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Abstract. We study the controllability problem for the one-dimensional Euler isentropic system,
both in Eulerian and Lagrangian coordinates, by means of boundary controls, in the context of weak
entropy solutions. We give a sufficient condition on the initial and final states under which the first
one can be steered to the latter.
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1. Introduction
1.1. The problem

In this paper, we study the problem of controllability of the isentropic compressible
Euler equation in one space variable. The equation under consideration, when written
in Eulerian coordinates, is the following system:

0rp + 0x(m) =0,
3 (m) + 3, (m?/p + kp?) = 0.

In this systemp = p(t,x) > 0 describes the local density of the fluid at timand
positionx € [0, 1], andm(z, x) its momentum (that is to say(z, x) = m(¢, x)/p(t, x) iS
the local velocity of the fluid). The first of these two equations describes the conservation
of mass, whereas the second one describes the conservation of momentum, when the
pressure is given by the following polytropic law({p) = kp?, with y € (1, 3] and
K > 0.

We are also interested in the system written in Lagrangian coordinates:

0,7 — dyv =0,
{a,v+ax(u—y) =0. (P)

(ED

Heret := 1/p is the specific volume. As proven ih [35], solutions [of|(El) and[df (P)
are equivalent via a suitable change of coordinates, even in the case of weak (entropy)
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solutions. However, the controllability problems described below are different, since they
occur in the fixed space domain, [0).

It is well-known that such equations are hyperbolic systems of conservation laws, in
which singularities may appear in finite time even if the initial condition is smooth. Hence
it is natural to consider weak solutions, which satisfy additional “entropy conditions”
aimed at singling out the physically relevant solution.

When we fix an initial condition[ (El) anf((P) are underdetermined because we have
not prescribed boundary conditions. In this paper, the boundary conditions are not given
in advance and are considered as a control, that is, a way to influence the system in order
to make it reach a given state. In this framework, the controllability problem that we
consider is the following: given suitable statgsandus of the system, is it possible to
find an entropy solution of (EI) (res.|(P)) defined for a time interval [0 such that

up=0 =uo and up—r =u1? D)

The nature of the system suggests that one has to require additional conditions on the
statesug andus (particularly the latter) in order to get a positive answer. Here we give
sufficient conditions omg andu4 in order that the above problem has a solution. Note
however that the conditions below are not necessary in general.

1.2. Mathematical setting

Let us define more precisely the type of solutions that we consider. We restrict ourselves
to the case of solutions that are BV ([0, 1]) for all time, and which do not meet the
vacuum (moreover, we will restrict to the case whgrandu1 have small total variation).
Let us remark that existence theory for isentropic gas dynamics is established in the much
more general framework df* solutions that can contain vacuum (se€ [29]).

Both systemd (EI) an{[P) are written in the form

ur + fu)y =0,

for u = (p, m) andu = (z, v) respectively. In this paper, the statdelongs taR** x R
(hence no vacuum is present).

Recall that arentropy/entropy flux couples defined as a couplé;, ¢) of regular
functions satisfying

Yu e R™ xR, Dn(u)- Df(u) = Dg(u). (2)
Then we have the following definition:

Definition 1. A functionu € L*°([0, T]; BV ([0, 1]; R** x R)) N Lip([0, T]; L([0, 1];
R x R)) is called aweak solutionof (El) or (F) when it satisfiedEl) or (P) in the
distribution sense:

Vo € D([0, T) x (0, 1)),
/ ((t, x)(t, x) + fu)(, x)px(t, x))dt dx +/ e(x)uo(x)dx = 0.
[0,00) % (0,1) [0,1]
€))
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It is called anentropy solutiorwhen moreover, for any entropy/entropy flux coupley)
with n convex, one has in the sense of measures

n): +q)x <0, 4)

that is,
Yo € D((0, T) x (0, 1)) withe > 0,

f ((u(t, X))@ (t, x) + q(u(t, x))gx(t, x))dt dx > 0. (5)
(0,400)x(0,1)

Now the problem is: giveng anduy in BV ([0, 1]) (with small total variation), does there
existT > 0 and an entropy solution defined in [0] x [0, 1] such that[(]L) is satisfied?

Let us remark that here we do not prescribe the time of controllability in advance; it
strongly depends on the statesandu; considered.

We emphasize that it is more convenient to work with the underdetermined system,
without looking for the control explicitly. It could be retrieved from the traces of the so-
lution on the boundary. Note however that for such systems, one cannot impose Dirichlet
boundary conditions, but rather “entering” boundary conditions as described in [18]. For
the study of the initial boundary problem, we refer for instancélto [2].

1.3. Results

Fixc, = (1/24+(y — 1)/4ﬁ)‘1. We define pairs of Riemann invariants for the systems
(EI) and [}) as follows:

m 2./«
i fi pr=D/2

m  2/ky _
wiu) = > _ Tlpw 1/2 ©)

and wl(u) = —
o

foru = (p, m), and

wh = v+ ZVKZT—w—l)/z and w?=ov— Z_Wit—(y—l)/Z )
vy - Y-

for u = (z,v), respectively. We denote the characteristic speeds of the systems by
andas.
The results that we prove in this paper are the following: concerning the system (El):

Theorem 1. Let up and u; be two constant states R** x R. Seti; = A1(u1) and

A2 = A2(u1). For anya € (0, 1), there exist1 = e1(up) > 0, &2 = e2(u1, @) > 0, and
T = T (ug, u1) > Osuch that, for any,g, u1 € BV ([0, 1]; R** x R) satisfying:

luo—uoll <e1 and TV (ug) < e1, )
lug —urll <e2 and TV(up) < e, 9

and
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Vx,ye[0,1], x <y,

w2 () — wiua(y) _ (1_a)max<xz—xl M —M) (10)
x—y -7 1-y " x ' 1—y)’

Vx,y€[0,1], x <y,

wh(un(x) — wiua(y) _
xX—=y -

ha—A1 —A2 A2

x T1—y x

cy(1—a) max( ) (12)

there is an entropic solution of (EI) in [0, 7] x [0, 1] such that

Uj;=0 = Uo, (12)
Ujp=T = U]. (13)

For the systend (P) in Lagrangian coordinates, we have:

Theorem 2. Letwg anduy be two constant states RT* x R. Seth1 := A1 (1), A2 i=

A2(u1), and

—  0A1 _ —  0A2 _

§1:= W(ul) and &,:= m(ul)-
For anya € (0, 1), there existe; = e1(ug) > 0, &2 = e2(u1, ) > 0, and T =
T (ug, u1) > Osuch that, for anyg, u1 € BV (]0, 1]) satisfying:

luo —uoll <e1 and TV(uo) < e, (14)
luy — w1l < ez and TV(uy) < ez, (15)
and
2 — w? 1x—X
Vx,y €[0,1], x <y, W ) = W) <l-a)=— 2 L (16)
x—y g1 1-y
1 —w! 17— 7
Vr.ye[0.1] x <y, w(u1(x)) — w-(u1(y)) <(d-a)= 2= M (17)
xX—y §2 X
there is an entropic solution of (B)in [0, 7] x [0, 1] such that
U|t=0 = Uo, (18)
Uip=T = U1. (19)

Remark 1. Let us remark that the Oleik-type conditions[(10)F(31) anfl (16)—{17) are
not satisfied for general trajectories of the systgms (El) ghd (P) (the interaction of two
shocks of the same family just before the final time generates waves in which the ratios
considered in[(1I0)=(11) and (16)—[17) can be arbitrarily large). See for insténce [8, Sub-
section 10.2].

Remark 2. Let us also remark that the right hand sides/ o (10)} (11}, (16)[arjd (17) are
always positive. In particular, constant states can always be reached.
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1.4. Previous studies and comments

Let us recall some results obtained in the field of controllability of one-dimensional hy-
perbolic systems of conservations laws. In the case of regular (th@t)issolutions, it

was shown by Li and Rao (s€e [28]) that for a quasilinear hyperbolic equation in which
characteristic speeds are bounded away from 0, it is possible to connect two states with
smallC! norm. Let us remark also that f@EI) the particular case 2 corresponds to

the Saint-Venant (or shallow-water) equation, for which several controllability problems
have been considered in the frameworkddfsolutions (see for instande [16.123]).

Concerning weak entropy solutions, the control of convex scalar conservation laws
has been studied by Ancona and Marsan [5], who completely describe the states attainable
starting fromug = 0. In [24], Horsin considers the casg # O for Burgers’ equation,
by using thereturn methodwhich was introduced by Coron in_[14] and is also a key
ingredient here.

The study of controllability problems for weak entropy of systems of conservation
laws has been initiated by Bressan and Coclite_in [9]. For general strictly hyperbolic
systems of conservation laws with genuinely nonlinear or linearly degenerate fields (in
the sense of Lax [25]), and characteristic speeds bounded away from 0, it is shown that
one can drive a smaBV state to a constant state, asymptotically in time, by an open-loop
control. For the problem of controllability in finite time, they prove the following negative
result for a class of systems containing the system below (which was introduced by Di
Pernal[17]), and which is somewhat closetd (El):

dp + dx(pou) =0,

2 2

K DP

By + ax(”— + pV—1> —0. (©P)
2 y-1

Theorem 2 in[[9] proves that there are initial conditions, with arbitrarily small total vari-
ation, for which no entropy solution which has small total variation for angn reach

a constant state. The system {DP) has the feature that the interaction of two shocks of
a family generates a shock in the other family. Note that[fo} (EI), on the contrary, the
interaction of two shocks of a family generates a rarefaction wave in the other family.
However, [9] gives strong indications that controllifg|(Efith the solution of total vari-

ation of the same order a8V (up) for all timeswould be a strongly nontrivial matter

(one can even doubt that this is possible). Here we use the “return method” which con-
sists in strongly perturbing the system in order to achieve controllability. This suggests
distinguishing two types of controllability properties: a controllability property for which
one should expect the size of the control to be of the same order as the distaneg from

to u1, and controllability via strong perturbations in which the control can be large with
respect to the distance to achieve. In the present paper, the latter is considered; however,
one can construct a solution with small total variattoronnecting states that are of small
total variatione, bute is very small with respect te (clearly not of the same order)—see
Subsectiof I]5 below. It is, of course, rather unsatisfactory that, despite the fact that we
consider solutions which may have large total variation, the result applies only to initial
and final states with small total variation.
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Finally, in [4], Ancona and Coclite investigate the controllability properties for the
Temple class systems (seel[33] for a precise definition). They prove that the controllability
applies in the case of characteristic speeds strictly separated from O aimik@pe
inequalities oru1. An important difference with the results here is that no small total
variation is assumed (the solutions are even consideretpand the Olénik conditions
imposed onu; are actually satisfied by the trajectories of the system (with perhaps a
different multiplicative constant). Parts of the construction here are analogous to those of
[4] and [9].

1.5. Additional remarks

Two different methods are developed in this paper for the sysfers (El) and (P), respec-
tively. It should be noted that, while the first method cannot apply to (P), the method
developed in Sectidn] 6 could be used for the sysfein (El), if the referencesttisfies

r(ug) < 0 < A2(up). This is due to the fact that the first method relies on the possibility

to shift the sign of the characteristic speeds, while the second one relies on the possibility
to generate rarefaction waves (and hence cancelations) via interaction of shocks of the
same family.

Also, the following fact will appear during the proofs: for the systgin (P) andfdr (EI)
when moreoveh(ug) < 0 < A2(up), one can use the second method to get solutions
with small total variatiorr (for all time), for statesg andu1 sufficiently close taip and
u1 in BV, but the radii of the corresponding balls 8V (that is,e1 andez in Theorems
[ and 2) are very small with respect#din a nonlinear way). Also, the time of control-
lability could grow ast — OT. For the systen] (El) when eithef (o) < A2(ug) < 0
or 0 < A1(ug) < A2(ug), one can use the first method to obtain solutions with small total
variationt (again if TV (ug) andT V (u1) are very small with respect to).

1.6. Structure of the paper

Theoren{ 1 is proven in Sectiopp 2[fb 5. In Secfibn 2, we introduce some preliminaries
and notations. The general method is described in Subséction 2.4. The proof of the result
is in three steps developed respectively in Sectidif$ [3, 4, 5. The first step in the case of
Theorenj  is completely different and is described in Segfjon 6.

2. Preliminaries and notations

2.1. Characteristics of the system

Written as an equation for = (p, m), the systen{ (El) is a system of conservations laws,
which is strictly hyperbolic as long as > 0, that is,

A(u) < Aa(u), (20)
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wherei; andaz given by
= % — Viyp? V% and 2z = % + iy pr DI (21)

are the two (real) eigenvalues of the Jacobian mati@ssociated with the flux functiofi;

0 1
and A(p’m) = (_mZ/p2+pr)’—l 27}1/,0> : (22)

m
Flo,m) = (mz/,o + Kp”)

Many properties of the system are derived from the resolution oRtbeann problem
that is, the Cauchy problem when the initial data has the shape of a step-function:
UQ©,x)=(p;,m;) forx <0 and U@, x)= (p,,m,) forx >0, (23)

where(p;, m;) and(p,, m,) are two fixed states IR™* xR. The resolution of this problem
leads to the introduction of the following classical objects which we list below.
We denote by; (1) the following right eigenvectors of (1) corresponding to its-th

)\, A-Z ’

Note thatVa; (u) - 7 (u) # 0 for anyu € R™* x R, that is, the two fields are genuinely
nonlinear in the sense of Lax (séel[25]). We can renormalize these eigenvectors in order
to getVa; (u) - ri(u) = 1:

—2,B=v)/2 203-7)/2
rlzp—(l) and rz:p—(l). (25)
VEy(y +1D \ M Vey(y +1D A2

We introduce the paif {6) of Riemann invariants of the system, which is a couple of func-
tions (w1, wp) satisfyingVw; - r; = 0, which here provide other coordinates for the state
of the system. We will consider them as variables and as functiensw’ (1) as well.

2.2. Wave curves

Rarefaction and shock curvefarefaction curves are made of staigs(on the right)
that can be connected to a stajgon the left) by rarefaction waves, that is, smooth self-
similar solutions of the Riemann problem, associated with either eigenkalaad .
We denote these curves By. Here they are given by the following equations:

2/ky —1/2 —1/2
P p(y )/ _p(y )/

. m ,
1-rarefactionsm, —m; = —l(p, —p1) — 1 Pr(or ) ) with o, < py,
ol -
(26)
. 2. /k _ — .
2-rarefactionsin, —m; = %(p, —p1)+ y—)l/pr (pr(y bz _ pl(y l)/2) with p, > p;.
. _

(27)
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Shock curves of theth family are made of states (on the right) that can be connected
to a stater; (on the left) by an-shock that is, a discontinuity that propagates at constant
speeds, satisfying theRankine—Hugoniot relation

[f )] = s[u] (28)

(where [p] denotes the differenag. — ¢; across the discontinuity, andhe speed of the
shock), and the admissibility conditions of Lax:

s <A(u) and Ai(u,) <s < A2(u,) forashock of the first family,
s> A2(uy) and Ar(u;) < s < A2(uy) for ashock of the second family.

