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Abstract. We prove exponential and dynamical localization for the 8dimger operator with a
nonnegative Poisson random potential at the bottom of the spectrum in any dimension. We also
conclude that the eigenvalues in that spectral region of localization have finite multiplicity. We
prove similar localization results in a prescribed energy interval at the bottom of the spectrum
provided the density of the Poisson process is large enough.

1. Introduction and main results
1.1. Background and motivation

Consider an electron moving in an amorphous medium with randomly placed identical
impurities, each impurity creating a local potential. For a fixed configuration of the im-
purities, described by the countable $etc R? giving their locations, this motion is
described by the Sctdinger equation-id,v, = Hxv; with the Hamiltonian

Hx = —A+Vx onL%R%), (1.1)

where the potential is given by

Vx(x) =Y ulx —¢), (1.2)
ceX

with u(x — ¢) being the single-site potential created by the impurity placed &ince
the impurities are randomly distributed, the configuratidis a random countable subset
of R?, and hence it is modeled by a point proces®dnPhysical considerations usually
dictate that the process is homogeneous and ergodic with respect to the translaiéns by
(cf. the discussions in [LiGIP, PF]). The canonical point process with the desired properties
is the homogeneous Poisson point proces&bn
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The Poisson Hamiltoniaris the random Sclidinger operatoix in (L.3)) with X a
Poisson process di? with densityo > 0. The potentialVy is then aPoisson random
potential Poisson Hamiltonians may be the most natural randomd8afger operators in
the continuum as the distribution of impurities in various samples of material is naturally
modeled by a Poisson process. A mathematical proof of the existence of localization in
two or more dimensions has been a long-standing open problem (cf. the survey [LMW]).
The Poisson Hamiltonian has been long known to have Lifshitz fail$ [DV| CL, PF] Klo3,
Sz /KloP|[ Stl], a strong indication of localization at the bottom of the spectrum. Up to now
localization has been shown only in one dimensjon|[Sto], where it holds at all energies,
as expected.

In this article we prove localization for nonnegative Poisson Hamiltonians at the bot-
tom of the spectrum in arbitrary dimension. We obtain both exponential (or Anderson)
localization and dynamical localization, as well as finite multiplicity of eigenvalues. In a
companion paper [GHK?2] we modify our methods to obtain localization at low energies
for Poisson Hamiltonians with attractive (nonpositive) single-site potentials.

In the multi-dimensional continuum case localization has been shown in the case
where the randomness is given by random variables with bounded densities. There is
a wealth of results concerning localization for Anderson-type Hamiltonians, which are
7%-ergodic random Schbdinger operators as ifi (1.1) but for which the location of the
impurities is fixed at the vertices of the latti#& (i.e., X = Z¢), and the single-site
potentials are multiplied by random variables with bounded densities (e.gl,[[HM, CoH,
Klo2| [KiSS,[Klo4]GK3[ AENSS]). Localization was shown foZ&-ergodic random dis-
placement model where the displacement probability distribution has a bounded density
[Klo1]. In contrast, a lot less is known aboRt -ergodic random Scbdinger operators
(random amorphous media). There are localization results for a class of Gaussian random
potentials [FILM,[ULMW]. Localization for Poisson models where the single-site po-
tentials are multiplied by random variables with bounded densities has also been studied
[MS]ICoH]. What all these results have in common is the availability of random variables
with densities which can be exploited, in an averaging procedure, to prodwcpraori
Wegner estimate at all scales (e.g., [HM, CbH, Klo2, CoHM|Ki, FILM, CoHN, CoHKN,
CoHK])).

In contrast, for the most natural random Swmtinger operators on the continuum
(cf. [LiGP), Subsection 1.1]), the Poisson Hamiltonian (simplest disordered amorphous
medium) and the Bernoulli-Anderson Hamiltonian (simplest disordered substitutional
alloy), until recently there have been no localization results in two or more dimensions.
The latter is an Anderson-type Hamiltonian where the coefficients of the single-site po-
tentials are Bernoulli random variables. In both cases the random variables with bounded
densities (or at leastdlder continuous distributions [CKM, St2]) are not available.

Localization for the Bernoulli-Anderson Hamiltonian has been recently proven by
Bourgain and Kenid [BK]. In this remarkable paper the Wegner estimate is established by
a multiscale analysis using “free sites” and a new quantitative version of unique continua-
tion which gives a lower bound on eigenfunctions. Since their Wegner estimate has weak
probability estimates and the underlying random variables are discrete, they also intro-
duced a new method to prove Anderson localization from estimates on the finite-volume
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resolvents given by a single-energy multiscale analysis. The new method does not use
spectral averaging as in [CoH, SW], which requires random variables with bounded den-
sities. It is also not an energy-interval multiscale analysis &s inl[DrK, FIMSS, Kl], which
requires better probability estimates.

The Bernoulli-Anderson Hamiltonian is the random Scdfinger operatoHy in (I.1])
with X a Bernoulli process ot (i.e., X = {j € Z; ; = 1} with {¢;};.z« independent
Bernoulli random variables). Since Poisson processes can be approximated by appro-
priately defined Bernoulli processes, one might expect to prove localization for Poisson
Hamiltonians from the Bourgain—Kenig results using this approximation. This approach
was indeed used by Klopp [KI03] to study the density of states of Poisson Hamiltonians.
But localization is a much subtler phenomenon, and such an approach turns out to be too
naive.

There are very important differences between the Poisson Hamiltonian and the Ber-
noulli-FAnderson Hamiltonian. While for the latter the impurities are placed on the fixed
configurationZ?, for the former the configuration of the impurities is random, being
given by a Poisson process Bf. Moreover, unlike the Bernoulli-Poisson Hamiltonian,
the Poisson Hamiltonian is not monotonic with respect to the randomness. Another differ-
ence is that the probability space for the Bernoulli-Anderson Hamiltonian is defined by a
countable number of independent discrete (Bernoulli) random variables, but the probabil-
ity space of a Poisson process is not so simple, leading to measurability questions absent
in the case of the Bernoulli-Anderson Hamiltonian. These differences are of particular
importance in proving localization as Bourgain and Kenig required some detailed knowl-
edge about the location of the impurities, as well as information on “free sites”, and relied
on conditional probabilities.

To prove localization for Poisson Hamiltonians, we develop a multiscale analysis that
exploits the probabilistic properties of Poisson point processes to control the randomness
of the configurations, and at the same time allows the use of the new ideas introduced by
Bourgain and Kenig.

1.2. Main results

In this article thesingle-sitepotentialx is a nonnegative, nonzerdl-function onR¢
with compact support, with

U—XAs5 (0 = U = UL XAs, (0) for some constants., §+ € ]0, oo (1.3)

whereA ; (x) denotes the box of side centered at € RY.

We need to introduce some notation. For a givenBsetve denote byyp its char-
acteristic function, byPo(B) the collection of all countable subsets Bf and by #B its
cardinality. GivenX € Pg(B) andA C B, we setX, ;= X N A andNx(A) := #X 4.
Given a Borel setd ¢ R¢, we write |A| for its Lebesgue measure. We &t (x) =
x 4+ (—L/2, L/2)? be the box of sid&. centered at € R?. By A we will always denote
some boxAy (x), with Az denoting a box of sidé&. We sety, := xa,(x), the charac-

teristic function of the box of side 1 centeredvat R?. We write (x) := /1 + |x|2 and
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T(x) := (x)¥ for some fixedv > d/2. By C, ..., Kap...., €tC., we will always denote
some finite constant depending only@yb, . ...

A Poisson processn a Borel se3 ¢ R? with density (or intensityp > 0 is a map
X from a probability spacés2, P) to Po(B) such that for each Borel set ¢ B with
|A| < oo the random variabl&/x (A) has Poisson distribution with meafA|, i.e.,

A k
P{Nx(A) = k} = %e—glf‘l fork=0,1,2,..., (1.4)

and the random variableeﬁ/x(A,-)};?:l are independent for disjoint Borel subsgts };?:l
(e.g., [K,[R]).

The Poisson Hamiltoniafly is anR“-ergodic family of random self-adjoint opera-
tors. It follows from standard results (cf.[KiM, PF]) that there exists fixed subséfs of
so that the spectrum dfy, as well as the pure point, absolutely continuous, and singular
continuous components, are equal to these fixed sets with probability one. It follows from
our assumptions on the single-site potentigthato (Hyx) = [0, oo[ with probability one
[KiM].

