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Abstract. We prove the existence of cylindrical solutions to the semilinear elliptic problem

−1u+
u

|y|2
= f (u), u ∈ H1(RN ), u ≥ 0,

where(y, z) ∈ Rk ×RN−k ,N > k ≥ 2 andf has a double-power behaviour, subcritical at infinity
and supercritical near the origin.

This result also implies the existence of solitary waves with nonvanishing angular momentum
for nonlinear Schr̈odinger and Klein–Gordon equations.

1. Introduction

This paper is mainly concerned with the existence of nontrivial cylindrical solutions for
the semilinear singular elliptic problem

−1u+
u

|y|2
= f (u), u ∈ H 1(RN ), u ≥ 0, (1)

where(y, z) ∈ Rk × RN−k, N > k ≥ 2 andf ∈ C(R; R) is such thatf (0) = 0. Other
working assumptions onf will be made in Section 2; in particular we will askf to satisfy
a double-power growth condition, supercritical near the origin and subcritical at infinity
(more precisely, see assumptions(f1)–(f4)).

Problems like (1) arise in the search for finite-energy stationary solutions to nonlinear
evolution equations of the Schrödinger or Klein–Gordon type. The finiteness of energy
makes the solutions physically meaningful and it is strictly related to the finiteness of the
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L2 norm. Looking for stationary waves, one is led to equations of the form

−1u+ V (x)u = f (u) in R3 (2)

for which a large number of existence results have been established under very different
assumptions on the potentialV and the nonlinearityf (see for instance the references
in [3], [19]). However, it is mostly assumed thatV is bounded away from zero, so that
anH 1 variational approach is permitted (as regards the caseV = 0, see for example
[12], [29] and the references therein). Among the papers which deal instead with poten-
tials satisfyingV 6= 0 and lim inf|x|→∞ V (x) = 0, let us cite the following recent works
(see [31] for further references). In [1] the existence of a positive finite-energy solution
is proved in the case of smooth potentials and nonlinearities (not necessarily radial) hav-
ing the formV (x) ∼ (1 + |x|a)−1 andf (x, u) ∼ (1 + |x|b)−1

|u|p with 0 < a < 2,
b > 0 and max{1,5 − 4b/a} < p < 5. The presence of singularities in equation (2) is
allowed in [11], where it is required thatV ∈ L3/2

∩ Lr(R3) for somer > 3/2 with
‖V ‖L3/2 suitably small andf satisfies assumptions similar to(f1) and (f3). In [23] the
problem of positive solutions is studied for critical nonlinearity and potentials featuring
multiple inverse-square singularities. Existence (and nonexistence) results for radial po-
tentialsV (x) ≥ A|x|−α satisfying mild integrability assumptions can be found in [4],
where both subcritical and supercritical nonlinearities are considered. The case of radial
potentials and double-power nonlinearities is treated in [5]. However, no results on the
finiteness of energy are proved in [4], [5], [11], [23]. Theorem 3 of Section 2 below pro-
vides a nontrivial, well localized in space, finite-energy solution to equation (2) in the
case of the singular cylindrical potentialV (x) = |y|−2 (see again [5] for results concern-
ing cylindrical potentials in high dimensions). Let us point out that the technique used in
[1] to bound theL2 norm does not suit our case, for it is strictly related to the assumption
a < 2.

Though we are interested here in entire solutions of (2), it is worth observing that
nonlinear elliptic equations with singular potentials have been widely investigated also
on bounded domains ofRN , especially in the presence of critical power nonlinearities.
For instance (other references can be found in [31]), the caseV (x) = λ + µ|x|−2 is
studied in [24], [27], [32] (see also [18]), where the solvability of the equation is exam-
ined in connection with the sign and size of the parametersλ, µ. In the presence of
more general nonlinearities of the formf (x, u) = up + λb(x), inverse-square potentials
V (x) = −A|x|−2 with 0 < A ≤ (N − 2)2/4 are considered in [16] (caseλ = 0) and
[20] (caseλ > 0), where compatibility conditions onA, p, λ and the space dimension are
exhibited in order to ensure the existence of solutions. The results of [20] are extended in
[21] to a larger class of potentials and nonlinearities. This kind of investigation is related
to the study of improved Hardy inequalities (see for example [17] and [30]).

As another remarkable application of problem (1), we derive the existence of finite-
energy waves with nonvanishing angular momentum for evolution field equations. Let us
briefly introduce the matter, which will be the topic of Section 7. Consider for instance
the nonlinear Schrödinger equation

i
∂ψ

∂t
= −1ψ + ωψ − f (|ψ |)|ψ |

−1ψ, (x, t) ∈ R3
× R, (3)
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whereω ∈ R. It is well known that equation (3) has stationary solutions with nonvanish-
ing angular momentum of the form

ψ(x, t) = ϕ(x)e−i�t , ϕ(x) ∈ C, � ∈ R, (4)

with � < ω. Here we will show that also the limit case� = ω can be achieved. In this
case, equation (3) is equivalent to

−1ϕ = f (|ϕ|)|ϕ|
−1ϕ in R3. (5)

If we make the ansatzϕ(x) = u(x)eiϑ(y), u(x) ≥ 0, whereϑ(y) gives the angle of the
cylindrical coordinates inR3, equation (5) also turns out to be equivalent to equation (1),
provided thatu(y, z) = u(|y|, z). Hence, by studying equation (1), we obtain a nontrivial
entire classical solutionϕ ∈ H 1(R3) to equation (5) (Theorem 27). Then by means of (4),
with� = ω, one sees that equation (3) admits finite-energy standing (and also travelling)
waves which are well localized in space and bear a nonvanishing angular momentum,
given byM(ψ) = −(0,0, ‖u‖2

L2(R3)
) (Theorem 28 and Remark 29). The same argument

applies to nonlinear Klein–Gordon equations (Remark 30). To our knowledge, the only
papers concerning wave solutions with nonvanishing angular momentum are [13] and
[19] (see also [8]), in which the equation

i
∂ψ

∂t
= −1ψ + V (x)ψ − |ψ |

p−2ψ, (x, t) ∈ R3
× R,

is studied. In particular, [13] deals with the caseV = 0 and 2< p < 6, whereas in [19]
it is assumed that 2< p < 1 +

√
5 andV ∈ C1

∩ L∞(R3) is bounded away from zero
and has some properties related to a required cylindrical symmetry (which allows one to
speak about conserved angular momentum).

We conclude this introductory section by discussing the main features of problem (1)
and by sketching our approach.

Since the equation in (1) has a variational structure, its solutions can be recovered
as critical points of a functionalI defined on a suitable function space. However the
presence of a potential vanishing as|y| → ∞ prevents the use ofH 1 variational theory.
To overcome this difficulty, we set the equation in the exact space on which the Euler
functional of the linear part of the equation is well defined, namely the weighted Hilbert
space, sayX(RN ), consisting of the functions having finiteL2 gradient norm and such
that

∫
RN |y|−2u2 dx < ∞. By the results of [6], the latter condition is redundant ifk > 2

(see Remark 7), whereas it is necessary in the casek = 2. Since our assumptions ensure
that|f (t)| ≤ const· |t |2

∗
−1 (see(f ′

1)), also the functional related to the nonlinearity makes
sense onX(RN ).

Our solution will be obtained as a critical point for the functionalI , restricted to the
closed subspace of the fixed points for the action onX(RN ) of the orthogonal group ofRk.
Assuming standard hypotheses onf (see(f3) and(f4)), the starting point is the bounded
Palais–Smale sequence provided by the “mountain-pass” geometry exhibited byI (on the
subject see the celebrated paper [2], or some recent books such as [26], [28], [34]). Since
we cannot guarantee the fulfilment of the Palais–Smale condition, such a sequence is
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studied by means of the concentration-compactness principle, in a version due to S. Soli-
mini [33]. In ruling out the possibility of a vanishing weak limit, we exploit the growth
conditions assumed onf , namely

f (t) = O(|t |p−1) ast → ∞ and f (t) = O(|t |q−1) ast → 0

wherep andq are subcritical and supercritical exponents respectively (see hypothesis
(f1)). Probably these conditions were first considered in [14]. More recently, they have
also been used in [5], [9], [10], [11], [12], [29]. The nonnegativity of the critical points of
I is ensured by standard hypotheses (see(f2)).

Since we are interested in solutions which belong toH 1, while our critical points
are just inX(RN ), some more work is needed. First, thanks to a result due to E. Egnell
[22], we can provide an estimate of the decay rate of the solutions. Then we exploit this
asymptotic behaviour to develop a comparison argument in order to bound theL2 norm
on exterior domains. As a by-product, an improved decay estimate is also obtained. The
main result of this paper is Theorem 3.

Some rather standard or technical computations will be omitted in this paper; for all
of them the reader is referred to [31]. Hereafter we will use the following notations.