(29)

After computation, these curves are given by:

Y Y
mi Pr Pr — P
1-shocksm, = m; + —(p, — p1) = [k =————(p, —p1) (= S1(pr, u1))
pPI Pl Pr— pI

with the conditiono, > p;,  (30)

Y Y
mj Pr Pr — P,
2-shocksm, = m; + —(p, — p1) + /K — Loy — o) (= S2(pr, u1))
Pl Pl Pr— p1

with the conditiono, < p;.  (31)

Let us agree to extend the definition of the shock speed, u») to states that do not
satisfy the Rankine—Hugoniot relations (but are such thatt p»2) by the following
expression:

mo —mq
p2—p1
It should be noted that, by Taylor’s formula, on th¢h rarefaction curves, the “shock
speed” admits the following expansion: far = R; (s, u;),

s(uy, up) == (32)

Ai(up) + A (uy)

5 + O(lug — ur|?). (33)

s(up, up) =

Wave curvesMerging shocks and rarefaction curves allows us to introduce Lax’s wave
curves®1 and ®;:

2,/ky ~1)/2 ~1)/2
—y_lp(p(” V2 pr Iy ) forp < pr,

mj
p,m+— (@ —p1)—
. o
D1(p, up) =

m
(p,—lp—\/xﬁ(pV—ply)(p—pz)) for p > py,
o1 o1
(34)
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m
(p, —p—\/K—(pV —p])p — pz)) for p < py,
Ba(p, u) " 8 -
(p mz+—(p pz)+ — P =iz _ plr 1)/> for p > py.

(35)

One may parameterize these curves with a coordinate differentdrdns a consequence
of VX; - r; = 1 that

o; = Ai(ur) — Ai(up) (36)
increases with:, along the rarefaction curve (that is, as < p; decreases for a 1-
rarefaction, ap, > p; increases for a 2-rarefaction). On the other hand, one sees that

o; =2\ (u;) —s),

wheres is the speed of the shock, decreases along the shock curve (thapjszag;
increases for a 1-shock, as < p; decreases for a 2-shock). Moreover, the resulting
parameterization is twice continuously differentiable (seé [25]). We denot@; ke
wave curves with the above described parameterization.

Curves in Riemann coordinate&nother parameterization for these curves is obtained
by using Riemann coordinates: this provides two cumvés— ®1(w?, u) andw! —
ﬁ)z(wl, u) where the states are considered in Riemann coordinates. It is elementary to de-
duce from|(6) and (36)F-(27) that along the cuRiew’ is constant, whiles®~ increases.
On the other hand, it follows from|(6], (B0)—(31) and the Cauchy—Schwarz inequality that
along the curves;, both Riemann invariants decrease.

We will denote bySl(w up) and So(wl, up) the Rankine—Hugoniot curves in Rie-
mann coordinates (not necessarily satlsfyIEé (29)); thatiigp?, u;) is the point on the
first Hugoniot locus starting a, havingw? as second Riemann invariant.

Approximations of the axes via wave curv&¥e finish this subsection by introducing
the following “approximations of the axes”, in Riemann coordinates, obtained by gluing
some pieces of wave curves. Given a base paittte curveslli" are defined for = 1, 2

andk € N as follows:

e Forn = 0 the curvest? and v are defined to be the curves.

e Forn > 1, we definel} : w? i Wi (w?, u) and¥} : wl > W) (wl, u) as follows:

— 1-curves: forw? > w2(u), V! is defined to be the rarefaction curve, that is, the axis
wl = wl(u). Forw? < w?(u) we define the points,, recursively byug = « and
U1 = S1(w? () — 1/n, w,) for anym e N. Then the curver? > W! (w?, u) is
defined byw? (w?, u) = S1(w?, uy) for w?(u,41) < w? < wW2(uy).

— 2-curves: forw! > wl(u), ¥} is defined to be the rarefaction curve, that is, the axis
w? = w?(u). Forw! < wl(u) we define the points,, recursively byug = « and
Uptl = Sz(wl(um)—l/n, u,,) foranym € N, as long as the point does not meet the
vacuum. Then the curve® > W7 (w?, ) is defined byWs (wt, u) = So(wl, uy)
for wl(um1) < wh < whuy).

The curvesV] and¥; are illustrated in FigurE]Z.
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2-rarefaction
2-rarefaction
! critical curvel
w
U)2
1-rarefaction
e 1-shock
1-rarefaction, . -~ 2-shock
1-shock vacuum
critical curve2
2-shocl
(a) (w?, w?) coordinates (b) (p, m) coordinates

Fig. 1. Wave curves.

n )
¥

Fig. 2. The curvest} andw?.

As the Rankine—Hugoniot curve and the rarefaction curve are smooth and fidve a
contact at the base point (séel[25]), it follows that

18w, u) — & (w3 w)| = 0w —w @) P).
Hence, for each compaét ¢ R™* x R, there is a constar@ix > 0 such that

W2 @2, ) — (b, wy| < KWz w2l
" 37)
Cklwi — w1(u)l

(W5 (wh, u) — wh, wu)| < — :
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as long as the states considered ar& ifNote that¥} is below thew?2-axis and¥} is to
the left of thew!-axis, because the corresponding shock curves are.)

Generalities. Finally, we add as an exponent to denddt curvesi.e. the sets of points
that are connected as left states to a given right state by either a shock or a rarefaction
wave.

The classical theorem of Lax proves that, for general hyperbolic systems of conser-
vation laws with characteristic fields which are either genuinely nonlinear or linearly
degenerate, one can solve the Riemann problem between two states sufficiently close to
each other, in terms of (small) waves which are either shocks, rarefaction waves or contact
discontinuities. Concerning the systgm|(El), the Riemann problem can be solved globally,
but vacuum may appear between two rarefaction waves: we refer for instahce to [34].

2.3. Notations

We will always put the time variablebefore the space variable Hence we make the
convention that in the product [b] x [c, d] the time variable describesd, b] whereas
the space variable describesd, d].
We introduce several regionsRit* x R:
D1 = {(p,m) € R** xR : a1(p, m) > 0},
Dz = {(p,m) € R™* x R: r1(p, m) < 0 < A2(p, m)},
D3 = {(p,m) € R** x R: A2(p, m) < O}, (38)
C1={(p,m) e R™* xR : A1(p, m) = 0},
Co={(p,m) e R™ x R : Aa(p, m) = 0}.

We refer toC1 andC» ascritical curves Of course one has
R™ xR =D LD, D31y LCo.

Finally, given a simple wavéu_, u) with u; = ®;(o, u_), we will call o the wave
amplitudeand |o| the strengthof the wave. When the wave is called we denote

its amplitude byo,. When specified, we may use as a strength of the wave the value
lw3~ — w3 (u—)| if uy = ;w3 u_). A couple (o1, 02) describing a Riemann
problem is called avave-vectorFor simple waves, we may identify the amplitude and
the wave-vector.

2.4. Main ideas of the proof

The proof is divided into three steps, which we develop in separate sections:

e In Section3, we show how to steer any initial state := (pg, mo) in BV ([0, 1];
R*™* x R) with small variation and withg > p, > 0toaconstant state (not necessarily
given in advance).
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e In Sectior{ 4, it is shown how one can drive the system from a given constantgtate
to any other constant stadq.

e Finally, in Sectior] b, it is proven how a state = (p1, m1) as in Theorem]l can be
attained, starting from a certain constant state (which depends)on

The principal idea in Sectidrj 3 is to destabilize the system by letting a strong shock enter
the domain. As mentioned in Subsecfion 1.4, one can doubt that boundary conditions with
small total variation are enough to get rid of the structure of the initial condition. With a
strong shock entering the domain (for instance from the left, that is, through the bound-
ary x = 0), one can hope that all the information contained in the initial condition can
be shifted outside the domain. This is an application of the “return method” introduced
by J.- M. Coron in[[14] in the context of finite-dimensional systems, and used since for
various PDE problems such as Euler incompressible equatioh [15, 19], Burgers equation
[24], Vlasov—Poisson equation [20], Sékinger equatiori [6,]7]. Note that the existence

of a solution of the system with initial condition given by a sm@W perturbation of a
strong shock has been studied by several authors (see in particulat [32], [10].[13], [27]
and [31]; see alsa [1]).

The second step of the control process, developed in Sédtion 4, is quite elementary:
one drives a constant state to another simply by solving several Riemann problems one
after another, that is, the two states are separated by several shocks and centered rarefac-
tion waves (passing either through the left or the right side of the domain according to the
sign of their speed).

The last step is done by a (backward) front-tracking algorithm. We construct, back-
ward in time, a sequence of piecewise constant functigne L°>°([—T7, 0]; BV ([0, 1];

R*™* x R)) (for an appropriatd” > 0) which converges to a solution of the system with
uip=0 = u1 andu,—_7 equal to a constant state. The different constant states are sepa-
rated either by shocks or by (small) rarefaction fronts (as in the classical front-tracking
algorithm, see [8]). We start from an approximatioruefat timer = 0, and then solve
(approximately) “backward Riemann problems”. In fact, we adghtone or two (strong)
shocks which should enter the domain (foe 0). When interaction occurs, we solve it

as in the usual front-tracking algorithm, except when a rarefaction front meets one of the
two strong shocks, in which case the problem is solved in terms of two shocks of the same
family. The main issue here is to avoid the situation where the rarefaction fronts meet and
merge (which would result in a non-entropic solution). We manage to make these rarefac-
tion fronts either quit the domain or meet one of the strong shocks before any possible
encounter with another rarefaction front. This justifies thelf@ketype constraints that

we impose ony in Theorenj L.

3. Step 1: getting rid of the initial condition

The goal of this section is to prove the following proposition:

Proposition 1. Letug € BV ([0, 1]; R** x R) be as in Theore@ Then there exist
T1 > 0, a constant state; € R™* x R, and an entropy solution : [0, 71] x [0, 1] —
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R** x R of (EI) such that
Uj=0 = Uo, (39)
U=T; = W1. (40)

Before getting to the proof, we need some preliminary material needed to handle strong
shocks, which as we explained earlier are the main tool in this part.

3.1. Preliminaries

Here we recall some results on the solvability of the Riemann problem in the neighbor-
hood of a strong shock, and on the interaction of a small wave with a strong shock.

These results are derived under the following stability condition on the strong shock
(due to Majda, see [30]): a shock (of thieth family) (i, #™) with speeds and wave
amplitudez is said to beViajda-stableif:

(i) §isnotan eigenvalue c%(ﬁi),

(i) {rj@*) : aj(at) > syUat —a~}Ufrji™) : Aj(@") < s} is a basis oR”. 1)

The second condition for a 1-shock (resp. a 2-shock) reduces heigte: ii—, ra(ii )}
(resp{ri(i~), it —i~})is a basis oR2. The condition) is stronger than Lax entropy
inequalities, and is satisfied by any shock fof (El).

We have the following result (sele [32, Lemma 3.1], and also[[13, 31]):

Lemma 1. Suppose that the shogk™, #™) with wave-vectok is Majda stable. Then the
Riemann problemé&:~, u™) close to(iz—, ™) have a unique solution with wave-vector
¢ close toz. Moreover, ify is the wave-vector of a small wave interacting Wi, "),
then, up to higher order terms i |, the resulting wave is given By+ &', with ¢’ given

by:

e Case of a stron@-shock wave
— Small wave interacting from the right side:

( (a(@=) = $)la(ig).ra(@-) 2= @) - [y — ﬁ_]) (al)

(ha(ii-) = Dlaliiy) i) L@ )laGy) [y —i-]) \e2

_ (M) =5 0 71
0 Ao@iy) =5 ) \yv2 )’
— Small wave interacting from the left side:
ger (@)lo(y) - [y — -] 0 <g'1)
Ee @iy - liy —i-] OaGi-) —§) ) \22

_(r2@-) =5 0\ [y
B 0 0 0/
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e Case of a strond-shock wave
— Small wave interacting from the right side:

(i iiy) - iy — i) 0 (al)
& @)y - iy — -] (oGio) —5) ) \&2
(M@ =5 0\ [(n
- 0 0 0/’
— Small wave interacting from the left side:

( fﬁ(h)h(ﬁ—)'[h—ﬂ—] (ho(ii4) =)l () ra(i4) = (roGig) - Vs @, i) ) [y —ii -] )

D )Gy Ty —i -] (i) —§)lp(i—) ro(iiy) — (o) Vus G it )i -)-[iy —ii-]
(e Z (M) =3 0 7
& 0 ho@iy) =5 ) \y2 )"

We will use Lemmé]l by means of the following corollary (see &l$o [1, Lemma A3],
[13], [31, Lemmas 3.3—-3.6]). We describe the situation when the family of the strong
shockk is equal to 2, but of course a similar result standskfer 1.

Corollary 1. Let (ii—, ") be a strong2-shock for syster(El): i+ = ®p(E2, i7). Fix
g1 = 0. Then there exist neighborhoot%, Vf and & respectively ofi~ and it in
R** x R and ofg, in R™* such that for allu—, u™) € Vi % Vi, the Riemann problem
(u~,u") is (uniquely) solvable, that is,

ut = Bo(ez, Prler,u7)) With e — 7] = O max(u™ — |, ju” —i~|).
(42)

Moreover, there is a constai depending only o, and Vf such that,(u—,u™) €
Vi X Vf being a strong shock, say" = ®a(g0, u™), 2 € &:

() (Interaction on the left of the strong shocK)onsider a small wave (u~~, u™), say
u~ = ®;(a, u~ 7). Then its interaction with the strong shock is described by

ut = do(e2(P1(er, u” 7)) with ez — 82| + |e1] < V. (43)

(i) (Interaction on the right of the strong shocK)onsider a small wave (u™, u™),
sayu™" = ®;(a, u™). Then its interaction with the strong shock is described by

utt = a(ea(P1(er, u7))) With ez — &2l + e1] < Vial. (44)
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3.2. Starting point in the proof of Propositih 1

The strategy of the proof of Propositiph 1 is the following: find a strong 2-shock on the
left such that the initial-value problem dhwith as initial state the function composed of:
the left state of this strong shock on the left of the domagrinside [Q 1], and a constant
value not far fromug on the right of the domain, admits a well-defined solutionfgn
which reaches a constant statside[0, 1] in finite time. We begin with a lemma.

Lemma?2. For anyw € R™ x R, there existt < 0 ando’ € R™ x R such that
w = ®o(o, w) and

A2(0) > M(e) = 3, (45)
s(w, ) > 3. (46)

Proof. Definew =: (p,, m,). One considers the curve of 2-shocks on the left

. m m 1 pf —p)
[or, +00) 3 pr = (o1, my)  with 2Ty P

- (o1 — pr).  (47)
i Or PLPr PIL — Pr

Comparing the growth of the second term on the right hand side with the growth of
pl(y_l)/z, one easily sees that (p;, m;) > 3 for p; large enough. Using the Rankine—
Hugoniot equation one gets

LT Y

§ = >
Pr Pr P1— Pr

which establishe$ (46) fox large as well.

