1) ≤ C

{
‖ Ef0‖1 +

∑
i

‖ Efi‖n/(n−1)

}
,

which is the desired estimate (3.3).

Remark 8. In fact, Theorem 4 and Theorem 5′ (with ` = 1 andM = Rn) are equivalent.
Here is a proof of the implication Theorem 4⇒ Theorem 5′. Fix EX ∈ W1,n(Rn,Rn);
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we have to findEY satisfying (3.1) and (3.2). We are going to define a linear functional on
(L1

+W−1,n/(n−1))#. Given Ef ∈ (L1
+W−1,n/(n−1))#, let Eu be the solution of (1.2) given

by Theorem 4. Set

T ( Ef ) =

∫ ∑ ∂ EX

∂xi

∂ Eu

∂xi
.

By Theorem 4 we have

|T ( Ef )| ≤ C‖ EX‖1,n‖ Ef ‖L1+W−1,n/(n−1) .

Applying Hahn–Banach we may extendT to a continuous linear functional̃T on all of
L1

+W−1,n/(n−1), with ‖T̃ ‖ ≤ C‖ EX‖1,n. Hence there is someEY ∈ W1,n
∩L∞ satisfying

(3.2) and moreover∫
EY · Ef = T ( Ef ) =

∫ ∑ ∂ EX

∂xi

∂u

∂xi
=

∫
EX · Ef ∀ Ef ∈ (L1

+W−1,n/(n−1))#.

Thus (3.1) holds.
Similarly, the weaker version, Theorem 2, of Theorem 4 corresponds to a weaker

form of Theorem 5′ asserting only that givenEX ∈ W1,n(Rn,Rn), there exists someEY ∈

L∞(Rn,Rn) such thatEY − EX = gradp and ‖ EY‖∞ ≤ C‖ EX‖1,n. Hence this weaker
statement admits an elementary proofà la Van Schaftingen [14].

The above construction ofEY (starting from EX) relies on Hahn–Banach and need not
be linear in EX. In fact, we now prove Proposition 9 which asserts that the construction
must be nonlinear. For simplicity we return to the caseM = Tn.

Proof of Proposition 9.Assume, by contradiction, that there exists a bounded linear op-
eratorK : W1,n(31Tn) → L∞(31Tn) such that

d(KX) = dX ∀X ∈ W1,n(31).

Whenn = 2 this is impossible from the div-case proved in [3] and recalled as Proposi-
tion 7. Assumen ≥ 3. We are going to construct a bounded linear operator

K̃ : W1,n(3n−1) → L∞(3n−1) (3.4)

such that
d(K̃ω) = dω ∀ω ∈ W1,n(3n−1) (3.5)

and this again contradicts the div-case (Proposition 7). Givenω ∈ W1,n(3n−1) write

ω = α1 d̂x1∧ dx2∧· · ·∧ dxn+α2 dx1∧ d̂x2∧· · ·∧ dxn+· · ·+αn dx1∧ dx2∧· · ·∧ d̂xn.

Applying the operatorK to the 1-formX = αj dxi−αi dxj , i 6= j , and writingd(KX) =

dX we obtain in particular some functionsβij , γ ij ∈ L∞(Tn) such that

∂

∂xi
(αi − βij )+

∂

∂xj
(αj − γ ij ) = 0. (3.6)
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Moreoverβij and γ ij depend linearly onαi andαj ; thus they define bounded linear
operators fromW1,n intoL∞. Adding all the equations (3.6) fori 6= j we obtain

(n− 1) div(Eα − Eσ) = 0

for someEσ = K̃(Eα) = K̃(ω) whereK̃ is a bounded linear operator satisfying (3.4) and
(3.5). Impossible by Proposition 7.

We now turn to div-curl and Hodge systems. We start with

Proof of Corollary 12. Using the formula

curl curl = −1+ grad div (3.7)

we see that the solutionEZ of (1.28)–(1.30) is given by

EZ = curl(−1)−1 Ef

where(−1)−1 is the inverse of−1 on T3. We may then apply Theorem 4 (or rather its
variant onT3 instead ofR3) to conclude thatEZ ∈ L3/2 with the corresponding estimate.

In connection with Corollary 12, let us mention an open problem. Consider the div-
curl system (1.28)–(1.30) withEf ∈ L1(T3), div Ef = 0 and

∫
Ef = 0. We know that the

solution EZ belongs toL3/2 and thatEZ doesnot belong toW1,1 (see Remark 1 and the
Appendix).

Open Problem 1. Is it true thatEZ belongs to the Lorentz spaceL(3/2,1)? In particular,
is it true thatEZ(x)/|x − a| ∈ L1 for everya ∈ T3?

WhenM = Tn or M = Rn recall the classical Hodge decomposition. Anyω ∈

Ln(3`M),1 ≤ ` ≤ n− 1, (with
∫
ω = 0 if M = Tn) may be written as

ω = dα + d∗β (3.8)

with α ∈ W1,n(3`−1M) andβ ∈ W1,n(3`+1M). Hered∗
= (−1)n`+1

∗d∗ where∗

denotes the Hodge∗-operator3`M → 3n−`M. In addition one can chooseα andβ
satisfying the bounds

‖α‖1,n + ‖β‖1,n ≤ C‖ω‖n.

Combining this with Theorem 5 (whenM = Tn) or Theorem 5′ (whenM = Rn) we may
improve the conclusion.

Corollary 16. Assumen ≥ 3 and1 ≤ ` ≤ n−2. Then anyω ∈ Ln(3`M) (with
∫
ω = 0

whenM = Tn) may be written as

ω = dα + d∗β

with α ∈ W1,n(3`−1M), β ∈ (W1,n
∩ L∞)(3`+1M), and

‖α‖1,n + ‖β‖1,n + ‖β‖∞ ≤ C‖ω‖n. (3.9)
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If n ≥ 4 and2 ≤ ` ≤ n− 2, then anyω ∈ Ln(3`M) (with
∫
ω = 0 whenM = Tn) may

be written as
ω = dα + d∗β

with α ∈ (W1,n
∩ L∞)(3`−1M) andβ ∈ (W1,n

∩ L∞)(3`+1M) and

‖α‖1,n + ‖α‖∞ + ‖β‖1,n + ‖β‖∞ ≤ C‖ω‖n. (3.10)

In order to apply Theorem 5 to theβ-term, we need thus to assume thatn − ` − 1 > 0,
i.e.,` ≤ n− 2. Similarly for theα-term we need̀ − 1> 0, i.e.,` ≥ 2.

