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Abstract. Let G be a simple algebraic group over an algebraically closed Kielficharacteristic

0, andg = Lie G. Let (e, h, f) be anslo-triple in g with ¢ being a long root vector ig. Let (-, -)

be theG-invariant bilinear form org with (e, f) = 1 and letxy € g* be such tha (x) = (e, x)

for all x € g. Let 8§ be the Slodowy slice at through the adjoint orbit o¢ and letH be the
enveloping algebra &; see [31]. In this article we give an explicit presentatiorHoby generators

and relations. As a consequence we deduce thabntains an ideal of codimension 1 which is
unique ifg is not of type A. Applying Skryabin’s equivalence of categories we then construct an
explicit Whittaker model for the Joseph idealidfg). Inspired by Joseph’s Preparation Theorem we
prove that there exists a homeomorphism between the primitive spectréaafl the spectrum

of all primitive ideals of infinite codimension i/ (g) which respects Goldie rank and Gelfand—
Kirillov dimension. We study highest weight modules for the algelirand apply earlier results

of Mili Cic—Soergel and Backelin to express the composition multiplicities of the Verma modules
for H in terms of some inverse parabolic Kazhdan-Lusztig polynomials. Our results confirm in
the minimal nilpotent case the de Vos—van Driel conjecture on composition multiplicities of Verma
modules for finitéW-algebras. We also obtain some general results on the enveloping algebras of
Slodowy slices and determine the associated varieties of related primitive idéaig)ofA sequel

to this paper will treat modular aspects of this theory.

1. Introduction

1.1. Let k be an algebraically closed field of characteristic 0 andddbe a simple
algebraic group ovek. Letg = Lie G and let(e, i, f) be ansl,-triple in g. Let (-, -) be
the G-invariant bilinear form org with (e, f) = 1 and defingy = x. € g* by setting
x(x) = (e, x) forall x € g. Let O, denote the coadjoint orbit of.

Let 8, = e + Keradf be the Slodowy slice at through the adjoint orbit oé and
let H, be the enveloping algebra 8f; see [31, 10, 5]. Recall tha{, = Endy(Q,)°P
whereQ, is a generalised Gelfand—Graev moduledialy) associated with thel>-triple
(e, h, f); see [22, 29]. The modul@, is induced from a one-dimensional modidg
over a nilpotent subalgebra, of g such that dimm, = %dim O, . The subalgebran,
is (adh)-stable, all weights of akl on m, are negative, angt vanishes on the derived
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subalgebra ofn, . The action ofm, onk, = k1, is given byx(1,) = x(x)1, for all
x € my; seq 2.]L for more details.
Let3, denote the stabiliser of in g. Clearly,3,, coincides with the centraliseg(e) of
ein g. The subalgebrg, is (adh)-stable and it follows from thel>-theory that all weights
of adh onj, are nonnegative integers. Let, ..., x, be a basis of, such thatk, x;] =
n;x; for somen; € Z,. By [31, Theorem 4.6], to each basis vectpione can attach an
element®,, € H, in such a way that the monomia(%}l - OF with (i1,...,i,) € /N
form a basis offf, overk. We say that the monomiaﬂ)ﬁ ---®f hasKazhdan degree
Y i_iai(nj+2) and denote by{)’j the span of all monomials as above of Kazhdan degree

< k. According to [31, (4.6)], we then havé, = ;o Hj} andH} - Hy < H, Y for
alli,j € Z4. In other words,{H)’g | k € Z4} is an increasing filtration of the algebra
H,. We call it theKazhdan filtrationof H,. The corresponding graded algebrayris
a polynomial algebra in g9, , ..., gr®,, which identifies naturally with the function
algebrak[S,.] on the special transverse sli8g = ¢ + Ker ad f endowed with its Slodowy
grading.

According to [31, Theorem 4.6(iv)],

nj+n;

(O, ®x,-] = ®x,- 00y, — 0Oy 0 @xj = ®[x,.,xj] +4ij(O1,...,0,) (ModH, )

whereg;; is a polynomial irv variables with initial form of total degree 2. Using this
result we prove i3 that there exists an associdtjvpalgebral(, free as a module
overk[t] and such that

~ | H if » #£0,
Ho/ 6 = )3 = { U)((;,X) if A =0
ask-algebras. Thu#l, is a deformation of the universal enveloping algebi@, ).

We have a certain degree of freedom in our choice of PBW gener@iorsn[2.2 we
show that they can be chosen such that the @gp— (—-1)"0©,,, 1 <i < r, extends
to an automorphism of the algebfg, . This automorphism, denoted by, will play an
important Dle later on.

1.2. Givenx € g we denote byZ;(x) the centraliser ok in G. It is well-known that
C(e) := Zg(h) N Zg(e) is a Levi subgroup of ; (e) and the centraliseZ (¢) decom-
poses as a semidirect product®fe) and the unipotent radicat, (Zg(e)). Fori € Z,
putz, (i) = {x € 3, | [k, x] = ix}. Itis well-known that;, (0) = Lie C(e). Clearly, the
groupC (e) preserves each subspggei) of 3, .

In [10], Gan and Ginzburg have found a different realisation of the algéhrarhich
enables one to observe that the reductive grogp) acts onH, as algebra automor-
phisms. Moreover, this action @ (e) preserves the Kazhdan filtration &f, ; seez]l
for more details. In Section 2 we show that there exists an injeCti¢g-equivariant lin-
ear map®: 3, — H,, x — ©O,, whose image generatés, as an algebra, such that
gr®@,) = 3, as graded”(e)-modules. The subspacg(;, (0)) can be chosen to be a
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Lie subalgebra of{, with respect to the commutator product#f) . It follows that the
map® can be selected in such a way that

[Ox, ®y] =0On,y]  (Vx €35(0), Vy € 3y).

This is a consequence of Lemma 2.4 which states, in particular, that the Lie algebra ho-
momorphism ae ©: 3, (0) — Der(H,) coincides with the differential of the locally
finite (rational) action oiC(e) on H,. Combined with Lemma 2.1 and Weyl's theorem

on complete reducibility this implies that every two-sided idealgf is o-stable; see
Corollary 2.1.

1.3. Forx = (e, -) we letC, denote the category of glfmodules on whichx — x (x)
acts locally nilpotently for alk € m, . Given ag-moduleM we set

Wh(M) := {m e M | x.m = x(x)m (Vx € my)}.

It should be mentioned here that the algelfa acts on WIiM) via a canonical iso-
morphismH, = (U(g)/NX)admx whereN,, denotes the left ideal df (g) generated by
all x — x(x) with x € m,. In the Appendix to [31], Skryabin proved that the functors
V o~ 0y ®pu, VandM ~» Wh(M) are mutually inverse equivalences between the
category of allf, -modules and the catego€y, ; see also [10, Theorem 6.1].

Skryabin’s equivalence implies that for any irreducilfg -module V' the annihi-
lator Anny () (Qx ®n, V) is a primitive ideal ofU(g). By the Irreducibility Theo-
rem, the associated varieWA(Z) of any primitive idealZ of U(g) is the closure of a
nilpotent orbit ing*. Generalising a classical result of Kostant on Whittaker modules
we show in Section 3 that for any irreducibi,-module V the associated variety of
Anny g (Qx ®u, V) contains the coadjoint orbi®, . In the most interesting case where
V is afinite-dimensional irreducibld, -module we prove that

VAR g (Qy ®1, V)) =0, and DIMQ, ®y, V) = 3dimO,

where DimM) is the Gelfand—Kirillov dimension of a finitely generatédg)-moduleM.
In particular, this implies that for any irreducible finite-dimensio#gl-module V the
irreducibleU (g)-moduleQ, ®p, V is holonomic.

1.4. Leth be a Cartan subalgebra gfand let® be the root system af relative toh.
LetIT = {a1, ..., a;} be a basis of simple roots i with the elements il numbered
as in [4], and letd™* be the positive system ab relative toIl. If g is not of type A
or C, there is a unique long root i linked with the lowest root-& on the extended
Dynkin diagram ofg; we call it 8. For g of type A,, andC,, we setf = «,. Choose root
vectorseg, e_g € g corresponding to root8 and—g such thateg, [eg, e_g], e_p) is an
slp-triple and putig = [eg, e_g].

In this article we investigate the algebd, in the case wherde, i, f) =
(eg, hg,e—g). ThenO, = Omin, the minimal nonzero nilpotent orbit ig. We let H
denote the minimal nilpotent algeb, . One of our main objectives is to give a presen-
tation of H by generators and relations.
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The action of the inner derivation adyivesg a shortZ-grading

g=9-20g-D) g0 gD ®g?2), g@)={xegl[hx]=ix}

with g(1) @ g(2) andg(—1) @ g(—2) being Heisenberg Lie algebras. One knows of course
that g(+2) is spanned by. g, thats, (i) = g(i) fori = 1, 2, and that, (0) coincides
with the image of the Lie algebra homomorphism

1:9(0) — g(0), x> x — 3(x, W)h,

whose kernek# is a central ideal ofy(0). The graded componegi—1) has a basis
Z1y -+ 25y 25415 - - - » 225 SUCh that the;'swith 1 < i < s (resp.s + 1 < i < 2s) are root
vectors forh corresponding to negative (resp. positive) roots, and

[zi.zj]] = [2its, 2451 =0, [zigs. 5] =8ijf (A <i,j<s).

Moreover, in the present case we can choageto be the span of and thez;’s with
s +1 < i < 2s, an abelian subalgebra gfof dimensions + 1 = 1 dim Opmin. We set
o i=ziysforl<i <sandzf = —zi_sfors+1<i<2s.

Let C denote the Casimir element 0f(g) corresponding to the bilinear forif, -).
This form is nondegenerate gp(0), hence we can find bas¢s;} and {b;} of 3, (0)
such that(a;, b;) = &;;. SetOcas := ) ; O, Op,;, a central element of the associative
subalgebra o generated by the Lie algeb&(, (0)). Obviously, we can regard as a
central element off.

By a well-known result of Joseph, outside type A the universal enveloping algebra
U(g) contains a unique completely prime primitive ideal whose associated variety is
Onmin; see [14]. This ideal, often denotef, is known as the Joseph ideal G{g).

We are finally in a position to formulate one of the main results of this article:

Theorem 1.1. The algebraH is generated by the Casimir elementnd the subspaces
O3, (1)) fori =0, 1, subject to the following relations:

() [Ox, ©y] = Byyy) forall x,y € 3,(0);
(i) [Oy, ©y] =By, forall x € 3,(0) andu € 3, (1);
(i) Ciscentral inH;
(V) [Ou, Ou]=3(f. [u, ])(C—Ocas—co) + 3 Z,?A:l(@[u,zi]: Oy, 272 + Oy, 212 O z,2)
for all u, v € 3, (1), whereco is a constant depending gn

If g is not of typeA thencg is the eigenvalue af on the primitive quotient/ (g)/ Jo. If g
is of typeA,,, n > 2, thenco = —n(n + 1)/4. If g is of typeA1 thenH = k[C].

We start proving this theorem in Section 2 where we show that (i) and (ii) hatfl far
a suitable choice o®: 3, — H. In Section 4 we determine all of the quadratic relation
(iv) except the elusive constasy.

1.5. We first computedy by brute force, but later it turned out that there was a much
better way to do it, based on a certain refined version of Joseph’s Preparation Theorem.
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This theorem, which we prove in Section 5 in our special case, enables us to link the
primitive ideals ofH directly with primitive ideals ofU (g).

Let A denote the automorphism of the polynomial algebjfa] such thatA(h) =
h + 1. Let (A) stand for the cyclic subgroup of Al{4]) generated byA. The skew
group algebr&[h] = (A) has{hiAJ | i € Z, j € 7} as ak-basis and multiplication in
k[h] % (A) has the property thak - 7 = (h + 1) - A.

Let A, denote the Weyl algebra with standard generatess. ., zs, 91, . .., 05, SO
that[9;, z;] = 8;; for1 < i, j <s. LetA, := (k[h] % (A)) ® A., a simple Noetherian al-
gebra ovek, and identifyk[#] x (A) andA, with subalgebras ofl.. Define an involution
7 € Aut(A,) by setting

t(z) =—zi, @) =-8, th)=h A)=CDA" Q<i<s ken).

Thent ® o is an automorphism of order two of the associative algelre® H.

Let U(g)s denote the localisation df (g) with respect to the Ore S€f' | i€ Zy).
By mappingU (g)s into the endomorphism algebra of the induced modalewe are
able to identifyU (g) r with a subalgebra ofl, ® H. More precisely, we prove that

U@r=AQH) ™ =AT® Hi ® ATA® H_

whereHy = {x € H | o(x) = +x}. As mentioned ifi T]1 every two-sided iddabf H
is stable under the involutiom € Aut(H). Hencel = I, @ I_ wherelL = I N Hy. We
identify U (g) with a subalgebra o/ (g) ; and set

I=U@NU QL ®AARL).

ThenT is a two-sided ideal ol/(g). By Corollary 5.1(vi), the centre off identifies
canonically withZ (g), the centre ol/ (g). Let X = PrimU (g) and letXj s be the set of
all primitive ideals of infinite codimension iX. Given a prime Noetherian ring we let
rk(R) denote the Goldie rank at.

Theorem 1.2. TakePrim H with the Jacobson topology and takKg; with the topology
induced by the Jacobson topology)afThen the following hold:

(i) The mapl + I induces a homeomorphisat PrimH = Xins.

(i) Foranyl e PrimH we haveDim(U (g)/1) = Dim(H /I) + dim Omin. N

(iii) If I = Anng V whereV is a finite-dimensional irreduciblé/-module, then =
Anny ) (0, ®g V) andrk(U(g)/1) = dmWh(Q, ®y V) =dimV.

(iv) ForanyZ e X with VA(Z) = Omin there is a finite-dimensional irreducibl& -
moduleV such thatZ = Anny 5, (Q, ®§ V).

(v) Let V7 and V> be two finite-dimensional irreducibl&-modules. Thevy; = V, as
H-modules if and only iAnny g (Qx @ V1) = Anny (04 @u V2).

(vi) Aprime ideall of H is primitive if and only iff N Z(H) is a maximal ideal o (H).

It follows from Theorem 1.2 that for any homomorphism Z(g) — k the maps
induces a bijection between the isoclasses of finite-dimensional irreduéinledules
with central charactey and the primitive ideal§ € X such thatZ N Z(g) = Kern and
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VA(T) = Omin (recall thatZ (g) = Z(H)). This result indicates that for any nilpotenit
should be possible to interpret the number of isoclasses of irreducible finite-dimensional
H,-modules with a fixed central character as the dimension of a cell representation of the
integral Weyl group of the character. In type A this agrees with recent results of Brundan—
Kleshchev.

Theorem 1.2(iii) relates the dimensions of irreducible finite-dimensighahodules
with Goldie-rank polynomials. We explore this[in 5.4 to obtain dimension formulae for
all irreducible finite-dimensional representationgbfor g of type G, and G. It is quite
possible thatll Goldie-rank polynomials, properly scaled, will appear in dimension for-
mulae for “nonrestricted Weyl modules” over Lie algebras of reductive groups in charac-
teristic p (we recall that in characteristjgca truncated version df, is Morita equivalent
to the reduced enveloping algeliva (g); see [31, (2.3), (2.6)]).

Theorem 1.2(vi) says that satisfies the Dixmier—Maeglin—Rentschler equivalence.
Again it is possible that this holds for any algel#a.

1.6. In the last section of this article we introduce and study highest weight modules
for the algebraH. Let®, = {@ € ® | a(h) = 0 or 1}, and putdF = &, N &* where

®~ = —®F. Fori = 0,1putd}; = { € ®F | a(h) = i}. Note that;, is spanned

by b := bh N g(0)*, by root vectorse, with o € ®,, and bye. Lethy, ..., h;_1 be a
basis off,., and letn* (i) be the span of alt, with « € d>jfl.. Clearly,n*(0) andn=(0)

are maximal nilpotent subalgebrasggD)®. Let {x1, ..., x;} and{y1, ..., y;} be bases of
nt(0) andn~ (0) consisting of root vectors fdy. For 1< i < s lety; (resp.y;*) denote
the root ofz; (resp.z}), and putu; = [e, z;], u} = [e, z}]. Then{uy, ..., us, uj, ..., uj}

is ak-basis of3, (1).

In general H is unlikely to possess a triangular decomposition similar to that(@j.
Nevertheless, one can still define Verma modules and highest weight modul&s for
Givena € b} andc € k we denote by, . the linear span irif of all

t s -1 S !
165 TT1em TT@©n —atym - oy -T]er - [] 4
i=1 i=1 i=1 i=L ' =l

with S5 ni + 31 + 301 ¢; > 0. Using Theorem 1.1 we show .1 that,
is a left ideal ofH. We call theH-moduleZy (A, ¢) := H/J, . the Verma module of
level ¢ corresponding to.. By the aboveZy (A, ¢) has a nice PBW basis. [n 7.2 we
show thatZy (1, ¢) contains a unique maximal submodule which we de@$& (4, c).
Thus to every(x, c¢) € b x k there corresponds an irreducible highest weighiodule
Ly, c¢) = Zpyk, o)/ ZH* (A, ¢). Itis fairly easy to show thak (A, ¢) = Ly (X, ¢)
if and only if (A, ¢) = (), ¢’) and that any irreducible finite-dimensiondFmodule is
isomorphic to exactly one df (1, ¢) with A satisfying a natural integrality condition.

To determine the composition multiplicities of the Verma modueg 2, ¢) we link
the latter withg-modules obtained by parabolic induction from Whittaker modulestfor
Letsg = keg ® khg @ k fg and put

pp =58 + b+ Z keg, ng = Z key, Eﬂ = b, @5/3.
{8}

aedt aedt\
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LetCp = ef + fe + 3h? = 2¢f + $h% — h, a central element ¥ (54). Givena € b
andc € k we denote byig (1, ¢) the left ideal ofU (pg) generated by — 1, Cg — ¢, alll
h — x(h) with i € b,, and alle, with y € ®*\ {B}. LetY (x, ¢) := U(pp)/Ig(x, c), a
pg-module with the trivial action ofig. Note thatY (1, ¢) is a Whittaker module for the
Levi subalgebrag. Now define

M, c):=U(g) ®U(pp) Y(A, o).

Recall that each? with i < s is a root vector corresponding §§" = — — y; € ®*.
Lets = %(yl* +---+yHandp = %Zae¢+ a. Since the restriction of:, ) to b, is
nondegenerate, for any € b} there is a unique, e b, such thaip = (z,, -). Hence
(-, -) induces a bilinear form oh via (i, v) 1= (¢4, t,) for all u, v € b3, Given a linear
functiong € h* we denote by the restriction ofp to b,.

Theorem 1.3. Each g-module M (4, ¢) is an object of the categor§,. Furthermore,
Wh(M (A, ¢)) = Zg(L+3,¢c+ (L + 2p, 1)) as H-modules.

Combined with Skryabin’s equivalence and the main results oftM#iSoergel [28] and
Backelin [1], Theorem 1.3 shows that the composition multiplicities of the Verma mod-
ulesZy (1, ¢) can be computed with the help of certain parabolic Kazhdan—Lusztig poly-
nomials. This confirms in the minimal nilpotent case the Kazhdan-Lusztig conjecture for
finite W-algebras formulated by de Vos and van Driel in [8]; see Rerpaik 7.1 for more
details.

