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Vortex collisions and energy-dissipation rates JEMS
in the Ginzburg—Landau heat flow

Part II: The dynamics
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Abstract. We deduce from the first part of this paper|[S1] estimates on the energy-dissipation
rates for solutions of the Ginzburg-Landau heat flow, which allow us to study various phenomena
occurring in this flow, including vortex collisions; they allow in particular extending the dynamical
law of vortices past collision times.
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1. Introduction and statement of the main results
1.1. Presentation of the problem

We recall from [S1] that we are interested in the following parabolic Ginzburg—Landau
equation in 2 dimensions, in the asymptotic limit> O:

9 1 .

L Aut Su— ) inQx Ry,
lloge| € (1.1)
u(~,0):u2 in Q,

where( is a two-dimensional domain, assumed to be smooth, bounded and simply con-
nected, and where is a complex-valuedunction, assumed to satisfy either one of the
boundary conditions

u=g 0noQ 1.2)

with g a fixed regular map fror& to S1, in which case we also assume tkats strictly
starshaped with respect to a point; or

9
M _0 onaQ, (1.3)
av

in which case no further assumption is made.
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The Ginzburg—Landau heat flow is &% gradient flow (or steepest descent) for the
Ginzburg-Landau functional

11232
Es(u) = %/Q<|Vu|2—i-w>. (1.4)

2¢2

For the motivations to study this equation, and the notionasfices we refer to the
first part of this paper [S1]. It was shown by Bethuel-Brezigleth in [BBH] that under
the assumption

E;(u) < C|loge|, (1.5)

minimizers (respectively critical points) @&, have a bounded number of vortices which
converge, ag — 0, to a finite set of points which are minimizers (respectively critical
points) of an explicit finite-dimensional function callehormalized energyand denoted
by W. They proved the crucial relation thatif hasr limiting vortices atp1, ..., p,, of
degreed;, then

E;(ug) > mnlloge| + Wp(p1, ..., pn) +ny +o(1), (1.6)

wherey is a universal constant introduced in [BBH] (it is the energy of the profile of the
1-vortex solution in the plane). The main termWin,

—1 Z D;Djlog|p; — pjl., (1.7)
LjuiEj

contains the interaction between the vortices and indicates that vortices of opposite sign
attract each other, while vortices of same sign repel each other.

The dynamics of the vortices under the heat flpw](1.1) has also been studied, and it
was established by Lin [Li] and Jerrard—Sornier [JS1] (see also $pirn [Sp] for the equation
with magnetic field), that, as could be expected, the limiting vortigexf the solutions of
(1.7) evolve (in that time scale) according to the gradient of the renormalized eWergy
i.e. according to the set of ODE’s

dp; 1
_ = ——VZWD(pl’ Tt pn)(t)’
dt s

pi(0) = p?P.

This was established under the following set of restrictions:

(1.8)

1. The initial vortices all have degreel and are well separated.
2. The initial data is assumed to be “well prepared”, i.e.

E:u?) < mnlloge| + C, (1.9)

wheren is the number of initial vortices.
3. There are no collisions (or we work until the first collision time under the[lay} (1.8)).
4. The vortices cannot exgt.
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A different proof via aI'-convergence or energy-based method was later given by
Sandier-Serfaty in [S$2], under the same conditions and the slightly stronger “very well
prepared” assumption

E.u?) < mnlloge| + Wp(p3. ..., p) +ny +o(D). (1.10)

All these results were valid only up to collision time under the law|(1.8); but, if there
are initially vortices of opposite degrees, then this law does generically generate colli-
sions (see the forn (1.7)). Collisions create a problem in the analysis because the “well
preparedness” breaks down during a collision. They are probably one of the most inter-
esting phenomena in these Ginzburg—Landau dynamics, and Ginzburg—Landau itself is
one of the simplest models in which collisions of vortices can be studied.

In this paper, we are interested in giving results relaxing the assumptions above. The
main objectives of this work are to study collisions, which were not well understood,
to determine how and how fast the energy dissipates during such collisions, to give a
dynamical law after blow-up, and to see how the dynamical law of the vortices can be
continued/extended after collisions. We also show how the well prepared assumption can
be weakened, and relax the separation hypothesis, for example dealing with the possible
separation of twet-1 vortices which are initially very close. We use our study of Part |
[S1] of “pathological situations”, i.e. those for which we have a group of vortices which
are far from the others, of degredswith (}"; d;)? # Y, d? in the group, which we
called an “unbalanced cluster of vortices”.

While this work was being completed, very similar issues were addressed by Bethuel,
Orlandi and Smets in [BO$1] and later on, their study was completedin [BOS2] (see also
the more recent papéer [BOS3]). Prior to all these works, the only partial result on col-
lisions was the paper of Bauman—Chen—Phillips—Sternberg [BCPS], where they studied
the situation in the whole plane with quite rigid conditions at infinity.

The first paper of Bethuel-Orlandi—-Smets [BOS1] gives a geometric measure-theo-
retical description of the limiting vortex trajectories under very general assumptions
(a simple bound, (1) < Cllogel), including possible splittings, collisions and recom-
binations, and results of annihilation in the case of collisions with total degree 0; it also
exhibits a phenomenon of “phase-vortex interaction” occurring (only) in infinite samples
(their setup is the whole plane), which can create a drift of the vortices. Their later pa-
per contains some results more similar to the present paper, it shows that the limiting
trajectories of the vortices are rectifiable, and derives their limiting motion law past col-
lision times, via the “balanced” property and a quantization of the energy like the one we
mentioned in Part [[S1] (see relatidn (1].31) here).

Some of the main differences between our work and theirs is that we handle boundary
conditions in bounded domains, and that our method, inspireld by [SS2], is rather energy-
based than PDE-based: it relies on examining the energy-dissipation rates through the
study made in Part [ [$1] of the perturbed Ginzburg—Landau equation

u .
Au+8—2(1—|u|2)=f5 in Q,
. (1.11)
u:g(respa—=0) onog.
vV
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under the hypotheseB, (u,) < M|loge|, lus| < 1, and|Vu,| < M/e; and on char-
acterizing precisely the value of the energy and location of the zeroes aifiring the
dynamics.

1.2. Methodology

Let us first recall the method af [SS2]. It is written as an abstract scheme, which we will
not fully quote here (referring to [S52]), but rather we describe here its implementation
for Ginzburg—Landau.

The idea is to use the fact that, given a priori the number of limiting voriicesd
their degree®; = +1, E. —nn|loge| I'-converges t&V, combined with some additional
estimates on the'! structure of the energy landscape. For the meanidgadnvergence,

. S .
we need to specify a sense of convergence: wetsay (p1, ..., py) if

n
1 = curl (iug, Vug) — 2w Y D;8y,, (1.12)
i=1

where (-, -) denotes, here and throughout, the scalar produé identified with R?.
This is the convergence of the Jacobian determinant, or vorticity, qexactly as in
fluid mechanics); its role in Ginzburg—Landau has been first emphasized by Jerrard—Soner
[US2] and Alberti[[Al] (see alsa [S$3]) and has been commonly used since then. It allows
one to trace down the vortices and find the limiting vortigesThe best compactness
for 1. one obtains is in a weak norm: in the dual(bff””(sz), but this is not important
here. Observe that the’s are the limits ag — 0 of the zeroes ofi., not the zeroes
themselves, and the degrees are the limits of the total degrees of the zeroes converging to
eachp;.

The equation (I]1) can be seen as the gradient flow

Oiue = —Vx, Ec(ue) (1.13)

whereVy, E. denotes the gradient &, with respect to the Hilbert structure
2 _ 4 2
- 1I%, = loge] - 1172
With these notations, i, is a solution of the flow[(1]1), the energy-dissipation rate is

d
- EEa(Ma(xs 1)) = —(0:ug, VXSES(MS))XE

1uel, = IVx, Ee(ue)l%, (1.14)

1 1
Shoelk, + 51V, Ee o)1, (1.15)

The main idea of [SS2] is to write this energy dissipatior{as {1.15) and to prove two
additional relations.
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The first relation (which we recalled in Part I) was: if ctt,;, Vue) — 21 )", D;é),
ase — 0, then
2
“ﬂ/ |Iogs| = I'_m ||VX£E8(u€)||§(S
e—>0JQ

e—0

1 2
Aug + S_zus(l_ lue]”)

1 2
> — VW R /3 1t 1.16
=~ E Vi Wp(p1 Pn)l (1.16)

1

which relates the slope of the energy at a configuration to the slope of the renormalized
energy at the underlying vortices.

The other relation is that, under the assumpttriu,) < wnlloge| + O(1), if for
everyr € [0, T], pe(r) = curl (iug, Vue)(t) — 27 Y 71 Didp ) then

T n T
lim |0 |2=Ii_m/ 19ucl%, = f \dipil®dt.  (1.17)
e%oHOQEI Qx[0,T] e e—>0J0 e ; 0 o

This lower bound is sharp and relates the kinetic engfggw,mz to the velocity of the
underlying vortices. It comes as a corollary of a more general result called the “product
estimate”, valid for any configuration (not necessarily solving](1.1)), proved in| [SS1],
which we use again several times in this paper, and whose time-dependent version is
(M (£2) denotes the space of bounded Radon measur€y:on

Theorem 1 (“Product estimate”, time-dependent version, see [SS1]Letu.(x, t) be
defined ovef2 x [0, T] and be such that

Vit € [0, T], E:(us(1)) < Clloge|,

/ 19,ue)? < Clloge].
Qx[0,T]

Then,V, being defined by
Ve = (02(iug, 0sug) — 0; (iug, doug), —01(itg, Oute) + 0r(iug, 01u¢)) (1-19)
there existu € L*°([0, T], M(£2)) of the form
p() =27y D8y, i) €Z,
i

(1.18)

andV e L%([0, T], M(£)) such that, up to a subsequence,
e — o in(CY7 ([0, T] x Q)), Vy > 0,
Ve =V in(C7(0,T] x 2)), Vy > 0,

with
g +divV =0. (1.20)
Moreover, for anyX € C2([0, T] x 2, R?) and f € C([0, T] x ), we have

_ 1 1 2
lim 5 |X-wg|2/ FPlowuel? > = / V.fx
+—o0 ll0gel® Jaxo.] Qx[0.7] 4|Jaxo,1]

. (1.21)
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Observe that takingX| < 1 and|f| < 1, for solutions of) assuming, |Vu |2 <
Clloge|, we have

|Ioge|*1/ X - Vu.|? < CT,
Qx[0,T]

while loge| = fo 0.7 10r1te? = Ee(ue(0) — Ee(ue(T)), thus the relatiol) states
essentially that for such solutions,

|pi(T) — pi(0)% < CT(E¢(ue(0) — E(ue(T))) (1.22)
or in condensed notation
|Ap|> < CATAE (1.23)
relatingAp, the difference in positiop; AT, the difference in time; and E, the differ-
ence in energy. This crucial relation reflects of course the parabolic scaling and will be
used to bound collision times from below.
The product estimate also allowed us to define limiting continuous (ind4¢t2)
vortex trajectories as follows.
Proposition 1.1 (Vortex trajectories, seel[SS2])Letu, (x, ¢) be defined oveR2 x R,
and such thafT.18) holds withT = +oo0 (in particular these hold for, solving (1.]))
with (I.Z7)holding). Then, after extraction of a subsequence, there exist pgitsand
integersD; (1) € Z andn(t) € N such that
n(t)
curlGug, Vug)(@®) — @) = 2 Z D),y ase— 0,
i=1
moreover — (¢, u(t)) € HY((0, o0)) for everyc e CL(R). If in addition, for a giver,
Zf‘g |D; (1)] < Z:fl) |D; (7)| for everyt > t, and D;(r) = £1 with the p; () distinct,
then there exist%, > t such that for every € [z, T),
n(t)
u(t) =21y Di(t)8p )
i=1
where thep; (1) are distinct points ang; € H((z, T}), ). Moreover, ifT;, < oo then
lim min(min|p,-(t) — pi(®)], mindist(p; (£). asz)) —0.
T, i#] i
Returning to our two relation§ (1./16) arid (1.17), once they are proved, we combine them
with (1.15), and integrate in time, which leads to

1
E(ue(0)) = Ec(ue(T)) 2 Sl1uel%, + 11 Vx, Ee(ue) I,
> 1Z/T dopil2 + 21V Wo(p) ) + 0 (D)
=5 0 vs t Di LV D(p o

T
=3 /O (—ds pi, Vi Wo(p)) + o(D)

> Wo(p1(0), ..., pu(0) — Wo(pa(T), ..., pa(T)) + 0o(1).  (1.24)
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When u.(0) is “very well prepared”, this implies that,(u.(T)) < nnl|loge| +

Wb (pi(T)) + ny + o(1). But theI'-convergence of, yields the opposite inequality,
hence there is equality, in particular equality in the Cauchy—Schwarz relatior] (1.24)
which allows us to retrieve the dynamical laywp; = —7 1V;Wp(p1, ..., pn), as

long as the number of vortices remains fixed. An important fact which follows is that
“very well preparedness” is preserved through the flow, i.e. we always bave (1)) =
nmnlloge| + Wp(p1(t), ..., pa(t)) +ny + o(1).