Corollary 17. Assumen ≥ 4 and2 ≤ ` ≤ n − 2. Then for everyX ∈ W1,1(3`Rn) we
have

‖X‖n/(n−1) ≤ C{‖dX‖L1+W−1,n/(n−1) + ‖d∗X‖L1+W−1,n/(n−1)} (3.11)

and in particular
‖X‖n/(n−1) ≤ C(‖dX‖1 + ‖d∗X‖1). (3.12)

Proof. If ω ∈ Ln(3`Rn) we may writeω = dα + d∗β with α, β satisfying (3.10). Then

|〈X,ω〉| = |〈d∗X,α〉 + 〈dX, β〉| ≤ C{‖d∗X‖L1+W−1,n/(n−1) + ‖dX‖L1+W−1,n/(n−1)}‖ω‖n.

Remark 9. The weaker assertion (3.12) of Corollary 17 was obtained independently by
Lanzani and Stein [7] with an elementary approach in the spirit of [14].

Remark 10. Notice that Corollary 17 does not imply anything forn = 3. Indeed (3.12)
does not hold in the div-curl setting as was already pointed out in Remark 5.

Next, we present another example onM = (0,1)n involving a boundary condition.
It will be used in the context of Ginzburg–Landau minimizers (as discussed in the next
section).

Corollary 18. Assumen ≥ 3 andM = (0,1)n. Then anyX ∈ Ln(31M) = Ln(M,Rn)
may be written as

X = dφ + d∗k

for someφ ∈ W
1,n
0 (30M) = W

1,n
0 (M,R) and somek ∈ (W1,n

∩ L∞)(32M) satisfying

‖φ‖1,n + ‖k‖1,n + ‖k‖∞ ≤ C‖X‖n.

Proof. By standard Hodge theory we may writeX = dφ+d∗β for someφ ∈ W
1,n
0 (30M)

and someβ ∈ W1,n(32M)with control of norms. The additional information comes from
Theorem 5′ which applies sincen− 2> 0.

We also have a ‘dual’ form:

Corollary 18′. Assumen ≥ 3 andM = (0,1)n. Then anyX ∈ Ln(31M) = Ln(X,Rn)
may be written as

X = dφ + d∗k

for someφ ∈ W1,n(30M) = W1,n(M,R) and somek ∈ (W
1,n
0 ∩ L∞)(32M) satisfying

‖φ‖1,n + ‖k‖1,n + ‖k‖∞ ≤ C‖X‖n.
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Proof. By standard Hodge theory we may writeX = dφ+d∗β for someφ ∈ W1,n(30M)

and someβ ∈ W
1,n
N (32M). Then∗β ∈ W

1,n
T (3n−2M) and we may apply Lemma 2,

together with Theorem 5′′ for ` = n − 2, to conclude thatd∗β = d∗k for somek ∈

(W
1,n
0 ∩ L∞)(32M).

Remark 11. Instead of the limiting Sobolev spaceW1,n, one can consider similar ques-
tions in the fractional Sobolev spaceW s,p with sp = n, p > 1. For example, as an analog
of Theorem 1 we have ∣∣∣∣∫

0

Y Et

∣∣∣∣ ≤ C|0| ‖Y‖s,p

and hence ∣∣∣∣∫Rn
Y Ef

∣∣∣∣ ≤ C‖ Ef ‖1‖Y‖s,p

for every Ef ∈ L1
#(R

n,Rn) andY ∈ C∞

0 (R
n). This can be proved by the same argument

as in [4], [5], or by the argument due to Van Schaftingen [13], [14].
Turning to differential forms, this shows that ifX ∈ W s,p(31), there exists some

Y ∈ L∞(31) such thatdX = dY . Here we do not claim that thisY is inW s,p. In fact we
leave it as

Open Problem 2. Let 0 < s < n, s 6= 1, p = n/s and 1≤ ` ≤ n − 1. Is it true that
givenX ∈ W s,p(3`), there isY ∈ (W s,p

∩ L∞)(3`) such thatdX = dY? The question
can be asked in particular whens is an integer, for examples = 2, andp = n/2.

Remark 12. It is easily verified that Theorem 1 fails if in (1.1) we replace‖∇Y‖n by
‖Y‖BMO. In fact, a natural seminorm onC∞

0 (R
n) can be defined considering

〈Y 〉 = sup
1

|0|

∣∣∣∣∫
0

Y Et

∣∣∣∣
with the sup taken over all closed rectifiable curves0. It has been shown by Van Schaftin-
gen [16] that

‖Y‖BMO ≤ C〈Y 〉

(and the corresponding embedding is strict).

Finally, we express some of the above results as simple but general estimates for
`-forms.

Let M ⊂ Rn be a smooth, compact, orientable,`-dimensional manifold without
boundary, 1≤ ` ≤ n − 1. Letω ∈ C∞

0 (3
`Rn). Recall that the quantity

∫
M
ω is well

defined.

Corollary 19. We have ∣∣∣∣∫
M

ω

∣∣∣∣≤ C|M| ‖dω‖n

whereC depends only onn.
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Proof. LetQ be a cube containingM ∪ suppω. By Theorem 5′′ there exists somẽω ∈

(W
1,n
0 ∩ L∞)(3`Q) such that

dω̃ = dω and ‖ω̃‖∞ ≤ C‖dω‖n,

whereC is independent of the size ofQ (by scale invariance). Then∫
M

ω =

∫
M

ω̃,

sinceω − ω̃ = dξ for someξ ∈ W2,n(3`+1Q) and
∫
M
dξ = 0. Hence∣∣∣∣∫

M

ω

∣∣∣∣ ≤ |M| ‖ω̃‖∞ ≤ C|M| ‖dω‖n.

Next, we work onM = Tn (for simplicity). LetX,ω ∈ C∞(3`M) with 1 ≤ ` ≤

n− 1. Recall the standard definition

〈X,ω〉 =

∫
M

X ∧ (∗ω).

