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Abstract. We investigate projective varieties which are binary symmetric models of trivalent phy-
logenetic trees. We prove that they have Gorenstein terminal singularities and are Fano varieties of
index 4 and dimension equal to the number of edges of the tree in question. Moreover any two such
varieties which are of the same dimension are deformation equivalent, that is, they are in the same
connected component of the Hilbert scheme of the projective space. As an application we provide
a simple formula for computing their Hilbert–Ehrhart polynomial.
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0. Introduction

The grand idea of phylogenetics is to reconstruct the historical relations between species
by analyzing their present features and putting their common ancestors in a diagram
which forms a tree. This leads to describing the evolution in terms of a Markov pro-
cess on a tree. Subsequently, by looking at the distribution of random variables associated
to this process one arrives at geometric models of phylogenetic trees, which eventually
yields algebraic varieties. These, in turn, can be studied in purely algebro-geometric way
in order to get algebraic relations which describe the dependency between the variables
encoded in the underlying tree.

Our original task was to compute the Hilbert–Ehrhart polynomial for a variety arising
as a binary symmetric model of trivalent phylogenetic trees. The Hilbert–Ehrhart poly-
nomial provides information on the number of algebraic relations defining the variety in
question. Unexpectedly, however, the polynomial does not depend on the shape of the
tree but merely on its size, the number of leaves or, equivalently, the dimension of its geo-
metric model. Looking for an explanation of this phenomenon we found one of the main
results of the present paper, 2.24, which asserts that models of trees with the same number
of leaves are deformation equivalent, that is, they are in the same connected component of
the Hilbert scheme of the projective space in question (hence they have the same Hilbert
polynomial).
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The fact that the geometric models of trees modeling some processes—which are
discrete objects—live in a connected continuous family of geometric objects probably
deserves an explanation in terms of algebraic statistics or even biology (cf. [BHV]). For
the algebraic geometry part we have a natural question of irreducibility of the component
of the Hilbert scheme containing these models and (if the irreducibility is confirmed)
about varieties which arise as general deformations (that is, over a general point of the
component of the Hilbert scheme in question). The question about a general deforma-
tion of the model is related to the other main result of the present paper, 2.15, which
is that these models are index 4 Fano varieties with Gorenstein terminal singularities.
Thus one would expect that their general deformation is asmoothFano variety of index 4
(cf. [Na]).

The present paper is organized as follows. We deal with varieties defined over the
complex numbers. In the first section we recall and restate definitions and results about
binary symmetric models of trivalent trees. We do it on the level of toric varieties, by
defining toric data associated to a tree and then using a standard toric construction of
associating a variety to a polytope in a lattice. For an explanation regarding the reduction
to toric varieties we refer the reader to [StSu] and [ERSS], with original derivations in
[EiSt] and [SSE]; another view is presented in [BuWi].

In Section 1 we also present important technical results: a fiber product formula for
polytopes of trees, 1.13, and its counterpart for varieties, a quotient formula 1.20 which is
a special case of 1.19. The latter asserts that, under suitable assumptions, the toric variety
associated to a fiber product of two polytopes is a Mumford’s GIT (Geometric Invariant
Theory) quotient of the product of the corresponding varieties. We note that 1.13 can be
derived from [StSu].

The second section of the present paper contains its main results. After a brief dis-
cussion of equations defining a geometric model of a tree, with special consideration of
a tree with two inner nodes and four leaves, we examine fans of geometric models and
resolution of their singularities, with 2.15 being the main structural result of this part.
Next we consider deformations of models of trees. The approach is, roughly, as follows:
we know how to deform equations of a small tree with four leaves and one inner edge,
the result of the deformation is another tree with the inner edge “mutated”:
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Applying the GIT quotient formula, 1.19, we are able to use this elementary deformation
associated to four-leaf trees to get a similar deformation foreveryinner edge of any tree,
2.22. This implies a result about deforming one geometric model to another, 2.24.

In the last part of Section 2, we discuss the Hilbert–Ehrhart polynomial of binary
symmetric models of trivalent trees. We define a relative version of the polynomial and
then a product of such polynomials which is related to gluing the corresponding trees.
The deformation procedure implies associativity of the product which not only implies
the invariance of the Hilbert–Ehrhart polynomial for trees with the same number of leaves
but also provides a simple formula for computing it, 2.36.
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In the appendix we prove that a fiber product of two polytopes admitting unimodular
covers has this property as well, A.3. This provides a straightforward proof of normality
of polytopes associated to trivalent trees and, what is equally important, it is used in
constructing corresponding normal objects in the proofs of 1.19 and 2.24. We note that
the part regarding normality of polytopes associated to trees follows from known results.
Namely, in [StSu] it is proved that the ideal of the binary symmetric model of a trivalent
tree has a Gröbner basis consisting of quadrics, hence by [St2, Prop. 13.15] the toric
variety in question and its underlying polytope are normal.

In the last part of the appendix, using [polymake ] software, we verify a simple (yet
9-dimensional) example to check that the polytope models of different trees in this case
are different. The question if the models of non-isomorphic trees are non-isomorphic is
open (cf. [AlRh]).

The paper uses consistently the language of algebraic geometry, including toric ge-
ometry. We ignore relations to algebraic statistics and biology, suggesting the reader to
look into [PaSt], [SeSt] or [Fe] (or into [ERSS] for a concise exposition), to get an idea
about the background of the problems that we deal with. It was our primary intention to
make the paper self-contained so that it can be read by an algebraic geometer with no
knowledge of its possible applications outside algebraic geometry. On the other hand, a
reader who is not familiar with algebraic geometry but is interested in acquiring ideas
which are important in our approach (regarding quotients and deformations) is advised to
look into [Re] and [Alt] for a short exposition of these matters.

0.1. Notation

◦ |A| denotes the cardinality of a finite setA.
◦ A lattice is a finitely generated free abelian group.
◦ Depending on the context a subscript denotes the extension of the basic ring or a fiber

of a morphism, e.g.MR = M ⊗Z R.
◦ Given a finite-dimensional vector space (or a lattice)V with a basis{v1, . . . , vn}, we

will denote by{v∗1, . . . , v∗n} the dual basis ofV ∗, that is,v∗i (vi) = 1 andv∗i (vj ) = 0 if
i 6= j .
◦ For a vector spaceV we denote by Symm(V ) its symmetric algebra.