• We shall always writex = (y, z) ∈ Rk × RN−k with k,N ∈ N such thatN > k ≥ 2.
• N is the set of natural numbers, including 0.
• For anya ∈ R we seta+ := (|a| + a)/2 anda− := (|a| − a)/2, so thata = a+ − a−

with a+, a− ≥ 0.
• The open ballBR(ξ0) := {ξ ∈ Rd : |ξ − ξ0| < R} will be simply denoted byBR

wheneverξ0 = 0. We will also writeB(d)R to make the dimensiond explicit. B̄R stands
for the closure ofBR.

• |A| andχA respectively denote the Lebesgue measure and the characteristic function
of any measurable setA ⊆ Rd .

• O(d) is the orthogonal group ofRd .
• Lr(Rd) andH 1(Rd) are the usual Lebesgue and Sobolev spaces. Sometimes, if no

misunderstanding is possible, we will briefly writeLr andH 1.
• r ′ = r/(r − 1) is the Ḧolder-conjugate exponent ofr, so thatLr

′

is the dual ofLr .
• 2∗

= 2N/(N−2) is the critical exponent for Sobolev embedding in dimensionN ≥ 3.
• C will stand for any positive constant, which may change from line to line.

2. Statement of the main results

ForN > k ≥ 2, we consider the semilinear elliptic equation

−1u+
u

|y|2
= f (u), (y, z) ∈ Rk × RN−k, (6)

with u : RN → R andf ∈ C(R; R) satisfying the following assumptions:

(f1) there existM,p, q > 0 with 2< p < 2∗ < q such that

|t | ≥ 1 ⇒ |f (t)| ≤ M|t |p−1 and |t | ≤ 1 ⇒ |f (t)| ≤ M|t |q−1 ;
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(f2) t ≤ 0 ⇒ f (t) ≥ 0 ;
(f3) there existsσ > 2 such that

F(t) ≤
1

σ
f (t)t for all t ∈ R

whereF(t) :=
∫ t

0 f (s)ds for anyt ∈ R ;
(f4) there existst∗ ∈ R such thatF(t∗) > 0 .

Example 1. It is easy to see that the assumptions(f1)–(f4) are satisfied by

f (t) =

0 for t ≤ 0
tq−1

1 + tq−p
for t > 0

with 2< p < 2∗ < q.

Let us observe that from assumption(f1) one readily deduces that

(f ′

1) there existsM > 0 such that|f (t)| ≤ M|t |2
∗
−1 for all t ∈ R,

which in turn implies that

(F) there existsC > 0 such that|F(t)| ≤ C|t |2
∗

for all t ∈ R .

We will work in the linear space

X(RN ) :=

{
u ∈ D1,2(RN ) :

∫
RN

u2

|y|2
dx < ∞

}
whose properties of interest to us are studied in Section 3. ByD1,2(RN ) we mean the
completion ofC∞

c (RN ) with respect to the norm‖u‖D1,2 = ‖∇u‖L2(RN ). Observe that
X(RN ) = D1,2(RN ) if k > 2 (see Remark 7). We will also consider the linear subspace

Xs(RN ) := {u ∈ X(RN ) : u(y, z) = u(|y|, z)}

where, with a slight abuse of notation, writingu(y, z) = u(|y|, z) we naturally mean
u(y, z) = u(gy, z) for any rotationg : Rk → Rk and almost every(y, z) ∈ RN .

Our main result is Theorem 3, which states the existence of weak solutions to equation
(6) in the sense of the following definition.

Definition 2. Letf ∈ C(R; R) satisfy(f ′

1). We say thatu ∈ X(RN ) is aweak solutionof
equation(6) if∫

RN
∇u · ∇ϕ dx +

∫
RN

uϕ

|y|2
dx =

∫
RN
f (u)ϕ dx for all ϕ ∈ H 1

+X(RN ).

Theorem 3. Assume thatf ∈ C(R; R) satisfies hypotheses(f1)–(f4). Then equation(6)
has a nontrivial weak solutionu ∈ H 1

∩ L∞
∩Xs(RN ) such thatu ≥ 0 and

lim sup
|x|→∞

|x|νu(x) < ∞ for anyν <
N − 2 +

√
(N − 2)2 + 4

2
. (7)
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Theorem 3 is a consequence of Propositions 6 and 5 below together with the following
existence result.

Theorem 4. Assume thatf ∈ C(R; R) satisfies hypotheses(f1)–(f4). Then there exists a
nontrivial u ∈ Xs(RN ), u ≥ 0, such that∫

RN
∇u · ∇ϕ dx +

∫
RN

uϕ

|y|2
dx =

∫
RN
f (u)ϕ dx for all ϕ ∈ X(RN ). (8)

Theorem 4 will be proved in Section 4 by variational methods. The natural space related
to the growth conditions(f1) isLp(RN )+ Lq(RN ) (see [9], [10], [15] and [29]). In spite
of that, it will not be involved in our functional setting, since many of our computations
only require condition(f ′

1). However, assumption(f1) is crucial for our existence result
and it will be used directly in the proof of Lemmas 24 and 25. As usual, hypothesis(f3)
is used to prove the boundedness of the Palais–Smale sequences of the Euler functional
I related to equation (6) and defined onX(RN ). Such a sequence is provided by the
“mountain-pass” geometry ofI , which is granted by assumption(f4), and will be studied
by means of the concentration-compactness principle, in a version due to Solimini [33].
Finally, condition(f2) is assumed to yield the nonnegativity of the critical points ofI .

Once Theorem 4 is proved, to get Theorem 3 we need to study the asymptotic and
summability properties of the weak solutionu ≥ 0 obtained; in particular we have to
show thatu actually belongs toH 1. Moreover, we have to ensure that equation (8) is
satisfied by any test functionϕ ∈ H 1. These are the aims of the following propositions.

Proposition 5. Let f ∈ C(R; R) satisfy(f ′

1). If u ∈ X(RN ) is such thatu ≥ 0 and (8)
holds, then∫

RN
∇u · ∇ϕ dx +

∫
RN

uϕ

|y|2
dx =

∫
RN
f (u)ϕ dx for all ϕ ∈ H 1(RN ).

Proposition 6. Letf ∈ C(R; R) satisfy(f ′

1). Then any weak solutionu ≥ 0 of equation
(6) is bounded, belongs toL2(RN ) and satisfies(7).

Proposition 5, which is trivial fork > 2 (Remark 7), is an extendibility result ifk = 2,
and it will be proved in Section 5.

In Proposition 6 we study properties of nonnegative weak solutions. The proof, which
is given in Section 6, relies on a comparison argument and takes advantage of asymptotic
results due to Egnell [22].

As announced in the introduction, Theorem 3 yields some other existence result, re-
garding the caseN = 3. Needing some preliminary discussion, they will be stated and
proved in Section 7.

3. Functional setting

3.1. A weighted Sobolev space

We will work in the Hilbert space

D1,2 := D1,2(RN ) = {u ∈ L2∗

(RN ) : ∇u ∈ L2(RN )}
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endowed with the norm‖u‖D1,2 = ‖∇u‖L2. Let us also recall that, for any given open
subset� ⊆ RN , D1,2

0 (�) denotes the closure ofC∞
c (�) in D1,2(�) = {u ∈ L2∗

(�) :
∇u ∈ L2(�)} with respect to the norm‖u‖D1,2(�) = ‖u‖L2∗

(�) + ‖∇u‖L2(�). We define

X := X(RN ) =

{
u ∈ D1,2 :

∫
RN

u2

|y|2
dx < ∞

}
,

which is a Hilbert space with respect to the norm

‖u‖2 :=
∫

RN
|∇u|2 dx +

∫
RN

u2

|y|2
dx

induced by the scalar product

(u | v) :=
∫

RN
∇u · ∇v dx +

∫
RN

uv

|y|2
dx. (9)

Clearly
Xs := Xs(RN ) = {u ∈ X : u(y, z) = u(|y|, z)}

is a closed subspace ofX. Let us point out that weak convergence inX (or Xs) implies
pointwise convergence (up to a subsequence and almost everywhere).

Remark 7. If k > 2 then, by the Sobolev–Hardy inequalities [6], one has

∀u ∈ D1,2(RN )
∫

RN

u2

|y|2
dx ≤

(
2

k − 2

)2 ∫
RN

|∇u|2 dx.

HenceX = D1,2(RN ) and the norms‖ · ‖ and‖ · ‖D1,2 are equivalent.

Remark 8. If z̃0 = (0, z0) ∈ RN , λ > 0, g ∈ O(k) andu ∈ X, then

‖u(λ−1
· + z̃0)‖ = λ(N−2)/2

‖u‖ and (u | v(g ·, ·)) = (u(g−1
·, ·) | v). (10)

Of courseXs = {u ∈ X : u(g ·, ·) = u for all g ∈ O(k)}.