Corollary 20. Assume
∫
M
X = 0. Then

|〈X,ω〉| ≤ C{‖ω‖1‖dX‖n + ‖d∗ω‖−2,n/(n−1)‖∇X‖n}, (3.13)

withC depending only onn.

Proof. By Theorem 5 there exists someY ∈ (W1,n
∩ L∞)(3`M) such that

dY = dX, (3.14)∫
M

Y = 0, (3.15)

‖∇Y‖n + ‖Y‖∞ ≤ C‖dX‖n. (3.16)

Sinced(Y −X) = 0 and
∫
M
(Y −X) = 0 we may solve the elliptic system

dξ = X − Y, d∗ξ = 0

with the estimate
‖ξ‖2,n ≤ C‖d∗(X − Y )‖n ≤ C‖∇X‖n. (3.17)

Then

〈X,ω〉 = 〈X − Y, ω〉 + 〈Y, ω〉 = 〈dξ, ω〉 + 〈Y, ω〉 = 〈ξ, d∗ω〉 + 〈Y, ω〉.

Therefore
|〈X,ω〉| ≤ ‖ξ‖2,n‖d

∗ω‖−2,n/(n−1) + ‖Y‖∞‖ω‖1.

Combining this with (3.16) and (3.17) yields the desired estimate (3.13).
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Remark 13. One cannot replace‖∇X‖n by ‖d∗X‖n in (3.13). Indeed, if we could, we
would infer that

|〈X,ω〉| ≤ C‖ω‖1‖dX‖n

wheneverd∗X = 0. Consequently,

‖X‖∞ ≤ C‖dX‖n

for everyX with d∗X = 0. But such an estimate fails: it suffices to find aξ ∈ W2,n with
ξ 6∈ W1,∞ and to chooseX = d∗ξ .

Similarly, there is failure of the estimate

|〈X,ω〉| ≤ C{‖dω‖−1,1‖dX‖n + ‖d∗ω‖−2,n/(n−1)‖∇X‖n}. (3.18)

Indeed, (3.18) would imply

‖dY‖n/(n−1) ≤ C‖1Y‖1 (3.19)

for everyY ∈ C∞(3`M). To see this leth ∈ Ln(3`+1)with
∫
h = 0. Using Hodge write

h = dα + d∗β

with ‖dα‖n ≤ C‖h‖n. Then

〈h, dY 〉 = 〈dα, dY 〉 = 〈α, d∗dY 〉.

Applying (3.18) toX = α andω = d∗dY would give

|〈h, dY 〉| ≤ C‖dd∗dY‖−1,1‖dα‖n ≤ C‖dd∗dY‖−1,1‖h‖n

= C‖1dY‖−1,1‖h‖n ≤ C‖1Y‖1‖h‖n.

Thus (3.19) would hold. From (3.19) we would deduce thatd1−1 is a bounded operator
from {f ∈ L1

|
∫
f = 0} into Ln/(n−1) and by duality thatd∗1−1 is bounded from

{f ∈ Ln |
∫
f = 0} intoL∞. But we already observed that this is not true.

4. Consequences for Ginzburg–Landau minimizers

LetM ⊂ Rn (n ≥ 3) be a domain, say a cube for simplicity. Forε > 0, the Ginzburg–
Landau functionalEε(u) is defined by

Eε(u) =
1

2

∫
M

|∇u|2 +
1

4ε2

∫
M

(|u|2 − 1)2. (4.1)

Theorem 21. Letg ∈ H 1/2(∂M, S1). Then

(a) If uε is a minimizer ofEε subject to the Dirichlet boundary conditionuε|∂M = g,
then

‖∇uε‖n/(n−1) ≤ C(g) asε → 0. (4.2)

(b) In particular, any weak limit pointu∗ of {uε} belongs toW1,n/(n−1)(M).
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It was shown in [5] that‖∇uε‖p ≤ Cp(g) for p < n/(n − 1) (results for specialg
displaying only finitely many point singularities of a certain type were obtained earlier by
Lin and Rivìere [8]).

Forn = 3, Theorem 21(b) was first obtained in [5]. Theorem 21(a) is due to Bethuel,
Orlandi and Smets [2]. Below we present a proof, based on Corollary 18, that is concep-
tually particularly pleasing.

Consider first a larger cubeQ such thatM ⊂ Q̊. Using the fact thatuε|∂M = g ∈

H 1/2(∂M, S1), we may construct an extensionũ of uε toQ satisfying

|ũ| ≤ 1, (4.3)

Eε(ũ;Q) ≤ C log(1/ε), (4.4)

‖ũ‖W1,p(Q\M) ≤ Cp(g) for all p < 2 (4.5)

(see [5, Lemma 30]).
Next, we apply to the functioñu on Q the following approximation result due to

Bethuel, Orlandi and Smets [2] (with roots in the work of Jerrard and Sooner).

Proposition 22([2]). Letu onQ satisfyEε(u) ≤ C log(1/ε). Then there isv satisfying

|v| ≤ 1, (4.6)

Eε(v) ≤ CEε(u), (4.7)

‖Jv‖L1(Q) ≤ C
Eε(u)

log(1/ε)
≤ C, (4.8)

where
Jv = d(v ∧ dv) =

∑
i<j

(∂iv × ∂jv) dxi ∧ dxj (4.9)

denotes the Jacobian, and

‖u− v‖L2(Q) ≤ εα (for some constantα > 0). (4.10)

Sketch of theW1,n/(n−1)-regularity property. It suffices to show that

‖u ∧ du‖Ln/(n−1)(M) ≤ C (4.11)

(cf. [5]). By duality, we need to control〈u ∧ du,X〉 with X ∈ Ln(31M), ‖X‖n ≤ 1.
According to Corollary 18,

X = dφ + d∗k (4.12)

where
φ ∈ W

1,n
0 (M), ‖φ‖1,n ≤ C, (4.13)

k ∈ (W1,n
∧ L∞)(32M), ‖k‖1,n + ‖k‖∞ ≤ C. (4.14)

Thus
〈u ∧ du,X〉 = 〈u ∧ du, dφ〉 + 〈u ∧ du, d∗k〉.

