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Abstract. We prove the following theorems in incidence geometry.

1. There isδ > 0 such that for anyP1, . . . , P4 ∈ C2, andQ1, . . . ,Qn ∈ C2, if there are≤

n(1+δ)/2 distinct lines betweenPi and Qj for all i, j , thenP1, . . . , P4 are collinear. If the

number of the distinct lines is< cn1/2, then the cross ratio of the four points is algebraic.
2. Givenc > 0, there isδ > 0 such that for anyP1, P2, P3 ∈ C2 noncollinear, andQ1, . . . ,Qn ∈

C2, if there are≤ cn1/2 distinct lines betweenPi andQj for all i, j , then for anyP ∈ C2 r
{P1, P2, P3}, we haveδn distinct lines betweenP andQj .

3. Givenc > 0, there isε > 0 such that for anyP1, P2, P3 ∈ C2 (respectively,R2) collinear, and
Q1, . . . ,Qn ∈ C2 (respectively,R2), if there are≤ cn1/2 distinct lines betweenPi andQj for

all i, j , then for anyP not lying on the lineL(P1, P2), we have at leastn1−ε (resp.n/logn)
distinct lines betweenP andQj .

The main ingredients used are the subspace theorem, Balog–Szemerédi–Gowers theorem, and Sze-
meŕedi–Trotter theorem. We also generalize the theorems to higher dimensions, extend Theorem 1
to F2

p, and give the version of Theorem 2 overQ.

0. Introduction

Notation.
• ForP 6= Q, L(P, Q) denotes the line throughP, Q.
• Let A be a subset of a ring. Then 2A = {a + a′ : a, a′

∈ A}, A2
= {aa′ : a, a′

∈ A}.

We first prove the following two theorems.

Theorem 1. There isδ > 0 such that for anyP1, . . . , P4 ∈ C2, andQ1, . . . ,Qn ∈ C2,

if
|{L(Pi, Qj ) : 1 ≤ i ≤ 4, 1 ≤ j ≤ n}| ≤ n(1+δ)/2, (0.1)

thenP1, . . . , P4 are collinear. If

|{L(Pi, Qj ) : 1 ≤ i ≤ 4, 1 ≤ j ≤ n}| ≤ cn1/2, (0.2)

then the cross ratio ofP1, . . . , P4 is algebraic.
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Theorem 2. Givenc > 0, there isδ > 0 such that for anyP1, P2, P3 ∈ C2 noncollinear,
andQ1, . . . ,Qn ∈ C2, if

|{L(Pi, Qj ) : 1 ≤ i ≤ 3, 1 ≤ j ≤ n}| ≤ cn1/2, (0.3)

then for anyP ∈ C2 r {P1, P2, P3}, we have

|{L(P, Qj ) : 1 ≤ j ≤ n}| = δn. (0.4)

Theorem 3. Givenc > 0, there isε > 0 such that for anyP1, P2, P3 ∈ C2 collinear,
andQ1, . . . ,Qn ∈ C2, if

|{L(Pi, Qj ) : 1 ≤ i ≤ 3, 1 ≤ j ≤ n}| ≤ cn1/2, (0.5)

then for anyP ∈ C2 r L(P1, P2), we have

|{L(P, Qj ) : 1 ≤ j ≤ n}| > n1−ε . (0.6)

Remark 4. In Theorem 3, the boundn1−ε in (0.6) is replaced byn/logn if the points are
in R2 instead ofC2.

Remark 5. In Remark 1.1 below, we see that assumption (0.3) does occur.

We will first interpret the geometric problems under consideration as sum-product
problems. Roughly speaking, for Theorem 2, we want to show that given two setsC, D ⊂

C2 of about the same size, if{di/ci : (ci, di) ∈ C × D, 1 ≤ i ≤ n} is small, then
{(di + b)/(ci + a) : (ci, di) ∈ C × D, 1 ≤ i ≤ n} is large, wherea, b are fixed. So we
want to have an upper bound on the number of solutions(ci, di, cj , dj ) of the equation

di + b

ci + a
=

dj + b

cj + a
.