Apart from its relevance to the theory of primitive ideals this work is a contribution
to the rapidly growing theory dW-algebrasFinite W-algebras are attached to nilpotent
elements of finite-dimensional simple Lie algebras via quantum Hamiltonian reduction.
All finite 'W-algebras of type A were recently described by J. Brundan and A. Kleshchev
[5] who identified them with shifted truncated Yangians. It seems likely that their results
can be extended to some nilpotent elements in Lie algebras of types B, C and D. Hidden
Yangian symmetry of finitV-algebras of type A was first discovered, in some special
cases, by E. Ragoucy and P. Sorba [33].

Affine counterparts of finitéV-algebras have been studied even more intensively. It
should be mentioned here that V. G. Kac and M. Wakimoto descritiagmal nilpotent
superconformal algebras in the context of vertex operators and quantum reduction; see
[20] and the references therein. It would be interesting to compare the algélwathis
paper with quasiclassical limits of vertex algebras of Kac—Wakimoto.

2. Structural features of the algebrasH,

2.1. Inthis section we assume thats an arbitrary nilpotent element in Decompose
g into the weight spaces relative toagiving aZ-gradingg = D, 9(i). Let x be asin
and denote by, the centraliser of in g. Itis well-known that;,, = cq4(e) is a graded
subalgebra af, := P,.g(i), thatis;;, = ;-3 (i) wheres, (i) = 3, Ng(i). Choose
ak-basisxy, . .., x, of the parabolic subalgebga with x; € g(n;) such thatxy, ..., x,
span;, . LetO = O, and letd denote half of the dimension @?.
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Define the skew-symmetric bilinear fortn, -) on the subspacg(—1) by setting
(x,y) = (e,[x, y]D forallx, y € g(—1). As3, C p,, this form is nondegenerate. Choose
abasixy, ..., 25, Zs+1, - - - » 225 Of g(—1) such that

(Zits» 2j) = 8ij» (2, 2j) = (Tits Zi+s) =0 (A =i, j<7r)

and denote by(—1)? the linear span of,41. ..., z2. Letmy = g(-1)° @ Y, , a(i), a
nilpotent subalgebra af of dimensiornd; see [31] for example. Since vanishes on the
derived subalgebra o, the idealV, of U(m,) generated by alt — x (x) with x € m,,
has codimension one in the enveloping algebi@an, ). Letk, = U(m,)/N,, a one-
dimensional lef/ (m, )-module, and let )1 stand for the image of 1 ik, . We denote by
Qy the inducedy-moduleU (g) ®um,) k, and set

H, = Endg(QX)Op.
Itis proved in [31] that the algebrH,, is a filtered deformation of the graded coordinate
ring k[S.] .

In what follows we will rely on a different realisation &, found by W. L. Gan and
Ginzburg [10]. Letn, = P;._,9@) andn), = P,-_,9@). Clearly,n, andn) are
nilpotent subalgebras gfandn’, is an ideal ofr, . Sincen’, C m,, we may viewk, as
ann;(—module. Let@x = U(g)®U(n/X)kX, an inducedy-module and the quotient @f (g)
by the leftideal, generated by alt — x (x) with x € n/,. The representation @f (g) in
End(Q) will be denoted byp, . Sincey vanishes ond,, 0, ] € P, -_39(i), the leftideal
J, is stable under the adjoint actiomof onU (g). Therefore, ad, acts on@x . The fixed
point space@idnx carries a natural algebra structure givertoy-J,)(y +7,) = xy+7,
forallx +J,,y+7J, € @X; see [10, p. 244] for more details. We furnigidmx and

~adn’

Qi * with algebra structures in a similar fashion. It is well known (and easily seen) that

adm, dn/

~ ~a
H, = Q5 and Eng(Q,)*= 0, *
as algebras. As, C m,, there is a naturag-module epimorphisnﬁx — Qy. As

m, C n,, itinduces an algebra map @idnx — H,. By [10, Theorem 4.1] is an

isomorphism of algebras. Henceforth we will make no distinction betwBeand Aidnx

and view the latter as a subalgebra of E@)°P.

Given(a, b) € Z x Z% we setx?zP 1= xj* .. -x,?{"zlf - -zgﬁﬂ By the PBW theorem,
the monomials@z? ® 1, with (a,b) € Z% x Zﬁf form ak-basis of@x. Fork € Z we
denote by@’)‘( the linear span of alt?3;? ® 1, with

m 2s
l@b)le =Y ai(ni+2)+ > bi <k (2.1.1)
i=1 i=1

We let H)’g denote the subspace &, consisting of allh € H, with 2(1,) € §§ By
[31] and [10], the subspacéﬁ)’g | k € Z4} form an increasing filtration of the algebra
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H, and the corresponding graded algebr&lgris isomorphic to a polynomial ring in
variables with free homogeneous generators of degiree?, ..., n, + 2. The elements
xin Qk\ 0% tandH¥ \ H*~* are said to havikazhdan degreg, written deg(x) = .
It is immediate from [31, Theorem 4.6] that in our present realisation the algépteas
a distinguished generating $8i, . .., ®, such that g®y, ..., gr®, generate gf, and

oty =(u+ > dpd)el, 1sksn 2.1.2)
0<‘(i>j)|e§”k+2
wherexf; € kandi{; = 0if either|(,})l. = nx + 2 and|i| +[j| = 1, 0ri #0,j =0,
andi; = 0for j > r. The monomials@‘il - ®% with (aq, ...,a,) € 7!, form a PBW
basis ofH, .

2.2. Given a subseX of g we denote byZ¢ (X) the closed subgroup @ consisting
of all g € G with (Adg)(x) = x for all x € X. Let P, denote the parabolic subgroup of
G with Lie P, = p.. There exists a 1-parameter subgrayp k* — G optimal for the
G-unstable vectoe and such that:

e (AdA.(1))gs) = t'id forall r € k* andi € Z;
e Zg(e) C P(e), Ru(Zg(e)) C Ru(Pe), Zg(e) = (Zg(e) N Zg(Ae)) Ru(Zi (€));
o C(e) :=Zg(e) N Zg(A.) is areductive group, and L&(e) = 3, (0);

see [6, Chapter 5] and [32]. Let Ad(e) denote the image af (e) in the adjoint group
Ad G = (Autg)°. Putec = Ad A.(—1), an element of ordex 2 in AdG. Clearly,c lies
in the centre of AdC(e) ando (x) = (—=1)'x for all x € g(i) andi € Z.

Lemma 2.1. The element belongs to any maximal torus 8l C (e).

Proof. Let To be a maximal torus of Ad'(e), To the inverse image ofy in G, and

L = Zs(Tp). ThenL is a Levi subgroup o6& ande is a distinguished nilpotent element
in [ = Lie L. The construction in [32] shows that all weights of Adk*) on[ are even.
Theno acts trivially onl, yielding g°* 2 [ for all r € Tp. Ask is infinite, there isg € Tp
such thag? = I. LetC denote the conjugacy class of the image afin the component
groupZadg(e)/Zadgg(e)° = (AdC(e))/(Ad C(e))°. As AdG is a group of adjoint type,
the G-conjugacy class of the paill, ¢) corresponds under Sommers’ bijection to the
G-conjugacy class of the pafe, C); see [35, 27, 32]. A4 is a Levi subgroup irG, the
cited references also show that= {1}. But 7o € (Ad C(e))° andry € Tp. SO we get
o € Z((AdC(e))°). As (Ad C(e))° is a reductive group, the tordy is self-centralising
in (Ad C(e))°. Henceo € Ty, completing the proof. O

We now fix a maximal torug, in Ad C (e) and assume (without loss of generality) that all
zi with i < 25 andx; with j < m are weight vectors with respect 1. By Lemmg 2.1,

o € T,. Note thatC(e) preserves botla;( and Kery. SinceC(e) acts onU (g) as al-
gebra automorphisms, it preserves the left idgaind thus acts o@x. This action is
compatible with that ofy, i.e.

gopy(x)og =7y (Adg)(x)) (Vg€ Cle), x €g). (2.2.1)



496 Alexander Premet

SinceC(e) preservesy, too, it acts onH, = Qidnx as algebra automorphisms. Since

g(1,) =1, forall g € C(e), the action ofC(e) on QX and H, is filtration preserving,
hence locally finite. Sinc&(G) acts trivially onU (g), there is a natural action of Ad(e)
on Q, andH,. It should be mentioned that

c(x®P @ 1) = (—1)@Pkyab g (2.2.2)
forall (a, b) € Z7 x Z%.

Lemma 2.2. Each generato®; € H, can be chosen to be a weight vector forof the
same weight as;.

Proof. Lety; denote thel,-weight ofx. If 3, # 0, we assume without loss of generality
that)u’é’o = 0. Letr € T, and®, := 1(0r) — y(t)Ok, an element inH, . Since all
X7 ®1, e 0, are weight vectors fof,, we deduce fronj (2.1].2) anld (2.p.1) tieat(1,)
is a linear combination of?;? ® 1, with eitherb # 0 ora; # 0 for somej > r. Then
®, =0forallr € T,, by [31, Lemma 4.5], and the result follows. O

2.3. We now consider the linear map: 3, — H,, x — ©,, such tha®,, = ©; for
all i. Thanks to Lemmf 2|29 is an injective homomorphism df,-modules. Although
® is not a Lie algebra homomorphism, in general, it follows from [31, Theorem 4.6(iv)]

and [2.2.2) and Lemnja 2.2 that
[Ox, O] = O] + 41 (O1, ..., ©,) (ModHy' ™) (2.3.2)
whereg;; is a polynomial in- variables with initial form of total degree 2.

Remark 2.1. As C(e) is a reductive group, eaci(e)-module H)’(‘ is completely re-
ducible. From this it follows that there exists a unitriangular polynomial substitution

F:(01,...,0,) > (F1(©1,...,0,), ..., F(0O1,...,0,))
which satisfies the following conditions:

e deg F(©®;) =deq ®; =n; +2foralli <r;

o the linear ma@r: 3, — H, with O®r(x;) = F(©;) for all i is an injective homo-
morphism ofC (¢)-modules, and, = gr®r(3,) as graded”(e)-modules;

e an analogue of (2.3.1) holds f@7(®1), ..., F(®,), and the subspace3r(;,) and
gr®r(3,) generate the algebra&s, and grH, , respectively.

Proposition 2.1. There exists an associatikgr]-algebral(, free as a module ove(z]
and such that
H, if A #£0,

T/ (8 =My = {U(;,X) it =0

ask-algebras. In other words, the enveloping algelbfé, ) is a contraction off, .
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Proof. Consider the algebrH (R) = R ® H, over the ring of Laurent polynomial® =
k[z, t~1] obtained fromH, by extension of scalars, and identif§, with the subspace
k ® H, of H(R). Define an invertibleR-linear transformatiomw on H (R) by setting

T(Of - @) = rkittnk @it @k Yk, L k) € Z,

and extending td (R) by R-linearity. We viewr as an isomorphism frorfl (R) onto a
new R-algebraH (R, ) with underlyingR-moduleR ® H, and with associative product
givenby(x - y)r := 7 Y (x) - w(y)) forallx,y e R® H,. We denote by, the free
k[z]-submodule ofH (R, ) generated b@‘{l O with (aq, ..., a,) € 7!, . It follows

from (2.1.1) and[(2.1]2) that
deg (O - ©f) = "niki +2) k;.
i=1 i=1

In view of (2.3.1) this yields
(®; - @j — @j - Q) = JT_l(Im-’_nj[@i, @j]) = @[xi,xj] (modtﬂ{x)

(since the initial form ofy;; has total degree 2 and degq;;(®1, ..., ®,) =n;+n; +2
if g;; # 0). Using induction on the Kazhdan degree&if e ®'," and the commutativity
of gr H,, we now deduce tha®; - 7, ), < 3, for all i. S0, is ak[t]-subalgebra of
H(R, ).

If A # 0 then the homomorphisix{z] — k takingz to A extends to a homomorphism
R — k. The isomorphismr—1 injects (r — A\)H (R, ) onto (r — A)H(R). Because
Hyn@t—-—MHR,m) = —1H, andH, N (t — A)H(R) =0, we have

Hy/(t —W)Hy = H(R, )/t — \)H(R, ) = H(R)/(t — M) H(R) = H,,

by the theorem on isomorphism. Now pﬂtx = H, /tJH, and identify the generators
©; = 0, of H, with their images irﬂ_{x. It is immediate from our earlier remarks
that these images satisfy the relatioes,[ ©,,] = ©Jy, ;] for all i, j. By the univer-
sality property of the enveloping algebt&(;, ), there exists an algebra homomorphism
O:UGy) — ﬁx with ¢ (x;) = ©; for all i. SinceJ, is a freek[s]-module, the mono-

mials @‘{1 .- ®% with (a1, ...,a,) € 7!, are linearly independent iﬁx. As a conse-
guenceg is an isomorphism. O
2.4. LetA, denote the associative algebra okeyenerated by, ..., z5, Zs+1, - - - » 225

subject to the relationg{y, z;] = 8;; and [;, z;] = [zi+s, Zj+s] =0 where 1<i, j <s.
Clearly,A, = A;(k), thesth Weyl algebra ovek. If s = 0 thenA, = k.

Leti — i* denote the involution on the set of indicgs ...,s,s +1,..., 2s} such
thati* = i+sfori <sandi* =i—sfori >s.Forl<i < 2s definez := (—1)7Vz;
where

. 0 if i<y,
p(l)_{l if i >s.
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Note thatz; = (—1)?@ )z for 1 < i < 2s andz} = zi4, gy=-—zuforl<i<s.lt
is worth remarking that the following relation holdsin(g):
2s 2s
D iz == zjz =5 (ModJy). (2.4.1)
i=1 i=1

Asthe form(-, -) is3, (0)-invariantandz}, z;) = 6;; for1 < i, j < 2s,forall x € 3,(0)

we have
2s 2s

[x. 2] = ez [x. gDz = = Y _([x. 2] 20z (2.4.2)

i=1 i=1
Eachh € H, is determined by its effect on the canonical generapel@x. Since
the vectori(1,) can be uniquely expressed/ad,) = (Ziezf uj-z") ® 1, with uj €
U (p.), one obtains a natural linear injection

f:Hy > Up) @AL, i =) ui®7. (2.4.3)

H 25
ieZs

As the form(-, ) is C(e)-invariant, the grougl (e) acts onA as automorphisms.
As C(e) also acts ori/(p,), it acts as automorphisms on the algebi@,) ® AL, via
g(u ® a) = g(u) ® g(a) with the obvious choices df, u, a.

Proposition 2.2. The magi: H, < U(p.) ® A¢® is aC(e)-equivariant algebra homo-
morphism.

Proof. Let 2 denote the linear span of all ® 1, with i e 7. We identify 2 with
the space of the left regular representatioefvia z' ® 1, — z'. Now p, induces a
representation ot/ (n, ) in End(Z), sayyo. Sinceg(—1) C n, andg(i) C Ker for all

i < —3, the definition of@idnx and induction ork show that

Pr(za -z (L)) = > ui- Py -z 21)(Ly)
iez%
for all z1,...,z € g(—1). Now let " be another element i#f, and suppose that
W1y = (Ziezf ui -z') ® 1, whereu; € U(p,.). Then

(h-h)(1y) = h'(h(1y) = Zﬁx (i) - Py (' (1))

= ZZM. uJ/ ~ﬁx(zj -Zi)(lx)-
i

It remains to note that the map® 1, - z' mentioned above identifigg(U (n,)) with
the image oA, in its left regular representation. Tli&e)-equivariance ofi is immediate
from the definitions. O
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Remark 2.2. Composingi with the natural projectio® (p.) ® A%® — U(g(0)) @ AP
one obtains an algebra homomorphism

w: Hy — U(g(0)) ® A

which will be referred to as th®liura map In the special case wheeds even this map
has already appeared in [31, (7.1)] (note thatdamven we haveAoP = k). It can be
proved that the map is always injective (this will not be required in the present article).

The adjoint action of;, (0) on g induces Lie algebra maps (0) — Der(AgP),
3,(0) — Der(U(p.) ® A¢P) and;, (0) — Der(H,) (of course, the same maps can be
obtained by differentiating the respective action€d#) on A%, U (p.) ® A and Hy).

By abuse of notation, the image ofe 3, (0) under each of these maps will be denoted
by adx.

2.5. Inwhat follows we will need explicit formulae for the generatérsof small Kazh-

dan degree. The reader will observe strong similarity between our formulae and the ex-
pressions for conserved fields of low conformal weight found by Kac and Wakimoto [20]
in the context of vertex algebras and quantum reduction.

Lemma 2.3. If v € 3, (0) then it can be assumed that

18 1&
Ou(1y) = (v +5 ;Zi[v,zil) ®1 = <v +5 Z[v,z}k]zz) ® 1.

i=1

Proof. It follows from (2.1.2) and[(2.2]2) that there exist a scgfaand a symmetric
matrix A = («;;) of order 2 such that

l 2.8‘
0,1, = v—i—éi;laijziz,-%—ﬂ ®1,.

SinceA is symmetric andq;, v + %Z?j:l a;jzizj + Bl € J, for all k, it must be that
[v.z;] = ij‘:l axjzj. Therefore, after a proper adjustmentisoive get

1 2.3‘
0,1, = <v +5 ;zz-[v, z?]) ®1,.

SinceJ, is (adv)-stable, [(2.4]1) yieldS 2, z;[v, 2] = 22, [v, 2]z (modJ,,). This
completes the proof. O

From now on we always assume that the generagrsvith v € 3,(0) are chosen in
accordance with Lemnja 2.3. This has the following advantage:
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Lemma 2.4. The restriction o to 3, (0) is a Lie algebra homomorphism, i.e.
[Bu, O] = @[u,v] (Vu, v € 3y 0)).

Moreover, the Lie algebra homomorphiswe ®: 3, (0) — Der(H,) coincides with the
differential of the rational actiorC (e) — Aut(H,).