For later use, we recall here a result due to S. Solimini [33]. First we have to introduce
a group of rescaling operators, of which we also give the basic properties that will be
useful in the following.

Definition 9. Fix λ > 0 andξ ∈ RN . For anyu ∈ Lr(RN ) with 1< r < ∞ we define

T (λ, ξ)u := λ−(N−2)/2u(λ−1
· + ξ).

ClearlyT (λ, ξ)u ∈ Lr for all u ∈ Lr and in particularT (λ, ξ)u ∈ D1,2 if u ∈ D1,2.
Moreover, by direct computations, it is easy to see that the linear operatorsu ∈ L2∗

7→

T (λ, ξ)u ∈ L2∗

andu ∈ D1,2
7→ T (λ, ξ)u ∈ D1,2 are isometric. Notice that

T (λ, ξ)−1
= T (1/λ,−λξ) and T (λ, ξ)T (µ, η) = T (λµ, ξ/µ+ η). (11)
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Remark 10. For anyz̃0 = (0, z0) ∈ RN andλ > 0, from Remark 8 we readily deduce
that the linear operatoru ∈ X 7→ T (λ, z̃0)u ∈ X is an isometry. ClearlyT (λ, z̃0)u ∈ Xs
if u ∈ Xs .

Proposition 11. Let 1 < r < ∞ and assume that{λn} ⊂ (0,∞) and {ξn} ⊂ RN are
such thatλn → λ 6= 0 andξn → ξ . Then

T (λn, ξn)un ⇀ T (λ, ξ)u in Lr(RN )

if un ⇀ u in Lr(RN ).

Proof. Let Tn := T (λn, ξn) andT := T (λ, ξ). Applying the Lebesgue dominated con-
vergence theorem, it is easy to check that

T −1
n ϕ → T −1ϕ in Lr

′

for anyϕ ∈ C∞
c (RN ). Arguing by density, we can conclude that the convergence actually

holds for anyϕ ∈ Lr
′

. As a consequence, by obvious changes of variables, we get∫
RN
(Tnun)ϕ dx = λ2

n

∫
RN
un(T

−1
n ϕ) dx → λ2

∫
RN
u(T −1ϕ) dx =

∫
RN
(T u)ϕ dx

for anyϕ ∈ Lr
′

. ut

Remark 12. Let {λn} ⊂ (0,∞) and{z̃n} ⊂ {0} × RN−k be such thatλn → λ 6= 0 and
z̃n → z̃. By Proposition 11 and Remark 10, it is easy to see that ifun ⇀ u in X (orXs)
then, up to a subsequence,T (λn, z̃n)un ⇀ T (λ, z̃)u in X (orXs).

The main result we will exploit about these rescalings is the following, due to S. Soli-
mini. It is a version of the concentration-compactness principle.

Theorem 13 ([33]). If {un} ⊂ D1,2(RN ) is bounded, then, up to a subsequence, either
un → 0 in L2∗

(RN ) or there exist{λn} ⊂ (0,∞) and{ξn} ⊂ RN such thatT (λn, ξn)un
⇀ u in L2∗

(RN ) andu 6= 0.

3.2. The Euler functional

Assume thatf ∈ C(R; R) satisfies hypothesis(f ′

1) and set

I (u) :=
1

2
‖u‖2

−

∫
RN
F(u) dx.

Thanks to condition(f ′

1), by standard computations one proves thatI : X → R is of class
C1 with Fréchet derivativeI ′(u) at anyu ∈ X given by

∀h ∈ X I ′(u)h = (u | h)−

∫
RN
f (u)h dx. (12)
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Proposition 14. For anyh ∈ X(RN ) the mappingI ′(·)h : X(RN ) → R is sequentially
weakly continuous.

Proof. Of course we need only consider the nonlinear term of the mapping. So we
fix h ∈ D1,2 and show the sequential weak continuity onD1,2 of the mapping
u 7→

∫
RN f (u)h dx. Accordingly, assumingun ⇀ u in D1,2, we need to show that∫

RN f (un)h dx →
∫
RN f (u)h dx. With a view to arguing by density, letϕ ∈ C∞

c (RN )
and letR > 0 be such that suppϕ ⊂ BR. From the compactness of the embedding
D1,2(RN ) ↪→ L2∗

−1(BR) we deduce thatun → u in L2∗
−1(BR). On the other hand, con-

dition (f ′

1) ensures the continuity of the Nemytskiı̆ operatorf : L2∗
−1(BR) → L1(BR).

Hence
∫
RN |f (un)−f (u)| |ϕ| dx → 0. Now, by(f ′

1) and the boundedness of{un} in L2∗

,
one has∫

RN
|f (un)− f (u)| |h| dx ≤ C‖h− ϕ‖L2∗ +

∫
RN

|f (un)− f (u)| |ϕ| dx.

The density ofC∞
c (RN ) in D1,2(RN ) allows us to conclude. ut

Proposition 15. (i) For all u ∈ X andλ > 0 we have

I (u(λ−1
·)) =

λN−2

2
‖u‖2

− λN
∫

RN
F(u) dx.

(ii) If u ∈ Xs then for allh ∈ X andg ∈ O(k) we have

I ′(u)h(g ·, ·) = I ′(u)h .

Proof. By suitable changes of variables, it is a straightforward computation. ut

Remark 16. Define the gradient∇I (u) of I atu ∈ X by ∇I (u) ∈ X and(∇I (u) | h) =

I ′(u)h for all h ∈ X. By (10) and Proposition 15(ii) it is easy to see thatu ∈ Xs implies
∇I (u) ∈ Xs , so that(∇I (u) | h) = 0 for all h ∈ Xs means∇I (u) = 0.

Lemma 17. If (f4) holds, then there existsu ∈ Xs such that
∫
RN F(u) dx > 0.

Proof. ForR ≥ 3, let φR ∈ C∞
c (R; R) be such that 0≤ φR ≤ 1 with φR(t) = 0 for

t ≤ 1 or t ≥ R + 1 andφR(t) = 1 for 2 ≤ t ≤ R. SettinguR(x) := φR(|y|)φR(|z|) for
all x ∈ RN , one checks that

∫
RN F(t∗uR) dx ≥ CRN + o(RN ) asR → ∞. ut

Proposition 18. If assumptions(f3) and (f4) hold, then there existc > 0 and a bounded
sequence{wn} ⊂ Xs such that

I (wn) → c and I ′(wn)|Xs → 0 in X′
s .

Proof. I|Xs ∈ C1(Xs; R) has a “mountain-pass” geometry. Indeed, on the one hand, we
haveI (0) = 0 and

‖u‖ = ρ ⇒ I (u) ≥
1

2
ρ2

− Cρ2∗

,
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as follows from the fact that(F) implies |F(u)| ≤ C|u|2
∗

so that for allu ∈ X one has
|
∫
RN F(u) dx| ≤ C‖u‖2∗

by the Sobolev inequality. On the other hand, for anyu ∈ Xs
such that

∫
RN F(u) dx > 0 (see Lemma 17), from (10) and Proposition 15(i) we get

lim
λ→∞

‖u(λ−1
· )‖ = ∞ and lim

λ→∞
I (u(λ−1

· )) = −∞

with u(λ−1
·) ∈ Xs . Hence usual minimax arguments (see for instance Section 2.3 in [34])

provide the existence of a levelc > 0 and a sequence{wn} ⊂ Xs such thatI (wn) → c

andI ′(wn)|Xs → 0 in X′
s . Exploiting assumption(f3), a standard argument shows that

{wn} has to be bounded inXs . ut

4. The existence result

This section is devoted to the proof of Theorem 4, which will be achieved through several
lemmata. Assume thatf ∈ C(R; R) satisfies hypotheses(f1)–(f4). As usual, we take
N > k ≥ 2 and writex = (y, z) ∈ Rk × RN−k. Since we will very often pass from a
sequence to a subsequence, for simplicity we shall maintain the same indices.

From (12) and (9) one clearly sees that any critical point ofI : X → R satisfies (8).
On the other hand, Remark 16 shows thatXs is a natural constraint for finding critical
points of I . Hence, in order to prove Theorem 4, we look for nonzero critical points
of I|Xs .

The starting point is the bounded Palais–Smale sequence{wn} ⊂ Xs provided by
Proposition 18, which, we recall, is such that

I (wn) → c > 0 and I ′(wn) → 0 inX′
s .

Since{wn} is bounded inD1,2, it must satisfy one of the alternatives allowed by Theo-
rem 13. We now show that the first one can easily be ruled out.

Lemma 19. The sequences{wn} does not converge to0 in L2∗

(RN ).