This interpretation is introduced in Section 1. In Section 2, we use the subspace the-
orem to prove Theorem 2, for the case when the pointP is not on any line connecting
thePi ’s. In Section 3, we use the Szemerédi–Trotter theorem to prove the corresponding
case of Theorem 1. We also give a short proof using a theorem about convex functions by
Elekes, Nathanson and Ruzsa [ENR]. The argument using the Szemerédi–Trotter theorem
[S], besides applying overC (rather thanR), has the advantage that the set-up (reducing
the problem to bounding the number of solutions of equations) was already used for the
subspace theorem approach. Also, it generalizes easily to the prime fieldFp setting. In
Section 4, we use the sum-product theorem to take care of all the cases when more than
two of thePi ’s are at infinity. In Section 5, we generalize the theorems to high dimen-
sions. In Section 6, we prove a stronger theorem overQ by using theλq constant (see
[BC]).

This work is one more illustration of the relations between arithmetic combinatorics
and point-line incidence geometry. Let us recall that presently the strongest results on the
sum-product problem were obtained using the Szemerédi–Trotter theorem (due to Elekes
and the second author). The results in this paper are another demonstration of the interplay
between these two fields.
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1. The set-up

Our strategy of proving Theorem 1 is to assume thatP1, P2, P3 are not collinear and get
a large family of linesL(P4, Qj ) violating assumption (0.1). Therefore, the settings for
Theorem 1 and Theorem 2 are the same. For simplicity, we describe the situation for
Theorem 2 here and indicate the (small) difference when we prove Theorem 1.

We will work in the projective spaceCP2 ∼= (C3
\ {0})/∼, where (x, y, z) ∼

(λx, λy, λz) for any λ 6= 0. We identifyC2 with the affine space inCP2 defined by
z 6= 0 via (x, y) 7→ (x, y, 1).

Let L∞ be the line at infinity defined byz = 0. We may assume

(i) P1, P2, P3 are(1, 0, 0), (0, 1, 0), (0, 0, 1). (Clearly,P1 andP2 lie onL∞.)
(ii) No Qi lies onL∞.

In fact, letA be the 3×3 matrix with the vectorPi as theith column. Since thePi ’s are
not collinear, the matrixA is invertible. Hence the linear transformationT : C3

→ C3

defined byP 7→ A−1P T sendsP1, P2, P3 to (1, 0, 0), (0, 1, 0), (0, 0, 1). To see (ii),
we notice that for anyQ = (1, d, 0) ∈ L∞, the lineL(Q, P3) is defined byy = dx.
Assumption (0.3) implies that|{Qi : Qi ∈ L∞}| ≤ cn1/2

� n.
Let

Qi = (ci, di, 1),

C = {ci : 1 ≤ i ≤ n}, D = {di : 1 ≤ i ≤ n} (1.1)

G = {(ci, di) : 1 ≤ i ≤ n}, C−1
×
G

D = {di/ci : 1 ≤ i ≤ n}. (1.2)

Then
|G| = n (1.3)

and assumption (0.3) implies

|C−1
×
G

D| ≤ cn1/2, |C| = |D| = c′n1/2, (1.4)

since the linesL(P1, Qi), L(P2, Qi), L(P3, Qi) are defined byy = diz, x = ciz, y =

(di/ci)x, and|C| |D| ≥ n.

Remark 1.1. Assumption (0.3) does occur. For example, if we letQi,j = (2i, 2j , 1),
1 ≤ i, j ≤ N , then

|{L(P1, Qi,j )}i,j | = |{L(P2, Qi,j )}i,j | = N, |{L(P3, Qi,j )}i,j | = 2N − 1.

To be able to apply the tools from sum-product theory, we need the Laczkovich–Ruzsa
version [LR] of the Balog–Szemerédi–Gowers theorem.

Theorem BSG-LR. Let A, B be subsets of an abelian group with|A| = |B| = N , and
let G ⊂ A × B with |G| > K−1N2. Define

A
G

+ B = {a + b : (a, b) ∈ G}. (1.5)
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If |A
G

+ B| < KN, then there are subsetsA′
⊂ A andB ′

⊂ B such that

|A′
+ B ′

| < KcN

and
|A′

|, |B ′
| > K−cN. (1.6)

Remark 1.2.The absolute constantc in the above theorem is at most 8 (see [SSV]).

2. The proof of Theorem 2 for finite points

Let N = n1/2. Take a pointP = (−a, −b, 1) ∈ C2. The lineL(P, Qi) has slope
(di + b)/(ci + a). With the help of Theorem BSG-LR, Theorem 2 is reduced to the fol-
lowing

Theorem 2.1. Let X = {xi ∈ C2 : 1 ≤ i ≤ N2
} andY = {yi ∈ C2 : 1 ≤ i ≤ N2

} with
|Y/X| ≤ cN and|X| = |Y | = c′N . Fix a, b ∈ C. Define

Z =

{
yi + b

xi + a
: 1 ≤ i ≤ N2

}
.

