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Abstract. We prove the existence of cylindrical solutions to the semilinear elliptic problem

—Au+ ﬁ — fw), ueH®N), u=o0,
y

where(y, z) € RFxRN=k N > k>2 andf has a double-power behaviour, subcritical at infinity
and supercritical near the origin.

This result also implies the existence of solitary waves with nonvanishing angular momentum
for nonlinear Schidinger and Klein—Gordon equations.

1. Introduction

This paper is mainly concerned with the existence of nontrivial cylindrical solutions for
the semilinear singular elliptic problem
u

—Aut =S, ue HYRY), u=0, (1)
y

where(y,z) e RF x RNk N > k > 2 andf € C(R; R) is such thatf (0) = 0. Other
working assumptions ofi will be made in Sectiop|2; in particular we will agkto satisfy
a double-power growth condition, supercritical near the origin and subcritical at infinity
(more precisely, see assumptidfin—f4)).

Problems like[(]L) arise in the search for finite-energy stationary solutions to nonlinear
evolution equations of the Sdidinger or Klein—Gordon type. The finiteness of energy
makes the solutions physically meaningful and it is strictly related to the finiteness of the
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L2 norm. Looking for stationary waves, one is led to equations of the form
—Au+V@Xu=f@w inR3 2)

for which a large number of existence results have been established under very different
assumptions on the potenti#ll and the nonlinearityf (see for instance the references

in [3], [19]). However, it is mostly assumed théitis bounded away from zero, so that

an H! variational approach is permitted (as regards the éase 0, see for example

[12], [29] and the references therein). Among the papers which deal instead with poten-
tials satisfyingV # 0 and liminf,|—.« V(x) = 0, let us cite the following recent works
(see[31] for further references). Inl[1] the existence of a positive finite-energy solution
is proved in the case of smooth potentials and nonlinearities (not necessarily radial) hav-
ing the formV (x) ~ (1 + x|t and f(x,u) ~ A+ |x|)"Lul? with0 < a < 2,

b > 0and maxl,5— 4b/a} < p < 5. The presence of singularities in equatiph (2) is
allowed in [11], where it is required that € L%2 N L (R3) for somer > 3/2 with

|Vl 32 suitably small andf satisfies assumptions similar () and(f3). In [23] the
problem of positive solutions is studied for critical nonlinearity and potentials featuring
multiple inverse-square singularities. Existence (and nonexistence) results for radial po-
tentialsV(x) > A|x|~* satisfying mild integrability assumptions can be foundlinh [4],
where both subcritical and supercritical nonlinearities are considered. The case of radial
potentials and double-power nonlinearities is treatedin [5]. However, no results on the
finiteness of energy are proved in [4], [5].[11].]23]. Theolfgm 3 of Se¢fjon 2 below pro-
vides a nontrivial, well localized in space, finite-energy solution to equdfion (2) in the
case of the singular cylindrical potentililx) = |y|~2 (see agairi [5] for results concern-

ing cylindrical potentials in high dimensions). Let us point out that the technique used in
[1] to bound theL2 norm does not suit our case, for it is strictly related to the assumption
a<?2.

Though we are interested here in entire solutiong pf (2), it is worth observing that
nonlinear elliptic equations with singular potentials have been widely investigated also
on bounded domains @&?", especially in the presence of critical power nonlinearities.
For instance (other references can be foundin [31]), the ¥ase = A + ulx| 2 is
studied in [24],[27],032] (see also_[18]), where the solvability of the equation is exam-
ined in connection with the sign and size of the parameterg. In the presence of
more general nonlinearities of the forfitx, u) = u? + Ab(x), inverse-square potentials
V(x) = —Alx|2with 0 < A < (N — 2)2/4 are considered in [16] (case= 0) and
[20] (caser > 0), where compatibility conditions a#, p, A and the space dimension are
exhibited in order to ensure the existence of solutions. The results|of [20] are extended in
[21] to a larger class of potentials and nonlinearities. This kind of investigation is related
to the study of improved Hardy inequalities (see for examiple [17]land [30]).

As another remarkable application of problgm (1), we derive the existence of finite-
energy waves with nonvanishing angular momentum for evolution field equations. Let us
briefly introduce the matter, which will be the topic of Sectign 7. Consider for instance
the nonlinear Sclidinger equation

oy

i—- =AY oy — f(WDIITY, (0 eRPxR, 3
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wherew € R. It is well known that equatiorj [3) has stationary solutions with nonvanish-
ing angular momentum of the form

Y0 =p@e ¥, ¢)eC, QeR, (4)

with Q < w. Here we will show that also the limit case = » can be achieved. In this
case, equatioffi [3) is equivalent to

—Ag = fleDlplle inRE (5)

If we make the ansatz(x) = u(x)e!”®), u(x) > 0, whered (y) gives the angle of the
cylindrical coordinates ifR?, equation) also turns out to be equivalent to equaﬁbn (1),
provided that«(y, z) = u(]y|, z). Hence, by studying equatidn| (1), we obtain a nontrivial
entire classical solutiop € H(R®) to equation[(5) (Theorem P7). Then by mean$ bf (4),
with @ = w, one sees that equatidrj (3) admits finite-energy standing (and also travelling)
waves which are well localized in space and bear a nonvanishing angular momentum,
given byM () = —(0, 0, ”””iZ(R%) (Theore and Rem29). The same argument
applies to nonlinear Klein—-Gordon equations (Renfark 30). To our knowledge, the only
papers concerning wave solutions with nonvanishing angular momenturmn_are [13] and
[19] (see alsa[8]), in which the equation

oY
"ot
is studied. In particular| [13] deals with the cadgée= 0 and 2< p < 6, whereas in [19]
itis assumed that 2 p < 1+ +/5andV € C1 N L>®(R3) is bounded away from zero
and has some properties related to a required cylindrical symmetry (which allows one to
speak about conserved angular momentum).

We conclude this introductory section by discussing the main features of prgGlem (1)
and by sketching our approach.

Since the equation if (1) has a variational structure, its solutions can be recovered
as critical points of a functional defined on a suitable function space. However the
presence of a potential vanishing|a$ — oo prevents the use dff! variational theory.

To overcome this difficulty, we set the equation in the exact space on which the Euler
functional of the linear part of the equation is well defined, namely the weighted Hilbert
space, say (RV), consisting of the functions having finite? gradient norm and such
that [ |y|72u?dx < oo. By the results of[[6], the latter condition is redundarit i 2

(see Remark|7), whereas it is necessary in the kase. Since our assumptions ensure
that| f(r)| < const|¢]2 1 (see(f;)), also the functional related to the nonlinearity makes
sense orX (RY).

