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Abstract. LetG be a simple algebraic group over an algebraically closed fieldk of characteristic
0, andg = LieG. Let (e, h, f ) be ansl2-triple in g with e being a long root vector ing. Let (·, ·)
be theG-invariant bilinear form ong with (e, f ) = 1 and letχ ∈ g∗ be such thatχ(x) = (e, x)
for all x ∈ g. Let S be the Slodowy slice ate through the adjoint orbit ofe and letH be the
enveloping algebra ofS; see [31]. In this article we give an explicit presentation ofH by generators
and relations. As a consequence we deduce thatH contains an ideal of codimension 1 which is
unique ifg is not of type A. Applying Skryabin’s equivalence of categories we then construct an
explicit Whittaker model for the Joseph ideal ofU(g). Inspired by Joseph’s Preparation Theorem we
prove that there exists a homeomorphism between the primitive spectrum ofH and the spectrum
of all primitive ideals of infinite codimension inU(g) which respects Goldie rank and Gelfand–
Kirillov dimension. We study highest weight modules for the algebraH and apply earlier results
of Mili čić–Soergel and Backelin to express the composition multiplicities of the Verma modules
for H in terms of some inverse parabolic Kazhdan–Lusztig polynomials. Our results confirm in
the minimal nilpotent case the de Vos–van Driel conjecture on composition multiplicities of Verma
modules for finiteW-algebras. We also obtain some general results on the enveloping algebras of
Slodowy slices and determine the associated varieties of related primitive ideals ofU(g). A sequel
to this paper will treat modular aspects of this theory.

1. Introduction

1.1. Let k be an algebraically closed field of characteristic 0 and letG be a simple
algebraic group overk. Let g = LieG and let(e, h, f ) be ansl2-triple in g. Let (·, ·) be
theG-invariant bilinear form ong with (e, f ) = 1 and defineχ = χe ∈ g∗ by setting
χ(x) = (e, x) for all x ∈ g. LetOχ denote the coadjoint orbit ofχ .

Let Se = e + Ker adf be the Slodowy slice ate through the adjoint orbit ofe and
let Hχ be the enveloping algebra ofSe; see [31, 10, 5]. Recall thatHχ = Endg(Qχ )

op

whereQχ is a generalised Gelfand–Graev module forU(g) associated with thesl2-triple
(e, h, f ); see [22, 29]. The moduleQχ is induced from a one-dimensional modulekχ
over a nilpotent subalgebramχ of g such that dimmχ =

1
2 dimOχ . The subalgebramχ

is (adh)-stable, all weights of adh on mχ are negative, andχ vanishes on the derived
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subalgebra ofmχ . The action ofmχ on kχ = k1χ is given byx(1χ ) = χ(x)1χ for all
x ∈ mχ ; see 2.1 for more details.

Let zχ denote the stabiliser ofχ in g. Clearly,zχ coincides with the centralisercg(e) of
e in g. The subalgebrazχ is (adh)-stable and it follows from thesl2-theory that all weights
of adh on zχ are nonnegative integers. Letx1, . . . , xr be a basis ofzχ such that [h, xi ] =

nixi for someni ∈ Z+. By [31, Theorem 4.6], to each basis vectorxi one can attach an
element2xi ∈ Hχ in such a way that the monomials2i1x1 · · ·2

ir
xr with (i1, . . . , ir) ∈ Zr+

form a basis ofHχ over k. We say that the monomial2a1
x1 · · ·2

ar
xr hasKazhdan degree∑r

i=1 ai(ni+2) and denote byH k
χ the span of all monomials as above of Kazhdan degree

≤ k. According to [31, (4.6)], we then haveHχ =
⋃
k≥0H

k
χ andH i

χ · H
j
χ ⊆ H

i+j
χ for

all i, j ∈ Z+. In other words,{H k
χ | k ∈ Z+} is an increasing filtration of the algebra

Hχ . We call it theKazhdan filtrationof Hχ . The corresponding graded algebra grHχ is
a polynomial algebra in gr2x1, . . . ,gr2xr which identifies naturally with the function
algebrak[Se] on the special transverse sliceSe = e+Ker adf endowed with its Slodowy
grading.

According to [31, Theorem 4.6(iv)],

[2xi ,2xj ] = 2xj ◦2xi −2xi ◦2xj ≡ 2[xi ,xj ] + qij (21, . . . ,2r) (modH
ni+nj
χ )

whereqij is a polynomial inr variables with initial form of total degree≥ 2. Using this
result we prove in 2.3 that there exists an associativek[t ]-algebraHχ free as a module
overk[t ] and such that

Hχ/(t − λ)Hχ
∼=

{
Hχ if λ 6= 0,
U(zχ ) if λ = 0

ask-algebras. ThusHχ is a deformation of the universal enveloping algebraU(zχ ).
We have a certain degree of freedom in our choice of PBW generators2xi . In 2.2 we

show that they can be chosen such that the map2xi 7→ (−1)ni2xi , 1 ≤ i ≤ r, extends
to an automorphism of the algebraHχ . This automorphism, denoted byσ , will play an
important r̂ole later on.

1.2. Givenx ∈ g we denote byZG(x) the centraliser ofx in G. It is well-known that
C(e) := ZG(h) ∩ ZG(e) is a Levi subgroup ofZG(e) and the centraliserZG(e) decom-
poses as a semidirect product ofC(e) and the unipotent radicalRu(ZG(e)). For i ∈ Z+

put zχ (i) = {x ∈ zχ | [h, x] = ix}. It is well-known thatzχ (0) = LieC(e). Clearly, the
groupC(e) preserves each subspacezχ (i) of zχ .

In [10], Gan and Ginzburg have found a different realisation of the algebraHχ which
enables one to observe that the reductive groupC(e) acts onHχ as algebra automor-
phisms. Moreover, this action ofC(e) preserves the Kazhdan filtration ofHχ ; see 2.1
for more details. In Section 2 we show that there exists an injectiveC(e)-equivariant lin-
ear map2 : zχ → Hχ , x 7→ 2x, whose image generatesHχ as an algebra, such that
gr2(zχ ) ∼= zχ as gradedC(e)-modules. The subspace2(zχ (0)) can be chosen to be a
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Lie subalgebra ofHχ with respect to the commutator product inHχ . It follows that the
map2 can be selected in such a way that

[2x,2y ] = 2[x,y] (∀x ∈ zχ (0), ∀y ∈ zχ ).

This is a consequence of Lemma 2.4 which states, in particular, that the Lie algebra ho-
momorphism ad◦ 2 : zχ (0) → Der(Hχ ) coincides with the differential of the locally
finite (rational) action ofC(e) onHχ . Combined with Lemma 2.1 and Weyl’s theorem
on complete reducibility this implies that every two-sided ideal ofHχ is σ -stable; see
Corollary 2.1.

1.3. Forχ = (e, · ) we letCχ denote the category of allg-modules on whichx − χ(x)

acts locally nilpotently for allx ∈ mχ . Given ag-moduleM we set

Wh(M) := {m ∈ M | x.m = χ(x)m (∀x ∈ mχ )}.

It should be mentioned here that the algebraHχ acts on Wh(M) via a canonical iso-
morphismHχ ∼= (U(g)/Nχ )

admχ whereNχ denotes the left ideal ofU(g) generated by
all x − χ(x) with x ∈ mχ . In the Appendix to [31], Skryabin proved that the functors
V  Qχ ⊗Hχ V andM  Wh(M) are mutually inverse equivalences between the
category of allHχ -modules and the categoryCχ ; see also [10, Theorem 6.1].

Skryabin’s equivalence implies that for any irreducibleHχ -moduleV the annihi-
lator AnnU(g)(Qχ ⊗Hχ V ) is a primitive ideal ofU(g). By the Irreducibility Theo-
rem, the associated varietyVA(I) of any primitive idealI of U(g) is the closure of a
nilpotent orbit ing∗. Generalising a classical result of Kostant on Whittaker modules
we show in Section 3 that for any irreducibleHχ -moduleV the associated variety of
AnnU(g)(Qχ ⊗Hχ V ) contains the coadjoint orbitOχ . In the most interesting case where
V is a finite-dimensional irreducibleHχ -module we prove that

VA(AnnU(g)(Qχ ⊗Hχ V )) = Oχ and Dim(Qχ ⊗Hχ V ) =
1
2 dimOχ

where Dim(M) is the Gelfand–Kirillov dimension of a finitely generatedU(g)-moduleM.
In particular, this implies that for any irreducible finite-dimensionalHχ -moduleV the
irreducibleU(g)-moduleQχ ⊗Hχ V is holonomic.

1.4. Let h be a Cartan subalgebra ofg, and let8 be the root system ofg relative toh.
Let5 = {α1, . . . , α`} be a basis of simple roots in8 with the elements in5 numbered
as in [4], and let8+ be the positive system of8 relative to5. If g is not of type A
or C, there is a unique long root in5 linked with the lowest root−α̃ on the extended
Dynkin diagram ofg; we call itβ. Forg of typeAn andCn we setβ = αn. Choose root
vectorseβ , e−β ∈ g corresponding to rootsβ and−β such that(eβ , [eβ , e−β ], e−β) is an
sl2-triple and puthβ = [eβ , e−β ].

In this article we investigate the algebraHχ in the case where(e, h, f ) =

(eβ , hβ , e−β). ThenOχ = Omin, the minimal nonzero nilpotent orbit ing∗. We letH
denote the minimal nilpotent algebraHχ . One of our main objectives is to give a presen-
tation ofH by generators and relations.
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The action of the inner derivation adh givesg a shortZ-grading

g = g(−2)⊕ g(−1)⊕ g(0)⊕ g(1)⊕ g(2), g(i) = {x ∈ g | [h, x] = ix}

with g(1)⊕ g(2) andg(−1)⊕g(−2) being Heisenberg Lie algebras. One knows of course
thatg(±2) is spanned bye±β , that zχ (i) = g(i) for i = 1,2, and thatzχ (0) coincides
with the image of the Lie algebra homomorphism

] : g(0) → g(0), x 7→ x −
1
2(x, h)h,

whose kernelkh is a central ideal ofg(0). The graded componentg(−1) has a basis
z1, . . . , zs, zs+1, . . . , z2s such that thezi ’s with 1 ≤ i ≤ s (resp.s + 1 ≤ i ≤ 2s) are root
vectors forh corresponding to negative (resp. positive) roots, and

[zi, zj ] = [zi+s, zj+s ] = 0, [zi+s, zj ] = δijf (1 ≤ i, j ≤ s).

Moreover, in the present case we can choosemχ to be the span off and thezi ’s with
s + 1 ≤ i ≤ 2s, an abelian subalgebra ofg of dimensions + 1 =

1
2 dimOmin. We set

z∗i := zi+s for 1 ≤ i ≤ s andz∗i := −zi−s for s + 1 ≤ i ≤ 2s.
Let C denote the Casimir element ofU(g) corresponding to the bilinear form(·, ·).

This form is nondegenerate onzχ (0), hence we can find bases{ai} and {bi} of zχ (0)
such that(ai, bj ) = δij . Set2Cas :=

∑
i 2ai2bi , a central element of the associative

subalgebra ofH generated by the Lie algebra2(zχ (0)). Obviously, we can regardC as a
central element ofH .

By a well-known result of Joseph, outside type A the universal enveloping algebra
U(g) contains a unique completely prime primitive ideal whose associated variety is
Omin; see [14]. This ideal, often denotedJ0, is known as the Joseph ideal ofU(g).

We are finally in a position to formulate one of the main results of this article:

Theorem 1.1. The algebraH is generated by the Casimir elementC and the subspaces
2(zχ (i)) for i = 0,1, subject to the following relations:

(i) [2x,2y ] = 2[x,y] for all x, y ∈ zχ (0);
(ii) [2x,2u] = 2[x,u] for all x ∈ zχ (0) andu ∈ zχ (1);

(iii) C is central inH ;
(iv) [2u,2v] = 1

2(f, [u, v])(C−2Cas− c0)+
1
2

∑2s
i=1(2[u,zi ]]2[v,z∗i ]

] +2[v,z∗i ]
]2[u,zi ]])

for all u, v ∈ zχ (1), wherec0 is a constant depending ong.

If g is not of typeA thenc0 is the eigenvalue ofC on the primitive quotientU(g)/J0. If g
is of typeAn, n ≥ 2, thenc0 = −n(n+ 1)/4. If g is of typeA1 thenH = k[C].

We start proving this theorem in Section 2 where we show that (i) and (ii) hold inH for
a suitable choice of2 : zχ → H . In Section 4 we determine all of the quadratic relation
(iv) except the elusive constantc0.

1.5. We first computedc0 by brute force, but later it turned out that there was a much
better way to do it, based on a certain refined version of Joseph’s Preparation Theorem.
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This theorem, which we prove in Section 5 in our special case, enables us to link the
primitive ideals ofH directly with primitive ideals ofU(g).

Let 1 denote the automorphism of the polynomial algebrak[h] such that1(h) =

h + 1. Let 〈1〉 stand for the cyclic subgroup of Aut(k[h]) generated by1. The skew
group algebrak[h] ∗ 〈1〉 has{hi1j | i ∈ Z+, j ∈ Z} as ak-basis and multiplication in
k[h] ∗ 〈1〉 has the property that1 · h = (h+ 1) ·1.

Let Ae denote the Weyl algebra with standard generatorsz1, . . . , zs, ∂1, . . . , ∂s , so
that [∂i, zj ] = δij for 1 ≤ i, j ≤ s. Let Ae := (k[h] ∗ 〈1〉)⊗ Ae, a simple Noetherian al-
gebra overk, and identifyk[h] ∗〈1〉 andAe with subalgebras ofAe. Define an involution
τ ∈ Aut(Ae) by setting

τ(zi) = −zi, τ (∂i) = −∂i, τ (h) = h, τ(1k) = (−1)k1k (1 ≤ i ≤ s, k ∈ Z).

Thenτ ⊗ σ is an automorphism of order two of the associative algebraAe ⊗H .
Let U(g)f denote the localisation ofU(g) with respect to the Ore set{f i | i ∈ Z+}.

By mappingU(g)f into the endomorphism algebra of the induced moduleQχ we are
able to identifyU(g)f with a subalgebra ofAe ⊗H . More precisely, we prove that

U(g)f = (Ae ⊗H)τ⊗σ = Aτ
e ⊗H+ ⊕ Aτ

e1⊗H−

whereH± = {x ∈ H | σ(x) = ±x}. As mentioned in 1.1 every two-sided idealI of H
is stable under the involutionσ ∈ Aut(H). HenceI = I+ ⊕ I− whereI± = I ∩H±. We
identifyU(g) with a subalgebra ofU(g)f and set

Ĩ := U(g) ∩ (Aτ
e ⊗ I+ ⊕ Aτ

e1⊗ I−).

Then Ĩ is a two-sided ideal ofU(g). By Corollary 5.1(vi), the centre ofH identifies
canonically withZ(g), the centre ofU(g). Let X = PrimU(g) and letXinf be the set of
all primitive ideals of infinite codimension inX. Given a prime Noetherian ringR we let
rk(R) denote the Goldie rank ofR.

Theorem 1.2. TakePrimH with the Jacobson topology and takeXinf with the topology
induced by the Jacobson topology ofX. Then the following hold:

(i) The mapI 7→ Ĩ induces a homeomorphismκ : PrimH
∼
→ Xinf .

(ii) For anyI ∈ PrimH we haveDim(U(g)/Ĩ ) = Dim(H/I)+ dimOmin.
(iii) If I = AnnH V whereV is a finite-dimensional irreducibleH -module, theñI =

AnnU(g)(Qχ ⊗H V ) andrk(U(g)/Ĩ ) = dim Wh(Qχ ⊗H V ) = dimV.
(iv) For any I ∈ X with VA(I) = Omin there is a finite-dimensional irreducibleH -

moduleV such thatI = AnnU(g)(Qχ ⊗H V ).
(v) Let V1 andV2 be two finite-dimensional irreducibleH -modules. ThenV1 ∼= V2 as

H -modules if and only ifAnnU(g)(Qχ ⊗H V1) = AnnU(g)(Qχ ⊗H V2).

(vi) A prime idealI ofH is primitive if and only ifI ∩Z(H) is a maximal ideal ofZ(H).

It follows from Theorem 1.2 that for any homomorphismη : Z(g) → k the mapκ
induces a bijection between the isoclasses of finite-dimensional irreducibleH -modules
with central characterη and the primitive idealsI ∈ X such thatI ∩ Z(g) = Kerη and
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VA(I) = Omin (recall thatZ(g) = Z(H)). This result indicates that for any nilpotentχ it
should be possible to interpret the number of isoclasses of irreducible finite-dimensional
Hχ -modules with a fixed central character as the dimension of a cell representation of the
integral Weyl group of the character. In type A this agrees with recent results of Brundan–
Kleshchev.

Theorem 1.2(iii) relates the dimensions of irreducible finite-dimensionalH -modules
with Goldie-rank polynomials. We explore this in 6.4 to obtain dimension formulae for
all irreducible finite-dimensional representations ofH for g of type Cn and G2. It is quite
possible thatall Goldie-rank polynomials, properly scaled, will appear in dimension for-
mulae for “nonrestricted Weyl modules” over Lie algebras of reductive groups in charac-
teristicp (we recall that in characteristicp a truncated version ofHχ is Morita equivalent
to the reduced enveloping algebraUχ (g); see [31, (2.3), (2.6)]).

Theorem 1.2(vi) says thatH satisfies the Dixmier–Mœglin–Rentschler equivalence.
Again it is possible that this holds for any algebraHχ .

1.6. In the last section of this article we introduce and study highest weight modules
for the algebraH . Let8e = {α ∈ 8 | α(h) = 0 or 1}, and put8±

e = 8e ∩ 8± where
8−

= −8+. For i = 0,1 put8±

e,i = {α ∈ 8±
e | α(h) = i}. Note thatzχ is spanned

by he := h ∩ g(0)], by root vectorseα with α ∈ 8e, and bye. Let h1, . . . , hl−1 be a
basis ofhe, and letn±(i) be the span of alleα with α ∈ 8±

e,i . Clearly,n+(0) andn−(0)

are maximal nilpotent subalgebras ofg(0)]. Let {x1, . . . , xt } and{y1, . . . , yt } be bases of
n+(0) andn−(0) consisting of root vectors forh. For 1≤ i ≤ s let γi (resp.γ ∗

i ) denote
the root ofzi (resp.z∗i ), and putui = [e, zi ], u∗

i = [e, z∗i ]. Then{u1, . . . , us, u
∗

1, . . . , u
∗
s }

is ak-basis ofzχ (1).
In general,H is unlikely to possess a triangular decomposition similar to that ofU(g).

Nevertheless, one can still define Verma modules and highest weight modules forH .
Givenλ ∈ h∗

e andc ∈ k we denote byJλ,c the linear span inH of all

t∏
i=1

2liyi ·

s∏
i=1

2miui ·

`−1∏
i=1

(2hi − λ(hi))
ni · (C − c)n` ·

s∏
i=1

2
ri
u∗
i
·

t∏
i=1

2
qi
xi

with
∑`
i=1 ni +

∑t
i=1 ri +

∑s
i=1 qi > 0. Using Theorem 1.1 we show in 7.1 thatJλ,c

is a left ideal ofH . We call theH -moduleZH (λ, c) := H/Jλ,c the Verma module of
level c corresponding toλ. By the above,ZH (λ, c) has a nice PBW basis. In 7.2 we
show thatZH (λ, c) contains a unique maximal submodule which we denoteZmax

H (λ, c).
Thus to every(λ, c) ∈ h∗

e × k there corresponds an irreducible highest weightH -module
LH (λ, c) := ZH (λ, c)/Z

max
H (λ, c). It is fairly easy to show thatLH (λ, c) ∼= LH (λ

′, c′)

if and only if (λ, c) = (λ′, c′) and that any irreducible finite-dimensionalH -module is
isomorphic to exactly one ofLH (λ, c) with λ satisfying a natural integrality condition.

To determine the composition multiplicities of the Verma modulesZH (λ, c) we link
the latter withg-modules obtained by parabolic induction from Whittaker modules forsl2.
Let sβ = keβ ⊕ khβ ⊕ kfβ and put

pβ := sβ + h +

∑
α∈8+

keα, nβ :=
∑

α∈8+\{β}

keα, s̃β := he ⊕ sβ .
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Let Cβ = ef + f e +
1
2h

2
= 2ef +

1
2h

2
− h, a central element ofU(̃sβ). Givenλ ∈ h∗

e

andc ∈ k we denote byIβ(λ, c) the left ideal ofU(pβ) generated byf − 1, Cβ − c, all
h − λ(h) with h ∈ he, and alleγ with γ ∈ 8+

\ {β}. Let Y (λ, c) := U(pβ)/Iβ(λ, c), a
pβ -module with the trivial action ofnβ . Note thatY (λ, c) is a Whittaker module for the
Levi subalgebrãsβ . Now define

M(λ, c) := U(g)⊗U(pβ ) Y (λ, c).

Recall that eachz∗i with i ≤ s is a root vector corresponding toγ ∗

i = −β − γi ∈ 8+.
Let δ =

1
2(γ

∗

1 + · · · + γ ∗
s ) andρ =

1
2

∑
α∈8+ α. Since the restriction of(·, ·) to he is

nondegenerate, for anyη ∈ h∗
e there is a uniquetη ∈ he such thatϕ = (tη, · ). Hence

(·, ·) induces a bilinear form onh∗
e via (µ, ν) := (tµ, tν) for all µ, ν ∈ h∗

e . Given a linear
functionϕ ∈ h∗ we denote bȳϕ the restriction ofϕ to he.

Theorem 1.3. Each g-moduleM(λ, c) is an object of the categoryCχ . Furthermore,
Wh(M(λ, c)) ∼= ZH (λ+ δ̄, c + (λ+ 2ρ̄, λ)) asH -modules.

Combined with Skryabin’s equivalence and the main results of Miličić–Soergel [28] and
Backelin [1], Theorem 1.3 shows that the composition multiplicities of the Verma mod-
ulesZH (λ, c) can be computed with the help of certain parabolic Kazhdan–Lusztig poly-
nomials. This confirms in the minimal nilpotent case the Kazhdan–Lusztig conjecture for
finite W-algebras formulated by de Vos and van Driel in [8]; see Remark 7.1 for more
details.

Apart from its relevance to the theory of primitive ideals this work is a contribution
to the rapidly growing theory ofW-algebras.Finite W-algebras are attached to nilpotent
elements of finite-dimensional simple Lie algebras via quantum Hamiltonian reduction.
All finite W-algebras of type A were recently described by J. Brundan and A. Kleshchev
[5] who identified them with shifted truncated Yangians. It seems likely that their results
can be extended to some nilpotent elements in Lie algebras of types B, C and D. Hidden
Yangian symmetry of finiteW-algebras of type A was first discovered, in some special
cases, by E. Ragoucy and P. Sorba [33].

Affinecounterparts of finiteW-algebras have been studied even more intensively. It
should be mentioned here that V. G. Kac and M. Wakimoto describedminimal nilpotent
superconformal algebras in the context of vertex operators and quantum reduction; see
[20] and the references therein. It would be interesting to compare the algebrasH of this
paper with quasiclassical limits of vertex algebras of Kac–Wakimoto.