Sinceφ = 0 on∂M,

〈u ∧ du, dφ〉 =

∫
M

(Im ū1u)φ = 0 (4.15)
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becauseu satisfies the Ginzburg–Landau equation

−1u =
1

ε2
(1 − |u|2)u. (4.16)

It remains to control〈u ∧ du, d∗k〉.
Let k̃ be an extension ofk to Rn such that supp̃k ⊂ Q and

‖k̃‖W1,n + ‖k̃‖∞ ≤ C(‖k‖W1,n(M) + ‖k‖∞) ≤ C. (4.17)

Then

|〈u ∧ du, d∗k〉| ≤ |〈ũ ∧ dũ, d∗k̃〉| +

∫
Q\M

|∇ũ| |∇k̃|.

By (4.5), ∫
Q\M

|∇ũ| |∇ k̃| ≤ ‖ũ‖W1,n/(n−1)(Q\M)‖k̃‖W1,n(Q) ≤ C.

Next write

|〈ũ ∧ dũ, d∗k̃〉| = |〈J ũ, k̃〉| ≤ |〈Jv, k̃〉| + |〈J ũ− Jv, k̃〉| = (4.18)+ (4.19)

with v taken according to Proposition 22.
Estimate (4.18) from (4.8) and (4.17):

|〈Jv, k̃〉| ≤ ‖Jv‖L1(Q)‖k̃‖L∞(Q) ≤ C.

Write
J ũ− Jv = d((ũ− v) ∧ d(ũ+ v)),

hence

(4.19) = |〈(ũ− v) ∧ d(ũ+ v), d∗k̃〉| ≤ ‖ũ− v‖2n/(n−2)‖ũ+ v‖W1,2‖k̃‖W1,n

≤ C‖ũ− v‖
1−2/n
2 [Eε(ũ)+ Eε(v)]

1/2

≤ C(log(1/ε))1/2εα(1−2/n) (by (4.4), (4.7), (4.10)).

This completes the argument.

Remark 14.If n = 2, the conclusion of Theorem 21 is well known to fail and the estimate

‖uε‖W1,p ≤ cp(g) for p < 2 (4.20)

is the optimal regularity result here.

5. Some other applications

Let j be an integer and 1≤ p < ∞. As usual the Sobolev spaceW j,p(Tn) is equipped
with the norm

‖ϕ‖W j,p(Tn) =

∑
|α|≤j

‖Dαϕ‖Lp(Tn)

and its dual spaceW−j,p′

(Tn) is equipped with its dual norm.



302 Jean Bourgain, Haı̈m Brezis

Theorem 23. LetX ⊂ L2(Tn,Rr) be an invariant function space and assume that the
orthogonal projectionP onX satisfies

‖Pf ‖p ≤ Cp

r∑
s=1

∑
i 6=is

‖Rifs‖p ( for all 1< p < ∞) (5.1)

for some choice of indicesis ∈ {1, . . . , n} (1 ≤ s ≤ r), whereRi denotes thei-th Riesz
transform. Then, for everyu ∈ W−1,n/(n−1)(Tn,Rr),

‖u‖W−1,n/(n−1) ≤ C(‖u‖L1 + dist(u,X )) (5.2)

wheredistdenotes the distance inW−1,n/(n−1).

Proof. It follows in particular from (5.1) that the projectionP is bounded onLn and
hence the operatorS = P ◦ (−1)1/2 : W1,n

→ Ln has closed range. Moreover

‖Sf ‖n ≤ C

r∑
s=1

∑
i 6=is

‖Ri((−1)
1/2fs)‖n = c

r∑
s=1

∑
i 6=is

‖∂ifs‖n.

Thus Theorem 10 applies.
Let f ∈ W1,n(Tn,Rr) with ‖f ‖1,n ≤ 1. By Theorem 10, there isg ∈ (W1,n

∩

L∞)(Tn,Rr) such thatf − g ∈ KerS. But sinceP is invariant, alsoS = (−1)1/2 ◦ P ,
henceP(f − g) = 0. Therefore, ifv ∈ X then

|〈v, f 〉| = |〈v, g〉| ≤ ‖v‖L1+W−1,n/(n−1)(‖g‖L∞ + ‖g‖W1,n).

Thus, for allv ∈ X ,
‖v‖W−1,n/(n−1) ≤ C‖v‖L1+W−1,n/(n−1) . (5.3)

Write, foru ∈ W−1,n/(n−1) andv ∈ X ,

‖u‖W−1,n/(n−1) ≤ ‖u− v‖W−1,n/(n−1) + ‖v‖W−1,n/(n−1)

(5.3)
≤ ‖u− v‖W−1,n/(n−1) + C‖v‖L1+W−1,n/(n−1)

≤ ‖u− v‖W−1,n/(n−1) + C(‖v − u‖W−1,n/(n−1) + ‖u‖L1). (5.4)

Taking the infimum in (5.4) overv ∈ X yields (5.2).

Let ` ≥ 1 be an integer. Set

Au =

n∑
i=1

∂
(`)
i ui, u = (u1, . . . , un),

so thatA may be viewed as a bounded operator fromE = W−1,n/(n−1)(Tn,Rn) into
F = W−(`+1),n/(n−1)(Tn,R). It is also convenient to consider the unbounded operator

A0 : D(A0) ⊂ L1(Tn,Rn) → F, A0 = A,
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with domain
D(A0) = {u ∈ L1

| Au ∈ F in the sense ofD′(Tn)}.

Corollary 24. We haveD(A0) ⊂ E and, for everyu ∈ D(A0),

‖u‖E ≤ C(‖u‖L1 + ‖Au‖F ). (5.5)

Proof. Consider the invariant space

X = {u ∈ L2(Tn,Rn) | Au = 0 inD′(Tn)}.