Proof. We are going to use the injective homomorphiginirom[2.4. Letx € 3, (0).
Computing inA¢® and applying[(2.4]2) we get

2 i=1

1& 1&
[— Z [x, 2]z, Z} =-3 ;(([x, Z'], 2)zi + (zi, 2)[x, 2D
1
= 5([)@ z] +[x, 2] =[x, 7] (2.5.1)
forall z € g(—1). Hence ad = ad 3 3%, [x, z]z:) as derivations oAc". Then

(@0, i) = [0, Y ui @ | = Y (v, ul @' +ui @ [x, 2] = fil(adx) ()

forall h € H,. As 11 is injective, it must be thatd,, k] = (adx)(h), i.e. the adjoint
action of® (3, (0)) coincides with the differential of the action 6f(e) on H, . Also,

2s 25
S llwez] B2 - 3 e g lv. 2l
i=1

i,j=1
2s 2s
B _ St el == Y w2l (252)
ij=1 =1

as elements i, for all u, v € 3, (0). It follows that

@D 1 &
[7(©), 7O == [u.v]@ 1+ 5@ Y ([, [v. Tz +[v. 2{1[u, zi])
i=1

1 2s 1 2s
S CELERECIM ARSI EEFEIMAITEIE

1 & . -
= [u,v]®1+ 5® ;[[u, v], 21z = F(Opuv))-

But then P, ©,] = O,y forallu, v € 3, (0), as stated. O

Corollary 2.1. Any two-sided ideal off, is o-stable.
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Proof. Let I be a two-sided ideal off, . Clearly, I is invariant under the adjoint action of
O(3,(0)). By Lemm@] is then stable under the differential of tige)-action onH,, .
SinceC(e)° is a connected reductive group and the actiorC¢f) on H, is filtration
preserving, Weyl's theorem on complete reducibility shows that all subspmtéq are
C(e)°-stable. SinceZ(G) < C(e) acts trivially onH, and(Ad C(e))° coincides with
the image ofC(e)° in Ad C(e) = C(e)/Z(G), Lemme 2.1l shows thatis o-stable, as
claimed. O

Givenn elementsxy, x2, x3, ..., x, in a Lie algebra we denote byqxzxs. .. x,] the
commutator [..[[x1, x2], x3], ..., xx]-

Lemma 2.5. If v € 3, (1) then the generato®, € H, has the following property:

3 i,j=1

2 2
1
0,1, = (U + E [v,z7]zi + 3 E [vzizj]zjzi + zv) ® 1,
i—1

i=

wherez, = %Ziz;l(Zf:l(Zk, [v, [z}, 2FT1))zi. Moreover,
[0k, 0] = O]  (Yu € 34 0)).

Proof. Leth, = Y, [v, zf]zi + %Zi,j [vzfz}]zjzi + 20, @n element itU (g). By anti-
commutativity and the Jacobi identity, we have

[z, vz z7 1] = (2], [z 2] + [vlzgzf1f] + [, (27 (25 2710
Since(e, [v, x]) = 0 for all x € g, this yields
(zis [vzi 1) = (&, [vzi k) — (2 [vzezf]) + (& [vzfz]) (2.5.3)
where 1< i, j, k < 2s. Computing inU (g) moduloJ, we now get
[z,’;, Z [vz?‘z}k]zjz,-] = Z(z;’j, [vziziD)zjzi + Z [vzizi]zi + Z [vz;z)zi
LJ L l i
= > (& vz g]) — (& gD + (& vz i )zjz
ij
+ Z([UZTZZ]&' + [vzgzi1zi)
= ZL[UZTZZ‘]ZI' = zilvzizi] + zilvzi 7D

= 32([vz;“z7§]zi - %(Zi, [vziziT) + %(Zia [vzize])

=3 Z([uz;kz;;]zi) —3[zf 2]
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As a consequence,

[z, bl = [, vl + ) L2k [v, 2Tz + [v, 28] + 21, 2l
+ Z [vzfz{)zi — [z}, zv] = 0 (modJ,)

for all k. It is easy to see that[h,] = 0 (modJ,) for all z € n). By Lemma 2.2,
0, is a(—1)-eigenvector for . In conjunction with [(2.1]2), [31, Lemma 4.5], and the
computation above this shows tfag(1,) = 4, ® 1,.

Now letu be any element i, (0) and put®’ := [0, ©,] — O[4,. It is immedi-
ate from [2.3.11) tha®’ is a polynomial in®,, with x; € 3,(0). Sinces (®') = —©’
by Lemmg 2.2, this polynomial must be zero. $%,[®,] = Oy, ) necessarily holds,
completing the proof. O

3. Associated varieties and Gelfand—Kirillov dimension

3.1. Atpresentvery little is known about finite-dimensional representations of the alge-
brasH, . In view of Propositiofy 2]1 this can be partly explained by the lack of detailed
information on the structure of the centralisg(e). Besides, ife is not even then there

is no obvious reason fal, = H,, to possess such representations. On the other hand,
the evidence collected so far suggests that each alggptes infinitely many isoclasses

of finite-dimensional irreducible representations and dimension formulae for those have
roughly the same format as the Weyl dimension formulaHer= U (g); se€ 6.1. It is
therefore natural to ask:

Question 3.1. Is it true that for any nonzeré € H, there exists a finite-dimensional
irreducible representatiop of H, such thato (i) # 0?

Let C, denote the category of gltmodules on which — x (x) acts locally nilpotently for
eachx € m,. Given ag-moduleM we denote by W) the subspace a¥/ consisting
of all m € M such thatx.m = x(x)m for all x € m,. Of course, forM e C, we
have WHM) = O if and only if M = 0. Let H,-mod denote the category of all left
H,-modules. In the Appendix to [31], Skryabin proved that the functor

Hy-mod— Cy, V> 0y ®p,V, (3.1.1)
is an equivalence of categories. The inverse equivalence is given by the functor
Cy — Hy-mod M +— Wh(M); (3.1.2)

see also [10, Sect. 6]. Skryabin’s result implies thatgimoduleQ, ®p, V is simple if

and only if so is thefd, -moduleV. By the Irreducibility Theorem, the associated variety

of the annihilator in/ (g) of any simpleg-module coincides with the closure of a nilpotent
orbit in g*; see [2, 18, 21, 36, 12]. Our goal in this section is to determine the associated
varieties of the annihilators Apng M for all M e €, with dimWh(M) < oo. Such
modules are in 1-1 correspondence with the finite-dimensional representatifips of
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3.2. We recall the definition of the Gelfand—Kirillov dimension of a finitely generated
U (g)-module M. Firstly note that there exists a finite-dimensional subspgdgec M
such thatM = |J,-o UxMo WhereU, stands for the:th component of the standard
filtration of U (g). It is known that for allz >> 0 the dimension ot/, My is a polynomial
in n. The Gelfand—Kirillov dimensiorof M, denoted DiniM), is defined as the degree
of this polynomial. The key point in this definition is that DiM) is independent of the
choice ofMp; see [13, p. 134] for more details.

Now let I be a two-sided ideal of the universal enveloping algdli(g). The sub-
spaced, := I N U, with n € Z, form an increasing filtration of satisfyingU,,1,, <
L4y forallm, n € Z,. The associated graded algebrd gr> grU(g) = S(g) is there-
fore identified with a homogeneous ideal of the symmetric algSkgastable under the
adjoint action ofG. Theassociated variety A(I) of the ideall is defined as the maximal
spectrum of the affine algebsdg)/gr 7. It is immediate from the definition thatA (1) is
a Zariski closed, conicalG-invariant subset of Maf(g) = g*. For M as above we have

dimVA(Anny g M) < 2Dim(M); (3.2.1)

see [13, (10.7) and (17.11)]. ThemoduleM is calledholonomicif equality holds here,
that is, dimVA(ANNy g M) = 2 Dim(M).

3.3. We are now in a position to state and prove the main result of this section.
Theorem 3.1. LetM € €, and = Anny g M. Then the following hold:

() Oy CVA).
@iy If dmWh(M) < oo, thenDIm(M) = %dim@x and VA(I) coincides with the
Zariski closure o0, . In particular, M is a holonomigy-module.

Proof. (1) Let T denote the anti-involution of the algebt&g) such thatt T = —x and
(uv)T =vTu' forallx € gandallu, v € U(g). Let M* denote thg-module dual ta\/.
Itis easy to see that Apng M* =1 T, SinceT preserves the standard filtration@f g)
and acts as a scalar operator on each factor spag®,_1 we have grAng g M* =
gr(d ") =grl. Consequently A(Anny g M*) = VA).

Pick any nonzeraz € Wh(M) and view it as a linear function oM™ via m(f) =
f(m)forall f € M*. Then

mx.f) = x.f)m) =—fx.m) = —xx) f(m) = —xx)m(f) (Yx € my).

This shows that is a dual(m,, —x)-Whittaker vector of thgg-module M*; see [24,

p. 221]. Thanks to Matumoto’s theorem [24] we are now able to deduce that the associated
variety of Anny g M* contains—y. As VA(Anny g M*) = VA(I) is conical andG-

stable this yield®), ¢ VA(I), proving (i).

(2) From now on suppose thady := Wh(M) is finite-dimensional. Let2 = dimO,,.
By thesl>-theory,r = dim3, = dimg(0) + dimg(—1) = dimg(0) + 2s. Henced =
dimm, = dimp, —dimg(0) —s =m —r +s. LetYy,..., Y, be a basis ofn, with
Y; € g(—1; — 2) for somel; > —1 and choos&X; € g(l;) with 1 < i < d such that
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x([Yi, X;]) = &;;. No generality will be lost by assuming further thgt = z; fori < s
andX,y; = x4 for 1 < j <m —r, wherez; andx; are basis vectors introduce.l.
Fora= (a1, ...,aq) € Z¢ put

d m—r

N

a a

|a|=Zai, Wta:_zai+z Np4ils+i, XaZX]_l"'deGU\a|~
i=1 i=1 i=1

(3) Let {m;} be a basis oMp. Since thel (g)-moduleQ,, is generated by lit follows
from (3.1.1) and[(3.1]2) that th€ (g)-module M is generated byo. As explained in
[31, p. 53] the vectorst®(m;) with a € Zi and:; < dim My are linearly independent.
Therefore,

dimU, Mo > (dim Mo) - Carda e Z< | n > |al} = (dim Mo) - (" Zd>.

For alln > 0 the LHS is a polynomial im of degree DiniM), while the RHS is a
polynomial inn of degreed. This yields DIiM(M) > d.

(4) Now putN = max{n € Z | g(n) # 0} and letM, ; denote the subspace &f spanned
by all vectorsX@(m;) with |a] < j. We claim that

UrMo € Mg vtk (Yk € Z4).

Fork = (k1, ..., k) € Z!,_set
r
wtk =3 "miki, x*=x-xfeU@, O =0 ..0f eH,.
i=1

Note that wk > 0. Givena € Zi andb e Z',_ put|(a; b)|. := wta+wtb + 2|a| + 2|b.
Using the formula in [31, p. 27] and the isomorphigth= Q, ®u, Mo it is easy to
observe that

X3xP(m;) = (Xa®b+ > pijX'el4 - Mi,jXI@l)(mi)
|G:J) =l @b fi-+]j > [al+]b] Gl @b,

for somey;j € k. As the subspacg Mo is spanned by alk@xP(m;) with |a| + |b| < &,
itis contained in the span of all' (m;) such that

wti < [(i;))le < max [(&b)le <2k+ max (wta+ wtb)
|a|+|b|<k |al+|b|<k
<2k+ max (Nl|al+ N|b|) < (N + 2)k.
lal+|bl<k

The claim follows. Since all vectoaéi(mj) are linearly independent, we derive

dim UgMo < dim My, (v42i = (dim Mo) - Cardi € Z% | (N + 2)k > [i[}

= (dim Mp) - (Nk +;k+d).
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Since the RHS is a polynomial inof degreei, we get Dim(M) < d. In conjunction with
part (3) this shows that Ditd/) = d = (dimO,)/2.

(5) Since theH, -module WHAM) is finite-dimensional, Skryabin’s equivalence of cate-
gories described jn 3.1 implies that tjrenoduleM has a composition seridg = M1 D

-+- D M; D Miy1 = 0 such thatM; /M; 1 € €, and dimWHM;/M; 1) < oo for all

i <I.SetJ; := Anny g (M;/M;1). It is immediate from the discussion in [14, (17.7)]
that

l
Varr = () Var . (3.3.2)
i=1

On the other hand, it follows from (3.2.1) and parts (1) and (4) of this proof that for any
g-moduleN e €, with dimWh(N) < oo one has

dimO, < dimVA(Anny g N) < 2DIm(N) =dimO,.

In conjunction with the Irreducibility Theorem mentioned [in |3.1 this shows that
VA(M;/M;41) coincides with the Zariski closur@, for all i < [. But then [3.3]1)
yieldsVA(I) = 5X, completing the proof. O

3.4. Recall that a two-sided idedl of U(g) is calledcompletely primgrespectively,
primitive) if U(g)/I is a domain (respectively, if is the annihilator of a simplg-
module). Fom € Z, the setY, = {¢ € g*|dim(Ad*G)y = n} is locally closed in

the Zariski topology ofi*. A (locally closed) subset gf* is called asheetf it coincides

with an irreducible component of one of the locally closed $gtdt is well-known that
each sheet ig-invariant and contains a unique nilpotent coadjoint orbit (such an orbit
may lie in several sheets, however).

Conjecture 3.1. Let ¢ be an arbitrary nilpotent element and lety = x. be the
corresponding linear function gn

1. The algebrdi, contains an ideal of codimension 1.

2. The ideals of codimension 1 iHi,, are finite in number if and only i©, is a sheet
in g*. ~

3. For any ideall of codimension 1 inH, the ideall = Anny ) (Qy ®nu, Hy/I) of
U (g) is completely prime.

Our last conjecture provides a hypothetical converse to Theorgm 3.1(ii). It indicates that
each categorg, is potentially very important for the theory of primitive ideals.

Conjecture 3.2. Let x be as above and Iétbe a primitive ideal olU (g) whose associ-
ated variety equal®, . Then there exists a simpgemoduleM e €, with dimWh(M) <
oo such thatl = Anny g M.
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4. Minimal nilpotent algebras: a quadratic relation

4.1. Leth be a Cartan subalgebra gfand let® be the root system gf relative toh.
Let{ey | @ € ®}U{h, | @ € ®} be a Chevalley system inwith each triple(ey, iy, e—g)
being ansl-triple in g. Let IT = {a1, ..., oy} be a basis of simple roots i@ with the
elements i1 numbered as in [4], and l¢to1, . . ., @y} be the corresponding system of
fundamental weights iy*. Let & and ®~ be the positive and the negative system of
® relative toIl, respectively, and leP denote the lattice of integral weights liff. As
usual, givem.,, u € P we writed > u if and only if A — w is a sum of positive roots.
Let P* = (Y, aiw; | i € Z}, the set of dominant weights, apd= w1 + - -+ + @y =

% Y wca+ o, the half-sum of positive roots. L& be the Weyl group of the root systeh)

it is generated by reflectiong, with « € ®. Thedot actionof W on h* is defined by
settingw.A = w(x + p) — p forall w € W anda € h*.

If gis not of type A or C, there is a unique long rootlihlinked with the lowest root
—a € @~ on the extended Dynkin diagram gf we call it 8. For g of type A, and G,
put 8 = «,. In this paper, we will be mostly concerned with téle-triple (e, , f) =
(eg, hg, e—g). Recall that the invariant forr, -) on g has the property that, /) = 1.
This entails(k, h) = 2. It is well-known that the restriction df, -) to b is nondegenerate
and induces @ -invariant scalar product on thg@-span of P in h*. More precisely, for
all », u € b* we have(r, u) = (1, 1,) wherer,, ¢, € h are such that = (z,, -) and
w = (ty,). Put(h, ) = 2(A,0)/(x, ) for all A € h* anda € . Since(., ) is a
multiple of the Killing form of g, there is a constant € k> such that8(x) = c(hg, x)
for all x € b. The equalityB(hg) = 2 = (hg, hg) now shows that = 1 andtg = hg.
Hence(y, y) = 2 for all long rootsy € .

From now on we assume that = (e, -) wheree = eg. It is well-known that the
adjoint action ofr = hg on g gives rise to a shof-grading

g=9(-20g(-Ddg0)dg) ®g(?

with g(i) = {x e g | [h,x] = ix} forall i € Z and withg(1) ® g(2) = g(—1) & g(—2)
isomorphic to a Heisenberg Lie algebra. We also hgé® = ke, g(—2) = kf, and
g(0) = cg(h). Theslp-theory implies that

cgle) = g(0)* @ g(1) @ g(2)

whereg(0)® = {x € g(0) | [x,e] = 0}. More importantly for our later deliberations,
g(0)? is the orthogonal complement id in g(0) and hence coincides with the image of
the Lie algebra endomorphism

t:9(0) — g(0), x> x — 3(x, W)h.

In particular,g(0)* is an ideal of codimension 1 in the Levi subalgeb(@). It is well-
known that outside type A the centreg0) coincides withks andg(1) is an irreducible
adg(0)*-module. As a consequencegifs not of type A, themy(0)* = [g(0), g(0)] is the
only ideal of codimension 1 ig(0) andcg(e) = [c4(e), c4(e)] is a perfect Lie algebra.
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Note that in the present cagéd)® = Lie C(e). Puth, := h N cg(e), a Cartan sub-
algebra ing(0)%. It can be assumed without loss of generality that= Lie 7, where
T, is as in Section 2. We can choosg . . ., zs, zs+1, - - -, 22 10 be root vectors fobh.
Moreover, we can (and will) assume that this with 1 < i < s are root vectors ig(—1)
corresponding tmegativerootsy; € ®~. Then each; with 1 <i < s is a root vector in
g(—1) corresponding tg.* ;= — — y; € ®.