2. Structural features of the algebrasHχ

2.1. In this section we assume thate is an arbitrary nilpotent element ing. Decompose
g into the weight spaces relative to adh giving aZ-gradingg =

⊕
i∈Z g(i). Letχ be as in

1.1 and denote byzχ the centraliser ofχ in g. It is well-known thatzχ = cg(e) is a graded
subalgebra ofpe :=

⊕
i≥0 g(i), that is,zχ =

⊕
i≥0 zχ (i)wherezχ (i) = zχ∩g(i). Choose

a k-basisx1, . . . , xm of the parabolic subalgebrape with xi ∈ g(ni) such thatx1, . . . , xr
spanzχ . LetO = Oχ and letd denote half of the dimension ofO.
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Define the skew-symmetric bilinear form〈· , ·〉 on the subspaceg(−1) by setting
〈x, y〉 = (e, [x, y]) for all x, y ∈ g(−1). As zχ ⊂ pe, this form is nondegenerate. Choose
a basisz1, . . . , zs, zs+1, . . . , z2s of g(−1) such that

〈zi+s, zj 〉 = δij , 〈zi, zj 〉 = 〈zi+s, zj+s〉 = 0 (1 ≤ i, j ≤ r)

and denote byg(−1)0 the linear span ofzs+1, . . . , z2s . Let mχ = g(−1)0 ⊕
∑
i≤2 g(i), a

nilpotent subalgebra ofg of dimensiond; see [31] for example. Sinceχ vanishes on the
derived subalgebra ofmχ the idealNχ of U(mχ ) generated by allx − χ(x) with x ∈ mχ

has codimension one in the enveloping algebraU(mχ ). Let kχ = U(mχ )/Nχ , a one-
dimensional leftU(mχ )-module, and let 1χ stand for the image of 1 inkχ . We denote by
Qχ the inducedg-moduleU(g)⊗U(mχ ) kχ and set

Hχ := Endg(Qχ )
op.

It is proved in [31] that the algebraHχ is a filtered deformation of the graded coordinate
ring k[Se] .

In what follows we will rely on a different realisation ofHχ found by W. L. Gan and
Ginzburg [10]. Letnχ =

⊕
i≤−1 g(i) andn′

χ =
⊕

i≤−2 g(i). Clearly,nχ andn′
χ are

nilpotent subalgebras ofg andn′
χ is an ideal ofnχ . Sincen′

χ ⊆ mχ , we may viewkχ as

ann′
χ -module. LetQ̂χ = U(g)⊗U(n′

χ )
kχ , an inducedg-module and the quotient ofU(g)

by the left idealIχ generated by allx − χ(x) with x ∈ n′
χ . The representation ofU(g) in

End(Q)will be denoted bŷρχ . Sinceχ vanishes on [nχ , n′
χ ] ⊆

⊕
i≤−3 g(i), the left ideal

Iχ is stable under the adjoint action ofnχ onU(g). Therefore, adnχ acts onQ̂χ . The fixed

point spacêQ
adnχ
χ carries a natural algebra structure given by(x+Iχ )(y+Iχ ) = xy+Iχ

for all x + Iχ , y + Iχ ∈ Q̂χ ; see [10, p. 244] for more details. We furnishQ
admχ
χ and

Q̂
adn′

χ
χ with algebra structures in a similar fashion. It is well known (and easily seen) that

Hχ ∼= Q
admχ
χ and Endg(Q̂χ )

op ∼= Q̂
adn′

χ
χ

as algebras. Asn′
χ ⊆ mχ , there is a naturalg-module epimorphism̂Qχ � Qχ . As

mχ ⊆ nχ , it induces an algebra mapη : Q̂
adnχ
χ → Hχ . By [10, Theorem 4.1],η is an

isomorphism of algebras. Henceforth we will make no distinction betweenHχ andQ̂
adnχ
χ

and view the latter as a subalgebra of Endg(Q̂)
op.

Given(a,b) ∈ Zm+×Z2s
+ we setxazb := x

a1
1 · · · x

am
m z

b1
1 · · · z

b2s
2s . By the PBW theorem,

the monomialsxazb
⊗ 1χ with (a,b) ∈ Zm+ × Z2s

+ form ak-basis ofQ̂χ . Fork ∈ Z+ we
denote byQ̂k

χ the linear span of allxazb
⊗ 1χ with

|(a,b)|e :=
m∑
i=1

ai(ni + 2)+

2s∑
i=1

bi ≤ k. (2.1.1)

We letH k
χ denote the subspace ofHχ consisting of allh ∈ Hχ with h(1χ ) ∈ Q̂k

χ . By
[31] and [10], the subspaces{H k

χ | k ∈ Z+} form an increasing filtration of the algebra
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Hχ and the corresponding graded algebra grHχ is isomorphic to a polynomial ring inr
variables with free homogeneous generators of degreen1 + 2, . . . , nr + 2. The elements
x in Q̂k

χ \ Q̂k−1
χ andH k

χ \H k−1
χ are said to haveKazhdan degreek, written dege(x) = k.

It is immediate from [31, Theorem 4.6] that in our present realisation the algebraHχ has
a distinguished generating set21, . . . ,2r such that gr21, . . . ,gr2r generate grHχ and

2k(1χ ) =

(
xk +

∑
0<|(i,j)|e≤nk+2

λki,jx
izj

)
⊗ 1χ , 1 ≤ k ≤ r, (2.1.2)

whereλki,j ∈ k andλki,j = 0 if either |(i, j)|e = nk + 2 and|i| + |j | = 1, or i 6= 0, j = 0,

andij = 0 for j > r. The monomials2a1
1 · · ·2

ar
r with (a1, . . . , ar) ∈ Zr+ form a PBW

basis ofHχ .

2.2. Given a subsetX of g we denote byZG(X) the closed subgroup ofG consisting
of all g ∈ G with (Ad g)(x) = x for all x ∈ X. LetPe denote the parabolic subgroup of
G with LiePe = pe. There exists a 1-parameter subgroupλe : k×

→ G optimal for the
G-unstable vectore and such that:

• (Ad λe(t))|g(i) = t i id for all t ∈ k× andi ∈ Z;
• ZG(e) ⊂ P(e), Ru(ZG(e)) ⊂ Ru(Pe), ZG(e) = (ZG(e) ∩ ZG(λe))Ru(ZG(e));
• C(e) := ZG(e) ∩ ZG(λe) is a reductive group, and LieC(e) = zχ (0);

see [6, Chapter 5] and [32]. Let AdC(e) denote the image ofC(e) in the adjoint group
AdG = (Aut g)◦. Putσ = Ad λe(−1), an element of order≤ 2 in AdG. Clearly,σ lies
in the centre of AdC(e) andσ(x) = (−1)ix for all x ∈ g(i) andi ∈ Z.

Lemma 2.1. The elementσ belongs to any maximal torus ofAdC(e).

Proof. Let T0 be a maximal torus of AdC(e), T̃0 the inverse image ofT0 in G, and
L = ZG(T̃0). ThenL is a Levi subgroup ofG ande is a distinguished nilpotent element
in l = LieL. The construction in [32] shows that all weights of Adλe(k×) on l are even.
Thenσ acts trivially onl, yieldinggσ t ⊇ l for all t ∈ T0. As k is infinite, there ist0 ∈ T0
such thatgσ t0 = l. LetC denote the conjugacy class of the image ofσ t0 in the component
groupZAdG(e)/ZAdG(e)

◦ ∼= (AdC(e))/(AdC(e))◦. As AdG is a group of adjoint type,
theG-conjugacy class of the pair(L, e) corresponds under Sommers’ bijection to the
G-conjugacy class of the pair(e, C); see [35, 27, 32]. AsL is a Levi subgroup inG, the
cited references also show thatC = {1}. But T0 ⊆ (AdC(e))◦ and t0 ∈ T0. So we get
σ ∈ Z((AdC(e))◦). As (AdC(e))◦ is a reductive group, the torusT0 is self-centralising
in (AdC(e))◦. Henceσ ∈ T0, completing the proof. ut

We now fix a maximal torusTe in AdC(e) and assume (without loss of generality) that all
zi with i ≤ 2s andxj with j ≤ m are weight vectors with respect toTe. By Lemma 2.1,
σ ∈ Te. Note thatC(e) preserves bothn′

χ and Kerχ . SinceC(e) acts onU(g) as al-

gebra automorphisms, it preserves the left idealIχ and thus acts on̂Qχ . This action is
compatible with that ofg, i.e.

g ◦ ρ̂χ (x) ◦ g−1
= ρ̂χ ((Ad g)(x)) (∀g ∈ C(e), x ∈ g). (2.2.1)
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SinceC(e) preservesnχ too, it acts onHχ = Q̂
adnχ
χ as algebra automorphisms. Since

g(1χ ) = 1χ for all g ∈ C(e), the action ofC(e) on Q̂χ andHχ is filtration preserving,
hence locally finite. SinceZ(G) acts trivially onU(g), there is a natural action of AdC(e)
on Q̂χ andHχ . It should be mentioned that

σ(xazb
⊗ 1χ ) = (−1)|(a,b)|exazb

⊗ 1χ (2.2.2)

for all (a,b) ∈ Zm+ × Z2s
+ .

Lemma 2.2. Each generator2k ∈ Hχ can be chosen to be a weight vector forTe of the
same weight asxk.

Proof. Let γk denote theTe-weight ofxk. If γk 6= 0, we assume without loss of generality
that λk0,0 = 0. Let t ∈ Te and2t := t (2k) − γk(t)2k, an element inHχ . Since all

x izj
⊗1χ ∈ Q̂χ are weight vectors forTe, we deduce from (2.1.2) and (2.2.1) that2t (1χ )

is a linear combination ofxazb
⊗ 1χ with eitherb 6= 0 or aj 6= 0 for somej > r. Then

2t = 0 for all t ∈ Te, by [31, Lemma 4.5], and the result follows. ut

2.3. We now consider the linear map2 : zχ → Hχ , x 7→ 2x, such that2xi = 2i for
all i. Thanks to Lemma 2.2,2 is an injective homomorphism ofTe-modules. Although
2 is not a Lie algebra homomorphism, in general, it follows from [31, Theorem 4.6(iv)]
and (2.2.2) and Lemma 2.2 that

[2xi ,2xj ] ≡ 2[xi ,xj ] + qij (21, . . . ,2r) (modH
ni+nj
χ ) (2.3.1)

whereqij is a polynomial inr variables with initial form of total degree≥ 2.

Remark 2.1. As C(e) is a reductive group, eachC(e)-moduleH k
χ is completely re-

ducible. From this it follows that there exists a unitriangular polynomial substitution

F : (21, . . . ,2r) 7→ (F1(21, . . . ,2r), . . . , Fr(21, . . . ,2r))

which satisfies the following conditions:

• dege F(2i) = dege2i = ni + 2 for all i ≤ r;
• the linear map2F : zχ → Hχ with 2F (xi) = F(2i) for all i is an injective homo-

morphism ofC(e)-modules, andzχ ∼= gr2F (zχ ) as gradedC(e)-modules;
• an analogue of (2.3.1) holds forF(21), . . . , F (2r), and the subspaces2F (zχ ) and

gr2F (zχ ) generate the algebrasHχ and grHχ , respectively.

Proposition 2.1. There exists an associativek[t ]-algebraHχ free as a module overk[t ]
and such that

Hχ/(t − λ)Hχ
∼=

{
Hχ if λ 6= 0,
U(zχ ) if λ = 0

ask-algebras. In other words, the enveloping algebraU(zχ ) is a contraction ofHχ .
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Proof. Consider the algebraH(R) = R ⊗Hχ over the ring of Laurent polynomialsR =

k[t, t−1] obtained fromHχ by extension of scalars, and identifyHχ with the subspace
k ⊗Hχ of H(R). Define an invertibleR-linear transformationπ onH(R) by setting

π(2
k1
1 · · ·2krr ) = tn1k1+···+nrkr2

k1
1 · · ·2krr ∀(k1, . . . , kr) ∈ Zr+

and extending toH(R) byR-linearity. We viewπ as an isomorphism fromH(R) onto a
newR-algebraH(R, π) with underlyingR-moduleR⊗Hχ and with associative product
given by(x · y)π := π−1(π(x) · π(y)) for all x, y ∈ R ⊗Hχ . We denote byHχ the free
k[t ]-submodule ofH(R, π) generated by2a1

1 · · ·2
ar
r with (a1, . . . , ar) ∈ Zr+. It follows

from (2.1.1) and (2.1.2) that

dege(2
k1
1 · · ·2krr ) =

r∑
i=1

niki + 2
r∑
i=1

ki .

In view of (2.3.1) this yields

(2i ·2j −2j ·2i)π = π−1(tni+nj [2i,2j ]) ≡ 2[xi ,xj ] (modtHχ )

(since the initial form ofqij has total degree≥ 2 and dege qij (21, . . . ,2r) = ni +nj +2

if qij 6= 0). Using induction on the Kazhdan degree of2
k1
1 · · ·2

kr
r and the commutativity

of grHχ we now deduce that(2i · Hχ )π ⊆ Hχ for all i. SoHχ is ak[t ]-subalgebra of
H(R, π).

If λ 6= 0 then the homomorphismk[t ] → k takingt to λ extends to a homomorphism
R → k. The isomorphismπ−1 injects (t − λ)H(R, π) onto (t − λ)H(R). Because
Hχ ∩ (t − λ)H(R, π) = (t − λ)Hχ andHχ ∩ (t − λ)H(R) = 0, we have

Hχ/(t − λ)Hχ
∼= H(R, π)/(t − λ)H(R, π) ∼= H(R)/(t − λ)H(R) ∼= Hχ ,

by the theorem on isomorphism. Now putHχ := Hχ/tHχ and identify the generators
2i = 2xi of Hχ with their images inHχ . It is immediate from our earlier remarks
that these images satisfy the relations [2xi ,2xj ] = 2[xi ,xj ] for all i, j . By the univer-
sality property of the enveloping algebraU(zχ ), there exists an algebra homomorphism
φ : U(zχ ) � Hχ with φ(xi) = 2i for all i. SinceHχ is a freek[t ]-module, the mono-
mials2a1

1 · · ·2
ar
r with (a1, . . . , ar) ∈ Zr+ are linearly independent inHχ . As a conse-

quence,φ is an isomorphism. ut

2.4. Let Ae denote the associative algebra overk generated byz1, . . . , zs, zs+1, . . . , z2s
subject to the relations [zi+s, zj ] = δij and [zi, zj ] = [zi+s, zj+s ] = 0 where 1≤ i, j ≤ s.
Clearly,Ae ∼= As(k), thesth Weyl algebra overk. If s = 0 thenAe = k.

Let i 7→ i∗ denote the involution on the set of indices{1, . . . , s, s + 1, . . . ,2s} such
thati∗ = i+s for i ≤ s andi∗ = i−s for i > s. For 1≤ i ≤ 2s definez∗i := (−1)p(i)zi∗
where

p(i) =

{
0 if i ≤ s,

1 if i > s.
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Note thatzi = (−1)p(i
∗)z∗i∗ for 1 ≤ i ≤ 2s andz∗i = zi+s , z∗i+s = −zi for 1 ≤ i ≤ s. It

is worth remarking that the following relation holds inU(g):

2s∑
i=1

ziz
∗

i = −

2s∑
i=1

z∗i zi ≡ s (modIχ ). (2.4.1)

As the form〈· , ·〉 is zχ (0)-invariant and〈z∗i , zj 〉 = δij for 1 ≤ i, j ≤ 2s, for all x ∈ zχ (0)
we have

[x, z∗k ] =

2s∑
i=1

〈z∗k , [x, z
∗

i ]〉zi = −

2s∑
i=1

〈[x, z∗i ], z
∗

k〉zi . (2.4.2)

Eachh ∈ Hχ is determined by its effect on the canonical generator 1χ ∈ Q̂χ . Since
the vectorh(1χ ) can be uniquely expressed ash(1χ ) = (

∑
i∈Z2s

+
ui · zi) ⊗ 1χ with ui ∈

U(pe), one obtains a natural linear injection

µ̃ : Hχ → U(pe)⊗ Aop
e , µ̃(h) =

∑
i∈Z2s

+

ui ⊗ zi . (2.4.3)

As the form〈· , ·〉 is C(e)-invariant, the groupC(e) acts onAop
e as automorphisms.

As C(e) also acts onU(pe), it acts as automorphisms on the algebraU(pe) ⊗ Aop
e , via

g(u⊗ a) = g(u)⊗ g(a) with the obvious choices ofg, u, a.

Proposition 2.2. The map̃µ : Hχ ↪→ U(pe)⊗ Aop
e is aC(e)-equivariant algebra homo-

morphism.

Proof. Let Z denote the linear span of allzi
⊗ 1χ with i ∈ Z2s

+ . We identify Z with
the space of the left regular representation ofAe via zi

⊗ 1χ 7→ zi . Now ρ̂χ induces a
representation ofU(nχ ) in End(Z), sayψ0. Sinceg(−1) ⊂ nχ andg(i) ⊂ Kerχ for all

i ≤ −3, the definition ofQ̂
adnχ
χ and induction onk show that

ρ̂χ (z1 · · · zk)(h(1χ )) =

∑
i∈Z2s

+

ui · ρ̂χ (z
i
· z1 · · · zk)(1χ )

for all z1, . . . , zk ∈ g(−1). Now let h′ be another element inHχ and suppose that
h′(1χ ) = (

∑
i∈Z2s

+
u′

i · zi)⊗ 1χ whereu′

i ∈ U(pe). Then

(h · h′)(1χ ) = h′(h(1χ )) =

∑
i

ρ̂χ (ui) · ρ̂χ (z
i)(h′(1χ ))

=

∑
i

∑
j

ui · u′

j · ρ̂χ (z
j
· zi)(1χ ).

It remains to note that the mapzi
⊗ 1χ 7→ zi mentioned above identifiesψ0(U(nχ )) with

the image ofAe in its left regular representation. TheC(e)-equivariance of̃µ is immediate
from the definitions. ut
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Remark 2.2. Composing̃µ with the natural projectionU(pe)⊗ Aop
e � U(g(0))⊗ Aop

e

one obtains an algebra homomorphism

µ : Hχ → U(g(0))⊗ Aop
e

which will be referred to as theMiura map. In the special case wheree is even this map
has already appeared in [31, (7.1)] (note that fore even we haveAop

e = k). It can be
proved that the mapµ is always injective (this will not be required in the present article).

The adjoint action ofzχ (0) on g induces Lie algebra mapszχ (0) → Der(Aop
e ),

zχ (0) → Der(U(pe) ⊗ Aop
e ) andzχ (0) → Der(Hχ ) (of course, the same maps can be

obtained by differentiating the respective actions ofC(e) on Aop
e , U(pe)⊗ Aop

e andHχ ).
By abuse of notation, the image ofx ∈ zχ (0) under each of these maps will be denoted
by adx.

2.5. In what follows we will need explicit formulae for the generators2k of small Kazh-
dan degree. The reader will observe strong similarity between our formulae and the ex-
pressions for conserved fields of low conformal weight found by Kac and Wakimoto [20]
in the context of vertex algebras and quantum reduction.

Lemma 2.3. If v ∈ zχ (0) then it can be assumed that

2v(1χ ) =

(
v +

1

2

2s∑
i=1

zi [v, z
∗

i ]

)
⊗ 1χ =

(
v +

1

2

2s∑
i=1

[v, z∗i ]zi

)
⊗ 1χ .

Proof. It follows from (2.1.2) and (2.2.2) that there exist a scalarβ and a symmetric
matrixA = (αij ) of order 2s such that

2v(1χ ) =

(
v +

1

2

2s∑
i,j=1

αijzizj + β

)
⊗ 1χ .

SinceA is symmetric and [z∗k , v +
1
2

∑2s
i,j=1 αijzizj + β] ∈ Iχ for all k, it must be that

[v, z∗k ] =
∑2s
j=1 αkjzj . Therefore, after a proper adjustment ofβ we get

2v(1χ ) =

(
v +

1

2

2s∑
i=1

zi [v, z
∗

i ]

)
⊗ 1χ .

SinceIχ is (adv)-stable, (2.4.1) yields
∑2s
i=1 zi [v, z

∗

i ] ≡
∑2s
i=1 [v, z∗i ]zi (modIχ ). This

completes the proof. ut

From now on we always assume that the generators2v with v ∈ zχ (0) are chosen in
accordance with Lemma 2.3. This has the following advantage:
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Lemma 2.4. The restriction of2 to zχ (0) is a Lie algebra homomorphism, i.e.

[2u,2v] = 2[u,v] (∀u, v ∈ zχ (0)).

Moreover, the Lie algebra homomorphismad◦2 : zχ (0) → Der(Hχ ) coincides with the
differential of the rational actionC(e) → Aut(Hχ ).

Proof. We are going to use the injective homomorphism̃µ from 2.4. Letx ∈ zχ (0).
Computing inAop

e and applying (2.4.2) we get[
1

2

2s∑
i=1

[x, z∗i ]zi, z

]
= −

1

2

2s∑
i=1

(〈[x, z∗i ], z〉zi + 〈zi, z〉[x, z
∗

i ])

=
1

2
([x, z] + [x, z]) = [x, z] (2.5.1)

for all z ∈ g(−1). Hence adx = ad(1
2

∑2s
i=1 [x, z∗i ]zi) as derivations ofAop

e . Then

[µ̃(2x), µ̃(h)] =

[
µ̃(2x),

∑
ui ⊗ zi

]
=

∑
([x, ui ] ⊗ zi

+ ui ⊗ [x, zi ]) = µ̃((adx)(h))

for all h ∈ Hχ . As µ̃ is injective, it must be that [2x, h] = (adx)(h), i.e. the adjoint
action of2(zχ (0)) coincides with the differential of the action ofC(e) onHχ . Also,

2s∑
i=1

[v, z∗i ][u, zi ]
(2.4.2)
=== −

2s∑
i,j=1

〈z∗j , [u, z
∗

i ]〉[v, zi ]zj

(2.4.2)
=== −

2s∑
i,j=1

〈z∗i , [u, z
∗

j ]〉[v, zi ]zj = −

2s∑
j=1

[v, [u, z∗j ]]zj (2.5.2)

as elements inAop
e , for all u, v ∈ zχ (0). It follows that

[µ̃(2u), µ̃(2v)]
(2.5.1)
=== [u, v] ⊗ 1 +

1

2
⊗

2s∑
i=1

([u, [v, z∗i ]]zi + [v, z∗i ][u, zi ])

(2.5.2)
=== [u, v] ⊗ 1 +

1

2
⊗

2s∑
i=1

[u, [v, z∗i ]]zi −
1

2
⊗

2s∑
i=1

[v, [u, z∗i ]]zi

= [u, v] ⊗ 1 +
1

2
⊗

2s∑
i=1

[[u, v], z∗i ]zi = µ̃(2[u,v]).

But then [2u,2v] = 2[u,v] for all u, v ∈ zχ (0), as stated. ut

Corollary 2.1. Any two-sided ideal ofHχ is σ -stable.
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Proof. Let I be a two-sided ideal ofHχ . Clearly,I is invariant under the adjoint action of
2(zχ (0)). By Lemma 2.4,I is then stable under the differential of theC(e)-action onHχ .
SinceC(e)◦ is a connected reductive group and the action ofC(e) on Hχ is filtration
preserving, Weyl’s theorem on complete reducibility shows that all subspacesI ∩H k

χ are
C(e)◦-stable. SinceZ(G) ⊆ C(e) acts trivially onHχ and (AdC(e))◦ coincides with
the image ofC(e)◦ in AdC(e) ∼= C(e)/Z(G), Lemma 2.1 shows thatI is σ -stable, as
claimed. ut

Given n elementsx1, x2, x3, . . . , xn in a Lie algebra we denote by [x1x2x3 . . . xn] the
commutator [. . . [[x1, x2], x3], . . . , xn].

Lemma 2.5. If v ∈ zχ (1) then the generator2v ∈ Hχ has the following property:

2v(1χ ) =

(
v +

2s∑
i=1

[v, z∗i ]zi +
1

3

2s∑
i,j=1

[vz∗i z
∗

j ]zjzi + zv

)
⊗ 1χ

wherezv =
1
3

∑2s
i=1(

∑2s
k=1〈zk, [v, [z

∗

k , z
∗

i ]] 〉)zi . Moreover,

[2u,2v] = 2[u,v] (∀u ∈ zχ (0)).