Proof. Assume thatwn → 0 inL2∗

. From(f ′

1) and(F) we derive|f (wn)wn| ≤ C|wn|
2∗

and|F(wn)| ≤ C|wn|
2∗

almost everywhere inRN , so that∫
RN
f (wn)wn dx → 0 and

∫
RN
F(wn) dx → 0.

On the other hand,I ′(wn)wn → 0 sinceI ′(wn) → 0 inX′
s and{wn} ⊂ Xs is bounded.

Therefore we conclude

‖wn‖
2

= I ′(wn)wn +

∫
RN
f (wn)wn dx → 0

and thus

I (wn) =
1

2
‖wn‖

2
−

∫
RN
F(wn) dx → 0,

which contradictsI (wn) → c > 0. ut



A nonlinear elliptic equation 365

Corollary 20. Up to a subsequence, there exist{λn} ⊂ (0,∞) and{xn} ⊂ RN such that

T (λn, xn)wn ⇀ w̃ in L2∗

(RN ) and w̃ 6= 0.

Proof. Apply Theorem 13 and use Lemma 19. ut

Now we can easily exploit thez-translation invariance of equation (6) to slightly improve
the result of Corollary 20. To this end, we setxn =: (yn, zn), ỹn := (yn,0) and z̃n :=
(0, zn), so thatxn = ỹn + z̃n.

Lemma 21. Letun := T (1, z̃n)wn. Then{un} ⊂ Xs is bounded and such that

I ′(un) → 0 in X′
s and T (λn, ỹn)un ⇀ w̃ in L2∗

(RN ).

Proof. Since{wn} ⊂ Xs is bounded, from Remark 10 we deduce that{un} ⊂ Xs is
bounded. Moreover, recalling (11), we have

T (λn, ỹn)un = T (λn, ỹn)T (1, z̃n)wn = T (λn, xn)wn ⇀ w̃ in L2∗

(RN ).

Finally, by easy computation, one has

I ′(un)h = (wn( · + z̃n) | h)−

∫
RN
f (wn( · + z̃n))h dx

= (wn | h( · − z̃n))−

∫
RN
f (wn)h( · − z̃n) dx

= I ′(wn)T (1,−z̃n)h

for all h ∈ Xs , so that‖I ′(un)‖X′
s
= ‖I ′(wn)‖X′

s
again by Remark 10. ut

The next point in the proof of Theorem 4 is the removal of translations from the rescalings
T (λn, ỹn). This is the topic of Lemma 23, where we will take advantage of the following
elementary proposition.

Proposition 22. Let {ηn} ⊂ Rk be such thatlimn→∞ |ηn| = ∞ and fixR > 0. Then
for anym ∈ N \ {0,1} there existsnm ∈ N such that for anyn > nm one can find
g1, . . . , gm ∈ O(k) satisfying the condition

i 6= j ⇒ BR(giηn) ∩ BR(gjηn) = ∅.

Proof. Fixm ∈ N\{0,1} and let{ξ1, . . . , ξm} ⊂ Rk be such that|ξi | = 1 for i = 1, . . . , m
and

δm := min{|ξi − ξj | : i, j = 1, . . . , m with i 6= j} > 0.

For allρ > ρm := 2Rδ−1
m , i 6= j implies

|ρξi − ρξj | = ρ|ξi − ξj | > ρmδm = 2R

and hence
inf

ξ∈BR(ρξi ), η∈BR(ρξj )
|ξ − η| ≥ |ρξi − ρξj | − 2R > 0

so thatBR(ρξi) ∩ BR(ρξj ) = ∅. Then, since there existsnm ∈ N such that|ηn| > ρm for
all n > nm, the proof is completed by takingg1, . . . , gm ∈ O(k) such thatgiηn = |ηn|ξi
for i = 1, . . . , m. ut
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Lemma 23. Up to a subsequence, we have

T (λn,0)un ⇀ ũ in Xs and ũ 6= 0.

Proof. Let T̃n := T (λn, ỹn) and

vn := T (λn,0)un.

From Remark 10 we getvn ∈ Xs and‖vn‖ = ‖un‖, so that (up to a subsequence) we can
assumevn ⇀ ũ in Xs . If ũ 6= 0 the proof is complete. We now show by contradiction
thatũ = 0 is impossible. So, assume

vn ⇀ 0 inXs . (13)

We recall from Lemma 21 that̃Tnun ⇀ w̃ 6= 0 inL2∗

.
First, we deduce that

lim
n→∞

|λnỹn| = ∞. (14)

Otherwise, up to a subsequenceλnỹn → ỹ0 ∈ Rk × {0} and

T (1,−λnỹn)T̃nun ⇀ T (1,−ỹ0)w̃ in L2∗

by Proposition 11. But, sinceT (1,−λnỹn)T̃n = T (λn,0), this meansvn ⇀ T (1,−ỹ0)w̃

6= 0 inL2∗

, which contradicts (13).
Sincew̃ 6= 0, there existδ > 0 andA ⊆ RN with |A| 6= 0 such that either̃w > δ

or w̃ < −δ almost everywhere inA. Fixing R > 0 such that|BR ∩ A| > 0, by weak
convergence we obtain∣∣∣∣∫RN

T̃nunχBR∩A dx

∣∣∣∣ →

∣∣∣∣∫RN
w̃χBR∩A dx

∣∣∣∣ ≥ δ|BR ∩ A| > 0. (15)

On the other hand,̃Tnun = T̃nT (λn,0)−1vn = T (1, λnỹn)vn and hence∣∣∣∣∫RN
T̃nunχBR∩A dx

∣∣∣∣ ≤

∫
BR

|T̃nun| dx =

∫
BR(λnỹn)

|vn| dx

≤ C

(∫
BR(λnỹn)

|vn|
2∗

dx

)1/2∗

(16)

whereC > 0 only depends onR andN . From (15) and (16) we now deduce that

lim inf
n→∞

∫
BR(λnỹn)

|vn|
2∗

dx > 0

and hence, up to a subsequence, we can assume

inf
n

∫
BR(λnỹn)

|vn|
2∗

dx > ε for someε > 0. (17)
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This will yield a contradiction. Indeed, using (14), from Proposition 22 it readily follows
that for everym ∈ N \ {0,1} there existsnm ∈ N such that for anyn > nm one can find
g1, . . . , gm ∈ O(k) satisfying the condition

i 6= j ⇒ BR(λn(giyn,0)) ∩ BR(λn(gjyn,0)) = ∅.

As a consequence, using (17) and the fact thatvn ∈ Xs , we get∫
RN

|vn|
2∗

dx ≥

m∑
i=1

∫
BR(λn(giyn,0))

|vn|
2∗

dx =

m∑
i=1

∫
BR(λnỹn)

|vn|
2∗

dx > mε

for everym ∈ N \ {0,1} andn > nm. This finally implies∫
RN

|vn|
2∗

dx → ∞,

which is a contradiction, since‖vn‖L2∗ = ‖T (λn,0)un‖L2∗ = ‖un‖L2∗ and {un} is
bounded inL2∗

. ut

In order to apply Proposition 11 and thus to conclude that{un} has a nonzero weak limit
in Xs , we need to check that the dilation parameters{λn} are actually well-behaved. This
is the content of the next two lemmata.

Lemma 24. There existsc1 > 0 such thatλn ≥ c1 for all n, i.e. infn λn > 0.

Proof. Arguing by contradiction, up to a subsequence we assumeλn → 0 and setTn :=
T (λn,0). Recall from Lemma 23 thatTnun ⇀ ũ 6= 0 inXs , so that (up to a subsequence)
we can also assume thatTnun → ũ almost everywhere inRN . From Remark 10 we get
T −1
n ũ ∈ Xs and‖T −1

n ũ‖ = ‖ũ‖, so that

|I ′(un)T
−1
n ũ| ≤ ‖I ′(un)‖X′

s
‖ũ‖ → 0 (18)

sinceI ′(un) → 0 inX′
s (see Lemma 21). On the other hand, using the isometry property

of u ∈ Xs 7→ Tnu ∈ Xs and making an obvious change of variables, we obtain

I ′(un)T
−1
n ũ = (un | T −1

n ũ)− λ
(N−2)/2
n

∫
RN
f (un)ũ(λn ·) dx

= (Tnun | ũ)− λ
−(N+2)/2
n

∫
RN
f (un(λ

−1
n ·))ũ dx

= (Tnun | ũ)− λ
−(N+2)/2
n

∫
RN
f (λ

(N−2)/2
n Tnun)ũ dx. (19)

Then (18) and (19) yield

an :=

∣∣∣∣λ−(N+2)/2
n

∫
RN
f (λ

(N−2)/2
n Tnun)ũ dx

∣∣∣∣ → ‖ũ‖2
6= 0.