4.2. SetH = H, and identifyH with i(H). Givena € 3,(0) andw € 3,(1) we
define the following elements &, :

1 2s 1 2
Vai=35 Y la.zflzi. pwi= 3 > wzfzlzjzi + zw.
i=1

i,j=1
Recall thatZizil[w, ¥z = — Z,-zil[w, zi]z}. The computation used in the proof of
Lemma 2.5 shows that
25
[z5, pul = Z [wz]zg]zi. (4.2.1)
i=1
Notice that inU (p,) ® AZP we have}"® ,[w, z¥] ® z; = — Y2 4[w, z;] ® z¥, and

[a®f7b®g] = [a7b] ®gf_ba®[fvg] (Vll,b € U(pé)v Vf7g EAE)
Keeping this in mind it is straightforward to see that for:alb € 3, (1),

2s 2s
[Ou, O] = [u®l+ [uvz;ﬁ]®Zi+1®¢u9v®1+2[v71?]®Zi+1®(ﬂu]
i=1 i=1
2 25
=[u,v] ® 1+Z[[u, v,z ] @z + Z[u,z;] ® [z}, ¢u]
i=1 i,j=1

2s 2s
- S lzlelg el + Y lu ) v 2 ®zjz

i,j=1 i,j=1
2
+ ) [v. 2 u.z] ®1—1& [¢u, ¢u]- (4.2.2)
i=1
In view of (4.2.1) and[(Z.5]3) we have
2s 2s
Yozl ol =) [xul®bzly =) [x 21 ® (. gz
i=1 i,j=1 ik
=Y [ & gl @ wz + Y . ul @ 2l [y [2F. 21z
ij.k i,J:k
2s 2s
=Y [zl @z + ) [x. 1@ by, f] (4.2.3)
i,j=1 i=1
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forall x, y € 3,(1). Combining this with[(4.2]2) and taking into account that

25

Z[[u 1 [, gl ®zizy = Z[[u 7l v, 7l ® zjzi — Z[[u,zi],[v,z;]],
i,j=1 i,j=1 i=1

we now obtain

2s 2s
[04. 0] =[] @1+ Y [[u.v].51®z — Y [v. [uz}z]] ® 2z

i=1 i,j=1

—Z[v d@ule 1+ 3 vzl ®z,z]+2[u 1@z, f]

i,j=1

+ Z[{u 1 [v. 2] 1]®zjzl+2[v w2l ®©1-1® [pu, 0]

i,j=1

= (f, [u, v])(e®l+2[e 1@z + Z[ez z ]®Z,Zl)

i=1 i,j=1

- Z[{u 1 [v. 2 1]®z,z,+2<[u ZFl1®zlv, f1-[v, 1@ zlu, £1)

i,j=1 i=1
2s

+ ) [z, 1@ 1 10 [pu, 0] (4.2.4)
i=1

Next observe thawd, z}1* = [a, z;] — 3(h, [a, z'])h, and

2s
Z(h, [a, 2Dz = Z(e, [f.la, 2Dz = Y (2} [a, [Nz = a, f]
i=1

i=1 i=1

foralla € 3,(1). Since} 2, z*z; = s (as elements iA,), it follows from ) that

25
Z[x alf @y, 1% 1z = Z[x al®lyzizlz + Z(h, [y, 7 Dlx, 2" ® 1
i:l

i,j=1 l]l

2s
=Y al@bzly - Zm v, 5 Dh ® 2zl + 5l [ FF @1

i,j=1 1]1

= —[x [y. [P @1+ Z[x 2] ® [y} 2]z +Z[x #1ely, flz

i,j=1

+§Zh®[[y, [x. /1. 251z = —[x,[y, Mrels —Zh®[[y, [x. /1. 2Tz
i=1

25
+ 3 e vzl ®z,z,+2[x Zl®zuly, f]+Z[x 2180, flz

i,j=1
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forall x, y € 3, (1). But then

2s 2s
Yol alfelly 1 1z + Y Iy, g1 @ [1x, il ]z

i,j=1 i,j=1

25 25
=Y e alfely. 1 5l - )y al* ©llx, 1%, 1z

i,j=1 i/’ 1
= (/. [x. y])( hn®1——h®2[h zil*zi + Z[ez ]®ij,'>
i,j=1
42ﬁxﬂbwﬂ®mlzmxayz ®1
i,j=1

+ZZ([X’ZH ®Zi[y’ f] - [y’ Z;k] ®Zi[xv f]) - [[X, y]? f] ® 1. (425)
i=1

We used the fact that

Z[x 71® [y, f1. 2] —Z[X ] ® (77 [y, f1) = —[x. [y. [T ® L

To ease notation, set
2s

] 1
A(u,v) = [®M’ ®v] - é X:(("D[u,zi]n®[v,zj-‘]n + ®[v,zj‘]ﬁ®[u,z,~]5)'

i=1
Note that
2s

> (OO, 21+ O 2O 7,10) = Z([u Z) . 21 + [v. ) [u. 2] ® 1

i=1 i=1

- Z [u, z)" @ [[v. ;1% 2} ]zjzi + Z [v, 2T @ [[u, 2%, 2} zjzi + 1@ Y (u, v),
i,j=1 i,j=1

wherey (u, v) = %Z?ll(W[v,zf]ﬁw[u‘zi]ﬁ + w[u,zi]:l/f[v,sz) € A.. Since

2s 2s
Do zhn ==Y (=[x f1  (Vx € 3,(D),
i=1 i=1

we have

2s 2s
Z([u’ Zi]ﬁ[vv Z;k]j + [U, Z;k]ﬁ[u’ Zi]ﬁ) = Z([ua Zi][v’ Z;k] + ['U, Z;k][ua Zi])
i=1 i=1

2s
= (. z)hv. 7] + . zHAlu, 2] = @, 2) (. ZHh* = F (v, 27) (. 20)h?)
i=1

25 2s
—%(e, [u, v])h2 + 22 [u, zi][v, 2} — Z ([, zi], [v, Z711
i=1 i=1
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Sincent = 0 andh ® Y2 1[h, z}]z; = —sh ® 1, we now combine the above with (4.2.4)
and [4.2.5) to deduce that

de + h% — (s + 2)h >
A(u,v):%(e,[u,v])( + 2(S+ ) R14+2) [e,z/]1®z
i=1
2s
SN CE EEE) RECT N EETIIRSNRNCED
ij=1

4.3. Recall that, (0) = g(0)* is an ideal of codimension 1 in the Levi subalgebra
g(0) = cg(h) of g. Let{a;} and{b;} be dual bases gf, (0) with respect to the restriction of
(-,+) 103, (0), and letCo = ), a;b; be the corresponding Casimir element.fs, (0)).
SetOcas:= )_; O4 Oy, , an element of1. Although®casis not central i, Lemmg 2.4
shows that it commutes with all operatads for x € 3, (0). Since the skew-symmetric
form (-, -) is invariant undey, (0) andk# is orthogonal tay(0)* with respect ta-, -), we
have

2
Z [ezfz]]" ® zjzi = Z(bk, [ezf /1 Dax ® zjzi = Z(bk, lezizDak ® zjzi

i,j=1 i,j.k i,j.k
=Y (g7l Oax ® zjzi = = Yz} [z} ax © 2z
i,j.k i,j.k
=Y @z lar @ zjzi = — Y ax ® [br. 2]]zi.
ij:k k,i

Interchanging the@les of{q;} and{b;} we now obtain

2s
Z [ez;‘z}“]t ®zjzi = — Zbk ® [ak. zj1zi.
ij=1 k.i

Next observe that

2 2 2
1
E [ezj‘z}f‘]ﬂ ®zjzi = E lezf}] ® zjzi — > E (h, [eziziDh ® zjzi
i,j=1 i,j=1 i,j=1

2 2s
1
= Z [eziz}]1 ® zjzi + > Z (lh, 2], 271, )h ® 27z
i,j=1 i,j=1

2s
sh
= Z lezizi]l®zjzi + 5 ® L
& 2
i,j=1
It follows that

2s
sh 1

> lezfz1 @ zjzi = —5 ®1- E(Zai ®[bi. 21z + D bi ®[ai. Zj]Zj)-

inj=1 i i
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As a result,

Ocas= Y aibi ® 1+ Z(al®[bl,z]z,+b ®[ai, 2}1z) + 1® g

i

sh
z(_7+ albl>®1—12_:1[ez 1@z +1® ), (4.3.1)

wherecy = 33, :[bi. Zlzjlai, zflzk € A

4.4. Let C denote the Casimir element &f(g) corresponding to the invariant form
(-, ). Clearly,C induces g-endomorphism oD, , and hence can be viewed as a central
element ofH. To determingz(C) we first observe that the (ordered) sets

{eh, flulai} Ufle,z/111<i <25} U{z |1 <i < 2s}

and
{f,h/2,e}U{b,-}U{z,-|1§i§2s}U{[e,z;"]|1§i§23}

are dual bases gfwith respect tq-, -). Since
25 2 25
Y o laile g =) Mz el i1 + e [z, 271D = = ) Iz} el zil + [e, [2], il
i=1 i=1 i=1
we haveY"Z [z, [e, 2] = —sh. As 5, ()1, = (e, /)1, = 1,, it follows that
h2 2s 25
co= (2ot —nt T 423 e 1+ L1 ) @1,
i i=1 i=1

h? z
= <Ze +5 =G+t > aibi+2) e, z?‘]zi> ®1,.
i i=1
As a consequence,

2 25
() = (26 + h? —+Dr+ Xi:aib,)@ 1+ ZZ[e, 2] ® zi. (4.4.1)

i=1

In view of (4.3.1) and the convention of 4.1 this yields

h? — 2)h
C_®CaS: <2€+#>®1

+22[e 71 ®zi + Z[ez 1®zjzi — 1@ cp. (4.4.2)
i,j=1
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Proposition 4.1. Letu, v € 3, (1). Then the following relation holds iff:

1 1&
[Ou, ©y] = E(f’ [u, vD(C — Ocas— co) + > Z((a[u,zi]u@[v,z;‘]u + O 1O z12)»
i=1
wherecg € k is a constant depending agn

Proof. SetB(u, v) ;= A(u, v) — %(f, [u, v])(C — Oca9, an element irl. From )
and [4.4.2) we deduce that(B(u, v)) = 1 ® b(u, v) for someb(u,v) € A,. In con-
junction with [31, Lemma 4.5] this shows théaty, v) € k for all u, v € 3,(1). In other
words, b: 3, (1) x 3,(1) — k, (u,v) — b(u,v), is a bilinear form ory, (1). In view
of Lemma{Z']é, thg, (0)-invariance of(-, -), and the Jacobi identity, this form is invari-
ant under, (0). On the other hand, it is well-known (and easily seen) thati#f not of
type A, theng, (1) is an irreducibley, (0)-module, and ifg is of type A and;, (1) # O,
thenz, (1) = M & M* whereM is an irreducible;, (0)-module such thats Z M*.
Therefore, in all casds = co(f, [+, -]) for somecg € k. This completes the proof. O

Let{x1, ..., x,} and{ua, ..., uz} be bases of, (0) andj, (1), respectively, and leti *
denote thék-span of

[on . oh 0l 0 (- | i+ ik+1=1],
a subspace of codimension 14ft see [31, Theorem 4.6(ii)].

Corollary 4.1. The subspacéi™ is a two-sided ideal of the minimal nilpotent alge-
bra H. If g is not of typeA, thenH* is the only ideal of codimensidhin H.

Proof. We need to show thdt- 4’ € H* forall h, k' € HT. SinceC — cp € Z(H), it
suffices to show tha®, - H™ c H™ for all x € 3,(0) U 3,(1). Using Lemma 24 it is
easy to observe that the span of@l}, - - - ©, with }"}_; ix > 1 is stable under the left
multiplications by®, with x € 3, (0). Thus we may assume thate 3, (1). Lemm

(in conjunction with [31, Theorem 4.6(ii)]) now provides a further reduction: it suffices to
show that®, - (@, -+~ By, ) € Htforallx € 3, () andalljy, ..., jy €{1,...,2s}.
This follows from Propositiof 4]1 and Lemia].5 by inductionn

Supposg is not of type A. Then only one node of the extended Dynkin diagram of
g is linked with the node corresponding téx. From this it is immediate that the derived
subalgebra oty(h) is semisimple and has codimension Icjihg ). Since the root®
and—d lie in the sameW-orbit, the subalgebrag(hz) andg(0) = c4(h) are conjugate
under AdG. It follows thatz, (0) = [g(0), g(0)] is semisimple.

Let 7 be any ideal of codimension 1 iH. Thenxy — yx € [ forall x,y € H.
Sincej, (0) is semisimple, we havg, (0) = [3,(0), 5 (0)]. In view of Lemmg 2.4 this
implies that®, < I for all x € 3,(0). We have already mentioned that in the present
casej, (1) is an irreducibley, (0)-module. Sg, (1) = [3,(0), 3, (D], yielding®, € I
for all u € 3,(1); see Lemma 2|5. Sincg is a subalgebra ofi containings, (0) U
3 (D), Propositio entail€ — co € 1. As a consequencé/* C I. SinceH;r has
codimension 1 ind, we conclude that = H, as desired. O
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5. Primitive ideals and Goldie rank

5.1. We retain the assumptions of the previous section and denottbhg category
€, for x = (eg, -). According to (3.1), giverl € C one has\f = Q, ®y Mo where
Mo = Wh(M). Let{m; | i € I} be a basis oMy. It is immediate from [31, p. 52] that
the vectors

(s @mi|jel;lin. .. is€Zy)

form a basis 00, ® v Mo overk. We can thus identify/ andk[A, z1, ..., z;] ® Mg as
vector spaces ovéx. Recall thatf;, z;] =0and |, z;] = —z; foralli, j <s.

Let A denote the automorphism of the polynomial algekj&] such thatA (k) =
h + 1. Clearly, A=Y(h) = h — 1. Let (A) stand for the cyclic subgroup of Alit[/])
generated byA. The skew group algebigh] = (A) has the seth!A/ | i € Z,, j € 7}
as ak-basis and the following relations hold:

AhE =+ A (el keZy).

Let A, := (k[h] * (A)) ® A,, an associative algebra ovier and identify the Weyl
algebraA, and the skew group algebidh] = (A) with the subalgebrak ® A, and
(k[h] % (A)) ® k of A, respectively. Define an involutione Aut(A,) by setting

() = -z, @) =—-8, th)=h 1(A)Y=CDAF A<i<s, kel).

The polynomial algebri[#, z1, . . ., zs] = k[A][z1, ..., zs] has a natural.-module
structure such tha. f(h, z1,...,25) = hf(h,z1,...,25) and A* f(h, z1,...,z5) =
fh+k, z1,...,2z5). As thisA.-module is faithful, we will identifyA, with a subalgebra
of Endk[h, z1, . .., zs]). Sincea? ¢ Al forallk € Z andA ® z;, A ® & € A? for
alli < s,itis easy to see th#ff#, z1, ..., z;] remains irreducible when restricted to the
fixed point algebrad?.

Let 7 be any two-sided ideal off. Sincel is o-stable by Corollary 2|1, the ideal
A, ® I of the algebrad, ® H is invariant under the involution ® o of A, ® H. Hence
7 ® o indices an automorphism of order two on the algetya (H/I). We mention for
further references thatl, ® (H/1))*®° contains the images i, ® (H/I) of AT ® k,
1®0,,andA"1® @, foralla € 3, (0) andu € 3, (1).

5.2. Recall that in our present setting the elemgrig a root vector fok corresponding

to —B. Since adf is locally nilpotent onU (g), the setSy := {f’ | i € Z;}is an Ore
set inU(g); see [13, (11.2)]. We denote ly(g); the IocaIizationS,?lU(g). Since f
commutes with the;’s and f2"™ = (h + 2)" f for all m € Z,, it follows that f acts on

M =Kk[h, z1, ..., 25] ® Mo asA? ® idy, (one should keep in mind that(f) = 1). In
particular, f acts invertibly ond. From this it follows that the localizatiosi; > can be
identified withM; see [13, (11.4)]. As a result, the actionldfg) on M extends uniquely

to a representation di (g) in EndM. We note for completeness that the enveloping
algebral/ (g) is canonically identified with a subalgebrafg) .
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Theorem 5.1. Let M e € and identifyM with k[A, z1, ..., z5] ® Mo where Mg =
Wh(M). Letp: U(g)y — EndM andp: H — EndMg be the representations of(g)
and H induced by the action gf on M. Then the following hold:

(i) (A®idug) o pU(@)) o (A®iduy) L= pU(9)));
(i) A(f) = A2®iduy;
(i) Ae® p(H) = p(U(g)y) ® AU (9)f)(A @idug);
(v) A(U(g)f) = (Ae ® p(H))T®°.

Proof. Put id = idy,. We have already mentioned thatf) = A? ® id, showing (ii).
Sincez;h™ = (h + 1) z; forallm € Z4 andi < 2s, it follows that

phy =h®id, pzi) =(Aoz)®id, p(zi+s) =(A0d)®id (1=<i<y).

All these are inA? ® id C (A, ® p(H))*™®’. Now leta € 3, (0) and write [, z;] =
Y2 wijzj for 1 < i < 25, wherey,;; € k. Note that for 1< i,j < s we have
lazizj] = pi j+s f, and

Kk NSy ki kil k kitki =D~k k-2 ko2
azy "'ZS°=ZkiZ]_ -z -~-z;[a,zl‘]+TZZl s gyt Tz azf]
=1 =1

k ki—1 ki—1 ) k )
+klk] Z le...zl_’ ...ij ...Zfﬁ[azizj]_i_zll...zféa

1<i<j<s

forall k; € Z,.. Since(., -) is 3, (0)-invariant, it must be that; s j1s = —iji, Wi, j4+s =
Wjits, and piqsj = pjys; Where 1< i, j < 5. In view of Lemmazp and the
fact thatz;ys € m, foralli < s, we must haveo(@)(1 ® m) = 1 ® p(0,)(m) —

% Y iila, zits]zi ® 1 for allm € Mp. In conjunction with our earlier remarks (and the
fact that iz, 2] = 0) this yields

pla) =1® (P(®a) + XS:’”") + ( XS: Mijzﬁi) ®id
i=1

ij=1

N L.
+<Z%GE+ Z u,-,,-+saiaj)®id

i=1 1<i<j<s

S ..
B <Z :U«z,é—t-s Ziz + Z /,Liyj—}-sZiZj) ®id. (5.2.1)

i=1 I<i<j<s

This shows thaf(a) commutes withA ® id and lies in(A. ® p(H))*®°. Since all
operator§A2o z;z;) ® id, (A% 0 8;9;) ® id, and(AZ 0 z;3;) ® id are inj (U (n,)) by our
remarks earlier in the proof, and singef ~1) = A—2®id, it also follows that 18 p (©,)
isinp(U(g)y) foralla e 3, (0).
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Now letu € 3, (1). First note thatd, z;] = [u, z;]* + 3 (u, zi)h anduh™ = (h — 1)"u
foralli < s andm € Z.. Next observe that

s s
. ' . 1 , kitki —1) ki—2 i
Mle"'Zfézzzll"'zil "'Zfé[l’hzi]_‘_ZlTle“.Zil Zfé[uzg]
i=1 i=1
k k-1 ki—1
+ Z kikjzat -2y Ttz 2 uziz)]
1<i<j<s

k k-1 k-1 k-1 &
+ > kikjkizgte g ez Tyt [uzizia)

I<i<j<I<s

kitk; — 1 o ki—1
Z Mkakl...zlf’ 2...z.j Zfl[uzlzzj]

i j
1<i<j<s 2
kjkj —1) & k-1 k-2
+ Z ki%zll...zil ...Zj'/ ..fo[uzizjz]
I<i<j<s
ki — Dk — 2 _
+> i G)(l )zlfmsz’ S b ud 4 A 2,
i=1

and

A h=nd b S =R R
N
k
= (n+ a0 @2,
i=1

This shows that for allz: € My we have

N
Zzlil . .Zf_"”l 2R p(u, DA ® m)
i=1

s

= ((h + izl‘ai) ° (Z (M’ZZi)ai) + i 9 ® ,0(®[u,z,-]:)> @2 @m)
i=1 i=1

i=1

1 _ .
—5 2 At al il gl A @ m).

In view of Lemmg 2.5 we now get

2k s A m) = (d® pO,))E - 25 @ m)

N

N _ 1 ~
— Z]il o Zi‘s <;zip([u, Zit+s))(A®@m) + 3 in::lP([MZi-i-st—i-s])(ZjZi ® m)

2 N
+3 ; p(uzitszi DA @ m) + p(z)(1® m)),
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Together with the above remarks this says fh@f) is a linear combination of the follow-
ing operators:

N

(hn+ XS:Ziai) o (Z (u’zzi)af> oo @id, 3 00 A ® O
im1

i=1 i=1

N N N
(U, Zits) 1 o -1
(n+ ;zia,-) o (; e z,-> oA @id, ;(z,» oA™Y ® p(Op 21, 10)-
(0;0;0k o A_l) ®id, (zizjzk o A_l) ®id, (zizjok o A_l) ®id,
(89 0 ATH @id, (30 ATH®id, (zioA™H®id, AT1® p(@)),

wherei, j, k < s. Butthenp(u) € (A.®p(H))?®* and(A®id)5(u)(AQid) 1 —p(u) €
Al ®id. As AL ®id C p(U(g)y) by our earlier remarks, this yields

(A®id)px)(ARId ™ e U@y (Vx € Ui<180)).

Sinceg(2) = [g(1), g(1)], we obtain (i) and the inclusiop(U (g) ) < (A, ® p(H))°®".
Notice thatA™! ® p(0,) € AZ ® id + 5(U(g)s) for all u € 3,(1) and 1® p(O,) €
Af ®id + 5(U(g)s) for all a € 3,(0); see[(5.2.1). Since the algebtais generated by
the element®, with x € 3, (0) U 3, (1), by Propositiofj 4]1, we get

1® p(H) C pU@)y) + AU @))(A ® id).