Part of what we do here is to prove that this scheme can be carried out even after
blow-up in space-time, allowing us to treat the situation when vortices are at a distance
I « 1, as long as is not too small. This will be the object of Theorefis 4 ahd 6.

Let us now turn to the other part of the approach. Vortices colliding correspond to the
more general fact that several vortices converge to the same limit-a®, with possible
(but not necessarily) limiting degree 0. When vortices are well separated, then time needs
to be accelerated as in (IL.1) in order to see vortex motion, as first obsered in [RS]. But
this is not true when vortices become very close, because formally the phasegxfess
the solutionu, then decays according to an accelerated heat equatigfoge| = Ay,
as pointed out in [Lli, JS1, BOS$1], thus in the faster time scd|lbdc<|, while the other
remote vortices should not move. The task will thus consist in retrieving these phenomena
guantitatively.

For solutions of the gradient flow, we have seen that the energy-dissipation rate is

d
— - Ee(ue(0) = 101k, = 1Vx, Eewo) %, (1.25)

If we write for simplicity that [1.I]L) holds, withf, = 9,u./|loge|, we havef, =
—(1/|loge|)Vx, E¢(u) in the previous notations, and

IVx, E: @), = llogel Il f: 117 2q- (1.26)

Combining this with['(l?]S) we see that knowiftg || ; - gives the energy-dissipation
rate (in time), or rather—-,og—gdt E.. If || fell ;2 is large, then the energy dissipates fast,
thus decreasing to a point which allows ruling out certain configurations (for example if
E. decreases so much th&t < C then there can be no more vortices). On the other
hand, if f; is small, then the behavior of vortices can be controlled through the results
obtained in Part I[[S1]. The idea is thus to use this alternativednamtitativeway, in
order to obtain information on vortex collisions or other pathological situations.

Let us recall one of the main results of Part | (see Theorem 1 in [S1]): assuming that
solves[(1.1]1) and under the additional hypotheses

E¢(ue) < M|loge|, (1.27)
uel <1, |Vugl < M/e, (1.28)
1 fell 72, < 1/6"  for somep <2, (1.29)

we can find what we called a “good collection” of vortices and degteeg;) of u., and
we have

_ Eelw)
Vo <1, omZ "= Togel - -+ Clloge 1 el 2 + 0D (1:30)
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and

n 1 n
o(1) < Eq(ue) — (n > dilog =+ Walar, ....an) + y(%))
=1 i=1

< CllfellZ2q, + 0(D), (1.31)

wherey (V;) are constants depending on thés and equal toy whend; = +1.

This allows us to deduce two important ingredients: an upper bound on the number of
actual zeroes af, from (1.30), and alifferential inequality on the enerdfirough [(1.3]L),
which is optimal, and allows retrieving the fast parabolic scaling.

1.3. Main results on the dynamics

Several of our results give information on the vortices of the solutiQret thee-level,
giving asymptotic time scales of collisions and of energy dissipation. This is of course a
little more precise than just characterizing the trajectories of the limiting vortices, which
we do in Theorer|5. We also derive the dynamical law after blow-up (at any not too small
scale) during collisions, which is also more precise.

The first application of the theorems proved(inl[S1] consists in showing that the “very
well prepared assumption” that was used_in [SS2] is not restrictive since “well prepared”
data become instantaneously (i.eoiil) time) “very well prepared”, by fast dissipation
of the energy excess obtained [in (1.31). In fact, we can further relax the well prepared
assumption through the following.

Theorem 2 (Instantaneous “very well preparedness”).Assume that, is a solution

of (L.3) such that(T.2§)holds and

curl (iu®, vu®) — 27 Z; Dis,0 ase— 0, (1.32)
i=
whereD; = +1 and thep? are distinct points, and
lloge|
(log|loge|)”
for someB > 1. Then there exists a tinle < (Clog|loge|)/|loge| such that for every
t, € [0, T¢], we have

E.u?) < mnlloge| + (1.33)

n
curl Gug, Vug)(te) — 21 Z D,’(Spp ase — 0, (1.34)
i—1 '
and
Ec(ue(Ty)) < mnlloge| + Wo(pS, ..., p0) + ny + o(1). (1.35)

That s, under these weaker assumptions (an energy exedss allowed in[(1.3B)), ina

time T, = o(1), the initial vortices have not moved, anghas become well prepared, i.e.

all excess energy has dissipated; one can then apply the previous tiesulis [JS1] Li, SS2]
starting at timef;, and retrieve the same dynamical law {1.8).
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As an application of Theorem 2 df [51], we get the next result, which allows con-
tinuing the dynamics after vortex collisions. Let us assume that we are in the following
generic casei, has a dipole of vortices of degregl colliding, i.e. at a distanck« 1
(ase — 0) from each other and converging to a pgigl ase — 0, andrn other vortices
of degreet1, converging to distinct pointgy, .. ., p,, distinct from pgjp. This situation

implies that
n

curl (iu®, vu®) — 2n X; Dis,e ase -0, (1.36)
i=
with D; = +1. We may also assume that there exjsts— pqip such that, considering
Ue(x) = ug(pe + Ix, 0) we have

curl (iug, Vig) — 21 (6p, —8p_) ase — 0 (1.37)

where|lby —b_| = 1.

We may also assume that this situation is inherited from a well prepared data at a
previous time, so we may assume thatis well prepared with respect to these vortices,
i.e. E;(ug) < mnlloge| + 2 log(l/e) + O(L).

Theorem 3 (Collisions). Let u, be a solution of(I.7) such that at time9, (1.28)and
(1.38)HL.3rhold, and

!
E.u?) < mn|loge| + 27 |ogg +0(),

with I = o(1). Then there exists a first tin < C1/2 + C|loge|*e=2v1109¢] = (1) for
whichu, (T1) has exactly: zeroes (i.e. the dipole has collided)! i ¢# with 8 < 1, then
alsoTy > Csl?. Moreover, there exists a tin®® < Ty + (Calog|loge|)/|loge| = o(1)
such that for every, < T,, we have

n
curl (iug, Vue)(te) = 27y Di8,0  ase — 0 (1.38)
i=1 '
and
Ee(ue(T2)) < mnlloge| + Wp(p3, ..., pO) +ny + o(2). (1.39)

The relation[(1.38) indicates that the vortices not involved in the collision have not moved
during the timeT> = o(1), and [1.39) that, has become well prepared again relative to
those vortices within that time. Thus all excess energy carried by the colliding vortices
has dissipated in(1) time, and the previously known results apply after that tifnd.e.
one may continue and retrieve the dynamical law with the remaining vortices. Moreover,
our result shows that the actual collision of the zeroes should happeti#y time (the
lower bound on the collision time is simply provided by an appropriate version of the
“product estimate” Theorefrj 1 dr (1]23)), in agreement with the expectation that the dis-
tance between colliding vortices decreases K& — ¢, if they interact according to the
expected law

dai 1 a; —ai

dt « |laj —a;|?’
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while the leftover energy excess dissipatedag |[loge|)/|loge| time, in agreement with
the time scaling of the equation. A further justification is given by the result of Thedrem 4
below.

Analogous results can be derived from Theorems 1 and 2_of [S1] for other “bad”
situations when vortices accumulate in an unbalanced cluster, .} Wittt # (3", d;)?,
for example two repulsing-1 starting at a distande These results are given in Sections
3.2 and 3.B.

The next result consists in analyzing the vortex collisions or vortex separation by
blow-up, in order to retrieve some dynamical law. Thanks to Theorem [1 of [S1], which
allows us to control errors, the analysis|of [$S2] which we presented above carries through
after blow-up, as long as the blow-up scalsatisfies 0§/ < O(|loge|). We assume
that, blowing up aroungh®, we see blown-up limit vortices;, and give the dynamical
law of theb,’s. This is the result, where for simplicity of statement we assume there is a
unique pointp of accumulation of the vortices (a more general result is given later in the
paper, see Theorem 6). Observe it is valid for any number of vortices and any interaction
(attractive or repulsive).

Theorem 4 (Exact dynamical law after blow-up). Assumex, is a solution to(L.1)

with )and ) Assumé = o(1) with log*! < C|loge¢|, and the pointg® — p
are such that, defining, (x, r) = u.(p® + Ix, I°t), we have

n
curl (i, Vi) (0) — 27 ) Disyp  ase — 0 (1.40)
k=1

with Dy = 41, and assume
E; ) < wnlloge|+Wy, p (p)—7 Y DiDylogd|bd—by+ny+r.  (1.41)
k,k' s kK
with eitherr, = o(1) or r, < I2|loge|/(log|loge|)? for someB > 1. Then there exist
HL((0, T*)) trajectorieshy (1) such that, for every € [0, T*),
n

curl (iits., Vii)(t) = 27 Y Didpr) ase — 0
k=1

whereby, solves the dynamical law

db 1 by — b,
k :__ZDk’Dkk—k

dt T i Zk b — bil?’ (1.42)
br(0) = b,g,
andT* is the first collision time under this law. Moreover, for every (0, T*), we have
E¢(ue(1%1))
< mnlloge| + Wy, p, (p) — 7 Y D Dy logUl|bi (1) — b (D)) + ny +0(1)  (1.43)

k. k'

ase — 0.
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1.4. The dynamical law of the limiting vortices

Combining easily the results of the previous theorems, we can extend the dynamical law
of the limiting vortices [(1.B) past collision times, provided there are only “simple” or
“dual” collisions.

Definition 1. In Proposition[I.], we say the collision(s) at tim&, are simpleif for
everyi, Cardj #i :lim lpj®) — pi(®)| =0} =1orQif p;(t) — 9.

t—T,

We now state the dynamical law, assuming for simplicity that we are in the case of the
Dirichlet boundary condition (which allows us to rule out the case of vortices exXit)ng

The terminology follows that of Propositipn 1.1, and the statement is meant to be applied
iteratively tok =0, 1,2, ....

Theorem 5 (Global in time dynamical law). Letu, solve(L.J)with Dirichlet boundary
condition and be such th4fl.28) (1.33) and (1.33) hold. Settinglo = 0, there exist
collision times0 < 71 < T» < --- < oo such that if eithek = 0 or the collisions at
timesTy, ..., T are simple then, denoting tﬁ‘ the distinct points irf2 and bny‘ =41
the integers such that

nk
n(t) — 21 ZDfap_k ast — T,
i=1 '
we have
nk
Vi € [Te. Tixn)  curl(iue, Vue)(t) = u(t) =21 Y Dfspq) ase — 0
i=1
where thep; (¢) solve the initial value problem

dp,' 1
T —;ViWD(Pl, ey P (D),

pi(Ty) = pk,

(1.44)

andTj41 < o< is the first collision time under this law. Moreover, for eveey(Ty, Ti+1),
E¢(ug(t)) = mnglloge| + Wp(p1(), ..., pn, (1)) +0(1) ase — 0. (1.45)
Finally, ny < nx_1— 2, hence the number of simple collisions is boundedd) = n/2.