In order to get a contradiction, we now prove that limn→∞ an = 0.
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Givenε > 0, letRε > 0 be such that
∫
|x|>Rε

|ũ|2
∗

dx < ε. Thus, by(f ′

1) and Ḧolder’s
inequality, for alln we get∣∣∣∣λ−(N+2)/2

n

∫
|x|>Rε

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣
≤ λ

−(N+2)/2
n C

∫
|x|>Rε

|λ
(N−2)/2
n Tnun|

2∗
−1

|ũ| dx = C

∫
|x|>Rε

|Tnun|
2∗

−1
|ũ| dx

≤ C

(∫
RN

|Tnun|
2∗

dx

)(2∗
−1)/2∗(∫

|x|>Rε

|ũ|2
∗

dx

)1/2∗

≤ C1ε
1/2∗

whereC1 > 0 is related tof and to the fact that{Tnun} is bounded inXs and thus inL2∗

,
but does not depend onε andn. Hence

an ≤

∣∣∣∣λ−(N+2)/2
n

∫
BRε

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣ + C1ε
1/2∗

for all n . (20)

With a view to studying the integral overBRε , for any l ∈ N we define the measurable
sets

Aε,l := {x ∈ BRε : |ũ(x)| < l}, Acε,l := BRε \ Aε,l,

and consider, by the well known Egorov theorem on quasi-uniform convergence, a mea-
surable setDε,l ⊆ BRε such that

|BRε \Dε,l | < 1/l

and
∀η > 0 ∃nη ∀n ≥ nη |Tnun − ũ| < η a.e. inDε,l . (21)

Clearly liml→∞ |Acε,l | = 0 and liml→∞ |Aε,l \ (Aε,l ∩Dε,l)| ≤ liml→∞ |BRε \Dε,l | = 0,
so that

αε,l :=
∫
Acε,l

|ũ|2
∗

dx → 0, βε,l :=
∫
Aε,l\(Aε,l∩Dε,l)

|ũ|2
∗

dx → 0

asl → ∞ with ε fixed. Then, by(f ′

1) and Ḧolder’s inequality as before, for alln we get∣∣∣∣λ−(N+2)/2
n

∫
Acε,l

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣ ≤ C1α
1/2∗

ε,l

and ∣∣∣∣λ−(N+2)/2
n

∫
Aε,l\(Aε,l∩Dε,l)

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣ ≤ C1β
1/2∗

ε,l ,

so that (20) gives

an ≤

∣∣∣∣λ−(N+2)/2
n

∫
Aε,l∩Dε,l

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣ + C1(ε
1/2∗

+ α
1/2∗

ε,l + β
1/2∗

ε,l ) (22)
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for all n. In order to estimate the integral overAε,l ∩Dε,l , we observe that by (21) there
existsnε,l ∈ N such that

∀n ≥ nε,l |Tnun − ũ| < 1 a.e. inAε,l ∩Dε,l

and then

∀n ≥ nε,l |Tnun| < 1 + |ũ| < 1 + l a.e. inAε,l ∩Dε,l .

As assumption(f1) yields|f (t)| ≤ M|t |q−1 for all t ∈ R, one obtains∣∣∣∣λ−(N+2)/2
n

∫
Aε,l∩Dε,l

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣
≤ λ

−(N+2)/2
n M

∫
Aε,l∩Dε,l

|λ
(N−2)/2
n Tnun|

q−1
|ũ| dx

≤ λ
−(N+2)/2
n Mλ

(N−2)(q−1)/2
n (1 + l)q−1l|Aε,l ∩Dε,l |

= Cε,lλ
(N−2)(q−1)/2−(N+2)/2
n

for all n ≥ nε,l , whereCε,l > 0 does not depend onn. Together with (22), this implies

an ≤ Cε,lλ
(N−2)(q−1)/2−(N+2)/2
n + C1(ε

1/2∗

+ α
1/2∗

ε,l + β
1/2∗

ε,l ) for all n ≥ nε,l .

Hence

lim sup
n→∞

an ≤ C1(ε
1/2∗

+ α
1/2∗

ε,l + β
1/2∗

ε,l )

sinceλn → 0 and(N − 2)(q − 1)/2 − (N + 2)/2 = (N − 2)(q − 2∗)/2 > 0. Finally,
letting first l → ∞ with ε fixed and thenε → 0, we get lim supn→∞ an ≤ 0, which
means limn→∞ an = 0 sincean ≥ 0. As this is a contradiction, the lemma is proved.ut

Lemma 25. There existsc2 > 0 such thatλn ≤ c2 for all n, i.e.supn λn < ∞.

Proof. The argument is analogous to the one in the proof of Lemma 24. Up to a sub-
sequence, we assumeλn → ∞ andTnun → ũ almost everywhere inRN , where, by
Lemma 23,Tn := T (λn,0) is such thatTnun ⇀ ũ 6= 0 inXs . Exactly as in the proof of
Lemma 24, we deduce that

an :=

∣∣∣∣λ−(N+2)/2
n

∫
RN
f (λ

(N−2)/2
n Tnun)ũ dx

∣∣∣∣ → ‖ũ‖2
6= 0 (23)

and that for anyε > 0 there existsRε > 0 such that

an ≤

∣∣∣∣λ−(N+2)/2
n

∫
BRε

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣ + C1ε
1/2∗

for all n (24)
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whereC1 > 0 only depends onf and supn ‖Tnun‖L2∗ < ∞, not onε andn. Now observe
that assumption(f1) implies|f (t)| ≤ M|t |p−1 for everyt ∈ R. Hence for alln we have

∣∣∣∣λ−(N+2)/2
n

∫
BRε

f (λ
(N−2)/2
n Tnun)ũ dx

∣∣∣∣
≤λ

−(N+2)/2
n M

∫
BRε

|λ
(N−2)/2
n Tnun|

p−1
|ũ|dx

≤λ
−(N+2)/2
n Mλ

(N−2)(p−1)/2
n

∫
BRε

|Tnun|
p−1

|ũ|dx

≤Mλ
(N−2)(p−1)/2−(N+2)/2
n

(∫
BRε

|Tnun|
(p−1)2∗/(2∗

−1) dx

)(2∗
−1)/2∗(∫

BRε

|ũ|2
∗

dx

)1/2∗

≤Mλ
(N−2)(p−2∗)/2
n |BRε |

(2∗
−p)/2∗

(∫
BRε

|Tnun|
2∗

dx

)(p−1)/2∗

‖ũ‖L2∗

≤Mλ
(N−2)(q−2∗)/2
n |BRε |

(2∗
−p)/2∗

sup
n

‖Tnun‖
p−1
L2∗ ‖ũ‖L2∗

=Cελ
(N−2)(p−2∗)/2
n

where we have used the fact that(p − 1)2∗/(2∗
− 1) < 2∗ to apply Ḧolder inequalities.

Note thatCε > 0 does not depend onn, since{Tnun} is bounded inL2∗

. Recalling (24),
this implies

an ≤ Cελ
(N−2)(p−2∗)/2
n + C1ε

1/2∗

for all n

so that

lim sup
n→∞

an ≤ C1ε
1/2∗

sinceλn → ∞ and (N − 2)(p − 2∗)/2 < 0. Therefore, lettingε → 0, one obtains
limn→∞ an = 0, which contradicts (23). Thus no diverging subsequence is allowed and
the assertion is proved. ut

We are now able to easily conclude the proof of Theorem 4.

Proof of Theorem 4.By the last Lemmata 24 and 25, up to a subsequence we can assume
λn → λ 6= 0. Thus, fromT (λn,0)un ⇀ ũ 6= 0 inXs we deduce

un ⇀ u := T (λ,0)−1ũ 6= 0 inXs

(up to a subsequence) by Remark 12. Therefore, recalling from Lemma 21 thatI ′(un)

→ 0 in X′
s , by Proposition 14 one concludes thatu ∈ Xs is a critical point forI|Xs .

HenceI ′(u) = 0 inX′ (see Remark 16), i.e.,u satisfies (8). Since the nonnegativity ofu
easily follows from hypothesis(f2), the proof is complete. ut



A nonlinear elliptic equation 371

5. The extendibility result

In this section we assume thatf ∈ C(R; R) satisfies condition(f ′

1) andu ∈ X is such
thatu ≥ 0 and∫

RN
∇u · ∇ϕ dx +

∫
RN

uϕ

|y|2
dx =

∫
RN
f (u)ϕ dx for all ϕ ∈ X. (25)

Recall from Remark 7 thatX ⊃ H 1 if k > 2. We are going to show that (25) holds
true for everyϕ ∈ H 1 also in the casek = 2. Accordingly, in this section we write
x = (y, z) ∈ R2

× RN−2 with N > 2. As a result, this proves Proposition 5 and allows
us to conclude that Theorem 4 actually provides a weak solution to equation (6), in the
sense of Definition 2.