The original projectionP onX is given by

P̂ u(ξ) =

{
ûi(ξ)−

n∑
j=1

ξ `i ξ
`
j∑

k ξ
2`
k

ûj (ξ)

}
i=1,...,n

=

{∑
k 6=i ξ

2`
k∑

k ξ
2`
k

ûi(ξ)−

∑
j 6=i

ξ `i ξ
`
j∑

k ξ
2`
k

ûj (ξ)

}
i=1,...,n

. (5.6)

Write
ξ2`
j∑
k ξ

2`
k

ϕ̂(ξ) =
ξ2`−1
j |ξ |∑
k ξ

2`
k

R̂jϕ(ξ) (5.7)

with Rj the j -th Riesz transformation and observe that the Fourier multiplier
ξ2`−1
j |ξ |/

∑
ξ2`
k acts boundedly onLp (1 < p < ∞) (since it satisfies Ḧormander’s

condition). Hence (5.6) shows that for 1< p < ∞,

‖Pu‖p ≤

n∑
i=1

{∑
k 6=i

‖Rkui‖p +

∑
j 6=i

‖Riuj‖p

}
.

n∑
i=1

∑
j 6=i

‖Rjui‖p. (5.8)

Thus condition (5.1) holds withis = s (1 ≤ s ≤ n) and Theorem 23 applies.
Next we claim that, for the bounded operatorA : E → F ,

R(A) is closed inF. (5.9)

More precisely, we have

R(A) =

{
f ∈ F

∣∣∣∣ ∫
Tn
f = 0

}
.

Indeed, fixf ∈ F with
∫
f = 0.

If ` = 2k, takeui = ϕ, i = 1, . . . , n, whereϕ is the solution of the elliptic equation

n∑
i=1

∂
(2k)
i ϕ = f in Tn.

Note thatϕ ∈ W−1,n/(n−1) by elliptic regularity. Thusu ∈ E satisfiesAu = f .
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If ` = 2k + 1, takeui = ∂iψ, i = 1, . . . , n, whereψ is the solution of the elliptic
equation

n∑
i=n

∂
(2k+2)
i ψ = f in Tn.

Note thatψ ∈ Ln/(n−1) by elliptic regularity. Thusu ∈ E satisfiesAu = f and the proof
of (5.9) is complete.

From (5.9) and standard functional analysis we know that

distE(u,N(A)) ≤ C‖Au‖F . (5.10)

On the other hand, it is clear that

N(A) = {u ∈ E | Au = 0}

is the closure ofX in E and thus

distE(u,N(A)) = distE(u,X ) ∀u ∈ E. (5.11)

Combining (5.2), (5.10) and (5.11) yields the desired conclusion (5.5).

Corollary 24 carries over ifTn is replaced byRn provided we use the spaceW j,p(Rn)
defined as the completion ofC∞

0 (R
n) for the norm

‖ϕ‖W j,p(Rn) =

∑
|α|=j

‖Dαϕ‖p,

and its dual spaceW−j,p′

(Rn) is equipped with its dual norm. As above set

Au =

n∑
i=1

∂
(`)
i ui .

Corollary 24′. Letu ∈ L1(Rn,Rn) be such thatAu ∈ W−(`+1),n/(n−1)(Rn) in the sense
ofD′(Rn). Thenu ∈ W−1,n/(n−1)(Rn,Rn) and

‖u‖W−1,n/(n−1) ≤ C(‖u‖L1 + ‖Au‖W−(`+1),n/(n−1)). (5.12)

Proof. SetQ = (−1/2,+1/2)n andfix a cut-off functionζ ∈ C∞

0 (R
n) such that 0≤

ζ ≤ 1 and
ζ(x) = 1 for |x| ≤ 1/4. (5.13)

Letu ∈ L1(Rn,Rn) with Au ∈ W−(`+1),n/(n−1)(Rn) and letϕ ∈ C∞

0 (R
n). We claim that

for every integerk ≥ 1,∣∣∣∣∫Rn
ζ 2(x/k)u(x)ϕ(x) dx

∣∣∣∣
≤ C(‖u‖L1(Rn) + ‖Au‖W−(`+1),n/(n−1)(Rn) + o(1))(‖∇ϕ‖Ln(Rn) + o(1)), (5.14)
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with o(1) → 0 ask → ∞. In (5.14), and in all the estimates below, the constantC may
depend onζ (but it is independent ofu, ϕ andk). Passing to the limit in (5.14) yields∣∣∣∣∫Rn

uϕ

∣∣∣∣ ≤ C(‖u‖L1(Rn) + ‖Au‖W−(`+1),n/(n−1)(Rn))‖∇ϕ‖Ln(Rn),

which corresponds to the desired conclusion (5.12).
We have ∫

Rn
ζ 2(x/k)u(x)ϕ(x) dx = kn

∫
Q

ζ 2(y)uk(y)ϕk(y) dy (5.15)

whereuk(y) = u(ky) andϕk(y) = ϕ(ky). Applying the periodic case (Corollary 24) to
the functionsζuk andζϕk onTn = Q we find∣∣∣∣∫

Q

ζ 2ukϕk

∣∣∣∣ ≤ C(‖ζuk‖L1(Q) + ‖A(ζuk)‖W−(`+1),n/(n−1)(Q))‖ζϕk‖W1,n(Q). (5.16)

Clearly

‖ζuk‖L1(Q) ≤
1

kn
‖u‖L1(Rn) (5.17)

and

‖ζϕk‖W1,n(Q) ≤ C

(
‖∇ϕ‖Ln(Rn) +

1

k
‖ϕ‖Ln(Rn)

)
. (5.18)

Next we claim thatA(ζuk) ∈ W−(`+1),n/(n−1)(Tn) and

‖A(ζuk)‖W−(`+1),n/(n−1)(Tn) ≤
1

kn
(‖Au‖W−(`+1),n/(n−1)(Rn) + o(1). (5.19)

Combining (5.15)–(5.19) gives (5.14). Therefore it remains to prove (5.19).
With obvious notation write

A(ζuk) = ζAuk +

∑
|α|+|β|=`

|β|≥1

cα,βD
αukD

βζ. (5.20)

Note that forψ ∈ C∞(Q̄),∣∣∣∣∫
Q

ζ(Auk)ψ

∣∣∣∣ =
k`

kn

∣∣∣∣∫Rn
(Au(y))(ζψ)(y/k) dy

∣∣∣∣
≤

1

kn
‖Au‖W−(`+1),n/(n−1)(Rn)‖D

`+1(ζψ)‖Ln(Rn)

