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Abstract. We prove exponential and dynamical localization for the Schrödinger operator with a
nonnegative Poisson random potential at the bottom of the spectrum in any dimension. We also
conclude that the eigenvalues in that spectral region of localization have finite multiplicity. We
prove similar localization results in a prescribed energy interval at the bottom of the spectrum
provided the density of the Poisson process is large enough.

1. Introduction and main results

1.1. Background and motivation

Consider an electron moving in an amorphous medium with randomly placed identical
impurities, each impurity creating a local potential. For a fixed configuration of the im-
purities, described by the countable setX ⊂ Rd giving their locations, this motion is
described by the Schrödinger equation−i∂tψt = HXψt with the Hamiltonian

HX := −1+ VX on L2(Rd), (1.1)

where the potential is given by

VX(x) :=
∑
ζ∈X

u(x − ζ ), (1.2)

with u(x − ζ ) being the single-site potential created by the impurity placed atζ . Since
the impurities are randomly distributed, the configurationX is a random countable subset
of Rd , and hence it is modeled by a point process onRd . Physical considerations usually
dictate that the process is homogeneous and ergodic with respect to the translations byRd
(cf. the discussions in [LiGP, PF]). The canonical point process with the desired properties
is the homogeneous Poisson point process onRd .
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The Poisson Hamiltonianis the random Schrödinger operatorHX in (1.1) with X a
Poisson process onRd with density% > 0. The potentialVX is then aPoisson random
potential. Poisson Hamiltonians may be the most natural random Schrödinger operators in
the continuum as the distribution of impurities in various samples of material is naturally
modeled by a Poisson process. A mathematical proof of the existence of localization in
two or more dimensions has been a long-standing open problem (cf. the survey [LMW]).
The Poisson Hamiltonian has been long known to have Lifshitz tails [DV, CL, PF, Klo3,
Sz, KloP, St1], a strong indication of localization at the bottom of the spectrum. Up to now
localization has been shown only in one dimension [Sto], where it holds at all energies,
as expected.

In this article we prove localization for nonnegative Poisson Hamiltonians at the bot-
tom of the spectrum in arbitrary dimension. We obtain both exponential (or Anderson)
localization and dynamical localization, as well as finite multiplicity of eigenvalues. In a
companion paper [GHK2] we modify our methods to obtain localization at low energies
for Poisson Hamiltonians with attractive (nonpositive) single-site potentials.

In the multi-dimensional continuum case localization has been shown in the case
where the randomness is given by random variables with bounded densities. There is
a wealth of results concerning localization for Anderson-type Hamiltonians, which are
Zd -ergodic random Schrödinger operators as in (1.1) but for which the location of the
impurities is fixed at the vertices of the latticeZd (i.e., X ≡ Zd ), and the single-site
potentials are multiplied by random variables with bounded densities (e.g., [HM, CoH,
Klo2, KiSS, Klo4, GK3, AENSS]). Localization was shown for aZd -ergodic random dis-
placement model where the displacement probability distribution has a bounded density
[Klo1]. In contrast, a lot less is known aboutRd -ergodic random Schrödinger operators
(random amorphous media). There are localization results for a class of Gaussian random
potentials [FiLM, U, LMW]. Localization for Poisson models where the single-site po-
tentials are multiplied by random variables with bounded densities has also been studied
[MS, CoH]. What all these results have in common is the availability of random variables
with densities which can be exploited, in an averaging procedure, to produce ana priori
Wegner estimate at all scales (e.g., [HM, CoH, Klo2, CoHM, Ki, FiLM, CoHN, CoHKN,
CoHK]).

In contrast, for the most natural random Schrödinger operators on the continuum
(cf. [LiGP, Subsection 1.1]), the Poisson Hamiltonian (simplest disordered amorphous
medium) and the Bernoulli–Anderson Hamiltonian (simplest disordered substitutional
alloy), until recently there have been no localization results in two or more dimensions.
The latter is an Anderson-type Hamiltonian where the coefficients of the single-site po-
tentials are Bernoulli random variables. In both cases the random variables with bounded
densities (or at least Ḧolder continuous distributions [CKM, St2]) are not available.

Localization for the Bernoulli–Anderson Hamiltonian has been recently proven by
Bourgain and Kenig [BK]. In this remarkable paper the Wegner estimate is established by
a multiscale analysis using “free sites” and a new quantitative version of unique continua-
tion which gives a lower bound on eigenfunctions. Since their Wegner estimate has weak
probability estimates and the underlying random variables are discrete, they also intro-
duced a new method to prove Anderson localization from estimates on the finite-volume
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resolvents given by a single-energy multiscale analysis. The new method does not use
spectral averaging as in [CoH, SW], which requires random variables with bounded den-
sities. It is also not an energy-interval multiscale analysis as in [DrK, FrMSS, Kl], which
requires better probability estimates.

The Bernoulli–Anderson Hamiltonian is the random Schrödinger operatorHX in (1.1)
with X a Bernoulli process onZd (i.e.,X = {j ∈ Zd; εj = 1} with {εj }j∈Zd independent
Bernoulli random variables). Since Poisson processes can be approximated by appro-
priately defined Bernoulli processes, one might expect to prove localization for Poisson
Hamiltonians from the Bourgain–Kenig results using this approximation. This approach
was indeed used by Klopp [Klo3] to study the density of states of Poisson Hamiltonians.
But localization is a much subtler phenomenon, and such an approach turns out to be too
naive.

There are very important differences between the Poisson Hamiltonian and the Ber-
noulli–Anderson Hamiltonian. While for the latter the impurities are placed on the fixed
configurationZd , for the former the configuration of the impurities is random, being
given by a Poisson process onRd . Moreover, unlike the Bernoulli–Poisson Hamiltonian,
the Poisson Hamiltonian is not monotonic with respect to the randomness. Another differ-
ence is that the probability space for the Bernoulli–Anderson Hamiltonian is defined by a
countable number of independent discrete (Bernoulli) random variables, but the probabil-
ity space of a Poisson process is not so simple, leading to measurability questions absent
in the case of the Bernoulli–Anderson Hamiltonian. These differences are of particular
importance in proving localization as Bourgain and Kenig required some detailed knowl-
edge about the location of the impurities, as well as information on “free sites”, and relied
on conditional probabilities.

To prove localization for Poisson Hamiltonians, we develop a multiscale analysis that
exploits the probabilistic properties of Poisson point processes to control the randomness
of the configurations, and at the same time allows the use of the new ideas introduced by
Bourgain and Kenig.

1.2. Main results

In this article thesingle-sitepotentialu is a nonnegative, nonzero L∞-function onRd
with compact support, with

u−χ3δ− (0) ≤ u ≤ u+χ3δ+ (0) for some constantsu±, δ± ∈ ]0,∞[ (1.3)

where3L(x) denotes the box of sideL centered atx ∈ Rd .
We need to introduce some notation. For a given setB, we denote byχB its char-

acteristic function, byP0(B) the collection of all countable subsets ofB, and by #B its
cardinality. GivenX ∈ P0(B) andA ⊂ B, we setXA := X ∩ A andNX(A) := #XA.
Given a Borel setA ⊂ Rd , we write |A| for its Lebesgue measure. We let3L(x) :=
x + (−L/2, L/2)d be the box of sideL centered atx ∈ Rd . By3 we will always denote
some box3L(x), with 3L denoting a box of sideL. We setχx := χ31(x), the charac-
teristic function of the box of side 1 centered atx ∈ Rd . We write〈x〉 :=

√
1 + |x|2 and
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T (x) := 〈x〉ν for some fixedν > d/2. By Ca,b,..., Ka,b,..., etc., we will always denote
some finite constant depending only ona, b, . . . .

A Poisson processon a Borel setB ⊂ Rd with density (or intensity)% > 0 is a map
X from a probability space(�,P) to P0(B) such that for each Borel setA ⊂ B with
|A| < ∞ the random variableNX(A) has Poisson distribution with mean%|A|, i.e.,

P{NX(A) = k} =
(%|A|)k

k!
e−%|A| for k = 0,1,2, . . . , (1.4)

and the random variables{NX(Aj )}
n
j=1 are independent for disjoint Borel subsets{Aj }

n
j=1

(e.g., [K, R]).
The Poisson HamiltonianHX is anRd -ergodic family of random self-adjoint opera-

tors. It follows from standard results (cf. [KiM, PF]) that there exists fixed subsets ofR
so that the spectrum ofHX , as well as the pure point, absolutely continuous, and singular
continuous components, are equal to these fixed sets with probability one. It follows from
our assumptions on the single-site potentialu thatσ(HX) = [0,∞[ with probability one
[KiM].

For Poisson random potentials the density% is a measure of the amount of disorder
in the medium. Our first result gives localization at fixed disorder at the bottom of the
spectrum.

Theorem 1.1. LetHX be a Poisson Hamiltonian onL2(Rd) with density% > 0. Then
there existE0 = E0(%) > 0 andm = m(ρ) > 0 for which the following holdsP-
a.e.: The operatorHX has pure point spectrum in[0, E0] with exponentially localized
eigenfunctions with rate of decaym, i.e., if φ is an eigenfunction ofHX with eigenvalue
E ∈ [0, E0] then

‖χxφ‖ ≤ CX,φe
−m|x| for all x ∈ Rd . (1.5)

Moreover, there existτ > 1 ands ∈ ]0,1[ such that for all eigenfunctionsψ, φ (possibly
equal) with the same eigenvalueE ∈ [0, E0] we have

‖χxψ‖ ‖χyφ‖ ≤ CX‖T −1ψ‖ ‖T −1φ‖e〈y〉
τ

e−|x−y|s for all x, y ∈ Zd . (1.6)

In particular, the eigenvalues ofHX in [0, E0] have finite multiplicity, andHX exhibits
dynamical localization in[0, E0], that is, for anyp > 0 we have

sup
t

‖〈x〉pe−itHXχ[0,E0](HX)χ0‖
2
2 < ∞. (1.7)

The next theorem gives localization at high disorder in a fixed interval at the bottom of
the spectrum.