SinceA, = AL + ALA andp(U(g)r) € (Ae @ p(H))°®® we derive (iii). Then (iv)
follows, completing the proof. O

5.3. By [31, (6.2)], the restriction of the representatiop: U(g) — End(Q,) to the
centreZ(g) of U(g) is injective. Since any nonzero two-sided ideallofg) intersects
Z(g) by [9, (4.2.2)], it follows thatp, is a faithful representation d¥/(g). Note that
Q, € Cand WHQ,) is canonically identified withHd (viewed as the left regulaf -
module). BY{5.1,0, = Q, ®x H is then identified withA, ® H as vector spaces
overk. Sincep is faithful, it extends to a faithful representation @fg) in End(Q,)
(one should take into account that(f) is invertible). Since WhQ, ) is identified with
the left regularH-module, Theorerh 5|1(iv) yields, (U(g)y) < A. ® H. Applying
Theoren 51 in this situation we now obtain:

Corollary 5.1. SetA = A®idy and identifyU (g) r with its image ind, ® H. Then the
following hold:

() AU@sAt=U(gy;

(i) f =A% R
(i) Ac®@ H=U(g);r @ U(g)rA;
(V) U@y = (A ® H)™®. R
V) Ae® H)™ =Kk[A, AT ® H = (U@™)r ® (U(@)"™)fA;
(Vi) Z(H) = ZU(9)y) = Z(9).
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Proof. Parts (i)—(iv) follow from Theorern 5|1 and the discussion above. For (v), note that
(Aozi)®1, (A0d;)®1 € ny foralli < s (see the beginning of the proof of Theorgm 5.1).
From this it is immediate thatd, @ H)™ = k[A, A~} ® H. Sincef € Z(U(g)™) we
have(U (g) 7)™ = (U(g)™)y, hence the result.

For (vi), we first recall that the action ofé& o on.A, ® H is induced by the adjoint
action of 1® ©(3, (0)) C 1® H. Consequently,

ZH) = Z(A, @ H) =k ® (H° N Z(H)) = (Z(A. @ H))"®" C Z(U(9)y),

by (iv). On the other handZ(U(g)s) € Z(U(g9)™)r) S k[A, A1 ® Z(H), by (v).
Since b, A] = —A, it must be thaZ(U(g)y) € k ® Z(H) = Z(A. ® H). Therefore,
Z(H)=ZWU(g)f)-

It remains to show thaZ (U(g)s) = Z(g). This is easy and must be well-known, but
we could not find a good reference. One can argue as followsKl(gt = FractU (g)
be the Lie field ofg. By [9, (4.3.2)], the centre oK (g) coincides with FracZ (g). Let
z € ZWU(g)f). Thenz = f~%c for somec € U(g) andd € Z.. SinceZ(U(g)s) C
Z(K (g)), there areu, b € Z(g) such thatuf? = bc. By a classical result of Kostant,
U(g) = Z(g)®H(g) asZ(g)-modules, wherél(g) denotes the subspaceld{g) spanned
by the powers of the nilpotent elementsgfsee [9, (8.2.4) and (8.5.5)]. Choose a basis
{u;} in H(g) with u; = f<. Writec = > ziui With z; € Z(g). Thena = bz andz; =0
fori # 1, forcingz = f~4c = f~z1f? = z1 € Z(g). The result follows. O

5.4. Recall that a two-sided idedl of an associative rin@ is calledprimeif I # R
and for any two two-sided idealg, J, the inclusion/1J2> C I implies that eithery C 1
or Jo C I. We let Speak denote the set of all prime ideals Bf Any primitive ideal of R
is prime. The ringR is termedprimeif (0) € SpecRr.

According to [9, (3.6.17)], ifR is Noetherian and is an Ore set irR, then the map-
ping I — S~1I sets up a bijection between the sub@&tecR)s := {I € SpecR | I NS
= (J} of SpecR and Spe&—1R. On the other hand, the complement(&ped (g))s,
= {I € SpedU(g) | f/" ¢ Iforalln € Z,} in Sped/(g) consists of all prime ideals
of finite codimension iU (g); see [13, Lemma 13.17] for example. Thus the mapping
I — Sf_ll is a bijection between the set of all prime ideals of infinite codimension in
U (g) and the set of all prime ideals 6f(g);.

By Goldie’s theorem, the set of all regular elements of a prime Noetherian riRg
is an Ore set irR and the localisatio®(R) := S~1R is isomorphic to the matrix algebra
Mat, (K) over a noncommutative fiel®#. Both K andn can be described intrinsically,
hence are uniquely determined By They are called th&oldie fieldand theGoldie rank
of R, respectively. We write = rk(R).

5.5. Corollary[5.1(iv) allows us to identify/ (g) ; with the subalgebréA, ® H)*®” of
A, ® H. SinceA, = AL ® ALA andt(A) = —A, we obtain the decomposition
U@f=A, @H, @A AQ H_

whereH;, = {x € H | o(x) = x}andH_ = {x € H | o(x) = —x}. LetI be any
two-sided ideal ofH. We let Dim(H/I) denote the Gelfand—Kirillov dimension of the
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factor algebraH /1. Sincel is o-stable (Corollary 2]1), we have = I, @ I_ where
I. =1NH:. Put

Ir=ATQL, ®ATA®I_ and I:=1;NU(g). (5.5.1)

CIearIy,INf and7 are two-sided ideals dy (g)r andU(g), respectively. LeOmin denote
the minimal nilpotent orbitAd* G) - x in g*. Recall that

Theorem 5.2. The following are true:

(i) The mapl — INf sets up a bijection between the set of all two-sided ideal$ ahd
the set of all two-sided ideals 6f(g) . For any two-sided ideal of H one has

DIM(U (g)¢/T) = Dim(H/I) + dim Opin.

(i) The mapl — T is a bijection betweeSped? and the set of all prime ideals of
infinite codimension i/ (g). Furthermore,

DIm(U(g)/T) = DIm(H/I) + dimOmin (VI € SpecH).

Proof. (a) Let E denote the set of all quadruplés, n,i,j) withm € Z,,n € Z, and
i,] € Z . Order the elements i& lexicographically. Giverf = (m, n,i,]j) € E define
ag € A by settingag = h™A"z} -z ot -+ 0)*, wherei = (i1,....i,) andj =
(j1, ..., js). Any nonzerar € A, ® H can be written uniquely as = Zsesm ag ® he
for some nonzeré; € H. HereZ(x) is a finite subset oE depending orx.

Let Z be any two-sided ideal df (g); = (A, ® H)"®’. Recall that the action af
on H is induced by the adjoint action éf(3, (0)). Since 18 © (3, (0)) C (A, ® H)*®7,
the idealZ is stable under the involution& o of A, ® H. It follows thatZ =7, & 7_
whereZy = {x € 7| (1®o0)(x) = +x}. Letx € Z, UZ_ and letég = (myg, no, a, b) be
the maximal element i (x). Then there exists a polynomigl (¢) € k[¢] such that

fo(@adh) o (H(adA ® )% o [[(ada® Zi)bf) o (adA2™)(x) € k* ANt @ b,
i=1 i=1

whereN = 2mg + Y 5_,(a; + b;). As A2 is invertible, it follows thatA*™ @ ke, € Ty,
wheree(x) = 0if x € 7, ande(x) = 1if x € Z_. But thenag, AW @ 1 € AT ® k C

(A, ® H)™® yielding ag, ® hg, € Z+. Continuing this process one eventually observes
thatas ® he € Zy for all § € E(x). This implies that there is a graded subspéce
L@l inH=H_®H_suchthal = AI®I,. $AAQI_.Since WHLUA®H_ C

(Ae QH)’@"’ andAZ2 is invertible, it follows that/ is a two-sided ideal off. As a result,

T = Iy, showing that the map — I is surjective. The injectivity of this map is obvious.

(b) Let E>9 be the subset d consisting of allim, n, i, j) with n > 0, and letA/, denote
the k-span of allaz with & € Exq. Clearly, A, is a r-invariant subalgebra ofl,. For
| € Zy we IetA/eJ denote thek-span of allaz with & = (m, n,i,j) € Es¢ such that
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mA4n+ 3G 4G + ji) < 1. Itis easy to see thdtA/,, | [ € Z} is an increasing
r-invariant filtration inA}, and the corresponding graded algebradfyiis isomorphic
to the graded polynomial algebkd X1, ..., X2,42] with all X; having degree 1. Note
that adA?) is locally nilpotent onA, and the algebral, identifies with the localisation
(AL) A2

Let / be a two-sided ideal ofi. It follows from part (a) of this proof that the two-
sided ideall; & IfZ of A, ® H coincides withA, ® I, so that/; = (A, ® 1)T®0,
Therefore, the involution ® o acts on the algebrtd, ® (H/1) = (A. @ H) /(A ® Ilin
such a way that the quotietit(g) s/ I identifies with(A, ® (H/I))*®°. Sincef = A2,
it is straightforward to see that

(Ae ® (H/1)T®7 = (A2 ® (H/1)T® = (A, ® (H/D) )™
= (A, @ (H/1)™)
where f denotes the image of in A, ® (H/I). In view of [3, (6.3)] we then have
Dim(U (g)/Ty) = DIm((A, ® (H/1))"®; (55.2)

see also [13, (11A.2)]. The Kazhdan filtratiof* | k € Z,} gives rise to the natural
filtration {(H/1)* = H*/(H* N 1) | k € Z,} of the algebraH /1. Thanks to [31, Theo-
rem 4.6(iii)], grH is a Noetherian commutatidealgebra. Hence so is the corresponding
graded algebra gf /1) = grH/ grl. Sinceo preserves botli and the Kazhdan filtra-
tion of H, it induces an automorphism of the graded algeb¢a/gr).

Next we observe that the subspaces

[Wewmni=Y A e ke
i+j<k

form an increasing filtration of the algebfd ® (H/I) such that
gr(A, ® (H/D) = gr(A,) @ gr(H /1) = k[Xa, ..., X2012] ® gr(H/D).
By construction, the involutiom ® o acts on the graded algebra gf ® (H/I)) and
(Qr(A, ® (H/1))™®” = gr((A, ® (H/1))™®7)
as graded algebras. Since the morphism
SpecgtA, ® (H/1)) — Spedgr(A, ® (H/1)))*®°

induced by inclusionigr(A, ® (H/I1)))*®° < gr(A, ® (H/I)) is finite, the Noetherian
k-algebraggr(A, ® (H/I)))*®° and g(A.) ® gr(H /1) have the same Krull dimension.
Since the Krull dimensions of the graded algebi@s.A, ® (H/1)))*®° and g(H/I)
coincide with the degrees of their respective Hilbert polynomials, we derive that

Dimgr((A, ® (H/I1))*®%) = 2(s + 1) + Dimgr(H/I).
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On the other hand, it follows from [25, Proposition 8.6.6] that DirtFHyf /) = Dim(H /1)
and DimgK(A, ® (H/I1))"®?) = Dim((A, ® (H/I))*®”). Combining this with|(5.52)
we get (i).

(c) Let I € SpecH and suppos&nJ> C Tf for some two-sided idealg; and 7> of
U@ =A® H)™®°, By part (a), there exist two-sided ideals and J> of H such
that, =A@ Ji y A AR Ji—,i =1,2. SinceA2 is invertible, it is easy to see that
JiJ2 € 1. Then eltherJl clorJ; cl, and hence eithef; C I,c orJo C If As a
result, 1; € SpedU(g)r and] = If NU(g) € SpedJ(g).

Conversely, letZ be a prime ideal of infinite codimension Ui(g). The discussion
at the beginning of this subsection shows tﬂ]aill € SpedU(g)r. By part (a) of this

proof, there is a two-sided idedl of # such thatS, 7 = Al @I @ AA ® I_.
CIearIy,I = If NU(g) = I.1f PQ < I for some two sided ideal®, Q of H, then
PrQf < S7'7, forcing eitherP; € ST or Oy € S; 7. As S;'T = If, we infer that
eitherP C I or Q € I. Therefore] € SpecH

Now let £ be the image off in U(g)/[ wherel € SpecH. SmceU(g)f/If =
(U(g)/l)j by the exactness of localisation, it follows from [3, (6.3)] and (i) that

D|m(U(g)/1) Dim(H/I) + dim Onin. O

5.6. Given a ringR we let PrimR denote the primitive spectrum &, the set of all
primitive ideals ofR taken with the Jacobson topology. Sét= PrimU (g) and denote
by Xsin the set of all primitive ideals of finite codimension #h(g). Using the highest
weight theory and [9, (2.5.6), (3.2.3)] it is easy to observe Hfjatis a countable dense
subset of(. The topology ofX induces that on the complemélits := X \ Xsin.
Recall that PrimH is a subset of Sped. By Theoren'(n) the map — T given

by (5.5.1) sets up a bijection between Spgand the set of all prime ideals of infinite
codimension irU (g). Identify Z(g) with Z(H) according to Corollary 5]1(vi).

Theorem 5.3. The following are true:

(1) The mapl > I takesPrim H ontoXi,; and induces a homeomorphism of topological
spacePrimd = Xins. B

(2) LetV be a finite-dimensional irreducibl&-module and/ = Anng V. Then/ =
Anng (9, ®u V) andrk(U(g)/I) = dimWh(Q, @y V) =dimV.

(3) LetZ be a primitive ideal ot/ (g) with VA(Z) = Omin. Then there is a finite-dimen-
sional irreducibled -moduleE such thatZ = Anny ) (Q, ®n E).

(4) Let V1 and V> be two finite-dimensional irreducibl&-modules. Thetvy = V, as
H-modules if and only iRnny ) (Q, @ V1) = Anny (@, ®u V2).

(5) For any algebra homomorphism: Z(g) — k there is a bijection between the iso-
classes of finite-dimensional irreducibte-modules with central characterand the
primitive idealsZ of U (g) withZ N Z(g) = Kery andVA(Z) = Omin.

(6) A prime ideall of H is primitive if and only iff N Z(H) is a maximal ideal o (H).
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Proof. (a) Let{J* | « € A} be a set of two-sided ideals &f, andJ = (1,4 J*. Since
any two-sided ideal of{ is o -stable, we have

Ji={x+tox)|xelJ}= ﬂ{x:l:a(x)|xe]°‘}= ﬂjg.

aeA aeA

Using [5.5.1) it is now easy to deduce that= ., J¢ andJ = (N, J*. Arguing
similarly"and using Theorefn §.2 one also observes that glvenc SpecH one has
I C Jifandonlyifl C J.

(b) Let! € PrimH. ThenI = Anng My for some irreducibled-moduleMg. Let M =

Q ®u Mo and identifyM with k[h, z1, ..., zs] ® Mo; se¢[5.1L for details. Theorgm b.2
shows that Anp g M = J for someJ € SpecH, while Theorel yieldgy = Iy.
ThenI = J in view of Theore(i), forcind = Anny g M. As a consequence, the
map! > I takes PrimH into Xjns.

(c) Now suppose that e Xins for some two-sided ideal of H. By Theoren] 5.L(ii),
I € SpecH. LetJ = {J € Sped | J 2 I}, andJo = ();c5 /. Our discussion in
part (a) in conjunction with Theore.2(ii) implies tHat= {7| J € 7} coincides with
the set of all prime ideals @ (g) containingl properly, andjo = (7.5 Z. Sincel is a
primitive ideal, [9, (8.5.7)] applies, yieldingy O 1. But thenJy 2 I by our concluding
remark in part (a).

(d) We claim that the prime idedl from part (c) is the intersection of some primitive
ideals ofH. To see this one can mimic the proof of Proposition 3.1.15 in [9] which deals
with enveloping algebras but applies to a larger class of filtered rings. For the reader’s
convenience we include the argument which goes back to Duflo. As in [9] w8 psit
H/I, let X be a variable, and sét := B ® k[X]. The Kazhdan filtration off induces a
filtration of B, which in turn gives rise to a filtration @f. Since grH is finitely generated
and commutative, by [31, Theorem 4.6(iii)], so areBgand grC. Leta € J(B) where
J(B) is the Jacobson radical &f.

SupposeC(1 — aX) # C. By Zorn’s lemma, there exists a maximal left ideal®f
containingC(1 — aX), sayL. PutM := C/L, a simpleC-module, and letzg denote the
image of 1e C in M. Thenmg # 0 and(1—aX)mo = 0. Letx anday, denote the images
of X anda in EndM. SinceX € Z(C), we havex € End- M. Since gtC is finitely
generated and commutativeis invertible in En¢ M and algebraic ovek, by Quillen’s
lemma. Puty := x~1. Thenx = p(y) for somep € k[X], anday (mo) = y(mo).
Therefore, (1 — ap(a))mo = (1 — yp(y))(mg) = 0. On the other handip(a) € J(B),
hence - ap(a) is invertible inC; see [9, (3.1.12)] for instance. This contradiction shows
thatC(1—aX) = C.

As a consequencégg + a1 X + - -+ + a, X")(1 — aX) = 1 for someq; € B. Easy
induction oni givesa; = a' for 0 < i < n. Thena™*! = 0, showing that all elements in
J(B) are nilpotent. Ag0) is a prime ideal o8B = H/I, it follows from [9, (3.1.14)] that
Nseprimp J = J(B) = 0. But then/ is the intersection of some primitive ideals &f,
as claimed.
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If I ¢ PrimH, then all primitive ideals o containing/ lie in 3. However, this is
impossible agly 2 I; see part (c). Thug must be a primitive ideal of/, showing that
the mapl +— I induces a bijection between PrithandXins; call it ».

Let )Y be a closed set in Prit. Then there is a two-sided ide&) of H such that

={J e PrimH | J 2 Iy}; see [9, (3.2.3)]. Our earlier remarks in the proof show that
5(Y) = {Z € Xint | Z 2 Iy}. Thereforesc: PrimH — Xins is a closed map.

Recall that the topology ofins is induced by the Jacobson topology on Piity).
From [9, (3.1.10)] it follows that Priny (g) is a Zariski space, that is, any closed set in
PrimU (g) is a finite union of irreducible closed sets. But tHép; is a Zariski space as
well. Lety be an irreducible closed set iins. Then there is ad € SpedJ(g) such
that) = (T € Xint | J 2 Z}; see [9, (3.2.5)]. By Theore@ 2(iif, = I for some
I € SpecH. Furthermorez—l(y) = {J € PrimH | J 2 I} by our remarks earlier
in the proof. From this it is immediate that': Xi,s — PrimH is a closed map too,
proving (1).

(e) LetV be a finite-dimensional irreducibld -module and/ = Anng V, a primitive
ideal of finite codimension irH. By part (b) of this proofJ = Annyq ) V whereV =
0y ®H V. As before, we |dent|ny with k[A, z1, ..., 25] ® V; se TherBo =
U(g)f/lf identifies with asubalgebra(bBc Ae®(H/I). More preusely from part (b)
of the proof of Theorer.z we know that® o acts orB, and%o = Br®o,

SinceU(g) is a completely reducible admodule, (U (g)/ )™ = U(g)™ /T™; see
[13, (3.2)] for example. Sinc¢ is central inU (g)"x, we then have

Bo =By = (U()/D) )™ = U @™ /(WU (@™ N1f,

where f is the image off in U(g)/I. Putd = H/I andB = B". Corollary[5.1 iii)
implies thatB = @0 &) @ot wheret stands for the image ok in B. SinceA commutes
with n,, it must be thaB3 = Bg @ Bor. In conjunction with Corollar.l(v) this shows
that the natural mapA, ® H)"™ — B is surjective and® = k[z, 1~ 1 ® H as algebras,
wherek[z, t~1] is the Laurent polynomial ring im overk. As H = End, V is a prime
ring, so too isB = H|[r,1~1].