Our solution will be obtained as a critical point for the functiohatestricted to the
closed subspace of the fixed points for the actio R ) of the orthogonal group d*.
Assuming standard hypotheses prisee(f3) and(f4)), the starting point is the bounded
Palais—Smale sequence provided by the “mountain-pass” geometry exhibit¢drothe
subject see the celebrated papér [2], or some recent books suich &s [26], 128], [34]). Since
we cannot guarantee the fulfilment of the Palais—Smale condition, such a sequence is

=AY+ VY — [YIP 2y, (x,1) eRIxR,



358 Marino Badiale et al.

studied by means of the concentration-compactness principle, in a version due to S. Soli-
mini [33]. In ruling out the possibility of a vanishing weak limit, we exploit the growth
conditions assumed ofi, namely

fO =0(P™Y ast >o00 and f@t)=0(t)" Y ast >0

where p andg are subcritical and supercritical exponents respectively (see hypothesis
(f1)). Probably these conditions were first considered_in [14]. More recently, they have
also been used in|[5].[9].[10], [11].112],[29]. The nonnegativity of the critical points of
I is ensured by standard hypotheses (§£9.

Since we are interested in solutions which belong#th while our critical points
are just inX (R"), some more work is needed. First, thanks to a result due to E. Egnell
[22], we can provide an estimate of the decay rate of the solutions. Then we exploit this
asymptotic behaviour to develop a comparison argument in order to boutid therm
on exterior domains. As a by-product, an improved decay estimate is also obtained. The
main result of this paper is Theorgrh 3.

Some rather standard or technical computations will be omitted in this paper; for all
of them the reader is referred {0 [31]. Hereafter we will use the following notations.

o We shall always writer = (y, z) € R¥ x R¥ =¥ with k, N € N such thatV > k > 2.

e Nis the set of natural numbers, including 0.

e Foranya € Rwe setay := (la| + a)/2 anda_ := (la| —a)/2,sothat = ay —a_
with ay,a_ > 0.

e The open ballBg(£0) := {§ € R? : |&§ — &]| < R} will be simply denoted byBg
wheneveky = 0. We will also Writijed) to make the dimensiodh explicit. Bz stands
for the closure ofBg.

e |A| and x4 respectively denote the Lebesgue measure and the characteristic function
of any measurable set C R?.

e O(d) is the orthogonal group d&<.

e L"(R?) and H(R?) are the usual Lebesgue and Sobolev spaces. Sometimes, if no
misunderstanding is possible, we will briefly writé and H*.

e ' =r/(r — 1) is the Hblder-conjugate exponent of so thatL”" is the dual ofL".

e 2* = 2N /(N —2) is the critical exponent for Sobolev embedding in dimengion 3.

o C will stand for any positive constant, which may change from line to line.

2. Statement of the main results
ForN > k > 2, we consider the semilinear elliptic equation

—Au+ % = f@. (2R xRVH (6)
y

with u : R¥Y — R and f € C(R; R) satisfying the following assumptions:

(f1) there existM, p,q > Owith2 < p < 2* < ¢ such that

t1>1 = |[f(Hl<MitP™t and |f| <1 = [f()] < M|t]97;
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(f2) 1<0= f(1) = 0;
(f3) there existe > 2 such that

F@) < —f(t)t forallr e R

whereF (1) := [y f(s)ds for anys € R;
(f4) there exists, € R such thatF(z,) > 0.

Example 1. Itis easy to see that the assumpti¢hj—(f4) are satisfied by

0 fort <0

1) = ra—1 with 2 2% )
F® —— fort>0 sPh=c =4
Tt14p

Let us observe that from assumpti@n) one readily deduces that
(f;) there exists¥ > Osuch that £ (r)] < M|t|* ~Lforall t € R,
which in turn implies that
(F) there exist€ > Osuch that F(r)| < C|7|¢ forall r € R.

We will work in the linear space

X@RY) := {u e DY2®RYN): / de < oo}
N
whose properties of interest to us are studied in Se@ion 3DBY(RY) we mean the
completion ofC2°(RV) with respect to the normu|| p1.2 = Vil 2wy Observe that

X@RN) = DY2RN) if k > 2 (see Rema 7). We will also consider the linear subspace
X;(RY) := {u € XRY) 1 u(y, 2) = u(lyl, 2)}

where, with a slight abuse of notation, writingy, z) = u(|y|, z) we naturally mean
u(y, z) = u(gy, z) for any rotationg : R — R¥ and almost everyy, z) € RV.

Our main result is Theore 3, which states the existence of weak solutions to equation
(©) in the sense of the following definition.

Definition 2. Let f € C(R; R) satisfy(f;). We say that € X (R") is aweak solutiorof
equation(o) if

/ Vu-Vedx +/ |m'|02 x = f fwedx forall g € H'+ X@RY).
RN y

Theorem 3. Assume thaf € C(R; R) satisfies hypotheséf)—(f4). Then equatiorfg)
has a nontrivial weak solutiom € H* N L>® N X, (R") such thatx > 0 and

N—-2+(N-22+4
5 .

limsuplx|u(x) < oo foranyv <
[x|—>00

(7)
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Theoren{ B is a consequence of Proposit[dns 6 &nd 5 below together with the following
existence result.

Theorem 4. Assume thaf € C(R; R) satisfies hypothesé€l )—(f4). Then there exists a
nontrivial u € X,(RY), u > 0, such that

/ Vu~V<pdx+/ ﬂdx:/ fwedx forall g € X(RY). (8)
RN rY |12 RN
Theorenj # will be proved in Secti¢i 4 by variational methods. The natural space related
to the growth conditiongf1) is L” (RY) + L1(RY) (see[[9], [10], [15] and [29]). In spite
of that, it will not be involved in our functional setting, since many of our computations
only require conditior(f;). However, assumptio(f1) is crucial for our existence result
and it will be used directly in the proof of Lemmfas| 24 @ndl 25. As usual, hypotfgyis
is used to prove the boundedness of the Palais—Smale sequences of the Euler functional
I related to equatimﬂG) and defined an(R"). Such a sequence is provided by the
“mountain-pass” geometry df, which is granted by assumptidgfy), and will be studied
by means of the concentration-compactness principle, in a version due to Salimini [33].
Finally, condition(f2) is assumed to yield the nonnegativity of the critical pointg.of

Once Theorer]4 is proved, to get Theorgm 3 we need to study the asymptotic and
summability properties of the weak solutien> 0 obtained; in particular we have to
show thatu actually belongs taH!. Moreover, we have to ensure that equat@n (8) is
satisfied by any test functian € H'. These are the aims of the following propositions.

Proposition 5. Let f € C(R; R) satisfy(f;). If u X (RV) is such thatt > 0 and@
holds, then

/ w-wder/ 22 dx :/ fedx forall g € HY(RY).
RN RV |yl RN

Proposition 6. Let f € C(R; R) satisfy(f;). Then any weak solutian > 0 of equation
(6) is bounded, belongs 2(RY) and satisfie{7).

Propositior] b, which is trivial fok > 2 (RemarKT), is an extendibility resultif = 2,
and it will be proved in Sectidn| 5.

In Proposition § we study properties of nonnegative weak solutions. The proof, which
is given in Sectiofi]6, relies on a comparison argument and takes advantage of asymptotic
results due to Egnell [22].