Theorem 1.2. LetHX be a Poisson Hamiltonian onL2(Rd) with density% > 0. Given
E0 > 0, there exist%0 = %0(E0) > 0 andm = m(E0) > 0 such that the conclusions of
Theorem1.1hold in the interval[0, E0] if % > %0.
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Theorems 1.1 and 1.2 are proved by a multiscale analysis as in [B, BK], where the Wegner
estimate, which gives control on the finite volume resolvent, is obtained by induction on
the scale. In contrast, the usual proof of localization by a multiscale analysis [FrS, FrMSS,
Sp, DrK, CoH, FK, GK1, Kl] uses ana priori Wegner estimate valid for all scales. Ex-
ponential localization will then follow from this new single-energy multiscale analysis
as in [BK, Section 7]. The decay of eigenfunction correlations exhibited in (1.6) follows
from a detailed analysis of [BK, Section 7] given in [GK5], using ideas from [GK4]. Dy-
namical localization and finite multiplicity of eigenvalues follow from (1.6). That (1.6)
implies dynamical localization is rather immediate. The finite multiplicity of the eigenval-
ues follows by estimating‖χxχ{E}(HX)‖

2
2‖χyχ{E}(HX)‖

2
2 from (1.6) and summing over

x ∈ Zd .
Bourgain and Kenig’s methods [BK] were developed for the Bernoulli–Anderson

Hamiltonian. LetεZd = {εζ }ζ∈Zd denote independent identically distributed Bernoulli
random variables,εζ = 0 or 1 with equal probability. The Bernoulli–Anderson random
potential isV (x) =

∑
ζ∈Zd εζu(x − ζ ), and the Hamiltonian has the form (1.1). To

see the connection with the Poisson Hamiltonian, let us introduce the Bernoulli–Poisson
Hamiltonian. We consider a configurationY ∈ P0(Rd), and letεY = {εζ }ζ∈Y be the cor-
responding collection of independent identically distributed Bernoulli random variables.
We define theBernoulli–Poisson HamiltonianbyH(Y,εY ) := −1+

∑
ζ∈Y εζu(x− ζ ). In

this notation, the Bernoulli–Anderson Hamiltonian isH(Zd ,εZd )
. If Y is a Poisson process

on Rd with density 2%, thenX = {ζ ∈ Y; εζ = 1} is a Poisson process onRd with
density%, and it follows thatHX = H(Y,εY). Thus the Poisson HamiltonianHX can be
rewritten as the Bernoulli–Poisson HamiltonianH(Y,εY).

For the Bernoulli–Anderson Hamiltonian the impurities are placed on the fixed con-
figurationZd , where for the Bernoulli–Poisson Hamiltonian the configuration of the im-
purities is random, being given by a Poisson process onRd . Moreover, the probability
space for the Bernoulli–Anderson Hamiltonian is quite simple, being defined by a count-
able number of independent discrete (Bernoulli) random variables, but the more compli-
cated probability space of a Poisson process leads to measurability questions absent in the
case of the Bernoulli–Anderson Hamiltonian. We incorporate the control of the random-
ness of the configuration in the multiscale analysis, ensuring detailed knowledge about
the location of the impurities, as well as information on “free sites”.

In order to control and keep track of the random location of the impurities, and
also handle the measurability questions that appear for the Poisson process, we perform
a finite volume reduction in each scale as part of the multiscale analysis, which esti-
mates the probabilities ofgoodboxes. We exploit properties of Poisson processes to con-
struct, inside a box3L, a scale dependent class of3L-acceptableconfigurations of high
probability for the Poisson processY (Definition 3.4 and Lemma 3.5). We introduce an
equivalence relation for3L-acceptable configurations and, showing that we can move
an impurity a little without spoiling the goodness of boxes (Lemma 3.3), we conclude
thatgoodnessof boxes is a property of equivalence classes of acceptable configurations
(Lemma 3.6). Basic configurations and events in a given box are introduced in terms of
these equivalence classes of acceptable configurations, and the multiscale analysis is per-
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formed for basic events. Thus we will have a new step in the multiscale analysis: basic
configurations and events in a given box will have to be rewritten in terms of basic con-
figurations and events in a bigger box (Lemma 3.13). The Wegner estimate at scaleL is
proved in Lemma 5.10 using [BK, Lemma 5.1′].

Theorems 1.1 and 1.2 were announced in [GHK1]. Random Schrödinger operators
with an attractive Poisson random potential, i.e.,HX = −1 − VX with VX a Poisson
random potential as in this paper, soσ(HX) = R with probability one, are studied in
[GHK2], where we modify the methods of this paper to prove localization at low energies.

This paper is organized as follows. In Section 2 we describe the construction of a Pois-
son processX from a marked Poisson process(Y, εY), and review some useful deviation
estimates for Poisson random variables. Section 3 is devoted to finite volume consider-
ations and the control of Poisson configurations: We introduce finite volume operators,
perform the finite volume reduction, study the effect of changing scales, and introduce
localizing events. In Section 4 we provea priori finite volume estimates that give the
starting hypothesis for the multiscale analysis. Section 5 contains the multiscale analysis
for Poisson Hamiltonians. Finally, the proofs of Theorems 1.1 and 1.2 are completed in
Section 6.

2. Preliminaries

2.1. Marked Poisson process

We may assume that a Poisson processX on Rd with density% is constructed from a
marked Poisson process as follows: Consider a Poisson processY onRd with density 2%,
and to eachζ ∈ Y associate a Bernoulli random variableεζ , either 0 or 1 with equal prob-
ability, with εY = {εζ }ζ∈Y independent random variables. Then(Y, εY) is a Poisson pro-
cess with density 2ρ on the product spaceRd×{0,1}, themarked Poisson process; its un-
derlying probability space will be still denoted by(�,P). (We use the notation(Y, εY ) :=
{(ζ, εζ ); ζ ∈ Y } ∈ P0(Rd × {0,1}). A Poisson process onRd × {0,1} with density
µ > 0 is a mapZ̃ from a probability space toP0(Rd ×{0,1}) such that for each Borel set
Ã ⊂ Rd × {0,1} with |Ã| := 1

2(|{x ∈ Rd; (x,0) ∈ Ã}| + |{x ∈ Rd; (x,1) ∈ Ã}|) < ∞,
the random variableNZ̃(Ã) has Poisson distribution with meanµ|Ã|, and the random
variables{NZ̃(Ãj )}

n
j=1 are independent for disjoint Borel subsets{Ãj }

n
j=1. Define maps

X ,X ′ : P0(Rd × {0,1}) → P0(Rd) by

X (Z̃) := {ζ ∈ Rd; (ζ,1) ∈ Z̃}, X ′(Z̃) := {ζ ∈ Rd; (ζ,0) ∈ Z̃}, (2.1)

for all Z̃ ∈ P0(Rd × {0,1}). Then the mapsX,X′ : � → P0(Rd) given by

X := X (Y, εY), X′ := X ′(Y, εY), (2.2)

i.e., X(ω) = X (Y(ω), εY(ω)(ω)), X′(ω) = X ′(Y(ω), εY(ω)(ω)), are Poisson processes
onRd with density%. (See [K, Section 5.2], [R, Example 2.4.2].) In particular, note that

NX(A)+NX′(A) = NY(A) for all Borel setsA ⊂ Rd . (2.3)
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If X is a Poisson process onRd with density%, thenXA is a Poisson process onAwith
density% for each Borel setA ⊂ Rd , with {XAj }

n
j=1 being independent Poisson processes

for disjoint Borel subsets{Aj }nj=1. Similar considerations apply toX′ and to the marked
Poisson process(Y, εY), with XA,X′

A,YA, εYA satisfying (2.2).

2.2. Poisson random variables

For a Poisson random variableN with meanµ we have (e.g., [K, Eq. (1.12)])

P{N ≥ k} =

∫ µ

0
dλ

λk−1

(k − 1)!
e−λ for k = 1,2, . . . , (2.4)

and hence also

P{N < k} =

∫
∞

µ

dλ
λk−1

(k − 1)!
e−λ for k = 1,2, . . . . (2.5)

From (2.4) we get useful upper and lower bounds:

µk

k!
e−µ < P{N ≥ k} <

µk

k!
for k = 1,2, . . . . (2.6)

Whenk > eµ > 1, we can use a lower bound from Stirling’s formula [Ro] to get

P{N ≥ k} <
1

√
2πk

(eµ
k

)k
. (2.7)

In particular, ifeµ > 1 anda > e2 we get the large deviation estimate

P{N ≥ aµ} < e−aµ. (2.8)

From (2.5) we get

P{N < k} < Cke
−µ/2 with Ck =

∫
∞

0
dλ

λk−1

(k − 1)!
e−λ/2 for k = 1,2, . . . . (2.9)

3. Finite volume and Poisson configurations

From now onHX will always denote a Poisson Hamiltonian on L2(Rd) with density
% > 0, as in (1.1)–(1.3). We recall that(�,P) is the underlying probability space on
which the Poisson processesX andX′, with density%, andY, with density 2%, are defined,
as well as the Bernoulli random variablesεY , and we have (2.2). All events will be defined
with respect to this probability space. We will use the notationt for disjoint unions:
C = A t B meansC = A ∪ B with A ∩ B = ∅.
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Given two disjoint configurationsX, Y ∈ P0(Rd) andtY = {tζ }ζ∈Y ∈ [0,1]Y , we set

HX,(Y,tY ) := −1+ VX,(Y,tY ), where VX,(Y,tY )(x) := VX(x)+

∑
ζ∈Y

tζu(x − ζ ). (3.1)

In particular, givenεY ∈ {0,1}
Y we have, recalling (2.1),

HX,(Y,εY ) = HXtX (Y,εY ). (3.2)

We also writeH(Y,tY ) := H∅,(Y,tY ) and

Hω := HX(ω) = H(Y(ω),εY(ω)(ω)). (3.3)

3.1. Finite volume operators

Finite volume operators are defined as follows: Given a box3 = 3L(x) in Rd and a
configurationX ∈ P0(Rd), we set

HX,3 := −13 + VX,3 on L2(3), (3.4)

where13 is the Laplacian on3 with Dirichlet boundary condition, and

VX,3 := χ3VX3 with VX3 as in (1.2). (3.5)

The finite volume resolvent isRX,3(z) := (HX,3 − z)−1.
We have13 = ∇3 ·∇3, where∇3 is the gradient with Dirichlet boundary condition.