Our goal will be achieved in several steps.

Step 1. We begin by proving (25) for anyϕ ∈ H 1(RN ) satisfyingϕ ≥ 0, ϕ ∈ L∞(RN )
and suppϕ ⊂ B

(2)
R × B

(N−2)
R for someR > 0.

For this purpose, consider a sequence{ηn} ⊂ C∞(RN ; R) defined as follows: given
η ∈ C∞(R; R) such that 0≤ η ≤ 1, η = 0 in (−∞,1] andη = 1 in [2,∞), set
ηn(x) := η(n|y|) for anyn ∈ N such that 1/n < R. Thus, for alln one has

• 0 ≤ ηn ≤ 1,
• ηn = 0 in B̄1/n × RN−2 andηn = 1 in (R2

\ B2/n)× RN−2,
• |∇ηn| ≤ n‖η′

‖L∞(R) and|∇ηn| = 0 in (B̄1/n ∪ (R2
\ B2/n))× RN−2.

Moreover,ηn → 1 almost everywhere inRN .
Sinceηn ∈ C∞ andϕ ∈ H 1, it is easy to see thatϕηn ∈ H 1

⊂ D1,2 with weak
derivatives∇(ϕηn) = ηn∇ϕ + ϕ∇ηn. Moreover,∫

RN

ϕ2η2
n

|y|2
dx =

∫
1/n<|y|<R

ϕ2η2
n

|y|2
dx ≤ n2

∫
B
(2)
R ×B

(N−2)
R

ϕ2 dx ≤ C‖ϕ‖L2∗ .

As a consequence,ϕηn ∈ X and therefore, by (25),∫
RN

∇u · ∇ϕ ηn dx +

∫
RN

∇u · ∇ηnϕ dx +

∫
RN

uϕηn

|y|2
dx =

∫
RN
f (u)ϕηn dx. (26)

By the Lebesgue dominated convergence theorem, one obtains

lim
n→∞

∫
RN

∇u · ∇ϕ ηn dx =

∫
RN

∇u · ∇ϕ dx (27)

and

lim
n→∞

∫
RN
f (u)ϕηn dx =

∫
RN
f (u)ϕ dx. (28)
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On the other hand, settingAn := {x ∈ B
(2)
R × B

(N−2)
R : 1/n < |y| < 2/n}, we have

|An| = C/n2 and∣∣∣∣∫RN
∇u · ∇ηnϕ dx

∣∣∣∣ ≤ ‖ϕ‖L∞

∫
An

|∇u| |∇ηn| dx

≤ C

(∫
An

|∇u|2 dx

)1/2(∫
An

|∇ηn|
2 dx

)1/2

≤ C

(∫
An

|∇u|2 dx

)1/2

n|An|
1/2

= C

(∫
An

|∇u|2 dx

)1/2

.

Since|An| → 0, this implies

lim
n→∞

∫
RN

∇u · ∇ηnϕ dx = 0. (29)

We now use the assumptionu ≥ 0 to estimate the integrals
∫
RN |y|−2uϕηn dx asn → ∞.

From (26)–(29), we get

lim
n→∞

∫
RN

uϕηn

|y|2
dx =

∫
RN
f (u)ϕ dx −

∫
RN

∇u · ∇ϕ dx (30)

and, since 0≤ |y|−2uϕηn → |y|−2uϕ almost everywhere inRN , by the Fatou lemma
we deduce|y|−2uϕ ∈ L1(RN ). Since|y|−2uϕηn ≤ |y|−2uϕ, the Lebesgue dominated
convergence theorem finally yields

lim
n→∞

∫
RN

uϕηn

|y|2
dx =

∫
RN

uϕ

|y|2
dx. (31)

As a result, from (30)–(31) we infer that (25) also holds for everyϕ ∈ H 1 such that
ϕ ≥ 0,ϕ ∈ L∞ and suppϕ is bounded.

Step 2. Now considerϕ ∈ H 1(RN ) with ϕ ≥ 0 andϕ ∈ L∞(RN ).
We will use a truncating sequence{ζn} ⊂ C∞

c (RN ; R), defined as follows: given
ζ ∈ C∞(R; R) such that 0≤ ζ ≤ 1, ζ = 1 in (−∞,1] and ζ = 0 in [2,∞), set
ζn(x) := ζ(n−1

|x|) for anyn ∈ N \ {0}. Thus, for alln one has

• 0 ≤ ζn ≤ 1,
• ζn = 1 in B̄n andζn = 0 in RN \ B2n,
• |∇ζn| ≤ ‖ζ ′

‖L∞(R).

Moreover,ζn → 1 pointwise inRN .
Sinceζn ∈ C∞

c andϕ ∈ H 1, it is easy to see thatϕζn ∈ H 1 with weak deriva-
tives∇(ϕζn) = ζn∇ϕ + ϕ∇ζn. Clearlyϕζn ∈ L∞(RN ) is nonnegative and compactly
supported. Hence the result of Step 1 yields∫

RN
∇u · ∇ϕ ζn dx +

∫
RN

∇u · ∇ζnϕ dx +

∫
RN

uϕζn

|y|2
dx =

∫
RN
f (u)ϕζn dx
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and we argue as before to obtain (25). Here the convergence

lim
n→∞

∫
RN

∇u · ∇ζnϕ dx = 0

plainly follows by the Lebesgue dominated convergence theorem.

Step 3. We now drop the boundedness requirement and considerϕ ∈ H 1(RN ) such that
ϕ ≥ 0.

For all n ∈ N, setϕn := min(n, ϕ) = ϕ − (ϕ − n)+. It is obvious that 0≤ ϕn ≤ n

and it is easy to see thatϕn → ϕ in H 1. Hence, by Step 2, we have∫
RN

∇u · ∇ϕn dx +

∫
RN

uϕn

|y|2
dx =

∫
RN
f (u)ϕn dx

with limn→∞

∫
RN ∇u · ∇ϕn dx =

∫
RN ∇u · ∇ϕ dx and limn→∞

∫
RN f (u)ϕn dx =∫

RN f (u)ϕ dx (recall thatf (u) ∈ L2∗/(2∗
−1) andϕn → ϕ in L2∗

). Sinceϕn ≤ ϕ, the
same argument of Step 1 finally shows that

lim
n→∞

∫
RN

uϕn

|y|2
dx =

∫
RN

uϕ

|y|2
dx.

Step 4. Without any assumption on the sign ofϕ ∈ H 1(RN ), one can apply the result of
Step 3 to bothϕ+, ϕ− ≥ 0 and then deduce (25) forϕ = ϕ+ − ϕ−.

6. Properties of weak solutions

In this section we study asymptotic and summability properties of nonnegative weak so-
lutions of equation (6), which amounts to proving Proposition 6 and thus, by Theorem 4
and Proposition 5, to concluding the proof of Theorem 3. Accordingly, we assume that
f ∈ C(R; R) satisfies condition(f ′

1) andu ≥ 0 is a weak solution in the sense of Defini-
tion 2.

Let us recall the following result from [22].

Theorem 26 ([22]). Assume thath ∈ D1,2(RN ) is nonnegative and satisfies∫
RN

∇h · ∇ϕ dx ≤

∫
RN
φ(x, h)ϕ dx for all ϕ ∈ C∞

c (R
N ), ϕ ≥ 0,

where the measurable functionφ : RN × R → R is such that

0 ≤ φ(x, s) ≤ b(x)sa for all s ≥ 0 and almost everyx ∈ RN

with 1< a < 2∗
− 1 andb ∈ L2∗/(2∗

−1−a)(RN ). Thenh is bounded in a neighbourhood
of the origin andlim sup|x|→∞ |x|N−2h(x) < ∞.
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With a view to applying Theorem 26, fixa ∈ (1,2∗
− 1) and define

φ(x, s) := |f (u(x)(2
∗
−1−a)/(2∗

−1)
|s|a/(2

∗
−1))| for all x ∈ RN ands ∈ R .

Sinceφ(x, u(x)) = |f (u(x))| andu is a nonnegative weak solution, one has∫
RN

∇u · ∇ϕ dx ≤

∫
RN

∇u · ∇ϕ dx +

∫
RN

uϕ

|y|2
dx =

∫
RN
f (u)ϕ dx

≤

∫
RN
φ(x, u)ϕ dx

for all ϕ ∈ C∞
c (RN ), ϕ ≥ 0. Moreover

φ(x, s) ≤ M|u(x)(2
∗
−1−a)/(2∗

−1)sa/(2
∗
−1)

|
2∗

−1
= Mu(x)2

∗
−1−asa

by assumption(f ′

1). Sinceu2∗
−1−a

∈ L2∗/(2∗
−1−a)(RN ), by Theorem 26 we conclude that

u is bounded in a neighbourhood of the origin and satisfies

lim sup
|x|→∞

|x|N−2u(x) < ∞. (32)

Now we set̃z := (0, z) for any z ∈ RN−k and observe thatu(· − z̃) ≥ 0 is still a
weak solution to equation (6). Hence, by repeating the above argument, one infers that
for everyz ∈ RN−k there existρz, Cz > 0 such thatu(· − z̃) ≤ Cz almost everywhere in

B
(N)
ρz , i.e.,u ≤ Cz almost everywhere inB(N)ρz (̃z). On the other handu is of classC2 on

RN \ ({0}×RN−k), by standard elliptic regularity theory. These facts, together with (32),
imply u ∈ L∞(RN ).