As announced in the introduction, Theoren 3 yields some other existence result, re-
garding the cas&/ = 3. Needing some preliminary discussion, they will be stated and
proved in Sectiof]7.

3. Functional setting
3.1. A weighted Sobolev space

We will work in the Hilbert space
DY2 = DY2RN) = (u e L¥ RN) : Vu € L2RN))
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endowed with the nornfju| p1.2 = ||Vul|;2. Let us also recall that, for any given open
subset2 € RY, Dy?(2) denotes the closure &°(Q) in DY2(Q) = {u € L¥(Q) :
Vu € L?(2)} with respect to the normull przgy = llull 2 ) + IIVull 2(q)- We define

2
X :=XRY) = {u € D1’2:/ u—zdx < 00}7
RN [yl

which is a Hilbert space with respect to the norm

2
u

||u||2:=/ |Vu|2dx+f — dx
RN RV |Y]

induced by the scalar product

(u|v):=/RNVu~Vvdx+/R "4 (9)

—F=dax.
N |yl?

Clearly
X5 = X;(RY) = {u e X :u(y, 2) = u(lyl, 2)}

is a closed subspace &f. Let us point out that weak convergenceXn(or X;) implies
pointwise convergence (up to a subsequence and almost everywhere).

Remark 7. If k > 2 then, by the Sobolev—Hardy inequalities [6], one has

2 2 2
Yu € DY2RY) / 2 oar < (= / [Vu|? dx.
R’y |y]? k—2) Jrvy

HenceX = DL2(RY) and the normg - || and| - | 512 are equivalent.
Remark 8. If Zg = (0,z0) € RV, 1 > 0,¢ € O(k) andu € X, then

™ +Z2Il = AN "2y and (@ |v(g-, ) =@ )[v).  (10)
OfcourseX; ={ue X :u(g-,-)=uforall g € O(k)}.

For later use, we recall here a result due to S. Solimini [33]. First we have to introduce
a group of rescaling operators, of which we also give the basic properties that will be
useful in the following.

Definition 9. Fix » > 0and& € RY. For anyu € L"(RV) with 1 < r < oo we define
T, &u =1V 1 6),

Clearly T(x, &)u € L" forallu € L" and in particularT (A, £)u € DY2if u € D12,
Moreover, by direct computations, it is easy to see that the linear operators?”
T(h, &)u e L? andu € D2 +— T (), £)u € D2 are isometric. Notice that

T, 6 =T/ -2 and TG, EOT(u,m) =T 0w, &/u+1n). (11)
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Remark 10. For anyzo = (0, z0) € RY andx > 0, from RemarIE]B we readily deduce
that the linear operator € X +— T (X, Zo)u € X is an isometry. Clearly' (A, Zo)u € X,
if u e X;.

Proposition 11. Let1 < r < oo and assume tha,,,} c (0, co) and {¢,} c RY are
such that\, — A # 0and&, — £. Then

T (s Etty — T, E)u in L' (RY)
if uy — win L"(RN).

Proof. Let T,, := T (A, &) andT = T (A, &). Applying the Lebesgue dominated con-
vergence theorem, it is easy to check that

Tl > T inL’

for anyp € C>°(RV). Arguing by density, we can conclude that the convergence actually
holds for anyp € L”". As a consequence, by obvious changes of variables, we get

/ (Toun)p dx =x,§f un (T, Yp) dx — AZ/ u(TYp) dx =/ (Tu)pdx
RN RN RN RN

foranyg € L”. o

Remark 12. Let {x,} C (0, o0) and{z,} C {0} x R¥N—* be such that,, — A # 0 and
Zn — Z. By Propositiorf Il and Remak]10, it is easy to see that #~ u in X (or X;)
then, up to a subsequend@&,,, Z,)u, — T (A, z)u in X (or Xj).

The main result we will exploit about these rescalings is the following, due to S. Soli-
mini. It is a version of the concentration-compactness principle.

Theorem 13 ([33]). If {u,} ¢ D2(R") is bounded, then, up to a subsequence, either
u, — 0in L2 (RN) or there exisf,} C (0, o0) and{&,} c R such thatl (A, &,)un
— uin LZ(RY) andu # 0.

3.2. The Euler functional

Assume thatf € C(R; R) satisfies hypothesi$;) and set

1
() = E||u||2 — /RN F(u)dx.

Thanks to conditiorff;), by standard computations one proves tha& — R is of class
C! with Fréchet derivative’ (1) at anyu € X given by

VheX I'(wh=u|h) - /N fhdx. 12)
R
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Proposition 14. For anyh € X (RY) the mapping’(-)k : X(RY) — R is sequentially
weakly continuous.

Proof. Of course we need only consider the nonlinear term of the mapping. So we
fix h € D2 and show the sequential weak continuity @2 of the mapping

u > [pn f@hdx. Accordingly, assuming;, — u in D12, we need to show that
Jgy funhdx — [pn f(u)hdx. With a view to arguing by density, let € C°(RY)

and letR > 0 be such that sugp C Bg. From the compactness of the embedding
DY2(RN) < 12-1(Bg) we deduce that, — u in L2 ~1(Bg). On the other hand, con-
dition (f;) ensures the continuity of the Nemytskperatorf : L2 ~1(Bg) — L1(Bg).
Hencegw | f (un) — f )] l¢| dx — 0. Now, by(f;) and the boundedness @f, } in L?,

one has

/RN |f un) — f@)] k] dx < Cllh — @l 2+ +/RN |f un) = fQ)] @l dx.

The density ofc®(RV) in DL?(RV) allows us to conclude. o

Proposition 15. (i) For all u € X andA > Owe have

N-2
Tty =2

llull® — AN/ F(u)dx.
RN
(i) If u € X thenfor allh € X andg € O (k) we have
I'wh(g-, ) =1'wh.
Proof. By suitable changes of variables, it is a straightforward computation. O

Remark 16. Define the gradienv/(u) of I atu € X by VI(u) € X and(VI(u) | h) =
I'(u)h for all h € X. By (10) and Proposition 15(ii) it is easy to see that X, implies
VI(u) € X;,sothat(VI(u) | h) =0forallh € X; meansVI(u) = 0.

Lemma 17. If (f4) holds, then there existse X such thatfRN F(u)dx > 0.

Proof. For R > 3, let¢r € C°(R; R) be such that 0< ¢r < 1 with ¢r(r) = 0 for
t<lortr>R+1landgpgr(r) =1for2 <t < R. Settingug(x) ;= ¢r(|y)or(|z]) for
all x € RV, one checks thafyy F(txug) dx = CRY + o(RY) asR — oo. ]

Proposition 18. If assumptiongfs) and (f4) hold, then there exist > 0 and a bounded
sequencéw, } C X, such that

I(w,) > c¢ and I'(w,)x, > 0 inX,.