1. Preliminaries: trees and toric geometry

1.1. Trees, lattices, polytopes

Notation 1.1. A treeT is a simply connected graph (1-dimensional CW complex) with
a setE = E(T ) of edges andV = V(T ) of vertices and the (unordered) boundary map
∂ : E → V∧2, whereV∧2 denotes the set of unordered pairs of distinct elements inV. We
note that|V| = |E |+1 where|E | is assumed to be positive. We write∂(e) = {∂1(e), ∂2(e)}

and sayv is a vertex ofe or e containsv if v ∈ {∂1(e), ∂2(e)}; we then simply writev ∈ e.
Thevalencyof a vertexv is the number of edges which containv (it is positive sinceT is
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connected and assumed to have at least one edge). A vertexv is called aleaf if its valency
is 1, otherwise it is called aninner vertexor anode. If the valency of each inner node is
m then the tree will be calledm-valent. The sets of leaves and nodes will be denotedL
andN , respectively, soV = L ∪N . An edge which contains a leaf is called apetiole, an
edge which is not a petiole is called aninner edge(or branch), and the set of inner edges
will be denoted byEo.

Example 1.2. A caterpillar of lengthn is a 3-valent tree withn inner edges andn + 1
inner nodes which after removing all leaves and petioles becomes just a string of edges.
That is, there are exactly two inner nodes to which there are attached two petioles, and
any other inner node has exactly one petiole attached.
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Given a treeT we encode it in terms of dual lattices.

Definition 1.3. Let T be a tree with the setV of vertices andE of edges. We define
M = M(T ) =

⊕
e∈E Z · e to be the lattice (free abelian group) spanned on the setE . Let

N = N(T ) = Hom(M, Z) be the dual lattice. We represent elements ofV as elements
ofN . Namely, forv ∈ V we setv(e) = 1 if e contains the vertexv andv(e) = 0 otherwise.
The pair(M, N) together with the choice of the basisE of M and the setV ⊂ N is called
the lattice pairof the treeT .

From this point on we identify the edges and vertices ofT with the appropriate elements
in M(T ) andN(T ). The elements of the basis ofN dual to{e ∈ E} will be denoted bye∗.
Then for anyv ∈ V we have, by definition,v =

∑
e3v e∗ : M → Z. In particular,v is a

leaf if and only ifv = e∗ for somee which is a petiole forv.
Let us recall that|V| = |E |+1 so the set of vertices has to be linearly dependent inN .

The set of vertices ofT can be divided into two disjoint classes, sayV = V− ∪ V+, each
class consisting of vertices which can be reached from one another by passing through an
even number of edges. The following observation is known.

Lemma 1.4. The equality
∑

v∈V− v =
∑

v∈V+ v is, up to multiplication by a constant,
the only linear relation inN between vectors fromV. In particular, any proper subset of
V consists of linearly independent vectors inN .

Definition 1.5. Given a treeT with the lattice pair(M, N) = (M(T ), N(T )) we define
its normalized lattice pair(M̂, N̂) = (M̂(T ), N̂(T )) as follows:M̂ = {u ∈ M : ∀v ∈ V
v(u) ∈ 2Z} andN̂ is a dual ofM̂ which containsN and the setN /2= {v/2 : v ∈ N }.

Let �M = {u ∈ MR : ∀e ∈ E 0≤ e∗(u) ≤ 1} be the unit cube in the spaceMR. If 1 is a
polytope inMR whose vertices are contained in the set of vertices of�M then we call it
a 0/1 polytope(or asubcube).

Definition 1.6. Given a binary treeT with its lattice pair (M, N), its polytope model
1(T ) is a polytope in the latticeM which is the convex hull of{u =

∑
aiei ∈ M : ai =

0, 1 andv(u) ∈ 2Z for everyv ∈ N }.



Binary symmetric models of phylogenetic trees 613

We note that the vertices of1 are precisely those vertices of�M which are in the sublat-
tice M̂ ⊂ M. The vertices of�M can be interpreted as remainders of dividing elements
of M by 2 or, in other words, as vectors in the linear spaceMZ2 = M ⊗Z Z2. Thus we
get the following.

Lemma 1.7. If the vertices of the cube�M are identified with vectors in the linear space
M ⊗ Z2 then the vertices of1(T ) form the linear subspaceN⊥ ⊂ M ⊗ Z2 of zeros of
the formsv ∈ N ⊗ Z2, wherev ∈ N (T ).

Corollary 1.8. The polytope1(T ) has2|L|−1 vertices.

Proof. We use 1.7: by 1.4 thev’s in N are linearly independent inN ⊗ Z2 so the dimen-
sion of the space of their zeros inM ⊗ Z2 is |E | − |N | = |L| − 1. ut

Example 1.9. An m-star treeis a tree with one inner node andm ≥ 3 leaves. The 3-star
tree will be denoted byqqMM. The vertices of the polytope1(qqMM) with edgese0, e1, e2 are
as follows: 0,e1 + e2, e2 + e0 ande0 + e1 so that1(qqMM) is a 3-dimensional tetrahedron.
If M̂ ⊂ M is the sublattice spanned by the vertices of1(qqMM) thenM/M̂ ∼= Z2.

We note that the inequalities defining1(qqMM) are as follows:

(−v/2)( · ) ≥ −1, (v/2− e∗0)( · ) ≥ 0, (v/2− e∗1)( · ) ≥ 0, (v/2− e∗2)( · ) ≥ 0,

where (recall)v = e∗0 + e∗1 + e∗2.

Construction 1.10. A pointed tree(T , `) is a pair consisting of a treeT and a leaf̀ ∈
L(T ). Given two pointed trees(T1, `1) and (T2, `2) we define theirgraft as follows:
T = T1 `1∨`2 T2 is a tree obtained by removing from eachTi the leaf`i and identifying
their respective petioles, which become an inner edge of the resulting treeT .