Proof. Let hv =
∑
i [v, z∗i ]zi +

1
3

∑
i,j [vz∗i z

∗

j ]zjzi + zv, an element inU(g). By anti-
commutativity and the Jacobi identity, we have

[z∗k , [vz
∗

i z
∗

j ]] = [z∗j , [vz
∗

i z
∗

k ]] + [v[z∗kz
∗

j ]z∗i ] + [v, [z∗i [z
∗

k , z
∗

j ]]] .

Since(e, [v, x]) = 0 for all x ∈ g, this yields

〈z∗k , [vz
∗

i z
∗

j ]〉 = 〈z∗j , [vz
∗

i z
∗

k ]〉 − 〈z∗i , [vz
∗

kz
∗

j ]〉 + 〈z∗i , [vz
∗

j z
∗

k ]〉 (2.5.3)

where 1≤ i, j, k ≤ 2s. Computing inU(g) moduloIχ we now get[
z∗k ,

∑
i,j

[vz∗i z
∗

j ]zjzi
]

≡

∑
ij

〈z∗k , [vz
∗

i z
∗

j ]〉zjzi +

∑
i

[vz∗i z
∗

k ]zi +

∑
i

[vz∗kz
∗

i ]zi

=

∑
ij

(〈z∗j , [vz
∗

i z
∗

k ]〉 − 〈z∗i , [vz
∗

kz
∗

j ]〉 + 〈z∗i , [vz
∗

j z
∗

k ]〉)zjzi

+

∑
i

([vz∗i z
∗

k ]zi + [vz∗kz
∗

i ]zi)

≡

∑
i

([vz∗i z
∗

k ]zi − zi [vz
∗

kz
∗

i ] + zi [vz
∗

i z
∗

k ])

≡ 3
∑
i

([vz∗i z
∗

k ]zi −
1
3〈zi, [vz

∗

kz
∗

i ]〉 +
1
3〈zi, [vz

∗

i z
∗

k ]〉)

≡ 3
( ∑

i

([vz∗i z
∗

k ]zi
)

− 3[z∗k , zv].
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As a consequence,

[z∗k , hv] ≡ [z∗k , v] +

∑
i

[z∗k , [v, z
∗

i ]]zi + [v, z∗k ] + [z∗k , zv]

+

∑
i

[vz∗i z
∗

k ]zi − [z∗k , zv] ≡ 0 (modIχ )

for all k. It is easy to see that [z, hv] ≡ 0 (modIχ ) for all z ∈ n′
χ . By Lemma 2.2,

2v is a (−1)-eigenvector forσ . In conjunction with (2.1.2), [31, Lemma 4.5], and the
computation above this shows that2v(1χ ) = hv ⊗ 1χ .

Now let u be any element inzχ (0) and put2′ := [2u,2v] − 2[u,v] . It is immedi-
ate from (2.3.1) that2′ is a polynomial in2xi with xi ∈ zχ (0). Sinceσ(2′) = −2′

by Lemma 2.2, this polynomial must be zero. So [2u,2v] = 2[u,v] necessarily holds,
completing the proof. ut

3. Associated varieties and Gelfand–Kirillov dimension

3.1. At present very little is known about finite-dimensional representations of the alge-
brasHχ . In view of Proposition 2.1 this can be partly explained by the lack of detailed
information on the structure of the centralisercg(e). Besides, ife is not even then there
is no obvious reason forHχ = Hχe to possess such representations. On the other hand,
the evidence collected so far suggests that each algebraHχ has infinitely many isoclasses
of finite-dimensional irreducible representations and dimension formulae for those have
roughly the same format as the Weyl dimension formula forH0 = U(g); see 6.4. It is
therefore natural to ask:

Question 3.1. Is it true that for any nonzeroh ∈ Hχ there exists a finite-dimensional
irreducible representationρ ofHχ such thatρ(h) 6= 0?

LetCχ denote the category of allg-modules on whichx−χ(x) acts locally nilpotently for
eachx ∈ mχ . Given ag-moduleM we denote by Wh(M) the subspace ofM consisting
of all m ∈ M such thatx.m = χ(x)m for all x ∈ mχ . Of course, forM ∈ Cχ we
have Wh(M) = 0 if and only ifM = 0. LetHχ -mod denote the category of all left
Hχ -modules. In the Appendix to [31], Skryabin proved that the functor

Hχ -mod→ Cχ , V 7→ Qχ ⊗Hχ V, (3.1.1)

is an equivalence of categories. The inverse equivalence is given by the functor

Cχ → Hχ -mod, M 7→ Wh(M); (3.1.2)

see also [10, Sect. 6]. Skryabin’s result implies that theg-moduleQχ ⊗Hχ V is simple if
and only if so is theHχ -moduleV . By the Irreducibility Theorem, the associated variety
of the annihilator inU(g) of any simpleg-module coincides with the closure of a nilpotent
orbit in g∗; see [2, 18, 21, 36, 12]. Our goal in this section is to determine the associated
varieties of the annihilators AnnU(g)M for all M ∈ Cχ with dim Wh(M) < ∞. Such
modules are in 1-1 correspondence with the finite-dimensional representations ofHχ .
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3.2. We recall the definition of the Gelfand–Kirillov dimension of a finitely generated
U(g)-moduleM. Firstly note that there exists a finite-dimensional subspaceM0 ⊆ M

such thatM =
⋃
n≥0UnM0 whereUn stands for thenth component of the standard

filtration ofU(g). It is known that for alln � 0 the dimension ofUnM0 is a polynomial
in n. TheGelfand–Kirillov dimensionof M, denoted Dim(M), is defined as the degree
of this polynomial. The key point in this definition is that Dim(M) is independent of the
choice ofM0; see [13, p. 134] for more details.

Now let I be a two-sided ideal of the universal enveloping algebraU(g). The sub-
spacesIn := I ∩ Un with n ∈ Z+ form an increasing filtration ofI satisfyingUmIn ⊆

Im+n for all m, n ∈ Z+. The associated graded algebra grI ↪→ grU(g) ∼= S(g) is there-
fore identified with a homogeneous ideal of the symmetric algebraS(g) stable under the
adjoint action ofG. Theassociated varietyVA(I ) of the idealI is defined as the maximal
spectrum of the affine algebraS(g)/grI . It is immediate from the definition thatVA(I ) is
a Zariski closed, conical,G-invariant subset of MaxS(g) = g∗. ForM as above we have

dimVA(AnnU(g)M) ≤ 2 Dim(M); (3.2.1)

see [13, (10.7) and (17.11)]. Theg-moduleM is calledholonomicif equality holds here,
that is, dimVA(AnnU(g)M) = 2 Dim(M).

3.3. We are now in a position to state and prove the main result of this section.

Theorem 3.1. LetM ∈ Cχ andI = AnnU(g)M. Then the following hold:

(i) Oχ ⊂ VA(I ).

(ii) If dim Wh(M) < ∞, then Dim(M) =
1
2 dimOχ and VA(I ) coincides with the

Zariski closure ofOχ . In particular,M is a holonomicg-module.

Proof. (1) Let > denote the anti-involution of the algebraU(g) such thatx>
= −x and

(uv)> = v>u> for all x ∈ g and allu, v ∈ U(g). LetM∗ denote theg-module dual toM.
It is easy to see that AnnU(g)M∗

= I>. Since> preserves the standard filtration ofU(g)
and acts as a scalar operator on each factor spaceUn/Un−1 we have gr AnnU(g)M∗

=

gr(I>) = grI . Consequently,VA(AnnU(g)M∗) = VA(I ).
Pick any nonzerom ∈ Wh(M) and view it as a linear function onM∗ via m(f ) =

f (m) for all f ∈ M∗. Then

m(x.f ) = (x.f )(m) = −f (x.m) = −χ(x)f (m) = −χ(x)m(f ) (∀x ∈ mχ ).

This shows thatm is a dual(mχ ,−χ)-Whittaker vector of theg-moduleM∗; see [24,
p. 221]. Thanks to Matumoto’s theorem [24] we are now able to deduce that the associated
variety of AnnU(g)M∗ contains−χ . As VA(AnnU(g)M∗) = VA(I ) is conical andG-
stable this yieldsOχ ⊂ VA(I ), proving (i).

(2) From now on suppose thatM0 := Wh(M) is finite-dimensional. Let 2d = dimOχ .
By the sl2-theory,r = dimzχ = dimg(0) + dimg(−1) = dimg(0) + 2s. Henced =

dimmχ = dimpe − dimg(0) − s = m − r + s. Let Y1, . . . , Yd be a basis ofmχ with
Yi ∈ g(−li − 2) for someli ≥ −1 and chooseXi ∈ g(li) with 1 ≤ i ≤ d such that
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χ([Yi, Xj ]) = δij . No generality will be lost by assuming further thatXi = zi for i ≤ s

andXs+j = xr+j for 1 ≤ j ≤ m− r, wherezi andxj are basis vectors introduced in 2.1.
Fora = (a1, . . . , ad) ∈ Zd+ put

|a| =

d∑
i=1

ai, wt a = −

s∑
i=1

ai +

m−r∑
i=1

nr+ias+i, Xa
= X

a1
1 · · ·X

ad
d ∈ U|a|.

(3) Let {mi} be a basis ofM0. Since theU(g)-moduleQχ is generated by 1χ it follows
from (3.1.1) and (3.1.2) that theU(g)-moduleM is generated byM0. As explained in
[31, p. 53] the vectorsXa(mi) with a ∈ Zd+ andi ≤ dimM0 are linearly independent.
Therefore,

dimUnM0 ≥ (dimM0) · Card{a ∈ Zd+ | n ≥ |a|} = (dimM0) ·

(
n+ d

d

)
.

For all n � 0 the LHS is a polynomial inn of degree Dim(M), while the RHS is a
polynomial inn of degreed. This yields Dim(M) ≥ d.

(4) Now putN = max{n ∈ Z | g(n) 6= 0} and letMd,j denote the subspace ofM spanned
by all vectorsXa(mi) with |a| ≤ j . We claim that

UkM0 ⊆ Md,(N+2)k (∀k ∈ Z+).

Fork = (k1, . . . , kr) ∈ Zr+ set

wt k =

r∑
i=1

niki, xk
= x

k1
1 · · · xkrr ∈ U(g), 2k

= 2
k1
1 · · ·2krr ∈ Hχ .

Note that wtk ≥ 0. Givena ∈ Zd+ andb ∈ Zr+ put |(a; b)|e := wt a+ wt b + 2|a| + 2|b|.
Using the formula in [31, p. 27] and the isomorphismM ∼= Qχ ⊗Hχ M0 it is easy to
observe that

Xaxb(mi) =

(
Xa2b

+

∑
|(i;j)|e=|(a;b)|e,|i+|j |>|a|+|b|

µi,jX
i2j

+

∑
|(i;j)|e<|(a;b)|e

µi,jX
i2j

)
(mi)

for someµi,j ∈ k. As the subspaceUkM0 is spanned by allXaxb(mi) with |a| + |b| ≤ k,
it is contained in the span of allXi(mj ) such that

wt i ≤ |(i; j)|e ≤ max
|a|+|b|≤k

|(a; b)|e ≤ 2k + max
|a|+|b|≤k

(wt a + wt b)

≤ 2k + max
|a|+|b|≤k

(N |a| +N |b|) ≤ (N + 2)k.

The claim follows. Since all vectorsXi(mj ) are linearly independent, we derive

dimUkM0 ≤ dimMd,(N+2)k = (dimM0) · Card{i ∈ Zd+ | (N + 2)k ≥ |i|}

= (dimM0) ·

(
Nk + 2k + d

d

)
.



Enveloping algebras of Slodowy slices 505

Since the RHS is a polynomial ink of degreed, we get Dim(M) ≤ d. In conjunction with
part (3) this shows that Dim(M) = d = (dimOχ )/2.

(5) Since theHχ -module Wh(M) is finite-dimensional, Skryabin’s equivalence of cate-
gories described in 3.1 implies that theg-moduleM has a composition seriesM = M1 ⊃

· · · ⊃ Ml ⊃ Ml+1 = 0 such thatMi/Mi+1 ∈ Cχ and dim Wh(Mi/Mi+1) < ∞ for all
i ≤ l. SetJi := AnnU(g)(Mi/Mi+1). It is immediate from the discussion in [14, (17.7)]
that

√
grI =

l⋂
i=1

√
grJi . (3.3.1)

On the other hand, it follows from (3.2.1) and parts (1) and (4) of this proof that for any
g-moduleN ∈ Cχ with dim Wh(N) < ∞ one has

dimOχ ≤ dimVA(AnnU(g)N) ≤ 2 Dim(N) = dimOχ .

In conjunction with the Irreducibility Theorem mentioned in 3.1 this shows that
VA(Mi/Mi+1) coincides with the Zariski closureOχ for all i ≤ l. But then (3.3.1)
yieldsVA(I ) = Oχ , completing the proof. ut

3.4. Recall that a two-sided idealI of U(g) is calledcompletely prime(respectively,
primitive) if U(g)/I is a domain (respectively, ifI is the annihilator of a simpleg-
module). Forn ∈ Z+ the setYn := {ψ ∈ g∗

| dim(Ad∗G)ψ = n} is locally closed in
the Zariski topology ofg∗. A (locally closed) subset ofg∗ is called asheetif it coincides
with an irreducible component of one of the locally closed setsYn. It is well-known that
each sheet isG-invariant and contains a unique nilpotent coadjoint orbit (such an orbit
may lie in several sheets, however).

Conjecture 3.1. Let e be an arbitrary nilpotent element ing and letχ = χe be the
corresponding linear function ong.

1. The algebraHχ contains an ideal of codimension 1.
2. The ideals of codimension 1 inHχ are finite in number if and only ifOχ is a sheet

in g∗.
3. For any idealI of codimension 1 inHχ the idealĨ = AnnU(g)(Qχ ⊗Hχ Hχ/I) of
U(g) is completely prime.

Our last conjecture provides a hypothetical converse to Theorem 3.1(ii). It indicates that
each categoryCχ is potentially very important for the theory of primitive ideals.

Conjecture 3.2. Let χ be as above and letI be a primitive ideal ofU(g) whose associ-
ated variety equalsOχ . Then there exists a simpleg-moduleM ∈ Cχ with dim Wh(M) <
∞ such thatI = AnnU(g)M.
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4. Minimal nilpotent algebras: a quadratic relation

4.1. Let h be a Cartan subalgebra ofg, and let8 be the root system ofg relative toh.
Let {eα | α ∈ 8}∪{hα | α ∈ 8} be a Chevalley system ing with each triple(eα, hα, e−α)
being ansl2-triple in g. Let5 = {α1, . . . , α`} be a basis of simple roots in8 with the
elements in5 numbered as in [4], and let{$1, . . . ,$`} be the corresponding system of
fundamental weights inh∗. Let8+ and8− be the positive and the negative system of
8 relative to5, respectively, and letP denote the lattice of integral weights inh∗. As
usual, givenλ,µ ∈ P we writeλ ≥ µ if and only if λ − µ is a sum of positive roots.
Let P+

= {
∑
i ai$i | i ∈ Z+}, the set of dominant weights, andρ = $1 + · · · +$` =

1
2

∑
α∈8+ α, the half-sum of positive roots. LetW be the Weyl group of the root system8;

it is generated by reflectionssα with α ∈ 8. Thedot actionof W on h∗ is defined by
settingw �λ = w(λ+ ρ)− ρ for all w ∈ W andλ ∈ h∗.

If g is not of type A or C, there is a unique long root in5 linked with the lowest root
−α̃ ∈ 8− on the extended Dynkin diagram ofg; we call it β. For g of type An and Cn
put β = αn. In this paper, we will be mostly concerned with thesl2-triple (e, h, f ) =

(eβ , hβ , e−β). Recall that the invariant form(·, ·) on g has the property that(e, f ) = 1.
This entails(h, h) = 2. It is well-known that the restriction of(·, ·) to h is nondegenerate
and induces aW -invariant scalar product on theQ-span ofP in h∗. More precisely, for
all λ,µ ∈ h∗ we have(λ, µ) = (tλ, tµ) wheretλ, tµ ∈ h are such thatλ = (tλ, ·) and
µ = (tµ, ·). Put 〈λ, α〉 = 2(λ, α)/(α, α) for all λ ∈ h∗ andα ∈ 8. Since(·, ·) is a
multiple of the Killing form ofg, there is a constantc ∈ k× such thatβ(x) = c(hβ , x)

for all x ∈ h. The equalityβ(hβ) = 2 = (hβ , hβ) now shows thatc = 1 andtβ = hβ .
Hence(γ, γ ) = 2 for all long rootsγ ∈ 8.

From now on we assume thatχ = (e, ·) wheree = eβ . It is well-known that the
adjoint action ofh = hβ ong gives rise to a shortZ-grading

g = g(−2)⊕ g(−1)⊕ g(0)⊕ g(1)⊕ g(2)

with g(i) = {x ∈ g | [h, x] = ix} for all i ∈ Z and withg(1)⊕ g(2) ∼= g(−1)⊕ g(−2)
isomorphic to a Heisenberg Lie algebra. We also haveg(2) = ke, g(−2) = kf , and
g(0) = cg(h). Thesl2-theory implies that

cg(e) = g(0)] ⊕ g(1)⊕ g(2)

whereg(0)] = {x ∈ g(0) | [x, e] = 0}. More importantly for our later deliberations,
g(0)] is the orthogonal complement tokh in g(0) and hence coincides with the image of
the Lie algebra endomorphism

] : g(0) → g(0), x 7→ x −
1
2(x, h)h.

In particular,g(0)] is an ideal of codimension 1 in the Levi subalgebrag(0). It is well-
known that outside type A the centre ofg(0) coincides withkh andg(1) is an irreducible
adg(0)]-module. As a consequence, ifg is not of type A, theng(0)] = [g(0), g(0)] is the
only ideal of codimension 1 ing(0) andcg(e) = [cg(e), cg(e)] is a perfect Lie algebra.
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Note that in the present caseg(0)] = LieC(e). Puthe := h ∩ cg(e), a Cartan sub-
algebra ing(0)]. It can be assumed without loss of generality thathe = Lie Te where
Te is as in Section 2. We can choosez1, . . . , zs, zs+1, . . . , z2s to be root vectors forh.
Moreover, we can (and will) assume that thezi ’s with 1 ≤ i ≤ s are root vectors ing(−1)
corresponding tonegativerootsγi ∈ 8−. Then eachz∗i with 1 ≤ i ≤ s is a root vector in
g(−1) corresponding toγ ∗

i := −β − γi ∈ 8+.

4.2. SetH := Hχ and identifyH with µ̃(H). Given a ∈ zχ (0) andw ∈ zχ (1) we
define the following elements ofAe:

ψa :=
1

2

2s∑
i=1

[a, z∗i ]zi, ϕw :=
1

3

2s∑
i,j=1

[wz∗i z
∗

j ]zjzi + zw.

Recall that
∑2s
i=1[w, z∗i ]zi = −

∑2s
i=1[w, zi ]z∗i . The computation used in the proof of

Lemma 2.5 shows that

[z∗k , ϕw] =

2s∑
i=1

[wz∗i z
∗

k ]zi . (4.2.1)

Notice that inU(pe)⊗ Aop
e we have

∑2s
i=1[w, z∗i ] ⊗ zi = −

∑2s
i=1[w, zi ] ⊗ z∗i , and

[a ⊗ f, b ⊗ g] = [a, b] ⊗ gf − ba ⊗ [f, g] (∀a, b ∈ U(pe), ∀f, g ∈ Ae).

Keeping this in mind it is straightforward to see that for allu, v ∈ zχ (1),

[2u,2v] =

[
u⊗ 1 +

2s∑
i=1

[u, z∗i ] ⊗ zi + 1 ⊗ ϕu, v ⊗ 1 +

2s∑
i=1

[v, z∗i ] ⊗ zi + 1 ⊗ ϕv

]
= [u, v] ⊗ 1 +

2s∑
i=1

[[u, v], z∗i ] ⊗ zi +

2s∑
i,j=1

[u, zi ] ⊗ [z∗i , ϕv]

−

2s∑
i,j=1

[v, zi ] ⊗ [z∗i , ϕu] +

2s∑
i,j=1

[[u, z∗i ], [v, z
∗

j ]] ⊗ zjzi

+

2s∑
i=1

[v, z∗i ][u, zi ] ⊗ 1 − 1 ⊗ [ϕu, ϕv]. (4.2.2)

In view of (4.2.1) and (2.5.3) we have

2s∑
i=1

[x, zi ] ⊗ [z∗i , ϕy ] =

2s∑
i,j=1

[x, zi ] ⊗ [yz∗j z
∗

i ]zj =

∑
i,j,k

[x, zi ] ⊗ 〈z∗k , [yz
∗

j z
∗

i ]〉zkzj

=

∑
i,j,k

[x, 〈z∗i , [yz
∗

j z
∗

k ]〉zi ] ⊗ zkzj +

∑
i,j,k

[x, zi ] ⊗ zk〈z
∗

j , [y, [z
∗

i , z
∗

k ]] 〉zj

=

2s∑
i,j=1

[x, [yz∗j z
∗

i ]] ⊗ zizj +

2s∑
i=1

[x, z∗i ] ⊗ zi [y, f ] (4.2.3)
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for all x, y ∈ zχ (1). Combining this with (4.2.2) and taking into account that

2s∑
i,j=1

[[u, z∗i ], [v, z
∗

j ]] ⊗ zizj =

2s∑
i,j=1

[[u, z∗i ], [v, z
∗

j ]] ⊗ zjzi −

2s∑
i=1

[[u, zi ], [v, z
∗

j ]] ,

we now obtain

[2u,2v] = [u, v] ⊗ 1 +

2s∑
i=1

[[u, v], z∗i ] ⊗ zi −

2s∑
i,j=1

[v, [uz∗j z
∗

i ]] ⊗ zizj

−

2s∑
i=1

[v, z∗i ] ⊗ zi [u, f ] +

2s∑
i,j=1

[u, [vz∗j z
∗

i ]] ⊗ zizj +

2s∑
i=1

[u, z∗i ] ⊗ zi [v, f ]

+

2s∑
i,j=1

[[u, z∗i ], [v, z
∗

j ]] ⊗ zjzi +

2s∑
i=1

[v, z∗i ][u, zi ] ⊗ 1 − 1 ⊗ [ϕu, ϕv]

= (f, [u, v])
(
e ⊗ 1 +

2s∑
i=1

[e, z∗i ] ⊗ zi +

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi

)

−

2s∑
i,j=1

[[u, z∗i ], [v, z
∗

j ]] ⊗ zjzi +

2s∑
i=1

([u, z∗i ] ⊗ zi [v, f ] − [v, z∗i ] ⊗ zi [u, f ])

+

2s∑
i=1

[u, zi ][v, z
∗

i ] ⊗ 1 − 1 ⊗ [ϕu, ϕv]. (4.2.4)

Next observe that [a, z∗i ]
]
= [a, zi ] −

1
2(h, [a, z

∗

i ])h, and

2s∑
i=1

(h, [a, z∗i ])zi =

2s∑
i=1

(e, [f, [a, z∗i ]])zi =

2s∑
i=1

〈z∗i , [a, f ]〉zi = [a, f ]

for all a ∈ zχ (1). Since
∑2s
i=1 z

∗

i zi = s (as elements inAe), it follows from (4.2.3) that

2s∑
i,j=1

[x, zi ]
]
⊗ [[y, z∗i ]

], z∗j ]zj =

2s∑
i,j=1

[x, zi ]
]
⊗ [yz∗i z

∗

j ]zj +
s

2

2s∑
i=1

(h, [y, z∗i ])[x, zi ]
]
⊗ 1

=

2s∑
i,j=1

[x, zi ] ⊗ [yz∗i z
∗

j ]zj −
1

2

2s∑
i,j=1

(h, [x, z∗i ])h⊗ [yz∗i z
∗

j ]zj +
s

2
[x, [y, f ]] ] ⊗ 1

=
s

2
[x, [y, f ]] ] ⊗ 1 +

2s∑
i,j=1

[x, zi ] ⊗ [yz∗j z
∗

i ]zi +

2s∑
i=1

[x, z∗i ] ⊗ [y, f ]zi

+
1

2

2s∑
i=1

h⊗ [[y, [x, f ]] , z∗j ]zj =
s

2
[x, [y, f ]] ] ⊗ 1 +

1

2

2s∑
i=1

h⊗ [[y, [x, f ]] , z∗i ]zi

+

2s∑
i,j=1

[x, [yz∗j z
∗

i ]] ⊗ zizj +

2s∑
i=1

[x, z∗i ] ⊗ zi [y, f ] +

2s∑
i=1

[x, z∗i ] ⊗ [y, f ]zi
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for all x, y ∈ zχ (1). But then
2s∑

i,j=1

[x, zi ]
]
⊗ [[y, z∗i ]

], z∗j ]zj +

2s∑
i,j=1

[y, z∗i ]
]
⊗ [[x, zi ]

], z∗j ]zj

=

2s∑
i,j=1

[x, zi ]
]
⊗ [[y, z∗i ]

], z∗j ]zj −

2s∑
i,j=1

[y, zi ]
]
⊗ [[x, z∗i ]

], z∗j ]zj

= (f, [x, y])

(
s

2
h] ⊗ 1 −

1

2
h⊗

2s∑
i=1

[h, zi ]
∗zi +

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi

)

−2
2s∑

i,j=1

[[x, z∗i ], [y, z
∗

j ]] ⊗ zjzi −

2s∑
i=1

[[x, zi ], [y, z
∗

i ]] ⊗ 1

+ 2
2s∑
i=1

([x, z∗i ] ⊗ zi [y, f ] − [y, z∗i ] ⊗ zi [x, f ])− [[x, y], f ] ⊗ 1. (4.2.5)

We used the fact that
2s∑
i=1

[x, z∗i ] ⊗ [[y, f ], zi ] =

2s∑
i=1

[x, zi ] ⊗ 〈z∗i , [y, f ]〉 = −[x, [y, f ]] ⊗ 1.