S|nceI is a prime ideal ot/ (g), the rlng(U(g)/I)"x is prime with rkU (g)/1)™ =
rk(U(g)/I) see [13, (13.10)]. Applying [9, (3.6.15)] we derive that the rig =
((U(g)/l)“x)f- is prime with rkBg) = rk(U(g)/I). On the other hand, it follows from
[34] that rk(k[r] ® H) = rk(H). Ask[r,t~'] ® H is a localisation ok[r] ® H with
respect to the Ore s@t' | i € Z,}, we have

dimV = rk(H) = rk(k[r, t Y] ® H) = rk(B);

see [25, Lemma 2.2.12] for example. We thus need to show tB) e rk(Bo).

It should be mentioned that our present setting (involving a quadratic extension of
rings) resembles that of [16, (6.5)] where the above equality has been claimed in a more
general situation. However, the proof of Lemma 6.5 in [16] is based on a faulty argument.
Moreover, an example involving the first Weyl field shows that under the assumptions
of [16, (6.5)] the Goldie ranks dB andBg can be different (I am thankful to Anthony
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Joseph for this clarification). We are lucky here because in the present case one can use
another argument to prove the required equality of Goldie ranks.

Putk :=k(t), Ko := k(t?), andS := k[?] \ {0}, a central Ore set if8o andB. Put
B := S71B andBg := S 1Bq. SinceB = H[t,t 1] and S~ k[r, r~1] = K, we have
B = K ®y H = Mat,(K) wheren = dim V. SinceB is a simple Artinian ring, all regular
elements ofB are invertible. SinceS consists of regular elements 8f the universality
property of quotient rings yieldB = Q(B). In particular,K is the Goldie field ofB (this
argument provides another proof for the equalityfk = dim V). As in [16, (6.5)], we
regardB as a Galois extension dj. The involutiont ® o induces aKp-automorphism
of B, call it.. Itis easy to see thatr) = —¢, B = Bo® Bot, andBg = B'. Thust can be
viewed as the generator of the Galois group(®alK ).

Note thatZ(Bg) = Z(B)' = K' = Ko andB = Bp ®k, K asK-algebras. Sinc&g
is a prime ring, so too iBo; see [9, (3.6.15)]. The preceding remark then shows Bat
is a simple algebra finite-dimensional over its cerie Sincek is algebraically closed,
Ko = k() is aC1-field, by Tsen's theorem. ThereforBy = Mat,, (Ko) as Kq-algebras.
As in the previous paragraph one observes B@E Q(Bg) and Ky is the Goldie field
of Bo. SinceB = By ®k, K, one hasn = n, proving (2).

(f) Let T be a primitive ideal ofU (g) with VA(Z) = Omin. ThenT = T for some
I € PrimH, by part (1) of this theorem. Thanks to Theorgm| 5.2(ii), Difi/) = O.
HenceH /I is finite-dimensional ovek; see [25, (8.1.17)] for example. Sinég/I is a
prime ring, it must be thakl /I = End(E) for some finite-dimensionall-moduleE. As
H/I is simple,/ = Anng E. ButthenZ = Anny g (Q, ®x E) by part (b) of this proof,
as stated in (3).

Now let V1 and V> be two finite-dimensional irreducibl& -modules, and~sen',- =
Anng V;,i =1, 2. If V1 = V, as H-modules then, of coursé; = I». Hencel1 = Do,
yielding Anny ) (@, ®u V1) = Anny ) (Q, ®u V2), again by part (b). Conversely, if
Anny g (0, ®r V1) = Anny(g)(Q, ®n V2), thenly = I in view of Theoren@(ii)
and part (b). S&H /11 = H/I> = Mat, (k) for somem. It is now straightforward to see
thatV, = V, as H-modules, giving (4).

Fix an algebra homomorphism: Z(g) — k and identify Z(g) with Z(H); see
Corollary[5.1(vi). If V is a finite-dimensionaH-module with central character and
I = Anng V, thenl N Z(H) = Kern is a maximal ideal ofZ(H), by Schur's lemma.
Hence Kem = AnnU(g)(QX Quy VYN Z(g) = n Z(g). Thanks to Theore@ 2(ii)
we also havé\?A(I) = Omin. Now letZ e X be such thatZ(g) N Z = Kerp and
VA(Z) = Omin. By parts (3) and (4) of this theorem,= Anny g (0, ®y E) for some
finite-dimensional irreduciblé/-module E, which is uniquely determined up to isomor-
phism. Since Ken Cc Z andZ(g) = Z(H), the H-moduleE has central character We
obtain (5).

(9) LetI € SpecH and suppose thdtn Z(H) is a maximal ideal oZ(H). By Theo-
rem[5.2(ii),7 € SpedJ(g). As explained in the proof of Corollafy §.1(vi),

Z(H)=Z(A, @ H) =k ® (H° N Z(H)) = (Z(A. ® H))"™® < Z(U(9)y) = Z(9).
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It follows that/ N Z(H) € (k® I,) N Z(g) € Iy N Z(g) = LN Z(g). As Z(g) = Z(H),

we deduce thatNZ(g) is a maximal ideal of (g). Butthen/ € X; see [9, (8.5.7)]. Since

I has infinite codimension itV (g), part (1) of this theorem implies that= »~1(1) €
Prim H. Finally, supposd < PrimH and letM be an irreducible-module such that

I = Anng M. Since grH is finitely generated and commutative, Quillen’s lemma shows
thatZ(H) acts onM as scalar operators. Consequently) Z(H) is a maximal ideal of
Z(H). The proof of the theorem is now complete. O

5.7. Before finishing this section off we wish to discuss a possible extension of the
above results to the case of a general algébral_ete be any nilpotent element imand

X = Xe € g°. PutO = O, and denote by(p the set of all primitive idealg of U (g)

with VA(Z) > O. Take PrimH, with the Jacobson topology arif» with the topology
induced by that of(.

Question 5.1. Are the following true?

1. The centre off, coincides with the image df(g) in HXE]
2. There exists a homeomorphism PrimH, — X such that:

(&) DIm(U(g)/»(I)) =Dim(H/I)+dimQO forall I € PrimH,;
(b) rk(U(g)/»(1)) = /dimg(H /1) forall I € Prim H, with codimy, I < oo.

3. For every character of Z(H,) = Z(g) the maps induces a bijection between the
isoclasses of finite-dimensionl, -modules with central charactgiand the primitive
idealsZ of U(g) with Z N Z(g) = Kern andVA(Z) = O.

6. The Joseph ideal and a presentation off

6.1. In his seminal work [14] Joseph has discovered that outside type A the enveloping
algebraU (g) has a unique completely prime primitive ideal whose associated variety is
Onmin. This ideal is denotedy and referred to as thiseph ideabf U (g). Forg of type A

the completely prime primitive ideals @f(g) with VA(Z) = Omin form a single family
parametrised by the elementslofthis will be explained in more detail in the course of

proving Theorer 6]1).

1 At the Oberwolfach meeting on enveloping algebras in March 2005 Victor Ginzburg has ex-
plained to me that this is a consequence of the finiteness of the number of symplectic leSwes of
contained in the fibres of the morphisfin S, — g/ G iduced by the adjoint quotient map gf
Each homogeneous elemente grZ(Hy) lies in the Poisson centre of &, = k[S.], hence
reduces to scalars on all symplectic leave§ 0fThe Poisson structure & induced by multipli-
cation inH, is determined in [10, (3.2), (5.5)]. By [31, (5.4), (6.3)], all scheme-theoretic fibres of
f are reduced and irreducible, andHjy is a flat module over g£(g). These results are needed
to carry out Ginzburg’s argument: Since each fibrefofontains a Zariski dense symplectic leaf
of 8¢, the regular functiory is constant on each fibre gf. The flatness of the dgf(g)-module
gr H, along with the fact that all scheme-theoretic fibregfadre reduced then yieldse gr Z(g),
implying Z(Hy) = Z(g).
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The Joseph ideal is prominent in several areas of representation theory, especially in
the theory of minimal representations pfadic groups. Different realisations g can
be found in the literature for various typesgbut most of them are ad hoc. This seems
almost inevitable as outside type A the orBin is rigid, that is, forms a single sheet
in g*. HenceJp cannot be obtained by parabolic induction from a primitive ideal of a
proper Levi subalgebra @f, the only ‘regular’ way so far to obtain primitive ideals.

It was noticed by Savin (in a letter to Vogan) that Joseph’s original proof of the unique-
ness ofJp was incomplete. This was recently fixed by W. T. Gan and Savin with the as-
sistance of Wallach; see [11]. The argument in [11] relies on some invariant theory and
earlier results of Garfinkle. We shall see in a moment that the existence and uniqueness
of Jo follow readily from our results; see also Remprk|6.4.

6.2. Retain the assumptions and conventions of Sections 4 and &,Set H/H™.
Sinceko is an irreducibled -module, so is thg-moduleQ, o := O, ®u ko. S0Jp =
Anny g Oy.0is a primitive ideal ofU (g).

Proposition 6.1. The idealJy is completely prime an®A(Jo) = Omin. If g is not of
typeA then Jp is the only primitive ideal o/ (g) with these properties, and hendg is
the Joseph ideal in this case.

Proof. Theoren{ 5.3(2) shows that@(g)/Jo) = dimgko = 1. HenceQ(U (g)/Jo) is

a division ring. TherlU(g)/Jo is a domain, that is/o is completely prime. Theoren 3.1
givesVA(Jo) = Omin. Now supposg is not of type A. Then Corollal implies that

H has a unique one-dimensional representation. In view of Theforgm 5.3 this means that
U (g) has auniquecompletely prime primitive ideal whose associated variet@jig,. So

Jo = Join this case. O

Remark 6.1. The existence part of our proof is hardly shorter than Joseph’s original
proof in [14] as it relies on the brute force computations of Section 4. However, there
is a slightly different proof of the uniqueness & which eludes Section 4 completely.
We just sketch the argument leaving the details to the interested readds #n ideal

of codimension 1 ire then [H, H] C I. Since outside type A the Lie algebya(0) is
semisimple, we hav® (3, (i)) C I fori =1, 2. Also,C — u € I for someu € k. Using
Propositiof 2.]L it is not hard to observe thats independent of. Therefore,H cannot
afford more than one ideal of codimension 1. The rest of the proof is unchanged.

6.3. In [14], Joseph has also computed ihénitesimal characteof Jy, that is, the
algebra homomorphisi#(g) — k through which the centrg(g) acts on the primitive
quotientU (g)/Jo. We are going to use his result to determine the elusive conggant
from Proposition 4J1.

Theorem 6.1. In the notation of Sectiod, the algebraH is generated by the Casimir
elementC and the subspaces(;, (i) for i = 0, 1, subject to the following relations:

(i) [Ox, ©y] =0,y forall x,y e 3,(0);
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(i) [Of, O] = O[y forall x € 3,(0) andu € 3, (1);

(i) CiscentralinH;

(iv) [Ou. O] = 3(f. [u. v])(C—Ocas—co)+3 Z,?il(@)[u,zi]u@[v,zf]n+®[U,z;f]:®[u,z[]u)
for all u,v € 3,(1), where®cas = )_; O, 0y, is a Casimir element of the Lie
algebra® (3, (0)) and the constant-cg is given in the table below:

Type An Bn Cn Dn EG E7 E8 F4 G2
—cp | Mol | @l@n=d | nCtD |, —2) | 36| 84| 240( P | B

If g is not of typeA thencyg is the eigenvalue of on the primitive quotient/ (g)/ Jo. If g
is of typeA, thenj, (0) = 3, (1) = 0Oand H = k[C].

Proof. First we determineo. Recall fron[ 4.1 thaty, y) = 2. Therefore, ifg is not of
type G, or Gy, then the scalar produ¢t, -) on theQ-span ofP in h* coincides with the
scalar product:|-) from Bourbaki’'s tables in [4]. In the remaining two caseés;) =
1(:|) for g of type G,, and(-, -) = 3(|-) for g of type G. Recall that for any. € h*
the eigenvalue of the Casimir eleme&nton the irreducible highest weight modul&x.)
equals(x, A + 2p).

(a) Supposeg is not of type A. In [14, p. 15], Joseph has found an irreducible highest
weight moduleL (o) with Anny gy L(k0) = Jo. It is immediate from the definition of
H* thatC acts onkg = H/H™" as scalako. But thenCjg, = coid. Propositior] 61
now shows tha€ acts asid on the primitive quotient/ (g)/Jo. In view of our remarks
above this yieldsg = (Ao, Ao + 20).

If gis oftype E, then.g = —wy4; see [14]. Using parts (VI) and (VII) of Tables V-VII
in [4] one finds thatg = —240 forg of type Eg, co = —84 forg of type E, andcg = —36
for g of type E. If g is of type D,, n > 4, thenig = —w,_». Parts (VI) and (VII) of
Table V in [4] yield (w,_2, @n_2) = n — 2 and(@,_2, 2p) = n?> — n — 2. Therefore,
co = —n(n — 2) in this case.

If g is of type B, n > 3, thenkg = —3(w,—2 + w,_1). Form Table Il in [4] we
get (ro, ho) = (4n —7)/4 and(ro, 20) = —n? + 3. Thencg = —(n? —n — 3) =
—(2n+1)(2n —3)/4. If gis of type G, n > 2, thenig = —3w,. Table Il in [4]
yields (A\g| A0) = n/4 and(Ag|2p) = —n(n + 1)/2. Consequentlyig | Ao + 20) =
—n(2n+1)/4 andco = 3(holro + 2p) = —n(2n+1)/8. If g is of type G, then

20 = —2my = —2@. Hence(io | 1o) = & and

(1012p) = (—3m2| 1001 + 602) = —&(w2 | 02) = —2(at2 | a2) (w2, @) = —12;

see [4, Table IX]. Thereforéag | 1o+ 2p) = =2 andco = 1(ho| Ao + 2p) = — 2. If
g is of type R, thenig = —%(wl + @>). Using Table VIII in [4] we get(ig | Ag) = %
and(xo | 2p) = —23. Henceco = (o, 20+ 20) = (ol ko +2p) = —%.

(b) Now supposg is of type A,, n > 2. This case is more subtle because here we have an
infinite family of completely prime ideals i sharing the same associated vari@yjin.
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In order to determineg in the present case we shall have to locate a special member of
this family. Theorer 53 will play a cruciabte here.

Let p1 be the standard parabolic subalgebragaffhose Levi subalgebra is gener-
ated byh and allex,, with 2 < i < n. For anyr € k the linear functiorveo van-
ishes on all,, with i > 2, hence extends uniquely to a one-dimensional representation
of p1. Letk, denote the corresponding one-dimensignaimodule, and puf (p1, t) =
Anng g (U (9) Qupy) ki). Although some of the inducegimodulesU (g) ®u ) k; are
reducible, it follows from [9, (8.5.7)] and Conze’s theorem [7] that all two-sided ide-
als I (p1,t) are primitive and completely prime. It is not hard to check that; and
o are conjugate under the dot action of the Weyl gréip= &,,41 if and only if
t1 = t2. Consequently, all members of the family := {/(p1,7) | t € k} have pairwise
distinct infinitesimal characters. In view of [13, (17.17)] they share the same associated
variety Omin.

LetZ € X be a completely prime ideal WitRA(Z) = Omin. It follows from the
main result of Mceglin in [30] that there exist a standard parabolic subalgeifrg and
a one-dimensional representatign p — k such thatZ = Anny g (U(g) Qup) ky). In
conjunction with [13, (17.17), (15.27)] this yieldse Jy.

Let Ip be the two-sided ideal off generated by #/, H]. In order to describe the
one-dimensional representations fwe have to take a close look at the commutative
k-algebraH® := H/Iy. Givenx € H we denote byt the image ofx in H2, We
may assume thgg = sl,11(k) andb is the subalgebra of all diagonal matricesgin
Let{e;; | 1 < i, j < n + 1} be the matrix units irgl, 1 (k). We may also assume that
o = & — giy1andey, = ¢ ;11 forl < i < n; see Table | in [4]. Ther = e, 41,

h = epn — ent1n+1, ANA [ = e,41, by our conventions i@l. No generality will be lost
by assuming thag; = e,+1,; andz} = —e;, forl <i < n—1(notice that =n—1inthe
present case). It is straightforward to see that the centre of the subajgélra= 3 x(0)

is spanned by the element= e, +e,+1.n+1— n—illnﬂ. Therefore;, (0) = kz®3, (0)
wherej, (0)" = [3,(0), 3, (0)]. Sincej, (1) has no zero weight relative tg = h N3, (0),
this implies that thé-algebraH?? is generated by’ and®..

Setu = e1,+1 andv = —e,, 1. We have §, z;]¥ € [3,(0), 3,(0)] for 2 < i < s and
[u,z]] = 0forl <i < s.Also, [, 21]* = (e11 — ens1nt1) — %h = e11 — %(e,m +
en+1,n+1)- Likewise, [U, Zi]j = (enn — €11) — %h = —e1nn1+ %(enn + en+l,n+l)- Since

(z.2) =2- ;B + ;17 = 202, we cantaken = z, b1 = 7555z, anda;, bi € 3, (0)

fori > 1. Next observe that, e11 — %(e,m +ent1,n4+1)) = —1. Asz L 3, (0), it follows

thates — 3(enn + ent1,n+1) IS CONGruent to- -1~z modulog, (0)'. As (f, [u, v]) = 1,

. . (z,2)
Propositio 4.JL now yields

1/ - n+1l _, 1 n+12% _,
|C-cp— —6 - (=2 —F506=0.
2(C CT 2y Z)+2 2 2= 12®:
As a consequence, the following relation holdg4A®:
- — 12 _
62= =D 6. (6.3.1)

ST a4+ 1)
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Sincen > 2, this shows tha#/2" is a homomorphic image of the polynomial alge-
brak[X]. On the other hand, Theorgm 5.3 in conjunction with our earlier remarks en-
tails that the one-dimensional representation&/8? are in 1-1 correspondence with the
elements inJy. But then the maximal spectrum M@k of H2° is infinite, forcing

H®=K[X, Y]/ (X? - ;’E;j)lz) Y) (under the algebra may — ., Y — C — co).

Forc € k we let Max.(H®) (resp.Jy ) denote the set of all in Max(H3) (resp.
I(p1, 1) in Jy) containingC — ¢ (resp.C — ¢). It is immediate from[(6.3]1) that

2 whenc # co,
1 whenc = ¢p.

IMax.(H?)| = {
Theore : implies that for any € k the mapsc: PrimH — Xips, I +— 7, induces
a bijection between MaxH2) and Jk . It is well-known thatC acts on the induced
moduleU (g) ®u py) ki as(twy, tw1 + 2p)id. Sol (p1, t) containsC — (1w, tw1 + 2p).
It is immediate from [4, Table I] thatrw1, tw1 + 20) = n+1t2 + nt. The equation

2112 4+ nt — ¢ = 0 has two distinct roots if and only if? + 2 3 0. Therefore,

D] = 2 whenc # —n(n + 1)/4,
kel =19 whenc = —n(n + 1) /4.