Now by Lemm@z applied to the constant s@ggthere exist®y € R™ x R such that
ug = d2(09, vo) for someoy < 0 andi2(vp) > A1(vg) > 3. We introduce the following
functionUg € BVioc(R; RT™* x R):

Vo forx <O,
Up(x) = { up(x) for0O<x <1, (48)
uo forx > 1.

With Uy defined in this way, Propositi¢rj 1 is a direct consequence of the following one:

Proposition 2. If ug has small enough total variation, then there is a global-in-time en-
tropic solutionU of (EI) in [0, +00) x R satisfying

U@©,)=Us inR. (49)

Moreover,
Uj13x[0,1] is constant. (50)
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One deduces Propositiph 1 simply by taking the restrictiot/ db [0, 1] x [0, 1]. The
rest of this section is devoted to the proof of Proposifipn 2 by a front-tracking algorithm.
The approximations that we construct are intended to take values in the domain

® = B(vg; r) U B(uo; r),

with r so small that:

o the characteristic speeds are uniformly strictly separaté{ig; ) and inB(ug; r),

e any interactions insid@(vp; r) or inside B(ug; r) are well-defined (without vacuum)
with Glimm'’s estimates valid,

e any simple wave joining a state B vg; r) on the left to a state iB (ug; ) on the right
is a 2-shock having speed greater than 2, satisfying Lefjma 1 for small interactions in
9, and such that, > 2in B(vg; r),

e any strong shock joining a state fraB{vo; r) to a state inB(uo; r) has a speed greater
than (and separated from) all the 1-characteristic speeBévin r).

Note that it is easy to fulfill the last condition, since the strong 2-shock obtained above
satisfies Lax’s inequalities.

Remark 3. The choice of 2 as a minimum for characteristic speeds and for the speed of

a strong shock is arbitrary, and could be replaced by any positive constant. Hence, when
r1(ug) > 0, the strong shock that we consider can be arbitrarily small (but of ceurse
becomes very small as well, and the time of controllability is affected). Note also that,

as will be clear from the proofs, we could have chosen, instead of a strong 2-shock on
the left of the domain, a strong 1-shock on the right of the domain. (In that case we need
negative characteristic speeds and negative speed for the strong shock.) Hence the same
remark applies whehz(ug) < 0.

3.3. Proof of Propositiop]2

In this subsection, we construct a solution with a strong shock, by means of a front-
tracking algorithm (seé [8]). Let us underline that the results in this subsection are essen-
tially not new: see for instancé [32] for a general theory concerning strong waves, [13]
where the construction uses Glimm’s scheme, and [31] where the construction uses the
Bressan—Schochet front-tracking scheme. We describe the construction to make the pa-
per self-contained. Let us describe the algorithm we usexzFolN we approximate the

initial condition Ug with a step functiord4, in such a way that

U,(x) =19 forx <0 and U,(x) =ug forx > 1, (52)
TVU,) < TV(Uo), U — Uoll 1o1)— 0 asn — oo. (52)

Now starting fromi4,,, we solve (approximately) the various Riemann problems at each
discontinuity oft4,, and replace each rarefaction wave by a rarefaction fan with accuracy
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1/n, that is, we replace a rarefaction wave betweemndw,; = ®;(c, w1), 0 > 0, by a
piecewise constant solution consisting of constant states:

o =w, of = ®;(k/n,w1) fork=1,...,m:=|no|, "t = o, (53)

separated by straight lines at shock speted, »**1).
Note that all these Riemann problems are solvable (including the one-d) with-
out vacuum, by Lax’s theorem or by Lemijna 1, as long as the states lie in the balls de-
scribed above. By modifying the speeds of the front by an amount of at mésbe
can require that the interactions between fronts are all binary, and that there is at most one
interaction at a time. We do not modify the speed of the 2-shock wave issuing from O.
When two fronts meet, say at timg let u; to u,, be the states separated by the left
front, andu,, to u, the states separated by the right one; we extend the solutios 9
by the approximate solution of the Riemann problem, with the following convention for
outgoing rarefactions:

o if the incoming waves are of different families, then (possible) outgoing rarefaction
waves are approximated by a single rarefaction front,

o if the two incoming waves are of the same family, then the outgoing wave of the other
family is approximated by a rarefaction fan with accuragy &s described ifj ($3) if it
is a rarefaction, and by a single shock otherwise.

We define thestrong shockdenoted bysS) to be the 2-shock that outgoes from 0, and
then the 2-wave (which, as we will show, is still a shock) that extends it after successive
interactions. It is unique by the previous conventions. We call any other wask We
denote byU” the resulting front-tracking approximation.

——  strong2-shock
——  weak2-shock
1-rarefaction

- 1-shock

Fig. 3. A front-tracking approximation.
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Now, we prove that the previous algorithm is well defined, and then that one can
extract a limit from it which is an entropy solution satisfying the requirements of Propo-
sition[d.

Estimates on the front-tracking approximations. We introduce the strengity, of a
wavea as described in Subsection2.3. We introduce the following functionals measuring
the strength of the solution:

V(t) = Z logl,  Vs(m) =[S V(r) = V() + Vs(1), (54)

o weak wave

whereS denotes the strong wave, and the sum is over all weak waves existing at.time
We introduce the following interaction potentials:

Quu(@® =Y loal-logl, Qus(m= Y loal, (55)
B o weak wave
approaching approaching
weak waves the strong wave

wherex andg are approaching waves withon the left of8 and eithew is a 2-wave and
B a l-wave, or both waves are of the same family and at least one of them is a shock. We
introduce the following total interaction potential:

0(t) = AQuuw(t) + Qus(1), (56)

whereA is a constant to be defined.

Clearly, at times when no interaction takes place, all these quantities are constant.
Now we describe how they evolve beyond an interaction time. Whisra time of inter-
action andF one of the above quantities, we writgt ~) for the constant value of this
guantity fort < t close tor, and definegF (z+) similarly.

The following estimates are valid as long as all states on the le&ftasg in B(vo, r)
and all states on the right ¢fare inB(ug, r), which will be proved a posteriori provided
TV (up) is small. All the O(2) in the following interaction estimates are fixed once
introduced before is fixed.

Now it follows from Glimm'’s estimates (sele [21]) that, durinvaak-weak interac-
tion (call the corresponding wavesandg):

Vu(t) = Viy(r7) = 0(D)ogl.logl and Vi(z™) = Vi(z7),
wa(7+) = Quw(T™) = —|og| - |Uﬂ| + O(Dog] - |C7/f3|vw(7_)’ (57)
Qus(t™) = Qus(t7) = 0Dy - |ogl.
Following Corollary[], during aveak-strong interaction (call the corresponding waves
o andS respectively), we have the following estimates:
Vi (@ t) = Viy(x7) = 0O(Dogl, Vs(z™) = Vs(z7) = O(D)loul,

58
wa(77+) — Quu(t™) = 0oy |Vu(t7), Qws(f+) — Qus(T7) = —|ogl. 9
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It follows from (57) that for suitabled, during a weak-weak interaction one has

Q") -0 = —él%l logl + O (D Alog| log| Vi (T ), (59)
and during a strong-weak interaction, frdm|(58),
Q(x™) = Q(t7) = —loal + OV Alow| Vi (z7). (60)
Now one sees that there exists a constant 0 such that ifV,,(t7) < ¢1, then
e during a weak-weak interaction:

loa| |og]

A
wa(f+)_ OQuuw(t™) = — and Q(T+)_ O(r7) =< _E|Ua| logl, (61

e during a strong-weak interaction:

Qus(t) = Qus(t7) = —loal, Q) —0(7) < —loal/2. (62)
One deduces that there is a consi@nsuch that, provided,, (r) stays below,

7 Vy (1) + C10(7) andt — Vi(r) + C1Q(r) are nonincreasing, (63)
7 > Vi(tr) — C1Q(7) is nondecreasing. (64)

Moreover, ifV,, (0) is small enough (say,, (0) < ¢2), the latter quantity is positive.

Now if V,,(0) is small enough, one can g&},(t) < c; for all T (at least as long as
the front-tracking approximation is well-defined, which is proven to be globally later),
and hence (§3)E(§4) hold for all time. Indeed, introdiéice 0 such that

1
ZTVzia)(U"(t)) < Vu(®) < L-TVezy (U" (1)), (65)

whereX T (¢) (resp.X—(¢)) is the (open) part oR on the right (resp. left) of the strong
shock, andE=*(r) := =+ (r) U = (r). (Clearly one ha@S) for each small front in the
neighborhoods aip andug. Hence the constaiiit depends on.) Supposed Vr«U,, < c2,

for somec, < ¢1/L to be fixed later. This remains true for"(t) for t close to 0. By

(63) one has
Vi(7) < Vyy(0) + C10(0) < Lep + C1L%¢3,

and hence
T Vs (U" (1)) < L%ca + C1L3c3.

Now we choose: that satisfies, < c1/L, Lco+C1L2c5 < ¢y andL?cp+ C1L3¢3 < r.
This ensures that, at least as long as the front-tracking approximation is well-defined, all
the previous estimates are valid.

Finite number of fronts and nonaccumulation of interaction points. In order to prove
that the front-tracking approximation is indeed well-defined, it remains to prove that the
total number of fronts is finite and that interaction points do not accumulate. It follows



446 Olivier Glass

from the construction that, at each interaction for which the number of outgoing fronts
exceeds the one of incoming fronts (that is, two), the strength of the outgoing rarefaction
wave exceeds/k. Using Glimm'’s interaction estimate, one deduces that the strengths of
the incoming fronter ando’ satisfy|o | |o’| > C/n, and hence, using (b1) ar{d {62), one
sees that this can happen only a finite number of times. Consequently, the total number of
fronts is finite. It is then rather classical that interaction points cannot accumulate (see for
instance([1]): first, we can restrict to the case where interactions generate only two fronts
(by considering a suitable time interval); then one can for instance reason by induction
on the number of fronts “involved” in an accumulation of fronts. Hence the above front-
tracking algorithm is well-defined, for anye N*.

Size of the rarefaction fronts. Classically, before passing to the limit and getting a so-
lution of (EI), we need an estimate on the size of rarefaction fronts, which is central in
the proof of the entropy inequality. We consider a rarefaction feqmthich starts at time
7 > 0). This is done as in the small total variation case (see [8]). By the convention we
made in the resolution of interactions, it is quite clear that jfwave is involved in an
interaction, there is at most one outgoifigvave. Hence, g-wave can be uniquely ex-
tended forr > 7 by following the outgoingj-wave at each interaction (with possibly a
final timeT < +00).

Clearly, at the beginning, the size ofsatisfieso, ()| < 1/n. Then one introduces
the total strength of waves approaching

Vi = Y ol (66)

wu approaching

where the summation involves both strong and weak waves. By considering the differ-
ent possible types of interactions, one finds thatfféf(xo) small enough and for some
c3 >0,

lov ()] < low (T )IL = e3{ (Vo (r) + C10(z ) — (Vo (7)) + C10(z D],

which leads to

lov(®)] < lov(D)] ]_[ [1—c3{(Vu(zF) 4+ C10(t ) = (Vu(r7) 4+ C1Q(z )N)}]
JL Crossingy
attimere[z,?]

=< lov (D) exple3[V(0) + C10(0)] = C3/n (67)

(as long ag is a rarefaction front).

Passing to the limit. Now we show that one can find a converging subsequence of the
family U" asn — oo. We already saw thatU"),cny has a uniformly bounded total
variation for fixedr, outside the strong shock. The strength of the shock is measured by
Vi (7), which can be estimated Hy (63); hence the total variation is uniformly bounded. We
denote byV a strict bound for all front speeds in variol’$ (for instance the supremum
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of the characteristic speeds ov&{Up; r) U B(ug; r) plus 1). Then, classically, the family

is uniformly Lipschitz in time with values iliLlloc(R; RT* x R):

10" (x + 1) = U (Ol gaqm,my < & — s)V[TrTl%] TVU"(s)), (68)

at least whend, r + ] does not contain an interaction time, and then by continuity for
any time interval. Of course, the maximum on the right hand side is bounded. Hence, by
Helly’s theorem (see e.d.|[8, Theorem 2.4]), one can extract a subsequence, still denoted
by U", such that

U" — T inLi5([0, +00) x R). (69)
Proof thatU is an entropic solution.This is done as ir |8, pp. 144—145], and recalled in
Subsectiofi 5|9 for completeness.

Proof thatU .1 is constant inf0, 1]. Let us prove that for large enough, all the front-
tracking approximationg&/™ are constantin [23, 1] x [0, 1] (at least ifT V (ug) has been
chosen small enough). To do this, we prove that all waves on the left of the strong shock
(including the strong shock) evolve with speed at lea&t 3

Weak waves on the left of the strong sholtkollows from (63) and[(6p) that i¥/,, (0) is
small enough,
Vis-o)(U") <e.
As by constructiorvg is the constant state @f, asx — —oo, one finds that for any
x € X (1),
A2U" (%) = 1(U" (x)) = 2.

Now, using [(32), one deduces that all fronts move with speed at l¢asif3V,,(0) is
small enough, also after taking into account the small changes in the front speeds of order
2",
The strong shocklt follows from the construction that the state on the left of the strong
shock is at distance at most> 0 from vg, whereas the state on the right of it is at
distance at most > 0 fromo. By the definition of- in Subsectiof 3]2, this implies that
the strong shock evolves with speed greater than 2.

This shows that the restriction &f" to the space interval [A] is constant for times
T > 2/3. So the limitU (which is Lipschitz with values imﬁ)c) is constant in [01] at
timest > 2/3.

4. Step 2: from a constant state to another

The goal of this section is to prove the following proposition:

Proposition 3. For any (w, ') € (RT* x R)?, there is somd> > 0 and an entropy
solutionu of (EI) in [0, ] x [0, 1] such that

Ujp=0 = W, (70)
Uy=r, = @' (71)

This proposition is proven in three steps, which we develop in separate subsections.
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4.1. Traveling between zones

Let us prove the following lemma:

Lemma 3. For all wg € R™* x R, for anyi € {1, 2, 3}, there exists‘.Tz1 > 0 and an
entropy solution: of (El) in [0, 73] x [0, 1] such that

Uj=0 = wo, (72)
u|l=T21 S Di. (73)

Proof. We separate cases:

Case l.wg € D1 UCyr andi € {2, 3}.
Subcase (i)i = 2. Starting fromwg = (po, mo), we follow the 1-shock curve until it
crosses the liner = 0. In other words, we determirg = (p1, m1) such that

(wo, (p1, m1)) is a 1-shock and:; = 0. (74)

It is quite clear that:

o the speed of the corresponding shock is negative, thanks]to (2§) gnd (30);
e such a poini(py, 0) exists becausey > kp) > 0, and it follows from ) that, as
P — 00, &)1(10’ (1)()) — —OQ.

