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Abstract. We prove the following theorems in incidence geometry.

1. There iss > 0 such that for anyPy, ..., P4 € C2, and Q1. ..., O, € C2, if there are<
n1+9/2 distinct lines betweer?; and Q; for all i, j, then Py, ..., P4 are collinear. If the
number of the distinct lines is ¢nl/2, then the cross ratio of the four points is algebraic.

2. Givenc > 0, there iss > 0 such that for anyP, P>, P3 € 2 noncollinear, and?4, ..., O, €
C?, if there are< cn/2 distinct lines betwee; and Q; for all i, j, then for anyP € C? ~
{P1, P>, P3}, we havesn distinct lines betwee® and 0.

3. Givenc > 0, there i« > 0 such that for anyPq, P, P3 € C? (respectively]RZ) collinear, and
01, ..., On € C2 (respectivelyR?), if there are< cn'/2 distinct lines betweet; and Q; for
all i, j, then for anyP not lying on the lineL(Py1, P»), we have at leastl=¢ (resp.n/logn)
distinct lines betwee® andQ;.

The main ingredients used are the subspace theorem, Balog—$zérBowers theorem, and Sze-
meredi—Trotter theorem. We also generalize the theorems to higher dimensions, extend Theorem 1

to ]FIZ, and give the version of Theorem 2 ovr

0. Introduction

Notation.

e ForP # Q, L(P, Q) denotes the line through, Q.
e Let A be asubsetofaring. Them2={a +da’ :a,d’ € A}, A2 ={ad' :a,d € A).

We first prove the following two theorems.

Theorem 1. There is§ > 0 such that for anyPs, ..., P4 € C2,andQ4, ..., 0, € C?,
if

HL(P, Q) :l<i<4 1< j<n} <n@2 (0.1)
thenPy, ..., P4 are collinear. If
HL(P, Q) :l<i<4 1<j<n} <cn™? (0.2)
then the cross ratio oPy, ..., P4 is algebraic.

M.-C. Chang: Mathematics Department, University of California, Riverside, CA 92521, USA;
e-mail: mcc@math.ucr.edu

J. Solymosi: Mathematics Department, University of British Columbia, Vancouver, BC V6T 172,
Canada; e-mail: solymosi@math.ubc.ca



546 Mei-Chu Chang, 8zsef Solymosi

Theorem 2. Givenc > 0, there is§ > 0 such that for anyPy, P», P3 € C2 noncollinear,
andQ1, ..., 0, € C2, if

HL(Pi, Q) :1<i<3 1< j<n}| <cn®? 0.3
then for anyP e C2? . { Py, P», P3}, we have

HL(P, Qj) :1=<j <n}| =dn. (0.4)

Theorem 3. Givenc > 0, there ise > 0 such that for anyPy, P>, P3 € C? collinear,
andQ1,..., 0, € C2 if

HL(P, Q) :1<i<3 1<j<n}| <en'/? (0.5)
then for anyP € C2 \. L(P1, P»), we have
HL(P, Q) :1<j<n)| >n'" (0.6)

Remark 4. In Theorem 3, the bound! < in (0.6) is replaced by /logn if the points are
in R? instead ofC2.

Remark 5. In Remark 1.1 below, we see that assumption (0.3) does occur.

We will first interpret the geometric problems under consideration as sum-product
problems. Roughly speaking, for Theorem 2, we want to show that given two sets-
C? of about the same size, {fli/c; : (¢;,di) € C x D, 1 < i < n}is small, then
{di +b)/(ci +a) : (ci,dj) € C x D, 1<i <n}islarge, wheres, b are fixed. So we
want to have an upper bound on the number of solutionsl;, c;, d;) of the equation
di+b di +b

ci+a ci+a

This interpretation is introduced in Section 1. In Section 2, we use the subspace the-
orem to prove Theorem 2, for the case when the p#ing not on any line connecting
the P;’s. In Section 3, we use the Szeradi—Trotter theorem to prove the corresponding
case of Theorem 1. We also give a short proof using a theorem about convex functions by
Elekes, Nathanson and Ruzsa[ENR]. The argument using the SadirEnotter theorem
[S], besides applying ovef (rather tharR), has the advantage that the set-up (reducing
the problem to bounding the number of solutions of equations) was already used for the
subspace theorem approach. Also, it generalizes easily to the prim& ficlefting. In
Section 4, we use the sum-product theorem to take care of all the cases when more than
two of the P;’s are at infinity. In Section 5, we generalize the theorems to high dimen-
sions. In Section 6, we prove a stronger theorem @vday using thei, constant (see
[BC]).