Proof. I|x, € Cl(X,; R) has a “mountain-pass” geometry. Indeed, on the one hand, we
have’/ (0) = 0 and

lull=p = I(u)zép —Cp®,
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as follows from the fact tha{F) implies|F(x)| < C|u|?" so that for allu € X one has
| Jay F(w)dx| < C|lu||% by the Sobolev inequality. On the other hand, for any X,
such thatfpy F(u) dx > 0 (see Lemmp 17), fror (1.0) and Proposifiof 15(i) we get

lim Ju(x 1) =00 and lim I(u(."%)) = —c0
A—00 A—00

withu(A~1.) € X,. Hence usual minimax arguments (see for instance Section 2.3 in [34])
provide the existence of a level> 0 and a sequendev,,} C X, such thatl (w,) — ¢
and!’(w,)x, — 0 in X}. Exploiting assumptiorffs), a standard argument shows that
{w,} has to be bounded iK;. ]

4. The existence result

This section is devoted to the proof of Theoijgm 4, which will be achieved through several
lemmata. Assume that € C(R; R) satisfies hypothesd$;)—(f4). As usual, we take
N > k > 2 and writex = (y,z) € R¥ x RVN*, Since we will very often pass from a
sequence to a subsequence, for simplicity we shall maintain the same indices.

From [12) and[(9) one clearly sees that any critical point ofX — R satisfies|(B).
On the other hand, Remalrk]16 shows tiatis a natural constraint for finding critical
points of /. Hence, in order to prove Theorgm 4, we look for nonzero critical points
of Ix,.

The starting point is the bounded Palais—Smale sequange C X; provided by
Propositiory IB, which, we recall, is such that

I(w,) >c>0 and I'(w,) >0 inX.,.

Since{w,} is bounded inD-2, it must satisfy one of the alternatives allowed by Theo-
rem[13. We now show that the first one can easily be ruled out.

Lemma 19. The sequencdsv,} does not converge @in L% ®RY).

Proof. Assume that, — 0in L?". From(f;) and(F) we derive| f (wn)wa| < Clw,|*
and|F (w,)| < C|lw,|? almost everywhere ", so that

/ f(wy)w,dx — 0 and / F(w,)dx — O.
RN RN

On the other hand}/(w,)w, — 0 sincel’(w,) — 0in X} and{w,} C X, is bounded.
Therefore we conclude

”wn”2 = Il(wn)wn + /RN fwy)w,dx — 0

and thus 1
I(wy) = Enwnn2 —/ F(w,)dx — 0,
RN

which contradictd (w,) — ¢ > 0. O
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Corollary 20. Up to a subsequence, there eXist} c (0, co) and{x,} ¢ RY such that
T, x)we — W in LZ@®Y) and @ # 0.
Proof. Apply Theorenj IB and use Lemijng 19. O

Now we can easily exploit the-translation invariance of equatidn (6) to slightly improve
the result of Corollary 20. To this end, we sgt=: (yu. zx), J» = (¥, 0) andz, :=
(0, z,), so thatx,, = ¥, + z,.

Lemma 21. Letu, := T (1, Z,)w,. Then{u,} C X, is bounded and such that
I'uy) -0 inX, and T, 5)u, — o in LZ (RY).

Proof. Since{w,} C X, is bounded, from Remafk JLO we deduce that} C X, is
bounded. Moreover, recalling (11), we have

T Gons 5n)ttn = T O, 50)T (L, Z)wp = T Oupy Xp)wy — W in L2 (RY).

Finally, by easy computation, one has
I'(wn)h = (wp (- +22) | h) — fN S wn(-+2Zp))hdx
R

= (wy, | h(_En))_/ f(wn)h(_zn)dx
RN
=1'"(wy)T (1, —Zn)h
forall & € X, so that| I’ (u,)| x; = III'(wa)llx; again by Rema@O. o

The next point in the proof of Theorgm 4 is the removal of translations from the rescalings
T (A, ¥n)- This is the topic of Lemmfa 23, where we will take advantage of the following
elementary proposition.

Proposition 22. Let {,} c R¥ be such thatim,_. |7.| = oo and fixR > 0. Then
for anym € N\ {0, 1} there exists1,, € N such that for any: > n, one can find
g1, ---,8&m € O(k) satisfying the condition

i #j = BR(ginn)mBR(gjnn)=®~

Proof. Fixm € N\{0, 1} and let{¢1, ..., &,} C R*besuchthalt;| = 1fori=1,...,m
and

Smi=min{|§ —&|1i, j=1,...,mwithi # j} > 0.
Forallp > p, := 2R8;1,i # j implies

m
l0&i — pgjl =pl§ — E]| > Omlm = 2R
and hence
inf —n| > |p& — p&i| —2R >0
£€Br(p&), neBr(pk)) &=l = 1pg = ok
so thatBr(p&;) N Br(p&;) = . Then, since there exists, € N such thatn,| > o, for

all n > n,,, the proof is completed by taking, ..., g» € O (k) such thatg;n, = |n,|&;
fori=1,...,m. O
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Lemma 23. Up to a subsequence, we have
T(n,Qu, -~ inXy; and a #0.
Proof. Let T, := T (A, J») and
v, =Ty, Ouy,.

From Remark 10 we get, € X, and||v,|| = |lu,|l, SO that (up to a subsequence) we can
assumey, — i in X;. If # # 0 the proof is complete. We now show by contradiction
thata = 0 is impossible. So, assume

v =0 inX,. (13)

We recall from Lemmf 31 thaf,u, — w # 0in L2,
First, we deduce that
M hon 5] = 00 (14)
n—oo

Otherwise, up to a subsequengg, — jo € R¥ x {0} and

T, _)\nyn)fnun -~ T, —yow in Lz*

# 0in LZ", which contradicts (13).

Sincew # 0, there exis > 0 andA < RY with |A| # 0 such that eithe® > §
orw < —§ almost everywhere id. Fixing R > 0 such thaiBg N A| > 0, by weak
convergence we obtain

by Propositio. But, sincgfé], —,\nyn)f,, = T (Ay, 0), this means,, — T (1, —yo)w

> §|Br N A| > 0. (15)

—> ‘/ IZ)XBRQA dx
RN

On the other handf,u, = T,,T (An, 0)"1v, = T(1, A, %,)v, and hence

sf |fnun|dx=/ o] dx
BR BR()Ln;'n)

. 1/2*
< c(/ [vn|? dx) (16)
BR()“nS’n)

whereC > 0 only depends o andN. From [1%) and[(16) we now deduce that

‘/ TnunXBRﬁA dx
RN

‘/ TnunXBRﬁA dx
RN

. . >k
liminf |vn|2 dx >0
n—00 BR()LnS’n)

and hence, up to a subsequence, we can assume

inff lual? dx > ¢ for somes > 0. (17)
BR()Lnin)

n
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This will yield a contradiction. Indeed, usirlg (14), from Proposifioh 22 it readily follows
that for everym € N\ {0, 1} there exists:,, € N such that for any: > n,, one can find
g1, ---,8&m € O(k) satisfying the condition

i #J = BrOw(8iyn, 0)) N Br(An(gjyn, 0)) = 0.