Then the restriction to the domain,[0] of the solution of the Riemann problem with
initial datawg for x < 1 andw1 for x > 1 is as required.

Subcase (ii):i = 3: Again we choosev; = (p1,m1) = (o1, &Dl(pl, wp)) for some

p1 > po large enough. Itis aconsequenc (21) @ (30Vith@t, P1(p, wp)) — —o0
asp — +oo. Hence forp large enough, one has; € D3. One concludes as in the
previous subcase.

Case 2:wg € D2 UCo andi = 3. This case can be treated exactly as case 1, subcase (ii).

Case 3:wg € D3 U C2 andi € {1,2}. This case can be treated exactly as case 1, but
here the 1-shock is replaced by a 2-shock on the left, that is, onedindsach that the
Riemann probleniw1, wo) is solved in terms of a 2-shock. Then the desired solution is
given by the solution of the Riemann problem with initial datafor x < 0 andwq for

x > 0.

Case 4:wg € Do UCq andi = 1. This case can be treated exactly as case 1, subcase (ii),
with again the 1-shock replaced by a left 2-shock.

4.2. Traveling between points inside a zone

Let us prove the following lemma:
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Lemma4. Let E € {D1, Dy, D3}. For all wg, w1 € E, there existST22 > 0 and an
entropy solutions of in [0, T22] x [0, 1] such that

Uji=0 = wo, (75)
Uy_gz = 01. (76)

Proof. We first assume that we can solve the problem locally, that is, givehere is a
neighborhood of @ in E such that any» in V can be reached as in the above lemma.
Then this can be done globally, that is, for ahyin E. Indeed, given two states if,
one considers a smooth drc: [0, 1] — E which joinswg to w1 (it is straightforward to
see thatD; is arc-connected for any. Then, since the local problem is solved, there is
ry > 0in which any state is attainable in finite time by an entropic solution starting at
Sincer is covered by the union of the balk(x, r,/2), there are a finite number of real
numbersO=1 <t < --- < t, = 1 suchthafl'(tp) = wp, I'(t,) = w1, andl'(z;+1) can
be attained froni"(#;) by an entropy solution, which yields a solution.

Concerning the local problem, we separate cases:

Case 1.E = D;. Consider in D;. Then forw close enough td, the different states
in the solution of the Riemann proble@, ») are all inD;. Then the solutiom of the
Riemann problem with initial valu& for x < 0 and® for x > 0 is as desired since all
the waves have positive speed.

Case 2:E = D3. This case can be treated exactly as case 1, except that one considers
the solution of the Riemann problem for initial datdor x < 1 anda for x > 1.

Case 3:E = D,. Starting from a staté, one can shift it (at least locally) to another state
belonging to:

e the 1-rarefaction curve starting fro@ giveno on that curve, one considers the solu-
tion of the Riemann problem with initial datafor x < 1 andw for x > 1,

o the 1-shock curve starting frofix given on that curve, one considers the solution of
the Riemann problem with initial datafor x < 1 andw for x > 1 (because the speed
of the shock in that case is clearly negative),

o the 2-rarefaction curven the leftstarting froma: given® on that curve, one considers
the solution of the Riemann problem with initial datdor x < 0 anda for x > 0,

o the 2-shock curven the leftstarting froma: givenw on that curve, one considers the
solution of the Riemann problem with initial dataefor x < 0 and® for x > 0.

One concludes essentially as for Lax’s theorem on existence of a solution to the Riemann
problem when the two states are close: at the pbjmine considers the curv consist-

ing of states that are connecteddby either shock or rarefaction, when put on the right of

@, and the curve, consisting of states that are connected tay either shock or rarefac-

tion, when put on the left ab. By the local inversion theorem, in a neighborhooduof

one can find for anyi some real numbers; ando, such thati = <I>’2(c72, ®1(01, i1)).

Hence one reachesby first letting a 1-wave pass through the domain from right to left,
then by letting a 2-wave pass through the domain from left to right.
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4.3. Reaching a critical curve

Let us prove the following lemma:

Lemma 5. For all w1 € C1 U Co, there arewg € Dy, T23 > 0 and an entropic solution
of (El) in [0, 7] x [0, 1] such that

Uj=0 = wo, (77)
g3 = 1. (78)
Proof. We only consider the cas® € C1 since the proofin the cas& € C» is identical.

In that case, we seek a propeg on theleft 2-rarefaction curve. In Riemann invariant
coordinates, along that curve,

2. /k
wl=" 4 VY o172
pyv—1

decreases, whereas

we = —

2 m__gxflpw—bm
p yv-1

is constant. But
m _ 1 y-1\ 4 1 y-1\ ,
hpom) = = —1ep D/ = ('_—)w - <—+— w?.
p 2 4y 2 4y
Since 0< % < % this implies thatr; decreases on that curve, and hence one finds

wo € D> (close taws) such that the Riemann probleimg, w1) is solved by a 2-rarefaction
wave (with positive speed). Hence, the restriction of this solution of the Riemann problem
to [0, 1] is as desired.

4.4. Conclusion

One sees that, to prove Proposit[dn 3, one can restrict by Lemima 5 to the/'case

D1 UDy U Ds. By Lemma{}, we can restrict to the case wherand’ belong to the
sameD;. This is exactly Lemmp]4. Note that in this section one can generate solutions
with arbitrarily small total variation, by taking sufficiently numerous and small steps (but
this is costly in time).

5. Step 3: attaining the final state

5.1. Introduction

The goal of this section is to prove the following proposition:
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Propos_ition 4. Letur = (py, m1) be a constant state iRT™* x R, with characteristic
speeds.; := A1(pq, m1) andip := Az(pq, m1). Introduce

L —  0A2 _
§1:= W(”l) and &, = m(”l)-

Then there exist$3 = T3(u1) > 0 such that for anyr > 0, there existg > 0 such that,
for anyu; € BV([0, 1]; R™* x R) satisfying:

Vx,y €[0,1], x < v,
A2 — A1 A1 —A1
1-y  x 11—y

w2(u1(x)) — w2(u1(y)) <@1- ot)i max(
xX—=y - gl

)

Vx,y €[0,1], x < v,

L —wt 1 ka—r1 —h2 A
W) —w ) _ (1_a):max< 2-M —h _2> (80)
X =y £, X 11—y x
luy —urllr=qo,1) <& and TV(uy) <e, (81)

there exists» € R** x R and an entropic solution of (El) in [—73, 0] x [0, 1] such that

Ui=—T3 = O, (82)
u|,:0 =Uuj. (83)
Remark 4. In (EI), one finds
1 y-1

E1=F=c'=5

2 + 4y
We keep this notation in order that the proof of this section can be easily adapted to the
system[(P).

The proof of Proposition]4 is by constructing the solution via a (backward) front-
tracking algorithm. As in Sectiop| 3, the idea is to consider as a final state a function
defined onR and composed af; in [0, 1], and constant states to the left of 0 and to the
right of 1, which are separated fram(0) andu1(1) respectively by strong shocks whose
sizes depend oam. According to the position df; in RT™ x R, one may consider only
one shock instead of two. This is developed in the next subsection. The front-tracking
algorithm used here is divided into four main steps:

approximation of the final state,
description of the algorithm,
estimates and well-posedness of the algorithm,

[}
[}
[}
e convergence and validity of the limit.
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5.2. Extension of the final state

We first define the strong shocks that are to enter on both sides of the domain. Possibly,
only one shock will be considered. Giventhere are two states anduir such that:

(uy, 1) is a 1-shock of speegh with 11 + /2 < 61 < A1+ B, (84)
(1, u]) is a 2-shock of speegh with Ao — B < 2 < k2 — B/2. (85)

The constang will be fixed in terms of« later (at the end of Subsectipn b.8). We also
have the following constraints on the shock:

e if u1 € D1 UCq, we ask thatl—f g C1UCo,

o if u1 € D3UC>, we ask thatlI g C1UCo,

o if u1 € Dy, we ask that the interaction (in decreasing time) of the 1-skwgku;) and
the 2-shocku, uf) generate a 2-shodkt; , ii1) and a 1-shockiis, uf) of respective
speeds;, andg; satisfying

61 < M) < —c1 <0 and ¢y > Az(i1) > c1 > 0. (86)

This means that] = ®3(01, ®1(02, u7)) With 01,02 < 0 and alsat] = P1(0,
®3(0q, up)) With o7, 05 < 0 andiiy := P2(0y, u; ) satisfying the above conditions.

This is easily obtained at least for small shocks fi@m

Remark 5. Note that in this section, the strong shocks that we are using can be arbitrarily
small. But as these shocks shrink, the constarthat appears in Theorejm 1 tends to 0
and the time of controllability possibly tendsevo (if %1 is on a critical curve).

We fix the following notations:

= ®1(ug.uy), uf = da(uz, u1),

_ ot _ (87)
up = d2(p2,uy), uy = P1(p1, u1).
Note thatu; being aBV ([0, 1]) function, it has limits at & and 1", which we naturally
denote respectively by; (07) anduq(17).
Now, the shocks are retained according to the following rule:

e If u3 € D1 Uy, then we retain only the 2-shock; we fix = u1(0%) and Uf =
Do(p2, u1(17)).

e If 1 € Dy, then we retain both shocks; we fix~ such thatu1(0") = ®1(ug, Uy)
andU;" = ®2(u2, u1(17)).

o If w3 € D3 U (o, then we retain only the 1-shock; we fix; such thatu(11) =
®1(p1, Up) andUs" = ur (1),
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In all cases we extend the final state oRein the following way:

Uy forx <O,
Up(x) = Jui1(x) for0O<x <1, (88)
Uf forx > 1.

The shocks at 0 and 1 (and their natural descendants) will be chmoy shocksthe
other waves in the domain will be callegeak

5.3. Backward interactions

Before describing our construction, we give some lemmas that will be useful to deal with

interactions in the context of a backward front-tracking algorithm. One should bear in

mind that there is no uniqueness in extending a solution backward (when it is possible).
There are several types of (backward) interactions that may happen:

Interaction of two weak fronts of opposite families.

Lemma 6. Consider two states; andu,, both belonging to a neighborhood of, uf,
u1 or i1, and satisfying
ur = Oo(02, P1(o1, u))

for o1 ando? in a neighborhood of. Then for some; andoy,
ur = ®1(0q, P2(05, up)) (89)
with
log — 01| 4 |0y — 02| < Cilo1| |o2]. (90)
Proof. The proof follows exactly the proof of Lax’s theorem and Glimm’s estimates with-
out changes.

Interaction of a strong shock and a weak shock front of opposite familiesWe con-

sider a backward interaction of type strong 1-shock/weak 2-shock. The case of weak
1-shock/strong 2-shock interactions is treated similarly. Also, we only treat the case of a
strong shock close tai; , u1), as the case of the shock, uf) is similar.

Lemma 7. Consider three states, u,, andu,, whereu; belongs to a neighborhood of
u;, whileu,, andu, are in a neighborhood ofi;. Suppose they satisfy

ur = ®2(02, ®1(p1, 1)), um = ®1(p1, uy),

with o1, 02 < 0, p1 in a neighborhood ofi1, ando» in a neighborhood oD. Then one
can findp; < 0ando; < 0such that

ur = ®1(py, D203, ur)), (91)
lp1 — p1l + los| < Caloa]. (92)
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Proof. The existence of; ando is proven as in Lemnﬁ 1: observing that for a strong 2-
shock(uy, u,,) the family{ri(u,,), u, —u,} is free (using Lax’s inequalities for instance),
one finds thatp, 02) — ®1(p, ®2(02(u;))) is a local diffeomorphism from a neighbor-
hood of(p1, 0) to a neighborhood af,,. These neighborhoods can be made independent
of (uy, uy), for (u;, u,,) close enough to the original sho@k, u1).
Moreover,o, is negative, because, thanks to Lenﬁwa 1, up to lower order terms, we
have
, A2(up) — s detra(uy), um — up)
02 = 0y . s
Ao(um) —s detra(up), um — ur)
wheres is the speed of the strong shock. Usi@](ZE,),— u = (pm — p1) (1, s) and
Lax’s inequalities, we see that the coefficient on the right hand side is positive. Hence
o, < 0, at least if the neighborhoods are small enough.

Interaction of a strong shock and a rarefaction front of opposite families. We con-
sider a backward interaction of type strong 1-shock/2-rarefaction. The case of a backward
interaction of type 1-rarefaction/strong 2-shock is treated similarly.

Lemma 8. Consider three states, u,, andu,, whereu; belongs to a neighborhood of
u;, whileu,, andu, are in a neighborhood ofi;. Suppose they satisfy

ur = ®2(02, P1(p1, u1)), um = P1(p1, up),
with p1 < 0, 02 > 0, p1 in a neighborhood oft1, ando> a neighborhood of. Then one
can findp; < 0Oando, < 0such that
ur = ®1(py, 1oy, up)), (93)
lp1 — p1l + loy | < C3lozl. (94)
Remark 6. This interaction is hence solved quite differently from the previous one: one

solves an interaction of type rarefaction/strong shock by two shocks of the same family
(one strong, one weak).

Proof. Again, this is a consequence of the proof of Lenfmha 1 and the local inversion
theorem. Indeed, given a sho@k, u,,) close to(us, u1), u,, = ®1(p1, u;), we consider
the map
(F, G) : (y1,01) — (1, €2),

where(p1 + €1, £2) are the strengths of the waves in the Riemann problem corresponding
to the statesu;, ®1(y1, ®1(81 + p1, u1))). Clearly,

3,G(0,0) =0 and & F(0,0) =1.
On the other hand, using Leming 1, we see that

M) —s  detra(u), upm — ur)
A2(um) — s det(r2(um)» Um — ul).

Again using Lax’s inequalities, one sees that the above coefficient is negative, which
allows one to conclude by the local inversion theorem.

01G(0,0) =
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Interaction of the strong shocks

Lemma 9. Consider three statas, u,, andu, belonging respectively to some neighbor-
hoods ofu, i1 andu, and satisfying

ur = ®2(p2, P11, u1)), um = P1(p1, uy),

with p1 and p2 in some neighborhoods gf, 112, respectively. Then one can fipd < 0
andp, < 0 such that
ur = ®1(p1, P2(05, u))
with
(o, p') — (p1, p2)| < Kkl(uz, uy) — (ug , ui)|. (95)

Proof. We introduce the following map defined iy x Vf x R1 x Rz, whereV, Vf,
R1 and R, are respectively some neighborhoods:of uf, p1 and p2. By the implicit
function theorem the map

(i ur, p, p) € VL x VI x R1 x Ra > 20’ ur) — @y(p,uy)  (96)

has a zero at som@, p’) for any (u;, u,) in the neighborhood ofus, uf), provided the

two curvesda (-, u;) andcbll(-, uir) are transversal at the poiiat. This follows from the

fact that these curves are respectively strictly convex and strictly concave, and meet at the
points(0, 0) andii;. Moreover, we get the estimafe [95).