Then|Z| > δN2 for someδ > 0.

Proof. Let Iz = {i : (yi + b)/(xi + a) = z}. Then
∑

z∈Z |Iz| = n = N2 and Cauchy–
Schwarz gives

N4
≤ |Z|

∑
|Iz|

2.

Now∑
|Iz|

2
=

∣∣∣∣{(i, j) :
yi + b

xi + a
=

yj + b

xj + a
, 1 ≤ i, j ≤ n

}∣∣∣∣
≤

∣∣∣∣{(x, x′, y, y′) ∈ X × X × Y × Y :
y + b

x + a
=

y′
+ b

x′ + a

}∣∣∣∣
= |{(x, x′, y, y′) ∈ X × X × Y × Y : x′y + bx′

+ ay = xy′
+ bx + ay′

}|. (2.1)

To bound (2.1), we invoke the subspace theorem [ESS], which gives an upper bound
on the number of solutions of a linear equation in a multiplicative group.

A solution(x1, . . . , xm) of the equation

m∑
i=1

cixi = 1, ci ∈ C, (2.2)

is callednondegenerateif
∑k

j=1 cij xij 6= 0 for all k. The bound given below is due to
Evertse, Schlickewei and Schmidt [ESS].
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Subspace Theorem.Let 0 < 〈C∗, ·〉 be a subgroup of the multiplicative group ofC,
and let the rank of0 ber. Then∣∣∣{nondegenerate solutions of

m∑
i=1

cixi = 1 in 0
}∣∣∣ < e(r+1)(6m)3m

.

The formulation of the subspace theorem we need is the following (see [C2])

Corollary 2.2 ([C2]). Let0 < 〈C∗, ·〉 be a subgroup of rankr andA ⊂ 0 with |A| = N .
Then the number of solutions inA of

x1 + · · · + x2h = 0 (2.3)

is bounded byNh−1erc
+ Nh, up to a constant depending onh. Herec = c(h).

In order to apply the subspace theorem, we need the following (see [Fr], [R1], [Bi]).

Freiman’s Lemma. Let 〈G, ·〉 be a torsion-free abelian group andA ⊂ G with |A2
| <

K|A|. Then
A ⊂ {g

j1
1 · · · g

jd

d : ji = 1, . . . , `i, andgi ∈ G}, (2.4)

whered ≤ K and
∏

`i < c(K)|A|.

We let 0 < 〈C∗, ·〉 be the subgroup generated byg1, . . . , gd . Then the rank of0 is
bounded byd ≤ K and the number of nondegenerate solutions of (2.2) in0 is bounded
by ecmK . We now obtain the subspace theorem under the product set assumption.

Notation. d <h f meansd ≤ c(h)f , wherec(h) is a function ofh.

Theorem 2.3([C2]). LetA ⊂ C with |A| = N , and

|A2
| < K|A|. (2.5)

Then
|{solutions ofx1 + · · · + x2h = 0 in A}| <h Nh−1ecK

+ Nh.

Theorem 2.3 givesN3 as a bound on the number of solutions inA with |A| = N to the
equation

ξ1 + ξ2 + ξ3 = ξ4 + ξ5 + ξ6. (2.6)

On the other hand, we expect (2.1) to be bounded byN2. So we introduce a new variable
z in (2.1), and let

x′
= u′/z, x = u/z,

whereu, u′
∈ X2. Then the equation in (2.1) becomes

u′y + bu′
+ ayz = uy′

+ bu + ay′z. (2.7)

A solution (ξ1, . . . , ξ6) ∈ X2Y × bX2
× aXY × X2Y × bX2

× aXY of (2.6) is in
one-to-one correspondence to a solution(u′, u, y′, y, z) ∈ X2

×X2
×Y ×Y ×X of (2.7)

by the following relations:

ξ1 = u′y, ξ2 = bu′, ξ3 = ayz, ξ4 = uy′, ξ5 = bu, ξ6 = ay′z,



550 Mei-Chu Chang, J́ozsef Solymosi

or

u′
=

ξ2

b
, u =

ξ5

b
, y′

=
bξ4

ξ5
, y =

bξ1

ξ2
, z =

ξ2ξ3

abξ1
.