This work is one more illustration of the relations between arithmetic combinatorics
and point-line incidence geometry. Let us recall that presently the strongest results on the
sum-product problem were obtained using the Szeédiefrotter theorem (due to Elekes
and the second author). The results in this paper are another demonstration of the interplay
between these two fields.
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1. The set-up

Our strategy of proving Theorem 1 is to assume thatP,, P3 are not collinear and get
a large family of linesL(P4, Q;) violating assumption (0.1). Therefore, the settings for
Theorem 1 and Theorem 2 are the same. For simplicity, we describe the situation for
Theorem 2 here and indicate the (small) difference when we prove Theorem 1.

We will work in the projective spac€P? = (C3\ {0})/~, where (x, y,z) ~
(Ax, Ay, Az) for any A # 0. We identify C2 with the affine space i€P? defined by
z#0via(x,y) — (x,y,1).

Let Lo be the line at infinity defined by = 0. We may assume

(i) Py, P2, P3are(1,0,0), (0, 1,0),(0,0,1). (Clearly,PL and P; lie on L.)
(i) No Q; liesonL .

In fact, letA be the 3< 3 matrix with the vectoP; as the'th column. Since thé;’s are
not collinear, the matri¥ is invertible. Hence the linear transformatign: C3 — C3
defined byP — A~1PT sendsPy, P», P3 to (1,0,0), (0,1, 0), (0,0, 1). To see (ii),
we notice that for anyQ = (1,d,0) € L, the lineL(Q, P3) is defined byy = dx.
Assumption (0.3) implies thatQ; : Q; € Lao}| < cn'/? « n.

Let
Qi = (ci,d;, 1),
C={¢:1<i<n}, D={d:1<i<n} 1.1
G={(ci,d):1<i<n}, ClxD={dijci:1<i<n). (1.2)
g
Then
|Gl =n (1.3
and assumption (0.3) implies
IC™Y x D| <en?,  |C| = |D| = c'n'?, (1.4
g

since the lined.(P1, Q;), L(P2, Q;), L(P3, Q;) are defined by = diz, x = ¢ijz, y =
(di/ci)x,and|C||D| > n.

Remark 1.1. Assumption (0.3) does occur. For example, if wedgt; = (2, 2/, 1),
1<i,j<N,then

HL(P1, Qi j)}ijl = HL(P2, Qi D)}ijl =N, HL(P3, Qi j)}i,jl =2N — 1.

To be able to apply the tools from sum-product theory, we need the Laczkovich—Ruzsa
version [LR] of the Balog—Szemedi—Gowers theorem.

Theorem BSG-LR. Let A, B be subsets of an abelian group wijth| = |B| = N, and
letG C A x B with |G| > K~1N2. Define

AL B={a+b:(ab)ecG) (1.5)



548 Mei-Chu Chang, 8zsef Solymosi

G
If |JA + B| < KN, then there are subsets ¢ A andB’ C B such that
A"+ B'| < KN
and
|A'|,|B'| > K~°N. (1.6)

Remark 1.2.The absolute constantin the above theorem is at most 8 (see [ESV]).

2. The proof of Theorem 2 for finite points

Let N = nl/2. Take a pointP = (—a, —b,1) € C2. The line L(P, Q;) has slope
(d; + b)/(c; + a). With the help of Theorem BSG-LR, Theorem 2 is reduced to the fol-
lowing

Theorem2.1. LetX = {x; e C2:1<i < N%}andY = {y; € C2: 1 <i < N2} with
|Y/X| <cNand|X|=1|Y|=cN.Fixa, b € C. Define

zz{yi+b:1§i§N2}.
Xi +a

Then|Z| > § N2 for somes > 0.