For Poisson random potentials the dengitis a measure of the amount of disorder
in the medium. Our first result gives localization at fixed disorder at the bottom of the
spectrum.

Theorem 1.1. Let Hx be a Poisson Hamiltonian ob?(R?) with densityo > 0. Then
there existEg = Eo(¢) > Oandm = m(p) > O for which the following hold<-
a.e.: The operatoiHx has pure point spectrum i[9, Eg] with exponentially localized
eigenfunctions with rate of decay, i.e., if ¢ is an eigenfunction offx with eigenvalue
E € [0, Ep] then

Ix:®ll < Cx.pe™™ forall x e RY. (1.5)

Moreover, there exist > 1 ands € ]0, 1] such that for all eigenfunctiong, ¢ (possibly
equal) with the same eigenvaliiee [0, Eg] we have

Il el < CXIT I T 2plle e forallx,y ez (1.6)

In particular, the eigenvalues dfix in [0, Eg] have finite multiplicity, anddyx exhibits
dynamical localization iffO, Eg], that is, for anyp > 0 we have

supll(x)”e " y1o g1 (Hx) xoll3 < o0. (1.7)
t

The next theorem gives localization at high disorder in a fixed interval at the bottom of
the spectrum.

Theorem 1.2. Let Hyx be a Poisson Hamiltonian ob?(R?) with densityo > 0. Given
Eg > 0, there exisbg = 0o(Eo) > 0andm = m(Ep) > 0 such that the conclusions of
Theorenfl.J hold in the interval0, Eq] if 0 > 0o.
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Theorem§ 1]1 ar{d 1.2 are proved by a multiscale analysis/asin[B, BK], where the Wegner
estimate, which gives control on the finite volume resolvent, is obtained by induction on
the scale. In contrast, the usual proof of localization by a multiscale analysis [FrS, FrMSS,
Sp,[DrK,[CoH /[ FK[ GK1[ K] uses an priori Wegner estimate valid for all scales. Ex-
ponential localization will then follow from this new single-energy multiscale analysis
as in [BK, Section 7]. The decay of eigenfunction correlations exhibited if (1.6) follows
from a detailed analysis df [BK, Section 7] given in [GK5], using ideas from [GK4]. Dy-
namical localization and finite multiplicity of eigenvalues follow from {1.6). That](1.6)
implies dynamical localization is rather immediate. The finite multiplicity of the eigenval-
ues follows by estimatingx x; ey (Hx)lI3ll xy x£y (Hx)1I3 from ) and summing over

x eZ4.

Bourgain and Kenig's methods [BK] were developed for the Bernoulli-Anderson
Hamiltonian. Lete« = {e;},z« denote independent identically distributed Bernoulli
random variabless; = 0 or 1 with equal probability. The Bernoulli-Anderson random
potential isV (x) = dezd ecu(x — ¢), and the Hamiltonian has the form ([L.1). To
see the connection with the Poisson Hamiltonian, let us introduce the Bernoulli-Poisson
Hamiltonian. We consider a configuratidine Po(R¢), and letey = {e;}cey be the cor-
responding collection of independent identically distributed Bernoulli random variables.
We define thdernoulli-Poisson Hamiltoniaby Hy,e,) 1= —A+3 oy €zu(x —¢).In
this notation, the Bernoulli-Anderson HamiltoniarH§Zd,€Zd). If Y is a Poisson process

on R? with density 2, thenX = {¢ € Y; g; = 1} is a Poisson process arr’ with
densityp, and it follows thatHx = H(y e,). Thus the Poisson Hamiltoniafix can be
rewritten as the Bernoulli-Poisson HamiltoniHgy ¢, ).

For the Bernoulli-FAnderson Hamiltonian the impurities are placed on the fixed con-
figurationZ¢, where for the Bernoulli-Poisson Hamiltonian the configuration of the im-
purities is random, being given by a Poisson proces&énMoreover, the probability
space for the Bernoulli-Anderson Hamiltonian is quite simple, being defined by a count-
able number of independent discrete (Bernoulli) random variables, but the more compli-
cated probability space of a Poisson process leads to measurability questions absent in the
case of the Bernoulli-Anderson Hamiltonian. We incorporate the control of the random-
ness of the configuration in the multiscale analysis, ensuring detailed knowledge about
the location of the impurities, as well as information on “free sites”.

In order to control and keep track of the random location of the impurities, and
also handle the measurability questions that appear for the Poisson process, we perform
a finite volume reduction in each scale as part of the multiscale analysis, which esti-
mates the probabilities gfoodboxes. We exploit properties of Poisson processes to con-
struct, inside a box\ ; , a scale dependent class/f -acceptableconfigurations of high
probability for the Poisson proce¥s(Definition[3.4 and Lemmp 3.5). We introduce an
equivalence relation fon ; -acceptable configurations and, showing that we can move
an impurity a little without spoiling the goodness of boxes (Lenimé& 3.3), we conclude
thatgoodnes®f boxes is a property of equivalence classes of acceptable configurations
(Lemmg 3.5). Basic configurations and events in a given box are introduced in terms of
these equivalence classes of acceptable configurations, and the multiscale analysis is per-
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formed for basic events. Thus we will have a new step in the multiscale analysis: basic
configurations and events in a given box will have to be rewritten in terms of basic con-
figurations and events in a bigger box (Lemma B.13). The Wegner estimate aLssale
proved in Lemma 5.70 using [EK, Lemma 5.1

Theorems T]1 and 1.2 were announced_in [GHK1]. Randomd8iatger operators
with an attractive Poisson random potential, iy, = —A — Vx with Vx a Poisson
random potential as in this paper, 80Hx) = R with probability one, are studied in
[GHKZ2], where we modify the methods of this paper to prove localization at low energies.

This paper is organized as follows. In Secfipn 2 we describe the construction of a Pois-
son procesX from a marked Poisson proced, v), and review some useful deviation
estimates for Poisson random variables. Se¢flon 3 is devoted to finite volume consider-
ations and the control of Poisson configurations: We introduce finite volume operators,
perform the finite volume reduction, study the effect of changing scales, and introduce
localizing events. In Sectidn 4 we proeepriori finite volume estimates that give the
starting hypothesis for the multiscale analysis. Se¢tjon 5 contains the multiscale analysis
for Poisson Hamiltonians. Finally, the proofs of Theor¢m$ 1.1[arjd 1.2 are completed in
Sectior( 6.

2. Preliminaries
2.1. Marked Poisson process

We may assume that a Poisson procéssn R¢ with densityo is constructed from a
marked Poisson process as follows: Consider a Poisson préaes&? with density 2,
andto eacly € Y associate a Bernoulli random variallg either 0 or 1 with equal prob-
ability, with ey = {e;};cy independent random variables. Th@mh evy) is a Poisson pro-
cess with density 2 on the product spad®? x {0, 1}, themarked Poisson processs un-
derlying probability space will be still denoted 82, P). (We use the notatiofY, ey) :=
(¢ e0); ¢ € Y} € Po(R? x {0, 1}). A Poisson process oR¢ x {0, 1} with density
n > 0is amapZ from a probability space tB(R? x {0, 1}) such that for each Borel set
A C R? x {0, 1} with |A] := 3(/{x € R%; (x,0) € A}| + [{x e RY; (x,1) € A}]) < o0,
the random variabIeNZ(A) has Poisson distribution with mearjA|, and the random
variables{Nz(A.,)};?:l are independent for disjoint Borel subseﬂs}?zl. Define maps
X, X Po(R? x {0, 1}) — Po(R?) by

X(Z)y={ceR: (¢, DeZ}, X(©Z)={eR, (¢ 0eZ}, (21
for all Z € Po(R? x {0, 1}). Then the mapX, X': @ — Po(R?) given by
X :=X(Y,ey), X :=X(Y, ey), (2.2)

e, X(w) = X(Y(0), ey (@), X' (@) = X' (Y(w), ey@w)(w)), are Poisson processes
onR? with densityo. (Seel[K, Section 5.2] IR, Example 2.4.2].) In particular, note that

Nx(A) + Nx/(A) = Ny(A) for all Borel setsA c R¢. (2.3)
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If X is a Poisson process @&f with densityp, thenX 4 is a Poisson process anwith
densityp for each Borel set ¢ R?, with {Xa, }’/?:1 being independent Poisson processes

for disjoint Borel subset$A; 7:1. Similar considerations apply %’ and to the marked
Poisson process’, ey), with X4, X/,, Y 4, ey, satisfying [2.).