We sometimes identify L2(3)with χ3L2(Rd) and, when necessary, will use subscripts3

andRd to distinguish between the norms and inner products of L2(3) and L2(Rd). Note
that in general we do not haveVX,3 = χ3VX,3′ for 3 ⊂ 3′, where3′ may be a finite
box orRd . But we always have

χ3̂VX,3 = χ3̂VX,3′ , (3.6)

where
3̂ = 3̂L(x) := 3L−δ+(x) with δ+ as in (1.3), (3.7)

which suffices for the multiscale analysis.
The multiscale analysis estimates probabilities of desired properties of finite volume

resolvents at energiesE ∈ R. (By Lp± we meanLp±δ for some smallδ > 0, fixed
independently of the scale.)

Definition 3.1. Consider an energyE ∈ R, a rate of decaym > 0, and a configuration
X ∈ P0(Rd). A box3L is said to be(X,E,m)-goodif

‖RX,3L(E)‖ ≤ eL
1−

(3.8)

and

‖χxRX,3L(E)χy‖ ≤ e−m|x−y| for all x, y ∈ 3L with |x − y| ≥ L/10. (3.9)

The box3L is (ω,E,m)-goodif it is (X(ω), E,m)-good.
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Note that [BK, Lemmas 2.14] requires condition (3.9) as stated above for its proof.
But goodness of boxes does not suffice for the induction step in the multiscale anal-

ysis given in [B, BK], which also needs an adequate supply offree sitesto obtain a
Wegner estimate at each scale. Given two disjoint configurationsX, Y ∈ P0(Rd) and
tY = {tζ }ζ∈Y ∈ [0,1]Y , we recall (3.1) and define the corresponding finite volume opera-
torsHX,(Y,tY ),3 as in (3.4) and (3.5) usingX3, Y3 andtY3 , i.e.,

HX,(Y,tY ),3 := −13 + VX,(Y,tY ),3, where VX,(Y,tY ),3 := χ3VX3,(Y3,tY3 )
, (3.10)

with RX,(Y,tY ),3(z) being the corresponding finite volume resolvent.

Definition 3.2. Consider an energyE ∈ R, a rate of decaym > 0, and two configura-
tionsX, Y ∈ P0(Rd). A box3L is said to be(X, Y,E,m)-good if X ∩ Y = ∅ and we
have(3.8) and (3.9) with RX,(Y,tY ),3L(E) for all tY ∈ [0,1]Y . In this caseY consists of
(X,E)-free sites for the box3L. (In particular, the box3L is (XtX (Y, εY ), E,m)-good
for all εY ∈ {0,1}

Y .)

3.2. Finite volume reduction of Poisson configurations

The multiscale analysis will require some detailed knowledge about the location of the
impurities, that is, about the Poisson process configuration, as well as information on “free
sites”. To do so and also handle the measurability questions that appear for the Poisson
process we will perform a finite volume reduction as part of the multiscale analysis. The
key is that we can move a Poisson point a little without spoiling the goodness of boxes,
using the following lemma.

Lemma 3.3. Let3 be a box inRd , 0 ≤ W ∈ L1
loc(3), 0 ≤ w ∈ L∞(3) with compact

support. Givenζ ∈ 3(w) = {ζ ∈ 3; suppw(·−ζ ) ⊂ 3}, letHζ = −13+W+w(·−ζ )

onL2(3), withRζ (z) = (Hζ − z)−1 its resolvent.

(i) Suppose that for someζ ∈ 3(w), E ≥ 0, andγ ≥ 1 we have‖Rζ (E)‖ ≤ γ , and let

0< η ≤ min{(4
√

1 + E ‖w‖∞γ )
−2,1/4}. (3.11)

Then for allζ ′
∈ 3(w) with |ζ ′

− ζ | ≤ η we have

‖Rζ ′(E)‖ ≤ e
√
ηγ (3.12)

and

‖χxRζ ′(E)χy‖ ≤ ‖χxRζ (E)χy‖ +
√
η γ for all x, y ∈ 3. (3.13)

(ii) Suppose that for someζ ∈ 3(w), E ≥ 0, andβ ≥ 2 we havedist(E, σ (Hζ )) ≤ β−1,
i.e., ‖Rζ (E)‖ ≥ β, and letη be as in(3.11)with β substituted forγ . Then for all
ζ ′

∈ 3(w) with |ζ ′
− ζ | ≤ η we have

‖Rζ ′(E)‖ ≥ e−
√
ηβ, i.e., dist(E, σ (Hζ ′)) ≤ e

√
ηβ−1. (3.14)
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Proof. We setR = Rζ (E), R′
= Rζ ′(E), u = w(· − ζ ), u′

= w(· − ζ ′), andξ = ζ ′
− ζ

with |ξ | ≤ η. We letU(a) denote translation bya in L2(Rd): (U(a)ϕ)(x) = ϕ(x − a),
and pickφ ∈ C∞

c (3) such that 0≤ φ ≤ 1 andφ ≡ 1 in some open subset of3 which
contains the supports ofu andu′. It follows from the resolvent identity that

‖R′
‖3 − ‖R‖3 ≤ ‖R′(u′

− u)R‖3 = ‖χ3R
′φ(u′

− u)φRχ3‖Rd

= ‖χ3R
′φ(U(ξ)uU(ξ)∗ − u)φRχ3‖Rd

≤ ‖χ3R
′φ(U(ξ)− 1)uU(ξ)∗φRχ3‖Rd

+ ‖χ3R
′φu(U(ξ)∗ − 1)φRχ3‖Rd

≤ η(‖u∇φR′χ3‖Rd‖φRχ3‖Rd + ‖φR′χ3‖Rd‖u∇φRχ3‖Rd )

= η(‖u∇3φR
′
‖3‖φR‖3 + ‖φR′

‖3‖u∇3φR‖3)

≤ η‖u‖∞(‖∇3R
′
‖3‖R‖3 + ‖R′

‖3‖∇3R‖3)

≤ 2
√

1 + E ‖u‖∞ηmax{‖R‖3,1} max{‖R′
‖3,1}, (3.15)

where we have used

‖∇3R
]
‖

2
3 ≤ ‖R]‖3 + E‖R]‖2

3 ≤ (1 + E)max{‖R]‖2
3,1} for R] = R,R′. (3.16)

To prove part (i), if‖R‖3 ≤ γ with γ ≥ 1, it follows from (3.15) and (3.11) that

‖R′
‖3 − ‖R‖3 ≤ ‖R′(u′

− u)R‖3 ≤
1
2
√
ηmax{‖R′

‖3,1}. (3.17)

To prove (3.12), we may assume that‖R′
‖3 ≥ 1, since otherwise the result is trivial.

The estimate (3.12) now follows immediately from (3.17) and (3.11). Using the resolvent
identity, (3.17), (3.12), and12e

1/2 < 1 we get (3.13).
Part (ii) follows from part (i) as follows. Letβ ≥ 2 and suppose (3.14) does not

hold, i.e.,‖R′
‖3 < e−

√
ηβ. Sincee−

√
ηβ ≥ e−1/22 > 1, we may apply (3.12) to get a

contradiction to‖R‖3 ≥ β, namely‖R‖3 < e
√
η(e−

√
ηβ) = β. ut

Lemma 3.3 lets us move one Poisson point a little, namely byη, and maintain good
bounds on the resolvent. Since we will want to preserve the “goodness” of the box3 =

3L, we will use Lemma 3.3 withγ = eL
1−

(as in (3.8)), and takeη � e−L. To fix ideas

we setη = e−L
106d

. To moveall Poisson points in3L we will need to control the number
of Poisson points in the box. Moreover, we will have to know the location of these Poisson
points with good precision. That this can be done at very little cost in probability is the
subject of the next lemma.

Definition 3.4. LetηL := e−L
106d

for L > 0. Given a box3 = 3L(x), set

J3 := {j ∈ x + ηLZd; 3ηL(j) ⊂ 3}. (3.18)

A configurationX ∈ P0(Rd) is said to be3-acceptableif

NX(3) < 16%Ld , (3.19)

NX(3ηL(j)) ≤ 1 for all j ∈ J3, (3.20)
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and

NX

(
3\

⊔
j∈J3

3ηL(1−ηL)(j)
)

= 0; (3.21)

it is 3-acceptable′ if it satisfies(3.19), (3.20), and the less restrictive

NX

(
3\

⊔
j∈J3

3ηL(j)
)

= 0. (3.22)

We set

Q(0)3 := {X ∈ P0(Rd); X is3-acceptable}, (3.23)

Q(0′)
3 := {X ∈ P0(Rd); X is3-acceptable′}, (3.24)

and consider the event (recall thatY is the Poisson process with density2%)

�
(0)
3 := {Y ∈ Q(0)3 }. (3.25)

Note that�(0)3 ⊂ {X ∈ Q(0)3 } in view of (2.3) andQ(0)3 ⊂ Q(0′)
3 . We require condi-

tion (3.21) for acceptable configurations to avoid ambiguities when changing scales (cf.
Lemma 3.13), but we will then need Lemma 3.6 for acceptable′ configurations.