In order to show thatu ∈ L2(RN ), we are now going to improve the asymptotic
estimate (32). Let us begin with some preliminaries. First, forε ∈ (0,1) define

αε :=
N − 2 +

√
(N − 2)2 + 4(1 − ε)

2
.

Notice thatαε satisfies the equationα2
ε − (N − 2)αε − (1 − ε) = 0. Moreover, we can

assume 2αε > N by takingε small enough. Secondly, by means of (32) and assumption
(f ′

1), letC1 > 0 andR∞ > 0 be such that

f (u) ≤ Mu2∗
−2u ≤ C1

u

|x|4
for almost every|x| ≥ R∞.

Then takeR ≥ R∞ such that|x| ≥ R ⇒ C1|x|
−2

≤ ε and set� := RN \ B̄R.
By definition of weak solution, we have∫

�

∇u · ∇ϕ dx =

∫
�

f (u)ϕ dx −

∫
�

uϕ

|y|2
dx ≤

∫
�

C1
uϕ

|x|4
dx −

∫
�

uϕ

|x|2
dx

≤ −(1 − ε)

∫
�

uϕ

|x|2
dx (33)

for all ϕ ∈ X such thatϕ ≥ 0 and suppϕ ⊂ �.



A nonlinear elliptic equation 375

On the other hand, the function defined byv(x) := |x|−αε is such that|∇v| =

αε|x|
−αε−1 and1v = (α2

ε − (N − 2)αε)|x|−2v = (1 − ε)|x|−2v. Thusv ∈ H 1(�)

and ∫
�

∇v · ∇ϕ dx = −(1 − ε)

∫
�

vϕ

|x|2
dx (34)

for all ϕ ∈ C∞
c (�). Since 2αε > N implies |x|−2v ∈ L2∗/(2∗

−1)(�), a density argument
shows that (34) also holds true for allϕ ∈ D

1,2
0 (�).

Now, take a constantC2 = C2(u, ε, R) > 0 such thatC2v ≥ u almost everywhere on
the open annulus

A := {x ∈ RN : R < |x| < R + 1} ⊂ �

and introduce the functions

w := C2v − u and w̄ := χ�w−

defined almost everywhere inRN . From

0 ≤ w− = −χ{w<0}w = χ{w<0}(u− C2v) ≤ χ{w<0}u ∈ L2∗

(RN )

we derive thatw̄ ≥ 0 satisfiesw̄ ∈ L2∗

(RN ) and |y|−2w̄2
∈ L1(RN ). Taking into

account thatw ∈ D1,2(�) andw− = 0 almost everywhere inA, so that∇w− = 0 almost
everywhere inA, it is a standard exercise to check thatw̄ ∈ D

1,2
0 (�). Hencew̄ ∈ X and

we can usew̄ as a test function in both (33) and (34). So, upon multiplying (34) byC2
and subtracting (33), we obtain∫

�

∇w · ∇w− dx ≥ −(1 − ε)

∫
�

ww−

|x|2
dx,

that is,

−

∫
�

|∇w−|
2 dx ≥ (1 − ε)

∫
�

w2
−

|x|2
dx.

This implies

‖w̄‖
D

1,2
0 (�)

= ‖∇w−‖L2(�) = 0,

which meansu ≤ C2v ∈ L2(�) almost everywhere in�. Thereforeu ∈ L2(RN ) and

lim sup
|x|→∞

|x|νu(x) < ∞ (35)

for anyν ≤ αε. Sinceαε decreases asε increases, we conclude that (35) holds true for
everyν < limε→0 αε = (N − 2 +

√
(N − 2)2 + 4)/2.
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7. Applications to nonlinear field equations

In this section we takeN = 3 and apply the result of Theorem 3 to the problem of find-
ing solitary wavesfor nonlinear evolution equations of the Schrödinger or Klein–Gordon
type. Roughly speaking, a solitary wave is a finite-energy solution of a field equation
whose energy density travels as a localized packet and, owing to this particle-like be-
haviour, it can be regarded as an extended particle, in contrast to point particles. In ad-
dition, the solitary waves preserve intrinsic properties of particles such as the angular
momentum. For an introduction to solitary solutions to evolution equations the reader
is referred to [3], [7]. In this paper we are interested in the existence of solitary waves
with nonvanishing angular momentum. Consider for instance the nonlinear Schrödinger
equation

i
∂ψ

∂t
= −1ψ + ωψ − f (|ψ |)|ψ |

−1ψ, (x, t) ∈ R3
× R, (36)

whereψ(x, t) = ψ1(x, t)+ iψ2(x, t) ∈ C,ω is a real constant andf ∈ C(R; R) satisfies
f (0) = 0. By the Noether theorem, any invariance of equation (36) under the action of a
group of transformations smoothly depending on one parameter yields a conservation law;
this means that any solutionψ having a suitable spatial decay bears a constant of motion,
which represents a relevant physical quantity. In particular, time translation invariance
yields the conservation of theenergy, which is given by

E(ψ) =
1

2

∫
R3

[|∇ψ |
2
+ ω|ψ |

2] dx −

∫
R3
F(|ψ |) dx

=
1

2

∫
R3

[|∇u|2 + |∇S|
2u2

+ ωu2] dx −

∫
R3
F(u) dx (37)

whereF(t) =
∫ t

0 f (s)ds and we have used the polar form

ψ(x, t) = u(x, t)eiS(x,t), u(x, t) ≥ 0, S(x, t) ∈ R. (38)

As equation (36) is invariant under space rotations, also theangular momentum

M(ψ) = Re
∫

R3
i ψ x ∧ ∇ψ dx = −

∫
R3
u2 x ∧ ∇S dx (39)

is constant in time. Observe thatM = 0 wheneverS does not depend onx. In order to
prevent the vanishing ofM , we look for standing solutions of the form

ψ(x, t) = ϕ(x)e−i�t , ϕ(x) ∈ C, � ∈ R.

In this case equation (36) reduces to

−1ϕ + (ω −�)ϕ = f (|ϕ|)|ϕ|
−1ϕ in R3. (40)

If we now make the ansatz

ϕ(x) = u(x)eiϑ(x), u(x) ≥ 0, ϑ(x) ∈ R/2πZ,
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then equation (40) (and so equation (36)) is equivalent to the system{
−1u+ (ω −�)u+ |∇ϑ |

2u = f (u),

2∇u · ∇ϑ + u1ϑ = 0.
(41)

This suggests choosing as phase function the smooth mapϑ : R2
\ {0} → R/2πZ

(constant inz) which gives the angle of the cylindrical coordinates inR3, that is,

ϑ(y) :=


arctan(y2/y1) if y1 > 0,
arctan(y2/y1)+ π if y1 < 0,
π/2 if y1 = 0 andy2 > 0,
−π/2 if y1 = 0 andy2 < 0

(42)

(up to composition with the projectionR → R/2πZ). Hence we have

1ϑ = 0, ∇ϑ · y = 0, |∇ϑ |
2

=
1

|y|2

so that, ifu(y, z) = u(|y|, z), system (41) reduces to its first equation, which becomes

−1u+ (ω −�)u+
1

|y|2
u = f (u) in R3.

UsingH 1 variational techniques, it is quite standard to see that this equation admits non-
negative cylindrical solutions when� < ω. Here we are concerned with the limit case
� = ω and, by Theorem 3, we can prove the following existence results.

Theorem 27. Assume thatf ∈ C(R; R) satisfies hypotheses(f1)–(f4). Letu ∈ H 1(R3)

be the solution found in Theorem3 andϑ ∈ C∞(R2
\ {0}; R/2πZ) be given by(42).

Thenϕ(x) := u(x)eiϑ(y) defines a nontrivial classical solution to the complex equation

−1ϕ = f (|ϕ|)|ϕ|
−1ϕ in R3 (43)

satisfyingϕ ∈ H 1
∩ L∞(R3) and ϕ(x) = O(|x|−ν) as |x| → ∞ for everyν <

(1 +
√

5)/2.

Theorem 28. Assume thatf ∈ C(R; R) satisfies hypotheses(f1)–(f4). Letu ∈ H 1(R3)

be the solution found in Theorem3 andϑ ∈ C∞(R2
\ {0}; R/2πZ) be given by(42).