For example, a graft of two 3-star trees with distinguished leaves denoted by◦ is the
following operation: 111
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We note that any 3-valent tree is obtained from 3-star trees by a sequence of consec-
utive grafts.

Let us take two latticesMi , i = 1, 2, with distinguished bases{ei
0, . . . , e

i
m1
} and

corresponding 0/1 polytopes1i , with the sets of verticesAi . Let `i = (ei
0)
∗ : Mi → Z

be the projection to the zeroth coordinate; by abuse of notation,`i will also denote its
composition with the projectionM1 × M2 → Mi → Z. Now we can take the fiber
product of these objects:M1 `1×`2 M2 ⊂ M1 × M2 consists of the pairs(u1, u2) such
that`1(u1) = `2(u2). In other words,M1 `1×`2 M2 = ker(`1 − `2) and11 `1×`2 12 =

(11×12) ∩ ker(`1− `2).

The proof of the following observation is fairly standard and we skip it.

Lemma 1.11. In the above situation1 = 11`1×`212 is a0/1 polytope inM = M1`1×`2

M2 with the set of verticesA = A1 `1×`2A2. In general, if1i ⊂ (Mi)R and`i : Mi → Z
are lattice homomorphisms such that`i(1i) ⊂ [0, 1] then the set of vertices of1 =
11 `1×`2 12 is the fiber product of the vertices of1i ’s.
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Example 1.12. Let us consider two copies of a tetrahedron, as in Example 1.9. That is,
for i = 1, 2, in a latticeM i

= Zei
0⊕Zei

1⊕Zei
2, we consider the tetrahedron13

i spanned
on the vertices 0,ei

0 + ei
1, ei

1 + ei
2 andei

2 + ei
0. We take the projections(ei

0)
∗ : M i

→ Z
and in the fiber product

M = M1 `1×`2 M2 = ker((e2
0 − e1

0)
∗) ⊂ M1×M2

we denote bye0 the elemente1
0 + e2

0. The resulting fiber product of tetrahedrons

1 = (13
1×13

2) ∩MR

has the following vertices: 0, e1
1 + e1

2, e
2
1 + e2

2, e
1
1 + e1

2 + e2
1 + e2

2, e0 + e1
1 + e2

1, e0 + e1
1

+ e2
2, e0+ e1

2 + e2
1, e0+ e1

2 + e2
2.

Proposition 1.13. Let (T1, `1) and(T2, `2) be two pointed trees. Then

M̂(T1 `1∨`2 T2) = M̂(T1) `1×`2 M̂(T2),

1(T1 `1∨`2 T2) = 1(T1) `1×`2 1(T2).

Proof. Let M1 = M(T1), M2 = M(T2), and similarly forN ’s, M̂ ’ and N̂ ’s. We set
T = T1 `1∨`2 T2. Then, by Construction 1.10,M = M(T ) = M1 `1×`2 M2 and�M =

�M1 `1×`2 �M2. The two projectionspi : M → Mi yield the corresponding injections
of Hom( · , Z)-spaces,ιi : Ni ↪→ N (in fact N = (N1 × N2)/Z(`1 − `2)). If Ni and
N denote, respectively, the inner nodes ofTi andT thenN = ι1(N1) ∪ ι2(N2). Since
N̂ , N̂1, N̂2 are defined by extendingN , N1, N2 byN /2,N1/2 andN2/2, respectively, it
follows thatN̂ = N̂1+ N̂2 in NR. This implies the first equality of the lemma. Similarly,
since the setN determines those vertices of�M which span1(T ) we get the second
equality. ut

Thus, in view of the above result, the structure of the polytope1(T ) can be described
briefly as follows:1(T ) is the fiber product of the polytopes of the star trees associated
to the inner nodes of the tree, fibered over the relations encoded in the inner branches of
the tree. Since1(qqMM) is a 3-dimensional tetrahedron, this is especially straightforward in
the case of 3-valent trees because1(T ) is then the product of copies of the tetrahedron
labeled by the inner nodes ofT , fibered by the relations presented by the inner branches
of T .

1.2. Toric variety arising from a tree

First, we recall the construction of a projective toric variety from a lattice polytope of
characters. For generalities regarding toric geometry we refer the reader to [Fu] and [Oda].
Let M̂ andN̂ be dual lattices of characters and 1-parameter subgroups for an algebraic
torusTN̂ = N̂ ⊗Z C∗.

Definition 1.14. A lattice polytope1 ⊂ M̂R is callednormalif

• the sublattice of̂M spanned by the differences of points in1 ∩ M̂ is equal toM̂,
• for every integerd ≥ 0 any point ind1 ∩ M̂ is equal to a sum ofd points in1 ∩ M̂.
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Equivalently, the second condition in the above definition can be restated as follows. Let
M̂ ′ = M̂ ⊕ Z and take an affine mapi1 : M̂ → M̂ ′ such thati1(u) = (u, 1). Then1

is normal inM̂ if and only if the semigroup spanned in̂M ′ by i1(1 ∩ M̂) is equal to the
semigroup of lattice points in the cone spanned inM̂ ′R by i1(1), that is, the semigroup
R≥0(i1(1)) ∩ M̂ ′.

Definition 1.15. Suppose that1 is a normal polytope in̂M. LetAd
1 be aC-linear space

with the basis{χu : u ∈ d1∩M̂}. We consider the gradedC-algebraA(1) =
⊕

d≥0 Ad
1

with multiplicationχu1χu2 = χu1+u2. ThenX(1) = ProjA(1) is called theprojective
modelof 1.

We note that in the above situationA(1) is a normal ring, that is, it is integrally closed
in its field of fractions. This, by definition, is equivalent to saying that the affine spectrum
Spec(A(1)) is a normal affine variety. In fact, in such a caseA(1) is the semigroup
algebra ofR≥0(i1(1)) ∩ M̂ ′ so Spec(A(1)) is an affine toric variety with the big torus
TN̂⊕Z. In the projective case we have the following general result which summarizes the
properties of the projective model of a normal polytope (see [Oda, Sect. 2.1–2.4], [St1],
[St2, Sect. 13] or [Fu]).We denote Proj(Symm(A1

1)) ∼= P|1∩M̂|−1 by P1.