We now impose a condition on% andL that will always be satisfied when we do the
multiscale analysis:

L−(0+)
≤ % ≤ eL

d

. (3.26)

From now on we assume (3.26).

Lemma 3.5. There exists a scaleL = L(d) < ∞ such that ifL ≥ L then

P{�
(0)
3L

} ≥ 1 − e−L
d−

. (3.27)

Proof. Using (2.8) and (2.6) we get

P{�
(0)
3L

} ≥ 1 − e−16%Ld
− 4d%(Ld−1

+ Ld)ηL − 2%2LdηdL, (3.28)

and hence (3.27) follows for largeL using (3.26). ut

Lemma 3.5 tells us that inside the box3, outside an event of negligible probability in the
multiscale analysis, we only need to consider3-acceptable configurations of the Poisson
processY.

Given a box3 = 3L(x), we define anequivalence relation for configurationsby

X
3
∼ Z ⇔ NX(3ηL(j)) = NZ(3ηL(j)) for all j ∈ J3. (3.29)
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This induces an equivalence relation in bothQ(0′)
3 andQ(0)3 ; the equivalence class ofX in

Q(0′)
3 will be denoted by [X]′3. If X ∈ Q(0)3 , then [X]3 = [X]′3 ∩Q(0)3 is its equivalence

class inQ(0)3 . Note that [X]′3 = [X3]′3. We also write

[A]3 :=
⋃
X∈A

[X]3 for subsetsA ⊂ Q(0)3 . (3.30)

The following lemma is an immediate consequence of Lemma 3.3(i); it tells us that
“goodness” of boxes is a property of equivalence classes of acceptable′ configurations:
changing configurations inside an equivalence class takes good boxes into just-as-good
(jgood) boxes.

Lemma 3.6. Fix E0 > 0 and consider an energyE ∈ [0, E0]. Suppose the box3 = 3L

(with L large) is(X,E,m)-good for someX ∈ Q(0′)
3L

. Then for allZ ∈ [X]′3 the box3
is (Z,E,m)-jgood (for just-as-good), that is,

‖RZ,3(E)‖ ≤ eL
1−

+η
1/4
L ∼ eL

1−

(3.31)

and

‖χxRZ,3(E)χy‖ ≤ e−m|x−y|
+ η

1/4
L ∼ e−m|x−y| for x, y ∈ 3 with |x − y| ≥ L/10.

(3.32)

Moreover, ifX,Z,X t Z ∈ Q(0′)
3 and the box3 is (X,Z,E,m)-good, then for allX1 ∈

[X]′3 andZ1 ∈ [Z]′3 we haveX1tZ1 ∈ [XtZ]′3, and the box3 is (X1, Z1, E,m)-jgood
as in(3.31)and (3.32).

Proof. Lemma 3.3(i) gives

‖RX′,3(E)‖ ≤ eL
1−

+16%Ld
√
ηL , (3.33)

and, for allx, y ∈ 3 with |x − y| ≥ L/10,

‖χxRX′,3(E)χy‖ ≤ e−m|x−y|
+ 16%Ld

√
ηL e

L1−
+16%Ld

√
ηL . (3.34)

Using (3.26), we get (3.31) and (3.32) for largeL.
The remaining statement is immediate. ut

Remark 3.7. Proceeding as in Lemma 3.6, we find that changing configurations inside an
equivalence class takes jgood boxes into what we may call just-as-just-as-good (jjgood)
boxes, and so on. Since we will only carry this procedure a bounded number of times,
with the bound independent of the scale, we will simply call them all jgood boxes.

Similarly, we get the following consequence of Lemma 3.3(ii).

Lemma 3.8. Fix E0 > 0 and consider an energyE ∈ [0, E0] and a box3 = 3L (with
L large). Supposedist(E, σ (HX,3)) ≤ τL for someX ∈ Q(0′)

3L
, where

√
ηL � τL < 1/2.

Then
dist(E, σ (HY,3)) ≤ eη

1/4
L τL for all Y ∈ [X]′3. (3.35)
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In view of (3.19)–(3.20) we have

Q(0)3 /
3
∼ = {[J ]3; J ∈ J3}, where J3 := {J ⊂ J3; #J < 16%Ld}, (3.36)

and we can writeQ(0)3 and�(0)3 as

Q(0)3 =

⊔
J∈J3

[J ]3 and �
(0)
3 =

⊔
J∈J3

{Y ∈ [J ]3}. (3.37)

3.3. Basic events

The multiscale analysis will require “free sites” and sub-events of{Y ∈ [J ]3}.

Definition 3.9. Given3 = 3L(x), a3-bconfset(basic configuration set) is a subset of
Q(0)3 of the form

C3,B,S :=
⊔

εS∈{0,1}S

[B ∪ X (S, εS)]3 =

⊔
S′⊂S

[B ∪ S′]3, (3.38)

where we always implicitly assumeBtS ∈ J3.C3,B,S is a3-dense bconfsetif S satisfies
the density condition (cf.(3.7))

#(S ∩ 3̂L1−) ≥ Ld− for all boxes3L1− ⊂ 3L. (3.39)

We also set

C3,B := C3,B,∅ = [B]3. (3.40)

Definition 3.10. Given3 = 3L(x), a3-bevent(basic event) is a subset of�(0)3 of the
form

C3,B,B ′,S := {Y ∈ [B t B ′
t S]3} ∩ {X ∈ C3,B,S} ∩ {X′

∈ C3,B ′,S}, (3.41)

where we always implicitly assumeB t B ′
t S ∈ J3. In other words, the3-bevent

C3,B,B ′,S consists of allω ∈ �
(0)
3 satisfying

NX(ω)(3ηL(j)) = 1 if j ∈ B,

NX′(ω)(3ηL(j)) = 1 if j ∈ B ′,

NY(ω)(3ηL(j)) = 1 if j ∈ S,

NY(ω)(3ηL(j)) = 0 if j ∈ J3\(B t B ′
t S).

(3.42)

C3,B,B ′,S is a3-dense beventif S satisfies the density condition(3.39). In addition, we
set

C3,B,B ′ := C3,B,B ′,∅ = {X ∈ C3,B} ∩ {X′
∈ C3,B ′}. (3.43)
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The number of possible bconfsets and bevents in a given box is always finite. We always
have

C3,B,B ′,S ⊂ {X ∈ C3,B,S} ∩�
(0)
3 , (3.44)

C3,B,B ′,S ⊂ C3,∅,∅,BtB ′tS = {Y ∈ [B t B ′
t S]3}. (3.45)

Note also that it follows from (3.25), (3.36) and (3.43) that

�
(0)
3 =

⊔
{(B,B ′);BtB ′∈J3}

C3,B,B ′ . (3.46)

Moreover, for eachS1 ⊂ S we have

C3,B,S =

⊔
S2⊂S1

C3,BtS2,S\S1, (3.47)

C3,B,B ′,S =

⊔
S2⊂S1

C3,BtS2,B
′t(S1\S2),S\S1. (3.48)

In view of Lemma 3.6, we make the following definition.

Definition 3.11. Consider an energyE ∈ R, m > 0, and a box3 = 3L(x). The
3-beventC3,B,B ′,S and the3-bconfsetC3,B,S are (3,E,m)-good if the box3 is
(B, S,E,m)-good.(Note that3 is then(ω,E,m)-jgood for everyω ∈ C3,B,B ′,S .) Those
(3,E,m)-good bevents and bconfsets that are also3-dense will be called(3,E,m)-
adapted.

3.4. Changing scales

Since the finite volume reduction is scale dependent, it introduces new considerations in
the multiscale analysis for Poisson Hamiltonians. Given3` ⊂ 3, the multiscale analy-
sis will require us to redraw3`-bevents and bconfsets in terms of(3,3`)-bevents and
bconfsets as follows.

Definition 3.12. Given3` ⊂ 3, a configurationJ ∈ J3 is called3`-compatibleif

J ∩3` ∈ J 3`
3 :=

⊔
A∈J3`

J3(A) ⊂ J3, (3.49)

where
J3(A) := {J ⊂ J3 ∩3`; J ∈ [A]3`} for A ⊂ J3` . (3.50)

If B t S is3`-compatible, the3-bconfsetC3,B,S is also called3`-compatible, and we
define the(3,3`)-bconfset

C
3`
3,B,S := {X ∈ P0(Rd); X3` ∈ C3,B∩3`,S∩3`} ⊂ Q(0′)

3`
. (3.51)
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If B tB ′
t S is3`-compatible, the3-beventC3,B,B ′,S is also called3`-compatible, and

we define the(3,3`)-bevent

C3`
3,B,B ′,S

:= {Y3` ∈ [(BtB ′
tS)∩3`]3}∩{X3` ∈ C

3`
3,B,S}∩{X′

3`
∈ C

3`
3,B ′,S

}. (3.52)

Moreover, we say that a3`-compatible3-bconfsetC3,B,S or a 3-beventC3,B,B ′,S is
(3,3`)-denseif S∩3` satisfies the density condition(3.39)in3`; (3,3`, E,m)-jgood
if the box3` is (B, S,E,m)-jgood; (3,3`, E,m)-adaptedif both (3,3`)-dense and
(3,3`, E,m)-jgood. (Note that whenever we define a property of a3-bconfset or bevent
on a subbox3` ⊂ 3 we will always implicitly assume3`-compatibility.)