To ease notation, set

A(u, v) := [2u,2v] −
1

2

2s∑
i=1

(2[u,zi ]]2[v,z∗i ]
] +2[v,z∗i ]

]2[u,zi ]]).

Note that
2s∑
i=1

(2[u,zi ]]2[v,z∗i ]
] +2[v,z∗i ]

]2[u,zi ]]) =

2s∑
i=1

([u, zi ]
][v, z∗i ]

]
+ [v, z∗i ]

][u, zi ]
])⊗ 1

+

2s∑
i,j=1

[u, zi ]
]
⊗ [[v, z∗i ]

], z∗j ]zjzi +

2s∑
i,j=1

[v, z∗i ]
]
⊗ [[u, zi ]

], z∗j ]zjzi + 1 ⊗ ψ(u, v),

whereψ(u, v) =
1
4

∑2s
i=1(ψ[v,z∗i ]

]ψ[u,zi ]] + ψ[u,zi ]]ψ[v,z∗i ]
]) ∈ Ae. Since

2s∑
i=1

(x, z∗i )zi = −

2s∑
i=1

(x, zi)z
∗

i = [x, f ] (∀x ∈ zχ (1)),

we have
2s∑
i=1

([u, zi ]
][v, z∗i ]

]
+ [v, z∗i ]

][u, zi ]
]) =

2s∑
i=1

([u, zi ][v, z
∗

i ] + [v, z∗i ][u, zi ])

−

2s∑
i=1

((u, zi)h[v, z∗i ] + (v, z∗i )h[u, zi ] −
1
4(u, zi)(v, z

∗

i )h
2
−

1
4(v, z

∗

i )(u, zi)h
2)

= −
1
2(e, [u, v])h2

+ 2
2s∑
i=1

[u, zi ][v, z
∗

i ] −

2s∑
i=1

[[u, zi ], [v, z
∗

i ]] .
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Sinceh] = 0 andh⊗
∑2s
i=1[h, z∗i ]zi = −sh⊗ 1, we now combine the above with (4.2.4)

and (4.2.5) to deduce that

A(u, v) =
1
2(e, [u, v])

(
4e + h2

− (s + 2)h

2
⊗ 1 + 2

2s∑
i=1

[e, z∗i ] ⊗ zi

+

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi

)
+ 1 ⊗ ([ϕv, ϕu] −

1
2ψ(u, v)). (4.2.6)

4.3. Recall thatzχ (0) = g(0)] is an ideal of codimension 1 in the Levi subalgebra
g(0) = cg(h) of g. Let {ai} and{bi} be dual bases ofzχ (0)with respect to the restriction of
(·, ·) to zχ (0), and letC0 =

∑
i aibi be the corresponding Casimir element ofU(zχ (0)).

Set2Cas :=
∑
i 2ai2bi , an element ofH . Although2Casis not central inH , Lemma 2.4

shows that it commutes with all operators2x for x ∈ zχ (0). Since the skew-symmetric
form 〈·, ·〉 is invariant underzχ (0) andkh is orthogonal tog(0)] with respect to(·, ·), we
have

2s∑
i,j=1

[ez∗i z
∗

j ]] ⊗ zjzi =

∑
i,j,k

(bk, [ez
∗

i z
∗

j ]]])ak ⊗ zjzi =

∑
i,j,k

(bk, [ez
∗

i z
∗

j ]])ak ⊗ zjzi

=

∑
i,j,k

([bkz
∗

j z
∗

i ], e)ak ⊗ zjzi = −

∑
i,j,k

〈z∗i , [bkz
∗

j ]〉ak ⊗ zjzi

= −

∑
i,j,k

〈z∗j , [bkz
∗

i ]〉ak ⊗ zjzi = −

∑
k,i

ak ⊗ [bk, z
∗

i ]zi .

Interchanging the r̂oles of{ai} and{bi} we now obtain

2s∑
i,j=1

[ez∗i z
∗

j ]] ⊗ zjzi = −

∑
k,i

bk ⊗ [ak, z
∗

i ]zi .

Next observe that

2s∑
i,j=1

[ez∗i z
∗

j ]] ⊗ zjzi =

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi −
1

2

2s∑
i,j=1

(h, [ez∗i z
∗

j ])h⊗ zjzi

=

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi +
1

2

2s∑
i,j=1

([[h, zj ], z
∗

i ], e)h⊗ z∗j zi

=

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi +
sh

2
⊗ 1.

It follows that

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi = −
sh

2
⊗ 1 −

1

2

( ∑
i,j

ai ⊗ [bi, z
∗

j ]zj +

∑
i,j

bi ⊗ [ai, z
∗

j ]zj
)
.
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As a result,

2Cas =

∑
i

aibi ⊗ 1 +
1

2

∑
i,j

(ai ⊗ [bi, z
∗

j ]zj + bi ⊗ [ai, z
∗

j ]zj )+ 1 ⊗ c′0

=

(
−
sh

2
+

∑
i

aibi

)
⊗ 1 −

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi + 1 ⊗ c′0, (4.3.1)

wherec′0 =
1
4

∑
i,j,k[bi, z

∗

j ]zj [ai, z∗k ]zk ∈ Ae.

4.4. Let C denote the Casimir element ofU(g) corresponding to the invariant form
(·, ·). Clearly,C induces ag-endomorphism of̂Qχ , and hence can be viewed as a central
element ofH . To determinẽµ(C) we first observe that the (ordered) sets

{e, h, f } ∪ {ai} ∪ {[e, z∗i ] | 1 ≤ i ≤ 2s} ∪ {zi | 1 ≤ i ≤ 2s}

and
{f, h/2, e} ∪ {bi} ∪ {zi | 1 ≤ i ≤ 2s} ∪ {[e, z∗i ] | 1 ≤ i ≤ 2s}

are dual bases ofg with respect to(·, ·). Since

2s∑
i=1

[zi, [e, z
∗

i ]] =

2s∑
i=1

([[zi, e], z
∗

i ] + [e, [zi, z
∗

i ]]) = −

2s∑
i=1

([[z∗i , e], zi ] + [e, [z∗i , zi ]]),

we have
∑2s
i=1[zi, [e, z∗i ]] = −sh. As ρ̂χ (f )1χ = (e, f )1χ = 1χ , it follows that

C(1χ ) =

(
2e +

h2

2
− h+

∑
i

aibi + 2
2s∑
i=1

[e, z∗i ]zi +

2s∑
i=1

[zi, [e, z
∗

i ]]

)
⊗ 1χ

=

(
2e +

h2

2
− (s + 1)h+

∑
i

aibi + 2
2s∑
i=1

[e, z∗i ]zi

)
⊗ 1χ .

As a consequence,

µ̃(C) =

(
2e +

h2

2
− (s + 1)h+

∑
i

aibi

)
⊗ 1 + 2

2s∑
i=1

[e, z∗i ] ⊗ zi . (4.4.1)

In view of (4.3.1) and the convention of 4.1 this yields

C −2Cas =

(
2e +

h2
− (s + 2)h

2

)
⊗ 1

+ 2
2s∑
i=1

[e, z∗i ] ⊗ zi +

2s∑
i,j=1

[ez∗i z
∗

j ] ⊗ zjzi − 1 ⊗ c′0. (4.4.2)
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Proposition 4.1. Letu, v ∈ zχ (1). Then the following relation holds inH :

[2u,2v] =
1

2
(f, [u, v])(C −2Cas− c0)+

1

2

2s∑
i=1

(2[u,zi ]]2[v,z∗i ]
] +2[v,z∗i ]

]2[u,zi ]]),

wherec0 ∈ k is a constant depending ong.

Proof. SetB(u, v) := A(u, v)−
1
2(f, [u, v])(C −2Cas), an element inH . From (4.2.6)

and (4.4.2) we deduce that̃µ(B(u, v)) = 1 ⊗ b(u, v) for someb(u, v) ∈ Ae. In con-
junction with [31, Lemma 4.5] this shows thatb(u, v) ∈ k for all u, v ∈ zχ (1). In other
words,b : zχ (1) × zχ (1) → k, (u, v) 7→ b(u, v), is a bilinear form onzχ (1). In view
of Lemma 2.5, thezχ (0)-invariance of〈·, ·〉, and the Jacobi identity, this form is invari-
ant underzχ (0). On the other hand, it is well-known (and easily seen) that ifg is not of
type A, thenzχ (1) is an irreduciblezχ (0)-module, and ifg is of type A andzχ (1) 6= 0,
then zχ (1) ∼= M ⊕ M∗ whereM is an irreduciblezχ (0)-module such thatM 6∼= M∗.
Therefore, in all casesb = c0(f, [·, ·]) for somec0 ∈ k. This completes the proof. ut

Let {x1, . . . , xn} and{u1, . . . , u2s} be bases ofzχ (0) andzχ (1), respectively, and letH+

denote thek-span of{
2i1x1

· · ·2inxn ·2
j1
u1 · · ·2

j2s
u2s · (C − c0)

l
∣∣∣ ∑

ik +

∑
jk + l ≥ 1

}
,

a subspace of codimension 1 inH ; see [31, Theorem 4.6(ii)].

Corollary 4.1. The subspaceH+ is a two-sided ideal of the minimal nilpotent alge-
braH . If g is not of typeA, thenH+ is the only ideal of codimension1 in H .

Proof. We need to show thath · h′
∈ H+ for all h, h′

∈ H+. SinceC − c0 ∈ Z(H), it
suffices to show that2x · H+

⊂ H+ for all x ∈ zχ (0) ∪ zχ (1). Using Lemma 2.4 it is

easy to observe that the span of all2
i1
x1 · · ·2

in
xn with

∑n
k=1 ik ≥ 1 is stable under the left

multiplications by2x with x ∈ zχ (0). Thus we may assume thatx ∈ zχ (1). Lemma 2.5
(in conjunction with [31, Theorem 4.6(ii)]) now provides a further reduction: it suffices to
show that2x · (2uj1

· · ·2ujN
) ∈ H+ for all x ∈ zχ (1) and allj1, . . . , jN ∈ {1, . . . ,2s}.

This follows from Proposition 4.1 and Lemma 2.5 by induction onN .
Supposeg is not of type A. Then only one node of the extended Dynkin diagram of

g is linked with the node corresponding to−α̃. From this it is immediate that the derived
subalgebra ofcg(hα̃) is semisimple and has codimension 1 incg(hα̃). Since the rootsβ
and−α̃ lie in the sameW -orbit, the subalgebrascg(hα̃) andg(0) = cg(h) are conjugate
under AdG. It follows thatzχ (0) = [g(0), g(0)] is semisimple.

Let I be any ideal of codimension 1 inH . Thenxy − yx ∈ I for all x, y ∈ H .
Sincezχ (0) is semisimple, we havezχ (0) = [zχ (0), zχ (0)]. In view of Lemma 2.4 this
implies that2x ∈ I for all x ∈ zχ (0). We have already mentioned that in the present
casezχ (1) is an irreduciblezχ (0)-module. Sozχ (1) = [zχ (0), zχ (1)], yielding2u ∈ I

for all u ∈ zχ (1); see Lemma 2.5. SinceI is a subalgebra ofH containingzχ (0) ∪

zχ (1), Proposition 4.1 entailsC − c0 ∈ I . As a consequence,H+
⊆ I . SinceH+

χ has
codimension 1 inH , we conclude thatI = H+, as desired. ut
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5. Primitive ideals and Goldie rank

5.1. We retain the assumptions of the previous section and denote byC the category
Cχ for χ = (eβ , ·). According to (3.1), givenM ∈ C one hasM ∼= Qχ ⊗H M0 where
M0 = Wh(M). Let {mi | i ∈ I } be a basis ofM0. It is immediate from [31, p. 52] that
the vectors

{hlz
i1
1 · · · ziss ⊗mj | j ∈ I ; l, ii, . . . , is ∈ Z+}

form a basis ofQχ ⊗H M0 overk. We can thus identifyM andk[h, z1, . . . , zs ] ⊗M0 as
vector spaces overk. Recall that [zi, zj ] = 0 and [h, zi ] = −zi for all i, j ≤ s.

Let 1 denote the automorphism of the polynomial algebrak[h] such that1(h) =

h + 1. Clearly,1−1(h) = h − 1. Let 〈1〉 stand for the cyclic subgroup of Aut(k[h])
generated by1. The skew group algebrak[h] ∗ 〈1〉 has the set{hi1j | i ∈ Z+, j ∈ Z}

as ak-basis and the following relations hold:

1i · hk = (h+ i)k ·1i (i ∈ Z, k ∈ Z+).

Let Ae := (k[h] ∗ 〈1〉) ⊗ Ae, an associative algebra overk, and identify the Weyl
algebraAe and the skew group algebrak[h] ∗ 〈1〉 with the subalgebrask ⊗ Ae and
(k[h] ∗ 〈1〉)⊗ k of Ae, respectively. Define an involutionτ ∈ Aut(Ae) by setting

τ(zi) = −zi, τ (∂i) = −∂i, τ (h) = h, τ(1k) = (−1)k1k (1 ≤ i ≤ s, k ∈ Z).

The polynomial algebrak[h, z1, . . . , zs ] = k[h][z1, . . . , zs ] has a naturalAe-module
structure such thath.f (h, z1, . . . , zs) = hf (h, z1, . . . , zs) and1k.f (h, z1, . . . , zs) =

f (h+k, z1, . . . , zs). As thisAe-module is faithful, we will identifyAe with a subalgebra
of End(k[h, z1, . . . , zs ]). Since12k

∈ Aτ
e for all k ∈ Z and1 ⊗ zi,1 ⊗ ∂i ∈ Aτ

e for
all i ≤ s, it is easy to see thatk[h, z1, . . . , zs ] remains irreducible when restricted to the
fixed point algebraAτ

e .
Let I be any two-sided ideal ofH . SinceI is σ -stable by Corollary 2.1, the ideal

Ae ⊗ I of the algebraAe ⊗H is invariant under the involutionτ ⊗ σ of Ae ⊗H . Hence
τ ⊗ σ indices an automorphism of order two on the algebraAe ⊗ (H/I). We mention for
further references that(Ae ⊗ (H/I))τ⊗σ contains the images inAe ⊗ (H/I) of Aτ

e ⊗ k,
1 ⊗2a , and1−1

⊗2u for all a ∈ zχ (0) andu ∈ zχ (1).

5.2. Recall that in our present setting the elementf is a root vector forh corresponding
to −β. Since adf is locally nilpotent onU(g), the setSf := {f i | i ∈ Z+} is an Ore
set inU(g); see [13, (11.2)]. We denote byU(g)f the localizationS−1

f U(g). Sincef
commutes with thezi ’s andf hm = (h + 2)mf for all m ∈ Z+, it follows thatf acts on
M = k[h, z1, . . . , zs ] ⊗M0 as12

⊗ idM0 (one should keep in mind thatχ(f ) = 1). In
particular,f acts invertibly onM. From this it follows that the localizationS−1

f M can be
identified withM; see [13, (11.4)]. As a result, the action ofU(g) onM extends uniquely
to a representation ofU(g)f in EndM. We note for completeness that the enveloping
algebraU(g) is canonically identified with a subalgebra ofU(g)f .
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Theorem 5.1. Let M ∈ C and identifyM with k[h, z1, . . . , zs ] ⊗ M0 whereM0 =

Wh(M). Let ρ̃ : U(g)f → EndM andρ : H → EndM0 be the representations ofU(g)f
andH induced by the action ofg onM. Then the following hold:

(i) (1⊗ idM0) ◦ ρ̃(U(g)f ) ◦ (1⊗ idM0)
−1

= ρ̃(U(g)f );
(ii) ρ̃(f ) = 12

⊗ idM0;
(iii) Ae ⊗ ρ(H) = ρ̃(U(g)f )⊕ ρ̃(U(g)f )(1⊗ idM0);

(iv) ρ̃(U(g)f ) = (Ae ⊗ ρ(H))τ⊗σ .

Proof. Put id = idM0. We have already mentioned thatρ̃(f ) = 12
⊗ id, showing (ii).

Sincezihm = (h+ 1)mzi for all m ∈ Z+ andi ≤ 2s, it follows that

ρ̃(h) = h⊗ id, ρ̃(zi) = (1 ◦ zi)⊗ id, ρ̃(zi+s) = (1 ◦ ∂i)⊗ id (1 ≤ i ≤ s).

All these are inAτ
e ⊗ id ⊂ (Ae ⊗ ρ(H))τ⊗σ . Now let a ∈ zχ (0) and write [a, zi ] =∑2s

i=1µijzj for 1 ≤ i ≤ 2s, whereµij ∈ k. Note that for 1≤ i, j ≤ s we have
[azizj ] = µi,j+sf , and

az
k1
1 · · · zkss =

s∑
i=1

kiz
k1
1 · · · z

ki−1
i · · · zkss [a, zi ] +

ki(ki − 1)

2

s∑
i=1

z
k1
1 · · · z

ki−2
i · · · zkss [az2

i ]

+ kikj
∑

1≤i<j≤s

z
k1
1 · · · z

ki−1
i · · · z

kj−1
j · · · zkss [azizj ] + z

k1
1 · · · zkss a

for all ki ∈ Z+. Since〈·, ·〉 is zχ (0)-invariant, it must be thatµi+s,j+s = −µji , µi,j+s =

µj,i+s , andµi+s,j = µj+s,i where 1 ≤ i, j ≤ s. In view of Lemma 2.3 and the
fact thatzi+s ∈ mχ for all i ≤ s, we must haveρ̃(a)(1 ⊗ m) = 1 ⊗ ρ(2a)(m) −

1
2

∑s
i=1[a, zi+s ]zi ⊗ 1 for allm ∈ M0. In conjunction with our earlier remarks (and the

fact that [a, h] = 0) this yields

ρ̃(a) = 1 ⊗

(
ρ(2a)+

s∑
i=1

µii

)
+

( s∑
i,j=1

µijzj∂i

)
⊗ id

+

( s∑
i=1

µi,i+s

2
∂2
i +

∑
1≤i<j≤s

µi,j+s∂i∂j

)
⊗ id

−

( s∑
i=1

µi,i+s

2
z2
i +

∑
1≤i<j≤s

µi,j+szizj

)
⊗ id. (5.2.1)

This shows thatρ̃(a) commutes with1 ⊗ id and lies in(Ae ⊗ ρ(H))τ⊗σ . Since all
operators(12

◦ zizj )⊗ id, (12
◦ ∂i∂j )⊗ id, and(12

◦ zj∂i)⊗ id are inρ̃(U(nχ )) by our
remarks earlier in the proof, and sinceρ̃(f−1) = 1−2

⊗ id, it also follows that 1⊗ρ(2a)
is in ρ̃(U(g)f ) for all a ∈ zχ (0).
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Now letu ∈ zχ (1). First note that [u, zi ] = [u, zi ]]+ 1
2(u, zi)h anduhm = (h−1)mu

for all i ≤ s andm ∈ Z+. Next observe that

uz
k1
1 · · · zkss =

s∑
i=1

z
k1
1 · · · z

ki−1
i · · · zkss [u, zi ] +

s∑
i=1

ki(ki − 1)

2
z
k1
1 · · · z

ki−2
i · · · zkss [uz2

i ]

+

∑
1≤i<j≤s

kikjz
k1
1 · · · z

ki−1
i · · · z

kj−1
j · · · zkss [uzizj ]

+

∑
1≤i<j<l≤s

kikjklz
k1
1 · · · z

ki−1
i · · · z

kj−1
j · · · z

kl−1
l · · · zkss [uzizjzl ]

+

∑
1≤i<j≤s

ki(ki − 1)

2
kjz

k1
1 · · · z

ki−2
i · · · z

kj−1
j · · · zkss [uz2

i zj ]

+

∑
1≤i<j≤s

ki
kj (kj − 1)

2
z
k1
1 · · · z

ki−1
i · · · z

kj−2
j · · · zkss [uziz

2
j ]

+

s∑
i=1

ki(ki − 1)(ki − 2)

6
z
k1
1 · · · z

ki−3
i · · · zkss [uz3

i ] + z
k1
1 · · · zkss u,

and

z
k1
1 · · · zkss h = hz

k1
1 · · · zkss − [h, zk1

1 · · · zkss ] = hz
k1
1 · · · zkss + (k1 + · · · + ks)z

k1
1 · · · zkss

=

(
h+

s∑
i=1

zi∂i

)
(z
k1
1 · · · zkss ).

This shows that for allm ∈ M0 we have

s∑
i=1

z
k1
1 · · · z

ki−1
i · · · zkss ρ̃([u, zi ])(1 ⊗m)

=

((
h+

s∑
i=1

zi∂i

)
◦

( s∑
i=1

(u, zi)

2
∂i

)
+

s∑
i=1

∂i ⊗ ρ(2[u,zi ]])

)
(z
k1
1 · · · zkss ⊗m)

−
1

2

s∑
i,j=1

z
k1
1 · · · z

ki−1
i · · · zkss ρ̃([[u, zi ]

], zj+s ]zj )(1 ⊗m).