We may sum this theorem up by the following principliez, is a solution of(1.1)) such
that (1.28) (1.32)and (1.33) hold, then, as long as there are only simple (and not mul-
tiple) collisions, the dynamical law of its vortices is given @yd), where, when two
vortices collide, they should be erased from the list, and the(lat}) should afterwards
be understood as the law with the remaining vortices.

Let us finally point out that in the course of the paper, we also prove general and sharp
lower bounds for the Ginzburg—Landau energy in terms of vortices (see Secfion 4.2).
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1.5. Perspectives

As we mentioned, one cannot rule out, even though they are not generic, the possibility of
multiple collisions under the la (1.8), i.e. of more than two vortices meeting at the same
time and place, with mutual distances of the same order. One would first need to classify
all the types of collisions that are possible undler]|(1.8). Of particular difficulty is the case
of collisions of a group of “balanced” vortices wilhi; d? = (3", d)?, because this does

not seem to dissipate any energy. This may be related to the conjecture of Ovchinnikov—
Sigal [OS] of existence of nonradial solutions of Ginzburg—Landau in the whole plane,
that is, with several vortices satisfying; d[.2 = d;)?. The other (i.e. unbalanced)
collisions can be treated in the same way as here for dual collisions. (The paper [BOS3]
derives the limiting dynamical law for all types of collisions.)

We have not written down every possible result that can be obtained through our
method but rather we have tried to treat the most striking cases, and explain in the course
of the paper how to generalize to other situations. In contrast to [BOS1, IBOS2], our
study does not really allow relaxing further the prepared assumptior] (1.33) intp (1.27) nor
relaxing the h‘esiQi = +1, because under the only hypothesisug) < Clloge|,

(1

the hypothesis (1.32) allows for substructures of vortices converging tanQabiu)wever,
Theorem§ | anld 6 give an example of how to deal with such cases (see Rerpark 5.3). Also,
in very short time we must havigu./|loge|(|2, = || f:|2, < C/&f, B < 2, and then
these substructures of vortices are well defined (see Proposition 2.2 in Part |) and satisfy
(L.37). The first difficulty here is to prove that when the small vortex structures form,
the p? do not move (this should be done as in TheorEiTB 3, ZDand 6), the second more
delicate one is to understand what happens to zeroes of dggreé (we know that
configurations with vortices of degree 1 can be stationary even though not stable; on
the other hand, once we know that a vortex of degrek has split into several vortices,
we can use our method as in Secfior 3.2). Then these clusters of vortices should interact
according to, typically, Theorefnj 4 [of 6. The closest vortices, at distaisteuld collide
(or separate) first, ir0 (%) time, while the others do not move in that time scale; then
the closest vortices among those left should interact, etc., until, afteflariime there
should only be vortices at finite distances left, probably near $$dh D; = £1—but
not necessarily otherwise—and the configuration should become “very well prepared”
according to[(1.31).

A delicate open problem would be to completely release the assumptioh (1.27) and
thus the upper bound on the number of vortices.

Finally, it would be interesting to study the layv (1}44) and see in particular if the
following results hold: in the Dirichlet case, after a finite time (independen),ahere
ared = degg > 0 vortices of degree 1 left; in the Neumann case, after a finite time, there
are no vortices left irf2.

2. First applications to the energy dissipation

We start by presenting the most direct applications of the “static” results of Part |. They
rely mainly on studying the energy decay through a simple differential inequality. We
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always assume that solves|(1.]1) with Dirichlet or Neumann boundary conditions, with
E.u9) < Mlloge|, |u°] < 1 and|Vu?| < M/e. We recall that the existence and unique-
ness of the solution of (1].1) is known, and that standard estimates prove that the above
estimates om? remain true at later times, with constants independent Thus the re-

sults of Part |, where the error terms only depend on these constants, can be applied, and
yield errors independent of time.

2.1. A clearing-out lemma

We start with a first simple result, because it gives the model for the other proofs; it is a
sort of clearing-out result (here we use this terminology borrowed from the literature—
e.g. llmanen’s paper on Allen—-Cahn—in a loose sense meaning disappearance of all vor-
tices and excess energy), saying that if initially there is little energy (less than what is
needed to create a vortex), then the solution is completely cleaned up in very short time.
This may happen for instance with an initial dipole of vortices of degtéet distance
[ <&,y > 1/2, initially, which can be constructed to have an enetg®r log(l/¢) <
27 (1 — y)|loge|. The result corresponds to the energy decay of the phase excess through
the accelerated heat equation.

We recall the definition ofVy was

W0=/Q|V<I>|2 (2.1)

where® = 0 in the Neumann case, arbl is a harmonic function witlh®/dv =
(ig,dg/dt) onaQ in the Dirichlet case.

Proposition 2.1 (Clearing-out lemma). Letu, be a solution ofL.1) with Dirichlet or
Neumann boundary condition, such that

E:u?) < nlloge|

with n < & (this is possible only iflegg = 0 in the Dirichlet case). Then

1. Foranyy < 2—n/x in the Dirichlet case, respr < 2 — 2»/7 in the Neumann case,
there exists a timé@ < ¢V such that|1 — |us(T1) ||| L~ @) = o(D).

2. There exists a timel, < (Cloglloge|)/|loge| such that for allz, > Ty,
11— |ue ()| L) = o(1), and

Ec(ug(te)) < Wo+o0(1).

Proof. First, recall that the energy decreases in time so we always Bage (1)) <
nlloge| for t > 0. Moreover, writingf. = d;u./|loge|, we have

t
“098'/0 ”fs”iz(g) ds = E¢(ug(0)) — E¢(ug(2)) < nllogel.
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Hence, by a mean-value argument, we deduce that, for2, there exists a timé& < ¥
(T1 depending om) such that
Ifell2, < ne”. (2.2)
At time Ty, Proposition 2.2 in[[S1] applies, and yields vortides, d;). Moreover,
(1.30) holds, thus

am Zd,z <5+ Clloge|/2el=27v/2 1+ 5(1).
i

Takinge > n/(2r) andy < 2 — 2«, we find that ag gets small enoughy ; dl.2 < 2,
henced’ di2 = 0 or 1. But thed;’s given by Proposition 2.2 in [$1] are all nonzero, hence
we deduce that either the setwfs is empty, and thefil — |u,(T1)| || L= @) = o(1); or
there is only oney; with degree+1 or —1. This implies that the total degree of in
is +£1, which is impossible in the Dirichlet case. In the Neumann case, if there is such a
vortexa;, using Lemma 3.3 ir [S1] and examining closely the forn¥gf, we can show
that the energy is bounded from below#yog(l/¢) + O (1) wherel is dist(a;, 92). This
contradictsE, (u,) < nl|loge| unless didia;, 9Q2) < ¢ for someu > 1 — n/x. But then
the second assertion of Theorem 2[in|[S1] would diye|?, > C/(lloge|%?*). When
Yy <2—2n/m < 2u, this contradictd (2]2).

This proves that the only possible case is that the setf'®fs empty at timel;, and
thus the desired property holds at tiffie

Let us prove the second property. At any time 0, either||fg||iz(m > nlloge| in
which caseE, (u, (1)) < ||f5||§2(9), or ||f€||§2(9) < nlloge|. In the latter case, Proposi-
tion 2.2 in [S1] applies and gives vorticés, d;), and [1.3D) yields, for every < 1,

o Zdlz <n+o(d).
i
Sincen < =, this implies that) ; dl? < 1if ¢ is small enough, hence (using again the

fact that thed;’s are nonzero integers) the set of vortiegss empty. Applying[(1.3]1), i.e.
Theorem 1 of{[S1], then yields

Ec(ue() < Wo+ Cll fell 72, + o),

where the constant and tlag¢l) only depend on the a priori estimates mn hence not
ont. ChangingC if necessary, this means that in all cases, for every0,

Ee(ue (1) < Wo+ Cll fell 32, + 0(D. (2.3)
On the other hand, we hav:, /dt = —|loge| ||f8||i2(9), hence we may write
C dE t
Ec(ue (1)) < Wo+o(1) — (e (1) (2.4)

[loge| dt
Solving this ordinary differential inequality, we find

Eo(us(t)) < Wo+ o(1) + (E,(u®) — Wo + o(1))e109e1/ € (2.5)
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Therefore, ift > (clog|loge|)/|loge| with ¢ suitably chosen, we hawe109¢1/C <

lloge|~2 and thus from|(2]5), using (1.7), we obtain
Ee(us (1)) < Wo+o().

On the other hand, it is not difficult to check that
(1— |ue|?)?
| G WelD  C(Eatue) - Wo),
Q £

hencef, (1 — |u.|%)?/e? = o(1), and sincgVu,| < C/e, this implies by standard argu-
ments thatu.| > 1 — o(1) at any timer > (clog|loge|)/|loge|, hence the result. O

2.2. Proof of Theorein] 2

In this subsection, we prove Theor@n 2 which shows that, under some weaker assump-
tions, solutions become “very well prepared” in short time.

We start with a lemma which will be used several times, and whose proof is very
similar to that of Propositiof 2/1. It asserts that, under a weak condition on the initial
energy, solutions become very well preparedif(log |loge|)/|loge|) time if we know
that their vortices do not move during that time.

Lemma 2.1 (Instantaneous very well preparedness provided vortices do not move).
Letu, be a solution offL.T)) with Dirichlet or Neumann boundary condition, affiZ8)
There exists a tim&, = (M log|loge])/|loge| such that if

V. € [0, T.], curl(iue, Vug)(t,) — 21 Xn: D,~8p9 (2.6)
i=1
where thep;’s are distinct points ir2 and D; = &1, and
Ec(ud) < w(n +nlloge| (2.7)
for somen < 1, then for every, < T,
Ec(ue(te)) < mnlloge| + Wp(pY, ..., p0) + ny + Cllogele =109V C 4 5(1), (2.8)
in particular, if M is large enough,
Ec(us(T.)) < mnlloge| + Wp(p3. ... pd) +ny +o(d). (2.9)

Proof. The strategy is as in the previous proof. For each time, either

Orue

_— logs|,
[loge| > lloge|

L2(R)

2
||f€ ”LZ(Q) = ‘
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in which case we automatically have
Eq(us(t) < mnlloge| + Wo(p3. -+, p) +ny + Cll fell3og, + oD, (2.10)

or ||fg||i2(g) = O(|loge|). In that second case, Proposition 2.2[inl[S1] applies, giving

vortices (g;, d;), and we may applyf (I.30). Combining it with the boufd(2.7) on the
energy, valid for all times, we find, for evesy < 1,

am Zdl-z <mm+n) +o().

Takinga large enough, and using the fact that ¢éh's are integers, we find
Z di2 <n.

Therefore, the number af;’s is bounded by:, with equality if and only if there are
points withd; = £1 for eachi. On the other hand, for everye [0, T;], we have[(2.p),
which implies that there exists at least aneonverging to eacln,?. Combining this with
the above, there can only be omeconverging to eachv?, with degreel; = D; = +1.
But Theorem 1 of[[S1] applies at that time, thus frgm (1.31), we have

Es(ue (1) < wnlloge| + Wo(ax. ... an) +ny + Cll fell 250, + 0(D).

Combining this with the above convergence of #his, we find that[(2.10) holds in this
case as well. So for everye [0, T;], we have

C dE:(u:(1))

Ee(us (1)) < nnlloge| + Wo(p%, ..., p°) +ny — gl dr +0(1). (2.11)

Solving this differential inequality as ifi (2.5), we find

Ec(ug (1)) < mwnllogel + Wo(p3, ..., pd) +ny
+ ¢ 7"Mo9el/C (B, (u,(0)) — mnlloge| — Wp(pd, ..., p°) — ny + o(1)) + o(D)
< nnlloge| + Wo(p?, ..., p°) + ny + Cllogele°9¢1/C L o(1).  (2.12)

We see that choosinfy, = (C log|loge|)/[loge| with C large enough, we g€t (2.9). O

In order to prove Theorefr 2, it remains to prove thaf|(2.6) holds, i.e. that the vortices do
not move in timeT,. This will follow from a suitable application of the product estimate

Theorenj 1 (see alsp (1]23)).