Proposition 1.16. Suppose that1 is a normal polytope in the latticêM of characters of
a torusTN̂ . Then the following holds:

1. X(1) is a toric variety in the sense of[Oda]and[Fu] with thebig torusTN̂ which acts
effectively onX(1) with an open orbit.

2. X(1) is embedded inP1 as a projectively normal variety such thatH 0(X(1),OX(d))

= Ad
1.

3. The characters from1 ∩ M̂ define a diagonal action ofTN̂ on P1 which restricts to
the torus action onX(1) so that the inclusionX(1) ↪→ P1 is TN̂ -equivariant.

4. The induced action ofTM̂ on H 0(X(1),OX(d)) is linearizable with weights in
d1 ∩ M̂.

5. X(1) ⊂ P1 is the closure of the image of the mapTM̂ → P1 defined by the characters
from1 ∩ M̂.

Because of A.5 the polytope model1(T ) of a 3-valent treeT is normal so we can con-
sider its projective model as defined above.

Definition 1.17. Let T be a3-valent tree. Then the varietyX(T ) := X(1(T )) in the
projective spacePT := P1(T ) is called thebinary symmetric modelof the treeT .

The above toric model of a phylogenetic tree is, in fact, obtained from a binary symmetric
model in algebraic statistics via Fourier transform (or diagonalization). This reduction is
explained in [StSu] and [ERSS], with original derivations in [EvSp] and [SeSt]. Another
purely algebro-geometric view is provided in [BuWi].

It is worth noting that the fiber product formula 1.13 as well as normality of1(T )

(see A.5) are also consequences of results of [StSu]. More generally, using the language of
[StSu], its main theorem implies that group based models with friendly labeling functions
yield polytopes that are fiber products.
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1.3. 1-parameter group action, quotients

In this section we consider quotients of projective varieties as in Mumford’s GIT [Mu].
For a comprehensive exposition of the theory, including a relevant definition of good
quotient we refer to [B-B]. In the present section as well as in Section 2.3 we consider
an algebraic action of the multiplicative groupC∗ on a projective varietyX ↪→ Pm.
The action is given by a choice of weights, hence it extends to the affine cone overX

which determines its linearization, its set of semi-stable pointsXss and itsgood quotient
Xss
→ Xss//C∗ (see [B-B, Ch. 6]).

Construction 1.18. Let 1i ⊂ (M̂i)R for i = 1, 2 be two lattice polytopes admitting
unimodular covers, hence normal (see A.1), and letX(1i) ⊂ Pni−1, where ni =

|M̂i ∩ 1i |, be their associated toric varieties. InM× = M̂1 × M̂2 we take the prod-
uct polytope1× = 11 × 12 which is also normal because of A.2. Then the associated
toric varietyX× = X(1×) ⊂ Pn1n2−1 is the Segre image ofX(11)×X(12).

Suppose that̀i : M̂i → Z are lattice homomorphisms such that(`i)R(1i) ⊂ [0, 1].
We lift `i to the product of the lattices and on̂M1 × M̂2 we define the form̀ 1 − `2. It
defines a diagonal actionλ`1−`2 of C∗ on X× ⊂ Pn1n2−1, which on the coordinate as-
sociated toχ (u1,u2), whereui ∈ 1i ∩ M̂i , has the weight̀1(u1) − `2(u2) ∈ {−1, 0, 1}.
Accordingly, we regroup the coordinates ofPn1n2−1 and write them as [z−i , z0

j , z+k ] de-
pending on whether they are of weight−1, 0 and 1, respectively. That is,

λ`1−`2(t)[z
−

i , z0
j , z+k ] = [t−1z−i , z0

j , tz+k ].

The above formula defines an action ofλ`1−`2 on the cone overX× and thus aC∗-
linearization of the bundleOX×(1) in the sense of GIT. Denote byX0 the intersection
of X× with the complement of the space spanned on the eigenvectors ofλ`1−`2 of weight
6= 0, that is,X0

= X× \ {[z−i , z0
j , z+k ] : ∀j z0

j = 0}.

We setM̂ = ker(`1 − `2) and1 = 1× ∩ ker(`1 − `2) = 11 `1×`2 12. By A.4 the
polytope1 is normal and thus we denote byX(1) its associated toric variety.

Proposition 1.19. In the above situationX0 is equal to the set of semistable points of the
action ofλ`1−`2. The projection to the weight0 eigenspace,[z−i , z0

j , z+k ] 7→ [z0
j ], defines

a regular map ofX0 to X(1), andX(1) is a good quotient for the action ofλ`1−`2.

Proof. The sections ofOX×(m) for m > 0 make up a vector space spanned onχu, where
u ∈ m1× ∩M×. Among them, those which are invariant with respect to the action of
λ`1−`2 are associated tou’s in the intersection with ker(`1 − `2), thus inm1 ∩M. By
the normality of1 (see A.4), the algebra of invariant sections is generated by those from
OX×(1). Thus the set of semistable points of the action ofλ`1−`2 is where at least one of
the coordinatesz0

j is non-zero and the quotient map is the projection to the weight zero
eigenspace. ut

Corollary 1.20. Let (T1, `1) and(T2, `2) be two pointed trees. ThenX(T1 `1∨`2 T2) is a
good quotient ofX(T1)×X(T2) with respect to an action ofλ`1−`2.
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Example 1.21. Consider theC∗-action on the productP3
1× P3

2 given by the formula

λ(t)([z1
0, z

1
1, z

1
2, z

1
3], [z2

0, z
2
1, z

2
2, z

2
3]) = ([z1

0, tz
1
1, tz

1
2, z

1
3], [z2

0, t
−1z2

1, t
−1z2

2, z
2
3])

where the superscripts of the coordinates indicate the factor in the productP3
1 × P3

2. The
following rational mapP3

1 × P3
2 −→ P7 is λ-equivariant and regular outside the set

{z1
0 = z1

3 = z2
1 = z2

2 = 0} ∪ {z1
1 = z1

2 = z2
0 = z2

3 = 0}, each component of which is a
quadricP1

× P1:

([z1
0, z

1
1, z

1
2, z

1
3], [z2

0, z
2
1, z

2
2, z

2
3]) 7→ [z1

0z
2
0, z

1
0z

2
3, z

1
1z

2
1, z

1
1z

2
2, z

1
2z

2
1, z

1
2z

2
2, z

1
3z

2
0, z

1
3z

2
3].