Proof. Let I, = {i : (yi +b)/(xi +a) = z}. Then}_,., |I.| = n = N? and Cauchy—
Schwarz gives
Nt <1Z| Y I

Now

Z|Iz|2=‘{(i,j):u=yf—, 1§i,j§n}
Xi t+a Xj+a

=

b "4+ b
{(x,x’,y,y’)eX><X><Y><Y:er _r Tt H

x+a x'+a
=, x,y, Y)eXxXxY xY x'y+bx' +ay=xy +bx+ay}|. (21
To bound (2.1), we invoke the subspace theorlem [ESS], which gives an upper bound

on the number of solutions of a linear equation in a multiplicative group.
A solution(x, ..., x;;) of the equation

m
Yexi=1 ¢eC 2.2)
i=1

is callednondegeneraté Zle ci;xi; # 0 for all k. The bound given below is due to
Evertse, Schlickewei and Schmidt [ESS].
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Subspace Theorem.LetI" < (C*, -) be a subgroup of the multiplicative group @f,
and let the rank of” ber. Then

m

. . 3m

Hnondegenerate solutions (X: cix; = 1in FH < D6
i=1

The formulation of the subspace theorem we need is the followingl(sée [C2])
Corollary 2.2 ([C2]). Letl’ < (C*, -) be a subgroup of rankandA c I" with |A| = N.
Then the number of solutions i of

X1+ ---+x3 =0 2.3
is bounded byv"~1e"¢ + N up to a constant depending @nHerec = c(h).
In order to apply the subspace theorem, we need the following[(se€ [Fr], [R1], [Bi]).

Freiman's Lemma. Let (G, -) be a torsion-free abelian group antl C G with |A?| <
K|A|. Then ' ‘

AcC{gl g tji=1....¢4, andg € G}, (2.4)
whered < K and]]¢; < c(K)|A|.
We letT" < (C*,-) be the subgroup generated py, ..., gs. Then the rank of" is

bounded byl < K and the number of nondegenerate solutions of (2.2) is bounded
by e“»X . We now obtain the subspace theorem under the product set assumption.

Notation. d <; f meansd < c(h) f, wherec(h) is a function ofa.
Theorem 2.3([C2]). LetA c Cwith|A| = N, and
[A%] < KA. (2.5
Then
|{solutions Oft1 + - - - 4+ x2, = 0in A}| <4 N 1K + N,

Theorem 2.3 givesV3 as a bound on the number of solutionsdrwith |[A| = N to the
equation
§1+ 86+ 8 =281+ + & (2.6)

On the other hand, we expect (2.1) to be bounde®/BySo we introduce a new variable
zin (2.1), and let
)C/ZM//Z, x=u/z5

whereu, u’ € X?. Then the equation in (2.1) becomes
uw'y+bu +ayz=uy +bu+ayz. 2.7)

A solution (&1, ..., &) € X2Y x bX2 x aXY x X2Y x bX? x aXY of (2.6) is in
one-to-one correspondence to a soluti@hu, y', y,z) € X2 x X?x Y x ¥ x X of (2.7)
by the following relations:

E1=u'y, &=bu, E&=ayz, E=uy, E&&=bu, E=ayz,
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or

,_ &2 §5 ,_ béa bé1 §2€3
we=s U=,y ==, Y=o, = :
b b &5 £2 abéy
In order to apply Theorem 2.3, we take

A= X%y UbX2UaXy.

Then we haveA?| < K|A| by the following Proposition 2.26 if [T\V].

Proposition. Let A, B be subsets of an abelian group wjth| = |B| = N.If |[A+ B| <
¢N, then
|[n1A —noA +n3B —naB| < 'N.

3. The proof of Theorem 1 for finite points

If we replace assumption (0.3) by assumption (0.1), then instead of (1.4) and Theorem
2.1, we have (3.1) and Theorem 3.1 below

nI™2 < || = D] < n*V/21c7t x D < n@/2, (3.1
g

Theorem 3.1. LetX = {x; e C2:1<i < N2} andY = {y; € C?: 1 <i < N2} with

N <X = Y| < NS (3.2
and
‘Y < N3, (3.3
Fix a, b € C. Define
zz{y"+b :151'5N2}.
Xi +a

Then|Z| > N1t for somen = n(8) > .