5.4. A domain for states in the solution

Now we introduce: > 0 such that:

° LemmaBS applies imB(uy; r), B(Uy ;1), B(Uf; r), and in B(iy ; r). This fixes the
constantCq in ).

° Lemma{? angd|8 apply far;, u,,, u,) belonging toB(u1; r) x B(uy; r) x B(u‘f; r) or
B(uy;r)xB(uy; r)x B(uy; r). Lemmz{'}’ also applies iB(ii1; r) x B(ii1; r)xB(u‘f; r)
or B(uy;r) x B(i1; r) x B(iy; r). This fixes the constants; in @) andCszin @).
(Of course, some of the conditions above are to be considered only when the left 1-
shock (resp. the right 2-shock) is retained as described in Subsecfjon 5.2.)

° Lemma@ applies wheny, u,, andu, belong respectively t&(u; ; r), B(u1; r) and
B(uf; r). (This is only useful in the casg € Ds.)

e B(U;j";r)inthe caseir € D1 UCy, or Biiy; r) in the caseiy € Dy, or B(U; ; 7) in
the casai; € D3 U C», do not intersect the critical curv€s, Co.

e All characteristic speeds iB(uy; r) differ from A1 andi, by at mosts and do not
overlap.

e The shock joining a point iB(u; ; r) to a point inB(u1; r) have a speed that differs
from the one of the original shoak:; , 1) by at mostg, and similarly for the other
strong shock.

Other conditions will arise in Sectidn 5.8.
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In the following we construct front-tracking approximations of a solution; all these
approximations are piecewise constant solutions, in which all constant states belong to
the domain

® = B(uy; r) U B(uy;r) U B r) U B r). (97)

5.5. Approximations of the final state

Now we describe the process that we use to approximate the final state, because here, in
contrast to what is done in the usual front-tracking algorithm, the shape of the approxi-
mation is rather important. This is done by means of the following lemma.

Lemma 10. There ares; > 0 andCg > 0 such that, ifT V(u1) < &1, then the function
Uy € BV (R; D) defined by{88) can be approximated in the following way: there exists
a sequenceU}’)neN* of functions orf—1, 2] such that:

U]’Z is a piecewise constant function, constant-i1, 0) and in[1, 2], (98)
TV(U}) < CoTV (Uy), (99)
Up - Uy inLY(-1,2)), (100)

and such that, for any point of discontinuityof U’; in (0, 1), one has:
° Eitherwl(U}’) and wz(Uj’}) are both nondecreasing a and UJ’} satisfies
Uf(AT) = 1(81/n?, $2(82/n®, UF (A7) withdy, 8, € {0.1).  (101)

Moreover, iwa(Uj’}) (resp.wl(U}’})) increases at two distinct points of discontinuky
andY, then

- = T —— -1

X —¥| > Slma(t2TA A TR )
~1—an? 1-Y X '1-Y

£, A=A —A2 A2 )‘1)

1
resp.| X — Y| > ———= max P
(resplX =¥l = 3702 ( X '1-v'x

(102)

e Or wl(U]’}) and wZ(U}’) are both nonincreasing at and U7 satisfies
UF(AT) = Wi (q1/n, W3(q2/n, U (A7) forsomeyi, g2 € Z~ U{0}. (103)
Finally, at the points of discontinuityand1l, UJ'} satisfies:

U (0F) = P1(p1. U (OO)), (104)
UR(IF) = a(pz. UJ(17)). (105)
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The idea of this lemma is to show that one can approximate the final state by piecewise
constant states, in which discontinuities can be reached either by “shock fans” with a fixed
strength for each shock, or by rarefaction fronts of a fixed size, which is of lower order.

Proof of Lemma J0We considelU; as in [88). Without loss of generality, we can assume
thatUy is right-continuous. We first introduce the functions

Wi:ix > wlUp(x)) and Wa:x > w?(Up(x)), forxe[-1,2].

These functions are of bounded variation and hence can be decomposed into increasing
and decreasing parts, say

Wl = Wl + Wl, WZ = WZ + WZa (106)

whereW 1 andW (resp.W1, W>) are nondecreasing (resp. nonincreasing). We introduce

the functions
_ (W1 — (W1
w= (i) 7= ()

We fixn € N* ande > 0. As follows from [79)4(8D), the functioW is Lipschitz outside

0 and 1 (note that at 0 and 1, the functibip is decreasing in both coordinates, hence
W is continuous). Hence we can approximaifewith accuracye in L> norm by right-
continuous piecewise constant functions, in which each jump is of amplitude 0:8r 1
(for each coordinate), and which satisfy the following constraints:

[W" — Wl (-1,2) <&, (107)
TV(W") < TV(W), (108)

and moreover we require th#t” is constant on both§1, 0) and [1 2], and continuous
at 0 and 1. Finally, we require that for some poings. . ., x,,+1, one has

W (xi) = W(xi), (109)
hence two discontinuity points a7" satisfy ).
We letlo, ..., I,+1 be the jumps of¥” in increasing order, witlip > 0 and/,, 1 < 1.

Now we approximatéV with accuracy by a piecewise constant functid”, which
is also required to be decreasing in both coordinates:

IW" = Wllpag_1ay <& (110)
TVW") <TV(W). (111)

Again, we require thaW” is constant on bothH1, 0) and [1 2]. Moreover, we ask that
W"(0%) = W(0F) and W™ (1%) = W(1%). Call its discontinuity pointsDo, ..., Di41
with Dg = 0 andD;1 = 1.

First, we slightly modify the discontinuity points W” in such a way that all points
D; and/; are distinct. This can be done by moving each pd@pthat coincides with a
point I; a small distance. This adds an eredn (110), but does not affedt (I[L1).
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Then we modify the values dV" in order thatU,-,f fits the requirements, from left
to right (that is, starting from-1), keeping the same discontinuity points. The modified
function will be denotedV”. Let us recall that in this subsection, all functions are right-
continuous. We describe the modifications recursively:

e We do not modifyW” on [—1, Dg] and on [Dg, D1].
o If we have already modifie” on [D;, D;y1) foralli =0, ..., k—1 (withk <) we
change the value d¥" in [ Dy, Dy41) in the following way. For some, z, we have

[W" + W"(Dx) = Wi (w, W (z, [W" + W'[(Dk-1))). (112)

We then definélV” (Dy) so that it satisfies
[W" + W"(De) = Wi ([nw]-/n, ¥ ([nz]-/n, [W" + W"](De-1))).  (113)

e Atthe pointD; 41 = 1, defineW” (D;41) by
[W" + W"(Di41) = (i, [W" + W"1(D))). (114)

Now we fix
UJ’Z :=W"+ W" inRiemann coordinates. (115)

Properties[(98)[ (193), (IP4) ar{d (105) are direct consequences of the construction. Prop-
erty (102) is a consequence pf (109). It remains to chjedk (99)and (100).

We remark that during the construction, we have not modified the total variation of
Wi and W2, except perhaps at= 1 where the modification is clearly of the same order
asyu2, which leads to[(99).

Concerning[(100), let us show that for< / andi = 1, 2,

~ TV Wn
Wi (De) = Wi (Dy) < cw+h>

(116)

This is clear fork = 0. Now suppose we have provén (116) fox /, and let us prove it
for k + 1. Letw andz be as in[(11IR). There are various situations:

e w < 0andz < 0: then using the monotonicity of" and [118), we see thdt (116) is
satisfied because the left hand side is nonpositive.

e w < 0 andz > 0: then again[(116) is satisfied for= 2 because the left hand side
is nonpositive fori = 2. Fori = 1, this is a consequence of the fact théft is
nonincreasing, of (37) and of the induction hypothesis.

e w < 0andz > O: this is done as in the previous case.

e w > 0 andz > O: this could be treated as above, but in fact this case does not occur:
if it did, then using the monotonicity of; one would have foi = 1, 2,@{‘(Dk_1) <
Wi#(Dy) < W!(Dy-1). Using ), one sees that we were in the same situation at the
point Dy_1, which yields a contradiction.
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Now whenW? (Dy) < V_T/?(Dk), it follows from the construction théz_i/?(Dk) —W!(Dp)
< 1/n.Hence

ol - Urllpiq-12) =< 10— w" — Wn”Ll([_l,z]) + W - V_i/n”Ll([_l,z]) — 0.

In what follows, we writeW” for W” for notational convenience.

5.6. Front-tracking approximations
Now, “starting” fromU }’ we construct (backward in time) a piecewise constant approxi-
mate solutiorn/” of the problem.

Step 1. Given the approximatioljl}1 of the final state, we begin by solving approximately
the Riemann problems backward in time:

At a point of discontinuity ofW” (except O and 1), we approximate the solution by
shock fans. Le#t be such a point of discontinuity. By Lemrna] 10, at such points, one has

U,’f(AJr) = U] (k1/n, W3 (k2/n, UF (A7)
for some nonpositive integeks andk,. Then we introduce the following intermediate
states:
wo = UF(A7),
w; = V5(i/n, Uf’?(A*)) forO<i <k,
wj = Wi{(( —k2)/n, V3(k2/n, Uz (A7) forka+1=<i <ki+kz,
Ofy+hy = U;(A+).
We also introduce the following front lines:
xi(t) = A+ At forr <0, where A =s(w;,wir1) fori=0,...,k1+ky— 1
Then locally, the backward Riemann problem is approximately solved by
U}’(A_) for x < xo(2),
u(t,x) =4 w; for x; (1) < x < x;41(2),
U}’(A+) for x > xp,4k,—1(1).
(Note thaty; < x;41 by Lax’s inequalities.)
At the points 0 and 1 which are discontinuity points 18, we solve the backward
Riemann problem by a single strong 2-shock (resp. 1-shock) (at exact shock speed).

At a point of discontinuity of¥”, we approximate the solution by (single) rarefaction
fronts. LetA be such a point of discontinuity. Then by construction one has

UF(AT) = $1(81/n?, P2(82/n% UJ(AD))),
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wheres; = 0 or 1. We define
wo = UF(A7),
w1 = $2(82/n% UF(A)),
wp = D1(81/n%, D2(82/n%, UF(AT))) = UF(A™).
We also introduce the following front lines:
xi(t) =A+ 1t forr <0, where A; =s(w;,wijr1) fori =0,1.
Then locally, the backward Riemann problem is approximately solved by
U]’}(A‘) for x < xo(2),

u(t,x) =14 w1 for xo(t) < x < x1(¢),
U]’}(A"’) for x > x1(t).

Of course, we suppress unnecessary linesxy.é.wg = wj or x1 if w1 = wy). Note that

xo < x1 because the first and second characteristic speeds do not overlap in the domain.
This defines the approximation for small< 0 as long as two fronts do not meet.

Note that we do not modify the speeds of the front as in Seftion 3. In fact, we will prove

that fronts of the same family do not meet at least If (1) is small enough, and is

large enough. As a consequence, in these circumstances, without modifying the speeds at

all, there are only binary interactions. Possibly, there can be simultaneous interactions in

different parts of the domains, but these can be treated as successive interactions.

Marking. We call the 1-shock issuing from = 0 and the 2-shock issuing from= 1
strong All other waves areveak Thei-waves across whictk 3~ increases are rarefaction
fronts, whereas the ones for whia¥—* decreases are shocks.

Step 2. We have to explain how to extend the solution after two fronts have met. We
discuss the way to extend it according to the nature of the incoming fronts.

1. Fronts of the same family.
Weak shocksTwo shocks of the same family cannot meet when going backward in time,
as a direct consequence of Lax’s inequalities.

Rarefaction-rarefaction.This is precisely the kind of interaction that we want to avoid.
We will prove that such meetings do not take place inside the domain. Let us say for the
moment that the two fronts merge in the following sense: say the front on the left separates
the statesy; andw,,, and the right one separateg, from w,. “After” the meeting, we
define the approximate solution by a single discontinuity line separaififiggm «, and
traveling at speesl(wy, w,).

Shock-rarefaction.Again, we will show that these interactions do not take place, as a
consequence of the fact that the strength of the shocks is greater than the one of the rare-
faction fronts. Let us temporarily say that these interactions are solved as in the previous
case.



Controllability of the Euler equation 461

2. Fronts of opposite families.

Weak fronts.When two weak frontsu;; u,,) with u,, = ®1(o1, u;) and (u,,,; u,) with

ur = ®2(02, uy) interact, we introduce; andoy, by Lemmeﬂs andi,, = ®2(0y, up).
After the interaction, we extend the approximation by two fronts separatiraand i,,
on the left, and separating, andu, on the right, with respective speeds,, ii,,) and
s(iy, ur). Note that at least for small fronts, the outgoirgave has the same nature
(shock/rarefaction) as the incoming one, as a consequerice] of (90) for instance.

Strong shocksThe interaction of the two strong shocks is solved in terms of two (strong)
shocks, as described in Leminp 9, that is, if the (left) 1-shock is describeg), by
®1(p1, u7), while the (right) 2-shock is described by = ®2(p2, u,,), we findp] andp,

by Lemmg 9. As in the previous case, we extend the solution by a 2-shock separating
fromit,, := ®2(p5, u;) with speeds(u;, it,,) and a 1-shock separatimg, from u, with
speeds (i, uy).

Strong shock-weak shocKRhe interaction of a weak 1-shock;, «,,) and a strong 2-
shock(u,,, u,) is solved as in the weak/weak case, withando; given by Lemm{]7.
This case of a strong 1-shock and a weak 2-shock is handled similarly.

Strong shock-rarefactionThe interaction of the 1-strong shogk, u,,) and a 2-rarefac-
tion front (u,,, u,) is solved in terms of two 1-shocks as made possible by Leffjma 8:
we extend the solution by a 1-shock separatipgrom i,, := ®i1(o,, u;) with speed
s(uy, it,,) and a strong 1-shock separatiig from u, with speeds (ii,,, u,). The case of

an interaction strong 2-shock/1-rarefaction front is treated similarly.

N, ——  strong2-shock

——  weak2-shock
2-rarefaction

i ----- strongl-shock

————— weak1-shock

Fig. 4. A backward front-tracking approximation.
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Marking. In all cases but the case of an interaction between a strong shock and a rar-
efaction front, the-outgoing wave is calledieak(resp.strong if the incoming wave is

weak (resp. strong). Concerning the case of a strong 1-shock meeting with a 2-rarefaction
front, the outgoing 1-shock on the left is callwdakand the 1-shock on the rightssrong
Correspondingly, in the case of a strong 2-shock meeting with a 1-rarefaction front, the
outgoing 2-shock on the right is calleteakand the 2-shock on the left &rong

Remark 7. In the previous algorithm, two incoming fronts yield at most two outgoing
fronts, hence the total number of fronts is finite.

The construction described above is represented in Figure 4.

5.7. Estimates on the approximation

In this section, we establish some estimates on the approximation described above.