As a consequence, usirjg [17) and the fact that X, we get

m m
/ |v,,|2*dx22/ |vn|2*dx=2/ |vn|2*dx>m8
RN i=1 BRr(An(giyn,0)) i=1 BR(AnYn)

for everym € N\ {0, 1} andn > n,,. This finally implies

/ |vn|2* dx — o0,
RN

which is a contradiction, sincév,|l;>x = T (A, Oupll; 22 = lluxll 2+ and {u,} is
bounded in?". u]

In order to apply Propositidn 11 and thus to conclude tha} has a nonzero weak limit
in X;, we need to check that the dilation parameferg are actually well-behaved. This
is the content of the next two lemmata.

Lemma 24. There existg; > 0such thatx,, > ¢q for all n, i.e.inf, A, > 0.

Proof. Arguing by contradiction, up to a subsequence we assyme 0 and setl,, :=

T (Ay, 0). Recall from Lemm@3 that,u, — u # 0in X, so that (up to a subsequence)
we can also assume thBfu,, — & almost everywhere iiR". From Remar@O we get
T, Yi € X, and| T, Y| = |il|, so that

I (un) T, i) < |1 ()l x| — O (18)

sincel’(u,) — 0in X/ (see Lemm@l). On the other hand, using the isometry property
ofu € X; — T,u € X; and making an obvious change of variables, we obtain

V)T Y = | T k) — 2272 /R )it d
= (T | ) — iy V272 fR Flun O iid
= (Tyuy | @) — 2 VH272 fR FOR TP P huide. (19)
Then [I8) and (19) yield
A;(1\/+2)/2/RN FON-D2p

— || # 0.

a, =

In order to get a contradiction, we now prove thatJim, a, = 0.
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Givene > 0, letR, > O be suchthaf|
inequality, for allz we get '

|i|?" dx < e. Thus, by(f;) and Holder’s
‘)L;(N+2)/2/ FONDRL g
|x|>Rg

< A WNHD2c /

[x|>Re

N-2)/2 *_ 1, ~ *_ 1, ~
T TN 1|u|dx=C/ | T ~2ii| dx

[x|>Re

. (2 -1/2* . 1/2* §
< c(/ | Tt |2 dx) (/ |ii|? dx> < 1612
RN x|> R,

whereC; > 0is related tof and to the fact th&tT,,u,,} is bounded inX; and thus 2",
but does not depend enandn. Hence

ap < )\;(N+2)/2 f()\ilN_Z)/zTnun)ﬁ dx

Bg,

+ C1eY% foralln. (20)

With a view to studying the integral oveBg, , for anyl! € N we define the measurable
sets
Ag=1{x € Bpg, : li(x)| <1}, Ag,l ‘= Bpg, \ Ag 1,

and consider, by the well known Egorov theorem on quasi-uniform convergence, a mea-
surable seD, ; € Bg, such that

|Br. \ Deil < 1/1

and
Vn>03n,Vn>n, |Tu,—il<n ae.inDg;. (21)

C|eaf|y Iiml—>oo |Ag,1| =0and |im—>oo |A8,l \ (As,l N Ds,l)| =< Iiml—>oo |BRS \ Ds,l| = 0,
so that

el :=/ @)% dx — 0, ey :=/ li|? dx — 0
A A \(AgNDg 1)

c
&l

asl — oo with ¢ fixed. Then, by(f;) and Holder's inequality as before, for allwe get

‘k;ww/z FONDRL i x| < cra¥Z
A
and
’xn (e / F O 2P it dx | < Capl
As,l\(As,ImDs,l)
so that[(2D) gives
—(N+2)/2 N-2)/2 - © L 12r | 12
an < |Ay M2 f FO PP L dx |+ CueY? + o T + BT (22)
As,lmDs,l
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for all n. In order to estimate the integral ov&r; N D, ;, we observe that by (21) there
existsn,; € N such that

Vun>ng; |Twaup,—i| <1 ae.ind;;N Dy

and then
Vn>ng; |Taunl <1+1i| <141 a.e.inA,;N Dgy.

As assumptiof) yields| £ (r)| < M|t|?~ for all r € R, one obtains

‘)L;(N+2)/2/ FONDRp s
As,lmDaJ

<1, N2y AN 22T 0,197 i dx
As,lmDs,l

<oy VN2V R A 4 YA, 0D

_ Cs’lA;NfZ)(qfl)/Zf(N+2)/2

foralln > n.;, whereC,; > 0 does not depend on Together with[(2R), this implies

an < CS!ZAEN—Z)(qfl)/Z—(N+2)/2+ Cl(sl/z* +05i/12* +5gl,/12*) forall n > ..
Hence
lim supa, < C1(eY2 +alF + L)
n—o00 :
sincer, — 0and(N —2)(¢q —1)/2— (N +2)/2 = (N — 2)(q — 2*)/2 > 0. Finally,
letting first/ — oo with ¢ fixed and there — 0, we get limsup_, .. a, < 0, which
means lim_, . a, = 0 sincea,, > 0. As this is a contradiction, the lemma is provedi

Lemma 25. There existgz > 0 such that.,, < ¢ for all n, i.e.sup, A, < oco.

Proof. The argument is analogous to the one in the proof of Lefnma 24. Up to a sub-
sequence, we assumg — oo and T,u, — i almost everywhere iiR"Y, where, by
Lemmd 2B.T,, := T (k,, 0) is such thatf,u, — & # 0 in X,. Exactly as in the proof of
Lemmd 24, we deduce that

—(N+2)/2 -2)/2 . -
an = ‘M”* ! /ﬂ; SO i dx| > ) # 0 (23)
and that for any > 0 there exist®, > 0 such that
an < |2y VT2 p QU NTD2T y Yidx| 4+ Y2 foralln (24)
Bg,
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whereC; > 0 only depends off and sup [|T,u, [l 2+ < oo, not ons andn. Now observe
that assumptiofif1) implies| f(r)| < M|t|?~1 for everyr € R. Hence for all: we have

‘X;(N—FZ)/Z f()hl(sz_Z)/zTnun)ﬁ dx
Bg,

< N2y NPT, 1P i dx
Br,

5x;(N“)/ZMAE,N‘Z)""”/Zf Ty | P~ L[| dx

Bg,
e (25 —1)/2* . 1/2*
Ty | (P02 2 1>dx) </ P dx)
BRg

< NP2 g @z < /
B

< M (N-2(=D/2=(N+2)/2 (/
B

Re

- (p=1)/2*
| Trun) dx) ”””LZ*
Re

N-2)(q—2%)/2 *_ * 1,~
<M T2UTER B (@ D2 sup) Ty |V il
n

N2/

where we have used the fact thiiat— 1)2*/(2* — 1) < 2* to apply Hlder inequalities.
Note thatC, > 0 does not depend on since{T,u,} is bounded L2, Recalling ),
this implies

ay < CAN2P=29/2 L 0, U2 foralln

so that

lim supa, < C1e%/%

n—o00
sincei, — oo and(N — 2)(p — 2*)/2 < 0. Therefore, letting — 0, one obtains
lim,_ o a, = 0, which contradictg (33). Thus no diverging subsequence is allowed and
the assertion is proved. O

We are now able to easily conclude the proof of Thedrém 4.