Remark 3.2. Let §’ be thes in (3.1). Then thes in Theorem 3.1 ig2¢ + 1) with an
absolute constanrtas in Theorem BSG-LR.

Similar to the argument from (2.1) to (2.7), we need to prove

E:=|{u,u,y,y, 2 €eX?x X°xY x Y xX:u'y+bu' +ayz=uy +bu+ayz|
< N+ (3.4

for somen > 0.
Rewriting the equation in (3.4) as

(y+bu' — (' +bu+a(y—yHz=0, (35)
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we see thatu’, u) lies on the lineZ, ,/ . defined by

! b v/
g Y tbo ab—yiz

(3.6)
y+b y+b
Assume
E > N+, (3.7)
We will get a contradiction fon small. (See (3.14).)
We define
K={0,y,2) €Y xY xX:|f,y N(X*>x X?)| > N2, (3.8)
Claim 1. If 3§ < n, then
E
K| > — . 3.9

1X?|

Proof. By (3.4)—(3.6) and (3.8),

E< ) |lyy:N(X?x X?)| < [X?|K|+ N"27X]| Y2,
Y.z

and by (3.2)N1-211X||Y|?2 < N1-21+30+9) — N4=1_ The claim follows from (3.7).
Ruzsa’s Inequality ([R2]). LetM and N be finite subsets of an abelian group such that
IM + N| < p|M]|.

Leth > 1and¢ > 1. Then
IhN — ¢N| < p" M.

It follows from Ruzsa’s inequality, (3.2) and (3.3) that

N1+s 3 N 3+38
1X?| < ( X ) 1X| < T = NS, (3.10)

By (3.9), (3.7) and (3.10), we have

4-n

N 3—n—5s
K| > s = N7 (3.11)
Let
L= {Ey,y’,z S, y’, 7) € K}. (3.12

Since for any(&, ¢), there are at most'| < N1t9 triples(y, y’, z) such that

Y +b _aly =Yz

§ y+b’ s y+b
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for each line inC there are at mosv*? triples in K corresponding to it. Therefore,
L] > N?7178 (3.13)

The following version of the Szem@dli—Trotter theorem ove€ is exactly what we
need.

Szemeedi—Trotter Theorem ([S]). LetP = C x D c C? be a set of points and be a
set of lines such that NP| > k for any¢ € L. Then

IPI% > ck®|L).

In the above theorem we tae = X2 x X?, £ asin (3.12) and = N1, Together
with (3.10) and (3.13), we have

N4(1+53) > |X2|4 - c(Nl_Z")3|,C| - N5—717—68'

This cannot happen if

1-— 268
-
Remark 3.3. The conditions thaf > 35 (cf. Claim 1) and (3.14) imply < 1/47.

n< (3.19

Remark 3.4. The case of;, Q; € F, x[F,, can be taken care of by the following theorem
(seellB, Theorem 2.2]).

Szemeedi-Trotter Theorem for F,. LetP C F, be a set of points, and be a set of
lines such that
P, I1Ll <M < p* forsomed < a < 2. (3.15

LetZ = {(p,£) € P x L: p € £} be the incidence relation. Then
IZ| < cM¥?7Y  forsomey = y(a) > 0. (3.16)

In (3.15), takeP = X2 x X2, £ as in (3.12), and¥ = N?t1¥ (cf. (3.10)). By (3.13)
(which follows from the assumption th@ > N*~"), we may assumgl| = N2-1-%,
Since each line it contains at leasv'~2" points, we have

17| > |LINT=2n. (3.17)

Hence

This is a contradiction if andn are small. Therefore (3.4) holds, and Theorem 3.1 is true
overlF,.

Remark 3.5. The finite points case of Theorem 1 oalso follows from the following
theorem by Elekes, Nathanson and Ruzsa [ENR].

Theorem ENR. Let S C R be finite and letf be a piecewise convex function (i.e.
f' > 0). Then
25| + 12£ ($)] = c| S|/,
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Proof of Remark 3.5Similar to the way we derive the assumption of Theorem 3.1, we
will start with (3.1) and use Theorem BSG-LR (twice, this time). Let

G={(ci.d)eCxD:1<i<N?. (3.18)
Assume
N <|Cl=|D| < N*, |G|~ N2, (3.19)
HCCL D (cindy) € Q} < N, (3.20)
Hfl Is ey dy) € g} < NI (3.21)

First, from (3.20), we obtai®’ c C andD’ c D such that
IC'|~|Cl, ID'|~ID|, |GN(C" x D"~ N?

and
< NS (3.22

~

D/
&

Let
G =GN xD.