2.2. Poisson random variables

For a Poisson random variablewith meanu we have (e.g.[[K, Eqg. (1.12)])

" )\k—l .
P{N >k} = di - fork=12..., 2.4
Wk = [ an e (2.4)
and hence also
00 )\‘k—l
P{N <k} = / di e fork=12,.... (2.5)
M (k — 1)!

From [2.4) we get useful upper and lower bounds:

puk uk

Fe_M<P{N2k}<F fork=1,2,.... (2.6)
Whenk > eu > 1, we can use a lower bound from Stirling’s formula[Ro] to get

1 ek
PIN 2 k) < = (7) . (2.7)

In particular, ifex > 1 anda > ¢2 we get the large deviation estimate

P{N > au} < e . (2.8)
From [2.5) we get
o0 )»k_l
P{N <k} < Cre ™? with C; = / dx 7 1)|e—*/2 fork=1,2,.... (29
0 - .

3. Finite volume and Poisson configurations

From now onHyx will always denote a Poisson Hamiltonian oR(R?) with density

o > 0, as in [T.1)4(1]3). We recall tha®2, P) is the underlying probability space on
which the Poisson processésandX’, with densityp, andY, with density 2, are defined,
as well as the Bernoulli random variables, and we have (2]2). All events will be defined
with respect to this probability space. We will use the notatiofor disjoint unions:
C=AuBmeanxC = AUBwithANB=40.
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Given two disjoint configuration, Y € Po(RY) andty = {t;}sey € [0, 1]¥, we set

Hx (viy) = —A 4+ Vx (v,1y), Where Vy y.,)(x) = Vx(x) + Ztgu(x -¢). B
rey

In particular, giverey € {0, 1}' we have, recallind (2]1),

Hx (v.ey) = Hxux(v,ey)- (3.2
We also writeHy,;,) := Hg,(v.+,) and
Hy = Hx(w) = HY(0).ey (4 @))- (3.3)

3.1. Finite volume operators
Finite volume operators are defined as follows: Given a hox A (x) in R¢ and a
configurationX € Po(RY), we set
Hx p=—Ax+Vxa onL3(A), (3.4)
whereA 5 is the Laplacian omy with Dirichlet boundary condition, and
Vx A= xaVx, WithVy, asin[L.2) (3.5)

The finite volume resolvent iRx 4 (z) := (Hx.n —2) ™.

We haveA , = V, - Vi, WhereV, is the gradient with Dirichlet boundary condition.
We sometimes identify 4(A) with x L2(R?) and, when necessary, will use subscrifpts
andR? to distinguish between the norms and inner products?ofl) and L2(R?). Note
that in general we do not havéy » = xaVx.a’ for A C A’, whereA” may be a finite
box orR?. But we always have

XAVx.A = XA Vx.A (3.6)

where R
A=Ap(x):=Ar-s (x) withéyasin[L.B) (3.7)

which suffices for the multiscale analysis.

The multiscale analysis estimates probabilities of desired properties of finite volume
resolvents at energieB € R. (By LP* we meanL?*® for some smals > 0, fixed
independently of the scale.)

Definition 3.1. Consider an energ¥ € R, a rate of decayn > 0, and a configuration
X € Po(RY). A boxA is said to be(X, E, m)-goodif

IRx,a, (E)| < e (3.8)
and
IxxRx.a, (E)xyll < e™™ 1 forall x,y € Ay with|x — y| > L/10.  (3.9)
The boxA is (w, E, m)-goodif itis (X(w), E, m)-good.
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Note that[BK, Lemmas 2.14] requires conditipn {3.9) as stated above for its proof.

But goodness of boxes does not suffice for the induction step in the multiscale anal-
ysis given in [B,[BK], which also needs an adequate supplyred sitesto obtain a
Wegner estimate at each scale. Given two disjoint configurations € Po(R?) and
ty = {t:}eey € [0, 1]¥, we recall[3:]1) and define the corresponding finite volume opera-
tors Hx (v.1y). a@s in [3.4) and (3]5) using A, Y andty,, i.e.,

Hx v.p),a = —Ax + Vx,vp),n,  Where Vy vy a = XaVx,,(vary,), (3.10)
with Ry, (v,y),a (z) being the corresponding finite volume resolvent.

Definition 3.2. Consider an energ¥. € R, a rate of decayn > 0, and two configura-
tions X, Y € Po(R?). A boxA, is said to be(X, ¥, E, m)-goodif X N'Y = ¢ and we
have(3.8) and (3.9) with Rx (v.1y),a, (E) for all ry € [0, 1]¥. In this caseY consists of
(X, E)-free sites for the boA ;.. (In particular, the box\; is (X uX (Y, ey), E, m)-good
forall ey € {0, 1}7))

3.2. Finite volume reduction of Poisson configurations

The multiscale analysis will require some detailed knowledge about the location of the
impurities, that is, about the Poisson process configuration, as well as information on “free
sites”. To do so and also handle the measurability questions that appear for the Poisson
process we will perform a finite volume reduction as part of the multiscale analysis. The
key is that we can move a Poisson point a little without spoiling the goodness of boxes,
using the following lemma.

Lemma 3.3. Let A be abox inR4, 0 < W € L%C(A), 0 < w € L*°(A) with compact
support. Givert € A™) = {¢ € A; suppw(-—¢) C A}, letHy = —Apx+W+w(-—¢)
onL2(A), with R, (z) = (H; — z) L its resolvent.

(i) Suppose that for sontee A, E > 0, andy > 1 we have|R; (E)|| < y, and let

0 <1 <min{(4VI+E |wlleoy) 2, 1/4). (3.11)
Then forallz’ € A™ with |’ — ¢| < n we have
IR:A(E)|| < ey (3.12)
and
IXx R (E)xyll < IxxRe (E)xyll +/ny  forallx,y e A. (3.13)

(i) Suppose that for sonee A™), E > 0, andB > 2 we havedist(E, o (H;)) < p71,
i.e., IR (E)|| = B, and letn be as in(3.11) with g substituted fory. Then for all
¢’ e A™ with ¢’ — ¢| < nwe have

IR(E)|| = V7B, ie., distE,o(H)) <eV1p7L (3.14)
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Proof. We setR = R (E), R' = Ry/(E),u = w(- — ), u' =w(-—¢'),andé =¢' - ¢
with |£] < 5. We letU (a) denote translation by in L2(R?): (U(a)p)(x) = ¢(x — a),
and pick¢ € C°(A) such that O< ¢ < 1 and¢ = 1 in some open subset af which
contains the supports afandu’. It follows from the resolvent identity that

IR'la = IRlla < IR —w)R||a = IXaAR W' — )$RYA | pa
= [lxaR'¢(UEuUE)* — w)pRxllga
< IXaR'¢UE) — HulUE)*¢Rxallga
+ IxaR'pu(U E)* — DpRxallpa
<n(luVPR xallgallpRXAlIRe + ISR xallRa |4 VPR XA IRA)
=n([luVAPR IallPRIIA + PR A lluVAPRI A)
< nluloo(IVAR [ANIRIA + IR [AIVARIA)
< 2V1+4E |lulloonmax|R| s, 1} max{||R||a. 1}, (3.15)

where we have used
IVARHIZ < IR*Ila + EIR*I < (14 Eymax(||R¥|3, 1} for R = R, R'. (3.16)
To prove part (i), if| R||» < y with y > 1, it follows from (3.15) and (3.31) that
IR la — IRlla < IR = w)Rs < 3/nmax{||R |, 1}. (3.17)

To prove [[3.IR), we may assume th@t'||, > 1, since otherwise the result is trivial.
The estimatg (3.12) now follows immediately frdm (3.17) gnd (3.11). Using the resolvent
identity, [3.17),[(3-1R), ande/2 < 1 we get[(3.IB).