≤
C

kn
‖Au‖W−(`+1),n/(n−1)(Rn)‖ψ‖W `+1,n(Tn),

and therefore

‖ζAuk‖W−(`+1),n/(n−1)(Tn) ≤
C

kn
‖Au‖W−(`+1),n/(n−1)(Rn). (5.21)
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Finally, for |α| + |β| = `, |β| ≥ 1, andψ ∈ C∞(Q̄), we have∣∣∣∣∫
Q

(Dαuk)(D
βζ )ψ

∣∣∣∣ =

∣∣∣∣∫
Q

ukD
α((Dβζ )ψ)

∣∣∣∣
≤ C

∫
y∈Q

|y|≥1/4

|uk(y)|
∑

|γ |≤`−1

|Dγψ(y)| dy, (5.22)

since|β| ≥ 1 andζ(y) = 1 for |y| ≤ 1/4.
On the other hand, by Sobolev,W2,n(Q) ⊂ L∞(Q) and thus, for|γ | ≤ `− 1,

‖Dγψ‖L∞(Q) ≤ C‖ψ‖W `+1,n(Q). (5.23)

From (5.22) and (5.23) we deduce that

‖(Dαuk)(D
βζ )‖W−(`+1),n/(n−1)(Tn)

≤ C

∫
y∈Q

|y|≥1/4

|uk(y)| dy =
C

kn

∫
|x|≥k/4

|u(x)| dx. (5.24)

Combining (5.20), (5.21) and (5.24) yields (5.19).

Next, returning to Theorem 11 and considering functions onRn (rather thanTn; see
Remark 6), notice that by a linear change of variables, condition (1.27) may be replaced
by

‖A(∇(f − F))‖n ≤ δ‖f ‖1,n (5.25)

whereA is any givenn×nmatrix of zero determinant (we are considering theRn-setting
here to allow the coordinate change).

Hence, Theorem 10 may be restated as follows:

Theorem 10′. Let S : W1,n(Rn,Rr) → Y be a bounded operator with closed range.
AssumeA(s) (1 ≤ s ≤ r) are singularn× n matrices such that

‖S Ef ‖ ≤ C max
1≤s≤r

‖A(s)(∇fs)‖n. (5.26)

Then, for anyEf ∈ W1,n(Rn,Rr), there isEg ∈ (W1,n
∩ L∞)(Rn,Rr) such that

‖Eg‖1,n + ‖Eg‖∞ ≤ C‖ Ef ‖1,n (5.27)

and
Ef − Eg ∈ KerS. (5.28)

Theorem 25. AssumeL = (L(s))1≤s≤r ⊂ Rn×n satisfies

max
s

|〈L(s)ξ, η〉| 6= 0 if ξ, η ∈ Rn\{0}, (5.29)
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detL(s) = 0 for eachs = 1, . . . , r. (5.30)

DefineL(s)(D)Eu =
∑n
i,j=1L

(s)
ij ∂jui . Then

‖Eu‖n/(n−1) ≤ Cmax
s

‖L(s)(D)Eu‖1. (5.31)

Proof. It follows from the ellipticity condition (5.29) that the operator

L : Ln/(n−1)(Rn,Rn) →

r⊕
s=1

W−1,n/(n−1)(Rn,R) : Eu 7→ (L(s)(D)Eu)s=1,...,r

satisfies

‖Eu‖n/(n−1) ∼ ‖LEu‖W−1,n/(n−1) =

r∑
s=1

‖L(s)(D)Eu‖−1,n/(n−1). (5.32)

Hence the adjoint operator

S = L∗ :
r⊕
s=1

W1,n(Rn,R) → Ln(Rn,Rn)

is onto and satisfies

‖S Ef ‖n =

n∑
i=1

∥∥∥ r∑
s=1

n∑
j=1

L
(s)
ij (∂jfs)

∥∥∥
n

≤

r∑
s=1

‖L(s)(∇fs)‖n. (5.33)

By (5.30), the matricesL(s) are singular so that (5.26) holds withA(s) = L(s). Therefore,
given Ef ∈ W1,n(Rn; Rr), ‖ Ef ‖1,n ≤ 1, there isEg ∈ W1,n

∩L∞ with ‖Eg‖1,n+‖Eg‖∞ < C

such thatS Ef = S Eg.
Returning to (5.32) and proceeding by duality, write∣∣∣∑
s

〈L(s)(D)Eu, fs〉

∣∣∣= ∣∣∣〈Eu,∑
s

L(s)(∇fs)
〉∣∣∣=|〈Eu, S Ef 〉|=|〈Eu, S Eg〉|=

∣∣∣∑
s

〈L(s)(D)Eu, gs〉

∣∣∣
≤

∑
s

‖L(s)(D)Eu‖1‖gs‖∞ ≤Cmax
s

‖L(s)(D)Eu‖1,

proving (5.31).

Remark 15. Obviously condition (5.32) may be reformulated by requiring that the linear
subspace [L(s); s = 1, . . . , r] of Rn×n, generated byL, is also generated by its singular
elements.

Theorem 25 implies in particular Korn’s inequalities in plasticity theory (see [11],
[12]).

Corollary 26. One has the inequality

‖Eu‖n/(n−1) ≤ C

n∑
i,j=1

‖∂iuj + ∂jui‖1 (5.34)

for Eu = (u1, . . . , un) onRn.
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Proof. LetL = {ei ⊗ ej + ej ⊗ ei | 1 ≤ i, j ≤ n}, thus [L] = symmetricn× nmatrices.
Condition (5.29) clearly holds. Obviously (5.30) holds ifn ≥ 3. Forn = 2, observe that

[L] =

[(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)]
=

[(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
−1 1
1 −1

)]
and apply the previous remark.