Applying Theorem BSG-LR again, we obtalhc ¢’ ¢ C andY C D’ C D such that
IX|~|C'|~[Cl, |¥Y|~|D'|~|D|, |G N(XxY)|~N?
D/

Y
‘? < |2 s, (3.23)
Y+b
‘X—Ia < NI, (3.24)
The bound (3.23) implies that
llogY —logX| < N+, (3.25)
Ruzsa’s inequality and (3.25) give
12logX| < N1, (3.26)

Assume’ < 1/20. In Theorem ENR, we tak& = log X, and letf be the convex function
f(s) =log(ef 4+ a). Then
1210g(X +a)| > NY4. (3.27)
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On the other hand, (3.24) implies
log(¥ + b) —log(X +a)| S N**. (3.28)
Again, applying Ruzsa’s inequality to (3.28) gives
12log(X +a)| < N7,

which contradicts (3.27) if < 1/20.

4. The cases of points at infinity

In this section we handle all the cases when more than two afthare at infinity.
LetP = (1, —1/d,0) € L. Then the lined.(P, Q;) are defined by

x+dy—(ci +ddj)z =0.
To prove Theorems 1 and 2, we need the following two theorems.
Theorem4.1. LetX = {x; e C?2:1<i < N%}andY = {y; € C2: 1 <i < N%} with

N <X = Y| < NS 4.1)
and v
H < N, 4.2)
X
Fix d € C. Define
Z={xi+dy :1<i<N?. 4.3)
Then
|Z| > N for somen = 5(8) > §. (4.4

Theorem 4.2. LetX = {x; e C2:1<i < N%}andY = {y; € C2: 1 <i < N%} with

Y
IX|=|Y|=c¢N and ‘} < ¢N.

Fixd € C. DefineZ = {x; +dy; : 1 <i < N?}. Then|Z| > §N? for somes > O.
To prove Theorem 4.1, we assume the contrary that
1Z| < N*H7 (4.5)

for somen = n(8) > §. We will show that this cannot happeryjfis small.
LetA = X, B = dY, whereX, Y satisfy the assumptions of Theorem 4.1. Applying
Theorem BSG-LR td and B, we have

N < |A| = |B] < NY, (4.6)
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B
A

|A+ B| < N (4.8)

< NYH, 4.7)

By the same argument as that to obtain (3.10), (4.6)—(4.8) implies
|24], |A%] < N5,
On the other hand, (4.6) and the sum-product theorem below imply
24] + A > NHAD,
This is a contradiction iff < 1/23.

Theorem (Solymosi [S])
24] + |A?] > |A|T1<.

Remark 4.3. Letn’ be then in (4.5). Then the; in (4.6)—(4.8) is bounded byy’, where
¢ < 8 is an absolute constant. (See Remark 1.2.) For exampj}é=f §, we can take
n < (2c + 1)6.

The proof of Theorem 4.2 by using the subspace theorem is rather straightforward,
since as in the proof of Theorem 2.1, it suffices to show that

1
He, x', v, ) e X x X xY xY ix+dy=x"+dy}| < ENZ'

Proof of Theorem 3.Since Py, P>, P3 are collinear, we may assume tiat= (1, 0, 0),

P, = (0,1,0), P3 = (1, —1,0) € L. Assumption (0.5) means that|, |D|, |C + D|

S N. ForapointP = (—a, —b,1) ¢ L, the family of lines{L(P, Q;)}; corresponds
to {i’f%i’ : (¢i,d;j) € C x D, 1 <i < N?). Applying the theorems below to the sets
C + a, D + b, and by Ruzsa’s inequality, we hay@ + a)(D + b)| ~ N2~¢ (respec-
tively, N2/log N). This together with the Balog—Szenadi-Gowers theorem implies that
{L(P, Qj)};| = N2~ (respectivelyN?/log N).