Proof of Theorer]4. By the last Lemmata 24 afd]25, up to a subsequence we can assume
An = A # 0. Thus, fromT’ (A, O)u,, — u # 0 in X, we deduce

up = u:=TH 0 % £0 inX,

(up to a subsequence) by Remprk 12. Therefore, recalling from Lgmjma 21’ that
— 0in X}, by Propositior] 14 one concludes thate X; is a critical point for/x, .
Hence!l’(u) = 0in X’ (see Remark 16), i.ey, satisfies|(B). Since the nonnegativity:of
easily follows from hypothesif2), the proof is complete. O
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5. The extendibility result

In this section we assume thite C(R; R) satisfies conditiorff;) andu € X is such
thaty > 0 and

fVu~V<pdx+/ u—(pzdx:/ fwedx forallg e X. (25)
RN RN |yl RV

Recall from RemarE]? that > H!if k > 2. We are going to show thﬂZS) holds
true for everyp € H? also in the casé = 2. Accordingly, in this section we write
x = (y,2) € R x R¥"2with N > 2. As a result, this proves Propositioh 5 and allows
us to conclude that Theorgm 4 actually provides a weak solution to equalion (6), in the
sense of Definitionl2.

Our goal will be achieved in several steps.
Step 1. We begin by proving(35) for any € H1(R") satisfyingp > 0,¢ € L®(RV)
and sup C Bf,f) X B}eN_z) for somer > 0.

For this purpose, consider a sequefigg ¢ C*®(RY; R) defined as follows: given
n € CPR;R) suchthat0< n < 1,75 = 0in (—o0,1] andn = 1in [2, c0), set
N, (x) := n(n|y|) foranyn € N such that In < R. Thus, for allz one has

e 0 =M = ]:,
e 7, =0in By, x RN"2andyp, =1 in (R2\ By/n) x RN72,
o |Vl < nllnllzom®) and|Vn,| = 0in (By, U (R?\ By/y)) x RV72.

Moreover,;, — 1 almost everywhere iRV .
Sincen, € C® andg € HL itis easy to see thain, € H! c D2 with weak
derivativesV (¢n,) = n, Vo + ¢Vn,. Moreover,

2.2 2.2
[ lha=[ | ¢ dx < Cligll.
RV |yl 1/n<|y|<R [¥] BEQZ)XBI(QN_Z)

As a consequencey), € X and therefore, by (25),

/ VLpV(pnndx—i—/ Vu~Vnn<pdx—|—/ uw’; dx:/ fwen,dx. (26)
RN RN URY RN

By the Lebesgue dominated convergence theorem, one obtains

n—0o0

lim / Vu-Vgon,,dx:/ Vu -Veodx 27)
RN RN

and
lim / f(u)(pnndx=/ fwedx. (28)
RN RN

n—oo
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On the other hand, setting,, := {x € Bl(ez) X B}{V*Z) : 1/n < |y| < 2/n}, we have
|A,| = C/n?and

‘/ Vi - Vg dx Sllfplle/ IVa] [Vl dix
RN A,

1/2 1/2
50(/ |Vu|2dx) </ |Vr)n|2dx)
’ 1/2 ’ 1/2
gc(/ |Vu|2dx) n|A,,|1/2:c</ |Vu|2dx) .
An An

Since|A,| — 0, this implies

lim Vu - Vn,pdx =0. (29)

n—oo RN

We now use the assumptiar> 0 to estimate the integralg v |y|~2upn, dx asn — .

From (26)-ZP). we get
lim / .l dx =/ fwedx —/ Vu-Vedx (30)
RN RN

n—oo Jgn |y|?

and, since 0< |y| 2ugn, — |y| 2u¢ almost everywhere iiR", by the Fatou lemma
we deducdy|2up € LY(RYN). Since|y| 2ugn, < |y| 2uyp, the Lebesgue dominated
convergence theorem finally yields

Iim/ L dx:/ 1 dx. (31)
=00 JRN- |yl RN |yl

As a result, from[(30)£(31) we infer th4t (25) also holds for ewerg H! such that
¢ > 0,9 € L* and supp is bounded.

Step 2. Now considerp € H1(RV) with ¢ > 0 andp € L®(RV).

We will use a truncating sequengg,} c C>°(R";R), defined as follows: given
€ C®MR;R) suchthat 0< ¢ < 1,¢ = 1in(—oo,1]and¢ = 0in [2, 00), set
£n(x) == ¢(n~Yx]) for anyn € N\ {0}. Thus, for allz one has

e 0< & < ]:,
e 7, =1inB, andz, = 0inRN \ By,
o [Vl < IE o).

Moreover,;, — 1 pointwise inR" .

Sinceg, € C* andg € HY, itis easy to see thats, € H! with weak deriva-
tives V(ps,) = &, Vo + ¢Vie,. Clearlyps, € L>®RY) is nonnegative and compactly
supported. Hence the result of Step 1 yields

/ Vu-Ve,dx +/ Vu - Vi dx +/ M§0§2n dx =/ fw)es, dx
RN RN RV |yl R¥
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and we argue as before to obtgin|(25). Here the convergence

lim / Vu-Vepdx =0
RN

n—oo

plainly follows by the Lebesgue dominated convergence theorem.

Step 3. We now drop the boundedness requirement and congidef 1(R") such that
¢=>0.

For alln € N, sety, := min(n, ¢) = ¢ — (¢ — n)4. Itis obvious that 0< ¢, < n
and it is easy to see tha, — ¢ in H1. Hence, by Step 2, we have

/VM-prndx+/ u—(p;dx=/ S u)pndx
R¥ RV [yl RN

with lim,— fRN Vu - Vo, dx = fRN Vu - Vodx and lim,_ fRN fWe,dx =
Jry fw)gdx (recall thatf (u) € LZ/@-D andg, — ¢ in LY). Sincep, < ¢, the
same argument of Step 1 finally shows that

lim / pryzz dx:/ u—(pzdx.
n—0o0 Jrn |y RN Y]

Step 4. Without any assumption on the sign@fe HX(RY), one can apply the result of
Step 3 to bothy,., ¢ > 0 and then deducg (R5) fer= ¢ — ¢_.

6. Properties of weak solutions

In this section we study asymptotic and summability properties of nonnegative weak so-
lutions of equation[(6), which amounts to proving Proposifipn 6 and thus, by Th¢drem 4
and Proposition]5, to concluding the proof of Theofgm 3. Accordingly, we assume that
f € C(R; R) satisfies conditioiff;) andu > 0 is a weak solution in the sense of Defini-
tion[2.

Let us recall the following result from [22].