But then Max,O(Hab) must be mapped onf®; _,(,+1)/4, forcingco = —n(n + 1)/4.

(c) Now let H be the associativk-algebra generated by an eleméhand isomorphic
copiesO (3, (i)) of the subspaces (i) withi = 1, 2, subject to the relations (i)—(iv) from
the formulation of this theorem. Define an increasing filtratioﬁiby giving C filtration
degree 4, by assigning to all nonzero elemem@gfx (1)) filtration degree + 2, and by
extending toH algebraically.

Choose bases, ..., x; andys, ..., y2 in 3,(0) andj, (1), respectively, and set
X; = ® forl <i < qandY =0, forl <i < 2. Let H' be thek-span of all
monomialsm (a, b, 1) = X4 xg Yfl - Yy? . C! with a;, b;,1 € Z. Note that
m(a, b, 1) has filtration degree 2 a; + 3 _b; + 4l. Using the relations (i)—(iv) and
induction on the filtration degree @i (a, b, ) it is straightforward to see thdi’ is a
two-sided ideal of. Since 1e H’ it must be thatd = H'.

It follows from Propositior] 4]1 and Lemmgs P.4 2.5 that there is a surjective
algebra homomorphisri: H — H such thatf(C) = C, f(X;) = ®,, fori < ¢, and
f(X:) = ®,, fori < 2s. Since the vector;s"(m(a b, 1)) arellnearlylndependentlﬂ by
[31, Theorem46(||)] the equahtﬁ H' shows thatf is injective. But thend = H,
and our proof is complete. O

Remark 6.2. We have originally computed the infinitesimal charactedgby using a

direct approach in the spirit of Section 4; this was done before we established a link be-
tweenH and/p. Having established that link we discovered that outside type A our result
was consistent with [14, p. 15]. In type A we have found two different proofs yielding the
same result. This eventually convinced us that the quadratic relation of Theofem 6.1 was
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correct. Our computations are rather lengthy, especially in type C, and will not be pre-
sented here.

Remark 6.3. Supposeg is of type G. Thenj, (0) = sl andj, (1) is an irreducible
2-dimensiona}, (0)-module. In this case Theorgm [5.1 shows that the algabimgen-
erated by six elements &, f, u, v, ¢, subject to the following relations:

1. (e, h, f) is ansly-triple relative to the commutator product ;

2. [e,ul =0=[f,v], [e,v] =u, [f,u]l =v, [h,u]l =u, [h,v] = —v;

3. [u, v] =ef+fe+%h2—%c—g;

4. cis central inH.

For anyr < k the factor algebrdd, := H/(c — t) is isomorphic to one of the deformed
symplectic oscillator algebras; studied by Khare in [23] (in type C n > 3, the defin-
ing relations of the algebrad/(C — ) differ from those ofHy). Arguing as in the proof
of Theorem 6.4 in [31] one can observe that the imag& @) in H; is isomorphic to a
polynomial algebra in one variable. It is likely that the centrédpfis generated by that
image. It would be very interesting to describe the Goldie field@dh the present case.
In view of Corollary[5.1(iv) this might help to resolve the Gelfand—Kirillov conjecture for
g = spy(k).

Remark 6.4 (A. Joseph) Assumeg is not of type A. The argument below gives a short
proof of the uniqueness @fp relying only on the information available at the time when
[14] was written. Lefle, i, f) be ansly-triple in g with e being a highest root vector. Let
0 = Ker(adh—id)®Ker(adh—2id), a Heisenberg Lie subalgebragyfandr = kh®o. Let

J be a completely prime primitive ideal @f (g) such that DindU (g)/J) = dim Onin.
Since aa is nilpotent,U(g)/J embeds into its localisatioty at e, which contains the
localisationA of U(r) ate. Let Z denote the centraliser of in U. It follows from [14,
Lemma 4.1] thatA is a localised Weyl algebra with Difd) = dim Onin. Clearly, Z
inherits a filtration fromU (g) such that g&Z is commutative. Since is the nilradical
of a parabolic subalgebra gf Hadziev's theorem shows that the algebra gs finitely
generated (one also needs the fact that edsemisimple). Sincd is central simple, the
multiplication mapZ® A — U is injective. Since both gf and grA are commutative and
finitely generated, we have Ditf ® A) = Dim(Z) + Dim(A). As Dim(U) = Dim(A),

we get Dim(Z) = 0. HenceZ is algebraic ovek. SinceU is a domain, we now obtain
Z = k. Sinced consists of nilpotent elements gf Taylor's lemma proved in [15] implies
that for anyh-weight vecto € U there is armh-weight vectora € A of the same weight
asu such that: — a commutes with the image ofin U (a preprint version of [15] was
available since 1973 and is quoted in [14]). Takintgp be the image of in U we get
e(f —a) € Z =k.Butthenf € A and soU = A, by the simplicity ofg. Now apply
[14, Theorem 4.3] to deduce the equality= Jo.

Lemma 6.1. If g is of typeG, then the algebrad admits a2-dimensional irreducible
representatiorp such thato(C) = —136 idandp(©,) = 0forall u € 3, (1).

Proof. For anya = maj + naz € @ we setey, , = ey, hmn = ho, and f.n = e_q.
Recall from (4.1) thap = . It is easy to see that in the present cggéd) = sl
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andj, (1) is an irreducible 4-dimensiongl (0)-module. Furthermors,, (0) = ke 1 ®
kho1 @ kf2,1. We can assume, after possibly an admissible sign changetkatfs o,
7 = e31. 22 = fu1, andzy = 3e1o. Then ka1, fa2] = 3ero. f11] = fo1 = f. Put
Mi = e32, U1 = —f31, ME = e1.1, anduz = af10, Wherea € k*. Clearly,;,x(l) is
spanned by they, uz, uj, us. Since

([ez2, — f3al. [f3.2, e31]) = (e32, [f3.2, h31]) = —(e3 2, [h31, f32])
=(e32, f32) =1,

there isa € k* such thatf;, u;] = [u?, u;‘.‘] =0and |}, u;] = —§jeforl<i, j <2

Let{E, H, F} be the standard basis e (k) andé = (3, (0)) U © (3, (1)) U {C}.
Letp: &€ — Maty(k) be such thap (Oxe, s +ynp1+21) = XE + yH + zF, p(©y) =0,
andp(C) = —1—9612 forall x,y,z € k andu € 3,(1). We claim that the elements from
p(€) satisfy the relations (i)—(iv) of Theoregm 6.1. Since the relations (i)—(iii) are satisfied
for obvious reasons, we just need to check the quadratic relation (iv).

Since Z1+az is ashortroot, we hav@s 1, ho 1) = 6 and(ez, 1, f2.1) = 3. Therefore,
Co = 3(e21f21+ fore21+3h3 ). Note thatE F + FE + 3 H? = 3 1. Sinceco = — %
in the present case, we have to show that

4
Z(:O(®[u,zl‘]t)p(®[v,zﬂ)ﬁ) + p(®[v,z:‘]ﬁ)p(®[u,zi]:)) = _%(fv [M, U])12 (632)
i=1
for all u,v € 3,(1). Whenu andv run through the setui, uz, uj, u3}, the LHS of
(6.3.2) is always a linear combination of matriceé¥ + Y X with X, Y € slx(k). Since
all such matrices are multiples &f, the LHS of [6.3.R) equalg(u, v) I, for some skew-
symmetric bilinear formg on 3, (1). Using the relations (i) and (i) of Theorgm B.1 it is
easy to observe that this formzig(0)-invariant. Asz, (1) is an irreduciblg, (0)-module,
there is a scalar € k such thafg («, v) = c(f, [u, v]) for all u, v € 3, (1). Thus we need
to check that = —2.
Note that [}, zf] = [u1,z;] = 0 fori = 1,2. Also, [u}, z2]" = [u}, z2] and
[u1, 23]* = [u1, z3]. It follows that fori = 1, 2,
([u1, zi]s [ua, 7)) = 3, [ua, [zi, 77 ]]) = — (@i, [ug, f1) = —([u], u1], f)
=(e f)=1
As (ui,z1) = —(u1,z) = 1, we have %, z1]* = [u},za] — 3h and 1, 2]° =
[u1, 23] + 3h. Consequently,
([uf, za]" [ua. 251°) = (i, zal. [ua. 25]) + 3([u3. 21l b) — 3, [ua. 25]) — 5(h. )
=1+430i 20— 3(u1z) —3=2-3=3.

Since |3, z1]%, [u}, z2], [u1, z§]%, and [u1, 23] are multiples ofio 1, €21, ho1, andf2 1,
respectively, andez 1, f2.1) = %(hz,l, h2.1) = 3, the preceding remarks show that

4
Y POz 1P Oy 1) + (O )P Oz o 32) = F(EF + FE) + 3H? = 2.
=1
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As (f, [u7, u1]) = —1, we deduce fro 3.2) that= — 6, as wanted. As Theorgm . A
gives a presentation df by generators and relations, the result follows.

Remark 6.5. It is immediate from the proof of Lemnia .1 that fgrof type & the
following relation holds inH:

[Ouz Ous] = =3C + 5(00,Op, 1 + O, Oy + 507, ) + 367, — . (6.3.3)

The expressions for ald,, ®,] with u, v € 3, (1) can be derived fronj (6.3.3) by using
the action of a® (3, (0)) on (3, (1)), i = 1, 2. For example, it can be deduced easily
that [@L, , 0, ] is a nonzero scalar multiple (ﬁ)2 . This implies that the span of all
PBW monomials INC, Oy, Ocy 1, Oz, Oy is @ subalgebra aff. It can be regarded as
a Borel subalgebra aoff .

6.4. As yet another application of Theorefns|5.3 6.1 we are going to classify all ir-
reducible finite-dimensional representationgbin the case whergis of type G, or G,.
Dimension formulae for these representations will be given. We shall rely on Joseph’s
theory of Goldie-rank polynomials. The reader will notice that our method is quite gen-
eral and can be applied to any simple Lie algghridowever, various problems remain in
the general case, especially for Lie algebras of typaiftl E5. We hope to return to this
interesting subject in the future.

Givenv € bh* we denote byl (v) the annihilator of the irreducible highest weight
moduleL(v) in U(g). Recall from the proof of Theore@.l thieg = —%wn for g of
type G, andig = —%ZUQ for g of type G. Let g = {a € ® | (Ao, a) € Z}. Itis easy to
see thatbg coincides with the set of aflhortroots in®. In particular,®q is a root system
in b* but not a closed subsystem &f The setllp = {1, ..., ®y—1, 2y—1 + o} iS the
basis of simple roots ibg contained ind*. This implies thakbg is of type D, and A
wheng is of type G, and G, respectively (our convention here is thgt & A1 x A1 and
D3 = A3). Note thatg = — 42z, where

J= (ot atn) _{2 wheng is of type G,,

(p—1, 0tp—1) 3 whengis of type G.

It is well-known that the subgroup/p := {w € W | w(hg) — Ao € Zd} of W is
generated by the reflectiong with « € &g, hence identifies with the Weyl group &f.
We note for further references that

Mo+u+p,ap-1+ay) ={(ho+u+p,05-1) +d{lo+p+p, )
-1

= (W, otn—1) ~|—1+d<(,u,,ozn) - dT + 1>

= (W, ap-1) +d{p, an) + 2.
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Theorem 6.2. Letd>5r denote the set of all short roots .

1. If gis of typeC,, n > 2, then to every. € P there corresponds a finite-dimensional
simple H-moduleVy (1) such that

(2u+2p — @y, )

dimvi = [| =5 =0

+
aedy

Any finite-dimensional simpl&-module is isomorphic to one of the modulés(k),
wu € PT. The central characters of these modules are pairwise distinct.

2. If g is of typeGy, then to every. = awy + bw, € P there correspond two finite-
dimensional simpléf-modulesV;+ () such that

dim Vi () = @+ D(a +3b4;2)(2a +3b+3),
dim Vi () = (@a+D(a+3b 23)(241 +3b +4).

Any finite-dimensional simple-module is isomorphic to one of the module$ (),
u € P*. The central characters of these modules are pairwise distinct.

Proof. By Theorenj 5.3 the isoclasses of finite-dimensional sinipleodules are in 1-1
correspondence with the primitive idedlof U (g) such thatV.A(Z) = Omin. By Duflo’s
theoremZ = I (1) for somei € h*. Let ®), = {a € ® | (A, @) € Z} and letIl, be the
basis of simple roots ab; contained inb;, N®T. As explained in [19, p. 41], the equality
VA(I (1)) = Omin holds if and only if dimOmin = |®| — |®;.| and(x + p, &) > O for all
a € I, (the argument in [19] relies on the fact ti@, is not a special orbit in the sense
of Lusztig wheng is not simply laced). Since difyin = |®| — |Dg|, we have|dg| =
|®,]. Now @) is a closed symmetric subsystem of the dual root systkemc . The
Borel-de Siebenthal algorithm implies that there is only one such subsysterdfisize
|®g|, namelyd; see [4, Ch. VI, Sect. 4, Exerc. 4]. This sho@wg = & andIl; = IIo.
Write A = Ao+ Y ;_; lim; with [; € k. Sinceay, ..., a,—1 € T, it must be that
l; € Z4 for 1 <i < n — 1, while our earlier remarks show thét + p, o,—1 + o) =
I,—1+dl, +2is a positive integer. Hendg € ;llZ. Sinced; # ® we haver ¢ P, giving
I, & —% +Z. Forg of type G, this sayd,, € Z, while for g of type & we infer that either
lyeZorl, € 3+ 7.
It is easy to see that,, permutes the positive short roots dn Therefore,I (1) =
I(sq, « A); see [13, (5.16)]. As, = —dw,—1 + 2w, We have

n—1
1 dl, +1
S, « A = San<2(li + Dw; + (ln + E)w,,) —p=A— nd oy,
i=1
n—2 2
=0+ ) liwi + (h-1+dly + Doy + (ln - Sl + 1>)wn
i=1

i=

n—2
2
= Ao+ Zliwi +Upa+dly +Dwyg — (ln + _>wn~
i=1 d



Enveloping algebras of Slodowy slices 533

Thus replacing. by s, . A if necessary we may assume further that 0.
Supposé, € Z. Then the above discussion shows that 1g € P™. It follows from
Joseph’s theory of Goldie-rank polynomials that

k(U (@/I(o+w) =c [ tho+n+p, )

+
aedy

for all u € PT, wherec is a constant independent of see [17, p. 303]. Recall that The-
ore associates to eafte X with VA(Z) = Omin an irreducible finite-dimensional
H-module (up to isomorphism). Abusing notation we denote this module y7). We
have already mentioned tha (1 (Ao + 1)) = Omin. Therefore, to eacp € P+ there
corresponds an irreducible finite-dimensiof&moduleVy () 1= s~ 1(1 (Ao + 1)). By

Theorenj 5.3(2),
dim Vg () = rk(U(g)/I(ho+ ) (Y € PH).

Since I(xp) is the Joseph ideal, Theorem 5.3 together with Proposftioh 6.1 gives
dimVy(0) =dimH/H* = 1. Thereforec™1 = ]'[aeq,g (Ao + p,a)and

. (Ao+u+p,a)
dim Vi () = ]‘[+ oo (6.4.1)
acdg
Sinceirg + p + P is contained in the interior of the dominant Weyl chamber, the mod-
ules in the se{Vy (1) | © € P4} have pairwise distinct central characters. This settles
the case whergis of type G,.
Suppose of type G. Foru = awy + bw, € Pt we putvl;r(u) ‘= Vg (u). Since
¢ = {a2, a1 + a2, 201 + a2} andirg = — S, the dimension formula (6.4.1) reads

(@a+D@+3b+2)(2a+3b+3)

dim Vi (n) = 5

Now supposé, ¢ Z. Our earlier remarks show thgis of type G and/, € % +Zs.
As a consequence, € %ko + P*. Foranyu € P+ we haveGJ%kow = &gp. As %Ao +

n + p lies in the interior of the dominant Weyl chamber, the above argument applies,
yielding VA(I (320+ 1)) = Omin. Theoren) 58 shows that; (1) := 5~ 1(1 (3r0+ )
is an irreducible finite-dimension& -module with

dim V7 () = k(U (8)/1 (340 + 1))
In conjunction with the discussion in [17, p. 303] this entails that

dimVy; (w) = k(U@ /IGro+m) =c’ [] Grot+n+p.e) (642

T+
aedg

for all u € P wherec’ is a constant independent of
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It also follows from Theore3 that acts oan;(/Je) as f*(u)id where f+(u) =
(ho+p, Ao+ +2p) and f () = (3ro+u, 310+ +2p). We have noted in the proof
of Theoren] 6.1 that, -) = 3(-| ). By [4, Table IX], (w1 | 1) = 2, (w1 | w2) = 3, and
(w2 | w2) = 6. Using this fact it is straightforward to see that(u) = f~ (aw1 + bw?)
is a quadratic polynomial in, b with all coefficients positive except for the constant term
70 = (=32, —3w2 + 2p) = — 2. Furthermore,

fH(awy + bwa) = §a° + 2b? + 2ab + 2a + b — 3.

As a consequence;t () > —1—96 for all nonzerou € P™.

Let M be anH-module affording the representatipnfrom Lemmg6.]L. The above
discussion shows that = V*(v) for somev € P*. SinceC acts onM as—l—g6 id, the
preceding remark yieldd/ = V. (0). As dimM = 2, this allows us to determine the
scale factor’. In view of (6.4.2) we then get

—3m2+u+p, @) (a+1)(a+3b+3)(2a+3b+4)
(—3@2+p,0) 6

dimv,;(w =2 [] (
ae¢3
forall u € P+, Since(—%wz +p+PHN (—%wz + p+ PT) = ¢ and the union
—2w2+ p+ PT) U (—3w2 + p + P*) is contained in the interior of the dominant
Weyl chamber, the modules in the $é§ (w) | © € PT} have pairwise distinct central

characters. This completes the proof. O
Remark 6.6. Wheng is of type G we haved! = {e1 — 62, 61 + &2}, w1 = €1, w2 =
&1+ &2, andrg = —%(81 + &2); see [4, Table Ill]. In this case our dimension formula
reads

(a+D@+2b+2) (r—s+D(r+s+2)

2 B 2 '
whereu = awy + bwy = (a + b)ey + bex = reg + sex andr,s € Zy,r > s. The
same dimension formula can be found in [23] where it was obtained by a completely
different method in the context of deformed symplectic oscillator algebras of rank one;
see Remark 6l3.

dimVu (n) =

7. Highest weight modules forH

7.1. Let ®, denote the set of alt € ® with a(h) € {0, 1}, and putdE = &, N &,
d)jfl. ={x e <I>;'E | «(h) = i}. Recall thag, is spanned by, by all e, with « € &,, and
bye. Leth, ..., h;_1 be a basis of., and letn® (i) be the span of alt, with « € <I>jfi.
Clearly, n*(0) andn~(0) are maximal nilpotent subalgebras gi0)?. Let {x1, ..., x;}
and{yi, ..., y,} be bases ofi* (0) andn~(0) consisting of root vectors, with o € ®.
Recall that the;;'s with 1 < i < 25 are root vectors fol. For 1< i < s, setu; = [e, z;]
andu; = [e, z;]. It follows from our discussion i1 that; (resp.u;) is a root vector
for h corresponding to the rogt + y; € @, (resp.8 + y;" € cI>Zl). Furthermore,
{u, ..., us,uj, ..., u;}is ak-basis of;, (1).
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Given a linear functiork. on b, andc € k we denote by, . the linear span irH of
all PBW monomials of the form

t s -1 s t

[16% -TTem [T@n —rmy-c—om-[] Oy - []e%.

i=1 i=1 i=1 i=1 i=1

Wherezle:]_ ni + Zi:l ri + Zle qi > 0.