In view of Lemma 2.5 we now get

z
k1
1 · · · zkss ρ̃(u)(1 ⊗m) = (id ⊗ ρ(2u))(z

k1
1 · · · zkss ⊗m)

− z
k1
1 · · · zkss

( s∑
i=1

zi ρ̃([u, zi+s ])(1 ⊗m)+
1

3

s∑
i,j=1

ρ̃([uzi+szj+s ])(zjzi ⊗m)

+
2

3

s∑
i=1

ρ̃([uzi+szi ])(1 ⊗m)+ ρ̃(zu)(1 ⊗m)

)
.
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Together with the above remarks this says thatρ̃(u) is a linear combination of the follow-
ing operators:(

h+

s∑
i=1

zi∂i

)
◦

( s∑
i=1

(u, zi)

2
∂i

)
◦1−1

⊗ id,
s∑
i=1

(∂i ◦1−1)⊗ ρ(2[u,zi ]]),(
h+

s∑
i=1

zi∂i

)
◦

( s∑
i=1

(u, zi+s)

2
zi

)
◦1−1

⊗ id,
s∑
i=1

(zi ◦1−1)⊗ ρ(2[u,zi+s ]]),

(∂i∂j∂k ◦1−1)⊗ id, (zizjzk ◦1−1)⊗ id, (zizj∂k ◦1−1)⊗ id,

(zk∂i∂j ◦1−1)⊗ id, (∂i ◦1−1)⊗ id, (zi ◦1−1)⊗ id, 1−1
⊗ ρ(2u),

wherei, j, k ≤ s. But thenρ̃(u) ∈ (Ae⊗ρ(H))
σ⊗τ and(1⊗id)ρ̃(u)(1⊗id)−1

−ρ̃(u) ∈

Aτ
e ⊗ id. As Aτ

e ⊗ id ⊂ ρ̃(U(g)f ) by our earlier remarks, this yields

(1⊗ id)ρ̃(x)(1⊗ id)−1
∈ ρ̃(U(g)f ) (∀x ∈

⋃
i≤1g(i)).

Sinceg(2) = [g(1), g(1)], we obtain (i) and the inclusioñρ(U(g)f ) ⊆ (Ae ⊗ ρ(H))σ⊗τ .
Notice that1−1

⊗ ρ(2u) ∈ Aτ
e ⊗ id + ρ̃(U(g)f ) for all u ∈ zχ (1) and 1⊗ ρ(2a) ∈

Aτ
e ⊗ id + ρ̃(U(g)f ) for all a ∈ zχ (0); see (5.2.1). Since the algebraH is generated by

the elements2x with x ∈ zχ (0) ∪ zχ (1), by Proposition 4.1, we get

1 ⊗ ρ(H) ⊂ ρ̃(U(g)f )+ ρ̃(U(g)f )(1⊗ id).

SinceAe = Aτ
e + Aτ

e1 and ρ̃(U(g)f ) ⊆ (Ae ⊗ ρ(H))σ⊗τ we derive (iii). Then (iv)
follows, completing the proof. ut

5.3. By [31, (6.2)], the restriction of the representationρ̃χ : U(g) → End(Qχ ) to the
centreZ(g) of U(g) is injective. Since any nonzero two-sided ideal ofU(g) intersects
Z(g) by [9, (4.2.2)], it follows thatρ̃χ is a faithful representation ofU(g). Note that
Qχ ∈ C and Wh(Qχ ) is canonically identified withH (viewed as the left regularH -
module). By 5.1,Qχ

∼= Qχ ⊗H H is then identified withAe ⊗ H as vector spaces
over k. Sinceρ̃ is faithful, it extends to a faithful representation ofU(g)f in End(Qχ )

(one should take into account thatρ̃χ (f ) is invertible). Since Wh(Qχ ) is identified with
the left regularH -module, Theorem 5.1(iv) yields̃ρχ (U(g)f ) ⊆ Ae ⊗ H . Applying
Theorem 5.1 in this situation we now obtain:

Corollary 5.1. Set1̂ = 1⊗ idH and identifyU(g)f with its image inAe ⊗H . Then the
following hold:

(i) 1̂U(g)f 1̂−1
= U(g)f ;

(ii) f = 1̂2;
(iii) Ae ⊗H = U(g)f ⊕ U(g)f 1̂;

(iv) U(g)f = (Ae ⊗H)τ⊗σ .
(v) (Ae ⊗H)nχ = k[1,1−1] ⊗H = (U(g)nχ )f ⊕ (U(g)nχ )f 1̂;

(vi) Z(H) ∼= Z(U(g)f ) ∼= Z(g).
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Proof. Parts (i)–(iv) follow from Theorem 5.1 and the discussion above. For (v), note that
(1◦zi)⊗1, (1◦∂i)⊗1 ∈ nχ for all i ≤ s (see the beginning of the proof of Theorem 5.1).
From this it is immediate that(Ae ⊗H)nχ = k[1,1−1] ⊗H . Sincef ∈ Z(U(g)nχ ) we
have(U(g)f )nχ = (U(g)nχ )f , hence the result.

For (vi), we first recall that the action of 1⊗ σ on Ae ⊗ H is induced by the adjoint
action of 1⊗2(zχ (0)) ⊂ 1 ⊗H . Consequently,

Z(H) ∼= Z(Ae ⊗H) = k ⊗ (H σ
∩ Z(H)) = (Z(Ae ⊗H))τ⊗σ ⊆ Z(U(g)f ),

by (iv). On the other hand,Z(U(g)f ) ⊆ Z((U(g)nχ )f ) ⊆ k[1,1−1] ⊗ Z(H), by (v).
Since [h,1] = −1, it must be thatZ(U(g)f ) ⊆ k ⊗ Z(H) = Z(Ae ⊗ H). Therefore,
Z(H) ∼= Z(U(g)f ).

It remains to show thatZ(U(g)f ) = Z(g). This is easy and must be well-known, but
we could not find a good reference. One can argue as follows: LetK(g) = FractU(g)
be the Lie field ofg. By [9, (4.3.2)], the centre ofK(g) coincides with FractZ(g). Let
z ∈ Z(U(g)f ). Thenz = f−dc for somec ∈ U(g) andd ∈ Z+. SinceZ(U(g)f ) ⊂

Z(K(g)), there area, b ∈ Z(g) such thataf d = bc. By a classical result of Kostant,
U(g) ∼= Z(g)⊗H(g) asZ(g)-modules, whereH(g) denotes the subspace ofU(g) spanned
by the powers of the nilpotent elements ofg; see [9, (8.2.4) and (8.5.5)]. Choose a basis
{ui} in H(g) with u1 = f d . Write c =

∑
i ziui with zi ∈ Z(g). Thena = bz1 andzi = 0

for i 6= 1, forcingz = f−dc = f−dz1f
d

= z1 ∈ Z(g). The result follows. ut

5.4. Recall that a two-sided idealI of an associative ringR is calledprime if I 6= R

and for any two two-sided idealsJ1, J2 the inclusionJ1J2 ⊆ I implies that eitherJ1 ⊆ I

or J2 ⊆ I . We let SpecR denote the set of all prime ideals ofR. Any primitive ideal ofR
is prime. The ringR is termedprime if (0) ∈ SpecR.

According to [9, (3.6.17)], ifR is Noetherian andS is an Ore set inR, then the map-
ping I 7→ S−1I sets up a bijection between the subset(SpecR)S := {I ∈ SpecR | I ∩ S

= ∅} of SpecR and SpecS−1R. On the other hand, the complement to(SpecU(g))Sf
= {I ∈ SpecU(g) | f n 6∈ I for all n ∈ Z+} in SpecU(g) consists of all prime ideals
of finite codimension inU(g); see [13, Lemma 13.17] for example. Thus the mapping
I 7→ S−1

f I is a bijection between the set of all prime ideals of infinite codimension in
U(g) and the set of all prime ideals ofU(g)f .

By Goldie’s theorem, the setS of all regular elements of a prime Noetherian ringR
is an Ore set inR and the localisationQ(R) := S−1R is isomorphic to the matrix algebra
Matn(K) over a noncommutative fieldK. BothK andn can be described intrinsically,
hence are uniquely determined byR. They are called theGoldie fieldand theGoldie rank
of R, respectively. We writen = rk(R).

5.5. Corollary 5.1(iv) allows us to identifyU(g)f with the subalgebra(Ae ⊗H)τ⊗σ of
Ae ⊗H . SinceAe = Aτ

e ⊕ Aτ
e1 andτ(1) = −1, we obtain the decomposition

U(g)f = Aτ
e ⊗H+ ⊕ Aτ

e1⊗H−

whereH+ = {x ∈ H | σ(x) = x} andH− = {x ∈ H | σ(x) = −x}. Let I be any
two-sided ideal ofH . We let Dim(H/I) denote the Gelfand–Kirillov dimension of the
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factor algebraH/I . SinceI is σ -stable (Corollary 2.1), we haveI = I+ ⊕ I− where
I± = I ∩H±. Put

Ĩf := Aτ
e ⊗ I+ ⊕ Aτ

e1⊗ I− and Ĩ := Ĩf ∩ U(g). (5.5.1)

Clearly, Ĩf andĨ are two-sided ideals ofU(g)f andU(g), respectively. LetOmin denote
the minimal nilpotent orbit(Ad∗G) · χ in g∗. Recall that

dimOmin = 2 dimmχ = 2(s + 1).

Theorem 5.2. The following are true:

(i) The mapI 7→ Ĩf sets up a bijection between the set of all two-sided ideals ofH and
the set of all two-sided ideals ofU(g)f . For any two-sided idealI ofH one has

Dim(U(g)f /Ĩf ) = Dim(H/I)+ dimOmin.

(ii) The mapI 7→ Ĩ is a bijection betweenSpecH and the set of all prime ideals of
infinite codimension inU(g). Furthermore,

Dim(U(g)/Ĩ ) = Dim(H/I)+ dimOmin (∀I ∈ SpecH).

Proof. (a) Let4 denote the set of all quadruples(m, n, i, j) with m ∈ Z+, n ∈ Z, and
i, j ∈ Zs+. Order the elements in4 lexicographically. Givenξ = (m, n, i, j) ∈ 4 define

aξ ∈ Ae by settingaξ = hm1nz
i1
1 · · · z

js
s ∂

j1
1 · · · ∂

js
s , where i = (i1, . . . , is) and j =

(j1, . . . , js). Any nonzerox ∈ Ae ⊗H can be written uniquely asx =
∑
ξ∈4(x) aξ ⊗ hξ

for some nonzerohξ ∈ H . Here4(x) is a finite subset of4 depending onx.
Let I be any two-sided ideal ofU(g)f = (Ae ⊗ H)τ⊗σ . Recall that the action ofσ

onH is induced by the adjoint action of2(zχ (0)). Since 1⊗2(zχ (0)) ⊂ (Ae ⊗H)τ⊗σ ,
the idealI is stable under the involution 1⊗ σ of Ae ⊗H . It follows thatI = I+ ⊕ I−

whereI± = {x ∈ I | (1⊗ σ)(x) = ±x}. Let x ∈ I+ ∪ I− and letξ0 = (m0, n0,a,b) be
the maximal element in4(x). Then there exists a polynomialfx(t) ∈ k[t ] such that

fx(adh) ◦

( s∏
i=1

(ad1⊗ ∂i)
ai ◦

s∏
i=1

(ad1⊗ zi)
bi

)
◦ (ad1̂2m0)(x) ∈ k×1N+n0 ⊗ hξ0

whereN = 2m0 +
∑s
i=1(ai + bi). As 1̂2 is invertible, it follows that1ε(x) ⊗ hξ0 ∈ I±,

whereε(x) = 0 if x ∈ I+ andε(x) = 1 if x ∈ I−. But thenaξ01
−ε(x)

⊗ 1 ∈ Aτ
e ⊗ k ⊂

(Ae ⊗H)τ⊗σ yielding aξ0 ⊗ hξ0 ∈ I±. Continuing this process one eventually observes
that aξ ⊗ hξ ∈ I± for all ξ ∈ 4(x). This implies that there is a graded subspaceI =

I+⊕I− inH = H+⊕H− such thatI = Aτ
e ⊗I+⊕Aτ

e1⊗I−. Since 1⊗H+∪1⊗H− ⊂

(Ae ⊗H)τ⊗σ and1̂2 is invertible, it follows thatI is a two-sided ideal ofH . As a result,
I = Ĩf , showing that the mapI 7→ Ĩf is surjective. The injectivity of this map is obvious.

(b) Let4≥0 be the subset of4 consisting of all(m, n, i, j) with n ≥ 0, and letA′
e denote

the k-span of allaξ with ξ ∈ 4≥0. Clearly,A′
e is a τ -invariant subalgebra ofAe. For

l ∈ Z+ we let A′

e,l denote thek-span of allaξ with ξ = (m, n, i, j) ∈ 4≥0 such that
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m + n +
∑s
k=1(ik + jk) ≤ l. It is easy to see that{A′

e,l | l ∈ Z+} is an increasing
τ -invariant filtration inA′

e and the corresponding graded algebra grA′
e is isomorphic

to the graded polynomial algebrak[X1, . . . , X2s+2] with all Xi having degree 1. Note
that ad(12) is locally nilpotent onA′

e and the algebraAe identifies with the localisation
(A′

e)12.
Let I be a two-sided ideal ofH . It follows from part (a) of this proof that the two-

sided ideal̃If ⊕ Ĩf 1̂ of Ae ⊗ H coincides withAe ⊗ I , so thatĨf = (Ae ⊗ I )τ⊗σ .
Therefore, the involutionτ ⊗σ acts on the algebraAe⊗ (H/I) ∼= (Ae⊗H)/(Ae⊗ I ) in
such a way that the quotientU(g)f /Ĩf identifies with(Ae ⊗ (H/I))τ⊗σ . Sincef = 1̂2,
it is straightforward to see that

(Ae ⊗ (H/I))τ⊗σ ∼= ((A′
e)12 ⊗ (H/I))τ⊗σ ∼= ((A′

e ⊗ (H/I))f̄ )
τ⊗σ

∼= ((A′
e ⊗ (H/I))τ⊗σ )f̄ ,

wheref̄ denotes the image off in Ae ⊗ (H/I). In view of [3, (6.3)] we then have

Dim(U(g)f /Ĩf ) = Dim((A′
e ⊗ (H/I))τ⊗σ ; (5.5.2)

see also [13, (11A.2)]. The Kazhdan filtration{H k
| k ∈ Z+} gives rise to the natural

filtration {(H/I)k = H k/(H k
∩ I ) | k ∈ Z+} of the algebraH/I . Thanks to [31, Theo-

rem 4.6(iii)], grH is a Noetherian commutativek-algebra. Hence so is the corresponding
graded algebra gr(H/I) ∼= grH/grI . Sinceσ preserves bothI and the Kazhdan filtra-
tion ofH , it induces an automorphism of the graded algebra gr(H/I).

Next we observe that the subspaces{
(A′

e ⊗ (H/I))k =

∑
i+j≤k

A′

e,i ⊗ (H/I)j
∣∣∣ k ∈ Z+

}
form an increasing filtration of the algebraA′

e ⊗ (H/I) such that

gr(A′
e ⊗ (H/I)) ∼= gr(A′

e)⊗ gr(H/I) ∼= k[X1, . . . , X2s+2] ⊗ gr(H/I).

By construction, the involutionτ ⊗ σ acts on the graded algebra gr(A′
e ⊗ (H/I)) and

(gr(A′
e ⊗ (H/I)))τ⊗σ ∼= gr((A′

e ⊗ (H/I))τ⊗σ )

as graded algebras. Since the morphism

Spec gr(A′
e ⊗ (H/I)) → Spec(gr(A′

e ⊗ (H/I)))τ⊗σ

induced by inclusion(gr(A′
e ⊗ (H/I)))τ⊗σ ↪→ gr(A′

e ⊗ (H/I)) is finite, the Noetherian
k-algebras(gr(A′

e ⊗ (H/I)))τ⊗σ and gr(A′
e)⊗ gr(H/I) have the same Krull dimension.

Since the Krull dimensions of the graded algebras(gr(A′
e ⊗ (H/I)))τ⊗σ and gr(H/I)

coincide with the degrees of their respective Hilbert polynomials, we derive that

Dim gr((A′
e ⊗ (H/I))τ⊗σ ) = 2(s + 1)+ Dim gr(H/I).
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On the other hand, it follows from [25, Proposition 8.6.6] that Dim gr(H/I) = Dim(H/I)
and Dim gr((A′

e ⊗ (H/I))τ⊗σ ) = Dim((A′
e ⊗ (H/I))τ⊗σ ). Combining this with (5.5.2)

we get (i).

(c) Let I ∈ SpecH and supposeJ1J2 ⊆ Ĩf for some two-sided idealsJ1 andJ2 of
U(g)f = (Ae ⊗ H)τ⊗σ . By part (a), there exist two-sided idealsJ1 andJ2 of H such
thatJi = Aτ

e ⊗ Ji,+ ⊕ Aτ
e1⊗ Ji,−, i = 1,2. Sincê12 is invertible, it is easy to see that

J1J2 ⊆ I . Then eitherJ1 ⊆ I or J2 ⊆ I , and hence eitherJ1 ⊆ Ĩf or J2 ⊆ Ĩf . As a
result,Ĩf ∈ SpecU(g)f andĨ = Ĩf ∩ U(g) ∈ SpecU(g).

Conversely, letI be a prime ideal of infinite codimension inU(g). The discussion
at the beginning of this subsection shows thatS−1

f I ∈ SpecU(g)f . By part (a) of this

proof, there is a two-sided idealI of H such thatS−1
f I = Aτ

e ⊗ I+ ⊕ Aτ
e1 ⊗ I−.

Clearly,I = Ĩf ∩ U(g) = Ĩ . If PQ ⊆ I for some two-sided idealsP,Q of H , then
P̃f Q̃f ⊆ S−1

f I, forcing eitherP̃f ⊆ S−1
f I or Q̃f ⊆ S−1

f I. As S−1
f I = Ĩf , we infer that

eitherP ⊆ I orQ ⊆ I . Therefore,I ∈ SpecH .
Now let f̄ be the image off in U(g)/Ĩ whereI ∈ SpecH . SinceU(g)f /Ĩf ∼=

(U(g)/Ĩ )f̄ by the exactness of localisation, it follows from [3, (6.3)] and (i) that

Dim(U(g)/Ĩ ) = Dim(H/I)+ dimOmin. ut

5.6. Given a ringR we let PrimR denote the primitive spectrum ofR, the set of all
primitive ideals ofR taken with the Jacobson topology. SetX := PrimU(g) and denote
by Xfin the set of all primitive ideals of finite codimension inU(g). Using the highest
weight theory and [9, (2.5.6), (3.2.3)] it is easy to observe thatXfin is a countable dense
subset ofX. The topology ofX induces that on the complementXinf := X \ Xfin.

Recall that PrimH is a subset of SpecH . By Theorem 5.2(ii), the mapI 7→ Ĩ given
by (5.5.1) sets up a bijection between SpecH and the set of all prime ideals of infinite
codimension inU(g). IdentifyZ(g) with Z(H) according to Corollary 5.1(vi).

Theorem 5.3. The following are true:

(1) The mapI 7→ Ĩ takesPrimH ontoXinf and induces a homeomorphism of topological
spacesPrimH

∼
→ Xinf .

(2) Let V be a finite-dimensional irreducibleH -module andI = AnnH V . ThenĨ =

AnnU(g)(Qχ ⊗H V ) andrk(U(g)/Ĩ ) = dim Wh(Qχ ⊗H V ) = dimV.
(3) LetI be a primitive ideal ofU(g) with VA(I) = Omin. Then there is a finite-dimen-

sional irreducibleH -moduleE such thatI = AnnU(g)(Qχ ⊗H E).
(4) Let V1 andV2 be two finite-dimensional irreducibleH -modules. ThenV1 ∼= V2 as

H -modules if and only ifAnnU(g)(Qχ ⊗H V1) = AnnU(g)(Qχ ⊗H V2).

(5) For any algebra homomorphismη : Z(g) → k there is a bijection between the iso-
classes of finite-dimensional irreducibleH -modules with central characterη and the
primitive idealsI ofU(g) with I ∩ Z(g) = Kerη andVA(I) = Omin.

(6) A prime idealI ofH is primitive if and only ifI ∩Z(H) is a maximal ideal ofZ(H).
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Proof. (a) Let{J α | α ∈ A} be a set of two-sided ideals ofH , andJ =
⋂
α∈A J

α. Since
any two-sided ideal ofH is σ -stable, we have

J± = {x ± σ(x) | x ∈ J } =

⋂
α∈A

{x ± σ(x) | x ∈ J α} =

⋂
α∈A

J α±.

Using (5.5.1) it is now easy to deduce thatJ̃f =
⋂
α∈A J̃

α
f andJ̃ =

⋂
α∈A J̃

α. Arguing
similarly and using Theorem 5.2 one also observes that givenI, J ∈ SpecH one has
I ( J if and only if Ĩ ( J̃ .

(b) Let I ∈ PrimH . ThenI = AnnH M0 for some irreducibleH -moduleM0. LetM =

Q ⊗H M0 and identifyM with k[h, z1, . . . , zs ] ⊗M0; see 5.1 for details. Theorem 5.2
shows that AnnU(g)M = J̃ for someJ ∈ SpecH , while Theorem 5.1 yields̃Jf = Ĩf .
ThenI = J in view of Theorem 5.2(i), forcing̃I = AnnU(g)M. As a consequence, the
mapI 7→ Ĩ takes PrimH into Xinf .

(c) Now suppose that̃I ∈ Xinf for some two-sided idealI of H . By Theorem 5.2(ii),
I ∈ SpecH . Let I = {J ∈ SpecH | J ) I }, andJ0 =

⋂
J∈I J . Our discussion in

part (a) in conjunction with Theorem 5.2(ii) implies thatĨ := {J̃ | J ∈ I} coincides with
the set of all prime ideals ofU(g) containingĨ properly, and̃J0 =

⋂
I∈Ĩ I. SinceĨ is a

primitive ideal, [9, (8.5.7)] applies, yielding̃J0 ) Ĩ . But thenJ0 ) I by our concluding
remark in part (a).

(d) We claim that the prime idealI from part (c) is the intersection of some primitive
ideals ofH . To see this one can mimic the proof of Proposition 3.1.15 in [9] which deals
with enveloping algebras but applies to a larger class of filtered rings. For the reader’s
convenience we include the argument which goes back to Duflo. As in [9] we putB :=
H/I , letX be a variable, and setC := B ⊗ k[X]. The Kazhdan filtration ofH induces a
filtration ofB, which in turn gives rise to a filtration ofC. Since grH is finitely generated
and commutative, by [31, Theorem 4.6(iii)], so are grB and grC. Let a ∈ J (B) where
J (B) is the Jacobson radical ofB.

SupposeC(1 − aX) 6= C. By Zorn’s lemma, there exists a maximal left ideal ofC
containingC(1− aX), sayL. PutM := C/L, a simpleC-module, and letm0 denote the
image of 1∈ C inM. Thenm0 6= 0 and(1−aX)m0 = 0. Letx andaM denote the images
of X anda in EndM. SinceX ∈ Z(C), we havex ∈ EndCM. Since grC is finitely
generated and commutative,x is invertible in EndCM and algebraic overk, by Quillen’s
lemma. Puty := x−1. Thenx = p(y) for somep ∈ k[X], and aM(m0) = y(m0).
Therefore,(1 − ap(a))m0 = (1 − yp(y))(m0) = 0. On the other hand,ap(a) ∈ J (B),
hence 1−ap(a) is invertible inC; see [9, (3.1.12)] for instance. This contradiction shows
thatC(1 − aX) = C.

As a consequence,(a0 + a1X + · · · + anX
n)(1 − aX) = 1 for someai ∈ B. Easy

induction oni givesai = ai for 0 ≤ i ≤ n. Thenan+1
= 0, showing that all elements in

J (B) are nilpotent. As(0) is a prime ideal ofB = H/I , it follows from [9, (3.1.14)] that⋂
J∈PrimB J = J (B) = 0. But thenI is the intersection of some primitive ideals ofH ,

as claimed.
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If I 6∈ PrimH , then all primitive ideals ofH containingI lie in I. However, this is
impossible asJ0 ) I ; see part (c). ThusI must be a primitive ideal ofH , showing that
the mapI 7→ Ĩ induces a bijection between PrimH andXinf ; call it κ.

Let Y be a closed set in PrimH . Then there is a two-sided idealIY of H such that
Y = {J ∈ PrimH | J ⊇ IY }; see [9, (3.2.3)]. Our earlier remarks in the proof show that
κ(Y) = {I ∈ Xinf | I ⊇ ĨY }. Therefore,κ : PrimH → Xinf is a closed map.