In order to apply Theorem 2.3, we take

A = X2Y ∪ bX2
∪ aXY.

Then we have|A2
| < K|A| by the following Proposition 2.26 in [TV].

Proposition. LetA, B be subsets of an abelian group with|A| = |B| = N . If |A+B| <

cN , then
|n1A − n2A + n3B − n4B| < c′N.

3. The proof of Theorem 1 for finite points

If we replace assumption (0.3) by assumption (0.1), then instead of (1.4) and Theorem
2.1, we have (3.1) and Theorem 3.1 below

n(1−δ)/2 < |C| = |D| < n(1+δ)/2, |C−1
×
G

D| < n(1+δ)/2. (3.1)

Theorem 3.1. LetX = {xi ∈ C2 : 1 ≤ i ≤ N2
} andY = {yi ∈ C2 : 1 ≤ i ≤ N2

} with

N1−δ < |X| = |Y | < N1+δ (3.2)

and ∣∣∣∣ YX
∣∣∣∣ < N1+δ. (3.3)

Fix a, b ∈ C. Define

Z =

{
yi + b

xi + a
: 1 ≤ i ≤ N2

}
.

Then|Z| > N1+η for someη = η(δ) > δ.

Remark 3.2. Let δ′ be theδ in (3.1). Then theδ in Theorem 3.1 is(2c + 1)δ′ with an
absolute constantc as in Theorem BSG-LR.

Similar to the argument from (2.1) to (2.7), we need to prove

E := |{(u, u′, y, y′, z) ∈ X2
× X2

× Y × Y × X : u′y + bu′
+ ayz = uy′

+ bu + ay′z}|

< N4−η (3.4)

for someη > 0.
Rewriting the equation in (3.4) as

(y + b)u′
− (y′

+ b)u + a(y − y′)z = 0, (3.5)
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we see that(u′, u) lies on the linè y,y′,z defined by

S −
y′

+ b

y + b
T +

a(y − y′)z

y + b
= 0. (3.6)

Assume
E > N4−η. (3.7)

We will get a contradiction forη small. (See (3.14).)
We define

K = {(y, y′, z) ∈ Y × Y × X : |`y,y′,z ∩ (X2
× X2)| > N1−2η

}. (3.8)

Claim 1. If 3δ < η, then

|K| >
E

|X2|
. (3.9)

Proof. By (3.4)–(3.6) and (3.8),

E ≤

∑
y′,y,z

|`y,y′,z ∩ (X2
× X2)| < |X2

| |K| + N1−2η
|X| |Y |

2,

and by (3.2),N1−2η
|X| |Y |

2 < N1−2η+3(1+δ) < N4−η. The claim follows from (3.7).

Ruzsa’s Inequality ([R2]). LetM andN be finite subsets of an abelian group such that

|M + N | ≤ ρ|M|.

Leth ≥ 1 and` ≥ 1. Then
|hN − `N | ≤ ρh+`

|M|.

It follows from Ruzsa’s inequality, (3.2) and (3.3) that

|X2
| <

(
N1+δ

|X|

)3

|X| <
N3+3δ

N2−2δ
= N1+5δ. (3.10)

By (3.9), (3.7) and (3.10), we have

|K| >
N4−η

N1+5δ
= N3−η−5δ. (3.11)

Let
L = {`y,y′,z : (y, y′, z) ∈ K}. (3.12)

Since for any(ξ, ς), there are at most|Y | < N1+δ triples(y, y′, z) such that

ξ =
y′

+ b

y + b
, ς =

a(y − y′)z

y + b
,
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for each line inL there are at mostN1+δ triples inK corresponding to it. Therefore,

|L| > N2−η−6δ. (3.13)

The following version of the Szemerédi–Trotter theorem overC is exactly what we
need.

Szemeŕedi–Trotter Theorem ([S]). LetP = C × D ⊂ C2 be a set of points andL be a
set of lines such that|` ∩ P| ≥ k for any` ∈ L. Then

|P|
2 > ck3

|L|.

In the above theorem we takeP = X2
× X2, L as in (3.12) andk = N1−2η. Together

with (3.10) and (3.13), we have

N4(1+5δ) > |X2
|
4 > c(N1−2η)3

|L| > N5−7η−6δ.