If [ x0, . . . , x7] are the coordinates inP7 then the image of this map is the intersection of
two quadrics,{x0x7 = x1x6} ∩ {x2x5 = x3x4}.

The above claim will be clear if we write the functionsz1
i z

2
j in terms of characters

of the relevant torus, which we denote bye1
i ande2

j , respectively. Namely, dividing the

right hand side of the above displayed formula byz1
0z

2
0 we get the following sequence of

rational functions (cf. 1.9):

[1, χe2
1+e2

2, χe1
0+e1

1χe2
0+e2

1, χe1
0+e1

1χe2
0+e2

2, χe1
0+e1

2χe2
0+e2

1,

χe1
0+e1

2χe2
0+e2

2, χe1
1+e1

2, χe1
1+e1

2χe2
1+e2

2].

If we write the sums of the exponents of the above rational functions inM1⊕M2 and set
e0 = e1

0+e2
0 then we get the vertices of1(qqMM∨qqMM) which we computed in Example 1.12.

Note that from the above formula one can read off the weights with which the 1-parameter
groupsλ(ei

j )∗ , i, j = 1, 2, associated to leaves, act on the quotient variety inP7.

2. Geometry of phylogenetic trees

2.1. Paths, networks and sockets

From now on we assume thatT is a 3-valent tree andX(T ) in the spacePT = P1(T )
∼=

P2|L|−1
−1 is its binary symmetric model defined by the polytope1(T ). The linear coordi-

nates on the ambient projective space are identified with the vertices of1(T ) which are
among the vertices of the cube�M satisfying the parity relation with respect to the forms
v ∈ N ⊂ N , as in 1.6.

Definition 2.1. A pathγ of lengthm ≥ 1 on a3-valent treeT is a choice ofm+1 distinct
verticesv0, . . . , vm such thatv0 and vm are leaves (called the ending points ofγ ) and
there existm edges,e1, . . . , em, such that∂(ei) = {vi−1, vi} for i = 1, . . . , m. A network
of paths(or just a network) 0 on T is a set of paths (possibly empty), no two of which
have a common vertex.

A treeT is labeledif its leaves are numbered by1, . . . , |L|. Any subsetµ ⊂ L is rep-
resented by itscharacteristic sequenceκ(1), . . . , κ(|L|), whereκ(i) = 1 or 0 depending
on whether the leaf numberedi is in µ or not. Asocketof a labeled treeT is a subset of
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L which has an even number of elements; each socket ofT is identified with its charac-
teristic sequence. For any network of paths0 on T we define its socketµ(0) ⊂ L to be
the set of leaves which are ending points of paths in0.

Example 2.2. Let us consider a labeled 3-valent tree with four leaves. In the following
diagram, in the upper row we draw all possible networks on this tree, where paths are de-
noted by solid line segments. In the lower row we write down the characteristic sequences
of the respective sockets.
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0, 0, 0, 0 1, 1, 0, 0 0, 0, 1, 1 1, 1, 1, 1 1, 0, 1, 0 1, 0, 0, 1 0, 1, 1, 0 0, 1, 0, 1

Lemma 2.3. Let T be a 3-valent tree. Associating to a network0 the pointu(0) =∑
e 0(e) · e ∈ M(T ), where0(e) = 1, 0 depending on whethere is on0 or not, defines

a bijection between networks and vertices of1(T ).

Proof. First note thatu(0) ∈ 1(T ). To define the inverse of0 7→ u(0), for any vertex
u =

∑
e∈E εe · e ∈ 1(T ) we define thesupportof u to consist of the edges ofT whose

contribution tou is non-zero, i.e.{e ∈ E : e∗(u) = 1}. The parity condition (for allv ∈ N
eitherv(u) = 0 orv(u) = 2) implies that these edges define a network onT . ut

We note that, because of 1.8, there are 2|L|−1 networks. On the other hand, the association
of the socket to a network gives a map from the set of networks to the subsets of leaves.
This map is surjective, that is, every subsetµ of L with an even number of elements is
the socket of a network. Indeed, this follows by a straightforward induction with respect
to the number of leaves of the tree: in the induction step we write a treeTn+1 with n+ 1
leaves as a graft of a treeTn with n leaves and a 3-star treeqqMM and consider three cases
depending on how many of the two new leaves replacing the single old one are in the set
µ ⊂ L. Finally, because the number of all subsets ofL with an even number of elements
equals 2|L|−1 we get the following.

Lemma 2.4. LetT be a3-valent tree. Then associating to a network its socket defines a
bijection between the set of networks of paths onT and the set of subsets ofL which have
an even number of elements.

Construction 2.5. Using networks and sockets, and the toric formalism, one can restate
the inclusionX(T ) ⊂ PT as follows. LetM̃ =

⊕
κ 6=0 Z · κ be the free abelian group

generated by the non-empty sockets of a treeT . We interpret the empty socketκ = 0 as
the zero of the lattice. DefinePL as the toric varietyX(1̃0) associated to the unit simplex
1̃0 in M̃ spanned on the vectors of the distinguished basis.

Now the bijective mapsockets→ networksgives rise to a homomorphism of lattices
M̃ → M̂(T ), where (recall 1.5), the latter lattice is spanned inM(T ) by the points asso-
ciated to networks. This gives the identificationPL = PT and a surjective map from the
symmetric graded algebra spanned by all the sockets, which is just the algebra of polyno-
mialsC[χκ ], to the algebraA(1), hence the inclusionX(T ) ↪→ PL (cf. Section 1.2).
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As stated in 1.16, there is an action of the torusTN̂ onPT which makes the embedding
X(T ) ↪→ PT equivariant. Using the identificationPT = PL we can easily describe the
action of each leaf onPL. Namely, the 1-parameter groupλ` associated to a leaf̀acts
on the coordinatexκ , whereκ denotes the characteristic function of a socket, with weight
κ(`) which is one if` is in the socket and zero otherwise. IfNL =

⊕
v∈L Z · v is the

sublattice ofN spanned by the leaves andTNL = NL ⊗Z C∗ its associated torus then the
above rule defines an action ofTNL on PL which, in fact, does not depend on the actual
shape of the treeT but only on the labeling of the leaves.