Lemma 7.1. The subspacé, . is a left ideal of the algebra/.

Proof. Fora,b € Z',, c,d € Z%,, m € Z{, set

o b.c.qm = ([Ter) (ITew) (T e ) (ITetk) (ITe%)

By [31, Theorem 4.6(ii)], the PBW monomiafd(a, b, ¢, d, m) form ak- baS|s ofH.
Note that deg(®(a, b, ¢, d, m)) = 4m, + 3(|c| + |d|) + 2(|a] + |b]) + 22 1 Lm;.
SinceC — ¢ is central inH we have®(a, b, c,d, m)(C — ¢) € J, .. Relations (i)
and (ii) of Theoren@l imply tha®(a, b, c,d, m)(®,, — A(h;)) € Jforl <i <
¢ — 1. Since®(n*(0)) is a Lie subalgebra a® (3, (0)), by Theoren-l we also have
®(a,b,c,d,m)-0,, € J, . foralla e <I>Jr
It remains to show thad(a, b, c, d, m) @ s € Jy.cforalli <s.We shall use |nduc—
tion on deg(@(a b, c,d, m)), so assume from now on that ¢é@(a, b, c,d, m)) =
and H* . u;« € Jicforalli < sandallk < N. First note that the span af}, . ;‘
equalsn™ (1), hence is stable under the adjoint actiomof0). Since we have already
established thalf - ©,, € J, . foralla € ®, o, relation (ii) of Theorer 6]1 yields

®(@b,c,d,m)- 0, € ©@ b,c,0,m) - OMT (D) + J .

Thus we may assume that= 0. If »; = Ofor all j > i, then®(a, b,c,0,m) - @u* =
®@b+g,c,00m) € Jy .. SO suppos@ = (b1,...,bt,0,...,0) whereb;, > 0 ‘and
k > i. Thenin view of [31, Theorem 4.6(iv)] and our induction assumption we have
©@b,c,00m -0, cO@b+e,c0m+6@b—e,c0mO,6,]
+HY"?.0,: CO@b—e,c0mO, 0,1+ /..
Since(f, [uy, u}]) = 0, Theorenj 6]1 shows that
2s

[, O] = Z(@M 1 Or 21 + Ot e Oput 210) € Z H-0,,

a€®+

(one should take into account that'[ z¥1, [[u}, z71% [uf, 7;]*] € Uaeq,+ ke,, for all
Jj <s).S00(,b,c,0,m)- Our € Iy and the result follows by mductlon QM. O



536 Alexander Premet

7.2. PutZy(x,c) = H/J,. and letvg denote the image of 1 i@y (1, ¢). Clearly,
Zy (X, ¢) is a cyclic H-module generated byy. We call Zy (1, ¢) the Verma module of
levelc corresponding to.. By Lemm4g 7.1, the vectors

1 2 .
(@ e oM (o) [ ln.... .l m1, ... my € Ly)

form ak-basis of the Verma modulgg (1, ¢). Let ZIJ;(A, ¢) denote thek-span of all
(O -0k e .. e (v) with 2 li+ 2 mi > 0. LetZi(1, c) denote the sum of
all H-submodules o 4 (A, ¢) contained mZ,J;()», ¢), and put

Ly, c)i=Zu(h, o)/ZHE0, c).

Proposition 7.1. The following are true:

(i) Z{*(%, c) is aunique maximal submodule of the Verma moduy}é, ) and hence
Ly (A, c) is a simpleH-module.
(i) The simple-modulesL g (A, ¢) andL g (), ¢’) are isomorphic if and only if = )’
andc = ¢'.
(iii) Any finite-dimensional simpléZ-module is isomorphic to one of the modules
Ly, c) with x € b} satisfyingi(hy) € Z4 forall o € <I>:0. Furthermore, ifg
is not of typeA thenc is a rational number.

Proof. (a) For a rootx = Zle n;a; in ® we put

htg () = Z n;.

o #p

Clearly, hi (o) = 0 if and only ifa = . As all derivations ofg are inner, there is a
uniquehg € b such that fo, e] = htg(a)e, for all « € ®. As [ho, e+g] = 0 we see that
ho € b.. Clearly,0y,(vo) = A(ho)vo andZy (A, ¢) = kvo® Z}, (1, ¢). Since ally; andz;
are root vectors fol corresponding to negative roots different frens, it follows from
Theore that the subspazg(k, ¢) decomposes into eigenspaces @y, and the
eigenvalues 06, on Z;; (%, ¢) are of the formi.(hg) — k wherek is a positive integer.

LetV be anonzerdf-submodule oy (A, ¢). If V £ Z;;()L, ¢), the above discussion
shows thatg € V. ButthenV = Zg (A, ¢). Thus any proper submodule @fy (A, ¢) is
contained inZ}; (1, ¢). As a consequenc&}? (1, ¢) is a unique maximal submodule of
Zy (A, c), proving (i).

(b) It follows from part (a) that eacl/-moduleL g (A, ¢) decomposes into eigenspaces
for ®,, the eigenvalues @,, on L4 (1, ¢) lie in the setx(hg) — Z., and the eigenspace
Ly (A, ) is spanned byo. If Ly(h,c) = Ly(A, ¢’) as H-modules then it must
be thati(hg) € A'(ho) — Zy and A/ (hg) € A(ho) — Z. This implies thati(hg) =

A (ho) andL g (X, ©)xng) = Lu (X, ')y ny) @s modules over the commutative subalgebra
O(h.) ®kC of H. But thenr = A’ andc = ¢/, hence (ii).

(c) Let M be afinite-dimensional simplé-module. TherC € Z(H) acts onM asc id for
somec € k. Since®(h,) is abelian,M contains at least one weight subspacedqh,).
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From Theore 1 it follows that the direct Sl@ﬂebZ M, of all weight subspaces of
M is an H-submodule off. HenceM decomposes into weight spaces relativ®id, ).
Note that any linear function ofp vanishing ony, is a scalar multiple oB. Sinceg is a
simple root, any sum of roots fro restricts to a nonzero function dp. But then the
relation

pzv & o=v+( X ry), . rmeli (6. en)

yedf

is a partial ordering omy}. Since the set o® (h,.)-weights of M is finite, it contains at
least one maximal element with respect to this orderirgpy. Letn be a nonzero vector
in M. Then®,, (m) = ©,+(m) = 0 for all admissible. As a consequence, there exists a
homomorphism oH-mothes;:: Zy (A, c) - M such that(vg) = m. The simplicity of

M implies that is surjective, while part (a) yields Kér= Z}}*(%, ¢). RestrictingM to
theslo-triple (©,, O, ©,_,) C H witha € &, it is easy to observe thaih,) € Z
foralla € @,

Finally, supposey is not of type A. Thens, (0) is a semisimple Lie algebra. By
Weyl's theorem M is a completely reducibl® (3, (0))-module. Letgy be theQ-form
in g spanned by the Chevalley system fr@ 4.1, and (i) = gg N3y, (i) wherei =0, 1.
Chooseu, v € 3,.0(1) with (f, [u,v]) = 2. Then |, z;]%, [v. z}]* € 3,.0(0) for all i.
The highest weight theory implies that there i€Qaform in M stable under the ac-
tion of ®(3, (0)). It follows that tW(®[u,z;]:®[v,z;‘]:) € Qforl <i < 2s. Since
tru[O., ®y] = 0, Theorenj 6]1 entails that — co) dimM € Q. Sincecg € Q by Theo-
rem[6.], we obtair € Q. ]

7.3. To determine the composition factors of the Verma modalgsa, ¢) with their
multiplicities we are going to establish a link between th&senodules and thg-mod-
ules obtained by parabolic induction from Whittaker modulessfgik). The latter mod-
ules have been studied in much detail in [26, 28, 1], and it is known that their composition
multiplicities can be calculated by using the Kazhdan—Lusztig algorithm. We are going to
rely on Skryabin’s equivalence (3.1); the Kazhdan filtratiorHoWill play an important
role too.

Let s denote the subalgebra gspanned bye, &, f) = (eg, hg, fg), and put

pp =5+ b+ Z keq, ngi= Z keq, 5g:=h. ® sg.
aedt acdT\{B}

Clearly,pg =53 @ ng is a parabolic subalgebra gfwith nilradicalng andsg is a Levi
subalgebra ofg. LetCg = ef + fe + %hz =2ef + %hz — h be the Casimir element of
U(sp). Givenl € b} andc € k we denote bylg(1, ¢) the left ideal ofU (pg) generated
by f — 1, Cg — ¢, allh — A(h) with h € b, and alle, with y € &\ {B}.

DefineY (A, ¢) := U(pg)/Is(%, ), apg-module with the trivial action ofig, and let
1, . denote the image of 1 iK (A, ¢). Sincef.1, . = 1, ., we have

edyc=3(Cp— 3h?+h).1 o = (—3h%+ 3h + 30).1, .
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Together with the PBW theorem this shows that the vedtiors 1, . | k € Z,} form a
k-basis ofY (A, ¢) (the independence of these vectors follows from the fact¥tat ¢)
is infinite-dimensional). We mention for completeness thét, ¢) is isomorphic to a
Whittaker module fosg = sl>(k).

The above discussion shows that the vectors

m(i, K, D) = g2yl n (@)
withi, k € Z* ,j € Z!_, andl € Z,. form ak-basis of the induceg-module

Mk, ¢) == U(9) Qupy Y (A, ).

7.4. Recall fro that eactf with 1 < i < s is a root vector fobh corresponding to
y*=—B—yi € dT.Puts = %(yl*—f-- oty andpg=p—20—(s+1)B = Zaeq)joa.
Since the restriction of., -) to b, is nondegenerate, for amye h} there exists a ljnique
t, € b, such thaip = (1, -). Hence(., -) induces a nondegenerate bilinear formtgn
via (i, v) := (tu, t,) forall u, v € b}. Given a linear functiog onh we denote by the
restriction ofy to ..

Theorem 7.1. Each g-module M (%, ¢) is an object of the categor¢. Furthermore,
Wh(M (A, ¢)) =2 Zg(A+8,c+ (A + 2p, 1)) as H-modules.

Proof. PutM := M (A, ¢), and letMg (resp.M;) denote thék-span of alln(, j, k, ) in
M with |i| +1 = 0 (resp.|i| + 1 > 0). Clearly, M = My @& M, as vector spaces. Let
pr: M = Mg & M1 — Mg denote the first projection.

If i| + 2|j| + 3|K| + 2/ = k, we say tham(i, j, k, ) hasKazhdan degreé. Let M*
denote thé-span inM of all m(i, j, k, ) of Kazhdan degree k. Then{M* | k € Z.}
is an increasing filtration in/ andM° = k1, .. TakingU (g) with its Kazhdan filtration
(as defined in [10] for example) we can thus regsfds a filtered/ (g)-module.

Letz = Af + ) i_qmiz; € my wherei, u; € k. Sincez* e ngforl <i < s and
fe =1, wehavezl, . = A -1, . = x(z) - 11 .. Sincez acts locally nilpotently
on U(g), we deduce that — x(z) acts locally nilpotently on/ for all z € m,. As a
consequencey is an object o, . By our discussion il, W) # 0, the algebrad
acts onM, andM = Q, ®y Wh(M) asg-modules.

Now observe that

zem(i,j, K, D) €ix-m( — e, j,k, 1)+ spanim(i’,j’, k', I') | i"] > |}
forallk < s, and
(f = D.m(,j, k., 1) €2 -m(,j, k,0) +spanim(’,j’, k’,I') | I' > 0} whenl > 0.

From this it is immediate that the map pr: \M#) — Mj is injective.
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Note that } . € Wh(M), and for alli € b, we have

1 2s 18
On(Lye) = (h +5 Z (A, Z?]Zi)(lx,c) = (h +5 ; (A, 271, Zi])(lx,c)
(A(h) +3 Zy, (h)f> foe = O+ 8)(h) - Ly c.

Supposex € 3, (0) is a root vector foly corresponding to root € @ZO. Thenx € ng
and [[x, z7], zi] € ng foralli < s. Therefore,

25

1 13
0:(110 = (x4 3 3 1.1 )0 = (14 5 M0 1020) o =0

i=

Recall from (2.5) that for any positive root vectok 3, (1) we have

2s 2s

1 1
w=—3 > tef [us [z 2z = 3 D g s fNzi € ng.

i=1 i=1
This implies that

®u(1k ) = (’/l + Z [u Z; ]Zl 3 Z [l'tZ ]ZjZi + Zu)(lk,c)

i,j=1

s 2s
(Z[[u il zil+ 5 Z [uz;z}1zzi —i—% Z [uz;“zjf]zj-z,-)(l,x,c)

lJl i=1 j=s+1

= (St + 3 gltusizglal - 3 lusialler ol ) o

i,j=1 i,j=1 i=1

( Z Muziz] oz — 3 [/ 2i) ) (L) € gL = O.

i,j=1 i=1
Therefore,@u;ﬁ(lk,c) =0 foralli <s. Our discussion i@4 shows that
h2 2s
ClL.o) = <2e + -5~ (s +Dh+Co+ ZZ [e, z;k]zi>(1,\yc)
i=1

= (Cﬂ —sh+ Co+ ZXS: [[e. 21, Zi])(lx,cl (7.4.1
i=1

As(lle, 271, 2], f1 = [lle, f1. 211, zi] = [, 2}), 1] = —f we have [p, 2], zi] — 3h
€ h, foralli < s. Letx be an arbitrary element .. Then(x, #) =0, 8(x) =0, and

(x, [le. 21, zi] = 3h) = (Ix. [e, 2710, zi]) = v () (e, 2F1, z0) = v (%),

)
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thatis, [, 71, zi] — %h = 13+ foralli < s; see our discussion at the beginning of this
subsection. But then

(Zi[[e, {1zl — Sh)(lx,c) = (2irﬂ_*)(1k,c) =4, 8) - L. (7.4.2)
i=1 i=1

SinceCo = Y_a;b; is a Casimir element of/ (3, (0)) and all positive root vectors in
35 (0) annihilate } ., it is straightforward to see thalp(1, ) = (A, A + 2p0) - 1y c. In
conjunction with[(7.4]1) andl (7.4.2) this yields

CLie)=(c+ A A+200) +4(1,8) L c=(c+ A r+20)- L.

Putix’ := A + 68 andc’ = ¢ + (A, A + 2p). Let Vo denote theH-submodule ofM
generated by 1. The above discussion shows that the left idgal- of H annihilates
1, . Therefore Vg is @ homomorphic image of the Verma modig (', ¢’).

We claim that the restriction of prM — My to Vg is surjective. Recall thatg is
spanned by alin(0, j, k, 0) withj € Z'_andk € Z¢ . Clearly,m(0,0,0,0) = 1, . €
pr(Vo). Assume that all vectora (0, j, k, 0) of Kazhdan degree|@ + 3|k| < n are in
pr(Vo). Now letm (0, a, b, 0) € My be such that[a| + 3|b| = » and|a| + |b| = &, and
denote byM,, « the span of alin(i, j, k, /) of Kazhdan degree with |i| +[j| +|k| 4+ > k.
Assume that all vectorg (0, j, k, 0) of Kazhdan degree with |j| 4+ |k| > k are in p(Vp).
SinceM is a filteredU (g)-module, it follows from Lemmdgs 2.3 apd 2.5 that

QU .. 04O -0 (1)) €m0, a,b,0) + My + M. (7.4.3)

In view of our assumptions amandk we getmn (0, a, b, 0) € pr(Vo + M"~1 + My, i) =
pr(Vp). Our claim now follows by double induction onandk. Since we have already
established that pr: WiM) — My is injective, this yields WtM) = Vj.

Using ) it is easy to observe that the vecl@ﬁ% .- @‘;j @)lﬁ e ®3§(1x,c) with
a e Z' andb € Z‘,_ are linearly independent ovér Hence it follows from Lemml
and our discussion at the beginnin7.2 the Zy (\/, ¢') asH-modules. O

Remark 7.1. Combined with Skryabin’s equivalence and the main results ofchd#i
Soergel [27] and Backelin [1], Theorgm J7.1 implies that the composition multiplicities
of the Verma module<Zy (4, ¢) can be computed with the help of inverse parabolic
Kazhdan-Lusztig polynomials associated with the #ir (sg)). This confirms in the
minimal nilpotent case the Kazhdan—Lusztig conjecture for fitalgebras as formu-
lated by de Vos and van Driel in [8]. Recall that our constructiorHgfis a special in-
stance of quantum Hamiltonian reduction where the constraints imposed are read off from
theslo-triple (eg, hg, e_g). Inthe physics literature the algelfaappears undercover un-

der the name of a finit&v-algebra associated with the minimal embeddihgk) — g.

Remark 7.2. It would be interesting to relate the (Kazhdan) filtered algefiréo the
Becchi—Rouet-Stora—Tyutin (BRST) quantisation of the Poisson algelifa\ye recall
that the Poisson structure on Mris determined in [10]. It would be important for the
characteristipy theory to determine allx, ¢) € b} x k such that the simplé/-module
Ly (%, ¢) is finite-dimensional; see Proposition 7. 1(iii).
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Givenr € k we let H; denote the factor algebéd/(C — t) where(C —1t) is the two-sided
ideal of H generated by the central elemé&ht-¢. It is clear from the definition that each
L(A, 1) is anH;-module.

Corollary 7.1. If g is of typeC, or Gy, then any finite-dimensionadf;-module is com-
pletely reducible.

Proof. It suffices to show that E*& (M, N) = 0 for any two finite-dimensional simple
H;-modulesM andN. If the H,-modulesM andN are notisomorphic, then they have dis-
tinct central characters; see Theo@ 6.2. Thus it remains to show tﬂg(ﬂxm/l) =0.
By Propositior] 7.1L(iii),M = Ly (x.7) for somei € b}. Let V be a finite-dimensional
H;-module containingy/ as a submodule and such thafM = M as H,-modules.
As O(3,(0)) is a semisimple Lie subalgebra &f, Weyl's theorem shows that de-
composes into weight spaces relatived¢h,), sayV = @MEX(V) V... Moreover, the
set of ® (h,)-weights of V coincides with that ofL (1, ¢), showing thatu < A for all

w € X (V). It follows from our discussion if 7|2 that diM, = 1 and dimV, = 2. Let

v € Vi \ M, and letM’ denote theH/-submodule ofV generated by. By construction,
the left idealJ, ; of H annihilatesv, showing thatM’ is a homomorphic image of the
Verma moduleZ 4 (1, 1). But then thed (h.)-weight spaceV; is 1-dimensional, imply-
ing (M N M), = M, N M, = 0. Consequentlyyy N M" = 0. The irreducibility ofV /M
now entails thaV = M & M’ andM’ = M. Then Exf;,t(M, M) = 0, completing the
proof. O
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