We now assume the hypotheses of Thedrgm 2 are satisfied. By standard lower bounds

(for example[(4.) in Propositidn 4.3 below), there exists a congfafuepending on the
pP’s) such that for any,, such that|(1.32) holds with; = £1, we have

E;(u;) > nn|loge| — K. (2.13)
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Let us now assume by contradiction that there exists= O((log|logel|)/|loge|)
such that

| d 2
|Og£|/ ”fé‘”LZ(Q)(t) = ||Og€| QXOTE] |atu€|
lloge|
=F — F T.)=————+ K+ 1
¢ (1 (0) e(ue(Te)) |Og||Og{;‘|/3 + K +
Thus,
E(u(T))—E(u(0))—M—K—1<nn|loge|—1<—1 (2.14)
eUe(lg)) = LU Iog||oga|ﬁ = . .

Rescaling in time, and considering (x, 1) = u.(x, Tyt), we have

1 w2 = [loge|
Tollogel Joxoy ¢ loglogel?
Applying Theorenj [L, we find that for every test functigrcompactly supported in [d]
such that f| < 1, and every test vector field compactly supported i® x [0, 1], we
have

+K+1 (2.15)

2

1
< lim —(/ 1X - Ve |? f2|81w8|2>
=0 10ge2 \Jaxo.1] Qx[0,1]

< lim CT; _lloge] =0 (2.16)
e—o  loglloge|?
whereV is the limiting velocity associated to the vorticesof. Here, we have used
the upper bound on the energy, givirig |[Vw,|? < C|loge|, and ). But we have
T.(lloge|/(log|loge|)?) = o(1) because8 > 1 and7, < (log|loge|)/|loge|, hence
we deduceV = 0, or in other words curt w,, Vw,)(t) — 27 ); D; 6 0 for everyt €
[0, 1]. This means that the vortices of do not move in [QT¢], hence we must have
E¢(us(Ty)) > mnlloge| — K, a contradiction with[(2.14). This implies that for every
T. < O((log|loge|)/llogel), we have

/ V. fXx
Qx[0,1]

2 = E,(us(0)) — Eg(ug(T,
|Iogs| ax[0.7,] |01t e (u:(0)) e(ue(Ty))

lloge|
S - A
log|loge|?

||Og‘€|/ ”fé‘”LZ(Q)(t) dt
+K+1

Arguing as above, we deduce that quth,, Vw,)(t) — 27 )", Di5pp for everyr €
[0, 1], thus, after rescaling, that

curl (iug, Vi) (te) = 27 ) Did 0
[ 1

for everyr, < O((log|logel)/llogel). Then, Lemma 2]1 applies, and proves Thedrgm 2.
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3. Energy clearing-out during collisions

In this section, we examine how the energy excess dissipates rapidly during collisions
or separation of vortices. Starting with collisions, for simplicity, we consider the generic
case ofz isolated vortices of degreel, plus a dipole of two vortices of opposite degree
+1 colliding. We may also assume that this configuration is inherited from a previous
evolution and thus that the configuration is “well prepared” with respect to these vortices,
ie. 10)

E.(u:(0)) < mn|loge| + 27 log - +0@1) (3.1)

wherel (0) is the initial (small) distance between the two vortices of the dipole.

In a later section, we will show the exact dynamical law of such vortices, Thgdrem 4,
valid as long ag > 1/|loge|? for example. So we may restrict to the situation where
1(0) < 1/|loge|?.

3.1. Motion of the energy-concentration points

We first wish to show that the collision of the two vortices, even though they carry excess
energy which dissipates, does not trigger any motion of the other vortices. This requires
examining the evolution of the energy-density space-distribution. This is the only point
where the method is not purely energetic, and uses the equatibn (1.1).

We denote by
(1 —Jul?)?

4e2
the energy density. The following result is standard (see for example [Lil JS1,/BOS1]):

1 2
e:(u) = EIWI +

Lemma 3.1. Let . be a solution off1.1) and x be aC? function ing, constant in a
neighborhood 0b<2. Then

d |91 |2
— e (U (t)):—/ —llo e|/ 3;9; x)T;i 3.2
dt QX e(Ug QX ||Og€| g Qi’;,z iX)1ij (3.2)

whereT;; denotes the “stress-energy tensor” with coefficieRfs= e, (u)8;; — (9;u, dju)
as in[S1).
Proof. A direct calculation yields

|9u)?
lloge]

Ores(u(x, 1)) = div(d,u, Vu) — <3tu, <Au + 12(1 - |u|2)>> = div(o;u, Vu) —
I3

using [1:1). On the other hand, as seenin [S1, eq. (2.3)], with another direct computation,
we have

> 0Ty = — (0w, Au+ 51— u?)) = —( 9ju LN
- ilij = ju, o2 = iu, ||Og€| .
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We also observe thab;, ug—"f) = 0 ondQ in view of the boundary conditions (Dirichlet
or Neumann). Combining these relations, and using several integrations by parts, we are

led to [3:2). o

We deduce the following lemma, which states that if the energy of a solution concentrates
at initial time only at a finite number of isolated poins, . . ., p,, then these points do
not move in time< 1/|loge|.

Let x3,---, x; be points such that there exists> 0 independent of such that
min;«; |x; — xj| > 4p and min dist(x;, Q) > 4p. Let us construct a functiop such
that

x=1 inQ\ U; B(xi, 2p),
= — Xi 2 i B i
X |)C2 Xil !n (xi, ), (3.3)
X=p InSZ\UiB(Xi,/O),
x € C3(Q).

Lemma 3.2. Letu, be a solution of1.), and letx{, ..., x; and x be as above. Then
for anyt > 0,

f Xee(ue (1)) < 19! / xee(ue(0)), (3.4)
Q Q
where the constantdepends only op.

Proof. We apply Lemma 3|1 with thig > 0. First, we use the property af|2 with
respect to[(3]2), as observed by De Giorgi and useld i [So, RS] among others: observing
that8i3j|x — )Co|2 = 26;;, we find that inB(xx, p),

(1= [u[??
> (@i0)lx — xk|HTyj = 2ATa1+ To)) = ——5—— > 0.
&

i,j

Therefore, the contributions (nJ; B(x, p) of the right-hand side 0.2) are nonpositive,
and we can write

a,/ xee(u, 1) < lloge| > %9 x T
Q Uk (BGrk.20)\B(xk.p)) 5

Observing thaD?x is bounded, angt > p? in |J, (B(xk, 2p) \ B(x, p)), we may write
|D%y| < C,x where the constant depends enUsing in addition the observation that
pointwise,|T;;| < e. (1), we are led (changing, if necessary) to

at/Qxes(u(t)) < |loge] Coxee(u(t)) scpllogeI/Qxeg(u(t)).

Uk (B(xk,20)\B(xk, 0))

We deduce by Gronwall’s lemma that (8.4) holds. o
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This allows us to deduce

Proposition 3.1. Letu, be a solution of(1.7) such that
n
curl (iu®, vu®) — 27 Z D;8,0 (3.5)
i=1 ’
with D; = £1. Assume that there exipt — pdip ase — 0, with pgjp distinct from

{(p, ..., p% andi(0) < 1/|loge|, such that, considering, (x) = u%(p, + 1(0)x), we
have

curl (iug, Vug) — 2w (8p, — 8p_) (3.6)

whereb, andb_ are two points irfR? at distancel from each other. Assume also that
Q)

E:u?) < mnlloge| +2n|ogQ +C. (3.7)
&

Then, ifT, = (nlog|loge|)/|loge| with n a small enough constant, we have

n
Vie €[0. T].  curl (iue, Vuue)(te) = 27 Y Di8 0 (3.8)
i=1 !
and
Ec(ue(Te)) < mnlloge| + Wo(pd, ..., p°) + ny + o). (3.9)

We can observe right away that this proposition says théX(tiog |loge|)/[log¢]) time,

the solution above becomes “very well prepared” with respect to its vorpi%,es - p,?,

thus the dipole and its energy have completely disappeared in that short time, without
affecting the other vortices.

Proof. We start by applying the lower bounds obtained through the ball-construction
method of Jerrard/Sandier (see for example [SS4, main theorem of Chapter 3]). Before we
apply the result, we consider a constant 0 small enough such th&x; := ( J; B(pio, 0)

and<2; := B(pdip, p) are disjoint. We then apply the main theorem of Chapter B of[SS4]

in Q1 and Q2 successively. IIf21, we apply it with a final radius Alog¢|. It yields the
existence of a finite collectioB of disjoint closed balls which cover all the zeroes:8f

in Q1, such that the sum of their radii is smaller thafildg ¢| and for everyB € B,

/ ee(u®) > m|dg|(lloge| — C log|loge])
B

wheredp = degug, aB) if B C Q1,and 0 otherwise. In view of the hypothe(3.5) and
),ug has at least one zero of nonzero degree converging to;éh@ince theB € B
cover these zeroes, we can deduce that for pdcthere exists a bas € B whose center
converges tcpl.o, and such thalidg| # 0, hencddp| > 1. Let us call itB; and denote;

its center. We have

ee(®) > m|loge| — Clog|loge]|. (3.10)

B;
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Similarly, we apply the method i€, = B(pdgip, p) With final radius/(0)/|log¢|. Since
ug has at least two zeroes of nonzero degree convergipgigpand since the radii are
< 1(0)/|loge| « [(0), there exist at least two balls with nonzero degree, at distance
< 1(0) from each other, converging teyip ase — 0. They can be included in a larger
ball Bgip of radius< 2/(0), centered atgip, and such that
()
/ ee(ul) > 27 IogQ — Clog|loge|. (3.11)
Bdip €
We keep this set of balls and discard the others. Combihing](3[10)] (3.11)) ahd (3.7), we
find that
| e9) < Clogloge], (3.12)
Q\(U,"lzl BiUBdip)

and 10
/ e (ud) < 27 log 10 + Clog|loge|. (3.13)
Qo &

Moreover, since the radii are bounded by &) /|loge|, 1/|loge|) < 1/|loge|, we
have

Ix — x;|%e: (u®) < Ecu?) = 0(D),

B; lloge|?

and similarlnydip lx — xdip|268(u8) = 0(1). Constructingy associated to the points
X1, ..., Xn, Xdip, @S iN @), we deduce from this a@.lZ) that

/ xe:(®) < Clog|loge|.
Q

Applying Lemm4g 3.P, we deduce that for ang O,

/ xee(ue(r)) < Ce1°9¢l og|loge|.
Q

If t. < T, = (nlogllogel)/|loge|, with n < 1/(2¢), we find
/ xee(us (1)) < Clloge|*?log|loge]. (3.14)
Q

This suffices to ensure that (B.5) holds. Indeed, if not then, by continuity of the zeroes of
ue in time, this would imply that for some < T, u, has a cluster of zeroes of nonzero
total degree, at a distance from thyés bounded below by a constant independent. &y

the same argument we used above (using lower bounds given by the ball construction),
we would get a lower bound contradictirig (3.14). THus|(3.5) holds. We shall groye (3.9)
after the next proposition. O

By using the same type of arguments as for Propodition 2.1 and Lémina 2.1, i.e. a differ-
ential inequality, combined with Theorem 2 6f [S1], we now deduce an upper bound on
the time of collision of the vortices, characterized by the fact fiagt> 1/2 in a neigh-
borhood of the collision point. The fact thm? has a dipole at distan¢€0) will only be
characterized through the hypothesis on the energy.
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Proposition 3.2 (Upper bound on the collision time). Under the same hypotheses as
in Proposition3.} there exists a time

T/ < CI(0) 4 Clloge|*e2V llog¢]
such thatu. (7)) has exactly: zeroes (given by Propositich2in [S1]) of degreeD;.

Proof. Let T, be given by Proposition 3.1 ar} denote the set of times 7, at which

”fSHEZ(Q) = ||8,u8/|loge|||i2(m > 1/¢P for someB < 2. Observe that since

t
||098|/0 1 £ellZ2 = Ee(e(0) — Ec(us(r)) < Clloge|, (3.15)

we have meas,) < CeP.
Whenr ¢ S,, we have| f. |12, < 1/, thus Proposition 2.2 in [$1] applies, yielding
vortices(a;, d;) for which (1;@6‘) holds, hence

am Zd,z <mn+2n+ Cllogs|7/2€l*“*’3/2,
i

and we may choosﬁ—zz3 <a <landB < 2— 2utoget

> d? <n+3+0(1).