Part (i) follows from part (i) as follows. Lep > 2 and suppos¢ (3.]L4) does not
hold, i.e.,|R'|]a < e V7B. Sincee V8 > ¢~1/?2 > 1, we may apply[(3.12) to get a
contradiction tg|R| o > B, namely|R||s < eV (e V1) = B. o

Lemma[3.B lets us move one Poisson point a little, namely) bgnd maintain good
bounds on the resolvent. Since we will want to preserve the “goodness” of tha Box

Az, we will use Lemm3 withy = L" (as in [3.8)), and take < ¢~L. To fix ideas

we sety = e‘LlOGd. To moveall Poisson points im\ ;, we will need to control the number

of Poisson points in the box. Moreover, we will have to know the location of these Poisson
points with good precision. That this can be done at very little cost in probability is the
subject of the next lemma.

Definition 3.4. Letn ;= e*LloGd for L > 0. Given aboxA = Ay (x), set
Ja=1{j €ex+n.Z% A, (j) C A} (3.18)
A configurationX e Po(R?) is said to beA-acceptabléf

Nx(A) < 160L7, (3.19)
Nx(Ay, (j)) <1 forall j € Ja, (3.20)
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and

Nx (8 L Aasnn () =0 (3.21)
jela

itis A-acceptableéif it satisfies(3.19) (3.20) and the less restrictive

Nx(a\ L] A () =0, (3.22)
jela
We set
Q¥ = (X € Py(R?); X is A-acceptablg, (3.23)
QY = (X € Po(RY); X is A-acceptablé}, (3.24)

and consider the event (recall thtis the Poisson process with densiy)
Q@ =y € Q). (3.25)

Note thath) c X e Qf)} in view of (2.3) ande?) - Qﬁ?’). We require condi-
tion (3.2]) for acceptable configurations to avoid ambiguities when changing scales (cf.
Lemm4 3.1B), but we will then need Lemfna3.6 for acceptatdafigurations.

We now impose a condition agmand L that will always be satisfied when we do the
multiscale analysis:

L~OH <o <l (3.26)

From now on we assumg (3]26).
Lemma 3.5. There exists a scale = L(d) < oo such thatifL > L then
PP} =1t (3.27)
Proof. Using [2.8) and[(2]6) we get
PQP ) = 1— e 1% _ 4o(191 4 L9, — 20217, (3.28)

and hencd (3.27) follows for largle using [3:26). O

Lemmd 3.5 tells us that inside the bax outside an event of negligible probability in the
multiscale analysis, we only need to consideacceptable configurations of the Poisson
processy .

Given a boxA = Ay (x), we define arequivalence relation for configurationy

X2 Z & Nx(Ay, () = Nz(A,, (j)) forall j € Jx. (3.29)
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This induces an equivalence relation in bo_)ﬁ’) andQﬁf’); the equivalence class afin
QY will be denoted by KT/, If X € Q'0, then [X]4 = [X],, N QY is its equivalence
class ian?). Note that K], = [X4],. We also write

[A]A = U [X]a forsubsetsA c Q. (3.30)
XeA

The following lemma is an immediate consequence of Lefnmja 3.3(i); it tells us that
“goodness” of boxes is a property of equivalence classes of acceptabligurations:
changing configurations inside an equivalence class takes good boxes into just-as-good
(jgood) boxes.

Lemma 3.6. Fix Eg > 0 and consider an energlf < [0, Eg]. Suppose the bax = A
(with L large) is (X, E, m)-good for someX € fo. Then for allZ € [X]/, the boxA
is (Z, E, m)-jgood (for just-as-good), that is,

/4

_ 1 _
IRz A(E)| < el T ~ oLt (3.31)

and

e Rz A (E) x|l < el /% gl

forx, y € A with |[x — y| > L/10.
(3.32)

Moreover, ifX, Z, X U Z € Qf” and the boxA is (X, Z, E, m)-good, then for allX; €

[X], andZ; € [Z], we haveX1uZ; € [XuZ]),, and the boxA is (X1, Z1, E, m)-jgood

as in(3:31)and (3.32)
Proof. Lemma[3.8(i) gives

| Ryr.a(E)|| < et 1L, (3.33)
and, for allx, y € A with |x — y| > L/10,
s Ry a (E)xyll < e 4 160 L7 i et H18LVIL, (3.34)
Using [3.26), we gef (3:31) and (3]32) for large
The remaining statement is immediate. O

Remark 3.7. Proceeding as in Lemra 3.6, we find that changing configurations inside an

equivalence class takes jgood boxes into what we may call just-as-just-as-good (jjgood)
boxes, and so on. Since we will only carry this procedure a bounded number of times,
with the bound independent of the scale, we will simply call them all jgood boxes.

Similarly, we get the following consequence of Lemina] 3.3(ii).

Lemma 3.8. Fix Eg > 0 and consider an energk € [0, Eg] and a boxA = Ay (with
L large). Supposeéist(E, o (Hx A)) < 7z, for someX e Qf;), where /n; < 11 < 1/2.

Then v
dist(E, o (Hy p)) <€t 7y forallY € [X],. (3.35)
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In view of (3.19)(3.2D) we have
QO/A — ([J1a: J € Ta). where Jpi={J CJx: #J <160L%),  (3.36)
and we can writ@([?) and Qf) as

QP — | | 71a and Q¥ = | | (Y €/1a). (3.37)
JeTn JeJn

3.3. Basic events

The multiscale analysis will require “free sites” and sub-event¥of [J]4}.

Definition 3.9. GivenA = A (x), a A-bconfset(basic configuration set) is a subset of
Qf) of the form

Cans= || [BUXS, e9)]a=||[BUSIA, (3.38)
ese(0.1) s'cs

where we always implicitly assunBelS € Ja.Ca p. s is aA-dense bconfséft S satisfies
the density condition (c{3.7)

#SNA1)> L% forallboxesA 1o C Ayr. (3.39)

We also set
Ca,B:=Ch,Bg=I[B]a. (3.40)

Definition 3.10. GivenA = Ay (x), a A-bevent(basic event) is a subset @l‘f) of the
form

CA,B,B’,S = {Y € [B L B/ Ll S]A} n {X S CA,B,S} N {X/ € CA,B’,S}v (341)

where we always implicitly assunie L B’ U S € Jx. In other words, theA-bevent
Ca.B,p',s consists of all € Qf) satisfying

Nx@)(Ay () =1 if jeB,
Nxr@y(Ay, (j)) =1 if jeB,
NY@w)y(Ay, () =1 if jes,
Ny @) (Ay, () =0 if j e JA\(BUB'US).

(3.42)

Ca.B.p.s IS a A-dense beverif S satisfies the density conditiqB.39) In addition, we
set

Capp ' =Capp={X€eCrplN{X €Cypl (3.43)
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The number of possible bconfsets and bevents in a given box is always finite. We always
have

Capp.s CIXeChpsinQ?, (3.44)
CaB,8.5 C CappBuus ={Y € [BUB LS]A} (3.45)

Note also that it follows fron{(3.25)], (3.B6) arid (3.43) that
Q0 = | ] Cr.B.5'- (3.46)

{(B,B"); BUB'€J\}

Moreover, for eaclts; C S we have

Ca.BS = |_| CA,BUS»,S5\S1 > (3.47)
S>C 81

Casps= || CaBusysus\S2.55:- (3.48)
S2CS1

In view of Lemmg 3.5, we make the following definition.

Definition 3.11. Consider an energf € R, m > 0, and a boxA = Ap(x). The
A-beventCy p p,s and the A-bconfsetCy p s are (A, E, m)-good if the box A is
(B, S, E, m)-good.(Note thatA is then(w, E, m)-jgood for everyw € Cp g p’ s.) Those
(A, E, m)-good bevents and bconfsets that are assalense will be calledA, E, m)-
adapted

3.4. Changing scales

Since the finite volume reduction is scale dependent, it introduces new considerations in
the multiscale analysis for Poisson Hamiltonians. Givenc A, the multiscale analy-

sis will require us to redrawh ;-bevents and bconfsets in terms(@f, A,)-bevents and
bconfsets as follows.