Lemma 3.13. Let3` ⊂ 3. Then for all3`-bconfsetsC3`,B,S and3`-beventsC3`,B,B ′,S

we have

C3`,B,S ∩Q(0)3 ⊂

⋃
B1∈J3(B), S1∈J3(S)

C
3`
3,B1,S1

, (3.53)

C3`,B,B ′,S ∩�
(0)
3 ⊂

⊔
B1∈J3(B), B ′

1∈J3(B ′), S1∈J3(S)
C3`
3,B1,B

′

1,S1
. (3.54)

Moreover, ifC3`,B,S or C3`,B,B ′,S is 3`-dense, or(3`, E,m)-jgood, or (3`, E,m)-

adapted, then eachC3`3,B1,S1
or C3`

3,B1,B
′

1,S1
is (3,3`)-dense, or(3,3`, E,m)-jgood,

or (3,3`, E,m)-adapted.

Proof. If C3`,B,S is a3`-bconfset, then{C3`3,B1,S1
}B1∈J3(B), S1∈J3(S) is a collection of

(not necessarily disjoint)(3,3`)-bconfsets, and we have (3.53). The same argument
yields (3.54), but now the(3,3`)-bevents are disjoint. (There are no ambiguities since
ηL �

√
η` and we have condition (3.21) at both scales.) The rest follows, using also

Lemma 3.6. ut

3.5. Localizing events

Definition 3.14. Consider an energyE ∈ R, a rate of decaym > 0, and a box3.
We call�3 a (3,E,m)-localized eventif there exist disjoint(3,E,m)-adapted bevents
{C3,Bi ,B ′

i ,Si
}i=1,...,I such that

�3 =

I⊔
i=1

C3,Bi ,B ′
i ,Si
. (3.55)

If �3 is a (3,E,m)-localized event, note that�3 ⊂ �
(0)
3 by its definition, and hence,

recalling (3.48) and (3.43), we can rewrite�3 in the form

�3 =

J⊔
j=1

C3,Aj ,A′
j
, (3.56)

where the{C3,Aj ,A′
j
}j=1,...,J are disjoint(3,E,m)-good bevents.

We will need(3,E,m)-localized events of scale appropriate probability.
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Definition 3.15. Fix p > 0. Given an energyE ∈ R and a rate of decaym > 0, a
scaleL is (E,m)-localizing if for some box3 = 3L (and hence for all) we have a
(3,E,m)-localized event�3 such that

P{�3} > 1 − L−p. (3.57)

In Section 6 we will also need “just localizing” events and scales.

Definition 3.16. Consider an energyE ∈ R, a rate of decaym > 0, and a box3.
We call�3 a (3,E,m)-jlocalized eventif there exist disjoint(3,E,m)-good bevents
{C3,Aj ,A′

j
}j=1,...,J such that

�3 =

J⊔
j=1

C3,Aj ,A′
j
. (3.58)

A scaleL is (E,m)-jlocalizing if for some box3 = 3L (and hence for all) we have a
(3,E,m)-jlocalized event�3 such that

P{�3} > 1 − L−p. (3.59)

An (E,m)-localizing scaleL is (E,m)-jlocalizing in view of (3.56).

4. “A priori” finite volume estimates

Given an energyE, to start the multiscale analysis we will need, as in [B, BK], ana priori
estimate on the probability that a box3L is good with an adequate supply of free sites,
for some sufficiently large scaleL. The multiscale analysis will then show that such a
probabilistic estimate also holds at all large scales.

4.1. Fixed disorder

Proposition 4.1. LetHX be a Poisson Hamiltonian onL2(Rd) with density% > 0, and
fixp > 0. Then there exist a constantCu > 0 and a scaleL0 = L0(d, u, %, p) < ∞ such
that for all scalesL ≥ L0 we have(3.26), and, setting

δL = 1 + ((p + d + 1)%−1 logL)1/d , EL = Cuδ
−2(d+1)
L , mL =

1
2

√
EL, (4.1)

the scaleL is (E,mL)-localizing for all energiesE ∈ [0, EL].

The proof will be based on the following lemma.

Lemma 4.2. LetHX be a Hamiltonian as in(1.1)–(1.3). Givenδ0 > 0 andL > δ0 + δ+,
let3 = 3L(x) and set

J := {j ∈ x + δ0Zd ∩3; 3δL(j) ⊂ 3̂)}, Je := J ∩ (x + 2δ0Zd). (4.2)
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Then there exist constantsCu > 0 and δ̃u ≥ δ− such that ifδ0 > δ̃u, then for allX, Y ∈

P0(Rd) andtY ∈ [0,1]Y such thatX ∩ Y = ∅ and

NX(3δ0(j)) ≥ 1 for all j ∈ Je, (4.3)

we have
HX,(Y,tY ),3 ≥ 2Cuδ

−2(d+1)
0 onL2(3). (4.4)

SettingE0 = Cuδ
−2(d+1)
0 , it follows that for allE ∈ [0, E0] we get

‖RX,(Y,tY ),3(E)‖ ≤ E−1
0 (4.5)

and

‖χyRX,(Y,tY ),3(E)χy′‖ ≤ 2E−1
0 e−

√
E0|y−y

′
| for y, y′

∈ 3 with |y − y′
| ≥ 4

√
d.

(4.6)

Proof. Given configurationsX andY such thatX ∩ Y = ∅ andX satisfies (4.3), we pick
ζj ∈ X3δ0(j)

for eachj ∈ Je, and setX1 := {ζj ; j ∈ Je},X2 = (X \X1) t Y . We claim
that for alltX2 we have

HX1,(X2,tX2),3
≥ HX1,3 ≥ 2Cuδ

−2(d+1)
0 on L2(3), (4.7)

whereCu > 0. Although the first inequality is obvious, the second is not, since

|{VX1 6= 0}| ≤ Ldδd+δ
d
0 < Ld if δ0 > δ+. (4.8)

To overcome this lack of a strictly positive bound from below forVX1 on3, we use the
averaging procedure introduced in [BK]. Requiringδ0 > δ−, we have

V X1(y) :=
1

(6δ0)d

∫
36δ0(0)

da VX1(y − a) ≥ cu δ
−d
0 χ3(y) with cu > 0, (4.9)

by the definition ofX1 plus the lower bound in (1.3), and hence

HX1,3 := −13 + χ3V X1 ≥ cuδ
−d
0 on L2(3). (4.10)

Thus, ifϕ ∈ C∞
c (3) with ‖ϕ‖ = 1, we have

〈ϕ,HX1,3ϕ〉3 = 〈ϕ,HX1,3ϕ〉3 + 〈ϕ, (VX1 − V X1)ϕ〉3

≥ cuδ
−d
0 + 〈ϕ, (VX1 − V X1)ϕ〉Rd

≥ cuδ
−d
0 + 〈ϕ, VX1ϕ〉Rd −

1

(6δ0)d

∫
36δ0(0)

da 〈ϕ(· + a), VX1ϕ(· + a)〉

≥ cuδ
−d
0 −

1

(6δ0)d

∫
36δ0(0)

da |〈ϕ, VX1ϕ〉 − 〈ϕ(· + a), VX1ϕ(· + a)〉|

≥ cuδ
−d
0 − c′uδ0‖∇3ϕ‖3 ≥ cuδ

−d
0 − c′uδ0〈ϕ,HX1,3ϕ〉

1/2
3 , (4.11)
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where we have used

‖ϕ(· + a)− ϕ‖Rd = ‖(ea·∇ − 1)ϕ‖Rd ≤ |a| ‖∇ϕ‖Rd = |a| ‖∇3ϕ‖3. (4.12)

It follows that there is̃δu ≥ δ− such that forδ0 > δ̃u we have

〈ϕ,HX1,3ϕ〉3 ≥ c′′uδ
−2(d+1)
0 , (4.13)

and hence we get (4.7), which implies (4.4).
If we now setE0 = Cuδ

−2(d+1)
0 , then for allE ∈ [0, E0] we get (4.5) immediately

from (4.4), and (4.6) follows from (4.4) by the Combes–Thomas estimate (we use the
precise estimate in [GK2, Eq. (19)]). ut

Proof of Proposition 4.1.Given % > 0, p > 0, let Cu and δ̃u be the constants from
Lemma 4.2, and for scalesL > 1 let δL, EL, andmL be as in (4.1). Given a box3 =

3L(x), let J, Je be as in Lemma 4.2 withδ0 = δL, and set3(e) =
⋃
j∈Je

3δL(j). We
require

% ≤ (p+d+1)δ̃−du logL, which implies δL ≥ 1+ δ̃u, and L > δL+δ+. (4.14)

We letĴ3 denote the collection of all(B, B ′, S) ∈ J3 such that

B t B ′
t S ∈ J3, B t B ′

⊂ 3(e), S ∩3(e) = ∅; (4.15)

NB(3δL(j)) ≥ 1 for all j ∈ Je; (4.16)

NS(3δL(j)) ≥ 1 for all j ∈ J \ Je. (4.17)

If (B, B ′, S) ∈ Ĵ3, it is a consequence of (4.17) that the density condition (3.39) holds
for S in 3 if

% ≥ cp,dL
−(0+), where cp,d > 0, (4.18)

and then it follows from (4.16) and Lemma 4.2 thatC3,B,B ′,S is a (3,E,mL)-adapted
bevent for allE ∈ [0, EL] if we also have

% ≥ cp,d,uL
−d/(d+3), where cp,d,u > 0. (4.19)

Moreover, if(Bi, B ′

i, Si)∈ Ĵ3, i=1,2, and(B1, B
′

1, S1) 6= (B2, B
′

2, S2), thenC3,B1,B
′

1,S1

∩ C3,B2,B
′

2,S2
= ∅. We conclude that

�3 =

⊔
(B,B ′,S)∈Ĵ3

C3,B,B ′,S (4.20)

is a (3,E,mL)-localizing eventE ∈ [0, EL] if (4.14), (4.18) and (4.19) are satisfied,
which can be ensured by requiring thatL > L1(d, u, %, p).