This gives an upper bound on the possible number of zerogs: ¢fiey are fewer than

n + 2. Since there is at least one zero converging to Qz;i’chhis means that there are

at most two extra vortices. Moreover, comparipg (B.10) with relation (2.33) in [S1], we
have); 4 ¢ dl? = 0(1), hence all extra vortices are at a distance bounded below from
the p?’s. If there are no extra vortices, that is what we want. If there were only one
extra vortex, then, since it would have nonzero degfee] (3.5) would be contradicted. We
are thus left with the case of two vortices, far away from ﬁf?eTherefore, the sum of

their degrees must be 0, otherwise they would add an extra contributjon]to (3.5). We may
denote by (¢) their distance, and using lower bounds of Lemma 3.3 in [S1] or arguing as
in the proof of Propositiof 3]1 (using the lower bounds_of [SS4] but with final radii 1 in
@ andi(t)/2 in Q3), we have

Ec(ug(t)) = nn|loge| + 27 log ? —C. (3.16)

Comparing with[(3.]7) we must have 16@) < log/(0) + C, hencd (r) < CI(0), and thus
[(t) = 0(1). Therefore, these two vortices form an unbalanced cluster of vortices at scale
1(¥). If () > &./|loge|, then Theorem 2 of [S1] applies and implies that

c c
1fell2 zmin< > : — ) (3.17)
€ 1(1)2llogel” 1(1)2log? i
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If 1((r) = O(ey/|loge|) then the two vortices also form an unbalanced cluster at scale

elloge| and we may also apply Theorem 2 ¢f [S1] to conclude qhﬁétuiz(m >
1/(e?|loge|?).

Since we always haviét) > ¢, we may always write, for ¢ S,

2 > — . 3.18

”f&”LZ(Q) - l([)2||098|4 ( )

To summarize, in all generality, we can wri@.w), andsif > ¢~ v99¢l we can write

I1£:12, .- C/((1)?|loge|). Let S. be the set of times for whidhr) < ¢~v°9¢!, Since

(3:13) and[(3.18) hold, we have
|S/| < Clloge|*e~2V/Ilogel,
We way now mafR; \ (S; U S,) to R4 by a mappingR, which takes out the times
in S; U S, and translates otherwise, thus which shifts every time by at (Sgst |S.| <

Clloge|*e=2V°9¢I ConsideringF (1) = E (u:(R;1(t))) andL(t) = [(R; (1)), we find
from (3.13) and[(3.77) that

roc
FO) —F ——ds.
© (r)z/o T s
On the other hand,

F(0) — F(t) = Ec(ue(0)) — Ec(ue (R, (1)) < 2ﬂ<|09@ —log ?) -C

from (3.16) and[(3]7). Setting (1) = [3(C/L(s)?) ds, we have
1(0)

2 Iogm —C>M(@); (3.19)

but sinceM’(t) = C/L(t)?, we may write

2
nlog% +mlogM'(t) = M(1), (3.20)

which transforms into
M(@t)/m l(o)z ’
e < TM ).

Integrating, we find
~M@/x o q_ !
¢ =7 Cl0)?2
for some constant. If + > CI(0)2, we finde M®/™ < 0, hence a contradiction. We
deduce that the set of times for which we cannot say #hdtas exactly: zeroes has
measure less thafi = |S;| + |S.| + CI(0)? < CI(0)? + C|loge|*e~2V1°9¢I which
implies the result. O

(3.21)
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Proof of (3.9). From ), the set of times for whidly: || 2, > nlloge| has measure
O(1/|logel). Hence, with the previous Propositipn [3.2, the set of times such that either
I fellL2(@) = mlloge| or u. does not have exactly zeroes of degre®; has a measure

less thanC1(0)2 + C|loge|*e—2V11°9¢l 4 C/|loge|. We deduce that there exists a time

T/ < CI(0)? + C|loge|*e2V°9¢l 1 C/|loge| for which u, has exactly: zeroes and
”fS”iZ(Q) < plloge|. In view of ) the zeroes of,(7,") converge to the?, and thus

we may write, by[(1.31),
E:(u:(T!)) < nnlloge| + Wo(p3, ..., p°) + ny + Cnlloge| + o(2).

Choosingy small enough so thatn < x, we find that Lemmp 2]1 applies, and thus after
atime=< 7'+ O((log|loge|)/|loge|), (3.9) holds.
A second possible proof is the following: We claim that, for every T,

Ee(us (1) < wnlloge| + Wo(pfs ..., p) + Cll fell 72 + 0(D). (3:22)

If || f12, > |loge| then this is trivially true. If not, thei f: |2, = O(lloge|). Returning
to the proof of Proposition 3.2, we find that in that case eith€r) has exactly: zeroes
of degreed;, in which case[(3.22) follows from (1.B1), of(¢) has two extra vortices, at
distance/(r), with I(r) < CI(0) « 1/|loge]; plugging into ) we find f; |2 >

L2(Q)
lloge|, a contradiction. Hence, in all casgs, (3.22) holds. We may finish as in Lemna 2.1,
find that [2.8) holds, from which (3.9) follows. O

To prove Theorer|3, it only remains to prove the lower bounds on the collisionZtime
which will be done in Lemml, and to see what happens Wi®r= 1/|log |2, which
will be done in Theorern|6 (see the note after Thedrem 6).

3.2. Time of separation of two vortices

Let us see another example of application, this time for the separation of two vortices
of degree+1. We consider the simplest case where there are initially two vortices of

degreet+1 at small distanc&0) from each other, and we assume that initiﬂg(ug) <

27 log(1/((0)e)) + C. The case where there are other well separated vortices in the
sample can be treated as well, as in Thedrgm 3.

Proposition 3.3. Letu, be a solution off1.J) with Dirichlet boundary condition of de-
gree2. Assume that at tim@,

1
O —
Eg(uy) < 2mlog 108 +C, (3.23)

withlp > 1(0) > ¢#, B < 1. Then, for every > 2/(0), there exists a time

l
T, < [*log o) + |log g|?e 2V logel
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for whichu, has two vortices of degreel, at distance> (. If in addition, there exists a
point p. such that, considering, (x) = ug(ps +1(0)x), we have

curl (iug, Vug) — 27(8p, +6p,) ase — 0, (3.24)

whereb, and b, are two points inR? at distancel from each other; then we must have
T, > Cl1(0)2.

Proof. Let us argue as before, and I&t be the set of times for WhiC|T|f5||i2 > 1/¢e7,
for somey < 2. As previously|S,| < &”. On the other hand, for ¢ S., we have
||f8||i2 < &¢77, hence Proposition 2.2 ih [§1] applies and yields vortiegsd;) with

am Y d? <2r(1+ B) + Clloge| "2t~ 7/2,
i

We may choosg anda such that2 4+ 28)/4 <o < 1— y/2to get
Zdiz <4
i

for & small enough. Knowing thaf; d; = 2 and}; di2 < 3, the only possibility is to
have two vortices of degregl. Denoting by (¢) their distance, we easily check that

Ec(u()) = 2n Iogﬁ - C. (3.25)

On the other hand, the two vortices form an unbalanced cluster at’§gate Theorem 2
of [S1] yields, ifl(¢t) > ¢./|loge],

C
2, > min( , )
”fE“LZ = l(l)2||098| l(t)2|092%

and if () is smaller, we still have a cluster at scalge|. In all cases we have

C
| 2 _—
logel1felfe = oo

Let S/ be the set of times for whichr) < e~v°9¢!, We have
|S/| < Clloge|*e~2V/Ilogel,
Fort ¢ S., comparing|(3.25) andl (3.23), we have

1(1) f’
2rlog— 4+ C > ds. 3.26
S TR i (320
Now, assume by contradiction thidt) < /. Then we must have

[ Ct
2rlog—+C > —
gl(O) te= 12
andr < Ci?(log(l/1(0))+1). Adding the times when e S US., we find there must exist
somer < CI2log(l/1(0)) + C|loge|*e=2v°9¢l for whichI(r) > I. The other assertion
can be obtained exactly as in Lemma]5.1. o
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Remark 3.1. Observe that again we only need to consider sighere, because other-
wise, the dynamics is given by Theorgn 6.

3.3. Exit through the boundary

The situation of vortices exiting through the boundary can only happen for the Neumann
boundary condition, and is in fact very similar to the case of colliding vortices, since it
can be viewed as the collision of a vortex with its “image vortex”, the vortex of opposite
degree reflected through the boundary. Assume for example that initially a salytain

(1.7) has a vortex converging as— 0 to a pointp € 9<2, and thatd<2 is locally flat

nearp. ThenQ2 andu. can be reflected around this piece of boundary, leading to a double
domain with a colliding dipole. The case of a nonflat boundary requires adjustments, but
the idea is the same. Therefore, we shall not treat the exit case in detail, but mention that
exactly the analogous results to Theofgm 3 could be obtained.

4. Applications to lower bounds
4.1. Time estimates through blow-up

In this subsection, we rescale the “product-estimate” Thepfem 1, in order to bound from
above the movement of the vortices (or bound from below the time it takes them to collide
according to[(1.23)). This will allow retrieving the vortex dynamics after blow-up.

First, we write a blown-up version of Theoré¢in 1.

Proposition 4.1. Let R be a constant. Let— 0ass — Owith! > & for someg < 1,
and letn = ¢/1. Letu, (x, t) be defined ove0, [T] x B(ps, Rl) such that

Vi €[0,1°T],  Ec(uc(t), B(pe. R)) < Cllogn], (4.1)

/ 9huel? < Cllogn]. .2)
B(pe,RI)x[0,I2T]

Considerii, (x, 1) = uz(pe + Ix, (%) defined in[0, T] x B(0, R). Then, up to a subse-
guence, for every € [0, T1,

curl (ift, Viiy) — u(r) in (CX7 (B(O, R)))*, Vy > 0,
whereu(z) is of the form

27 Y " Di()8y,0).  Dit) € L.
i
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Moreover, there exists a vector-valued measursuch thato,; u + divV = 0; and, for
everyX e Co([0, T] x B(0, R), R?) and f e C%([0, T] x B(O, R)),

. 1
lim 5 / X - Vit |?
«—0 110911% J B0, R)x[0,7] B(O,R)x[0,T]

f218, 12

2
/ V.fX|. (4.3)
B(0,R)x[0,T]

We deduce the existence of vortex trajectories at that scale, analogous to Propositions 1.1
(as in Proposition 3.2 and 3.3 0f [SS2] and Corollary 7 if [SS1]).

1
> —

4

Proposition 4.2. Letu, satisfy the same hypotheses as the previous proposition(0j
= +1, theb;(0) are distinct and)_, |D; ()| < Y, |D;(0)| for everyr € [0, T], then
there exists'* < T andn = n(0) functionsb; (r) € H((0, T*), R?) such that for all
t € [0, T*), the pointsb; (r) are distinct andu(r) = 27 ) ; D;(0)8y, ). Moreover, if
T* < T, then ag — T*, either oneb; (z) tends tod B(0, R) or there exist # j such
thatb; (t) andb; () tend to the same point.

If in addition [ &, IVie|? < 27nllogn|(1+ o(D)) for all 7 € [, 12] C [0, T%),

then
1 — 2 5
XA zan |9, b; |2 dt. (4.4)
i Jn

lim
e—0 10911 JB©,R)x[11,12]

4.2. Applications to lower bounds

This section is a little detour out of the question of Ginzburg—Landau dynamics into the
guestion of sharp lower bounds for the Ginzburg—Landau energy. Thanks to the time-
dependent approach, we can obtain in a simple manner very general lower bounds for the
energy, improving that of Lemma 3.3 in_[S1] (which requitefl|| < C/s? so that we
have vortex small balls given by Proposition 2.2[inl[S1]).