Definition 3.12. GivenA, C A, a configuration/ € 7, is called A ,-compatibleif

INAce gy = || Ja(a) c Ia, (3.49)
AeTn,
where
JAa(A) :={J C Ja NAy; JE[A]AZ} fOI’ACJA[. (3.50)

If B U S is A,-compatible, theA-bconfsetCy g s is also calledA ,-compatible, and we
define theg A, Ay)-bconfset

Ch's.s =X € PoRY); X4, € Capna,sna,} € Q. (3.51)



Localization for Poisson random Séllinger operators 5901

If BL B’ USis Ag-compatible, the\-bevenC, g g s is also calledA ,-compatible, and
we define théA, Ay)-bevent
A

CA,ZB,B’,
Moreover, we say that & ¢-compatibleA-bconfsetC, g s or a A-beventCy, g p s iS
(A, Ag)-densdf SN A, satisfies the density conditid®.39)in A¢; (A, A¢, E, m)-jgood
if the box A, is (B, S, E, m)-jgood; (A, Ay, E, m)-adaptedf both (A, A¢)-dense and
(A, Ag, E, m)-jgood. (Note that whenever we define a property gfdoconfset or bevent
on a subboxA; C A we will always implicitly assume\ ;-compatibility.)

s = 1{Ya, € (BUB'US)NAJAIN{Xa, € Colp IN{X)y, € CLYy o). (352)

Lemma 3.13. LetA, C A. ThenforallA,-bconfset<"y, g s andA,-bevent€,, 5 5/ s
we have

0 A
Ca, s QE\) C U CA,lBl,Sl’ (3-53)
B1eJA(B), S1€JA(S)
0 A
CA[,B,B',S N Qﬁ\) C I_l CA,ZB]_,B:/L,Sl' (354)

B1€JA(B), Bl (B'), S1€JA(S)

Moreover, ifCa, ps Of Ca,.p.p.s IS A¢-dense, or(Ag, E, m)-jgood, or (Ag, E, m)-

Ag Ay . .
adapted, then eacthfBl’Sl or CAfBLB,l_Sl is (A, Ag)-dense, or(A, Ay, E, m)-jgood,
or (A, Ay, E, m)-adapted.

Proof. If Cy, s is a Ag-bconfset, ther{Cf\\fBLSl}BldA(B),SleJA(S) is a collection of

(not necessarily disjointjA, A¢)-bconfsets, and we have (3]53). The same argument
yields [3.54), but now théA, A,)-bevents are disjoint. (There are no ambiguities since
n. < /n¢ and we have conditiory (3.21) at both scales.) The rest follows, using also
Lemmd3.6. O

3.5. Localizing events

Definition 3.14. Consider an energf € R, a rate of decayn > 0, and a boxA.
We callQ2 a (A, E, m)-localized evenif there exist disjoin{ A, E, m)-adapted bevents

,,,,,

I
Qp = I_lCA,B,-,B;,S,-- (3.55)
i=1

If QA isa(A, E, m)-localized event, note th&2, C Qﬂ?) by its definition, and hence,
recalling [3:48) and (3.43), we can rewritg, in the form
J

Qn =] |Can.a (3.56)
j=1

.....

where the{CA,Ai,A; }j=1,...,s are disjoint(A, E, m)-good bevents.
We will need(A, E, m)-localized events of scale appropriate probability.
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Definition 3.15. Fix p > 0. Given an energy¥te € R and a rate of decay» > 0, a
scale L is (E, m)-localizing if for some boxA = A (and hence for all) we have a
(A, E, m)-localized evenf2, such that

P{Qa}>1—-L77. (3.57)
In Sectior] § we will also need “just localizing” events and scales.

Definition 3.16. Consider an energff € R, a rate of decayn > 0, and a boxA.
We callQ, a (A, E, m)-jlocalized evenif there exist disjoint(A, E, m)-good bevents

.....

J
QA = LlCA»Aij//" (358)
j=1

A scaleL is (E, m)-jlocalizing if for some boxA = A (and hence for all) we have a
(A, E, m)-jlocalized evenf2, such that

P{Qa) > 1— L7, (3.59)

An (E, m)-localizing scaleL is (E, m)-jlocalizing in view of [3.56).

4. “A priori” finite volume estimates

Given an energy, to start the multiscale analysis we will need, a$ i [B] BK]agsriori
estimate on the probability that a bdy, is good with an adequate supply of free sites,
for some sufficiently large scale. The multiscale analysis will then show that such a
probabilistic estimate also holds at all large scales.

4.1. Fixed disorder

Proposition 4.1. Let Hx be a Poisson Hamiltonian ohi(Rd)_with densityo > 0, and
fix p > 0. Then there exist a constaqi, > Oand a scale.o = Lo(d, u, 0, p) < oo such
that for all scalesL > Lo we have3.28) and, setting

SL=1+(p+d+Do togL)¥4, Ep=C,8; 2P, my=3J/EL, (4.1)
the scaleL is (E, mp)-localizing for all energies € [0, E].
The proof will be based on the following lemma.

Lemma 4.2. Let Hx be a Hamiltonian as if1.1)-(1.3). Givensp > OandL > 8o+ 8-,
let A = Ap(x) and set

Ji={j ex+80Z NA; As,(j) C N}, Joi=JN(x+252). (4.2



Localization for Poisson random Séllinger operators 593

Then there exist constants, > 0 and$, > §_ such that ifsg > 3, then for allX, Y €
Po(RY) andry € [0, 1]Y such thatx N Y = ¢ and

Nx(Asy(j)) =1 forall j e Je, (4.3)

we have

HX,(Y,ty),A = 2CL[862(d+1) on Lz(A) (44)

SettingEg = Cuso’z(‘”l), it follows that for allE € [0, Eg] we get
IRx.v.).8 (E)| < Eg ™t (4.5)
and

1ty Ry, (v.0yy,8 (E)xy |l < 2Egte™VE =Y fory v e A with |y — y'| > 4/d.
(4.6)

Proof. Given configuration andY such that N'Y = @ and X satisfies[(4]3), we pick
€ XAao(j) for eachj € J,, and setX1 := {¢;; j € Je}, Xo = (X \ X1) UY. We claim
that for allzx, we have

Hxy (aaxpn = Hypn = 26,5520 onL(A), 4.7)
whereC, > 0. Although the first inequality is obvious, the second is not, since
{Vx, # 0} < L9s988 < LY if 80 > &4 (4.8)

To overcome this lack of a strictly positive bound from below ¥, on A, we use the
averaging procedure introduced in [BK]. Requirifig> §_, we have

_ 1 _ .
Vx,(y) = —d/ daVx,(y —a) > cy SOdXA(y) with ¢, > 0, 4.9
(630)" J Agsy(0)

by the definition ofX; plus the lower bound iff (].3), and hence
ﬁXl,A = —Ap+ XAVX;L > Cutsad on LZ(A). (410)
Thus, ifp € C°(A) with [|¢|| = 1, we have

(¢, Hxy a@) A = (@, Hxy,a@)a + (@, Vi, — Vx)@)a
> cudy? + (@, (Vxy — Vx)@)ra

- 1
> cuby? + (9. Vx,@)pa — —d/ daf{p(-+a), Vx,0(- +a))
(650)" Jgs,(0)

> cu86d

- dal(p, Vx,9) — (¢(- +a), Vx,0(- + a))|
(680)¢ /1\650(0) ' !

—d / —d ’ 1/2

> cuby” = ¢, 80llVa@lla = cudy® — ¢, d0lp, Hxy, @)y (4.11)
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where we have used
loC +a) — pllgs = 1(¢”Y — Dellpa < lal IVelge = la| [Vaplla- (4.12)
It follows that there i$5, > §_ such that fosg > §, we have
(o, Hx, A@)A > Cif552(d+l), (4.13)

and hence we g€t (4.7), which impli¢s {4.4).