Thenψ(x, t) := u(x)ei[ϑ(y)−ωt ] defines a nontrivial classical solution to equation(36)
such that

(i) ψ(x, t) = O(|x|−ν) as|x| → ∞ (uniformly int ∈ R) for anyν < (1 +
√

5)/2 ;
(ii) E(ψ) = I (u)+

1
2ω‖u‖2

L2(R3)
< ∞ ;

(iii) M(ψ) = −(0,0, ‖u‖2
L2(R3)

) 6= 0.
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Remark 29. Theorem 28 also gives the existence of travelling solitary waves with non-
vanishing angular momentum. Indeed, a solutionψv travelling with any vector velocityv
can be obtained from a standing solutionψ = ϕ(x)e−iωt by setting

ψv(x, t) = ϕ(x − tv)ei[
1
2v·x−( 1

4 |v|
2
+ω)t ] .

In particular, ifψ is the solution given by Theorem 28 andv = (0,0, v), then by an

obvious change of variable it is easy to see thatE(ψv) = E(ψ)+ v2

8 ‖u‖2
L2(R3)

. Moreover,

one obtains againM(ψv) = −(0,0, ‖u‖2
L2(R3)

). Note that alsoψv is well localized in
space for allt ∈ R.

Remark 30. The same arguments yield the existence of standing and travelling solitary
waves with nonvanishing angular momentum for nonlinear Klein–Gordon equations

∂2ψ

∂t2
−1ψ + ω2ψ − f (|ψ |)|ψ |

−1ψ = 0, (x, t) ∈ R3
× R. (44)

See [3] for a discussion of such equations. On physical grounds, the solitary waves of (44)
exhibit all the most characteristic features of relativistic particles (under the assumption
that the speed of light equals 1). The conserved energy and angular momentum of a wave
solution (38) are given by

E(ψ) =
1

2

∫
R3

[∣∣∣∣∂ψ∂t
∣∣∣∣2 + |∇ψ |

2
+ ω2

|ψ |
2
]
dx −

∫
R3
F(|ψ |) dx

=
1

2

∫
R3

[
|∇u|2 +

(
|∇S|

2
+

(
∂S

∂t

)2

+ ω2
)
u2

+

(
∂u

∂t

)2]
dx −

∫
R3
F(u) dx

and

M(ψ) = Re
∫

R3

∂ψ

∂t
x ∧ ∇ψ dx =

∫
R3
x ∧

(
∂u

∂t
∇u+ u2∂S

∂t
∇S

)
dx.

Ansatzψ = ϕ(x)e−iωt in (44) leads again to equation (43). Then, by Lorentz invariance,
a travelling solutionψv is obtained by boosting; for example ifv = (v,0,0), v < 1, then
ψv(x, t) = ϕ(γ [y1 − vt ], y2, z)e

iγ ω(vy1−t) whereγ = (1 − v2)−1/2.

Proof of Theorem 27.For allx = (y, z) ∈ O := (R2
\ {0})× R, we set

ϕ(x) := u(x)eiϑ(y).

Clearlyϕ ∈ L∞
∩ L2(R3) and lim sup|x|→∞ |x|ν |ϕ(x)| = 0 for everyν < (1 +

√
5)/2

(Theorem 3). Moreover from∇ϕ = eiϑ (∇u + iu∇ϑ) one derives|∇ϕ|
2

= |∇u|2 +

|y|−2u2
∈ L1(R3), so thatϕ ∈ H 1(R3). We now prove thatϕ is a distributional solution

to equation (43) on the open setO, that is,∫
O

∇ϕ · ∇ξ dx =

∫
O
f (|ϕ|)|ϕ|

−1ϕξ dx for all ξ ∈ C∞
c (O; C),
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or equivalently,∫
O

∇ϕ · ∇(e−iϑξ) dx =

∫
O
f (|ϕ|)|ϕ|

−1ϕe−iϑξ dx for all ξ ∈ C∞
c (O; C).

With a slight abuse of notation, we writeh · k = h1k1 + h2k2 + h3k3 also forh, k ∈ C3.
On the one hand, we have∫

O
f (|ϕ|)|ϕ|

−1ϕe−iϑξ dx =

∫
O
f (u)ξ dx =

∫
R3
f (u)α dx + i

∫
R3
f (u)β dx

whereξ = α + iβ with α, β ∈ C∞
c (O; R). On the other hand,∫

O
∇ϕ · ∇(e−iϑξ) dx =

∫
O
(eiϑ∇u+ iueiϑ∇ϑ) · (e−iϑ∇ξ − iξe−iϑ∇ϑ) dx

=

∫
O
(∇u · ∇ξ + uξ∇ϑ · ∇ϑ) dx + i

∫
O
u∇ϑ · ∇ξ dx

=

∫
O
(∇u · ∇ξ + uξ |∇ϑ |

2) dx − i

∫
O

div(u∇ϑ)ξ dx

=

∫
O
(∇u · ∇ξ + uξ |y|−2) dx

=

∫
R3

(
∇u · ∇α +

uα

|y|2

)
dx + i

∫
R3

(
∇u · ∇β +

uβ

|y|2

)
dx

where we have taken into account that∇u · ∇ϑ = 0 and div(u∇ϑ) = ∇u · ∇ϑ + u1ϑ

= 0. Hence, observing thatC∞
c (O; R) ⊂ X(R3), we conclude by Definition 2 of weak

solution. By the same extendibility argument used in the proof of Proposition 5 (Sec-
tion 5), one can show thatϕ is a distributional solution to (43) even on the whole space
R3. Finally, standard regularity arguments (see for example [25]) show thatϕ is actually
a classical solution to (43) onR3. ut

Proof of Theorem 28.For allx = (y, z) ∈ (R2
\ {0})× R andt ∈ R, we set

ψ(x, t) := u(x)ei[ϑ(y)−ωt ] .

Sinceϕ(x) = u(x)eiϑ(y) defines a classical solution to (43) by Theorem 27, a straight-
forward substitution proves thatψ is actually a classical solution to (36) onR3

× R.
Moreover|ψ(x, t)| = |ϕ(x)| for all (x, t) ∈ R3

× R implies (i). In order to compute (ii)
and (iii), notice that∇ϑ = |y|−2(−y2, y1) andx ∧ ∇ϑ = (−|y|−2zy1,−|y|−2zy2,1).
Thus, by (37) the energy ofψ turns out to be

E(ψ) =
1

2

∫
R3

[
|∇u|2 +

u2

|y|2
+ ωu2

]
dx −

∫
R3
F(u) dx = I (u)+

ω

2

∫
R3
u2 dx < ∞,

whereas from (39) we deduce that the angular momentum ofψ has the form

M(ψ) =

(∫
R3
zy1

u2

|y|2
dx,

∫
R3
zy2

u2

|y|2
dx,−

∫
R3
u2 dx

)
.
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Sinceu ∈ L2 is nontrivial, one has 06=
∫
R3 u

2 dx < ∞. On the other hand, it is easy
to see that the first components ofM(ψ) are vanishing. Indeed, by means of planar polar
coordinates(y1, y2) = (r cosφ, r sinφ), one obtains for instance∫

R3
zy1

u2

|y|2
dx =

∫
R
z dz

∫
∞

0
u2(r, z) dr

∫ 2π

0
cosφ dφ = 0

where the cylindrical symmetryu(y, z) = u(r, z) has been used. ut
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Boston (1996) Zbl 0856.49001 MR 1400007

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05024139&format=complete
http://www.ams.org/mathscinet-getitem?mr=2179651
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0894.35038&format=complete
http://www.ams.org/mathscinet-getitem?mr=1605678
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:02113563&format=complete
http://www.ams.org/mathscinet-getitem?mr=2063949
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1031.35130&format=complete
http://www.ams.org/mathscinet-getitem?mr=1947957
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1034.35043&format=complete
http://www.ams.org/mathscinet-getitem?mr=1894489
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:01977268&format=complete
http://www.ams.org/mathscinet-getitem?mr=1895114
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0778.35009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1168970
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05025025&format=complete
http://www.ams.org/mathscinet-getitem?mr=2209764
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0997.35017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1876652
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0786.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1239172
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1036.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2012778
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0938.35058&format=complete
http://www.ams.org/mathscinet-getitem?mr=1705383
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0797.58005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1276944
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1033.35044&format=complete
http://www.ams.org/mathscinet-getitem?mr=1940535
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:01929521&format=complete
http://www.ams.org/mathscinet-getitem?mr=1970040
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0837.46025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1340267
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0856.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1400007

	Introduction
	Statement of the main results
	Functional setting
	The existence result
	The extendibility result
	Properties of weak solutions
	Applications to nonlinear field equations