The idea is to flow the configuration for a very short time according td (1.1). This
decreases the energy and smooths out small irregularities. It yields an alternative to a
discrete parabolic regularization as don€ in [AB].

Proposition 4.3. Assume, is such tha(.7) or (1.3) hold with (1.27)and (1.28) Then,
up to taking a subsequence, we may assume that there exist distinctpaanis integers
D; such that

n
curl (iug, Vug) = 21 » "D;8,, ase — 0. (4.5)
j=1

Moreover,

Ec(ue) = 7Y Djlllogel + Wo(pa, ... p) + (3 IDil)y +0D).  (46)
i i=1
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Suppose there exist a bounded number of pgifits> p; (where thep;’s are the ones
above plus possibly some additional ones = 0) and/; = o(1) with |log/;| <«
lloge| such that, setting,; = ug(pj +/;x) we have

m
curl (ifie;, Vite;) — 21 Y Dj by, (4.7)
k=1

with Djy € Z, Z?:l D =7D;. Then

Ec(ue) = 7 ) |Djxlllogel + Wp(p1, ..., pa)
j.k
—7 Y Y DjiDjwlogllbjx — biwl) + Y IDjrly +o(D). (4.8)
j kK j.k

Proof. The fact that we may assunie (4.5) follows again from the compactness of the
Jacobians culu., Vu,).

Letus Writeug for u,, and denote by, (x, ¢) the solution of the Cauchy proble.l)
with initial datau? at time 0. We havef) [d;u.|? = |loge|(E(ue(0)) — Ee(ue (1)) <
C|loge|?. Therefore, by a mean-value argument, there exists: 1/|loge|? such that
Jq 18us12(T,) < Clloge|*. Sou,(T,) solves | ) With|f8||i2(9 < Clloge|2. On the
other hand, from Theorefr] 1, arguing as in the proof of Lefimp 2.1 for example, since
T, < 1/|loge|, we have

curl (iug, Vue)(T,) — 21 ZD,-S,,_, ase — 0,
j

i.e. the limiting vorticesp; have not moved. Moreover, since the parabolic flow decreases
the energy, we have

Ee(u®) > Ec(uc(Ty)).

Therefore, in order to bounﬁg(ug) from below, we may replace it with, (T;), which

has the same vortices in the sens (4.5) and sati (1.11) fwithe ) < Cllogel.

We denote again by, the map obtained after replacement. Since we wish to pfove (4.6),
we may always assume that

n
Ec(ue) <7y [Djllloge| + Wp(pa, ..., pa) + Y IDily, (4.9)
j i=1

otherwise the result is true.
Since|| fell2() < Cllogel, ue satisfies@l)@%, and the results of Proposition
2.2in [S1], in particular this yields the:;, d;)’'s with

2 E¢(ug)

: 1
— ' 7 |loge| o),
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from ) From[(419), we deducg; 4> < 3_; |D;|. But, sincey; ., ., di = Dj,
this i |mp ies that thel;’s are all+1, everyal converges to one of the;’s (recalld # 0),

and that for eaclj, the degreed; associated ta; — p; all have the sign oD;, hence

D; # 0.

We may find ballsB(p;, p) with p < 1 converging to 0 slower than the distance of
thea;’s to the p;’s. This ensures that the hypotheses of Lemma 3.4 df [S1] hold for these
balls, and[(4.p) is a direct consequence of Lemma 34 ih [S1].

For the second part of the proposition, we follow the same reasoning. Arguing as
above, let us flow:, according to@ ). By a mean-value argument, as before, letting
I = min; I;, we may findZ, < 1/|loge|? such thau, (7,/?) solves|(1.1]1) with

I 4
/ h<c! O?;' (4.10)

and in view of the hypotheses @ this ensures tha.g) is satisfied at tiffE.. On

the other hand, considering; = u(pj + [jx, l 1), we have curliug;, Vi) (T,) —

21 Y, Dj kb, ;. i.e. theb; ;'s have not moved i |n that time, according to Prop05| 4.1
(see[(4.B)). Since the energy decreases in time, this means that we can assunesthat
such that[(1.711)F(T1.29) hold. We may also assume that

Ee(ue) <7 ) |Djxllloge| + Wp(p1, ..., pa)

—m Y > DjiDjwog(jlbjx — bjw) + Y |Djxly

kK J-k

as otherwise the desired result is true. Sifiog/;| < |loge|, this implies

Ec(ue) <m Y |Djxllloge|(1+ o(1)). (4.11)
J.k

Applying Proposition 2.2 in [S1], we find a bounded collectiori®f d;). Combining

@-11) with [T.3p) and(4.10) yields
o Zdz Z Dl + e [loge|?|| fel 2y + o(1)

<Y IDjul + & "‘|Ioga|7/2| Ll +0(). (4.12)

j.k

Using the fact thafiog/;| « |loge|, i.e.l > % with ¢, — 0, and takingx close to 1, we

find, since thed;'s and D; ;'s are integers, tha} di2 < Zj,k |D; k|. This implies that
eachd; = £1 and has the sign of the correspondibg,. Moreover, this also implies
that (smced # 0) all thea;’s are close to the) + [;bj x. Let us now consider the

Vik = p + 1;bj . Then all theg;'s remain |nS|de the?(yjk pl;) for somep « 1. We

may also choos;a large enough so that the hypotheses of Lemma 3[4 in [S1] are satisfied
for these balls. The total degree on each bal)ig and using that result, we easily deduce

@.8). D
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Remark 4.1. If |log/;| « [loge| is not satisfied but we still havg > P for some
B < 1, then we may still get analogous results from Lemma 3.4 ih [S1].

5. Exact dynamical laws —Theorem§}4 anf]5

5.1. Statement of the result

Given pointsh, and integerdy, we introduce

W(b1,....by) =—m Y DiDjlog|b; — bj]. (5.1)
i,jri#j
Observe that
ViW(b1,....by) = -7 Y DiDp————. (5.2)
ik |b _bkl

Remark 5.1. It would be interesting to prove thatE#k D; Dy, # 0thenVW (b;) # 0.

Our main result of this section is
Theorem 6. Assume, is a solution to(I.), with (T.27) and (I.28) Assumé = o(1)

with log*! < Clloge|, and the p0|nt5p — pj, j € [1,n], are such that, defining
Ugj(x,t) = ug(p] +Ix, I%1), we have

m
curl (i), Vitgj)(0) — 27 ) Djidyo  ase — 0, (5.3)
k=1 a

with D; x = £1, >, Djx = D;, and assume
E.d) <7 |Djxllloge| + Wp(pa..... pu)
Jik
7YY DaDwlogiby — b2 D+ Y IDjkly +r. (5.4)
J kK kK Jk
with eitherr, = o(1) or r, < 12|Ioge|/(log|loge|)/3 with 8 > 1. Then there exist
H((0, T*)) trajectoriesb; « () such that for every € [0, T*),

curl (iite;, Vitg))(t) = 27 Y Dji8p;)  ase — 0
k

whereb; ; solves the dynamical law
db; v —bik 1_
= Z D, Dy U e = Wb,
b/,k(o) = bj,k’

(5.5)
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andT* is the first collision time under this law. Moreover, for every time (0, T*),

Ee(ue(1%) <7 Y |Djlllogel + Wp(p1, ..., pn)
j.k

—nZZD,kDkalog(ubjk(r)—]k/(r>|>+Z|D,k|y+o(1) (5.6)

j kK
ase — 0.

Remark 5.2. Observe that this result includes the possibility of only one or several vor-
tices at distanceg [ from pg in which case there is only orig ; equal to the origin,
which does not move in th|s time scale, according 10| (5.5). This allows us to treat, among
others, the case of one dipole colliding while other vortices remain fixed, just as in Theo-
rem3.

End of proof of Theorefn] 3To complete the proof of Theorgm 3, it remains to consider
the case Ajloge|2 < I = 1(0) = o(1), which can be treated by bridging with TheorE}n 6.

To prove that Theoreft] 3 also holds in this case, it suffices to show the existence of a time
T, < CI(0)? at which the hypotheses of TheorEv]n 3 are satisfied (taking the new initial
time to beT,) with vortices at distance/llog¢|?, and that

n
Vi €[0,T:].  curl(iue, Vue)(t) = 27 Y Dis,e ase — 0. (5.7)
i=1
Let us thus start withx, satisfying the hypotheses of Theorgin 3 at time 0, With >
1//loge|?. It also satisfies the hypotheses of TheoBem 6 if we takd (0) and the points
pj tobep?, ..., pY paip (with the notations of Secti(ﬂ 3). We also havg, = --- =
bg 1 0 while b,4+11 = by andb,+12 = b_. Applying Theore , we obtain the
dynamical law of theb; «(r): the b; 1(¢) are fixed forj = 1,...,n, that is, the points
p? do not move inO(/(0)?) time, which will prove that for alk < CI(0)?, we have
curI (fu, Vu)(t) = 27 Y !_1 D; s, 0, that is, (5.7) holds. It remains to prove the existence
of T,.. Examining the dynamlcal Ia\,ﬂg 5) for the dipole after space-time rescaling

db+(l) _ 1 b_ —b+
dt 7w l|b_ —by|?

(and the symmetric law fdv_) we see that

|b S0 P —
" 7 by —b_|(1)’
so we easily find that
bs = bo1() = /by, —b_1©2 — 41/ (5:8)

Now we saw in Section]3 (see the proof of Proposifion 3.2 which still applies here) that for
all times except a set of measur®, u, (1) has vortices given by Proposition 2.2 in [S1],
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and has exactly of them converging to eaqbf, plus two (the dipole) at distaneg! (0))

from pgip+1(0)b+ (¢). Therefore, in the original space-time, the distance between the vor-
tices of the dipole i$(0)/1(0)2 — 4t/ (x1(0)2) + 0(((0)). Thus, at time; = 37/(0)2/16,

the vortices of the dipole are at a distarige= [(0)/2+ 0(1(0)) < %Z(O). Moreover, aty,

the configuration is well prepared becayse](5.6) holds. The hypotheses of Th¢orem 6 are
satisfied again at initial tima with scalel1. Applying Theorenji 6 with this new scale, we

find atimer, = 11 + 3nlf/16 at which the distance between the vortices of the dipole is

lp=11/240(l1) < %ll. We may iterate this process and find times
o 37
"~ 16

(1(0)2 +24. 4 1,3) (5.9)
at which the distance between the vortice&i%lk with

3
Ik < Zlk_l. (5.10)

This reasoning applies as long as4ég < C|loge|, hence we may apply it until final

Ix < 1/|loge|2. Combining [(5.9) and (5.10), we find that < C1(0)2. Adding if nec-
essary the times for which Proposition 2.2[in][S1] does not apply, we find that in time
T. < &P +1x < CeP +CI(0)?, we have a dipole at distaneel/|log s|? with (5.6) hold-

ing. We have also seen that (5.7) holds. Therefore, all the hypotheses of Théorem 3 hold
at that new initial time and the proof of TheorEv]n 3 under the restriétion< 1/|loge|?

can be used to finish the general proof. O

5.2. Proof of Theorein|5

The existence of collision times follows from Propositjon] 1.1. Notice also from the form
of W that in the Dirichlet case, no vortex can exit frainunder the law{(1]8). Also with
any boundary condition, no pairs of vortices of deg#ele(or —1) can collide under the
law (L.8).

Using Theoren |2 (which yields a tini&) and then applying the result of JLi, JS1,
SS2] to the solutiom, (x, ¢ + T,) on Q2 x R, we find that

n
curl (iue, Vue)(t + Tp) = 27 Y " Di8py  ase — 0, Vt € [0, Ty),
i=1
where thep;’s solve [1.B) and’ is the first collision time undef (1.8). Moreover, since
(1.34) holds for every, € [0, T.] and since thep; () are continuous in time, we deduce
that

n
curl (iue, Vue)(t) = ju(t) =21y Didpay V1 €0, To). (5.11)
i=1
Arguing as in[[SS2], the first collision timg, is also equal td, the first collision time
of the trajectories in the sense of Proposifior] 1.1. At tifpethere exist one or several
pairs of vortices colliding at different placeséh Assume for simplicity that there is only
one pair, saypi(t) — p2(1)| — 0 ast — T, . We must haveD; = — D> (otherwise it
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would contradict the dynamical law after the blow-up, Thedrém 6). We deduce
p(t) =21y Dis,  ast— Ty, (5.12)
i=3 '

wherepl = IimHT{ pi(t) fori =3,..., n are distinct points.