Example 2.6. The equations defining inPT = PL the model of a tree with four leaves
from Example 1.21 can be described in terms of relations between networks representing
relevant points in1(T ) (cf. Example 2.2). They are as follows:
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In other words, using the coordinatesxκ(1)···κ(4) in PL, the respective equations defin-
ing X(T ) are as follows:

x0000 · x1111= x1100 · x0011,

x1001 · x0110= x1010 · x0101.

Next, note that renumbering the leaves as below or, equivalently, changing the shape
of a 3-valent tree connecting the four numbered leaves, produces the following equations,
respectively:

111

3 


2


4

11
x0000 · x1111= x1010 · x0101,

x1001 · x0110= x1100 · x0011,

111

4 


2


3

11
x0000 · x1111= x1001 · x0110,

x1001 · x0110= x1010 · x0101.

We note that all the above equations involve only four quadratic monomials:x0000x1111,
x1100x0011, x1010x0101, x1001x0110. Moreover, given any leaf̀, the 1-parameter groupλ`

acts with weight 1 on each of these monomials. Thus the model inPL of each of the
above three trees is invariant with respect to the action ofTNL .

2.2. Dual polytopes, fans, resolutions and Fano varieties

In the situation of 1.15 the fan of the varietyX(1) in N̂ can be described in terms of its
support functions [Oda, Thm. 2.22] or dual polytopes [Fu].
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Example 2.7. By looking at Example 1.9 and the inequalities which appear there we see
that the fan ofX(qqMM) in N̂ ⊃ N has rays generated by the following elements:−v/2 =
−(e∗0 + e∗1 + e∗2)/2, v/2 − e∗0 = (e∗1 + e∗2 − e∗0)/2, v/2 − e∗1 = (e∗0 + e∗2 − e∗1)/2,
v/2− e∗2 = (e∗0 + e∗1 − e∗2)/2.

The formula from 1.13 can be used to describe the polytope dual to1(T ), and hence
to describe the fan ofX(T ) for 3-valent trees.

Lemma 2.8. Let T be a3-valent tree withn inner nodes. Then the polytope1(T ) is
defined inMR by the following4n inequalities: for any inner nodev ∈ N at which edges
ev,0, ev.1, ev.2 meet, so thatv = e∗v.0+ e∗v.1+ e∗v.2, we take

(−v/2)( · ) ≥ −1, (v/2− e∗v.0)( · ) ≥ 0, (v/2− e∗v.1)( · ) ≥ 0, (v/2− e∗v.2)( · ) ≥ 0.

Proof. Let (T1, `1) and (T2, `2) be pointed trees. If1i = 1(Ti) ⊂ (Mi)R is defined
by inequalities with respect to some formswi

j in (Ni)R then 11 × 12 is defined by

the forms(w1
j , 0) and (0, w2

j ) in (N1)R × (N2)R. Then the classes of these forms in
N = (N1 × N2)R/R(`1 − `2) define the fiber product of1i ’s. Therefore the lemma
follows by induction with respect to the number of inner nodes ofT . ut

Definition 2.9. For a binary symmetric3-valent treeT we define a polytope1∨(T ) in
NR which is the convex hull of−v/2 = −(e∗v.0 + e∗v.1 + e∗v.2)/2, v/2− e∗v.0 = (e∗v.1 +

e∗v.2 − e∗v.0)/2, v/2− e∗v.1 = (e∗v.0 + e∗v.2 − e∗v.1)/2, v/2− e∗v.2 = (e∗v.0 + e∗v.1 − e∗v.2)/2,
for all inner nodesv ∈ N , whereev.0, ev.1, ev.2 are the edges containingv.

Let us note that the points listed above are in fact vertices of1∨(T ). Indeed, by looking
at the points which span1∨(T ) we see that(ev.0 + ev.1 + ev.2)(1

∨(T )) ≥ −3/2, with
equality only for the point−(e∗v.0+ e∗v.1+ e∗v.2)/2, which is therefore a vertex. Similarly,
(ev.0+ ev.1− ev.2)(1

∨(T )) ≤ 3/2, with equality only for(e∗v.0+ e∗v.1− e∗v.2)/2.

Lemma 2.10. Let σ̂ =
∑

e∈E e. Then the polytopes41(T ) − 2̂σ and1∨(T ) are dual,
or polar, to each other in the sense that

1∨(T ) = {w ∈ NR : w(41(T )− 2̂σ) ≥ −1},

41(T )− 2̂σ = {u ∈ MR : u(1∨(T )) ≥ −1}.

Proof. The first equality is a restatement of 2.8, the second follows because the polar
polytope of the polar is the original polytope [Fu, Sect. 1.5]. ut

Notation 2.11. For any vertexu of 1(T ) we define its dual faceu⊥ = 1∨(T ) ∩ {w :
w(4u− 2̂σ) = −1}. Let ũ⊥ be the polytope which is the convex hull ofu⊥ and 0∈ NR,
while û⊥ will denote the cone spanned inNR by u⊥.

Let u be a vertex of1(T ) which can be represented as a network of paths,0(u). Then
for v ∈ N the numberv(u) is either 0 or 2, depending on whether or not0(u) containsv,
and similarlye∗(u) is respectively 0 or 1. Thus(−v/2)(4u − 2̂σ) = −1 if v is in 0(u),
and(−v/2)(4u− 2̂σ) = 3 otherwise. On the other hand,(v/2− e∗v.0)(4u− 2̂σ) = −1 if
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eitherv is not in0(u), or bothv ande∗v.0 are in0(u). Finally, (v/2− e∗v.0)(4u− 2̂σ) = 3
if v is in 0(u) but e∗v.0 is not.