Step 1. BV estimate. As in Sectior] B, we introduce the following Glimm’s interaction
functionals, with different weights according to the nature of the waves:

Quu®) = Y loallogl.
(a,B) approaching
weak waves

Qsuws(t) = Z lowl,
(a, B) approaching with (117)

a a weak shock
B astrong wave

Oswr(t) = Z |owl,
(a, B) approaching with

o a weak rarefaction
B a strong wave

whereapproaching front@re couplesa, 8) such thatr is a 2-front on the right of the 1-
front 8 and the strength is measured for instancg by (36). The total interaction functionals
are defined as

Q(t) = -Awa(t) + stS(t) + BstR(t), (118)

whereA andB are constants to be fixed later.
We also introduce various strengths of the approximation ané(t) (resp.VSZ(t))
is the strength of the strong 1-shock (resp. 2-shock) at tiemred

Vin(t) = > lowl, Vi) = V@) + VA©),  V(6) = Vi) + Vi ().
o weak wave existing
at timer
(119)

During an interaction:

(04 andog attimer™) — (o, andoy at timez ™)
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we have the estimate (90) for a weak-weak interact[or}, (92) ¢r (94) for a strong-weak in-
teraction,[(9p) for a strong interaction (in the case where there are two strong shocks). Let
T be the time of interaction of the two strong waves (if any). All the previous estimates
are valid as long as the states considered are in the dathaks in Sectiorj B, we get:

e during a weak-weak interaction:
Vi (t7) < Vo () + Cilo| 0’|, Vs(z7) = Vs(z ™),
Quuw(t™) = Quu(t™) < —lo||o’| + Cilo| o[V (zT), (120
Osws(t™) — QwsS(T+) < Cilo|lo’|, Oswr(T™) — QwSR(T+) < Cilo|lo’|,
e during a strong shock-weak shock interaction:
Vi (t7) = V(@) + Colo|,  Vi(r7) < Vi(zh) 4+ Calo|,
Quw(t™) — wa(f+) < Colo|Vy (), (121)
Osws(t™) — stS(T+) = —|o]|, Oswr(t™) — stR(T+) =0,
e during a strong shock-weak rarefaction interaction (call the rarefagfion
V(7)) < V(™) + Calo],  Vi(r7) < Vs(zT) + Calo]|,
OQuww(t™) — wa(f+) < C3lo|Vy(t7), (122)
Osws(T™) — stS(T+) < C3lo|, Oswr(T™) — stR(7:+) = —|o|.

Now we choosed andB:
B=4C3 and A=3C1(1+ B). (123)
Hence for a suitable; > 0 one has: for > Ty, if V,,(z") < c1,

0(7) — 01 < —(A4/2)|0||o’| inaweak-weak interaction,

Q™) —0@™") <= —-(1/2)|0| in a strong shock-weak shock interaction,
0(x7) —0@h) < —(B/2)|o| in a strong shock-weak rarefaction interaction.
(124)

Hence there is somE > 0 such that as long as> T; andV,,(t") < c1,

T+ V(1) + KQ(t) andt — Vi(t) + K Q(t) are nonincreasing asdecreases,

T > Vs(t) — K Q(7) is nondecreasing asdecreases.
(125)

Moreover, at each interaction time, the decrease (resp. increase) of the above quantities is
at least(K /2)A Q.

It follows as in Sectiof 3 that providew, (0) is small enough, one had§,(r) < c1
and hence (125) satisfied for alin [77, O], at least as long as the approximation is well-
defined.

For timest < Ty, the total strength can be estimated in the same way but the situation
is much simpler, because there is no rarefaction front outside the triangular zone delimited
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by the initial interval{0} x [0, 1] and the two strong shocks before their interaction (or
outside the triangle determined by the strong shock until it quits the domain, when there
is only one strong shock). One gets again

T V(1) + K Q(7) is nonincreasing as < T, decreases,
T+ Vs(7) + K Q(7) is nonincreasing as < 7, decreases,

T V(1) — KQ(7) is nondecreasing as< T, decreases,
V(™) = 0Q)Vy(0) VT < T;.

(126)

(Note thatV,, andQ,,,, are continuous at timé;.)

Step 2. Validity of the domain. We prove that if the total variation @f; is small enough,
then all the states considered in the approximations lie in the do@dmtroduced in
Subsectiofi 5|4, and the previous estimates are valid.

We denote byx ~(7) (resp.Xt (1), /(1)) the zone inR of points on the left of the
left strong shock (resp. on the right of the right strong shock, between the two strong
shocks). If one of the two shocks is missing (izg.¢ D according to Subsectign 5.2),
we agree that there is rio (r) and thats ~(r) (resp.E 1 (1)) is the zone to the left (resp.
right) of the unigue strong shock.

Denote byS; (resp.S2) the position of the strong 1-shock (resp. 2-shock) (see Fig-
ure[4).

First, it is quite easy to see that the statein(z) (resp.X*(zr)) stay close tay
(resp.uf) if the total variation ofu; has been chosen small enough. Indeed, we observe
that

V() < Vi(0) + KQ(0) < K2T'V (u1).

Hence the total variation on these zones satisfies
TVs-(us+@U") < LK2TV (uy),

with L defined as in[(85).

As in the previous construction the leftmost (resp. rightmost) stdfg iQesp.U,,f D
with |U,{C(1) — U1+| = 0(1/n)), the claim follows, at least for large enough.

It remains to see that ix(t), the states are close I for r > T; and toii; for
t < T;. Concerning the first point, it follows fron (IP5) that the strength of the strong
shocks is as close to the original one as wantelVf(u1) is small enough. As the left
state is close ta, it follows that the staté/" (z, S1(r)T) is as close tdr; as required.
The claim forr > Ty follows as previously. All the same, the claim for< T; follows
from (95) and the same procedure.

Step 3. Estimate on the size of the waves

Rarefaction fronts.This is done essentially as the estimate of rarefaction fronts in Sec-
tion[3. All the calculations in this step are valid as long as there is no interaction between
fronts of one family. This will allow us to prove in the next step that such interactions are
not possible, and hence that the estimates here are valid for all times.
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Let us first remark that all the interactions of two fronts in the algorithm are solved in
terms of at most two outgoing fronts, and that one can track the front after interactions by
considering the outgoing front of the same family.

We consider a rarefaction fromt and introduceV, as in [66) where we now say
thatu andv are approaching one another if they are in opposite families and the 2-wave
is on the right of the 1-wave. For a quantgydepending on the approximation, define
Ag(t) = g(t™) — g(z1). Recalling that the meeting of with a strong shock ends the
rarefaction front, the evolution df, is ruled by weak interactions, for which we still have
Glimm type estimates. Hence as in Secfipn 3 (Bep (67)), this leads to

1
lov(D)] = -5 eXC1(Va 0) + K 0(0))) = 0(1/n?). (127)

Weak shocks before any strong interactiofe consider a weak shock froat and in-
troduceV,, by (6§) as well. We consider the evolution of the strength of the shock before
any interaction with a strong wave. One has

e during an interaction which does not involxe
Aoy =0 and A(V,+KQ) <0,
e during an interaction which involvesand a weak wave (denotgy:
Aoy < Cilo, |logl and A(Ve+ KQ) < —|ogl.
Now we introduce the function
G(t) i= |og ()| explg(t)) with g(t) i= —Cs5(Ve (1) + K Q(1)),

where we fix the constartis ;= 4C1. It is clear that in the first cas€ decreases with
(thatis, increases aglecreases). For the second case, we remark that thafks o (125), if
TV (u1) is small enough, one has for all times

—-1=<g@) =0
Since 1- ¢* > — (1 — 1/¢)x on [-1, 0], one gets, for each interaction time,

AG(t) = Gt {Alog| + |og|[1 — expgtt) — gt )]}
> Gt {Aloy| — loel(1— 1/e)(g(tT) — gt ™))}
> G(tH){—C1loal log| + |oal(1 — 1/e)(Cs|og))} = 0.

HenceG decreases with(i.e. increases as| ), and hence we deduce
1
loa ()] = . exp(—Cs(Vw(0) + K 0(0))). (128)

Shocks after a strong interactiorClearly, after a strong interaction, y {92), the size of
the outgoing wave is connected to the size of the incoming wave via

lo(t7)| < Calo(r9)],
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wherer; is the time of interaction of the weak wave with a strong shock. Hence the same
argument as previously leads to the conclusion that for all weak wawase has, for
T <1y,

loy (D] < loy (1) eXp(C1(Viy (0) + K Q(0))) < oy (0)] exp(2C1(Vy (0) + K 2(0))),

where it is to be understood that when a rarefaction front meets a strong shock, it is
“continued” as a shock of the opposite family.

5.8. Interactions inside a family

1. No shock/rarefaction interaction inside a family. We only consider the case of the
first family, since the case of the second family is treated similarly. Let us suppose that
such a meeting happens, and consider the first (in decreasing time) of these meetings:
consider, say, the case of a 1-rarefaction front separatimndu,,, on the left of a 1-
shock separating,, andu,, the pattern with the shock on the left of the rarefaction front
being again treated similarly. Hengg € S1(u,,) andu; € R’l(um).

The respective speeds of these fronts are by construationu,,) ands (u,,, u,). The
fact that these two fronts meet implies that

S, uy) > s(uy, upm). (129)
Clearly,s is a symmetric function, and hence
S(Um, ur) > S(Um, up). (130)

We remark that in thép, m) plane, the left rarefaction cur\ldl(um) is above the shock
curve S1(u,,): this follows from the fact thaR’1 has the same expressionRgu,,) with
o > pn, and from the Cauchy—Schwarz inequality.

Now we introduce the statg. as the intersection in thép, m) plane of the curve
S1(u,,) with the interval |i,,, u;]. Note that this intersection exists becaudgum) is
(strictly) concave, hencet],, u;] is strictly below the tangent ta?’l(um) atu,,. Conse-
quently, k., u;] is locally below S1(u,,) (which has the same tangent) as well. Hence
together with the preceding remark, this proves the existengg. of

Now by construction

S(Um, up) = s, i),
and hence by (130) we get
S, ur) > 5Qm, Ur). (131)

Now one sees thatu,,, -) decreases along the Rankine—Hugoniot curve. Indeed, on the
1-Rankine—Hugoniot curve, one has

m—m, My P pY — P
SF=—— = — — K——
P = Pm Pm Pm P — Pm

forp > p™.
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We deduce that on th&, (u,,) curve,u, is betweeni, andu,,. Hence, in the usual Eu-
clidean norm,

[t — ur| < |um — Url < |um — uyl,

which contradicts our previous estimates on the strengths of the shocks and the rarefaction
fronts, at least for large.

2. Noncrossing of rarefaction fronts inside a family. This follows from the Glimm-—

Lax theory on the spreading of the rarefaction waves (s€e [22]). We consider the case of

1-waves, since the 2-waves can be treated similarly. We consider two consecutive rarefac-

tion fronts, that is, a pair of rarefaction fronts which at the beginniag0 do not enclose

any other 1-front. Note that we do not consider the case when they are separated by a

1-shock since by the previous point apd ([128), such rarefaction fronts do not collide.
Denote byC; andC; the two rarefaction fronts as in Figureé 5, with = C1(0) and

Y = C»(0). These curves are contained 31 () when there are two strong shocks, or

in a fixed =T or ¥~ when there is only one strong shock, since they do not meet the

strong shock of their family, and the meeting with the strong shock of the opposite family

destroys them. We suppose that no meeting of fronts of the same family has occurred yet.

C1 C2

/Cz(tD)

7 .
T T\

"oy

C1(t*)

2-wave

Fig. 5. Focusing of rarefaction fronts.

In what follows, the radius which measures the oscillation of the solution between
the two strong shocks (or on the side of the strong shock which contains the “initial do-
main” {0} x [0, 1] when there is only one strong shock) is taken small enough. Let us
underline that- is to be chosen small enough, independently: oAs we saw earlier,
considering a final state of sufficiently small total variation yields an approximation sup-
ported in® with r arbitrarily small. All the states considered in this subsection lie in
B(uy;r).

Givent < 0, we construct two straight lines andz, as follows. We fix

L= inf A and A= sup Ai(w),

ueBu;r) u€B(uy;r)
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and then set
)»*Z)V\z—r and \* =5L2+r.
We defineo; to pass througlt’>(¢) with speedr*; this curve intersect§; at the point
C1(t*). Then we define; to pass througlt1(+*) with speedi,; let tH be the time at
which this curve crosses(see Figurés).
From now on(; areC, are considered as mags — R (mapping: to the position
of C; (t) on thex-line). Define the “horizontal” distance betweés(r) andCy(t*):

D*(t) := Co(t) — C1(t™). (132)
One has J J
N s . ﬁ
ED (1) = Ca(t) — C1(t7) a5
Also, Ca(t) — C1(t*) = L (¢t — t*) yields

dr* 14 Ca(t) — (fl(t*).

dr Ci(t) — s
In turn, this leads to
D - )5 = (Gt = a2 S+ 00
ButCa(r) — C1(t*) can be estimated by
Ca(t) — C1(t*) = A+ B, (133)
where

A(t) = [Ca(t) — 11(Ca(t) )] — [C1(t*) — A1(C2(t) )],
B(t) := 11(C2(t) ") — A1(Ca(t™) 7).

We have the following estimate ofy, using [33):

1 1 1
A= E[Kl(cl(t*)Jr) — 2 (CH ] + E[M(CZ(I)JF) — 2(C2(7)] + 0<P>

_ 10A1
T 20w?
For B, we have

B(1) = 21(C2(1) ™) — 21(C1(t™)7)

1
(1) (01(t™) + 02(1)) + 0(;) + O(r[o1(t™) + o2(D)]). (134)

oA _ or1 _
= 2 @+ S@w’+ 00 3wl +Iw?l. (139)
2-waves w w 2-waves
crossingo; crossingo;

Hence

B(t) <C Z lo].

o a2-wave
crossing 2(t7),Ca(1)]
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We writeo for o1(+*) andoy for o2(¢). We have

x . A "1 - 1
D) = D*(©O) + L+ 0() 5 /0 <§(gl+(,2)gl+o(ﬁ>)

* —Aq

+0Q) /Ot( 3 |0|) ds.

o a2-wave
crossing 2(s5),Ca(s)]

Now in the last term, each wave crossifig (at a pointC(9)) is counted wher€ (6) €
[Cz(SD), Ca(s)]. Clearly, the time interval for which this happens is of lengttr D*(9)).
Hence one gets

- rr1 — 1 !
D*(t):D*(O)—f-(l%—O(r)))L . /0 <5(01+02)$1+0<p))+0(r)/0 D*(s)ds.
x* — A

A simple Gronwall argument yields

D*(t) > exp(—O(r)r) D*(0)

! Av = 1
+a+ o0 [ [—m o)t +0<—2)] exp(—0(r)T) d.
0 2 Ay — &1 n
Now (I02) yields
X-Y
D*(0) > A*
A — A1
1 g Ao—r1 A —h \ P
— s 136
_1—a)\*_)nln2ma(l—Y X 1—Y> (136)
Note that using (137), we have
1 1+o0Tv
—(01+02) = % (137)
2 n

Hence we see that, providddV (1) (and hence alsp) is small enough independently
of n, and forn large enough,

D*(t) > 0 fort suchthat-t <

<X2—X1 Moo=k
max

-1
2 . (138)
1-Y X'1-Y

1
1—a/2
We consider three cases according to the value of the maximum:

e If the maximum is the first term, then one sees that for sorsatisfying [I3B), the
curve(C> has met the strong 2-shock, and hence has ceased to exist. Indeed, from the
fact that on both sides of the strong 2-shock the states are in the domain described in
Subsectiof 5]4, one sees that its speed satisfies

SpeedSa(t)) > r2 — B,
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at least ifr is chosen small enough. The cu@galso has states on both sides in the
domain described in Subsectjon|5.4, hence its speed satisfies

Ca(t) < 21+ B
Now choosings such that

1 1 1

 —— < e 139
A2— A1 — 28 1—a/2)p— 21 ( )

yields the conclusion.

e If the maximum is the second term, then one sees that for saatsfying [138), the
curveC; has left the domain [A] (through 0). (Note that this term is useful only when
A1 >0)

o If the maximum is the third term, then one sees that for somsetisfying [13B), the
curveCy has left the domain [AL] (through 1).