By a mean-value argument combinifig (3.25) 4and (1.27), we may find a pasitivé®
such that at tim&y — . we have| f; ||22(Q) = 0(1) (where f, denotesi;u./|loge|).
Applying then [1.3D), we find that the vorticés, d;) of u. (T1— ) given by Proposition
2.2 of [S1] satisfy) _, dl.2 < n. Itis then easy to check that there is one vortegf degree
D; converging to the respectivpl.l ase — Ofori = 3,...,n; and two vortices of
opposite degrees, az, at distance® (1) respectively top1(T1 — 1) and p2(T2 — 1),
hence at a distanée = o(1) from each other. Defining. (t) = u.(t+7T1—1.), we deduce
thatv, satisfies the hypothesgs (1.36)—(1.37) of Thedrem 3. Moreover, (1.31) (see
Theorem 1 in[[Sl1]) and the bound djif. || ; 2, in view of the expression dV, we have
E.(v:(0)) < mw(n — 2)|loge| + 27 log(l:/¢) + O(1). Therefore, we may apply Theorem
to v, and we deduce the existence of a tigie= o(1) such that

curl (ive, Voe)(te) = 21 Dis,n Vi €0, 1)
i=3
and
Ee(ve(t,)) < w(n — 2)|loge| + WD(P%'v P+ (n =2y +o(D).
We deduce

n
curl (iue, Vue)(ts) = 21 Y Disy, Vi € (Th—1., Ta— e +7,) ase — 0. (5.13)
i=3

We may now apply the result af [Li, JS1. SS2]upstarting at timer, and find that

n

Vi €[0, ), curl(ive, Voe)(t + 1)) = 27 Y Dy
i=3

wherep;(t) solves
dpi

1
R VA 4 1,
T Vi p(p3 pn)(0)

Pi(o)=Pil, i=3,...,n,

(5.14)

until the first collision timeT;, under this law. Combining with (5.13) and using the con-
tinuity of the p;’'s, we find
n
curl (ius., Vue)(t) = 27y D;8 1,
i=3 ’

for everyr € [T1, T>) whereT> = T1+ T, is the second collision time. The relatign (1.45)
follows easily from the analysis df [S52] for example.
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The case of more than one collision pair can be treated similarly, observing that just
as for Theorems|3 arjd 6 (applying the method of Propoditidn 3.1), collisions centered at
distinct points in®2 do not interfere with one another. Moreover the number of vortices
decreases by at least 2 during each collision. The proof can then be iterated at the next
collision timeT», under the assumption of simple collisions. This completes the proof of
Theorenib.

5.3. Proof of Theorein| 6

Before we prove this theorem, we will state a few propositions.

Proposition 5.1. Letu, be such tha)holds. Assume that for eaghthe poinISpj
are such that, defining,; (x) = ug(pj +Tx), we have

curl (iwj, Vi) = 2t Y D8y, ase — 0 (5.15)
k
with D; , = £1, >, Djx = D;, and for every constarr,
Ec(ue, B(p§,IR)) <7 ) |Djl llogel(1+ o(1)) (5.16)
k
and
log*l = O(Jloge)). (5.17)
Then
“ﬂ(llogell /‘Au + ;(l— [22]%) ) > ;Z IVW (bj0l° +or(D),  (5.18)
e—0 Q -
J

whereog(1l) — 0asR — oo.

This proposition will be proved further below. We also need a result which is an analogue
of Theorenj 2 after blow-up.

Proposition 5.2. Under the hypotheses of Theorfjwithout the hypothesi®.17) there
existsT, < log(/2|loge|)/(I2]loge|) with T, = o(1), and such that for eveny € [0, T3],

curl (i}, Vi) (te) — 27 Xk: Djkdyo, (5.19)
and

Ec(u:(°T.)) < Y IDjxll0ge| + Wp(p1, ..., pn)

J.k
—m Y Y DjaDjloglibd — b2+ Y IDjkly + o).  (5.20)
J kK kAR .k

Moreover, there existy and C independent of such that for every,
1

= l0,1;1> < € (5.21)
llognl JBo,r)x[T,.T0] i
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and thus the results of Propositiotsl] and[4.2 apply, givingH* trajectoriesb; « () for
t € [0, To) (before collision time).

Proof. Let us start with the first assertion, the existencg.off 12|loge|/(log|loge|)? =
0(1) then one should take = o(1) and7, = 0 and there is nothing to prove. We can
thus focus o2 > C(log|loge|)?/|loge|, which implies thatl, = o(1) in all cases, and
llogl| « |loge|.

We can easily show an analogue of Lemina] 2.1: there exists a Time=
log(/?|loge|)/(12[logel) such that if for all: € [0, T;], and for all j, curl (iti.j, Viie;)(t)
—~ 27, D k8bo , then [(5.20) holds. The proof is along exactly the same lines as that of
Lemde]L We show that the hypothefis|(5.4) combined fvith](1.30) implies that for most
timest, < I?T;, u.(t:) has exactly one vortex of degrég , converging (after rescaling)
to eacmj(.”k. Then, ), i.e. Theorem 1 of [S1], and a differential inequality lead to

Ec(ue(t)) <m )Y |Djxlllogel + Wp(p, ..., pa)
j ok

—HTZ Z DJkDJk’|09(l| ik bok’|)+Z|Djk|)/+Ce tllogs\
J kK kAR m

Taking 7. = log(/?|loge|)/(/?|loge]), in view of the bound om, we find that [(5.20)
holds, provided the vortices have not moved.

To prove that the vortices; ; have not moved in that time, we argue as in the proof
of Theorenj 2, and use the product estimate as given in Propdsition 4.1.

Assuming that there exis® < log(/2|loge|)/(I2|loge|) for which

Ec(us(0) — Ec(us(1°T,)) = re + K. (5.22)
For eachy, definew(x, 1) = iie; (x, Tet) = ue(p§ + Lx, 12T,1). Since

1

— 3w
llogel JB.r)x[0.1]

T,

= 9pue)® < To(Ee(u®) — Ee(u:(1°Ty))),
llogel Ja(ps.1r)x[0.121:]

letting V be the vortex velocity associated g we deduce that for every compactly
supportedX and| f| < 1,

2

/ V.fX| <4lm 1X - Vw|? 210, w|?
R2x[0,1] -0 llogel? Jr2x(o.1] R2x[0,1]

. |og(12||oge|)< 1?|loge| )

< |limCT,(r. +K)<C
-0 12]loge| \ (logloge|)f
log|lo
gllogel _ ) q). (5.23)

< = =
~ (log|loge))#
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We deduceV = 0, and thus, the vortices of do not move in time 1, i.e. the vortices of
u¢; do not move in timef,, which implies, from Proposition 4.3 (whose hypotheses are
satisfied), the lower bound

Ec(ue(®T.)) = w Y |Djil lloge| + Wp(p1, ..., pa)
J.k
+m Y Y DixDjlogbY — 2D+ Y IDjkly +0(D),  (5.24)
JokK kEK .k

a contradiction with[(5.72) ik is chosen large enough. We deduce that for every
Iog(12|logs|)/|loge| we haveE, (u.(0)) — E.(us(t)) < re + K, and following the same
reasoning, that the vortices of; do not move in time/12. This proves the first part of
the proposition.

For the second part, the reasoning is the same. First, we may start from the new initial
time /27, and assume that the solution is very well prepared originally, i.e. (5.20)
holds. Assume by contradiction that there exists« /2 such that

E:(ug(0) — Eg(ue(te)) = 1. (5.25)

Arguing as above (replacinB by t. andr. by 1) we find thatV = 0in (5.23), and thus
the vortices ofi,; have not moved in time.//2, a contradiction betvv2.20)
holding at time 0 and the lower bourjd (4.8). Thus, we deduce that there exists a constant
To independent of such thatE, (u. (0)) — E¢ (u (12Tp)) < 1, from which [5.21L) follows.

]

We now show the lower bound on the collision time, which was left to prove from
Sectior] 8 to complete the proof of Theorgn 3.

Lemma5.1 (Lower bound on collision time). Under the hypotheses of Theor@n
letting 71 be the first time such that, (x, r) has onlyn zeroes, we havé; > C/? for
some constanf'; > 0.

Proof. We may considefi;, (x, t) = u.(pe + Lx, [%t). Arguing exactly as in the previous
proof, we can show that there exists a cons#@nt 0 independent of such that

2 1 P 2 1 To 2
C>FE 0)-E 1“Th)) = ) > o0 u.
> B, (s (0)) — Ex (s (%To)) “098|f0 fQ| e? = “098'/0 /B(O,R)' |

and thus Propositi.2 applies, giviig trajectoriesh., (r) andb_(¢) for the vortices
of u,. Since|b(0) — b_(0)| = 1, by continuity|b, (1) — b_(¢)| > 1/2 in some time
interval [0, C1], which implies thatz. does have two zeroes neay in the time interval
[0, C112], hencen + 2 zeroes in all, implyingy > C1/2. O

Proof of Theorerp|6.Under the hypotheses of Theorgin 6, Proposftioh 5.2 applies. It first
proves that we can reduce to the case of very well prepared data, i.e. the cas¢ where (5.20)
holds, sincdl; = o(1). It also proves that Propositions 4.1 4.2 apply on some interval
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[0, To] (or [0, I2To] in original time), giving that for eachj, theb; «(r)’s move continu-
ously and remain distinct until collision, while thg’s do not move in that time scale.
Moreover, we can check through lower bounds that at each#ime0, the hypothesis
(5.18) of Propositiof 5|1 holds and we may apply it:{@z).

We then follow the scheme of [S52], as presented in the introduction (see for example

(1.24)) and write

2
[Orute |

Ee(ue(0) — Ee(ue (%)) =

lloge| Jax(o,i21]
1

1 1 Ug 24,2
= — ——|0iu |2+—/ (lloge||Au + —= (A — |ug|9)| )
2/Q><[O,12t] lloge| " ° 2 Jax[o.i21 © g2 ‘

Now givenR, sincel = o(1), theB(p RI) are disjoint balls foe small enough, hence,
after a change of scale, we may wrlte

1
lloge| Jg(o,r)x[0,1] 2

sl tus]|

E,(u(0)) — Ee(us(1°1)) > Z(

1 Ug
+ 5/ (12|Ioge| |Aue + — (1 - |us|2)|2<12s>>>.
B(p§,R1)x[0,1] €

Using the fact thatloge| ~ [logn| and plugging in[(4}4) for the first part ar{d (5}18) for
the second, we are led to

Ee(ue(0)) — Ee(ue (1%1))

>Z(f< Z(m bj | +—||VW(b,k<s>>||2>+oR(1)> ds+o(1>> (5.26)

Using the crucial Cauchy—Schwarz argument of [SS2], this becomes
t
Ec(ue(0) — Eg(ue(1P0) = =y fo D dibj i - VieW (bji(5)) + or(1) + o(D),
j k

hence (taking the limiR — o)

lim (E¢ (ue (0)) — Ee(ue (%)) = Y > (W(bj(0)) — W(bj (1)) (5.27)
j k

e—0

with equality if and only if for everyj, 3;b; , = —%VkW(bj,i) for everyk. But, in view
of Propositiorj 4.3, we must have

E.(u. (%) > n ZZ |Djxllloge| — 7 Y "> DjiDjlogl
Jj kK

+ Z Z W(bj (1)) + C +0(1)
ik
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where the constar@ depends only on thg;’s and the set of degreds; ;, all constant
during the motion. Examining the hypothesis at initial time 0, we see that

Ec(e(0) — Ec(ue(P)) < Y Y (Wbj(0) = W(bj k(1)) +o(1).  (5.28)
j k

Hence there has to be equality in (5.27) and we conclude[thét (5.5) holds. o

Remark 5.3. Of course, this can be generalized to multiple scales. Here we have zoomed
up at the scalé, but one should first zoom up at the smallest scale when we see distinct
vortices, and rescale time by th&t In that time scale, the other vortices do not move,
just like thep;’s do not move, only the vortices at small distances from the others move,
etc.