Recall that the topology onXinf is induced by the Jacobson topology on PrimU(g).
From [9, (3.1.10)] it follows that PrimU(g) is a Zariski space, that is, any closed set in
PrimU(g) is a finite union of irreducible closed sets. But thenXinf is a Zariski space as
well. Let Ỹ be an irreducible closed set inXinf . Then there is anI ∈ SpecU(g) such
that Ỹ = {J ∈ Xinf | J ⊇ I}; see [9, (3.2.5)]. By Theorem 5.2(ii),I = Ĩ for some
I ∈ SpecH . Furthermore,κ−1(Ỹ) = {J ∈ PrimH | J ⊇ I } by our remarks earlier
in the proof. From this it is immediate thatκ−1 : Xinf → PrimH is a closed map too,
proving (1).

(e) LetV be a finite-dimensional irreducibleH -module andI = AnnH V , a primitive
ideal of finite codimension inH . By part (b) of this proof,̃I = AnnU(g) Ṽ whereṼ =

Qχ ⊗H V . As before, we identifỹV with k[h, z1, . . . , zs ] ⊗ V ; see 5.1. TheñB0 :=
U(g)f /Ĩf identifies with a subalgebra of̃B := Ae⊗(H/I). More precisely, from part (b)
of the proof of Theorem 5.2 we know thatτ ⊗ σ acts oñB, andB̃0 = B̃τ⊗σ .

SinceU(g) is a completely reducible adg-module,(U(g)/Ĩ )nχ ∼= U(g)nχ /Ĩnχ ; see
[13, (3.2)] for example. Sincef is central inU(g)nχ , we then have

B0 := B̃
nχ
0

∼= ((U(g)/Ĩ )f̄ )
nχ ∼= (U(g)nχ )f /(U(g)

nχ )f ∩ Ĩf ,

wheref̄ is the image off in U(g)/Ĩ . Put H̄ = H/I andB = B̃nχ . Corollary 5.1(iii)
implies that̃B = B̃0 ⊕ B̃0t wheret stands for the image of̂1 in B̃. Since1̂ commutes
with nχ , it must be thatB = B0 ⊕ B0t . In conjunction with Corollary 5.1(v) this shows
that the natural map(Ae ⊗H)nχ → B is surjective andB = k[t, t−1] ⊗ H̄ as algebras,
wherek[t, t−1] is the Laurent polynomial ring int overk. As H̄ ∼= Endk V is a prime
ring, so too isB = H̄ [t, t−1].

SinceĨ is a prime ideal ofU(g), the ring(U(g)/Ĩ )nχ is prime with rk(U(g)/I )nχ =

rk(U(g)/Ĩ ); see [13, (13.10)]. Applying [9, (3.6.15)] we derive that the ringB0 =

((U(g)/I )nχ )f̄ is prime with rk(B0) = rk(U(g)/Ĩ ). On the other hand, it follows from

[34] that rk(k[t ] ⊗ H̄ ) = rk(H̄ ). As k[t, t−1] ⊗ H̄ is a localisation ofk[t ] ⊗ H̄ with
respect to the Ore set{t i | i ∈ Z+}, we have

dimV = rk(H̄ ) = rk(k[t, t−1] ⊗ H̄ ) = rk(B);

see [25, Lemma 2.2.12] for example. We thus need to show that rk(B) = rk(B0).
It should be mentioned that our present setting (involving a quadratic extension of

rings) resembles that of [16, (6.5)] where the above equality has been claimed in a more
general situation. However, the proof of Lemma 6.5 in [16] is based on a faulty argument.
Moreover, an example involving the first Weyl field shows that under the assumptions
of [16, (6.5)] the Goldie ranks ofB andB0 can be different (I am thankful to Anthony
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Joseph for this clarification). We are lucky here because in the present case one can use
another argument to prove the required equality of Goldie ranks.

PutK := k(t), K0 := k(t2), andS := k[t2] \ {0}, a central Ore set inB0 andB. Put
B := S−1B andB0 := S−1B0. SinceB = H̄ [t, t−1] andS−1k[t, t−1] = K, we have
B ∼= K⊗k H̄ ∼= Matn(K)wheren = dimV . SinceB is a simple Artinian ring, all regular
elements ofB are invertible. SinceS consists of regular elements ofB, the universality
property of quotient rings yieldsB ∼= Q(B). In particular,K is the Goldie field ofB (this
argument provides another proof for the equality rk(B) = dimV ). As in [16, (6.5)], we
regardB as a Galois extension ofB0. The involutionτ ⊗ σ induces aK0-automorphism
of B, call it ι. It is easy to see thatι(t) = −t, B = B0 ⊕B0t, andB0 = B ι. Thusι can be
viewed as the generator of the Galois group Gal(K/K0).

Note thatZ(B0) = Z(B)ι = K ι
= K0 andB ∼= B0 ⊗K0 K asK-algebras. SinceB0

is a prime ring, so too isB0; see [9, (3.6.15)]. The preceding remark then shows thatB0
is a simple algebra finite-dimensional over its centreK0. Sincek is algebraically closed,
K0 ∼= k(t) is aC1-field, by Tsen’s theorem. Therefore,B0 ∼= Matm(K0) asK0-algebras.
As in the previous paragraph one observes thatB0 ∼= Q(B0) andK0 is the Goldie field
of B0. SinceB ∼= B0 ⊗K0 K, one hasm = n, proving (2).

(f) Let I be a primitive ideal ofU(g) with VA(I) = Omin. ThenI = Ĩ for some
I ∈ PrimH , by part (1) of this theorem. Thanks to Theorem 5.2(ii), Dim(H/I) = 0.
HenceH/I is finite-dimensional overk; see [25, (8.1.17)] for example. SinceH/I is a
prime ring, it must be thatH/I ∼= End(E) for some finite-dimensionalH -moduleE. As
H/I is simple,I = AnnH E. But thenI = AnnU(g)(Qχ ⊗H E) by part (b) of this proof,
as stated in (3).

Now let V1 andV2 be two finite-dimensional irreducibleH -modules, and setIi :=
AnnH Vi , i = 1,2. If V1 ∼= V2 asH -modules then, of course,I1 = I2. HenceĨ1 = Ĩ2,
yielding AnnU(g)(Qχ ⊗H V1) = AnnU(g)(Qχ ⊗H V2), again by part (b). Conversely, if
AnnU(g)(Qχ ⊗H V1) = AnnU(g)(Qχ ⊗H V2), thenI1 = I2 in view of Theorem 5.2(ii)
and part (b). SoH/I1 = H/I2 ∼= Matm(k) for somem. It is now straightforward to see
thatV1 ∼= V2 asH -modules, giving (4).

Fix an algebra homomorphismη : Z(g) → k and identifyZ(g) with Z(H); see
Corollary 5.1(vi). If V is a finite-dimensionalH -module with central characterη and
I = AnnH V , thenI ∩ Z(H) = Kerη is a maximal ideal ofZ(H), by Schur’s lemma.
Hence Kerη = AnnU(g)(Qχ ⊗H V ) ∩ Z(g) = Ĩ ∩ Z(g). Thanks to Theorem 5.2(ii)
we also haveVA(Ĩ ) = Omin. Now let I ∈ X be such thatZ(g) ∩ I = Kerη and
VA(I) = Omin. By parts (3) and (4) of this theorem,I = AnnU(g)(Qχ ⊗H E) for some
finite-dimensional irreducibleH -moduleE, which is uniquely determined up to isomor-
phism. Since Kerη ⊂ I andZ(g) = Z(H), theH -moduleE has central characterη. We
obtain (5).

(g) Let I ∈ SpecH and suppose thatI ∩ Z(H) is a maximal ideal ofZ(H). By Theo-
rem 5.2(ii),Ĩ ∈ SpecU(g). As explained in the proof of Corollary 5.1(vi),

Z(H) = Z(Ae ⊗H) = k ⊗ (H σ
∩ Z(H)) = (Z(Ae ⊗H))τ⊗σ ⊆ Z(U(g)f ) = Z(g).
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It follows thatI ∩Z(H) ⊆ (k ⊗ I+)∩Z(g) ⊆ Ĩf ∩Z(g) = Ĩ ∩Z(g). AsZ(g) = Z(H),
we deduce that̃I∩Z(g) is a maximal ideal ofZ(g). But theñI ∈ X; see [9, (8.5.7)]. Since
Ĩ has infinite codimension inU(g), part (1) of this theorem implies thatI = κ−1(Ĩ ) ∈

PrimH . Finally, supposeI ∈ PrimH and letM be an irreducibleH -module such that
I = AnnH M. Since grH is finitely generated and commutative, Quillen’s lemma shows
thatZ(H) acts onM as scalar operators. Consequently,I ∩ Z(H) is a maximal ideal of
Z(H). The proof of the theorem is now complete. ut

5.7. Before finishing this section off we wish to discuss a possible extension of the
above results to the case of a general algebraHχ . Let e be any nilpotent element ing and
χ = χe ∈ g∗. PutO = Oχ and denote byXO the set of all primitive idealsI of U(g)
with VA(I) ⊃ O. Take PrimHχ with the Jacobson topology andXO with the topology
induced by that ofX.

Question 5.1. Are the following true?

1. The centre ofHχ coincides with the image ofZ(g) in Hχ .1

2. There exists a homeomorphismκ : PrimHχ → XO such that:

(a) Dim(U(g)/κ(I )) = Dim(H/I)+ dimO for all I ∈ PrimHχ ;

(b) rk(U(g)/κ(I )) =
√

dimk(H/I) for all I ∈ PrimHχ with codimHχ I < ∞.

3. For every characterη of Z(Hχ ) = Z(g) the mapκ induces a bijection between the
isoclasses of finite-dimensionalHχ -modules with central characterη and the primitive
idealsI of U(g) with I ∩ Z(g) = Kerη andVA(I) = O.

6. The Joseph ideal and a presentation ofH

6.1. In his seminal work [14] Joseph has discovered that outside type A the enveloping
algebraU(g) has a unique completely prime primitive ideal whose associated variety is
Omin. This ideal is denotedJ0 and referred to as theJoseph idealofU(g). Forg of type A
the completely prime primitive ideals ofU(g) with VA(I) = Omin form a single family
parametrised by the elements ofk (this will be explained in more detail in the course of
proving Theorem 6.1).

1 At the Oberwolfach meeting on enveloping algebras in March 2005 Victor Ginzburg has ex-
plained to me that this is a consequence of the finiteness of the number of symplectic leaves ofSe
contained in the fibres of the morphismf : Se → g//G iduced by the adjoint quotient map ofg.
Each homogeneous elementz ∈ grZ(Hχ ) lies in the Poisson centre of grHχ = k[Se], hence
reduces to scalars on all symplectic leaves ofSe. The Poisson structure onSe induced by multipli-
cation inHχ is determined in [10, (3.2), (5.5)]. By [31, (5.4), (6.3)], all scheme-theoretic fibres of
f are reduced and irreducible, and grHχ is a flat module over grZ(g). These results are needed
to carry out Ginzburg’s argument: Since each fibre off contains a Zariski dense symplectic leaf
of Se, the regular functionz is constant on each fibre off . The flatness of the grZ(g)-module
grHχ along with the fact that all scheme-theoretic fibres off are reduced then yieldsz ∈ grZ(g),
implyingZ(Hχ ) = Z(g).
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The Joseph ideal is prominent in several areas of representation theory, especially in
the theory of minimal representations ofp-adic groups. Different realisations ofJ0 can
be found in the literature for various types ofg but most of them are ad hoc. This seems
almost inevitable as outside type A the orbitOmin is rigid, that is, forms a single sheet
in g∗. HenceJ0 cannot be obtained by parabolic induction from a primitive ideal of a
proper Levi subalgebra ofg, the only ‘regular’ way so far to obtain primitive ideals.

It was noticed by Savin (in a letter to Vogan) that Joseph’s original proof of the unique-
ness ofJ0 was incomplete. This was recently fixed by W. T. Gan and Savin with the as-
sistance of Wallach; see [11]. The argument in [11] relies on some invariant theory and
earlier results of Garfinkle. We shall see in a moment that the existence and uniqueness
of J0 follow readily from our results; see also Remark 6.4.

6.2. Retain the assumptions and conventions of Sections 4 and 5. Setk0 := H/H+.
Sincek0 is an irreducibleH -module, so is theg-moduleQχ,0 := Qχ ⊗H k0. SoJ0 :=
AnnU(g)Qχ,0 is a primitive ideal ofU(g).

Proposition 6.1. The idealJ0 is completely prime andVA(J0) = Omin. If g is not of
typeA thenJ0 is the only primitive ideal ofU(g) with these properties, and henceJ0 is
the Joseph ideal in this case.

Proof. Theorem 5.3(2) shows that rk(U(g)/J0) = dimk k0 = 1. HenceQ(U(g)/J0) is
a division ring. ThenU(g)/J0 is a domain, that is,J0 is completely prime. Theorem 3.1
givesVA(J0) = Omin. Now supposeg is not of type A. Then Corollary 4.1 implies that
H has a unique one-dimensional representation. In view of Theorem 5.3 this means that
U(g) has auniquecompletely prime primitive ideal whose associated variety isOmin. So
J0 = J0 in this case. ut

Remark 6.1. The existence part of our proof is hardly shorter than Joseph’s original
proof in [14] as it relies on the brute force computations of Section 4. However, there
is a slightly different proof of the uniqueness ofJ0 which eludes Section 4 completely.
We just sketch the argument leaving the details to the interested reader: IfI is an ideal
of codimension 1 inH then [H,H ] ⊂ I . Since outside type A the Lie algebrazχ (0) is
semisimple, we have2(zχ (i)) ⊂ I for i = 1,2. Also,C − µ ∈ I for someµ ∈ k. Using
Proposition 2.1 it is not hard to observe thatµ is independent ofI . Therefore,H cannot
afford more than one ideal of codimension 1. The rest of the proof is unchanged.

6.3. In [14], Joseph has also computed theinfinitesimal characterof J0, that is, the
algebra homomorphismZ(g) → k through which the centreZ(g) acts on the primitive
quotientU(g)/J0. We are going to use his result to determine the elusive constantc0
from Proposition 4.1.

Theorem 6.1. In the notation of Section4, the algebraH is generated by the Casimir
elementC and the subspaces2(zχ (i)) for i = 0,1, subject to the following relations:

(i) [2x,2y ] = 2[x,y] for all x, y ∈ zχ (0);
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(ii) [2x,2u] = 2[x,u] for all x ∈ zχ (0) andu ∈ zχ (1);
(iii) C is central inH ;
(iv) [2u,2v] =

1
2(f, [u, v])(C−2Cas−c0)+

1
2

∑2s
i=1(2[u,zi ]]2[v,z∗i ]

]+2[v,z∗i ]
]2[u,zi ]])

for all u, v ∈ zχ (1), where2Cas =
∑
i 2ai2bi is a Casimir element of the Lie

algebra2(zχ (0)) and the constant−c0 is given in the table below:

Type An Bn Cn Dn E6 E7 E8 F4 G2

−c0
n(n+1)

4
(2n+1)(2n−3)

4
n(2n+1)

8 n(n− 2) 36 84 240 39
2

28
9

If g is not of typeA thenc0 is the eigenvalue ofC on the primitive quotientU(g)/J0. If g
is of typeA1 thenzχ (0) = zχ (1) = 0 andH = k[C].

Proof. First we determinec0. Recall from 4.1 that(γ, γ ) = 2. Therefore, ifg is not of
type Cn or G2, then the scalar product(·, ·) on theQ-span ofP in h∗ coincides with the
scalar product(·|·) from Bourbaki’s tables in [4]. In the remaining two cases,(·, ·) =
1
2(·|·) for g of type Cn, and(·, ·) =

1
3(·|·) for g of type G2. Recall that for anyλ ∈ h∗

the eigenvalue of the Casimir elementC on the irreducible highest weight moduleL(λ)
equals(λ, λ+ 2ρ).

(a) Supposeg is not of type A. In [14, p. 15], Joseph has found an irreducible highest
weight moduleL(λ0) with AnnU(g) L(λ0) = J0. It is immediate from the definition of
H+ thatC acts onk0 = H/H+ as scalarc0. But thenC|Q0 = c0 id. Proposition 6.1
now shows thatC acts asc0 id on the primitive quotientU(g)/J0. In view of our remarks
above this yieldsc0 = (λ0, λ0 + 2ρ).

If g is of type E, thenλ0 = −$4; see [14]. Using parts (VI) and (VII) of Tables V–VII
in [4] one finds thatc0 = −240 forg of type E8, c0 = −84 forg of type E7, andc0 = −36
for g of type E6. If g is of type Dn, n ≥ 4, thenλ0 = −$n−2. Parts (VI) and (VII) of
Table V in [4] yield ($n−2,$n−2) = n − 2 and($n−2,2ρ) = n2

− n − 2. Therefore,
c0 = −n(n− 2) in this case.

If g is of type Bn, n ≥ 3, thenλ0 = −
1
2($n−2 + $n−1). Form Table II in [4] we

get (λ0, λ0) = (4n− 7)/4 and(λ0,2ρ) = −n2
+

5
2. Thenc0 = −(n2

− n −
3
4) =

−(2n+ 1)(2n− 3)/4. If g is of type Cn, n ≥ 2, thenλ0 = −
1
2$n. Table III in [4]

yields (λ0 | λ0) = n/4 and(λ0 | 2ρ) = −n(n+ 1)/2. Consequently,(λ0 | λ0 + 2ρ) =

−n(2n+ 1)/4 andc0 =
1
2(λ0 | λ0 + 2ρ) = −n(2n+ 1)/8. If g is of type G2, then

λ0 = −
2
3$2 = −

2
3α̃. Hence(λ0 | λ0) =

8
3 and

(λ0 | 2ρ) = (−2
3$2 | 10α1 + 6α2) = −4($2 |α2) = −2(α2 |α2)〈$2, α2〉 = −12;

see [4, Table IX]. Therefore,(λ0 |µ0 + 2ρ) = −
28
3 andc0 =

1
3(λ0 | λ0 + 2ρ) = −

28
9 . If

g is of type F4, thenλ0 = −
1
2($1 + $2). Using Table VIII in [4] we get(λ0 | λ0) =

7
2

and(λ0 | 2ρ) = −23. Hencec0 = (λ0, λ0 + 2ρ) = (λ0 | λ0 + 2ρ) = −
39
2 .

(b) Now supposeg is of type An, n ≥ 2. This case is more subtle because here we have an
infinite family of completely prime ideals inX sharing the same associated varietyOmin.
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In order to determinec0 in the present case we shall have to locate a special member of
this family. Theorem 5.3 will play a crucial rôle here.

Let p1 be the standard parabolic subalgebra ofg whose Levi subalgebra is gener-
ated byh and all e±αi with 2 ≤ i ≤ n. For anyt ∈ k the linear functiont$1 van-
ishes on allhαi with i ≥ 2, hence extends uniquely to a one-dimensional representation
of p1. Let kt denote the corresponding one-dimensionalp1-module, and putI (p1, t) :=
AnnU(g)(U(g)⊗U(p1) kt ). Although some of the inducedg-modulesU(g)⊗U(p1) kt are
reducible, it follows from [9, (8.5.7)] and Conze’s theorem [7] that all two-sided ide-
als I (p1, t) are primitive and completely prime. It is not hard to check thatt1$1 and
t2$1 are conjugate under the dot action of the Weyl groupW ∼= Sn+1 if and only if
t1 = t2. Consequently, all members of the familyIk := {I (p1, t) | t ∈ k} have pairwise
distinct infinitesimal characters. In view of [13, (17.17)] they share the same associated
varietyOmin.

Let I ∈ X be a completely prime ideal withVA(I) = Omin. It follows from the
main result of Mœglin in [30] that there exist a standard parabolic subalgebrap of g and
a one-dimensional representationf : p → k such thatI = AnnU(g)(U(g)⊗U(p) kf ). In
conjunction with [13, (17.17), (15.27)] this yieldsI ∈ Ik.

Let I0 be the two-sided ideal ofH generated by [H,H ]. In order to describe the
one-dimensional representations ofH we have to take a close look at the commutative
k-algebraH ab := H/I0. Given x ∈ H we denote byx̄ the image ofx in H ab. We
may assume thatg = sln+1(k) andh is the subalgebra of all diagonal matrices ing.
Let {eij | 1 ≤ i, j ≤ n + 1} be the matrix units ingln+1(k). We may also assume that
αi = εi − εi+1 andeαi = ei,i+1 for 1 ≤ i ≤ n; see Table I in [4]. Thene = en,n+1,
h = enn− en+1,n+1, andf = en+1,n by our conventions in 4.1. No generality will be lost
by assuming thatzi = en+1,i andz∗i = −ein for 1 ≤ i ≤ n−1 (notice thats = n−1 in the
present case). It is straightforward to see that the centre of the subalgebrag(0)] = zχ (0)
is spanned by the elementz := enn+en+1,n+1−

2
n+1In+1. Therefore,zχ (0) = kz⊕zχ (0)′

wherezχ (0)′ = [zχ (0), zχ (0)]. Sincezχ (1) has no zero weight relative tohe = h∩ zχ (0),
this implies that thek-algebraH ab is generated bȳC and2̄z.

Setu = e1,n+1 andv = −en,1. We have [u, zi ]] ∈ [zχ (0), zχ (0)] for 2 ≤ i ≤ s and
[u, z∗i ] = 0 for 1 ≤ i ≤ s. Also, [u, z1]] = (e11 − en+1,n+1) −

1
2h = e11 −

1
2(enn +

en+1,n+1). Likewise, [v, z∗1]] = (enn − e11) −
1
2h = −e11 +

1
2(enn + en+1,n+1). Since

(z, z) = 2−
8
n+1 +

4
n+1 =

2(n−1)
n+1 , we can takea1 = z, b1 =

n+1
2(n−1)z, andai, bi ∈ zχ (0)′

for i > 1. Next observe that(z, e11−
1
2(enn+ en+1,n+1)) = −1. Asz ⊥ zχ (0)′, it follows

thate11 −
1
2(enn + en+1,n+1) is congruent to− 1

(z,z)
z modulozχ (0)′. As (f, [u, v]) = 1,

Proposition 4.1 now yields

1

2

(
C̄ − c0 −

n+ 1

2(n− 1)
2̄2
z

)
+

1

2
· (−2) ·

(n+ 1)2

4(n− 1)2
2̄2
z = 0.

As a consequence, the following relation holds inH ab:

2̄2
z =

(n− 1)2

n(n+ 1)
(C̄ − c0). (6.3.1)
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Sincen ≥ 2, this shows thatH ab is a homomorphic image of the polynomial alge-
bra k[X]. On the other hand, Theorem 5.3 in conjunction with our earlier remarks en-
tails that the one-dimensional representations ofH ab are in 1-1 correspondence with the
elements inIk. But then the maximal spectrum Max(H ab) of H ab is infinite, forcing

H ab ∼= k[X, Y ]/(X2
−

(n−1)2

n(n+1)Y ) (under the algebra mapX 7→ 2̄z, Y 7→ C̄ − c0).

For c ∈ k we let Maxc(H ab) (resp.Ik,c) denote the set of allI in Max(H ab) (resp.
I (p1, t) in Ik) containingC̄ − c (resp.C − c). It is immediate from (6.3.1) that

|Maxc(H
ab)| =

{
2 whenc 6= c0,

1 whenc = c0.

Theorem 5.3 implies that for anyc ∈ k the mapκ : PrimH → Xinf, I 7→ Ĩ , induces
a bijection between Maxc(H ab) andIk,c. It is well-known thatC acts on the induced
moduleU(g)⊗U(p1) kt as(t$1, t$1 +2ρ)id. SoI (p1, t) containsC− (t$1, t$1 +2ρ).
It is immediate from [4, Table I] that(t$1, t$1 + 2ρ) =

n
n+1t

2
+ nt. The equation

n
n+1t

2
+ nt − c = 0 has two distinct roots if and only ifn2

+
4nc
n+1 6= 0. Therefore,

|Ik,c| =

{
2 whenc 6= −n(n+ 1)/4,

1 whenc = −n(n+ 1)/4.