This cannot happen if

η <
1 − 26δ

7
. (3.14)

Remark 3.3. The conditions thatη > 3δ (cf. Claim 1) and (3.14) implyδ < 1/47.

Remark 3.4. The case ofPi, Qj ∈ Fp×Fp can be taken care of by the following theorem
(see [B, Theorem 2.2]).

Szemeŕedi–Trotter Theorem for Fp. LetP ⊂ Fp be a set of points, andL be a set of
lines such that

|P|, |L| ≤ M < pα for some0 < α < 2. (3.15)

LetI = {(p, `) ∈ P × L : p ∈ `} be the incidence relation. Then

|I| < cM3/2−γ for someγ = γ (α) > 0. (3.16)

In (3.15), takeP = X2
× X2, L as in (3.12), andM = N2+10δ (cf. (3.10)). By (3.13)

(which follows from the assumption thatE > N4−η), we may assume|L| = N2−η−6δ.
Since each line inL contains at leastN1−2η points, we have

|I| ≥ |L|N1−2η. (3.17)

Hence
cN (2+10δ)(3/2−γ ) > N2−η−6δN1−2η.

This is a contradiction ifδ andη are small. Therefore (3.4) holds, and Theorem 3.1 is true
overFp.

Remark 3.5. The finite points case of Theorem 1 overR also follows from the following
theorem by Elekes, Nathanson and Ruzsa [ENR].

Theorem ENR. Let S ⊂ R be finite and letf be a piecewise convex function (i.e.
f ′ > 0). Then

|2S| + |2f (S)| ≥ c|S|
5/4.
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Proof of Remark 3.5.Similar to the way we derive the assumption of Theorem 3.1, we
will start with (3.1) and use Theorem BSG-LR (twice, this time). Let

G = {(ci, di) ∈ C × D : 1 ≤ i ≤ N2
}. (3.18)

Assume

N1−δ < |C| = |D| < N1+δ, |G| ∼ N2, (3.19)∣∣∣∣{di

ci

: (ci, di) ∈ G
}∣∣∣∣ < N1+δ, (3.20)

∣∣∣∣{di + b

ci + a
: (ci, di) ∈ G

}∣∣∣∣ < N1+η. (3.21)

First, from (3.20), we obtainC′
⊂ C andD′

⊂ D such that

|C′
| ∼ |C|, |D′

| ∼ |D|, |G ∩ (C′
× D′)| ∼ N2

and ∣∣∣∣D′

C′

∣∣∣∣ . N1+δ. (3.22)

Let
G′

= G ∩ (C′
× D′).

Applying Theorem BSG-LR again, we obtainX ⊂ C′
⊂ C andY ⊂ D′

⊂ D such that

|X| ∼ |C′
| ∼ |C|, |Y | ∼ |D′

| ∼ |D|, |G′
∩ (X × Y )| ∼ N2,∣∣∣∣ YX

∣∣∣∣ ≤

∣∣∣∣D′

C′

∣∣∣∣ . N1+δ, (3.23)

∣∣∣∣ Y + b

X + a

∣∣∣∣ . N1+η. (3.24)

The bound (3.23) implies that

|logY − logX| . N1+δ. (3.25)

Ruzsa’s inequality and (3.25) give

|2 logX| . N1+5δ. (3.26)

Assumeδ < 1/20. In Theorem ENR, we takeS = logX, and letf be the convex function
f (s) = log(es

+ a). Then
|2 log(X + a)| > N5/4. (3.27)
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On the other hand, (3.24) implies

|log(Y + b) − log(X + a)| . N1+η. (3.28)

Again, applying Ruzsa’s inequality to (3.28) gives

|2 log(X + a)| . N1+5η,

which contradicts (3.27) ifη < 1/20.

4. The cases of points at infinity

In this section we handle all the cases when more than two of thePi ’s are at infinity.
Let P = (1, −1/d, 0) ∈ L∞. Then the linesL(P, Qi) are defined by

x + dy − (ci + ddi)z = 0.

To prove Theorems 1 and 2, we need the following two theorems.