To establish (3.57), letδ′L := δL − 1 = ((p + d + 1)%−1 logL)1/d , and consider the
event

�
(‡)
3 := {NX(3δ′L

(j)) ≥ 1 for all j ∈ J }. (4.21)
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Clearly

P{�
(‡)
3 } ≥ 1 − (L/δL)

de−%(δ
′
L)
d

≥ 1 − L−p−1. (4.22)

SinceδL − δ′L = 1 ≥ ηL, we must have

�
(‡)
3 ∩�

(0)
3 ⊂ �3, (4.23)

and hence (3.57) follows from (4.22) and (3.27) forL > L0(d, u, %, p) satisfying (3.26).
ut

4.2. Fixed interval at the bottom of the spectrum and high disorder

Proposition 4.1 can also be formulated for a fixed interval at the bottom of the spectrum
and high disorder.

Proposition 4.3. LetHX be a Poisson Hamiltonian onL2(Rd) with density% > 0, and
fix p > 0. GivenE0 > 0, there exist a constantCd,u,p,E0 > 0 and a scaleL0 =

L0(d, u,E0, p) < ∞ such that ifL ≥ L0 and% ≥ Cd,u,p,E0 logL satisfy(3.26), then
settingm =

1
2

√
E0, the scaleL is (E,m)-localizing for all energiesE ∈ [0, E0].

Proof. GivenE0 > 0 andp > 0, letK0 = min{k ∈ N; k ≥ 2u−1
− E0}, 3 = 3L(x),

fix δ0 =
1
6δ−, and letJ, Je,3(e) be as in Proposition 4.1 (withδ0 instead ofδL). Given

X, Y ∈ P0(Rd) andtY ∈ [0,1]Y such thatX ∩ Y = ∅ and

NX(3δ0(j)) ≥ K0 for all j ∈ Je, (4.24)

we have

HX,(Y,tY ),3 ≥ 2E0 on L2(3), (4.25)

and (4.5) and (4.6) follow as in Lemma 4.2.
To prove (4.25), fixX1 ⊂ X such that has exactlyK0 points in each box3δ0(j) for

all j ∈ Je and none outside these boxes, that is,

NX1(3δ0(j)) = K0 for all j ∈ Je and NX1(R
d

\3(e)) = 0. (4.26)

By our choice ofδ0 and (1.3) we get

VX1(y) ≥ K0u−χ3(y) ≥ 2E0χ3(y), (4.27)

and hence, settingX2 = X \X1, for all tX2 ∈ [0,1]X2 we have

HX1,(X2,tX2),3
≥ HX1,3 ≥ 2E0, (4.28)

and (4.25) follows.
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We now modify the argument in the proof of Proposition 4.1. LetĴ3 denote the
collection of all(B, B ′, S) ∈ J3 such that

B t B ′
t S ∈ J3, B t B ′

⊂ 3(e), S ∩3(e) = ∅; (4.29)

NB(3δ0(j)) ≥ K0 for all j ∈ Je; (4.30)

NS(3δ0(j)) ≥ 1 for all j ∈ J \ Je. (4.31)

If (B, B ′, S) ∈ Ĵ3, the density condition (3.39) forS in 3 follows from (4.31), and it
follows from (4.30) and (4.25) thatC3,B,B ′,S is a (3,E,m)-adapted bevent withm =
1
2

√
E0 for all E ∈ [0, E0] if L ≥ L1(u,E0). We conclude that

�3 =

⊔
(B,B ′,S)∈Ĵ3

C3,B,B ′,S (4.32)

is a(3,E,m)-localizing event for allE ∈ [0, E0].
To establish (3.57), letδ1 := 1

2δ0 and consider the event

�
(‡)
3 := {NX(3δ1(j)) ≥ K0 for all j ∈ J }. (4.33)

We have, using (2.9),

P{�
(‡)
3 } ≥ 1 − (L/δ0)

dCK0e
−

1
2%δ

d
1 = 1 − Cu,E0,dL

de−cu,d% ≥ 1 − L−p−1 (4.34)

for % ≥ Cd,u,p,E0 logL if L ≥ L2(u,E0, d, p)

Sinceδ0 − δ1 =
1
12δ− ≥ ηL for L ≥ L3(u), for L ≥ L4(u,E0, d, p) we must have

�
(‡)
3 ∩�

(0)
3 ⊂ �3, (4.35)

and hence (3.57) follows from (4.34) and (3.27) forL > L0(d, u,E0, p) with % ≥

Cd,u,p,E0 logL. ut

5. The multiscale analysis with a Wegner estimate

We can now state our version of [BK, Proposition A′] for Poisson Hamiltonians.

Proposition 5.1. LetHX be a Poisson Hamiltonian onL2(Rd) with density% > 0. Fix
an energyE0 > 0. Pickp =

3
8d−, ρ1 =

3
4− andρ2 = 0+, more precisely, pickp, ρ1, ρ2

such that

8

11
<

d

d + p
< ρ1 <

3

4
, ρ2 = ρ

n1
1 with n1 ∈ N andp < d

(
ρ1

2
− ρ2

)
. (5.1)

LetE ∈ [0, E0], and supposeL is (E,m0)-localizing for allL ∈ [Lρ1ρ2
0 , L

ρ1
0 ], where

m0 ≥ L
−τ0
0 with τ0 = 0+ < ρ2, (5.2)

the condition(3.26) is satisfied at scaleLρ1ρ2
0 , and the scaleL0 is also sufficiently large

(depending ond,E0, p, ρ1, ρ2, τ0). ThenL is (E,m0/2)-localizing for allL ≥ L0 (ac-
tually, for all L ≥ L

ρ1ρ2
0 ).
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The proof will require several lemmas and definitions.

Lemma 5.2. Fix p′
= p− and let3` ⊂ 3 = 3L with ` � L. If the scalè is (E,m)-

localizing, then there exists a(3,3`, E,m)-localized event�3`3 , i.e.,

�
3`
3 =

IL,⊔̀
i=1

C3`
3,Bi ,B

′
i ,Si

(5.3)

for some disjoint(3,3`, E,m)-adapted bevents{C3`
3,Bi ,B

′
i ,Si

}i=1,...,IL,` such that

P{�
3`
3 } > 1 − `−p

′

. (5.4)

Proof. Given disjoint3`-bevents, the corresponding(3,3`)-bevents in (3.54) are also
disjoint events. Since the scalèis (E,m)-localizing, there is a(3`, E,m)-localized
event�3` satisfying (3.57). From Lemma 3.13 we get

�3` ∩�
(0)
3 ⊂ �

3`
3 , (5.5)

where�3`3 is as in (5.3). The estimate (5.4) then follows from (3.57) and (3.27). ut

Definition 5.3. Given scales̀ ≤ L, a standard̀ -coveringof a box3L(x) is a collection
of boxes3` of the form

G(`)3L(x) = {3`(r)}r∈G(`)
3L(x)

, (5.6)

where

G(`)
3L(x)

:= {x + α`Zd} ∩3L(x) with α ∈

]
3

5
,

4

5

]
∩

{
L− `

2`n
; n ∈ N

}
. (5.7)

Lemma 5.4. If ` � L there is always a standard̀-coveringG(`)3L(x) of a box3L(x), and
we have:

3L(x) =

⋃
r∈G(`)

3L(x)

3`(r), (5.8)

for eachy ∈ 3L(x) there isr ∈ G(`)
3L(x)

with32`/5(y) ∩3L(x) ⊂ 3`(r), (5.9)

3`/5(r) ∩3`(r
′) = ∅ if r 6= r ′, (5.10)

#G(`)
3L(x)

≤

(
5

3

L

`

)d
≤

(
2L

`

)d
. (5.11)

Moreover, we have the following nesting property: Giveny ∈ x + α`Zd andn ∈ N such
that3(2nα+1)`(y) ⊂ 3, it follows that

3(2nα+1)`(y) =

⋃
r∈{x+α`Zd }∩3(2nα+1)`(y)

3`(r), (5.12)

and{3`(r)}r∈{x+α`Zd }∩3(2nα+1)`(y)
is a standard̀ -covering of the box3(2nα+1)`(y).
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Proof. The lemma can be easily checked using (5.7). In particular,α > 3/5 ensures (5.9),
α ≤ 4/5 ensures (5.10), and the existence ofn ∈ N such that 2nα` = L− ` ensures the
nesting property (5.8). ut

In the following we fixE ∈ [0, E0], assume (5.1), and set3 = 3L, `1 = Lρ1, and
`2 = Lρ2. We also assume the induction hypotheses: for each box3` ⊂ 3 with ` ∈

[`2, `1] there is a(3`, E,m0)-localized event�3` with (3.57), and hence it follows from
Lemma 5.2 that there is a(3,3`, E,m0)-localized event�3`3 with (5.4), and we have
(5.2) withm0 andL.

Remark 5.5. The rate of decaym in (3.9), which by hypothesis ism0 as in (5.2) for
all scalesL ∈ [Lρ1ρ2

0 , L
ρ1
0 ], will vary along the multiscale analysis, i.e., the construction

gives a rate of decaymL at scaleL. The control of this variation can be done as usual, as
commented in [BK] (but we need a condition like (5.2)), so we always havemL ≥ m0/2
(see, e.g., [DrK, FK, GK1, Kl]). We will ignore this variation as in [BK] and simply write
m for mL. We will omit m from the notation in the rest of this section. The exponent 1−

in (3.8) does not vary.

We now define an event that incorporates [BK, property(∗)].