Theorem 26 ([22]). Assume thak € DV?(R") is nonnegative and satisfies
/ Vh-Vedx 5/ ¢(x, )pdx forall g e CXRY), ¢ >0,
RN RN

where the measurable functign: RV x R — R is such that
0<¢(x,s) <b(x)s* forall s >0and almostevery € RN

withl < a < 2* — 1andb € L2/@~1-a)(RN) Thenk is bounded in a neighbourhood
of the origin andim sup,| ., . |x|¥~2A(x) < oo.
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With a view to applying Theorein 26, fixe (1, 2* — 1) and define
P (x, ) == | f(u(x)@10/@ =D/ =Dy forallx e RN ands € R.

Sinceg (x, u(x)) = | f(u(x))| andu is a nonnegative weak solution, one has

f Vu-Vgodxf/ Vu-Vgodx+/ —5d / fuw)pdx
RN RN [yl
5/ d(x,u)pdx
]RN

forall g € C®(RV), ¢ > 0. Moreover
$(x, ) < Mlu(x)@ 1/ @D/ @D 2L o gy ()2 g

by assumptiorf;). Sinceu? ~1~¢ € L2"/@ ~1=a)(RN), py Theorenh:zl6 we conclude that
u is bounded in a neighbourhood of the origin and satisfies

lim sup|x |V 2u(x) < oo. (32)

|x]—o00

Now we set? := (0,z) for anyz € RY~* and observe thai(- — %) > 0 is still a
weak solution to equatiof |(6). Hence, by repeating the above argument, one infers that
for everyz € RN there existp,, C, > 0 such thati(- — %) < C, almost everywhere in

B(N) i.e.,u < C, almost everywhere nB(N)(‘) On the other hand is of classC? on
RN \ ({0} x RN- ") by standard elliptic regularity theory. These facts, together.1 (32),
imply u € L®@RN).

In order to show that: € L2(R"), we are now going to improve the asymptotic
estimate[(3R). Let us begin with some preliminaries. Firstgfar(0, 1) define

ON-2+(N-22+41—¢)
O .= .
¢ 2
Notice thatx, satisfies the equatiomf — (N — 2)a, — (1 — &) = 0. Moreover, we can

assume @ > N by takinge small enough. Secondly, by means|[of](32) and assumption
(f1), letC1 > 0 andR, > 0 be such that

sk u
fu) < Mu® "%u < ClW for almost everyx| > Rqo
X

Then takeR > R, such thalx| > R = C1|x| ™2 < ¢ and set2 := RV \ Bg.
By definition of weak solution, we have

/Vu~V(pdx=/ f(u)(pdx—/ Ry fc 2 dx —/”—“’de

Q [y Q |x| Q |x]

—(1—8)/ X dx (33)
Q |x|

for all ¢ € X such thatp > 0 and supp C Q.

IA
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On the other hand, the function defined bg) = |x|~% is such that|Vv| =
aelx|* and Av = (@2 — (N — 2)ae)|x|"2v = (1 — &)|x|~%v. Thusv € HY(Q)
and

/Vv-dex:—(l—e)/ v—(pzdx (34)
Q Q |x|

forall ¢ € C®(Q). Since 2, > N implies|x|~2v € LZ/@ -1 (Q), a density argument
shows tha) also holds true for alle Dé’z(Q).

Now, take a constartt, = Ca(u, ¢, R) > 0 such thatCsv > u almost everywhere on
the open annulus

A=xeRV:R<|x|<R+1CQ
and introduce the functions
w:=Cw—u and w:= yqw_
defined almost everywhere RY. From
0<w_ = —Yw<opw = X{w<0y( — C2v) < xw<o)t € L% (RY)

we derive thatw > 0 satisfiesw € L2 (RV) and|y|~2w? e LY(RY). Taking into
account thatv € D12(Q2) andw_ = 0 almost everywhere i, so thatVw_ = 0 almost
everywhere in4, it is a standard exercise to check that Dé’z(Q). Hencew € X and
we can usen as a test function in botf (B3) ar[d {34). So, upon multiplyjng (34 by
and subtracting (33), we obtain

ww-—

/Vw~Vu)_de—(1—8)/—2dx,
Q o Ix|

that is,

2
2 w_

—/ Vuw_| dxz(l—s)/ — dx.
Q Q |xI

This implies

10l 2 ) = IVw-li 2@ = 0,
which means: < Cov € L2(2) almost everywhere if. Thereforeu € L2(R") and

limsuplx|’u(x) < oo (35)

|x]—00

for anyv < «,. Sincec, decreases asincreases, we conclude that|35) holds true for

everyv < lim, _oa, = (N — 2+ /(N —2)24+4)/ 2.
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7. Applications to nonlinear field equations

In this section we tak&/ = 3 and apply the result of Theorgr 3 to the problem of find-
ing solitary wavedor nonlinear evolution equations of the Setlimger or Klein—-Gordon
type. Roughly speaking, a solitary wave is a finite-energy solution of a field equation
whose energy density travels as a localized packet and, owing to this particle-like be-
haviour, it can be regarded as an extended particle, in contrast to point particles. In ad-
dition, the solitary waves preserve intrinsic properties of particles such as the angular
momentum. For an introduction to solitary solutions to evolution equations the reader
is referred tol[[3],[[7]. In this paper we are interested in the existence of solitary waves
with nonvanishing angular momentum. Consider for instance the nonlineaidhoher
equation

oy

i—- =AY +oy — FAYDIYINY, (1) e R xR, (36)

wherey (x, t) = ¥1(x, 1) +iva(x, t) € C,wis areal constant anfl € C(R; R) satisfies

f(0) = 0. By the Noether theorem, any invariance of equafioh (36) under the action of a
group of transformations smoothly depending on one parameter yields a conservation law;
this means that any solutiaof having a suitable spatial decay bears a constant of motion,
which represents a relevant physical quantity. In particular, time translation invariance
yields the conservation of thenergy which is given by

EW) = 3/ [|vw|2+w|w|2]dx—/ F(ly|) dx
2 Jr3 R3
= 5/ [IVul? + |VS)2u? + wu?] dx—/ F(u)dx (37)
2 JRr3 R3

whereF(t) = j(; f(s)ds and we have used the polar form
Vx,0) =ulx, e, u(x,t) >0, S, 1) €eR. (38)

As equation[(3B) is invariant under space rotations, alsatigellar momentum

M(¢)=Re/ iwmvwdxz—/ u?x AVSdx (39)
R3 R3

is constant in time. Observe thit = 0 wheneverS does not depend an In order to
prevent the vanishing dfl, we look for standing solutions of the form

Y, ) =pxe ¥, ox)eC, QeR.
In this case equatiof (B6) reduces to
—A¢+ (@ - ¢ = fleDlgl e InR. (40)
If we now make the ansatz

() =u()e?® . ux) >0, V) eR/2rZ,
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then equatior{ (40) (and so equatipn|(36)) is equivalent to the system

(41)

—Au+ (0 — Qu + |V 2u = f),
2Vu - Vo + uAd = 0.