Therefore, for any vertexu of 1(T ) and any nodev ∈ N exactly three of the four
points−v/2= −(e∗v.0+ e∗v.1+ e∗v.2)/2, v/2− e∗v.0 = (e∗v.1+ e∗v.2− e∗v.0)/2, v/2− e∗v.1 =

(e∗v.0+ e∗v.2− e∗v.1)/2, v/2− e∗v.2 = (e∗v.0+ e∗v.1− e∗v.2)/2 are inu⊥, which therefore has
3n vertices.

Example 2.12. We will visualize the points of̂N on the graph of the tree in the following
way. Given a 3-valent nodev with edgesev.0, ev.1, ev.2, which for simplicity we just mark
by numbers on the graph, the point−v/2 will be denoted by the dot at the vertex, while
the pointv/2− e∗v.0 by the secant opposite to the edgeev.0:

•

MMMM qqqq1 2

0

MMMM qqqq1 2

0

Using this notation we can put in the same picture both the network of paths associated
to a vertexu of 1(T ) and the corresponding points inu⊥. We draw only four out of eight
networks from 2.2 since the others are obtained by renumbering the leaves.
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In each case the polytopẽu⊥ can be divided into two simplexes, each having edges which
form a basis of the latticêN . For example:
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The first equality means that̃u⊥ in this case is the union of the simplex with edges
(e∗1+ e∗2− e∗0)/2, (e∗0+ e∗2− e∗1)/2, (e∗0+ e∗1− e∗2)/2, (e∗3+ e∗4− e∗0)/2, (e∗0+ e∗3− e∗4)/2
and another one with edges(e∗1 + e∗2 − e∗0)/2, (e∗0 + e∗2 − e∗1)/2, (e∗0 + e∗1 − e∗2)/2,
(e∗3 + e∗4 − e∗0)/2, (e∗0 + e∗4 − e∗3)/2. The common part of these two simplexes is the
simplex with edges(e∗1+e∗2−e∗0)/2, (e∗0+e∗2−e∗1)/2, (e∗0+e∗1−e∗2)/2, (e∗3+e∗4−e∗0)/2,
which containse∗0/2=

(
(e∗0 + e∗3 − e∗4)/2+ (e∗0 + e∗4 − e∗3)/2

)
/2.

This example is even more transparent when we writeN̂ as the sum of the rank 2
lattice spanned by(e∗1 + e∗2 − e∗0)/2 and(e∗3 + e∗4 − e∗0)/2, and the rank 3 lattice spanned
by (e∗0+e∗2−e∗1)/2, (e∗0+e∗1−e∗2)/2, (e∗0+e∗3−e∗4)/2 which contains also(e∗0+e∗4−e∗3)/2.
Then our division of the conêu⊥ comes by multiplying by the coneR≥0(e

∗

1+ e∗2− e∗0)+

R≥0(e
∗

3 + e∗4 − e∗0) the standard simplicial division of the 3-dimensional cone generated
by (e∗0 + e∗2 − e∗1)/2, (e∗0 + e∗1 − e∗2)/2, (e∗0 + e∗3 − e∗4)/2 and(e∗0 + e∗4 − e∗3)/2 (see [Fu,
p. 49]), which in geometric terms is a small resolution of a 3-dimensional quadric cone
singularity giving rise to the so-called Atiyah flop.
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The same argument works whenever0(u) does not containe0. Thenu⊥ contains
(e∗0+ e∗2− e∗1)/2, (e∗0+ e∗1− e∗2)/2, (e∗0+ e∗4− e∗3)/2, (e∗0+ e∗3− e∗4)/2 and we can make
a similar division ofu⊥ using the equality

(e∗0 + e∗2 − e∗1)/2+ (e∗0 + e∗1 − e∗2)/2= (e∗0 + e∗4 − e∗3)/2+ (e∗0 + e∗3 − e∗4)/2.

If 0(u) containse0 then we use the identity

−(e∗0 + e∗1 + e∗2)/2+ (e∗1 + e∗2 − e∗0)/2= −(e∗0 + e∗3 + e∗4)/2+ (e∗3 + e∗4 − e∗0)/2

which presents−e∗0/2 ∈ u⊥ as an average (median) of two different pairs of vertices and
provides a similar decomposition
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Now we shall show that the above discussion can be generalized to the case of trees
with more inner nodes.

Lemma 2.13. Suppose thatT is a binary symmetric3-valent tree withn inner nodes.
Then for any vertexu of 1(T ) there exists a division ofu⊥ (or equivalently, of̃u⊥) into a
union of2n−1 (normalized) volume1 simplexes. Equivalently, the coneû⊥ can be divided
into a union of simplicial cones which are regular (i.e. their generators form bases ofN̂ ).

Proof. The construction of the division will proceed along an ascending sequence of
subtrees ofT , starting from an inner node ofT . That is, we have an ascending sequence
of 3-valent trees

T1 ⊂ · · · ⊂ Tn = T
whereTi hasi inner nodes andTi+1 = Ti ∨ qqMM. Forgetting the edges which are not in
Ti gives a sequence of surjective mapsM(T )→ · · · → M(Ti)→ · · · → M(T1) which
yields a sequence of inclusionŝN(T1) ⊂ · · · ⊂ N̂(Ti) ⊂ · · · ⊂ N̂(Tn). The restriction
of the networku to Ti is a network onTi as well and we will denote it byui . Clearly
u⊥ ∩N(Ti)R = u⊥i .

Now we will define the division ofu⊥i inductively. The polytopeu⊥1 is just a simplex

so let us assume thatu⊥i =
∑

δ
j
i wherej = 1, . . . , 2i−1 and the normalized volume of

δ
j
i with respect to the latticêN(Ti) is 1. Letvi be an inner node ofTi+1 which was a leaf

of Ti , let ei
0 be a petiole ofTi which becomes an inner edge ofTi+1, and letei

1 andei
2 be

the two new petioles ofTi+1 which containvi .
Now we argue as in 2.12. Ifei

0 is in u then−(ei
0)
∗/2 ∈ u⊥i and we may assume that

ei
1 is in u andei

2 is not. Now from any simplexδj
i from the original division ofu⊥i we

produce two simplexes by adding a new vertex at((ei
0)
∗
+ (ei

2)
∗
− (ei

1)
∗)/2 and another

one at either−((ei
0)
∗
+ (ei

1)
∗
+ (ei

2)
∗)/2 or ((ei

1)
∗
+ (ei

2)
∗
− (ei

0)
∗)/2. Because

−((ei
0)
∗
+ (ei

1)
∗
+ (ei

2)
∗)/2+ ((ei

1)
∗
+ (ei

2)
∗
− (ei

0)
∗)/2= −(ei

0)
∗

and−(ei
0)
∗/2 ∈ u⊥i this defines a good division ofu⊥i+1.
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If ei
0 is not inu then(ei

0)
∗/2 ∈ u⊥i and we make a similar construction but now we

have to consider two cases: either none ofei
1, ei

2 is in u or both are inu. In either case the
discussion is similar to that in 2.12. ut

In terms of toric geometry the division process implies the following.