Remark 16. In Corollary 26, dim [L] = n + n(n − 1)/2 = n(n + 1)/2. It was already
pointed out in [11] that, forn ≥ 3, the result is not optimal, in the sense that there is
a system(L(s))1≤s≤2n−1 of n × n matrices satisfying (5.29) and (5.30). Following an
earlier idea of D. G. de Figueiredo, M. Strauss [11] constructed such a family consisting
of nmatrices of rank 1 andn− 1 matrices of rankn− 1. A different family composed of
2n − 1 matrices of rank 1 can be obtained using a simple observation communicated to
us by J. Van Schaftingen. Letr = 2n− 1. Choose vectors(vi)1≤i≤r in Rn such that every
subset ofn vectors is a basis forRn. DefineL(i) = vi ⊗ vi . Assumeξ, η ∈ Rn are such
that

〈L(i)ξ, η〉 = 0 ∀i = 1, . . . , r.

Then(vi · ξ)(vi · η) = 0 for all i. LettingI = {i | vi · ξ = 0} andJ = {i | vi · η = 0} we
haveI ∪ J = {1, . . . , r} and therefore cardI ≥ n or cardJ ≥ n. In the first caseξ = 0
and in the second caseη = 0.

Open Problem 3. What is the smallestr = r(n) for which there is a system(L(s))1≤s≤r

⊂ Rn×n satisfying the assumptions of Theorem 25?

Obviouslyr(n) ≥ n+ 1 and from the precedingr(n) ≤ 2n− 1.

Open Problem 4. When is a subspace ofRn×n generated by its singular elements?

Appendix: Proof of Remark 1

Our purpose is to show that the inequality

‖(−1)−1 Ef ‖W2,1 ≤ C‖ Ef ‖1 (1)

fails also for Ef ∈ L1
#(R

n,Rn).
By Smirnov’s result cited earlier, this statement is equivalent to disproving that

‖(−1)−1(H0Et)‖W2,1 < C (2)

holds, whenever0 is a closed rectifiable curve inRn of length |0| = 1 andEt the unit
tangent vector to0.

As mentioned in the Introduction, forn ≥ 3 this is quite easily seen.
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Let n = 3 and take0 to be any simple closed curve containing the segment(0,0, x3),
|x3| ≤ 1. For example,
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1

e3

Γ

−1

e2

e1

0

Let Eu be the solution of−1Eu = H0Et . On a neighborhood of 0, we get

Eu = C(log(1/r))Ee3 + ER (3)

with ER smooth andr2
= x2

1 + x2
2. Recall that log(1/r) 6∈ W2,1(R2) and henceEu 6∈

W2,1(R3).
Consider now the casen = 2. Producing a counterexample seems less obvious and

requires curves0 with a more complicated structure.
Notice that if0 is smooth with nonvanishing curvature andm(ξ) a 0-order even

Fourier multiplier, then by the stationary phase principle

(EtH0)∧(ξ) ·m(ξ) = (m̃ · EtH0)∧(ξ)+O(|ξ |−3/2) (4)

as |ξ | → ∞, wherem̃ is the function on0 defined bym̃(x) = m(ζx) whereζx is the
normal vector to0 atx.

Returning to (2), apply (4) withm(ξ) one of the multipliers

ξ2
1

ξ2
1 + ξ2

2

,
ξ2

2

ξ2
1 + ξ2

2

,
ξ1ξ1

ξ2
1 + ξ2

2

.

Sincem̃ is a bounded density on0, it follows in particular from (4) that

∂(2)[(−1)−1(H0Et)] ∈ L∞(H0)+ L2 (5)

and hence a bounded measure.
We produce a counterexample to (2) using a rectifiable curve0 with a multi-scale

structure.
Fix a large integerR. Let n1 � · · · � nR be a sequence of integers that are very

lacunary (the precise conditions will become clear later on).
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0 will be obtained as a polygonal line3 joining (0,0) to (1,0) which we close by
adding the segments [(1,0), (1,−1)] ∪ [(1,−1), (0,−1)] ∪ [(0,−1), (0,0)]:
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Λ

(only3 is relevant for our purpose).
Next we specify3. Let30 be the segment [(0,0), (1,0)]. We take31 to be a ‘saw-

tooth’ perturbation of30 with n1 teeth and inclination 1/
√
R:
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................................................................ .................
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..............................................................

.......... .......... .......... ..........

11

n1

0

1

2n1

√

R

Thus31 is a polygonal line consisting of 2n1 segments.
To obtain32, perturb each segmentI of 31 by a saw-tooth line withn2 teeth and

again relative inclination 1/
√
R (with respect toI ):
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|I|
2

√
R|n2|

|I|
n2

I

The continuation of the process is clear and we let3 = 3R.
Obviously

|31| = 2n1

√(
1

2n1

)2

+

(
1

2n1
√
R

)2

=

√
1 +

1

R
,

|32| =

(
1 +

1

R

)1/2

|31|,

|3R| =

(
1 +

1

R

)R/2
< e. (6)
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Notice also that, from the construction, the Hausdorff distance satisfies

d(3s−1,3s) .
1

bs−1ns
√
R

(7)

wherebs = 2sn1 · · · ns is the number of segmentsIs,α of3s . These segments are of equal
length|Is,α| ∼ 1/bs .

Our next claim is that
‖(−1)−1H0Et‖W2,1 &

√
R, (8)

This contribution will be obtained near3 and hence (8) amounts to

‖(−1)−1H3R Et‖W2,1(near3R) &
√
R, (8′)

Let us next construct a sequence of disjoint regions�0, �1, . . . , �R−1 that in some
sense will ‘shadow’30,31, . . . , 3R−1.

Let�0 = {x ∈ R2
| 10−3/2n1 < dist(x,30) < 10−3/n1}:

.................
.................

.................
....................................................................................................

.................
.................

....................................................................................................
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.................
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................
...............

Ω0

10
−3

n1

1

n1

and in general fors < R,

�s =

{
x ∈ R2

∣∣∣∣ 10−3

2ns+1bs
< dist(x,3s) <

10−3

ns+1bs

}
.

Hence, ifs > s′, by (7),

dist(�s, �s′) ≥ dist(3s, �s′)−
10−3

ns+1bs

≥ dist(3s′ , �s′)− d(3s,3s′)−
10−3

ns+1bs

≥
10−3

2ns′+1bs′
− (d(3s,3s−1)+ · · · + d(3s′+1,3s′))−

10−3

ns+1bs

≥
10−3

2ns′+1bs′
−

1
√
R

(
1

ns′+1bs′
+ · · · +

1

nsbs−1

)
−

10−3

ns+1bs
≥

10−3

3ns′+1bs′

and the�s are disjoint.
Returning to (8′), write

‖(−1)−1(H3R Et)‖W2,1 ≥

R∑
s=1

‖(−1)−1(H3R Et)‖W2,1(�s )
. (9)



312 Jean Bourgain, Haı̈m Brezis

Decompose further�s into the bs rectangular regions�s,α parallel to Is,α of length
|Is,α| ∼ 1/bs and width∼ 1/ns+1bs .