Definition 5.6. Given a box3`1, for eachn = 0,1, . . . , n1 let Ln =: `
ρn1
1 (note that

L0 = `1, Ln1 = `2), and letRn = {3Ln(r)}r∈Rn be a standardLn-covering of3`1 as
in (5.6). For a given numberK2, a configuration setX is said to be(3`1, E)-notsobad
if there isϒB =

⋃
r∈R′

n1
33`2(r), whereR′

n1
⊂ Rn1 with #R′

n1
≤ K2, such that for all

x ∈ 3`1 \ϒB there is an(X,E)-jgood box3Ln(r) with r ∈ Rn for somen ∈ {1, . . . , n1}

and3(x,2Ln/5) ∩ 3`1 ⊂ 3Ln(r). If 3`1 ⊂ 3, a (3,3`1)-bconfsetC
3`1
3,B or bevent

C
3`1
3,B,B ′ is (3,3`1, E)-notsobadif the configuration setB is (3`1, E)-notsobad.

Lemma 5.7. For sufficiently largeK2, depending only ond, p, ρ1, n1, for all boxes
3`1 ⊂ 3 with `1 large enough, there exist disjoint(3,3`1, E)-notsobad bevents

{C3`1
3,Bm,B ′

m
}m=1,...,M such that

P{�
3`1,(∗)

3 } > 1 − `−5d
1 with �

3`1,(∗)

3 =

M⊔
m=1

C3`1
3,Bm,B ′

m
, (5.13)

and hence

�
3`1,(∗\)

3 := �
3`1,(∗)

3 \�
3`1
3 =

Q⊔
q=1

C3`1
3,Fq ,F ′

q
, (5.14)

where{C3`1
3,Fq ,F ′

q
}q=1,...,Q are disjoint(3,3`1, E)-notsobad bevents.
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Proof. Given3Ln−1(r) ∈ Rn−1, we set

Rn(r) := {3Ln(s) ∈ Rn; 3Ln(s) ∩3Ln−1(r) 6= ∅},

Rn(r) := {s ∈ Rn; 3Ln(s) ∈ Rn(r)}.
(5.15)

We have3Ln−1(r) ⊂
⋃
s∈Rn(r)

3Ln(s) and, similarly to (5.11), #Rn(r) ≤ (3Ln−1/Ln)
d .

Fix a numberK ′, and define the event�
3`1,(∗′)

3 as consisting ofω ∈ � such that, for

all n = 1, . . . , n1 and allr ∈ Rn−1, we haveω ∈ �
3Ln (s)

3 for all s ∈ Rn(r), with the
possible exception of at mostK ′ disjoint boxes3Ln(s) with s ∈ Rn(r). The probability
of its complementary event can be estimated from (5.4) as in [BK, Eq. (6.12)]:

P{� \�
(∗′)
3`1

} ≤

n1∑
n=1

(
2`1

Ln−1

)d(3Ln−1

Ln

)K ′d

L
−K ′p′

n

≤ 2d3K
′dn1`

−ρ
n1−1
1 (K ′(ρ1(p

′
+d)−d)+d)+d

1 ≤ `−6d
1 , (5.16)

which holds for all largè 1 after choosingK ′ sufficiently large using (5.1).

Given ω ∈ �
3`1,(∗′)

3 , then for eachn = 1, . . . , n1 and r ∈ Rn−1 we can find

s1, . . . , sK ′′ ∈ Rn(r) with K ′′
≤ K ′

− 1 such thatω ∈ �
3Ln (s)

3 if s ∈ Rn(r) and

s /∈
⋃K ′′

j=133Ln(sj ). (Here we need boxes of side 3Ln because we only ruled out the
existence ofK ′ disjoint boxes of sideLn.) Since each box33Ln(sj ) is contained in

the union of at mostC′′ boxes inRn, we conclude that for eachω ∈ �
3`1,(∗′)

3 there
are t1, . . . , tK ′′′ ∈ Rn1 with K ′′′

≤ K2 = (C′′(K ′
− 1))n1 such that, settingϒ =⋃K ′′′

tj=133`2(tj ), for all x ∈ 3`1 \ ϒ we haveω ∈ �
3Ln (s)

3 for somen = 1, . . . , n1

ands ∈ Rn with 3(x,2Ln/5) ∩3`1 ⊂ 3Ln(s).
Recalling (3.46), we have

�
3`1,(∗′)

3 ∩�
(0)
3 ⊂ �

3`1,(∗)

3 :=
⊔

{(F,F ′);FtF ′∈J
3`1
3 ,C

3`1
3,F,F ′∩�

3`1
,(∗′)

3 6=∅}

C3`1
3,F,F ′ . (5.17)

It follows from Lemma 3.6 that eachC3,F,F ′ in the disjoint union must be a(3,3`1, E)-
notsobad bevent. Thus (5.13) follows from (5.16) and (3.27). We obtain (5.14) from (5.13)
and (3.56). ut

Definition 5.8. LetR = {3`1(r)}r∈R be a standard̀ 1-covering of3 and fixK1 ∈ N.
A3-beventC3,B,B ′,S is called(3,E)-preparedif S satisfies the density condition

#(S ∩ 3̂`) ≥ `d− for all boxes3` ⊂ 3 with `1 � ` ≤ L, (5.18)

and there isR′
⊂ R with #(R \ R′) ≤ K1 such that ifr ∈ R′ then C3`1(r)

3,B,B ′,S
is a

(3,3`1(r), E)-adapted bevent, and ifr ∈ R \ R′ thenS ∩3`1(r) = ∅ andC3`1(r)
3,B,B ′ is a

(3,3`1(r), E)-notsobad bevent.
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Lemma 5.9. LetR = {3`1(r)}r∈R be a standard̀ 1-covering of3. For sufficiently large
K1, depending only ond, p, ρ1, n1, if L is taken large enough, there exist disjoint(3,E)-
prepared bevents{C3,Bm,B ′

m,Sm
}m=1,...,M3 such that

P{�
(1)
3 } > 1 − 2L−2d with �

(1)
3 =

M3⊔
m=1

C3,Bm,B ′
m,Sm

. (5.19)

Proof. Fix K1, recall (5.3) and (5.14), and define the event�
(1)
3 by the disjoint union

�
(1)
3 :=

⊔
R′

⊂R
#(R\R′)≤K1

�
(1)
3 (R

′), where

�
(1)
3 (R

′) =

{ ⋂
r∈R′

�
3`1(r)

3

}
∩

{ ⋂
r∈R\R′

�
3`1(r),(∗\)

3

}
.

(5.20)

Using the probability estimates in (5.3) and (5.13), and takingK1 sufficiently large (in-
dependently of the scale), we get

P{�
(1)
3 } > 1 − 2L−2d . (5.21)

This can be seen as follows. First, from (5.13) and (5.14) we have

P{�
3`1(r)

3 ∪�
3`1(r),(∗\)

3 } ≥ P{�
3`1(r),(∗)

3 } > 1 − L−5ρ1d , (5.22)

and hence

P
{⋂
r∈R

{�
3`1(r)

3 ∪�
3`1(r),(∗\)

3 }

}
> 1 − (2L/`1)

dL−5ρ1d

≥ 1 − 2dL−(6ρ1−1)d > 1 − L−2d , (5.23)

for largeL, using also (5.1). On the other hand, lettingK1 = C′(K ′
− 1), it follows from

(5.3) and (5.1) that

P{there areK ′ disjoint boxes3`1(r) ∈ R with ω /∈ �
3`1(r)

3 }

≤ (2L/`1)
dK ′

`
−p′K ′

1 ≤ 2dK
′

L−K ′(ρ1(p
′
+d)−d)

≤ L−2d (5.24)

if K1 > 2dC′/(ρ1(p
′
+ d) − d) andL is large enough. HereC′ is chosen such that

the complement has at mostK1 (not necessarily disjoint) boxes3`1(r) ∈ R with ω /∈

�
3`1(r)

3 . The estimate (5.21) follows from (5.23) and (5.24).

Moreover, it follows from (5.3) and (5.14) that each�(1)3 (R
′) is a disjoint union of

(non-empty) events of the form

DR′ =

{ ⋂
r∈R′

C3`1(r)
3,Br ,B ′

r ,Sr

}
∩

{ ⋂
r∈R\R′

C3`1(r)
3,Fr ,F ′

r

}
, (5.25)
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whereC3`1(r)
3,Br ,B ′

r ,Sr
is a (3,3`1(r), E)-adapted bevent for eachr ∈ R′, andC3`1(r)

3,Fr ,F ′
r

is a

(3,3`1, E)-notsobad bevent for eachr ∈ R \ R′.
It remains to show thatDR′ can be written as a disjoint union of(3,E)-prepared

bevents. To do so, as in [BK], let

SR′ := {s ∈ J3; s ∈ 3`1(r) ⇒ r ∈ R′ ands ∈ Sr}. (5.26)

Since (5.10) yields ⋃
r∈R′

Sr ∩3`1/5(r) ⊂ SR′ , (5.27)

and #(R\R′) ≤ K1, it follows as in [BK, Eq. (6.18)] thatSR′ satisfies the density condition
(5.18) in3. It follows from (3.48) and (5.26) that we can rewrite the eventDR′ in (5.25)
as a disjoint union

DR′ =

⊔
j∈J

C3,Aj ,A′
j ,SR′

, (5.28)

where{C3,Aj ,A′
j ,SR′

}j∈J are(3,E)-prepared bevents. ut

We can now prove a Wegner estimate at scaleL using [BK, Lemma 5.1′].