Theorem 4.1. LetX = {xi ∈ C2 : 1 ≤ i ≤ N2
} andY = {yi ∈ C2 : 1 ≤ i ≤ N2

} with

N1−δ < |X| = |Y | < N1+δ (4.1)

and ∣∣∣∣ YX
∣∣∣∣ < N1+δ. (4.2)

Fix d ∈ C. Define
Z = {xi + dyi : 1 ≤ i ≤ N2

}. (4.3)

Then
|Z| > N1+η for someη = η(δ) ≥ δ. (4.4)

Theorem 4.2. LetX = {xi ∈ C2 : 1 ≤ i ≤ N2
} andY = {yi ∈ C2 : 1 ≤ i ≤ N2

} with

|X| = |Y | = c′N and

∣∣∣∣YX
∣∣∣∣ < cN.

Fix d ∈ C. DefineZ = {xi + dyi : 1 ≤ i ≤ N2
}. Then|Z| > δN2 for someδ > 0.

To prove Theorem 4.1, we assume the contrary that

|Z| < N1+η (4.5)

for someη = η(δ) ≥ δ. We will show that this cannot happen ifη is small.
Let A = X, B = dY, whereX, Y satisfy the assumptions of Theorem 4.1. Applying

Theorem BSG-LR toA andB, we have

N1−η < |A| = |B| < N1+η, (4.6)
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∣∣∣∣ < N1+η, (4.7)

|A + B| < N1+η. (4.8)

By the same argument as that to obtain (3.10), (4.6)–(4.8) implies

|2A|, |A2
| < N1+5η.

On the other hand, (4.6) and the sum-product theorem below imply

|2A| + |A2
| > N

14
11(1−η).

This is a contradiction ifη < 1/23.

Theorem (Solymosi [S]).

|2A| + |A2
| > |A|

14
11−ε .

Remark 4.3. Let η′ be theη in (4.5). Then theη in (4.6)–(4.8) is bounded bycη′, where
c ≤ 8 is an absolute constant. (See Remark 1.2.) For example, ifη′

= δ, we can take
η ≤ (2c + 1)δ.

The proof of Theorem 4.2 by using the subspace theorem is rather straightforward,
since as in the proof of Theorem 2.1, it suffices to show that

|{(x, x′, y, y′) ∈ X × X × Y × Y : x + dy = x′
+ dy′

}| <
1

δ
N2.

Proof of Theorem 3.SinceP1, P2, P3 are collinear, we may assume thatP1 = (1, 0, 0),

P2 = (0, 1, 0), P3 = (1, −1, 0) ∈ L∞. Assumption (0.5) means that|C|, |D|, |C + D|

. N . For a pointP = (−a, −b, 1) 6∈ L∞, the family of lines{L(P, Qj )}j corresponds
to {

di+b
ci+a

: (ci, di) ∈ C × D, 1 ≤ i ≤ N2
}. Applying the theorems below to the sets

C + a, D + b, and by Ruzsa’s inequality, we have|(C + a)(D + b)| ∼ N2−ε (respec-
tively, N2/logN ). This together with the Balog–Szemerédi–Gowers theorem implies that
|{L(P, Qj )}j | & N2−ε (respectively,N2/logN ).

Theorem ([C1]). LetA ⊂ C be a finite set with|2A| ∼ |A|. Then

|A2
| > |A|

2−ε for someε > 0.

Theorem (Elekes–Ruzsa [ER]). LetA ⊂ R be a finite set. Then

|A + A|
4
· |A2

| · log |A| > |A|
6.

The special case of Theorem 1.Assume (0.2) holds. ThenP1, . . . , P4 are collinear. After
a Möbius transformation, we may assume that the four points areP1 = (1, 0, 0), P2 =

(1, −1, 0), P3 = (0, 1, 0), P4 = (1, −1/d, 0) ∈ L∞. The lines{L(Pi, Qj )}j for i =

1, . . . , 4 correspond toC, C + D, D and{ci + ddi : (ci, di) ∈ C × D, 1 ≤ i ≤ N2
}

respectively. Since|C| ∼ |D| ∼ |C + D| ∼ N , we haveC′
⊂ C with |C′

| ∼ N and
C′

⊂ a + D for somea. HenceC′
+ dD ⊂ a + (D + dD) and our conclusion follows

from the following theorem.
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Theorem (Konyagin–Laba [KL]). Let t ∈ C be transcendental. Then

|A + tA| >
|A| log |A|

log log|A|
.

5. Higher dimensional cases

The case ofCk with k > 2 follows easily from the case ofk = 2.

Theorem 5.1. There isδ > 0 such that for anyP1, . . . , Pk+2, Q1, . . . ,Qn ∈ Ck, if

|{L(Pi, Qj ) : 1 ≤ i ≤ k + 2, 1 ≤ j ≤ n}| ≤ n(k−1+δ)/k, (5.1)

thenP1, . . . , Pk+2 lie on a hyperplane.