Let �′
s,α ⊂ �s,α be the sub-rectangle projecting onto a1

4|Is,α|-neighborhood of the
centercs,α of Is,α. Write

‖(−1)−1(H3R Et)‖W2,1(�s )
≥

bs∑
α=1

‖(−1)−1(H3R Et)‖W2,1(�′
s,α)
. (10)

Next, we analyze further(−1)−1(H3R Et) on�′
s,α for a fixedα.
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∼
1

ns+1bs

∼
1

bs

Ωs,α

|

cs,α

Is,α

First, we restrictH3R Et to a neighborhoodB(cs,α, |Is,α|/2) = Bs,α in theα-summand
of (10).

Indeed, forx ∈ �′
s,α one has

|∂(2)(−1)−1(H3R\Bs,α
Et)(x)| .

∥∥∥∥∂(2)(log
1

|x|

)∥∥∥∥
L∞(|x|> 1

4 |Is,α |)

. b2
s

and hence

‖∂(2)(−1)−1 (H3R\Bs,α
Et)‖L1(�′

s,α)
.

1

ns+1
. (11)

Summing (11) overα = 1, . . . , bs gives the contribution of at most

bs

ns+1
<

1

R
(12)

provided we takens+1 large enough.
Thus in (10), we may replace theα-summand by

‖(−1)−1(H3R∩Bs,α
Et)‖W2,1(�′

s,α)
. (13)

Next, we replace3R by3s+1 in (13). Takingx ∈ �′
s,α, it follows from the construction

of the polygonal lines3s that
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|(∂2(−1)−1)[(H3R∩Bs,α
Et )− (H3s+1∩Bs,α

Et )](x)|

.

∥∥∥∥∂2
(

log
1

|x|

)∥∥∥∥
Lip(|x|&1/bs+1)

1

bs+1ns+2
|Is,α|

. b3
s+1

1

bs+1ns+2

1

bs
.
bsn

2
s+1

ns+2
.

Hence

‖∂2(−1)−1[(H3R∩Bs,α
Et )− (H3s+1∩Bs,α

Et )]‖L1(�′
s,α)

.
1

ns+1b2
s

bsn
2
s+1

ns+2
=

ns+1

bsns+2
(14)

and summing overα = 1, . . . , bs gives the contributionns+1
ns+2

< 1
R

.
Therefore (13) can further be replaced by

‖(−1)−1(H3s+1∩Bs,α
Et )‖W2,1(�′

s,α)
. (15)

Clearly, (15) is independent ofα and performing an affine transformation with expansion
factor∼ bs , we see that

(15) ∼
1

bs
‖(−1)−1H6Et‖W2,1([1/4,3/4]×[10−3/2ns+1,10−3/ns+1]) (16)

where6 is a saw-tooth polygonal line alongEe1 with ns+1 teeth and inclination 1/
√
R.
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........

y

1 x1

ns+1

1

ns+1

Consider in (16) the coordinatety of Et given by

ty =
1

√
R

sign sin 2πns+1x (17)

and the contribution

1

bs
√
R

‖∂2
xy(−1)

−1[(sign sin 2πns+1x)H6 ]‖L1([1/4,3/4]×[10−3/2ns+1,10−3/ns+1]). (18)

Next, replaceH6 by |6| ·H[0,1]Ee1 projecting on thex-axis. Clearly
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‖∂2
xy(−1)

−1[(sign sin 2πns+1x)H6 ]‖L1(··· )

= |6|‖∂2
xy(−1)

−1[(sign sin 2πns+1x)H[0,1]Ee1‖L1(··· ) (19)

+O

{
1

√
Rns+1

∥∥∥∥∂y[ xy

(x2 + y2)2

]∥∥∥∥
L1(|y|>10−3/3ns+1)

}
(20)

and

(20) .
1

√
R
. (21)

By partial integration

(19) ∼

∥∥∥∥y[∫ 1

0

x − x′

((x − x′)2 + y2)2
(sign sin 2πns+1x

′) dx′

]∥∥∥∥
L1(··· )

=

∥∥∥∥y ∫
1

(x − x′)2 + y2

(2ns+1∑
j=1

(−1)j δj/2ns+1

)
(dx′)

∥∥∥∥
L1(··· )

(δt = Dirac measure att ∈ R)

=

∥∥∥∥2ns+1∑
j=1

(−1)j
y

(x −
j

2ns+1
)2 + y2

∥∥∥∥
L1([1/4,3/4]×[10−3/2ns+1,10−3/ns+1])

& 1. (22)

Summarizing, it follows that

(18) &
1

bs
√
R
,

hence

(13), (15) &
1

bs
√
R
,

(10) &
1

√
R
,

(9) &
√
R,

providing the lower bound (8′).

Remark A1. Another way of stating the failure of (2) forn = 2 is to say that ifu solves

−1u = χ� (23)

where� has0 as boundary, then its characteristic function,χ�, is a BV function andu
fails to have∂(3)u bounded as measure.

Therefore the same conclusion holds in any dimensionn. Consequently, lettingn = 3
say, (1) fails also on the ‘smaller’ class ofEf ∈ L1(R3,R3) for which curl Ef = 0.

Remark A2. Returning to equation (23), let us observe that if� is a circle, then it is
true (and somewhat surprising) that∂(3)u is a bounded measure (as is checked easily by
explicit computation). From this, one deduces that the equation−1u = f with f radial
and BV has its solutionu with ∂(3)u a measure.

More generally, assume for instance that� has smooth boundary∂� with nonvanish-
ing curvature. Then again the solutionu of (23) is such that∂(3)u is a bounded measure.
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This is a consequence of (5). (But the construction shows that this may fail if� is only
Lipschitz.)
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