Theorem ([C1]). LetA c C be afinite set with2A| ~ |A|. Then

|A%| > |A|>~¢ for somee > 0.

Theorem (Elekes—Ruzsa [ER])Let A C R be a finite set. Then
|A+ A|*-|A?| - log|A| > A5

The special case of Theorem Assume (0.2) holds. Thehy, ..., P4 are collinear. After
a Mobius transformation, we may assume that the four pointPare (1, 0, 0), P, =
(1,-1,0),P3 = (0,1,0), P4 = (1, -1/d,0) € L. The lines{L(P;, Qj)}; fori =
1,...,4 correspond t&, C + D, D and{c; + dd; : (¢;,d;) € C x D,1 < i < N?
respectively. SincéC| ~ |D| ~ |C + D| ~ N, we haveC’ c C with |C'| ~ N and
C’ C a + D for somea. HenceC’ + dD C a + (D + d D) and our conclusion follows
from the following theorem.
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Theorem (Konyagin—Labal[KL]) Lett € C be transcendental. Then

|A]log |A|

A+1tA _—
A+ |>Ioglog|A|

5. Higher dimensional cases

The case of¥ with k > 2 follows easily from the case &f= 2.
Theorem 5.1. There is§ > 0 such that for anyPy, ..., Pry2, O1, ..., Q, € Ck, if

HL(P, Q) 1 1<i<k+2 1< j<n)|<n® MK (5.1)
thenPy, ..., Pry2 lie on a hyperplane.
Theorem 5.2. Givenc > 0, there is§ > 0 such that for anyP1, ..., P41 € C* not
contained in any hyperplane, and agy, ..., 0, € CK, if

HL(Pi, Q)1 1<i<k+1 1<j<n} <en® Dk (5.2)
then for anyP € Ck ~ {Py, ..., Piy1) we have

{L(P, Qj):1<j<n}{=dn. (5.3)

The set-up is similar to that of th&? case. We work oi€P¥ instead ofC*. Assuming
P, ..., Pry1 are not contained in any hyperplane, after a linear transformation we may
assume thaP; = (1,0,...,0), P> = (0,1,0,...,,0),..., Pry1 = (0,...,0,1). By

the same reasoning as before, we may assume thad theall lie in the affine space.
Hence we may set

Q; = (1, ...,c0)9 = (cij),...,c,(cj)) e RF c C*,

wherej =1,...,n.
Let N = n/k. Assumption (5.2) implies

. k : k i k —
{(c2, ..o eV I Cens ea, oo e YL e - e )N < NETE
' (5.4)

and o
(ca/et, .y er/e)P ) < NE (5.5)

For a finite pointP = (—aa, ..., —a, 1), the family of lines{L(P, Q;) : 1 < j < N*}
corresponds one-to-one to

@)
Z={<C2+a2,...,ck+ak> :1§j§Nk}.
c1+ax c1+ax

Hence (5.3) is equivalent to
|Z| = §N* (5.6)
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forsomes > 0. LetC; = {cfj) j=1. .., N¥}. We will show that
|Cil=cN fori=1... k. (5.7)

For simpler notations and without losing generality, we give an argument for the case
k=4.Let

A= {Qla sy QN4}7
and letpj,...;, (x1,...,x4) = (xj,...,xj,) be the projection to thgs-th, ..., j,-th
coordinates.
First, we may assume
|piaac1. c2.c)) NA| 2 N forall (c1, c2, c3) € p123(A). (5.8)

In fact, letA¢ = {(c1,...,cq4) € A": |pl_213(cl, c2,c3) N Al = o(N)}. Then
|A°] < o(N)N3 = o(N%), (5.9

andA¢ can be ignored.
Next, we see that for the sdtconsidered in (5.8), the boumgi24(A)| < N3 implies

Ip12(A)| < N2, (5.10)
Indeed,

N2> |p12a(A)| > Ip12(A) - min [ proa(pra(ct, c2) N A)| = [p12(A)| N.
(c1,c2)€p12(A)
(5.11)

The last inequality is because of (5.8). Similarly, we hgwg(A)|, | p23(A)] < N2,
Using (5.10) instead of (5.4), by the same reasoning as for (5.8), shrinking the set
in (5.8) a bit, we may assume

|p1a(c1, c2) N Al 2 N2 forall (c1, c2) € p12(A). (5.12)
Therefore, (5.4) and (5.12) imply