This ends the proof that rarefaction fronts do not merge (inside the domain).

5.9. End of the proof of Propositi¢n 4

Step 1. Convergence.This is the same argument as in Secfipn 3. The approximations
constructed above have a uniform total variation according to the varialbled thanks

to ), a uniform Lip(Llloc) bound as well. It follows again by Helly’s theorem that, up
to a subsequence that we do not relabel,

U" - U inLi.((—o00,0] x [0,1]; R™* x R). (140)

Step 2. Proof that(El) and the entropy condition are satisfied. Here, we prove that
the limit U that we obtained satisfids (El) in weak form, and the entropy inequalities. This
is not very different from the case of the direct problem with small total variation (see for
instancel[8, Section 7.4]), but we give the proof for completeness. Moreover, although in
this section all shocks travel with exact shock speed, we write the proof in the context
where weak fronts can be traveling with a speed which differs from the shock speed by at
most 1/2". Hence, the proof here applies in the context of Se¢fjon 3.

We first prove thaty is a weak solution o@l). Lep € C3°((—o0,0) x (0, 1); R)
be given. From[(140) and the uniform bound@h, we see that it suffices to prove that

I, ::/ (U" + @ f(UM)) - 0 asn — oo.
(—00,0]x[0,1]

Assuming thap = 0 fors < —T, and denoting,, the curve corresponding to the frant
we have, by Stokes’ formula,

0
Iy =/TZ¢U’ xo) (o (DU (8, xg)=U" (1, x,) N~ (fU" (1, x))— f(U" (1, x;)))} dr.
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Denote byZ, the term of the sum corresponding to the wavelNe write [p](x,) for
¢ (x}) — ¢(x;). The termZ, depends on the type of the wave

o If a is a strong shock, it moves at the exact Rankine—Hugoniot speed, hgre®.
o If o is a weak shock, it moves at the exact speed, up to BenceZ, = 0(1)27"|oy]|.
o If o is a rarefaction front (of the family), it is easy to see that

[ ()] (e (1)) = 5 (o (1)), uCra () N [] (xa (1)) = O (0w |?),
which yields

1 1
Io = 0() 7T o0 )Ioal:

If we use the uniform bound on the total strength of the fronts, this leads to the fact that
I, — 0, which was to be proved.

We now turn to the entropy inequality. We consider an entropy/entropy flux pair
(1, ¢), with n convex. In order to prov¢ [5), it suffices to prove that

liminf J, >0, where J, :=/ (e (U™) + @rq(U™)).
(—00,0]xR
As previously, we have

0
Jn = /Tpr(t,xa){fca(t)[n(U”)](xa(t)) — [q(UM)](xe (1))} dt

0
> f Y e x) i O U] e 1) — (U] a (@)} dr. (141
_Tweaﬁwave

Indeed, the strong shock waves (which travel at exact speed) satisfy the entropy condition
(see for instance [1, Lemma 4.1])

sInU™M1GF (1) — [q(UM](xa (1)) = 0. (142)

This is seen by differentiating the above left hand side along the shock curvuet Set
U™(t,x})andu™ = U"(t,x; ), ut = ®;(n,u”). We have
du®t du™

i _ _ ﬁ +y — +\W\ T R Y
dn(S[n] [q])—dn(n(u )—nw™)) +sDnw™)) an Dq(u )dn

d dut du™
= d—sm(uﬂ — ) + D(n(uﬂ)[sL - Df(u*)L]
n dn dn

d d
= (et = ™) - D(n(»ﬁ))[—s(»ﬁ - u)],
n dn

where we differentiated the Rankine—Hugoniot relation in the last step. Now we use the
fact thatds/dn < 0 globally along the shock curve (which is easily checked ug$inp (30)-
(31))) and the convexity of; this yields [14P).

Again, denote byJ, the general term i (141), which depends on the type of the
waveo.
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o If @ is aweak shock, it moves at the exact speed, uptolence7, > —0(1)27"|oy]|.
e If « is a rarefaction front (of the family), it follows all the same fron{ (26)(27) that

[(UM](xa () — sU" (e (1)), U" (e ()N [0(1)] (5 (1)) = O (|0 |?),
which yields

1 1
Jo = —0(1) 2 + o ol
Using the uniform bound on the total strength and the estimate on the size of the rarefac-
tion front, this yields liminf/, > 0, which was to be proved.

Step 3. Proof thatu|,—_r; is constant. Let us prove that for sufficiently negative, there
are no fronts inside the domain,[D)], for all the approximation&’”. Then the functiom
obtained as a limit is constant fosufficiently negative.

It follows from the fact that the states considered in the approximations are in the
domain® defined in Subsection §.4 that the strong 1-shock leaves it throeugh 1
and that the strong 2-shock leaves the domain thraughO, before a time-T3' easily
computable. As a consequence, if there is a front inside the domain forz#imesry, it
lies in X (1).

We note that a front under the two strong shocks is necessarily a shock: a rarefaction
front cannot meet the strong shock of its own family, and the meeting with the front of
the other family destroys it. Then, any shock-shock interaction is solved in terms of two
shocks (as seen in Subsecfior 5.3). Recall that there are no backward interactions of fronts
of the same family. Consequently, one can follow each front under the strong shocks, as
a front of a fixed family, and no new fronts appear. Using the definition of the domain
in Subsectiof 5]4 (the states close to the critical curves are avoided), one sees that these
fronts must leave the domain.

6. The Lagrangian case
6.1. Introduction

In this section we prove Theorgm 2. The structure of the proof is the same as the one of
Theoren{ [L: in a first step, one shows that one can drive the system:fytora constant

state, then in a second step, one proves that it is possible to travel between arbitrary
constant states, and finally in the last step, it is proved that there exists a solution starting
from a constant state and reaching Only the first step is really different from the one

in the proof of Theorerf|1. Hence the goal of this section is to prove:

Proposition 5. Letug be as in Theoren@ Then there exisb € R™ x R and an entropy
solutionu of (B)in [0, 1] x [0, 1] such that

U|=0 = U, (143)
Uj=1 = . (144)
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Before proving Propositidn 5, let us recall that if we write the stiate (, v), the system

@) has eigenvalues; = —/kyt—v~1andi, = /kyr—7~1 with respective eigenvec-
tors

2 1
_ (y+3)/2
= D" (—mu)) ’

r2(u) =

(145)

2 o2 ( 1
VEr(y +1) =) )’
normalized in order tha¥ 4; - r; = 1. The rarefaction curves are

2./ o .
Riiv—v_= (—1)'—’()]/_[1_()’_1)/2—1_ o4 l)/2] with (-1)'(t—1-) <0, (146)
y —

and the shock curves are

Sitv—v_ = \/—K(rV —1_ ")t —1_) with (=Di(t—t7)>0. (147)

We parameterize Lax’s wave curves (that we still denbfg by A(u,) for the rarefac-
tions and by 2i(u,) — s) for the shocks, which makes theGf-regular (see[[26]).
Again we put an [” exponent for left curves. Whelu1, uz) determines ari-wave,
up = ®; (o (u1, u2), uz), we take|o (u1, u2)| as a measure of the strength of this wave.
As previously, wherty # 12, we write
V1 — U2
s(uy, ug) = ————,

T1— T2
whether(u1, u2) determines a shock or not. It is again elementary to establish that on a
rarefaction curveet = R;(s, u™), s > 0, we have

M)+ At

5 +O0(u™ — u+|2) and A(u") <s < Au™). (148)

s, ut) =
Finally, recall that the Riemann invariants here are giverj by (7).
We begin the proof of Propositi¢ry 5 by introducing a domain for the solution that we
are going to construct.

6.2. Domain for the solution

As for Theorenji L, one of the ideas is to let a strong 2-shock enter the domain. We begin by
determining the shock. We considéf such thaiU, , uo) is a 2-shock of speed greater
than 3 and such that; (Uy) < —3. This is possible since b7) the shock speed is
given by

To)~ Y — (t7)~Y
s = \/—K(TO)_—(T_O) — 400 asty; — ot, (149)
To— T,
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whereU; = (t; , vy ) andug = (7o, Vo), and since
MmUy) = —W(rg)(_y_l)/z — —oo asty — O

To fix notations, we writéig = ®2(p, Uy ).
Now the domain considered in what follows has the form

D = B(Uy ; r) U B(uo; r), (150)

wherer is small enough that: the vacuum is avoided, Glimm'’s estimates are satisfied in
each component dD, the speeds are strictly separated in each componet, ainy
simple wave leading from a state 8f(U; ; r) to a state ofB(uo; r) is a 2-shock with
speed greater than 2, and a state B(Uj ; r) satisfiesii(w) < —2. Other conditions

onr are found in the next lemmas.

Remark 8. One could have used an arbitrarily small shock here, but we underline that
the constant described above depends on the reference shock and tends rapidly to 0 as
the shock shrinks. Also, we would not be able to requirey) < —2 and the speed of the
strong shock to be greater than 2, but rathgr) < —c < 0 and the speed of the strong
shock to be greater than> 0 (and the time of controllability” is of course affected).

Note also that one can make the same type of constructidn for (El) provided the base point
ug satisfies\1(ug) < 0 < A2(up).

6.3. Two lemmas

Before constructing the front-tracking approximations for a solution to Propofition 5, we
establish two preliminary lemmas. The general idea of these lemmas is to prove that, if
we are able to send supplementary 2-shocks towards the strong shock at the right time
and with the right strength, one can get rid of the 1-shocks that would naturally emerge
from the strong shock. These shocks are the principal obstruction to reaching a constant
state.

Lemma 11. If r is small enough then the following holds. Let € B(U;;r) and
Um, u, € B(uo; r) be such that

(ug, uy) is a2-shock andu,,, u,) is al-shock.
Then there exists; such that

(uy, up) is a2-shock andu;, u,) is a2-shock,
and moreover

o (i, uy) = oy, um) + 0o (U, ur)). (152)
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Lemma 12. If r is small enough then the following holds. Considee B(U, ; r) and
um, uy € B(up; r) such that

(u;, uy) is a2-shock andu,,, u,) is a 2-rarefaction front.
Then there existg; such that
(uy, up) is a2-shock anduy, u,) is a2-shock,
and moreover

O—("Zla M[) = O(U(’/‘ma ul‘))’ (153)
o, ur) = o (up, um) + 00 (Up, ur)). (154)

28

28
u;

2§

2R

Fig. 6. Lemma anﬂz.

Proof of Lemmapg 11 ar{d L2Ve begin with Lemm& J|1. To fix the notations, we write
un = Po(p,up), uy = d1(01, uy), uy = dP2(o2,u;), ands the speed of the shock
(ur, um). By Lemma[1, the Riemann problef;, u,) is solvable, at least if is small
enough. Le{o, p’) be the strengths of the resulting waves, that is,

up = ®a(p’, ®1(oy, ).
We consider the mapping
(F.,G): (u, 01,02, p) > (o1, p).

ThenF(u;, 0,0, p) = 0foru; € B(Uy ; r) andp in a neighborhood ap. It follows from
Lemmd_l that

Aa(up) — s detlra(up), um — up)
A(up) —s  detry(uy), um —up)’

[aazF](ulv 0,0, p) = (155)

Now we remark thak,, — u; = (., — ©) ' (1, —s) and

2 V+3/2 1
- Y
2
ri@ul) = U210 _xga)).

NGIEDL
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By Lax’s inequalities, one has, > 1, A2(un) < s < A2(u;) ands > A1(u;). We get
_Ao(uw) —s Ap(up) —s
Ar(up) —s  Ai(uw) —s

Hence the equatiof' (u;, o1, -, p) = 0 can be solved fofu;, o2, p) in a neighborhood of
Uy » 0, p). Moreover,

[a(TZF](u17 Oa 07 P) = < O

Ar(upm) — s de‘(}"l(um), Upm — Up)

[96, F1(u1. 0.0, p) = == " Getra ) iy — )

(156)

Hence by Lax’s inequalities,
[05, F](u1, 0,0, p) > 0. (157)

If r is chosen small enough so that the above derivatives are bounded and bounded away
from 0, the existence af; and [I53) and (154) follow from the local inversion theorem.
Moreover the solutiom is negative whemw1 < 0, which implies that the wavei;, u;)
is indeed a shock. Hence this establishes Lefnma 11.

The proof of Lemma 12 is entirely similar with. = ®1(o1, um), o1 < 0, replaced
by u, = ®2(¢c2, un), g2 > 0. Then defining again

(F,G) : (ur, 62,02, p) — (o1, p),
one gets

Ao(m) — s ) dettra(um), upm — ur)

[0, F1(u1. 0.0, p) = e =5 et tun), wm —ur)

<0, (158)

which yields the conclusion.

Remark 9. Note in passing that one recovers by ([156)—-[157) &nd](158) the fact that,
at least for small waves, the interaction of a 1-shock (resp. 1-rarefaction front, 2-shock,
2-rarefaction front) with the strong 2-shock generates a shock (resp. rarefaction front,
rarefaction front, shock) in the first family. This is also true forj (El), and Lenjmps 11 and

[13 could also be proven in that case.

6.4. Construction of front-tracking approximations

In this subsection, we explain the construction of front-tracking approximations of a solu-
tion to Propositiof b. This is done in two steps: first we construct an approximate solution
“before the interaction with the strong shock”, and then we complete the approximation
“after the interaction with the strong shock”.