If we now setEg = Cuagz(d”), then for allE € [0, Eg] we get [4.5) immediately
from (4.4), and[(4)6) follows fron{ (4}4) by the Combes—Thomas estimate (we use the
precise estimate in [GK2, Eq. (19)]). O

Proof of Propositiol.Giveng > 0,p > 0, letC, and$, be the constants from
Lemma[4.2, and for scalds > 1 lets,, E, andmy be as in[(4.]l). Given a box =
Ar(x), let J, J, be as in Lemm2 withyp = &, and setA© = Ujes, s, (j)- We
require

0 < (p+d+18;%logL, whichimplies 8, > 1+5,, and L > 8, +5,. (4.14)

We Ieth denote the collection of allB, B, S) € Jx such that

BUB' USeJx, BuB cA®, SNA® =g (4.15)
Np(As, (j)) =1 forallj e J,; (4.16)
Ns(As, (j)) =1 foralljeJ\ J,. (4.17)

If (B, B',S) € Ja, itis a consequence df (4]17) that the density condifion [3.39) holds
for Sin A if
0>cpal™ P, where c,q >0, (4.18)

and then it follows from[(4.16) and Lemra .2 titat g p s iS @ (A, E, m)-adapted
bevent for allE € [0, E; ] if we also have

0> cpaul™ @D where cpq, > 0. (4.19)

Moreover, if(B;, B, Si) € Jn,i=1,2, and(B1, B, S1) # (B2, B}, S2), thenCy 5, 5, s,
NCa.p,.By.s, = ¥. We conclude that

Qv= || Cassps (4.20)
(B,B'.S)eTn

is a(A, E,mp)-localizing eventE € [0, E.] if (£.14), (4.18) and[(4.19) are satisfied,
which can be ensured by requiring tHat- L1(d, u, o, p).

To establish[(3.57), let, := 6, — 1= ((p +d + 1)otlogL)*?, and consider the
event

QP = (Nx(Ay () = 1forall j € J}. (4.21)
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Clearly
PP} > 1 (L/s)te @) > 1 L (4.22)

Sinces; — 8, = 1= nr, we must have
0
QP nal? caa, (4.23)

and hencd (3.57) follows frori (4:22) afid (3.27) for- Lo(d, u, o, p) satisfying [3.2p).
O

4.2. Fixed interval at the bottom of the spectrum and high disorder

Propositiorf 4.]1 can also be formulated for a fixed interval at the bottom of the spectrum
and high disorder.

Proposition 4.3. Let Hx be a Poisson Hamiltonian ob?(R¢) with densityo > 0, and
fix p > 0. GivenEg > 0, there exist a constanty , ».r, > 0 and a scaleLg =
Lo(d, u, Eg, p) < oo such thatifL > Loando > Cq.u. p. E, 109 L satisfy(3.28) then
settingm = 5+/Eo, the scaleL is (E, m)-localizing for all energiest € [0, Eq].

Proof. GivenEg > O andp > 0, let Ko = min{k € N; k > 2u" Ep}, A = AL (x),
fix o = 26—, and letJ, J., A© be as in Propositio@.l (withy instead ofs; ). Given
X, Y € Po(R?) andty € [0, 1] such thaty NY = @ and

Nx(Asy(j)) = Ko forall j € J,, (4.24)

we have
Hy (v.uy).a = 2Eo on L%(A), (4.25)

and [4.5) and (4]6) follow as in Lemrha #t.2.
To prove [4.2h), fixX1 C X such that has exactlifo points in each box\s, (/) for

all j € J. and none outside these boxes, that is,
Nx,(As(j)) = Ko forall jeJ, and Nx,(RY\ A®)=0. (4.26)
By our choice of§g and [1.3) we get
Vx, (y) = Kou_xa(y) = 2Eoxa(y), (4.27)
and hence, setting, = X \ X1, for all ty, € [0, 1]¥2 we have

Hx, (xp.1x,).0 = Hxy n = 2Ep, (4.28)

and [4.25) follows.
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We now modify the argument in the proof of Proposit 4.1. et denote the
collection of all(B, B’, S) € Jx such that

BuB'USeJx, BuB cA®, sSNnA® =g (4.29)
Np(Aso(j)) = Ko forall j € Jg; (4.30)
Ns(Asy(j) =1  foralljeJ\ Je. (4.31)

If (B,B'.S) € Ja, the density conditior{ (3:39) fa$ in A follows from (4.31), and it
follows from (4.30) and[(4.25) that, 5 p'.s is a(A, E, m)-adapted bevent withi =
$VEgforall E € [0, Eq] if L > Li(u, Eq). We conclude that

Qv= || Cassrs (4.32)
(B.B',$)eTn

isa(A, E, m)-localizing event for allE € [0, Eg].
To establish[(3.37), let; := %80 and consider the event

QP 1= {Nx(Asy () = Koforall j € J}. (4.33)
We have, usind (2]9),
P{Qf)} >1— (L/go)choe*%Qa‘f =1-Cypgal@e @ >1—-L7P71  (4.34)

for o0 > Cyu.p o109 L if L > Lo(u, Eo,d, p)
Sincedo — 81 = 58_ > ny for L > La(u), for L > La(u, Eo, d, p) we must have

QPN @ caq,, (4.35)
and hence[(3.57) follows froni (434) arld (3.27) for> Lo(d, u, Eo, p) With o0 >
Cd,u,p,EolOQL. ]

5. The multiscale analysis with a Wegner estimate

We can now state our version 0f [BK, Propositiofh #r Poisson Hamiltonians.

Proposition 5.1. Let Hy be a Poisson Hamiltonian ob?(R¢) with densityo > 0. Fix
an energyEq > 0. Pickp = 3d—, p1 = 3— and p, = 0+, more precisely, pick, p1. o2
such that

8 d

7 pzzpfl withny e Nandp < d(% —,02). (5.1)
Let E € [0, Eq], and supposé is (E, mg)-localizing for all L € [Lg**, L§'], where
mo > Lam with 79 = 0+ < p2, (5.2)

the condition(3.28)is satisfied at scalé'?, and the scald.q is also sufficiently large
(depending onl, Eo, p, p1, p2, T0). ThenL is (E, mg/2)-localizing for all L > Lo (ac-
tually, for all L > L{**?).
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The proof will require several lemmas and definitions.

Lemmab5.2. Fix p’ = p—andletA; C A = A with{¢ « L. If the scalef is (E, m)-
localizing, then there exists@\, Ay, E, m)-localized evenfzﬁ“, i.e.,

I ¢
= |_ch B:.B.S, (5.3)
for some disjointA, A, E, m)-adapted bevent{;ﬁA BL.B.S, Ji=1....1,,, such that
P(QA) > 1— 77, (5.4)

Proof. Given disjointA,-bevents, the correspondirig., A;)-bevents in[(3.54) are also
disjoint events. Since the scaleis (E, m)-localizing, there is a A, E, m)-localized

eventQ2,, satisfying [(3.5)7). From Lemnja 3]13 we get
Qa, NQY c it (5.5)
Whereszﬁ“ is as in[[5.8). The estimate (5.4) then follows frgm (3.57) and {3.27). O

Definition 5.3. Given scaleg < L, astandard-coveringof a boxA (x) is a collection
of boxesA, of the form

Giri = A g0 (5.6)
where
34] (L—¢
GY ) =+ alZY N AL()  with aej|5 S]m{zTn;neN}. (5.7)

Lemma 5.4. If ¢ « L there is always a standan@tcoverlnggA - of aboxA (x),and
we have:

A= |J A, (5.8)
reG%)L(x)
for eachy € Ap(x) thereisr € G% ) With Az/s(y) N AL(x) C Ae(r), (5.9)
Ags(r) N Ay =0 if r#7, (5.10)
5L\  /2L\¢
@)
#Gp, ) = <§z> < <7> - (5.11)

Moreover, we have the following nesting property: Givea x + «¢Z% andn € N such
that A (2n4+1)¢(y) C A, it follows that

A@natye(y) = U Ag(r), (5.12)
re{x+alZAINA 2ng+1)e(y)

and{Ag(r)},E{Hazzd}m(mﬂ)l@) is a standardZ-covering of the box\ (2,q+1)¢ ().
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Proof. The lemma can be easily checked us[ng|(5.7). In particular,3/5 ensureq (5]9),
o < 4/5 ensureqd (5.10), and the existence:af N such that 2a¢ = L — ¢ ensures the
nesting property[ (58). O

In the following we fix E € [0, Eo], assume[(5]1), and s&t = A, €1 = L*1, and
¢2 = L*2, We also assume the induction hypotheses: for eachMyoxc A with ¢ €
[£2, £1] there is &(A¢, E, mo)-localized evenf2,, with (3:57), and hence it follows from
Lemm that there is @\, A, E, mg)-localized evenIQj\\[ with (5.4), and we have
(5-2) withmgo andL.