Lemma 5.10. LetC3,B,B ′,S be a(3,E)-prepared bevent, and consider a box3L0 ⊂ 3

withL0 = (2nα+ 1)`1 for somen ∈ N, `1 � L0 ≤ L such that3L0 is constructed as in
(5.12)from a standard̀ 1-covering of3. Then, for sufficiently largeL there exist disjoint
subsets{Si}i=1,...,I of S0 := S ∩30 such that

‖RBtSi ,3L0
(E)‖ < eC1L

4ρ1/3 logL for all i = 1, . . . , I, (5.29)

and we have the conditional probability estimate

P{�
30
3,B,B ′,S

| C3,B,B ′,S} > 1 − C2L
−d(ρ1/2−ρ2)+, with

�
30
3,B,B ′,S

=

I⊔
i=1

C3,BtSi ,B
′t(S0\Si ),S\S0,

(5.30)

where the constantsC1, C2 do not depend on the scaleL. In particular, we get

P{{‖RX,3(E)‖ < eC1L
4ρ1/3 logL

} ∩�
(0)
3 } > 1 − L−p. (5.31)

Proof. Let C3,B,B ′,S be a(3,E)-prepared cylinder event, consider3L0 ⊂ 3 as above,
and setB0 = B ∩3L0, B ′

0 = B ′
∩3L0, andS0 = S ∩3L0. Let

HεS0
:= HB,(S,εS ),3L0

= HB0,(S0,εS0),3L0
= −13L0

+VB0+

∑
s∈S0

εs(ω)u(x−s), (5.32)

whereεS0 = {εs}s∈S0 are independent Bernoulli random variables, withPεS0
denoting the

corresponding probability measure. All the hypotheses of [BK, Lemma 5.1′] are satisfied
by the random operatorH(εS0) in the box3L0. In particular it follows from the density



602 François Germinet et al.

condition (5.18) thatS0 is a collection of “free sites ” satisfying the condition in [BK,
Eq. (5.29)] inside the box3L0. (The fact that we have a configurationB0 ∪B ′

0 ∪S0 ⊂ J3
instead of a subconfiguration ofZd is not important; only the density condition [BK,
Eq. (5.29)] and the fact thatC3,B0,B

′

0,S0
is (3L0, E)-prepared matter, the specific location

of the single-site potentials plays no role in the analysis.)
Thus it follows from [BK, Lemma 5.1′] that (forL large)

PεS0
{‖RεS0

(E)‖ < eC1`
4/3
1 log`1} > 1 − C2`

d
2`

−d/2+

1 , (5.33)

where the constantsC1, C2 do not depend on the scaleL. In other words, there is a subset
Q ⊂ {0,1}

S0 such that

P{εS0 ∈ Q} > 1 − C2`
d
2`

−d/2+

1 , and

‖RB∪X (S0,εS0),3L0
(E)‖ < eC1`

4/3
1 log`1 for all εS0 ∈ Q.

(5.34)

We now conclude from (5.34), recalling the definitions of`1 and`2, that there exist
disjoint3-bevents{C3,BtSi ,B

′t(S0\Si ),S\S0}i=1,...,I with eachSi ⊂ S0 such that we have
(5.29) and (5.30).

Since the event�(1)3 in (5.19) is a disjoint union of such(3,E)-prepared bevents, we
deduce, using also Lemma 3.3 as in the derivation of (3.31) (and changingC1 slightly),
that

P{{‖RX,3(E)‖ < eC1L
4ρ1/3 logL

} ∩�
(0)
3 |�

(1)
3 } > 1 − C2L

−d(ρ1/2−ρ2)+, (5.35)

and hence, using the probability estimate in (5.19), we have

P{{‖RX,3(E)‖ < e2C1L
4ρ1/3 logL

} ∩�
(1)
3 } > 1 − 2C2L

−d(ρ1/2−ρ2)+. (5.36)

The desired (5.31) follows using (5.1). ut

We are now ready to finish the proof of Proposition 5.1.

Proof of Proposition 5.1.FixE ∈ [0, E0]. It suffices to prove that ifL′ isE-localizing for
all L′

∈ [Lρ2, Lρ1] = [`2, `1], and the scaleL is sufficiently large, thenL isE-localizing.
Let C3,B,B ′,S be a(3,E)-prepared bevent, so there isR′

⊂ R0 with #(R0 \R′) ≤ K1

such that ifr ∈ R′, thenC3`1(r)
3,B,B ′,S

is a(3,3`1(r), E)-adapted bevent, and ifr ∈ R0 \R′

thenS ∩3`1(r) = ∅ andC3`1(r)
3,B,B ′ is a(3,3`1(r), E)-notsobad bevent. Recalling (5.12),

we pickn0 ∈ N such that̀ 0 := (2n0α + 1)`1 ∼ L1−. By geometrical considerations,
we can find boxes3(j) = 3(2mjn0α+1)`1(sj ) ⊂ 3, j = 1, . . . , J , whereJ ≤ K1, with

mj ∈ {1, . . . ,2K1} andsj ∈ G(`1)
3 for eachj = 1, . . . , J such that dist(3(j),3(j

′)) ≥ `0

if j 6= j ′, and for eachr ∈ R0\R′ there isjr ∈ {1, . . . , J } such that3`0/5(r)∩3 ⊂ 3(jr ).
Since each3(j) is of the form given in (5.12), we can apply Lemma 5.10 to each3(j).

Since the3(j) are disjoint, we can use independence of events based in different3(j)’s,
and we may apply Lemma 5.10 (or its proof) to all3(j). SettingS0 =

⋃J
j=1 S ∩3(j) and
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S̃ = S \ S0, we conclude that there exist disjoint subsets{Sq}q=1,...,Q of S0 such that for

eachq = 1, . . . ,Q and allt
S̃

∈ [0,1]S̃ we have

‖R
BtSq ,(S̃,tS̃ ),3

(j)(E)‖ < eC1L
4ρ1/3 logL for all j = 1, . . . , J, (5.37)

and we have the conditional probability estimate

P{�′

3,B,B ′,S | C3,B,B ′,S} > 1 − 2K1C2L
−d(ρ1/2−ρ2)+ with

�′

3,B,B ′,S =

Q⊔
i=q

C
3,BtSq ,B ′t(S0\Sq ),S̃

.
(5.38)

By construction, each configuration inC
3,BtSq ,S̃

satisfies the hypotheses of [BK, Lem-
ma 2.14] (see also [BK, (2.22) and (2.23)]), and hence, recalling also (5.1), we can con-
clude thatC

3,BtSq ,S̃
is a(3,E)-good bconfset. Since it is clear thatS̃ satisfies the density

condition (3.39) in3, eachC
3,BtSq ,B ′t(S0\Sq ),S̃

is a(3,E)-adapted bevent.

Recalling Lemma 5.9 and the event�(1)3 in (5.19), we conclude the existence of
disjoint (3,E)-adapted bevents{C3,Bi ,B ′

i ,Si
}i=1,...,I , and hence of the(3,E)-localized

event

�3 =

I⊔
i=1

C3,Bi ,B ′
i ,Si
, (5.39)

such that
P{�3 |�

(1)
3 } > 1 − 2K1C2L

−d(ρ1/2−ρ2)+. (5.40)

Using the probability estimate in (5.19) and (5.1), we get

P{�3} > 1 − L−p, (5.41)

and hence the scaleL isE-localizing.
Proposition 5.1 is proven. ut

6. The proofs of Theorems 1.1 and 1.2

In view of Propositions 4.1, 4.3, and 5.1, Theorems 1.1 and 1.2 are a consequence of the
following proposition, whose hypothesis follows from the conclusion of Proposition 5.1.
We recall Definition 3.16.

Proposition 6.1. Fix p =
3
8d− and an energyE0 > 0, and suppose there is a scale

L0 andm > 0 such thatL is (E,m)-jlocalizing for all L ≥ L0 andE ∈ [0, E0]. Then
the following holdsP-a.e.: The operatorHX has pure point spectrum in[0, E0] with
exponentially localized eigenfunctions (exponential localization) with rate of decaym/2,
i.e., ifφ is an eigenfunction ofHX with eigenvalueE ∈ [0, E0] then

‖χxφ‖ ≤ CX,φ e
−m|x|/2 for all x ∈ Rd . (6.1)
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Moreover, there existτ > 1 and s ∈ ]0,1[ such that for eigenfunctionsψ, φ (possibly
equal) with the same eigenvalueE ∈ [0, E0] we have

‖χxψ‖ ‖χyφ‖ ≤ CX‖T −1ψ‖ ‖T −1φ‖e〈y〉
τ

e−|x−y|s for all x, y ∈ Zd . (6.2)

In particular, the eigenvalues ofHX in [0, E0] have finite multiplicity, andHX exhibits
dynamical localization in[0, E0], that is, for anyp > 0 we have

sup
t

‖〈x〉pe−itHXχ[0,E0](HX)χ0‖
2
2 < ∞. (6.3)

Proof. The fact that the hypotheses of Proposition 6.1 imply exponential localization in
the interval [0, E0] is proved in [BK, Section 7]. Although their proof is written for the
Bernoulli–Anderson Hamiltonian, it also applies to the Poisson Hamiltonian by proceed-
ing as in the proof of Proposition 5.1. When [BK, Section 7] states that a box3 is good at
energyE, we should interpret it as the occurrence of the(3,E,m)-jlocalized event�3 as
in (3.58), with probability satisfying the estimate (3.59), whose existence is guaranteed by
the hypotheses of Proposition 6.1. We should rewrite such an event as in Lemma 5.2 when
necessary, withp′

=
3
8d− < p. With these modifications, plus the use of Lemmas 3.6

and 3.8 when necessary, the analysis of [BK, Section 7] yields exponential localization
for Poisson Hamiltonians.

The decay of eigenfunction correlations given in (6.2) follows for the Bernoulli–
Anderson Hamiltonian from a careful analysis of [BK, Section 7] given in [GK5], and
hence it also holds for the Poisson Hamiltonian by the same considerations as above. Fi-
nite multiplicity and dynamical localization then follow as in [GK5]. ut
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