N2 |p13a(A)| Z | p1(A)] . gi?A) |paza(py (c1) N A)| > |p1(A)| N?, (5.13)
1€p1

which implies
IC1] = |p1(A)] < N. (5.14)
Similarly, we haveCs|, |C3| < N for |A| ~ N4
Repeating this process on the gebbtained in (5.12) with different projections, we
have|Cy4| = | pa(A)| < N. Now (5.7) follows fromN* < |C1| |C2| |C3| |Cal < N4
Getting back to the case of aky> 2, we letB = {Q1, ..., O« }. We will show that

i/ 1< j<NKj|~N foralli. (5.15)

Let
C1 = {(c1, ¢1) € C1 x C; © |pp(er, ¢i) N B| = N¥72), (5.16)
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Since|B| ~ N*, by the same reasoning as for (5.8) we have
|C1i| ~ N2. (5.17)
Let 7r; be the projection
{(c2/c1, s /et (er, eV € Cui} = {(ei/en)) < (er, e)V) € Cu).

The fiber ofr; at(c1, ¢2) corresponds one—to—onepi‘il(cl, ¢;) N B. Hence the image of
7; has size< N by (5.5). We replaces by plj.l(Cl,-) N B. (Note that (5.16) and (5.17)
imply |p1*l.1(C1,-) N B| ~ N*.). We do this for each (and shrinka a little if necessary.).
Thus (5.15) is proved.

To prove (5.6), we want to show that under condition (5.15),

¢ +a; ¢ +a;
Clyerey ChrChyC)ECI X XCpxCLX o X Cpt —t =2 ,Vi”
H(l k> C1 ©) 1 k 1 k cital dta
< Nk (518
It follows from the case of2 that
c2t+ay  cptar (5.19
c1t+ar  cj+a '
has< N? solutions incy, cz, ¢}, ¢,. Fixing c1, ¢}, the equation
c3+az  c3tas (5.20)

cat+ar  Ha

has at mostV choices ofcz (thencj is determined). Hence (5.19) and (5.20) together
have< N3 solutions inc1, 2, ca, c}. ¢4, c5. Therefore, (5.18) follows by induction, and
the finite point case of Theorem 5.2 is proved.

Only set theory is used in the argument above, hence Theorem 5.1, the other case of
Theorem 5.2, and the caseltf are proved in exactly the same way.

Remark 5.3. Theorems 5.1 and 5.2 are true if we repléteby F¥.

6. Theorem 2 overQ

We have a stronger result by using thgconstant, when the points are@f.

Theorem 6.1. Givene > 0, there is§ > 0 such that for anyPy, P>, Pz € Q? non-
collinear, andQ4, ..., 0, € Q?, if

HL(Pi, Q) :1<i <3, 1<) <n}| <n/? (6.1)
then for anyP € Q2 < {P1, P>, P3}, we have

HL(P, Qj):1<j<n}) >n'? (6.2)
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We use the same set-up as for thease. Given a set ¢ Q with N1=¢ < |A| < N1t¢
and|A?| < N1t5 we want to bound the number of solutiofis ..., & € A in the
following equation byN3t? for somes(e) > 0:

§1+&62+8==58+8+. (6.3)
We use the., constant ofA for this. We recall

Definition. LetA C Z be finite. Thet, constanbf A is

_ 1 acnetan)ly
VIAT

Proposition ([BC]). Givene > 0andg > 2, there exist$ = §(g, ¢) such thatifA Cc Z
with |A2| < |A|Y*¢, then

Ag.A where e(9) = 7.

hq(A) < |AP,
wheres — Oase — 0. Therefore]| Y° _ e(ax)ll, < |A[Y/2F%.

Definer(n) = |{(£1,£2,83) € A x A x A n =& + & + &3}|. In the proposition above,
we takeg = 6. Then

{(EL....60) i1+ Ea+Es=EatEs+ &6} = ) r(n)?

- H(Ze(ax)>3H2 = H X:e(ax)H6 < (NWHO@/24+60)16 _ p3+5
2 6
acA acA
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