But then Maxc0(H
ab) must be mapped ontoIk,−n(n+1)/4, forcingc0 = −n(n+ 1)/4.

(c) Now let Ĥ be the associativek-algebra generated by an elementĈ and isomorphic
copieŝ2(zχ (i)) of the subspaceszχ (i) with i = 1,2, subject to the relations (i)–(iv) from
the formulation of this theorem. Define an increasing filtration inĤ by giving Ĉ filtration
degree 4, by assigning to all nonzero elements of2̂(zχ (i)) filtration degreei + 2, and by
extending toĤ algebraically.

Choose basesx1, . . . , xq and y1, . . . , y2s in zχ (0) and zχ (1), respectively, and set
Xi = 2̂xi for 1 ≤ i ≤ q andYi = 2̂yi for 1 ≤ i ≤ 2s. Let Ĥ ′ be thek-span of all

monomialsm(a,b, l) := X
a1
1 · · ·X

aq
q · Y

b1
1 · · ·Y

b2s
2s · Ĉl with ai, bj , l ∈ Z+. Note that

m(a,b, l) has filtration degree 2
∑
ai + 3

∑
bj + 4l. Using the relations (i)–(iv) and

induction on the filtration degree ofm(a,b, l) it is straightforward to see that̂H ′ is a
two-sided ideal of̂H . Since 1∈ Ĥ ′ it must be that̂H = Ĥ ′.

It follows from Proposition 4.1 and Lemmas 2.4 and 2.5 that there is a surjective
algebra homomorphismf : Ĥ → H such thatf (Ĉ) = C, f (Xi) = 2xi for i ≤ q, and
f (Yi) = 2yi for i ≤ 2s. Since the vectorsf (m(a,b, l)) are linearly independent inH , by
[31, Theorem 4.6(ii)], the equalitŷH = Ĥ ′ shows thatf is injective. But thenĤ ∼= H ,
and our proof is complete. ut

Remark 6.2. We have originally computed the infinitesimal character ofJ0 by using a
direct approach in the spirit of Section 4; this was done before we established a link be-
tweenH andJ0. Having established that link we discovered that outside type A our result
was consistent with [14, p. 15]. In type A we have found two different proofs yielding the
same result. This eventually convinced us that the quadratic relation of Theorem 6.1 was
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correct. Our computations are rather lengthy, especially in type C, and will not be pre-
sented here.

Remark 6.3. Supposeg is of type C2. Then zχ (0) ∼= sl2 and zχ (1) is an irreducible
2-dimensionalzχ (0)-module. In this case Theorem 6.1 shows that the algebraH is gen-
erated by six elementse, h, f, u, v, c, subject to the following relations:

1. (e, h, f ) is ansl2-triple relative to the commutator product inH ;
2. [e, u] = 0 = [f, v], [e, v] = u, [f, u] = v, [h, u] = u, [h, v] = −v;
3. [u, v] = ef + f e +

1
2h

2
−

1
2c −

5
8;

4. c is central inH .

For anyt ∈ k the factor algebraHt := H/(c − t) is isomorphic to one of the deformed
symplectic oscillator algebrasHf studied by Khare in [23] (in type Cn, n ≥ 3, the defin-
ing relations of the algebrasH/(C − t) differ from those ofHf ). Arguing as in the proof
of Theorem 6.4 in [31] one can observe that the image ofZ(g) in Ht is isomorphic to a
polynomial algebra in one variable. It is likely that the centre ofHt is generated by that
image. It would be very interesting to describe the Goldie field ofH in the present case.
In view of Corollary 5.1(iv) this might help to resolve the Gelfand–Kirillov conjecture for
g = sp4(k).

Remark 6.4 (A. Joseph). Assumeg is not of type A. The argument below gives a short
proof of the uniqueness ofJ0 relying only on the information available at the time when
[14] was written. Let(e, h, f ) be ansl2-triple in g with e being a highest root vector. Let
d = Ker(adh−id)⊕Ker(adh−2id), a Heisenberg Lie subalgebra ofg, andr = kh⊕d. Let
J be a completely prime primitive ideal ofU(g) such that Dim(U(g)/J ) = dimOmin.
Since ade is nilpotent,U(g)/J embeds into its localisationU at e, which contains the
localisationA of U(r) at e. Let Z denote the centraliser ofA in U . It follows from [14,
Lemma 4.1] thatA is a localised Weyl algebra with Dim(A) = dimOmin. Clearly,Z
inherits a filtration fromU(g) such that grZ is commutative. Sinced is the nilradical
of a parabolic subalgebra ofg, Hadziev’s theorem shows that the algebra grZ is finitely
generated (one also needs the fact that adh is semisimple). SinceA is central simple, the
multiplication mapZ⊗A → U is injective. Since both grZ and grA are commutative and
finitely generated, we have Dim(Z ⊗ A) = Dim(Z)+ Dim(A). As Dim(U) = Dim(A),
we get Dim(Z) = 0. HenceZ is algebraic overk. SinceU is a domain, we now obtain
Z = k. Sinced consists of nilpotent elements ofg, Taylor’s lemma proved in [15] implies
that for anyh-weight vectoru ∈ U there is anh-weight vectora ∈ A of the same weight
asu such thatu − a commutes with the image ofd in U (a preprint version of [15] was
available since 1973 and is quoted in [14]). Takingu to be the image off in U we get
e(f − a) ∈ Z = k. But thenf ∈ A and soU = A, by the simplicity ofg. Now apply
[14, Theorem 4.3] to deduce the equalityJ = J0.

Lemma 6.1. If g is of typeG2 then the algebraH admits a2-dimensional irreducible
representationρ such thatρ(C) = −

16
9 id andρ(2u) = 0 for all u ∈ zχ (1).

Proof. For anyα = mα1 + nα2 ∈ 8+ we setem,n = eα, hm,n = hα, andfm,n = e−α.
Recall from (4.1) thatβ = α2. It is easy to see that in the present casezχ (0) ∼= sl2
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andzχ (1) is an irreducible 4-dimensionalzχ (0)-module. Furthermore,zχ (0) = ke2,1 ⊕

kh2,1 ⊕ kf2,1. We can assume, after possibly an admissible sign change, thatz1 = f3,2,

z∗1 = e3,1, z2 = f1,1, andz∗2 =
1
3e1,0. Then [e3,1, f3,2] =

1
3[e1,0, f1,1] = f0,1 = f . Put

u∗

1 = e3,2, u1 = −f3,1, u
∗

2 = e1,1, andu2 = af1,0, wherea ∈ k×. Clearly,zχ (1) is
spanned by theu1, u2, u

∗

1, u
∗

2. Since

([e3,2,−f3,1], [f3,2, e3,1]) = (e3,2, [f3,2, h3,1]) = −(e3,2, [h3,1, f3,2])

= (e3,2, f3,2) = 1,

there isa ∈ k× such that [ui, uj ] = [u∗

i , u
∗

j ] = 0 and [u∗

i , uj ] = −δij e for 1 ≤ i, j ≤ 2.
Let {E,H,F } be the standard basis ofsl2(k) andE = 2(zχ (0)) ∪ 2(zχ (1)) ∪ {C}.

Let ρ : E → Mat2(k) be such thatρ(2xe2,1+yh2,1+zf2,1) = xE + yH + zF, ρ(2u) = 0,
andρ(C) = −

16
9 I2 for all x, y, z ∈ k andu ∈ zχ (1). We claim that the elements from

ρ(E) satisfy the relations (i)–(iv) of Theorem 6.1. Since the relations (i)–(iii) are satisfied
for obvious reasons, we just need to check the quadratic relation (iv).

Since 2α1+α2 is a short root, we have(h2,1, h2,1) = 6 and(e2,1, f2,1) = 3. Therefore,
C0 =

1
3(e2,1f2,1+f2,1e2,1+

1
2h

2
2,1). Note thatEF +FE+

1
2H

2
=

3
2I2. Sincec0 = −

28
9

in the present case, we have to show that

4∑
i=1

(ρ(2[u,zi ]])ρ(2[v,z∗i ])
])+ ρ(2[v,z∗i ]

])ρ(2[u,zi ]])) = −
5
6(f, [u, v])I2 (6.3.2)

for all u, v ∈ zχ (1). Whenu and v run through the set{u1, u2, u
∗

1, u
∗

2}, the LHS of
(6.3.2) is always a linear combination of matricesXY + YX with X, Y ∈ sl2(k). Since
all such matrices are multiples ofI2, the LHS of (6.3.2) equalsg(u, v)I2 for some skew-
symmetric bilinear formg on zχ (1). Using the relations (i) and (ii) of Theorem 6.1 it is
easy to observe that this form iszχ (0)-invariant. Aszχ (1) is an irreduciblezχ (0)-module,
there is a scalarc ∈ k such thatg(u, v) = c(f, [u, v]) for all u, v ∈ zχ (1). Thus we need
to check thatc = −

5
6.

Note that [u∗

1, z
∗

i ] = [u1, zi ] = 0 for i = 1,2. Also, [u∗

1, z2]] = [u∗

1, z2] and
[u1, z

∗

2]] = [u1, z
∗

2]. It follows that for i = 1,2,

([u∗

1, zi ], [u1, z
∗

i ]) = (u∗

1, [u1, [zi, z
∗

i ]]) = −(u∗

1, [u1, f ]) = −([u∗

1, u1], f )

= (e, f ) = 1.

As (u∗

1, z1) = −(u1, z
∗

1) = 1, we have [u∗

1, z1]] = [u∗

1, z1] −
1
2h and [u1, z

∗

1]] =

[u1, z
∗

1] +
1
2h. Consequently,

([u∗

1, z1]], [u1, z
∗

1]]) = ([u∗

1, z1], [u1, z
∗

1])+
1
2([u

∗

1, z1], h)−
1
2(h, [u1, z

∗

1])−
1
4(h, h)

= 1 +
1
2(u

∗

1, z1)−
1
2(u1, z

∗

1)−
1
2 = 2 −

1
2 =

3
2.

Since [u∗

1, z1]], [u∗

1, z2], [u1, z
∗

1]], and [u1, z
∗

2] are multiples ofh2,1, e2,1, h2,1, andf2,1,
respectively, and(e2,1, f2,1) =

1
2(h2,1, h2,1) = 3, the preceding remarks show that

4∑
i=1

(ρ(2[u∗

1,zi ]
])ρ(2[u1,z

∗
i ])

])+ρ(2[u1,z
∗
i ]
])ρ(2[u∗

1,zi ]
])) =

1
3(EF +FE)+ 1

2H
2

=
5
6I2.
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As (f, [u∗

1, u1]) = −1, we deduce from (6.3.2) thatc = −
5
6, as wanted. As Theorem 6.1

gives a presentation ofH by generators and relations, the result follows. ut

Remark 6.5. It is immediate from the proof of Lemma 6.1 that forg of type G2 the
following relation holds inH :

[2u∗

1
,2u1] = −

1
2C +

1
3(2e2,12f2,1 +2f2,12e2,1 +

1
22

2
h2,1
)+

1
62

2
h2,1

−
14
9 . (6.3.3)

The expressions for all [2u,2v] with u, v ∈ zχ (1) can be derived from (6.3.3) by using
the action of ad2(zχ (0)) on2(zχ (i)), i = 1,2. For example, it can be deduced easily
that [2u∗

1
,2u∗

2
] is a nonzero scalar multiple of22

e2,1
. This implies that the span of all

PBW monomials inC,2h2,1,2e2,1,2u∗

1
,2u∗

2
is a subalgebra ofH . It can be regarded as

a Borel subalgebra ofH .

6.4. As yet another application of Theorems 5.3 and 6.1 we are going to classify all ir-
reducible finite-dimensional representations ofH in the case whereg is of type Cn or G2.
Dimension formulae for these representations will be given. We shall rely on Joseph’s
theory of Goldie-rank polynomials. The reader will notice that our method is quite gen-
eral and can be applied to any simple Lie algebrag. However, various problems remain in
the general case, especially for Lie algebras of type E7 and E8. We hope to return to this
interesting subject in the future.

Given ν ∈ h∗ we denote byI (ν) the annihilator of the irreducible highest weight
moduleL(ν) in U(g). Recall from the proof of Theorem 6.1 thatλ0 = −

1
2$n for g of

type Cn andλ0 = −
2
3$2 for g of type G2. Let80 = {α ∈ 8 | 〈λ0, α〉 ∈ Z}. It is easy to

see that80 coincides with the set of allshortroots in8. In particular,80 is a root system
in h∗ but not a closed subsystem of8. The set50 = {α1, . . . , αn−1, αn−1 + αn} is the
basis of simple roots in80 contained in8+. This implies that80 is of type Dn and A2
wheng is of type Cn and G2, respectively (our convention here is that D2 ∼= A1 × A1 and
D3 ∼= A3). Note thatλ0 = −

d−1
d
$n where

d =
(αn, αn)

(αn−1, αn−1)
=

{
2 wheng is of type Cn,
3 wheng is of type G2.

It is well-known that the subgroupW0 := {w ∈ W | w(λ0) − λ0 ∈ Z8} of W is
generated by the reflectionssα with α ∈ 80, hence identifies with the Weyl group of80.
We note for further references that

〈λ0 + µ+ ρ, αn−1 + αn〉 = 〈λ0 + µ+ ρ, αn−1〉 + d〈λ0 + µ+ ρ, αn〉

= 〈µ, αn−1〉 + 1 + d

(
〈µ, αn〉 −

d − 1

d
+ 1

)
= 〈µ, αn−1〉 + d〈µ, αn〉 + 2.
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Theorem 6.2. Let8+

0 denote the set of all short roots in8+.

1. If g is of typeCn, n ≥ 2, then to everyµ ∈ P+ there corresponds a finite-dimensional
simpleH -moduleVH (µ) such that

dimVH (µ) =

∏
α∈8+

0

〈2µ+ 2ρ −$n, α〉

〈2ρ −$n, α〉
.

Any finite-dimensional simpleH -module is isomorphic to one of the modulesVH (µ),
µ ∈ P+. The central characters of these modules are pairwise distinct.

2. If g is of typeG2, then to everyµ = a$1 + b$2 ∈ P+ there correspond two finite-
dimensional simpleH -modulesV ±

H (µ) such that

dimV +

H (µ) =
(a + 1)(a + 3b + 2)(2a + 3b + 3)

6
,

dimV −

H (µ) =
(a + 1)(a + 3b + 3)(2a + 3b + 4)

6
.

Any finite-dimensional simpleH -module is isomorphic to one of the modulesV ±

H (µ),

µ ∈ P+. The central characters of these modules are pairwise distinct.

Proof. By Theorem 5.3 the isoclasses of finite-dimensional simpleH -modules are in 1-1
correspondence with the primitive idealsI of U(g) such thatVA(I) = Omin. By Duflo’s
theorem,I = I (λ) for someλ ∈ h∗. Let8λ = {α ∈ 8 | 〈λ, α〉 ∈ Z} and let5λ be the
basis of simple roots of8λ contained in8λ∩8+. As explained in [19, p. 41], the equality
VA(I (λ)) = Omin holds if and only if dimOmin = |8| − |8λ| and〈λ+ ρ, α〉 > 0 for all
α ∈ 5λ (the argument in [19] relies on the fact thatOmin is not a special orbit in the sense
of Lusztig wheng is not simply laced). Since dimOmin = |8| − |80|, we have|80| =

|8λ|. Now 8∨
λ is a closed symmetric subsystem of the dual root system8∨

⊂ h. The
Borel–de Siebenthal algorithm implies that there is only one such subsystem in8∨ of size
|80|, namely8∨

0 ; see [4, Ch. VI, Sect. 4, Exerc. 4]. This shows8λ = 80 and5λ = 50.
Write λ = λ0 +

∑n
i=1 li$i with li ∈ k. Sinceα1, . . . , αn−1 ∈ 50, it must be that

li ∈ Z+ for 1 ≤ i ≤ n − 1, while our earlier remarks show that〈λ + ρ, αn−1 + αn〉 =

ln−1+dln+2 is a positive integer. Henceln ∈
1
d
Z. Since8λ 6= 8 we haveλ 6∈ P , giving

ln 6∈ −
1
d

+Z. Forg of type Cn this saysln ∈ Z, while forg of type G2 we infer that either
ln ∈ Z or ln ∈

1
3 + Z.

It is easy to see thatsαn permutes the positive short roots in8. Therefore,I (λ) =

I (sαn � λ); see [13, (5.16)]. Asαn = −d$n−1 + 2$n we have

sαn � λ = sαn

( n−1∑
i=1

(li + 1)$i +

(
ln +

1

d

)
$n

)
− ρ = λ−

dln + 1

d
αn

= λ0 +

n−2∑
i=1

li$i + (ln−1 + dln + 1)$n−1 +

(
ln −

2

d
(dln + 1)

)
$n

= λ0 +

n−2∑
i=1

li$i + (ln−1 + dln + 1)$n−1 −

(
ln +

2

d

)
$n.
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Thus replacingλ by sαn � λ if necessary we may assume further thatln ≥ 0.
Supposeln ∈ Z. Then the above discussion shows thatλ− λ0 ∈ P+. It follows from

Joseph’s theory of Goldie-rank polynomials that

rk(U(g)/I (λ0 + µ)) = c
∏
α∈8+

0

〈λ0 + µ+ ρ, α〉

for all µ ∈ P+, wherec is a constant independent ofµ; see [17, p. 303]. Recall that The-
orem 5.3 associates to eachI ∈ X with VA(I) = Omin an irreducible finite-dimensional
H -module (up to isomorphism). Abusing notation we denote this module byκ−1(I). We
have already mentioned thatVA(I (λ0 + µ)) = Omin. Therefore, to eachµ ∈ P+ there
corresponds an irreducible finite-dimensionalH -moduleVH (µ) := κ−1(I (λ0 +µ)). By
Theorem 5.3(2),

dimVH (µ) = rk(U(g)/I (λ0 + µ)) (∀µ ∈ P+).

Since I (λ0) is the Joseph ideal, Theorem 5.3 together with Proposition 6.1 gives
dimVH (0) = dimH/H+

= 1. Therefore,c−1
=

∏
α∈8+

0
〈λ0 + ρ, α〉 and

dimVH (µ) =

∏
α∈8+

0

〈λ0 + µ+ ρ, α〉

〈λ0 + ρ, α〉
. (6.4.1)

Sinceλ0 + ρ + P+ is contained in the interior of the dominant Weyl chamber, the mod-
ules in the set{VH (µ) | µ ∈ P+} have pairwise distinct central characters. This settles
the case whereg is of type Cn.

Supposeg of type G2. Forµ = a$1 + b$2 ∈ P+ we putV +

H (µ) := VH (µ). Since
8+

0 = {α2, α1 + α2,2α1 + α2} andλ0 = −
2
3$2, the dimension formula (6.4.1) reads

dimV +

H (µ) =
(a + 1)(a + 3b + 2)(2a + 3b + 3)

6
.

Now supposeln 6∈ Z. Our earlier remarks show thatg is of type G2 andln ∈
1
3 + Z+.

As a consequence,λ ∈
1
2λ0 + P+. For anyµ ∈ P+ we have8 1

2λ0+µ
= 80. As 1

2λ0 +

µ + ρ lies in the interior of the dominant Weyl chamber, the above argument applies,
yieldingVA(I (1

2λ0 +µ)) = Omin. Theorem 5.3 shows thatV −

H (µ) := κ−1(I (1
2λ0 +µ))

is an irreducible finite-dimensionalH -module with

dimV −

H (µ) = rk(U(g)/I (1
2λ0 + µ)).

In conjunction with the discussion in [17, p. 303] this entails that

dimV −

H (µ) = rk(U(g)/I (1
2λ0 + µ)) = c′

∏
α∈8+

0

〈
1
2λ0 + µ+ ρ, α〉 (6.4.2)

for all µ ∈ P+ wherec′ is a constant independent ofµ.
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It also follows from Theorem 5.3 thatC acts onV ±

H (µ) asf±(µ) id wheref+(µ) =

(λ0+µ, λ0+µ+2ρ) andf−(µ) = (1
2λ0+µ, 1

2λ0+µ+2ρ). We have noted in the proof
of Theorem 6.1 that(·, ·) =

1
3(· | ·). By [4, Table IX],($1 |$1) = 2, ($1 |$2) = 3, and

($2 |$2) = 6. Using this fact it is straightforward to see thatf−(µ) = f−(a$1 + b$2)

is a quadratic polynomial ina, b with all coefficients positive except for the constant term
f−(0) = (−1

3$2,−
1
3$2 + 2ρ) = −

16
9 . Furthermore,

f+(a$1 + b$2) =
2
3a

2
+ 2b2

+ 2ab + 2a +
10
3 b −

28
9 .

As a consequence,f+(µ) > −
16
9 for all nonzeroµ ∈ P+.

Let M be anH -module affording the representationρ from Lemma 6.1. The above
discussion shows thatM ∼= V ±(ν) for someν ∈ P+. SinceC acts onM as−

16
9 id, the

preceding remark yieldsM ∼= V −

H (0). As dimM = 2, this allows us to determine the
scale factorc′. In view of (6.4.2) we then get

dimV −

H (µ) = 2
∏
α∈8+

0

〈−
1
3$2 + µ+ ρ, α〉

〈−
1
3$2 + ρ, α〉

=
(a + 1)(a + 3b + 3)(2a + 3b + 4)

6

for all µ ∈ P+. Since(−2
3$2 + ρ + P+) ∩ (−1

3$2 + ρ + P+) = ∅ and the union
(−2

3$2 + ρ + P+) ∪ (−1
3$2 + ρ + P+) is contained in the interior of the dominant

Weyl chamber, the modules in the set{V ±

H (µ) | µ ∈ P+
} have pairwise distinct central

characters. This completes the proof. ut

Remark 6.6. Wheng is of type C2 we have8+

0 = {ε1 − ε2, ε1 + ε2}, $1 = ε1, $2 =

ε1 + ε2, andλ0 = −
1
2(ε1 + ε2); see [4, Table III]. In this case our dimension formula

reads

dimVH (µ) =
(a + 1)(a + 2b + 2)

2
=
(r − s + 1)(r + s + 2)

2
,

whereµ = a$1 + b$2 = (a + b)ε1 + bε2 = rε1 + sε2 andr, s ∈ Z+, r ≥ s. The
same dimension formula can be found in [23] where it was obtained by a completely
different method in the context of deformed symplectic oscillator algebras of rank one;
see Remark 6.3.

7. Highest weight modules forH

7.1. Let 8e denote the set of allα ∈ 8 with α(h) ∈ {0,1}, and put8±
e = 8e ∩ 8±,

8±

e,i = {α ∈ 8±
e | α(h) = i}. Recall thatzχ is spanned byhe, by all eα with α ∈ 8e, and

by e. Let h1, . . . , hl−1 be a basis ofhe, and letn±(i) be the span of alleα with α ∈ 8±

e,i .

Clearly,n+(0) andn−(0) are maximal nilpotent subalgebras ofg(0)]. Let {x1, . . . , xt }

and{y1, . . . , yt } be bases ofn+(0) andn−(0) consisting of root vectorseα with α ∈ 8.
Recall that thezi ’s with 1 ≤ i ≤ 2s are root vectors forh. For 1≤ i ≤ s, setui = [e, zi ]
andu∗

i = [e, z∗i ]. It follows from our discussion in 4.1 thatui (resp.u∗

i ) is a root vector
for h corresponding to the rootβ + γi ∈ 8−

e,1 (resp.β + γ ∗

i ∈ 8+

e,1). Furthermore,
{u1, . . . , us, u

∗

1, . . . , u
∗
s } is ak-basis ofzχ (1).
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Given a linear functionλ on he andc ∈ k we denote byJλ,c the linear span inH of
all PBW monomials of the form

t∏
i=1

2liyi ·

s∏
i=1

2miui ·

`−1∏
i=1

(2hi − λ(hi))
ni · (C − c)n` ·

s∏
i=1

2
ri
u∗
i
·

t∏
i=1

2
qi
xi ,

where
∑`
i=1 ni +

∑t
i=1 ri +

∑s
i=1 qi > 0.