We begin by introducing approximation§ of the initial state:o, on [0, 1], satisfying:

TV (ug) < TV (uo),
ul) = ugin L1((0, 1)), (159)
ug is piecewise constant.
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Step 1.

a. For fixedn, we locally solve approximately the Riemann problem for any discontinuity
point in (0, 1) (that is, with rarefaction waves replaced by rarefaction fans with accuracy
1/n as described in Secti¢h 3).

b. At point 0, we solve the Riemann probledy, uj(0%); we keep only the 2-wave
(which is a 2-shock ifz is large enough thatg(0+) € B(uop; r)). This front is called
strong

c. We extend different fronts to their first interaction point. Here the convention is that
an interaction point is either the intersection of two fronts, or the crossing of a front with
the boundary [0+00) x {0} U [0, +00) x {1}. We modify if necessary the speeds of the
waves by an amount/2" in order that, at a given time, at most one interaction takes
place, involving either two fronts, or one front and the boundary. We denot# lilge
resulting piecewise constant function that we construct progressively.

Now we explain how we extend’ past interaction points. This depends on the na-
ture of the interaction. We suppose that the states on the left of the strong shock lie in
B(Uy ; r), and those on the left iB (uo; ).

1. Weak-weak interactionf two weak fronts(u;, u,,) and(u,,, u,) interact, then we ex-
tend the solution by the approximate Riemann solution of the prollen, ), with
the convention that we do not split rarefaction fronts again.

2. Front/boundary interactionWhen a front meets the boundary, we extend the solution
by just ending the front (say, for instance, if the framt, u,,) meets the boundar}
at timet, thena” is extended for times larger tharoy u,,).

3. Strong/weak interactionMe suppose that the strong wage, u,,) interacts with the
weak wave(u,,, u,) on its right (withu; € B(Uy'; r) andu,,, u, € B(uo; r)). Then
(u;, uy) is a strong 2-shock, say, = ®2(p, u;). We discuss the various extensions
of #" according to the nature of the weak waws,, u,).

o. (un,u,) is al-rarefaction front In that case, by Schochet's lemma, there exjst
ande, such that
ur = Oa(p + &5, P1(e7, up)),

with the estimates
|8/2| + |83_| = O(o (um, uy)). (160)

Moreover, it follows from the expression of Schochet’s matrix (see (157)) that
gy > 0. We fixii; := ®1(e], u). Then we extend the approximatiaf past the
interaction point by; andi; separated by a horizontal line on the left, aiacnd
u, separated by a single jump at speéd, u,,). (See Figurg]7.)
Hence in the above construction, there is a horizontal discontinuity betwyeam
a7, which is certainly not intended to satisfy equatiph (P) even approximately. This
is modified in the second step of the construction.

B. (um,u,)is a2-shockStill by Schochet's lemma, there are som@nds,, such that

Uur = CDZ(P + 8/27 q)l(é\;]_a Ml))a
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with the estimate] (160) still fulfilled. Moreover, it follows from the expression of
Schochet’s matrix (see aI58)) that> 0. Then we extend” past the time of
interaction as in the previous case.

Y. (um,u,) is al-shock.Here we use Lemmia [L1. Hence there is sa@insuch that
up = ®(02, ), 2 < 0, andu, = ®2(p + €5, ii;). Recall that we have estimates
(157) and[(15R). Then we extedd past the time of interaction as previously, with
a horizontal discontinuity between andi;.

8. (um,u,) is a2-rarefaction.Here we use Lemnia [L2. Again there is soipesuch
thatu; = ®a(az, i), a2 < 0, andu, = ®2(p + &5, ;). Then we extend” past
the time of interaction as previously, with a horizontal discontinuity betweeamnd
i;. Here we have estimatgs (153) ahd (154).

In each case, the 2-wave outgoing from the interaction point is csiiedg All other

waves are calledieak

Let us remark that there is no interaction on the left of the strong shock since there are
only horizontal discontinuity lines there. The first step is represented in Higure 7.

——  strong2-shock

weak?2-shock

,,,,,, 2-rarefaction
1-shock

Fig. 7. Step 1.

If we assume for the moment that there are only a finite number of fronts and of inter-
action points, and that all states considered on the left of the strong waveBi@/; r)
and all states on the right of it lie iB(ug; r), the above algorithm is well-defined. More-
over, the strong wave is a 2-shock of speed greater than 2 and hence it has left the domain
beforer = 1/2.

Now we modify the approximation “after the strong shock”. The goal is to make it a
suitable approximation of an entropy solution, intended to safisfy (144).

Step 2. We denote by5(¢) the position of the strong 2-shock at timeéWe letS(x) be
the time when the strong 2-shock reaches [0, 1]. We defineT; := &(1). The goal is
to reconstruct properly the above approximation on the domain

Q= J [6x). +00) x {x}. (161)
x€[0,1]

The main point is to consider-1x as time, and§(x), +o00) as the space domain. Hence
we get a problem in a varying domain, with boundary conditions on the “moving bound-
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t=0 t=1T1y

Fig. 8. Second step.

ary” &(x), as described in Figufé 8. The new piecewise constant function constructed in
this section will be denotetd”.

We letr, ..., 1 be the different times of interaction of a weak shock with the strong
shock that occurred in the previous step, in increasing order. We deneie by, x; the
corresponding positions in [Q]. We addf;+1 = Ty, x¢k+1 = 1, 10 = 0 andxg = 0. For
each |, ti11),i = 0,...,k, there is a statg; ;1 on the left of the strong shock (in the
(t, x) plane, or on its right in thél — x, ¢) plane) constructed in the above algorithm.

We start fromU” = ;41 on [T, +00) at “time 1— x = 0” (hence there is no front
in the domain). We let the fronts evolve in the domain (at the beginning, there are none),
until one of the following two situations occurs: either X reaches %t x;, or two fronts
meet in the domaig.

First situation. For eachi = k, ..., 1, we have the following alternative, as seen in the
construction of Step 1: either

® i1 = d>2(e§, u;) for someag < O (this corresponds to casgsands of Step 1), or
® 11 = <1>1(8i, i;) for someei > 0 (this corresponds to casesandp of Step 1).

In the first case, we extend the functioff over “time” 1 — x = 1 — x; on the right of

the strong 2-shock (ity, 1 — x) plane) byii; andi; 1, separated by a backward-in-time
2-front (which is a shock when seen in the usual direction of time) at shock speed, that is,
by the straight line passing through, x;), with equation

(x —x;) +(t—t)s(@;, u;41) =0, t=4.

Note that this front enters the domajin (161) by Lax’s inequalities.
In the second case, we distinguish two possibilities:

e For x; that corresponds to the action of a 1-rarefaction front in Step 1, that is, in case
«a above, we extend the functidid” past timex = x; by #; andu; 11, separated by a
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forward-in-time 1-front (which is a rarefaction front) at shock speed, that is, again by
the straight line passing through, x;), with equation

(x—x)+ @ —t;)s(@;,u;+1) =0, t>1t.

e Forx; that corresponds to the action of a 2-shock in Step 1, that is, inkcabeve, we
extend the functio/” beyond time + x = 1 — x; by a (forward-in-time) rarefaction
fan of accuracy An from iz; to u; 1, each (rarefaction) front evolving at shock speed.

Note that these fronts lie if?, because they evolve forward in time (with negative speed).

Here we need not modify the speeds of the fronts, since, as we will see, there can only
be binary interactions. Simultaneous interactions (in different places) can be treated as
successive interactions.

Second situatione extend the different fronts that enter the domain and let them evolve
at constant speed in the domain as 1 increases until two of these fronts meet.

Let us remark that in this scheme, in the domgin [161), two 1-fronts do not meet be-
cause they are 1-rarefaction fronts evolving forward in time (148)), and two 2-fronts
do not meet because they are 2-shock fronts evolving backward in time, as a consequence
of Lax’s inequalities. (Note that, in particular, 2-shocks do not ng&aince they have
entered the domain.) Consequently, there can only be binary interactions. As a result, one
just has to deal with the meeting of a 1-rarefaction front with a 2-shock, as described in

Figure[9.

1R

' : "y

X

28

Um Um

- 1R
28

Fig. 9. Interactions in the second step.

We consider a 2-shock,, u,,) interacting with a 1-rarefaction fror;, u,,). We
remark that, as in Figufg 9, the 2-shock is “on top” of the 1-rarefaction froft i) co-
ordinates, because the first one evolves backward in time, while the latter evolves forward
in time. Hence

u, = Oh(ea, d1(e1, ur))

with ¢1 > 0 andgz < 0. We have:
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Lemma 13. Suppose that all the states considered ar&8iit/, ; r). There are some
ande), such that

ur = d1(eh, Dheh, ur)

with
ler — &1] + |e2 — &5 = O(D)ex]|e2l. (162)

Proof. This lemma is obtained exactly as Lax’s theorem by the implicit function theorem,
noting that

d
— &5, W)|e=0 = —r2(w).

de
We fix ,, = cI>12(s/2, uy). The approximatiory” is extended over the interaction
point byu;, it,, andu, with (see Figur¢9):

e u; andu,, separated by a backward-in-time 2-front at shock speed,
e i, andu, separated by a forward-in-time 1-front at shock speed.

Note that if all the states are iB(U,, ; r) andr is small enough, then the froGi,,, u,)
is a 1-rarefaction front, andi,,, u;) is a 2-shock (se¢ (152)).

In the above construction, the finite number of waves and interaction points is a conse-
guence of the fact that fronts of the same family do not meet. So in order to prove that the
above algorithm is well-defined, we only have to prove that all states stBylig ; r).

6.5. BV estimates and well-posedness of the algorithm

We first establish estimates on the piecewise constant fungfi@monstructed after the
first step of the algorithm. Then we look for estimates.6h

a. Estimates oni". The BV estimate oni” is obtained as in the Eulerian case, and is
even simpler, because the “fronts” that go out of an interaction with the strong 2-shock
do not interact since they are all horizontal. We infer that there are only a finite number
of fronts and interaction points analogously as in Se¢flon 3. We omit the details.

In particular, if TV (ug) < &g, then all the states under consideration on the right of
the strong 2-shock are iB(uo; r).

Moreover, there is some constant> 0 such that

Y loa(x7) < C- TV (o). (163)
Py
Indeed (see for instancgl[8]), we consider an increasing sequence of piecewise affine
space-like curveBy, ...,y such that: the curvel; are undes, I'g starts a(0, 0™) and
there is no interaction point betwe®&g and{0} x [0, 1], there is exactly one interaction
point betweer; andT'; 11 (including the “front/boundary” interaction points), and there
is no interaction point betwedny andS. See Figur¢ 0.
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| Iy

1)

Fig. 10. Tg, ..., Ty.

Then we fix

Vi= ) lol and Qi:= Y ollo']
o intersectd’; 0,0’ approaching
and intersecting’;

Then one get¥; + C Q; decreasing for suitabl€, which yields [(16B).
Finally, as in the Eulerian case, we get: for any rarefaction fsofihat one can trace
beyond interactions because of the convention that we made),

lo()] = Clo(0)] = 0(1/n), (164)

for ¢ a time before interaction with the strong 2-shock.

b. Estimates orU”. From [163), [(15]1),[(133) and Schochet’s lemma (the transmission
matrix is bounded when the states on the sides of the shockdg,iwe get

Y ol =C TV (uo), (165)

o enteringQ2

where the fronts considered are thosé/ify also for any rarefaction front that extends a
rarefaction front interacting with the strong 2-shock,

lo () = 0o (t7)| < Clo(0)] = 0(1/n), (166)

where|o (+1)| (resp.|o (t7)|) is the value of the strength of after (resp. before) inter-
action with the strong shock. Of course, for “new” rarefaction fronts (that come from the
interaction of a weak 2-shock with the strong 2-shock), onestias) < 1/x.

Forx € [0, 1], we introduce the curvE (x) as the union of G (x), +00) x {x} and of
the part ofS from &(0) to S(x) (see Figurg 11(a)). Also, let(x) be the set of all couples
(o, 0’) intersectingz (x) and approaching (that is, is a 1-front ands’ is a 2-front, with
o' aboveo, that is, in that case, located later in time).

Then we can define

vy i= > ol and Q= Y ollo].

o intersectse (x) (0,6")eA(x)
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Then again, for suitabl€p, V(x) + CpoQ(x) decreases as-1 x increases. In particular,
using [16%), we have the estimate

Vix =0) < O0Q)TV (ug).

Note in particular thav’(x = 0) dominateSTVRJr(Ulﬁkw{o}).

L N(T)

t=0 t=1Ty
(a) The curveE (x) (b) The curvex(r)

Fig. 11. Two families of curves.

Now, we introduce a family of curves depending on the timas described in Figure
[I3(b): the curver(r) is composed of4, +00) x {0}, the horizontal line fron(z, 0) to
the point(r, 5~ 1(1)) (if 6~ 1(r) is defined, andz, 1) otherwise), and then the curve
following & (along its left side) to the right boundary of the domain.

As previously, we defin® andQ along the curv&(z). Note that by what precedes,
computed oR(0) is of orderO(1)TV (ug). Then one easily sees that- C © computed
along®(t) is nonincreasing, which leads to

T Viyxo0.5()(U") < C"TV (uo)

for anyr and suitableC”. This implies that the states considered are in the domain de-
scribed in Subsectign §.2 1V (uo) is small enough. All the same, we also conclude that
all rarefaction fronts satisfy

lo] = 0(1/n), (167)

by distinguishing the rarefaction fronts that come from a rarefaction front “crossing” the
strong shock, and rarefaction fronts that come from the interaction of the strong 2-shock
with another 2-shock (the latter have original strength of order Wwhen leaving the
strong 2-shock). We omit the details.
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6.6. Conclusion

As previously, we also deduce a I,_{m}) bound onU", and hence, up to a subsequence,
one gets
U" — U inLL([0, +00) x [0, 1]).

The fact that the limit is an entropic solution p (P) is deduced as previously, (164)
and [I67): all fronts travel approximately at shock speed, and the rarefaction fronts are alll
of sizeO(1/n).

It remains to justify thal/ reaches a constant state. It is sufficient to prove that

U"(t,-) is constant for > 1. (168)

But this is a consequence of the construction which implies that there are only 1-rarefac-
tion fronts in the domain for > T;. This can be seen as follows. The fronts above the
strong 2-shock come from a poity, x;). These fronts are only 1-rarefaction fronts or
shock 2-fronts (and eaghfront keeps its nature—rarefaction front or shock—after suc-
cessive interactions). But the 2-shocks evolve backward in time. Consequently, fr,

only 1-rarefactions fronts can be left in the domain. But rarefaction fronts going forward
in time do not interact. Using the definition e{characteristic speeds are bounded away
from 0), we deduce (168). This ends the proof of Proposjtjon 5.

Now, in order to finish the proof of Theorgm 2, it remains to establish corresponding
Proposition§ |3 ar{d 4 fdr[P). Proposit[dn 3 {of (P) is simpler to prove thah for (El), because
there is only one zone in whicky < 0 < Ap. We omit the details. Then the proof of
Propositiorf 4 for the systerp|(P) is similar to the one [foi (EI), with both strong shocks to
be retained. This is left to the reader.

AcknowledgmentsThe author wishes to thank the referee for stimulating remarks on the first ver-
sion of the paper.
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