Remark 5.5. The rate of decayn in (3.9), which by hypothesis isip as in [5.2) for

all scalesL e [L§'?, Lg'], will vary along the multiscale analysis, i.e., the construction
gives a rate of decayt;, at scaleL. The control of this variation can be done as usual, as
commented in[[BK] (but we need a condition life (5.2)), so we always have> mo/2
(see, e.q.[IDrK, FK, GKI1, KI]J). We will ignore this variation as [n [BK] and simply write
m for m . We will omit m from the notation in the rest of this section. The exponent 1
in (3.8) does not vary.

We now define an event that incorporales [BK, propésy.

Definition 5.6. Given a boxA,,, for eachn = 0,1,...,n1 let L, =: Efl (note that
Lo = {1, L,, = £2), and letR, = {A,(r)},cr, be a standardL,-covering ofA,, as
in (5.6). For a given numbeKk, a configuration seX is said to be(A,, E)-notsobad

if there isYp = U,cp Aze,(r), WhereR,’ll C Ry, with #R,’l1 < K>, such that for all
)’1

x € Ag; \ Yp there is an(X, E)-jgood boxA, (r) withr € R, forsomen € {1,...,n1}
and A(x,2L,/5 N Ag C Ar,(r). If Ay, C A, a(A, Agl)—bconfsetcj\\f}; or bevent

A . . . .
CA% g 1S (A, Ay, E)-notsobadf the configuration seB is (A, £)-notsobad.

Lemma 5.7. For sufficiently largeK,, depending only onl, p, p1, n1, for all boxes
Ag, C A with £; large enough, there exist disjoir(iA, A¢,, E)-notsobad bevents

A
{Cy'% g Im=1..m Such that
Agq, (%) Agq, (%) MoA
P2, > 1— 0> with " =] ¢ L. (5.13)
m=1 "
and hence
0]
2R CAVS Ngq, () A Ay
Q1 =" \QA1=|_|CA’;(1,F4, (5.14)
g=1

Ap L.
where{CAf’}Vq,F‘} }q=1....0 are disjoint(A, A¢,, E)-notsobad bevents.
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Proof. GivenAy, ,(r) € R,—1, we set

Ru(r) :=A{AL,(s) € Rus AL, (s) N A, ,(r) # 0}, (5.15)
Ry(r) :={s € Ru; AL,(s) € Ru(r)}. '
We haveAr, , (r) € Useg, ) AL, (s) and, similarly to[(5.I1), #,(r) < (3L,—1/Ly)".

s (x/)

. . A .
Fix a numberK’, and define the everse , “ as consisting ofv € Q such that, for

alln =1,...,n1and allr € R,_1, we havew € QAL”(S) for all s € R, (r), with the
possible exceptlon of at mo&t’ disjoint boxesA (s) with s € R, (r). The probability
of its complementary event can be estimated friom (5.4) asin [BK, Eq. (6.12)]:

200 \9/3L,_1\X _.. ,
o £ ()
n— n

n=1

< 2d3K d E (K (01(17 +d)—d)+d)+d < EIGd’ (516)

which holds for all large; after choosingk” sufficiently large usind (5]1).

Givenw € Qﬁel’(*/), then for eachh = 1,...,n7y andr € R,_1 we can find
$1,...,8k7 € R,(r) with K” < K’ — 1 such thatw € QXL"(S) if s € R, and
s ¢ Ufzﬁl Aszp, (s;). (Here we need boxes of sidd 3 because we only ruled out the
existence ofK’ disjoint boxes of sideL,.) Since each box\z;,(s;) is contained in
the union of at mostC” boxes inR,, we conclude that for each € QM1 ) there
arefry,...,txgm € Ry, With K < K = (C"(K' — 1))™ such that, settlngT =
Ufj{:l Az, (tj), forall x € Ay \ T we havew e SZIXL"(S) for somen = 1,...,n1
ands € R, with A(x, 2L, /5) N A¢; C Ar, (s).

Recalling [[3:4p), we have

Ay, (x1) (0) Agg () Ag
QN c"v = |_| Cotpr (6517)
Agqs (1)

(F.F'), FUF'eT, 1, cA LN, )

It follows from Lemmd 3.p that eaafy r, ¢ in the disjoint union must be @\, A¢,, E)-
notsobad bevent. Thys (5]13) follows fr- 16) and (3.27). We olptain (5. 14)“1 (5.13)
and [355).

Definition 5.8. Let R = {A¢,(r)},cr be a standard;-covering ofA and fixK1 € N.
A A-beveniC, p pr s is called(A, E)-preparedf S satisfies the density condition
#(S N Ay >~ forallboxesA, ¢ Awithé; < € <L, (5.18)

. . . A
and there iSR’ C R with #(R \ R’) < Kj such that ifr € R’ then CA%(rg)f s

(A, Ay, (r), E)-adapted bevent, andife R\ R'thenSN Ay, (r) =0 andcigfg
(A, Ag, (r), E)-notsobad bevent.

is a

,isa
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Lemma5.9. LetR = {A, (r)},cr be a standard-covering ofA. For sufficiently large
K1, depending only od, p, p1, n1, if L is taken large enough, there exist disjojnt, E)-
prepared beventx p, 5’ s, tm=1,.. M, Such that

m

Mp
PV > 12072 with Q) = | | Ca.5..5,.5.- (5.19)
m=1

Proof. Fix K1, recall [5.3) and(5.14), and define the ev@(ﬁ) by the disjoint union

o = || eP®). where
R'CR
#R\R")=K (5.20)
A A ,
QW (R) = { N QAzl(r)} m{ N gt (*\)}_
rer’ reR\R’

Using the probability estimates ip (5.3) afid (5.13), and talngsufficiently large (in-
dependently of the scale), we get

PP} > 1 -2, (5.21)

This can be seen as follows. First, frgm (3.13) dnd (5.14) we have

Ay () Ay (.1

Agy (),
Pt U 0 (.0

} > P(Q, } > 1— L7519 (5.22)
and hence

]P{ ﬂ{Qi\“m U Qﬁzl(rx(*\)}} > 1— (2L /ey L7501

rer

>1-241=6m-Dd 9 _ -2 (523)

for largeL, using also[(5]1). On the other hand, lettikig = C’ (K’ — 1), it follows from
(5:3) and[(5.11) that

¢ (r)

P{there arek’ disjoint boxesA, (r) € R with w ¢ Qj: }

<@L/ K 7K < 2K LK+ 0-D) < =2 (504
if Ky > 2dC’/(p1(p’ +d) — d) and L is large enough. Her€’ is chosen such that
the complement has at mo&y (not necessarily disjoint) boxes,, (r) € R with » ¢

Q31" The estimatg(5:21) follows frori (5123) afid (g.24).
Moreover, it follows from [(5.B) and (5.14) that eaﬂﬁ\l)(R/) is a disjoint union of
(non-empty) events of the form

Ay (r) Ay ()
Dp = [ ﬂ CA,B,,B;,S,} N { ﬂ CA,F,,F,’}’ (5.25)
rer’ reR\R’
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A[l(l‘)

Ny (r)
whereC, AF,,F!
s, Iy

A.B,.BL.S, is a(A, Ag, (r), E)-adapted bevent for eache R’, andC
(A, Ay, E)-notsobad bevent for eaehe R\ R'.
It remains to show thaDg can be written as a disjoint union of, E)-prepared

bevents. To do so, as in [BK], let

is a

Sgi={s € Ja; s € A¢,(r) = r € R"ands € S,}. (5.26)
Since [5.ID) yields
L S0 Ays(r) € Sk, (5.27)
rer’

and#R\R') < K, itfollows asin[BK, Eq. (6.18)] thafz satisfies the density condition
(5:18) inA. It follows from (3.48) and[(5.26) that we can rewrite the evBpt in (5.23)
as a disjoint union

Dg = I_lCA,Aj,Aj’.,SRw (5.28)
jeJ
where{Cy 4, 7.5, }jes are(A, E)-prepared bevents. ]
AjLAT

We can now prove a Wegner estimate at s¢alesing [BK, Lemma 5.1.