5.4. Proof of Propositiop 5|1

We assume for simplicity thqi;? is the origin. We recall thaj = ¢/ and thatllog!| «
[loge| so thatjlogn| ~ |loge|. First, we may assume that

1felZ2q) < (5.29)

2|loge|’
otherwise the result stated is true.

Then Proposition 2.2 ir_[$1] applies and gives vortex pointd=or eachj, let us
consider they;’s which are at distancé (/) from p?, and consider their blown-up points
a; = (a;—p%)/1. We may find a constark such that, foR arbitrarily Iarge,B(pf, 2R\
B(pt, K1) cfoes not contain any of theggs. Moreover, we claim that the;'s converge,

J X . .
up to a subsequence, to some points, which are this of (5.13). Indeed, if not, then
there would be some subset of them converging to another point, with total degree 0
(otherwise it would appear on the right-hand sidg of (5.15)). But they would then form an
unbalanced cluster of vortices at original scatel. From Theorem 2 of [S1] we would
deduce| f: 12, o, > 1/(%logel), contradicting9).

We may thus find a radiys > 0 such that the&8 (b, «, p) are disjoint, and for smafl,

the B(a;, R.¢/1) we consider are included in tiRb; x, p), and we recald , by d;
= Djr = +1. .
Let us define
—Ady =21 D; 1.8p. in B(O, R),
0 >k Djkdb;, (0, R) (5.30)
dg=nh ondB(0, R),
whereh will be specified later, and’ by
~AG(x,y) =8 in B(O, R),
h 31
Glx,y) = — &) ondB(0, R), (5.31)

2 Zk Dj «
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andS(x, y) = 2nG(x, y) + log|x — y|. We have
Do(x) =27 Z D; G(x,bj i) = Z —Dj log|x — bj il + DjS(x, bj).
k k

We introduce the renormalized energy relative to the Bdl, R):

Wr(b1,....bw) == Y DjiDjwloglbji — bjil

k' k#k
0®Pg
+27 Y DjiDj i Sbjx. bjw) + / h(x)—. (5.32)
ok 9B(O.R) v

A direct calculation identical to the one done for Lemma 3.1 of [S1] shows that
1

1 —
= / Vol =7 Y DZ;log = + Wr(bjx) + or (D). (5.33)
2 JBO.R\Uy Bbjr) o T
Let us now gather a few intermediate results.

Lemma 5.2. We have

/ IV® — Vdg|? >0 ase >0 (5.34)
B, R\, Bj k,p)

where®g is defined as the solution ) ® as®(p¢ + Lx) (whered solves(3.5)in
[ST)), and  is taken to be the uniform limit 6b — (27 R)~ P on 9B, R).
Moreover,

IJi_[nOO IVWR(Dj1, ... bjm) — VW (b1, ..., bj w0 k+1ym) = 0. (5.35)

lfaB(o,R)

Lemma 5.3. Let theb; x, D; x be as before, wittD; , = +1 and(5.18) Then for anyp
such that theB(b; «, p) are disjoint and do not intersedtB (0, R), we have

1

; / Viz.; 1% = xllogn|(L+ (1)), (5.36)
B(bj . p)

1
|V|ﬂs<||2+—<1—|ﬂs-|2)2>:oazlogzlnfenzz +1), (5.37)
/B(O,R)\Uk B(b,-,k,p)( ! 2n? ! L=y

f Vi, — itt, V- @ol* = o(®log* 1] fll7, + 1). (5.38)
B(O,R\Uy Bbjk,0)
Once we have these results, we can follow closely the proof ofl [SS2, Proposition 3.5].
For simplicity, we drop the subscripjs

Through the change of scale we have

e 12)2
<|Vﬁg|2+ (1 — fug|9) )

— - 1_
E(., B(O, R)) := 2/ 27

B(O,R)

1 1— 252
=—/ <|Vu|2+ #) < Clloge| < Cllogn|. (5.39)
2 B(pj,lR) 2¢
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By scaling, from[(5.29), for everg > 0,

/B(O, R)

and alsoo(1)1?| f.[|?,l0g* 1 < o(1)log*l/|loge| = o(1) from the assumptio \ 7).
Hence all the right-hand sides [n (537) and (5.38) tend to 0 and we can rewrite this

2

(5.40)

— ﬁs — 2
Aug+—A—|u < ,
o Rl

_ 1 _
/ <|V|us| P+ 51— |u£|2)2) =o(1), (5.41)
BO,R\Uy B(bj x,p) 2n

/ Vit — i1, VEdo|? = o(1). (5.42)
BO.R\Uy B(bj x.p)

The relation[(5.40) is used to obtain, as[in [5S2F,, Vii;) — V-dq + const, and
in view of (5.42), the constant vector is 0, that is,

(iT, Vi) — V1. (5.43)

As in [SS2], we consider a set of vectar®;, ..., V) € R2, and a familyy, of
diffeomorphisms ofB(0, R) preserving B(0, R) and such thag,(x) = x + ¢V, in each
B(bj k, p). We also defing; (1) = b x +tV; r, and

—Ad, =21 Zj,k Dj,ksb_/,k(t) in B(O, R),

(5.44)
dd,/dv = ddg/dv ondB(, R).

From®, we definey, exactly asin[[SS2, (3.24)], vanishing 88(0, R), andve (x; (x), t)
= u,(x)e!V". Reproducing the proof of [S52] shows that under the previous conditions

G.41)5.4B), we have
1

d — . d
—  E@(x,0) = lim — -/ |V®,|?, (5.45)
dt |t=0 r—0dt |t:02 B(O’R)\Ui B(bj i (1),r)
while 1
—— 13002 =7 > [Vel? + o(D). (5.46)
llognl Jeor) zk:

As in [SS2], this follows from[(5.36) and [S51, Corollary 4].
Next, we claim we have

d 1

. d W
im £ 2 / Vo2 =S Wrbia()
r=0d11t=02 J g0, R\, B(bj(t).r)

dt
k

=0
ViWg(bj k) - Vi (5.47)

(the proof can be reproduced from (3.39)[of [§S2].) This will suffice to conclude that

— 2
_ u _ i —

llogn| ‘Aus+—§<l—|us|z> > Z[VWrDbi0)? + 0(D), (5.48)
B(O,R) n T
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that is,

lloge|l? /
B(pt.RI)

Indeed, this follows as i [SS2] by a simple Cauchy—Schwarz inequality: choosing
Vi = ViiWg(b;), sincev, (x, t) = u.(x) onaB(0, R) for eachr, we have

2
u 1 _
Au8+8—§<1—|u£|2> z;||va(b,~,k)||2+o(1>. (5.49)

dt |t=0

1 N\ V2
< |0; v (0) ] ) <||0977|/
<||0977| BOR) B(O,R)

_ 1/2
= (7 X IViWrb02 +0(D)) <|Ioge|12 /
k B

using [5.46) and the choice &f. Inserting this and (5.47) intp (5.45), we are leqto (5.49).
Adding up the relationg (5.49) ovgrand using[(5.35), we conclude that (5.18) holds.

L Euer, 1) = / atvg<0>(Aﬁe+ﬁ—§(1—|ﬁg|2))
B(O,R) n

2> 1/2

1/2
|f8|2) : (5.50)

_u _
—Au8+n—§(1— | |%)

(%, RI)

Remark 5.4. This proof is the only place where the assumptjon (5.17) is needed.

5.5. Proof of the additional lemmas

Proof of Lemm2First we recall that satisfies-A® = 27 ", d;8z, with }_, d; 8z,

-~ > Dj p; , In the weak sense of measuresii(0, R). Moreover, sinceé8(p;, 2RI) \
B(p] Kl does not contain any vortex, examining (3.5)[0of|[S1], as for (3.9) of [S1], we
have

Vo < onoB(p;, RI), (5.51)

3ol

|D P| < onaB(pj‘?, RD), (5.52)

12

s0|V®| < C/R and|D?®| < C/R?0ndB(0, R). Thus,® — (an)—lfaB(O’R) @ is uni-
formly bounded and equicontinuous 6®(0, R) and we may assume it converges uni-
formly to someh ase — 0. Moreover, returning to (3.5) df [$1], and smB(ep 2RI) \
B(p K1) contains nay;, ® behaves more and more like a constanBMp Rl) asRk
becomes large. That i8,— 0 uniformly ondB(0, R) asR — ooc.

On the other hand, sinc@ — (27 R)1 faB(O,R)E — ®g tends to 0 uniformly on
dB(0, R) and its Laplacian tends to 0 in the weak sense of measuréy(@nR), we
conclude that the function converges to O uniformlyR®, R) ase — 0. Then, using an
integration by parts (and assumit@yr R) 1 faB(o,R) @ = 0 for simplicity), we have
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/ VO — Vdg|?
B(O,R)\Uy Bjk:p)

_ 0 — — 0 —
/ (q>_q>0)_(q>_cb0)_2/ (®—Pg)—(®—Pg)| = 0
IB(O,R) v = JIBbjkp) dv

in view of the bounds ofV®| and|V ®o|. This proves[(5.34).

Let us now prove(5.35). Observe ttic, y) = 27(Go(x, y) + Gu(x)) +log|x — y|
whereG is written asGg + G, with

{ —A,Go(x,y) =8, inB(O,R), 559
Go(x,y) =0 ondB(0, R),
and
{ —AG, =0 inB(O,R), (550
Gp=h(x) ondB(0,R).

It is a standard fact that is symmetric, i.eGo(x, y) = Go(y, x). In fact, there is an
explicit expression (in complex coordinates)

R(x — )
RZ2—xy |

1
Go(x, y) = o—log (5.55)

ThusS(x, y) is the sum of a symmetric function and a function that depends only. on
Now,

WR(bj,k) — W(bj,k) =27 Z Dj’ijyk/S(bj,k, bj,k/)
k/
0
+/ h(x)a—(ZﬂDj,kG(x,bj,k)),
9B(O,R) v
hence
V(Wg(bji) — W(bjp) =21 Z Dj i Dj <VxS(bj,ka bj ) + VySbj i, bj,k’))
k/
0
+/ h(x)a—(ZnDj,kVyGo(x, bj’k))
9B(O,R) v

Thus, to conclude thaf (5.B5) holds, it suffices to check that.maxo, x +1) | V. S| and
max. yep©,k+1) | VyS| tend to 0 ask — oo, and that(d/9v)V,Go(x, bj )| < C/R%.
The second fact follows from the formu[a (5]55). For the first, use the facSthaty) =
27 (Go(x, y) + Gp(x,y)) + log|x — y|. Now G, is harmonic, with valueg — 0 on
dB(0, R), hence tends to 0 iI61(B(0, K + 1)) asR — oo, by elliptic estimates. The
remaining part ofS is easy to handle. O
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Proof of Lemm@5]3By an application of the standard lower bounds, since all the vortices
converge to theé; ;'s with total degreeD; , = +1, we have

1

1
—/ Vi, |2 > 7 log = (1 — o(1))
2 J B x.p) n

and since[(5.16) holds, we must have (5.36).
On the other hand, Theorem 1 bf [S1] yields

/ (mﬁ ||2+%> — 021062 1| fu |20y + 1)
B(O,R) ‘ n? Mt

and
/B(O ® IV%2 =o0(l° |Og4l||fs||i2(9) + 1), (5.56)

where is the blow-up ofy. This proves[(5.37). In addition, we can easily check that
|Vity — iit; V- ®o|* = |V[iig | |* + [i: || VY + V- ® — VEdo|?, hence

/ Vit — it VEdgl?
BO.R\Uy B(bj x.p)

<

/ |V[ie] 12+ 2|V¥ |2 + 2|V (D — dg)|?
B(O,R)\Uy B(bj k.p)

and in view of [5.3%) and (5.56], (5.38) follows. O
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