Theorem 5.2. Givenc > 0, there isδ > 0 such that for anyP1, . . . , Pk+1 ∈ Ck not
contained in any hyperplane, and anyQ1, . . . ,Qn ∈ Ck, if

|{L(Pi, Qj ) : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ n}| ≤ cn(k−1)/k, (5.2)

then for anyP ∈ Ck r {P1, . . . , Pk+1} we have

|{L(P, Qj ) : 1 ≤ j ≤ n}| = δn. (5.3)

The set-up is similar to that of theC2 case. We work onCPk instead ofCk. Assuming
P1, . . . , Pk+1 are not contained in any hyperplane, after a linear transformation we may
assume thatP1 = (1, 0, . . . , 0), P2 = (0, 1, 0, . . . , , 0), . . . , Pk+1 = (0, . . . , 0, 1). By
the same reasoning as before, we may assume that theQj ’s all lie in the affine space.
Hence we may set

Qj = (c1, . . . , ck)
(j) := (c

(j)

1 , . . . , c
(j)
k ) ∈ Rk

⊂ Ck,

wherej = 1, . . . , n.

Let N = n1/k. Assumption (5.2) implies

|{(c2, . . . , ck)
(j)

}
Nk

j=1|, |{(c1, c3, . . . , ck)
(j)

}
Nk

j=1|, . . . , |{(c1, . . . , ck−1)
(j)

}
Nk

j=1| < Nk−1

(5.4)

and
|{(c2/c1, . . . , ck/c1)

(j)
}
Nk

j=1| < Nk−1. (5.5)

For a finite pointP = (−a1, . . . ,−ak, 1), the family of lines{L(P, Qj ) : 1 ≤ j ≤ Nk
}

corresponds one-to-one to

Z =

{(
c2 + a2

c1 + a1
, . . . ,

ck + ak

c1 + a1

)(j)

: 1 ≤ j ≤ Nk

}
.

Hence (5.3) is equivalent to
|Z| = δNk (5.6)
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for someδ > 0. LetCi = {c
(j)
i : j = 1, . . . , Nk

}. We will show that

|Ci | = cN for i = 1, . . . , k. (5.7)

For simpler notations and without losing generality, we give an argument for the case
k = 4. Let

A = {Q1, . . . ,QN4},

and letpj1···jm(x1, . . . , x4) = (xj1, . . . , xjm) be the projection to thej1-th, . . . , jm-th
coordinates.

First, we may assume

|p−1
123(c1, c2, c3) ∩ A| & N for all (c1, c2, c3) ∈ p123(A). (5.8)

In fact, letAc
= {(c1, . . . , c4) ∈ A : |p−1

123(c1, c2, c3) ∩ A| = o(N)}. Then

|Ac
| ≤ o(N)N3

= o(N4), (5.9)

andAc can be ignored.
Next, we see that for the setA considered in (5.8), the bound|p124(A)| . N3 implies

|p12(A)| . N2. (5.10)

Indeed,

N3 & |p124(A)| > |p12(A)| · min
(c1,c2)∈p12(A)

|p124(p
−1
12 (c1, c2) ∩ A)| & |p12(A)| N.

(5.11)

The last inequality is because of (5.8). Similarly, we have|p13(A)|, |p23(A)| . N2.

Using (5.10) instead of (5.4), by the same reasoning as for (5.8), shrinking the setA

in (5.8) a bit, we may assume

|p−1
12 (c1, c2) ∩ A| & N2 for all (c1, c2) ∈ p12(A). (5.12)

Therefore, (5.4) and (5.12) imply

N3 & |p134(A)| & |p1(A)| · min
c1∈p1(A)

|p134(p
−1
1 (c1) ∩ A)| > |p1(A)| N2, (5.13)

which implies
|C1| = |p1(A)| . N. (5.14)

Similarly, we have|C2|, |C3| . N for |A| ∼ N4.
Repeating this process on the setA obtained in (5.12) with different projections, we

have|C4| = |p4(A)| . N . Now (5.7) follows fromN4
≤ |C1| |C2| |C3| |C4| . N4.