Lemma 5.10. LetCx p p'.s be a(A, E)-prepared bevent, and consider a bax, C A
with Lo = (2na 4 1)¢4 for somen € N, €1 « Lo < L such thatA, is constructed as in
(5-12)from a standard’1-covering ofA. Then, for sufficiently largé there exist disjoint
subsetqS;}i=1...7 0f So := S N Ag such that
eC1L4Pl/3 logL

IRBLS; AL, (E)l < foralli =1,...,1, (5.29)

and we have the conditional probability estimate

]P){QX(,)B,B’,S |CA,B,B’,S} >1- Cszd(pl/prz)%»’ with
A ! (5.30)
Q\° =] |C B A
A,B,B',S A,BUS;, B'U(S0\Si),S\So°
i=1
where the constanis1, C2 do not depend on the scale In particular, we get
P{{||Rx A (E)|| < eC1L¥100Ly Oy o g _ =, (5.31)

Proof. LetCx_p.p.s be a(A, E)-prepared cylinder event, consid&r, C A as above,
and setBo = BN ALy, By = B' N ALy, andSo = SN Ar,. Let

Heg, = Hp (5.e5),A1, = HBo.(So.€50). 01, = _AAL0+VBO+Z es(@u(x—s), (5.32
SESQ
wherees, = {e}ses, are independent Bernoulli random variables, V}Piglgo denoting the

corresponding probability measure. All the hypotheses of [BK, Lemmadrd satisfied
by the random operatdt (es,) in the boxA,. In particular it follows from the density
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condition [5.IB) thatS is a collection of “free sites ” satisfying the condition [n"[BK,
Eq. (5.29)] inside the box 1. (The fact that we have a configurati®g U By U So C Ja
instead of a subconfiguration @ is not important; only the density condition [BK,
Eq. (5.29)] and the fact théTA,BO,Bg),so is (A Ly, E)-prepared matter, the specific location
of the single-site potentials plays no role in the analysis.)

Thus it follows from [BK, Lemma 5.1 that (for L large)

4/3 _
Peg, ([ Reg, (E)|| < eCH11090) > 1 — Coege /%, (5.33)

where the constants;, C» do not depend on the scale In other words, there is a subset
0 c {0, 1}% such that

Ples, € 0} > 1 — Cot¢;*",  and
43 (5.34)
IR BUX (Sp.5).A14 (E)l < e€1171°9% forall g5, € Q.

We now conclude fron{ (5.34), recalling the definitions¢gfand¢,, that there exist
disjoint A-bevents{Ca pus;, B'u(So\S;),S\So}i=1,....1 With eachS; C Sp such that we have
(5:29) and[(5.30).

Since the everﬁzf) in (5.19) is a disjoint union of suctn, E)-prepared bevents, we
deduce, using also Lemrpa 3.3 as in the derivatiofi of [3.31) (and cha@gislightly),
that

P{lIRx A (E)]| < L1001} 0 0 | Q) > 1 — Cor~401/2-r2% (5.35)

and hence, using the probability estimatdin (b.19), we have
P({]| Rx A (E)|| < 2L"00Ly 0 ) 5 1 — 20,1 ~d0/22r0t - (5.36)
The desired (5.31) follows using (5.1). O

We are now ready to finish the proof of Proposition 5.1.

Proof of Propositiof 5J1.Fix E € [0, Eq]. It suffices to prove thatit’ is E-localizing for
all L’ e [LP2, LP1] = [£2, £1], and the scalé. is sufficiently large, theld. is E-localizing.
LetCa g s be a(A, E)-prepared bevent, so thereRS C Ro with #(Ro\ R') < K1

) A . .
such that ifr € R/, thenCA['}g(rB), sisa(A, Ay, (r), E)-adapted bevent, andrife Ro \ R’

thenSN Ay (r) =0 andcﬁfgfg, is a(A, Ay, (r), E)-notsobad bevent. Recallifg (5]12),
we pickng € N such thattg := (2nox + 1)¢1 ~ L1~. By geometrical considerations,
we can find boxe\ ") = Anngatney(sj) C A, j =1,...,J, whereJ < Kj, with
mj € {1,...,2K1} ands; € G%l) foreachj = 1, ..., J such that digtA ), AU)) > ¢q
if j # j’,and foreach € Ro\R'thereisj, € {1,..., J} suchthat\¢,s()NA C AU,
Since eacth /) is of the form given in[(5.12), we can apply Lem .10 to eath.
Since thea /) are disjoint, we can use independence of events based in diffeférs,
and we may apply Lem 10 (or its proof) to all). SettingSp = U.,'le SNAY and
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S = $\ So, we conclude that there exist disjoint subsieist,;—1
eachg =1,..., Q and allg € [0, 1]5 we have

o 0f Sp such that for

yeeey

IR (E)|| < eCLLYPI00L  gora)l j=1,...,J, (5.37)

BUS,,(S.t5),A0)
and we have the conditional probability estimate

P(Q) pps|Canp.s}>1— 2K1CoL~4P1/2=p2)+  \yith

Q (5.38)
Q/A,B,B’,S = |_| CA,BuSq,B’I_l(SO\Sq),§'

i=q
By construction, each configuration ihA, BuUS,.§ satisfies the hypotheses of [BK, Lem-
ma 2.14] (see alsd [BK, (2.22) and (2.23)]), and hence, recalling[alsp (5.1), we can con-
clude thaCA’Buqu isa(A, E)-good beconfset. Since it is clear thasatisfies the density
condition [3:39) inA, eacmA,BuSq,B’u(So\Sq),S is a(A, E)-adapted bevent.

Recalling Lemm9 and the eveﬁfAl) in (6.19), we conclude the existence of

disjoint (A, E)-adapted beventB?A,Bi,B[;,Si},~:1,__,,1, and hence of théA, E)-localized

event
I

QA = I_lCAsBi,Bi/»Si’ (539)
i=1
such that
P{Qa | QV) > 1— 2K1CoL4P1/2- P2+ (5.40)

Using the probability estimate ifi (5]19) and (5.1), we get
P{Qp} >1—L7P, (5.41)

and hence the scaleis E-localizing.
Propositiorf 5.]L is proven. o

6. The proofs of Theorem¢ 1J1 anfl 1|2

In view of Proposition§ 4]1, 4.3, afd .1, Theor¢ms$ 1.1/ard 1.2 are a consequence of the
following proposition, whose hypothesis follows from the conclusion of Propositign 5.1.
We recall Definitiod 3.706.

Proposition 6.1. Fix p = 2d— and an energyEo > 0, and suppose there is a scale
Lo andm > 0 such thatL is (E, m)-jlocalizing for all L > Lo and E € [0, Eg]. Then
the following holdsP-a.e.: The operatotHx has pure point spectrum if0, Eg] with
exponentially localized eigenfunctions (exponential localization) with rate of de¢ay
i.e., if¢ is an eigenfunction offx with eigenvalueE € [0, Ep] then

lxx@ll < Cx.pe™™™ 72 forall x € RY. (6.1)
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Moreover, there exist > 1 ands € ]0, 1[ such that for eigenfunctiong, ¢ (possibly
equal) with the same eigenvaliéiee [0, Eo] we have

Il @l < CxIT 2yl 1T 2lle™ e ¥ forall x, y € 77, (6.2)

In particular, the eigenvalues dfix in [0, Eg] have finite multiplicity, anddyx exhibits
dynamical localization iffO, Eg], that is, for anyp > 0 we have

supll(x)Pe~ "M y1o £ (Hx) x0ll3 < o0. (6.3)
t

Proof. The fact that the hypotheses of Proposifiorj 6.1 imply exponential localization in
the interval [Q Eg] is proved in [BK, Section 7]. Although their proof is written for the
Bernoulli-Anderson Hamiltonian, it also applies to the Poisson Hamiltonian by proceed-
ing as in the proof of Propositign 5.1. Whén [BK, Section 7] states that a\biexgood at
energyE, we should interpret it as the occurrence ofthe E, m)-jlocalized evenf2, as

in (3:58), with probability satisfying the estimafe (3.59), whose existence is guaranteed by
the hypotheses of Propositipn6.1. We should rewrite such an event as in [lemima 5.2 when
necessary, withy’ = gd— < p. With these modifications, plus the use of Lem 3.6
and[3.8 when necessary, the analysid of|[BK, Section 7] yields exponential localization
for Poisson Hamiltonians.

The decay of eigenfunction correlations given [in [6.2) follows for the Bernoulli—
Anderson Hamiltonian from a careful analysis [of [BK, Section 7] giveri_in [GK5], and
hence it also holds for the Poisson Hamiltonian by the same considerations as above. Fi-
nite multiplicity and dynamical localization then follow as In [GK5]. O
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