Lemma 7.1. The subspaceJλ,c is a left ideal of the algebraH .

Proof. Fora,b ∈ Zt+, c,d ∈ Zs+, m ∈ Z`+, set

2(a,b, c,d,m) :=
( t∏
i=1

2aiyi

)( s∏
i=1

2ciui

)( `−1∏
i=1

2
mi
hi

)
Cml

( s∏
i=1

2
di
u∗
i

)( t∏
i=1

2bixi

)
.

By [31, Theorem 4.6(ii)], the PBW monomials2(a,b, c,d,m) form a k-basis ofH .
Note that dege(2(a,b, c,d,m)) = 4m` + 3(|c| + |d|)+ 2(|a| + |b|)+ 2

∑`−1
i=1 mi .

SinceC − c is central inH we have2(a,b, c,d,m)(C − c) ∈ Jλ,c. Relations (i)
and (ii) of Theorem 6.1 imply that2(a,b, c,d,m)(2hi − λ(hi)) ∈ Jλ,c for 1 ≤ i ≤

` − 1. Since2(n+(0)) is a Lie subalgebra of2(zχ (0)), by Theorem 6.1, we also have
2(a,b, c,d,m) ·2eα ∈ Jλ,c for all α ∈ 8+

e,0.
It remains to show that2(a,b, c,d,m) ·2u∗

i
∈ Jλ,c for all i ≤ s. We shall use induc-

tion on dege(2(a,b, c,d,m)), so assume from now on that dege(2(a,b, c,d,m)) = N

andH k
· 2u∗

i
∈ Jλ,c for all i ≤ s and allk < N . First note that the span ofu∗

1, . . . , u
∗
s

equalsn+(1), hence is stable under the adjoint action ofn+(0). Since we have already
established thatH ·2eα ∈ Jλ,c for all α ∈ 8e,0, relation (ii) of Theorem 6.1 yields

2(a,b, c,d,m) ·2u∗
i

∈ 2(a,b, c,0,m) ·2(n+(1))+ Jλ,c.

Thus we may assume thatd = 0. If bj = 0 for all j > i, then2(a,b, c,0,m) · 2u∗
i

=

2(a,b + ei, c,0,m) ∈ Jλ,c. So supposeb = (b1, . . . , bk,0, . . . ,0) wherebk > 0 and
k > i. Then in view of [31, Theorem 4.6(iv)] and our induction assumption we have

2(a,b, c,0,m) ·2u∗
i

∈ 2(a,b + ei, c,0,m)+2(a,b − ek, c,0,m)[2u∗
k
,2u∗

i
]

+HN−2
·2u∗

k
⊆ 2(a,b − ek, c,0,m)[2u∗

k
,2u∗

i
] + Jλ,c.

Since(f, [u∗

k, u
∗

i ]) = 0, Theorem 6.1 shows that

[2u∗
k
,2u∗

i
] =

1

2

2s∑
j=1

(2[u∗
k ,zj ]]2[u∗

i ,z
∗
j ]] +2[u∗

i ,z
∗
j ]]2[u∗

k ,zj ]]) ∈

∑
α∈8+

e,0

H ·2eα

(one should take into account that [u∗

i , z
∗

j ], [[u∗

i , z
∗

j ]], [u∗

k, zj ]
]] ∈

⋃
α∈8+

e,0
keα for all

j ≤ s). So2(a,b, c,0,m) ·2u∗
i

∈ Jλ,c, and the result follows by induction onN . ut
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7.2. PutZH (λ, c) := H/Jλ,c and letv0 denote the image of 1 inZH (λ, c). Clearly,
ZH (λ, c) is a cyclicH -module generated byv0. We callZH (λ, c) theVerma module of
levelc corresponding toλ. By Lemma 7.1, the vectors

{2l1y1
· · ·2ltyt2

m1
u1

· · ·2msus (v0) | l1, . . . , lt , m1, . . . , ms ∈ Z+}

form a k-basis of the Verma moduleZH (λ, c). Let Z+

H (λ, c) denote thek-span of all

{2
l1
y1 · · ·2

lt
yt2

m1
u1 · · ·2

ms
us (v0) with

∑
i li +

∑
i mi > 0. LetZmax

H (λ, c) denote the sum of
all H -submodules ofZH (λ, c) contained inZ+

H (λ, c), and put

LH (λ, c) := ZH (λ, c)/Z
max
H (λ, c).

Proposition 7.1. The following are true:

(i) Zmax
H (λ, c) is a unique maximal submodule of the Verma moduleZH (λ, c) and hence
LH (λ, c) is a simpleH -module.

(ii) The simpleH -modulesLH (λ, c) andLH (λ′, c′) are isomorphic if and only ifλ = λ′

andc = c′.
(iii) Any finite-dimensional simpleH -module is isomorphic to one of the modules

LH (λ, c) with λ ∈ h∗
e satisfyingλ(hα) ∈ Z+ for all α ∈ 8+

e,0. Furthermore, ifg
is not of typeA thenc is a rational number.

Proof. (a) For a rootα =
∑`
i=1 niαi in 8 we put

htβ(α) :=
∑
αi 6=β

ni .

Clearly, htβ(α) = 0 if and only if α = ±β. As all derivations ofg are inner, there is a
uniqueh0 ∈ h such that [h0, eα] = htβ(α)eα for all α ∈ 8. As [h0, e±β ] = 0 we see that
h0 ∈ he. Clearly,2h0(v0) = λ(h0)v0 andZH (λ, c) = kv0⊕Z+

H (λ, c). Since allyi andzi
are root vectors forh corresponding to negative roots different from−β, it follows from
Theorem 6.1 that the subspaceZ+

H (λ, c) decomposes into eigenspaces for2h0 and the
eigenvalues of2h0 onZ+

H (λ, c) are of the formλ(h0)− k wherek is a positive integer.
LetV be a nonzeroH -submodule ofZH (λ, c). If V 6⊆ Z+

H (λ, c), the above discussion
shows thatv0 ∈ V . But thenV = ZH (λ, c). Thus any proper submodule ofZH (λ, c) is
contained inZ+

H (λ, c). As a consequence,Zmax
H (λ, c) is a unique maximal submodule of

ZH (λ, c), proving (i).

(b) It follows from part (a) that eachH -moduleLH (λ, c) decomposes into eigenspaces
for2h0, the eigenvalues of2h0 onLH (λ, c) lie in the setλ(h0)−Z+, and the eigenspace
LH (λ, c)λ(h0) is spanned byv0. If LH (λ, c) ∼= LH (λ

′, c′) asH -modules then it must
be thatλ(h0) ∈ λ′(h0) − Z+ andλ′(h0) ∈ λ(h0) − Z+. This implies thatλ(h0) =

λ′(h0) andLH (λ, c)λ(h0)
∼= LH (λ

′, c′)λ′(h0) as modules over the commutative subalgebra
2(he)⊕ kC of H . But thenλ = λ′ andc = c′, hence (ii).

(c) LetM be a finite-dimensional simpleH -module. ThenC ∈ Z(H) acts onM asc id for
somec ∈ k. Since2(he) is abelian,M contains at least one weight subspace for2(he).
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From Theorem 6.1 it follows that the direct sum
⊕

µ∈h∗
e
Mµ of all weight subspaces of

M is anH -submodule ofM. HenceM decomposes into weight spaces relative to2(he).
Note that any linear function onh vanishing onhe is a scalar multiple ofβ. Sinceβ is a
simple root, any sum of roots from8+

e restricts to a nonzero function onhe. But then the
relation

φ ≥ ψ ⇔ φ = ψ +

( ∑
γ∈8+

e

rγ γ
)

|he
, rγ ∈ Z+, (∀φ,ψ ∈ h∗

e)

is a partial ordering onh∗
e . Since the set of2(he)-weights ofM is finite, it contains at

least one maximal element with respect to this ordering,λ say. Letm be a nonzero vector
inMλ. Then2xi (m) = 2u∗

i
(m) = 0 for all admissiblei. As a consequence, there exists a

homomorphism ofH -modulesξ : ZH (λ, c) → M such thatξ(v0) = m. The simplicity of
M implies thatξ is surjective, while part (a) yields Kerξ = Zmax

H (λ, c). RestrictingM to
thesl2-triple (2eα ,2hα ,2e−α ) ⊂ H with α ∈ 8e,0 it is easy to observe thatλ(hα) ∈ Z+

for all α ∈ 8+

e,0.
Finally, supposeg is not of type A. Thenzχ (0) is a semisimple Lie algebra. By

Weyl’s theorem,M is a completely reducible2(zχ (0))-module. LetgQ be theQ-form
in g spanned by the Chevalley system from 4.1, andzχ,Q(i) = gQ ∩ zχ (i) wherei = 0,1.
Chooseu, v ∈ zχ,Q(1) with (f, [u, v]) = 2. Then [u, zi ]], [v, z∗i ]

]
∈ zχ,Q(0) for all i.

The highest weight theory implies that there is aQ-form in M stable under the ac-
tion of 2(zχ,Q(0)). It follows that trM(2[u,zi ]]2[v,z∗i ]

]) ∈ Q for 1 ≤ i ≤ 2s. Since
trM [2u,2v] = 0, Theorem 6.1 entails that(c − c0)dimM ∈ Q. Sincec0 ∈ Q by Theo-
rem 6.1, we obtainc ∈ Q. ut

7.3. To determine the composition factors of the Verma modulesZH (λ, c) with their
multiplicities we are going to establish a link between theseH -modules and theg-mod-
ules obtained by parabolic induction from Whittaker modules forsl2(k). The latter mod-
ules have been studied in much detail in [26, 28, 1], and it is known that their composition
multiplicities can be calculated by using the Kazhdan–Lusztig algorithm. We are going to
rely on Skryabin’s equivalence (3.1); the Kazhdan filtration ofH will play an important
rôle too.

Let sβ denote the subalgebra ofg spanned by(e, h, f ) = (eβ , hβ , fβ), and put

pβ := sβ + h +

∑
α∈8+

keα, nβ :=
∑

α∈8+\{β}

keα, s̃β := he ⊕ sβ .

Clearly,pβ = s̃β ⊕ nβ is a parabolic subalgebra ofg with nilradicalnβ and̃sβ is a Levi
subalgebra ofpβ . LetCβ = ef + f e+

1
2h

2
= 2ef +

1
2h

2
− h be the Casimir element of

U(sβ). Givenλ ∈ h∗
e andc ∈ k we denote byIβ(λ, c) the left ideal ofU(pβ) generated

by f − 1, Cβ − c, all h− λ(h) with h ∈ he, and alleγ with γ ∈ 8+
\ {β}.

DefineY (λ, c) := U(pβ)/Iβ(λ, c), apβ -module with the trivial action ofnβ , and let
1λ,c denote the image of 1 inY (λ, c). Sincef.1λ,c = 1λ,c, we have

e.1λ,c =
1
2(Cβ −

1
2h

2
+ h).1λ,c = (−1

4h
2
+

1
2h+

1
2c).1λ,c.
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Together with the PBW theorem this shows that the vectors{hk · 1λ,c | k ∈ Z+} form a
k-basis ofY (λ, c) (the independence of these vectors follows from the fact thatY (λ, c)

is infinite-dimensional). We mention for completeness thatY (λ, c) is isomorphic to a
Whittaker module forsβ ∼= sl2(k).

The above discussion shows that the vectors

m(i, j , k, l) := z
i1
1 · · · ziss · y

j1
1 · · · y

jt
t · u

k1
1 · · · ukss · hl(1λ,c)

with i, k ∈ Zs+, j ∈ Zt+, andl ∈ Z+ form ak-basis of the inducedg-module

M(λ, c) := U(g)⊗U(pβ ) Y (λ, c).

7.4. Recall from 4.1 that eachz∗i with 1 ≤ i ≤ s is a root vector forh corresponding to
γ ∗

i = −β−γi ∈ 8+. Putδ =
1
2(γ

∗

1 +· · ·+γ ∗
s ) andρ0 = ρ−2δ−(s+1)β =

∑
α∈8+

e,0
α.

Since the restriction of(·, ·) to he is nondegenerate, for anyη ∈ h∗
e there exists a unique

tη ∈ he such thatϕ = (tη, ·). Hence(·, ·) induces a nondegenerate bilinear form onh∗
e

via (µ, ν) := (tµ, tν) for all µ, ν ∈ h∗
e . Given a linear functionϕ onh we denote bȳϕ the

restriction ofϕ to he.

Theorem 7.1. Each g-moduleM(λ, c) is an object of the categoryC. Furthermore,
Wh(M(λ, c)) ∼= ZH (λ+ δ̄, c + (λ+ 2ρ̄, λ)) asH -modules.

Proof. PutM := M(λ, c), and letM0 (resp.M1) denote thek-span of allm(i, j , k, l) in
M with |i| + l = 0 (resp.|i| + l > 0). Clearly,M = M0 ⊕ M1 as vector spaces. Let
pr : M = M0 ⊕M1� M0 denote the first projection.

If |i| + 2|j | + 3|k| + 2l = k, we say thatm(i, j , k, l) hasKazhdan degreek. LetMk

denote thek-span inM of all m(i, j , k, l) of Kazhdan degree≤ k. Then{Mk
| k ∈ Z+}

is an increasing filtration inM andM0
= k1λ,c. TakingU(g) with its Kazhdan filtration

(as defined in [10] for example) we can thus regardM as a filteredU(g)-module.
Let z = λf +

∑s
i=1µiz

∗

i ∈ mχ whereλ,µi ∈ k. Sincez∗i ∈ nβ for 1 ≤ i ≤ s and
f.1λ,c = 1λ,c, we havez.1λ,c = λ · 1λ,c = χ(z) · 1λ,c. Sincez acts locally nilpotently
on U(g), we deduce thatz − χ(z) acts locally nilpotently onM for all z ∈ mχ . As a
consequence,M is an object ofCχ . By our discussion in 3.1, Wh(M) 6= 0, the algebraH
acts onM, andM ∼= Qχ ⊗H Wh(M) asg-modules.

Now observe that

z∗k .m(i, j , k, l) ∈ ik ·m(i − ek, j , k, l)+ span{m(i′, j ′, k′, l′) | |i′| ≥ |i|}

for all k ≤ s, and

(f − 1).m(i, j , k, l) ∈ 2l ·m(i, j , k,0)+ span{m(i′, j ′, k′, l′) | l′ > 0} whenl > 0.

From this it is immediate that the map pr : Wh(M) → M0 is injective.
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Note that 1λ,c ∈ Wh(M), and for allh ∈ he we have

2h(1λ,c) =

(
h+

1

2

2s∑
i=1

[h, z∗i ]zi

)
(1λ,c) =

(
h+

1

2

s∑
i=1

[[h, z∗i ], zi ]

)
(1λ,c)

=

(
λ(h)+

1

2

s∑
i=1

γ ∗

i (h)f

)
· 1χ,c = (λ+ δ)(h) · 1χ,c.

Supposex ∈ zχ (0) is a root vector forh corresponding to rootγ ∈ 8+

e,0. Thenx ∈ nβ
and [[x, z∗i ], zi ] ∈ nβ for all i ≤ s. Therefore,

2x(1λ,c) =

(
x +

1

2

2s∑
i=1

[x, z∗i ]zi

)
(1λ,c) =

(
h+

1

2

s∑
i=1

[[x, z∗i ], zi ]

)
(1λ,c) = 0.

Recall from (2.5) that for any positive root vectoru ∈ zχ (1) we have

zu = −
1

3

2s∑
i=1

〈z∗i , [u, [zi, z
∗

i ]] 〉zi =
1

3

2s∑
i=1

〈z∗i , [u, f ]〉zi ∈ nβ .

This implies that

2u(1λ,c) =

(
u+

2s∑
i=1

[u, z∗i ]zi +
1

3

2s∑
i,j=1

[uz∗i z
∗

j ]zjzi + zu

)
(1λ,c)

=

( s∑
i=1

[[u, z∗i ], zi ] +
1

3

s∑
i,j=1

[uz∗i z
∗

j ]zjzi +
1

3

s∑
i=1

2s∑
j=s+1

[uz∗i z
∗

j ]zjzi

)
(1λ,c)

=
1

3

( s∑
i,j=1

[[uz∗i z
∗

j ], zj ]zi +

s∑
i,j=1

zj [[uz
∗

i z
∗

j ], zi ] −

s∑
i=1

[uz∗i zi ][z
∗

i , zi ]

)
(1λ,c)

=
1

3

( s∑
i,j=1

[[[uz∗i z
∗

j ], zj ], zi ] −

s∑
i=1

[uz∗i zi ]f
)
(1λ,c) ∈ nβ .1λ,c = 0.

Therefore,2u∗
i
(1λ,c) = 0 for all i ≤ s. Our discussion in 4.4 shows that

C(1λ,c) =

(
2e +

h2

2
− (s + 1)h+ C0 + 2

2s∑
i=1

[e, z∗i ]zi

)
(1λ,c)

=

(
Cβ − sh+ C0 + 2

s∑
i=1

[[e, z∗i ], zi ]
)
(1λ,c). (7.4.1)

As [[[e, z∗i ], zi ], f ] = [[[ e, f ], z∗i ], zi ] = [[h, z∗i ], zi ] = −f we have [[e, z∗i ], zi ] −
1
2h

∈ he for all i ≤ s. Let x be an arbitrary element inhe. Then(x, h) = 0, β(x) = 0, and

(x, [[e, z∗i ], zi ] −
1
2h) = ([x, [e, z∗i ]] , zi ]) = γ ∗

i (x)([e, z
∗

i ], zi) = γ ∗

i (x),
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that is, [[e, z∗i ], zi ] −
1
2h = tγ̄ ∗

i
for all i ≤ s; see our discussion at the beginning of this

subsection. But then(
2

s∑
i=1

[[e, z∗i ], zi ] − sh
)
(1λ,c) =

(
2

s∑
i=1

tγ̄ ∗
i

)
(1λ,c) = 4(λ, δ̄) · 1λ,c. (7.4.2)

SinceC0 =
∑
aibi is a Casimir element ofU(zχ (0)) and all positive root vectors in

zχ (0) annihilate 1λ,c, it is straightforward to see thatC0(1λ,c) = (λ, λ + 2ρ̄0) · 1λ,c. In
conjunction with (7.4.1) and (7.4.2) this yields

C(1λ,c) = (c + (λ, λ+ 2ρ̄0)+ 4(λ, δ̄)) · 1λ,c = (c + (λ, λ+ 2ρ̄)) · 1λ,c.

Put λ′ := λ + δ̄ and c′ := c + (λ, λ + 2ρ̄). Let V0 denote theH -submodule ofM
generated by 1λ,c. The above discussion shows that the left idealJλ′,c′ of H annihilates
1λ,c. Therefore,V0 is a homomorphic image of the Verma moduleZH (λ′, c′).

We claim that the restriction of pr :M � M0 to V0 is surjective. Recall thatM0 is
spanned by allm(0, j , k,0) with j ∈ Zt+ andk ∈ Zs+. Clearly,m(0,0,0,0) = 1λ,c ∈

pr(V0). Assume that all vectorsm(0, j , k,0) of Kazhdan degree 2|j | + 3|k| < n are in
pr(V0). Now letm(0,a,b,0) ∈ M0 be such that 2|a| + 3|b| = n and|a| + |b| = k, and
denote byMn,k the span of allm(i, j , k, l) of Kazhdan degreen with |i|+|j |+|k|+ l > k.
Assume that all vectorsm(0, j , k,0) of Kazhdan degreen with |j |+|k| > k are in pr(V0).
SinceM is a filteredU(g)-module, it follows from Lemmas 2.3 and 2.5 that

2a1
y1

· · ·2atyt2
b1
u1

· · ·2bsus (1λ,c) ∈ m(0,a,b,0)+Mn,k +Mn−1. (7.4.3)

In view of our assumptions onn andk we getm(0,a,b,0) ∈ pr(V0 +Mn−1
+Mn,k) =

pr(V0). Our claim now follows by double induction onn andk. Since we have already
established that pr : Wh(M) → M0 is injective, this yields Wh(M) = V0.

Using (7.4.3) it is easy to observe that the vectors2
a1
y1 · · ·2

at
yt2

b1
u1 · · ·2

bs
us (1λ,c) with

a ∈ Zt+ andb ∈ Zs+ are linearly independent overk. Hence it follows from Lemma 7.1
and our discussion at the beginning of 7.2 thatV0 ∼= ZH (λ

′, c′) asH -modules. ut

Remark 7.1. Combined with Skryabin’s equivalence and the main results of Miličić–
Soergel [27] and Backelin [1], Theorem 7.1 implies that the composition multiplicities
of the Verma modulesZH (λ, c) can be computed with the help of inverse parabolic
Kazhdan–Lusztig polynomials associated with the pair(W, 〈sβ〉). This confirms in the
minimal nilpotent case the Kazhdan–Lusztig conjecture for finiteW-algebras as formu-
lated by de Vos and van Driel in [8]. Recall that our construction ofHχ is a special in-
stance of quantum Hamiltonian reduction where the constraints imposed are read off from
thesl2-triple (eβ , hβ , e−β). In the physics literature the algebraH appears undercover un-
der the name of a finiteW-algebra associated with the minimal embeddingsl2(k) ↪→ g.

Remark 7.2. It would be interesting to relate the (Kazhdan) filtered algebraH to the
Becchi–Rouet–Stora–Tyutin (BRST) quantisation of the Poisson algebra grH . We recall
that the Poisson structure on grH is determined in [10]. It would be important for the
characteristicp theory to determine all(λ, c) ∈ h∗

e × k such that the simpleH -module
LH (λ, c) is finite-dimensional; see Proposition 7.1(iii).
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Givent ∈ k we letHt denote the factor algebraH/(C− t) where(C− t) is the two-sided
ideal ofH generated by the central elementC− t . It is clear from the definition that each
L(λ, t) is anHt -module.

Corollary 7.1. If g is of typeCn or G2, then any finite-dimensionalHt -module is com-
pletely reducible.

Proof. It suffices to show that Ext1
Ht
(M,N) = 0 for any two finite-dimensional simple

Ht -modulesM andN . If theHt -modulesM andN are not isomorphic, then they have dis-
tinct central characters; see Theorem 6.2. Thus it remains to show that Ext1

Ht
(M,M) = 0.

By Proposition 7.1(iii),M ∼= LH (λ, t) for someλ ∈ h∗
e . Let V be a finite-dimensional

Ht -module containingM as a submodule and such thatV/M ∼= M asHt -modules.
As 2(zχ (0)) is a semisimple Lie subalgebra ofH , Weyl’s theorem shows thatV de-
composes into weight spaces relative to2(he), sayV =

⊕
µ∈X(V ) Vµ. Moreover, the

set of2(he)-weights ofV coincides with that ofL(λ, c), showing thatµ ≤ λ for all
µ ∈ X(V ). It follows from our discussion in 7.2 that dimMλ = 1 and dimVλ = 2. Let
v ∈ Vλ \Mλ and letM ′ denote theH -submodule ofV generated byv. By construction,
the left idealJλ,t of H annihilatesv, showing thatM ′ is a homomorphic image of the
Verma moduleZH (λ, t). But then the2(he)-weight spaceM ′

λ is 1-dimensional, imply-
ing (M ∩M ′)λ = Mλ ∩M ′

λ = 0. Consequently,M ∩M ′
= 0. The irreducibility ofV/M

now entails thatV = M ⊕ M ′ andM ′ ∼= M. Then Ext1Ht (M,M) = 0, completing the
proof. ut
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[28] Mili čić, D.: Soergel, W.: The composition series of modules induced from Whittaker modules.
Comment. Math. Helv.72, 503–520 (1997) Zbl 0956.17004 MR 1600134
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