Getting back to the case of anyk > 2, we letB = {Q1, . . . ,QNk }. We will show that

|{(ci/c1)
(j) : 1 ≤ j ≤ Nk

}| ∼ N for all i. (5.15)

Let
C1i = {(c1, ci) ∈ C1 × Ci : |p−1

1i (c1, ci) ∩ B| & Nk−2
}. (5.16)
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Since|B| ∼ Nk, by the same reasoning as for (5.8) we have

|C1i | ∼ N2. (5.17)

Let πi be the projection

{(c2/c1, . . . , ck/c1)
(j) : (c1, ci)

(j)
∈ C1i} → {(ci/c1)

(j) : (c1, ci)
(j)

∈ C1i}.

The fiber ofπi at (c1, c2) corresponds one-to-one top−1
1i (c1, ci) ∩ B. Hence the image of

πi has size. N by (5.5). We replaceB by p−1
1i (C1i) ∩ B. (Note that (5.16) and (5.17)

imply |p−1
1i (C1i) ∩ B| ∼ Nk.). We do this for eachi (and shrinkB a little if necessary.).

Thus (5.15) is proved.
To prove (5.6), we want to show that under condition (5.15),∣∣∣∣{(c1, . . . , ck, c

′

1, . . . , c
′

k) ∈ C1 × · · · × Ck × C1 × · · · × Ck :
ci + ai

c1 + a1
=

c′

i + ai

c′

1 + a1
, ∀i

}∣∣∣∣
. Nk. (5.18)

It follows from the case ofC2 that

c2 + a2

c1 + a1
=

c′

2 + a2

c′

1 + a1
(5.19)

has. N2 solutions inc1, c2, c
′

1, c
′

2. Fixing c1, c
′

1, the equation

c3 + a3

c1 + a1
=

c′

3 + a3

c′

1 + a1
(5.20)

has at mostN choices ofc3 (thenc′

3 is determined). Hence (5.19) and (5.20) together
have. N3 solutions inc1, c2, c3, c

′

1, c
′

2, c
′

3. Therefore, (5.18) follows by induction, and
the finite point case of Theorem 5.2 is proved.

Only set theory is used in the argument above, hence Theorem 5.1, the other case of
Theorem 5.2, and the case ofFp are proved in exactly the same way.

Remark 5.3. Theorems 5.1 and 5.2 are true if we replaceCk by Fk
p.

6. Theorem 2 overQ

We have a stronger result by using theλq constant, when the points are inQ2.

Theorem 6.1. Given ε > 0, there isδ > 0 such that for anyP1, P2, P3 ∈ Q2 non-
collinear, andQ1, . . . ,Qn ∈ Q2, if

|{L(Pi, Qj ) : 1 ≤ i ≤ 3, 1 ≤ j ≤ n}| ≤ n1/2+ε, (6.1)

then for anyP ∈ Q2 r {P1, P2, P3}, we have

|{L(P, Qj ) : 1 ≤ j ≤ n}| > n1−δ. (6.2)
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We use the same set-up as for theC case. Given a setA ⊂ Q with N1−ε < |A| < N1+ε

and |A2
| < N1+5ε , we want to bound the number of solutionsξ1, . . . , ξ6 ∈ A in the

following equation byN3+δ for someδ(ε) > 0:

ξ1 + ξ2 + ξ3 = ξ4 + ξ5 + ξ6. (6.3)

We use theλq constant ofA for this. We recall

Definition. Let A ⊂ Z be finite. Theλq constantof A is

λq,A =
‖
∑

a∈A e(ax)‖q
√

|A|
, where e(θ) = e2πiθ .

Proposition ([BC]). Givenε > 0 andq > 2, there existsδ = δ(q, ε) such that ifA ⊂ Z
with |A2

| < |A|
1+ε, then

λq(A) < |A|
δ,

whereδ → 0 asε → 0. Therefore,‖
∑

a∈A
e(ax)‖q < |A|

1/2+δ6.

Definer(η) = |{(ξ1, ξ2, ξ3) ∈ A × A × A : η = ξ1 + ξ2 + ξ3}|. In the proposition above,
we takeq = 6. Then

|{(ξ1, . . . , ξ6) : ξ1 + ξ2 + ξ3 = ξ4 + ξ5 + ξ6}| =

∑
r(η)2

=

∥∥∥( ∑
a∈A

e(ax)
)3∥∥∥2

2
=

∥∥∥ ∑
a∈A

e(ax)

∥∥∥6

6
< (N (1+ε)(1/2+δ6))6

= N3+δ.
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