This suggests choosing as phase function the smoothimapR? \ {0} — R/2nZ
(constant inz) which gives the angle of the cylindrical coordinate®i that is,

arctan(yz/y1) if y1 >0,
. Jarctartyz/y1) + 7 if y1 <0,
Y= 12 if y1 = 0 andy, > O, (42)
—m/2 if yy=0andy, <0

(up to composition with the projectidR — R/27Z). Hence we have
1

AP=0. Vooy=0 |Vif=5
y

so that, ifu(y, z) = u(|y|, z), system[(4]l) reduces to its first equation, which becomes

1
—Au+ (0 — Qu + e f(u) inR3
y

Using H1 variational techniques, it is quite standard to see that this equation admits non-
negative cylindrical solutions whe? < w. Here we are concerned with the limit case
Q = w and, by Theorer|3, we can prove the following existence results.

Theorem 27. Assume thaf € C(R; R) satisfies hypothesés )—(fs). Letu € HL(R3)
be the solution found in Theordghand & € C®(R? \ {0}; R/27Z) be given by(43d).
Thengp(x) = u(x)e?®) defines a nontrivial classical solution to the complex equation

—Ap = feDlpllg  InR3 (43)

satisfyingg € H' N L®R3) and ¢(x) = O(jx|™") as |x| — oo for everyv <
(1++/5)/2.

Theorem 28. Assume thaf € C(R; R) satisfies hypotheséh )(fs). Letu € HY(R3)
be the solution found in Theor@and 9 e C®(R?\ {0}; R/27Z) be given by(42).
Theny (x, 1) := u(x)e!l? -1 defines a nontrivial classical solution to equati(86)
such that

() ¥(x,1) = 0(|x|™") as|x| — oo (uniformly inz € R) for anyv < (1+ +/5)/2;
(i) EGW) = 1) + j0lul?zps < o0
(i) M) =—(0,0, ul?,ps) #O.
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Remark 29. Theorenj 2B also gives the existence of travelling solitary waves with non-
vanishing angular momentum. Indeed, a solutjgrtravelling with any vector velocity
can be obtained from a standing solutign= ¢(x)e~'“! by setting

Yu(x, 1) = p(x — tv)ellBvr—GIVEFor],

In particular, ify is the solution given by Theorem]28 and= (0, 0, v), then by an

obvious change of variable it is easy to see that,) = E(¢)+ ”—82 Ilu ||i2(R3). Moreover,
one obtains agaiM (y) = —(0, 0, ||u||iz(R3)). Note that alsajy is well localized in

space for alt € R.

Remark 30. The same arguments yield the existence of standing and travelling solitary
waves with nonvanishing angular momentum for nonlinear Klein—Gordon equations

AN 2 ~1y =0 R3 x R 44

rr i V+o Y — fUYDIYI¢y =0, (x,1) e R"xR. (44)
See|[[3] for a discussion of such equations. On physical grounds, the solitary wgves of (44)
exhibit all the most characteristic features of relativistic particles (under the assumption
that the speed of light equals 1). The conserved energy and angular momentum of a wave
solution [38) are given by

1 oy [°
E(y) = E/RHa—‘f +|w|2+w2|1//|2} dx—/RaF(wmdx

1 ) 5 (3S\% L\ o [0u)?
= v \Y = — - | F
szs[l ul +<| S| +<8t> o Jut+ = dx /Rs (u)dx

ou 208
xA| —Vu+u-—VS)dx.
3 ot ot

and

M(lp)zRe/ %x/\vwdxzf
R3 Ot R

Ansatzy = ¢(x)e® in ) leads again to equati@43). Then, by Lorentz invariance,
a travelling solutionj is obtained by boosting; for examplevf= (v, 0, 0), v < 1, then
Yu(x, 1) = @(y[y1 — vi], y2, 2)e7 170 wherey = (1 —v?)~Y/2,

Proof of Theorerh 47.For allx = (y,z) € O := (R?\ {0}) x R, we set
P(x) == u(x)e'?™.

Clearlyp € L™ N L2(R3) and limsup, ., , |x|"|¢(x)| = 0 for everyv < (1+ +/5)/2
(Theoren] B). Moreover fronVy = ¢ (Vu + iuV®) one derivesVep|2 = |Vu|2 +
ly|=2u? e L1(R3), so thatp € H1(R3). We now prove thap is a distributional solution
to equation[(43) on the open sBf that is,

/ Vw'VSdX=/ fleDlplYpgdx  forallg e C(0;0),
o o
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or equivalently,
/ Vo V(e g dx = f fleDlpl e P dx  forallg € C(0; C).
o o

With a slight abuse of notation, we write- k = h1k1 + hok> + hzks also forh, k Cs.
On the one hand, we have

f f(|go|)|go|—1¢e—"”sdx=/ f(u)de=/ f(u)adx+i/ B dx
(@] O R3 R3
where¢ = o + i with o, 8 € C°(O; R). On the other hand,
/ w-V(e*“’g)dx:/(efﬁvwriue""vl?)-(e*“’vg—ise*”vmdx
@] o
:f(Vu-V§+u§Vﬁ~Vl?)dx+i/ uve - V& dx
(@) O
=f(Vu~V.§+u§|Vz?|2)dx—i/ div(u V)€ dx
(@) (@)

= /O(Vu - VE +ukly| "% dx

=/ (Vu Va + )dx+z/ <Vu VB + ﬂ)dx
R3 lyI? R3 |y[?

where we have taken into account that - V¥ = 0 and diMuV®) = Vu - VI + u A

= 0. Hence, observing th&@t*(O; R) C X (R®), we conclude by DefinitioE|2 of weak
solution. By the same extendibility argument used in the proof of Proposition 5 (Sec-
tion[5), one can show that is a distributional solution tq (43) even on the whole space
R3. Finally, standard regularity arguments (see for example [25]) showthsaactually

a classical solution t (43) dR°. O

Proof of Theorerh 28.For allx = (y, z) € (R?\ {0}) x Randr € R, we set
Y(x, 1) = u(x)ellPm—er]

Sincep(x) = u(x)e’?® defines a classical solution fo {43) by Theoferh 27, a straight-
forward substitution proves that is actually a classical solution tp (36) @? x R.
Moreover|y (x, 1)| = |¢(x)| for all (x, ) € R® x R implies (i). In order to compute (ii)
and (iii), notice thatve = |y|~2(—y2, y1) andx A V& = (—|y|"2zy1, —|y| %zy2, 1).
Thus, by [(3}) the energy af turns out to be

2
EW) == / |:|Vu| +—+a)u]dx—/ F(u)dx:l(u)—i—g/ u?dx < oo,
| |2 R3 2 R3

whereas from[(39) we deduce that the angular momentugntuds the form

M (¥) = u? u? 24
W)= /Z”MZ /mmz fRs” )
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Sinceu e L? is nontrivial, one has G¢ [psu?dx < oco. On the other hand, it is easy
to see that the first componentsM{y) are vanishing. Indeed, by means of planar polar
coordinategy1, y2) = (r cos¢, r Sing), one obtains for instance

MZ 00 2
f Y15 dx = / zdz/ u(r, 2) dr/ cospdp =0
R3 [yl R 0 0

where the cylindrical symmetry(y, z) = u(r, z) has been used. O
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