Corollary 2.14. The affine toric variety associated to the coneû⊥ has Gorenstein termi-
nal singularities which admit a small resolution.

Proof. The toric singularities are Cohen–Macaulay and since all the generators of the
rays of û⊥ lie on the hyperplane(4u − 2σ)( · ) = −1 the singularities in question are
Gorenstein. The division into regular simplicial cones involves adding no extra ray so the
appropriate resolution is small, which also implies that the original singularity is terminal.

ut

We note that the construction of the division certainly depends on the choice of the root
of the tree, and changing the root gives a flop.

Let 6 be a fan inN̂R consisting of the coneŝu⊥ for everyu which is a vertex of
1(T ), and their faces. In other words,6 contains the cones spanned by the proper faces
of 1∨(T ) (including the empty face, whose cone is the zero cone). Recall that equivari-
ant line bundles on a toric variety are described in a standard way by piecewise linear
functions on its fan (see [Oda, Sect. 2.1] or [Fu, Sect. 3.4]). Setting3|̂u⊥ = u we define a
continuous piecewise linear function3 on the fan6 in NR such that for everyv ∈ N and
ev ∈ E containingv we have3(−v/2) = −1 and3(v/2− e∗v) = 0. The sections of the
bundle related to3 (see [Oda, Prop. 2.1] or [Fu, p. 66]) are in̂M ∩1(T ). Therefore the
toric varietyX(6) given by the fan6 can be identified with the original varietyX(1(T ))

and the line bundle associated to3 isOX(1). On the other hand, the function 43 − 2σ

assumes value−1 on the primitive vectors in rays of6, which allows us to identify the
anti-canonical divisor ofX(1) (see [Oda, Sect 2.1]). The result is the following.

Theorem 2.15. Let T be a 3-valent binary symmetric tree. Then the varietyX(T ) is
Gorenstein and Fano with terminal singularities. Moreover it is of index4, that is, the
canonical divisorKX(T ) is linearly equivalent toOX(T )(−4).

We note the following consequence of Kodaira–Kawamata–Viehweg vanishing (see e.g.
[KoMo, Sect. 2.5]).

Corollary 2.16. In the above situationH i(X(T ),O(d)) = 0 for i > 0 andd ≥ −3. In
particular for d ≥ 0 we havedimC H 0(X(T ),O(d)) = hX(T )(d), the Poincaré–Hilbert
polynomial of(X(T ),O(1)).

2.3. Mutation of a tree, deformation of a model

In Example 2.6 we noted that a 4-leaf 3-valent tree can be labeled in three non-equivalent
ways. We can revert it to say that given four numbered leaves we have three 3-valent
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labeled trees connecting these leaves. By grouping in pairs the leaves whose petioles are
attached to common inner nodes we can list them as follows:(1, 2)(3, 4), (1, 3)(2, 4),
and(1, 4)(2, 3).

Now, given four pointed treesTi , i = 1, . . . , 4, we can produce a treeT by grafting
the treeTi along thei-th leaf of a labeled 3-valent 4-leaf treeT0. Here are the possible
configurations,e0 denotes the inner edge of the treeT0:
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Definition 2.17. In the above situation we say that there exists anelementary mutation
along e0 from one of the above trees to the other two. (We note that a mutation may
actually yield an equivalent tree.) We say that two trees aremutation equivalentif there
exists a sequence of elementary mutations from one to the other.

The following observation is fairly standard and it is obtained by easy induction with
respect to the number of inner nodes.

Lemma 2.18. Any two3-valent trees with the same number of leaves are mutation equiv-
alent.

Now, let us recall the basics regarding deforming subvarieties in projective space. Let
B be an irreducible variety (possibly non-complete). Consider the productPm

× B with
the two projectionspP andpB. Suppose thatX ⊂ Pm

× B is a subscheme such that
the induced projectionpB|X : X → B is proper and flat. Suppose that for two points
a, b ∈ B the scheme-theoretic fibersXa = Xa andXb = Xb are reduced and irreducible.
Then we say that the subvarietyXa in Pm can be deformed toXb over the baseB. This
gives rise to a notion of deformation equivalent subvarieties ofPm.

Definition 2.19. Given two subvarietiesX1, X2 in Pm we say that they aredeformation
equivalentif their classes are in the same connected component of the Hilbert scheme
of Pm.

Example 2.20. Let us considerP7 with homogeneous coordinates indexed by sockets
of a 4-leaf treeT0, as in Example 2.6. InP7 we consider a family of intersections of
two quadrics parametrized by an open subsetB of P2 with coordinates [t(12)(34), t(13)(24),

t(14)(23)]. We setB = P2
\{[1, ε, ε2] : ε3

= 1} and overB we considerX 0 given inB×P7

by the equations

t(12)(34) · x1100x0011+ t(13)(24) · x1010x0101
+ t(14)(23) · x1001x0110= (t(12)(34) + t(13)(24) + t(14)(23))x0000x1111,

(t(13)(24) − t(14)(23)) · x1100x0011
+ (t(14)(23) − t(12)(34)) · x1010x0101
+ (t(12)(34) − t(13)(24)) · x1001x0110= 0.
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Three special fibers of the projectionX 0
→ B, namelyX 0

[1,0,0], X
0
[0,1,0] andX 0

[0,0,1],
are varieties associated to three 4-leaf trees labeled by(12)(34), (13)(24) and(14)(23),
respectively. On the other hand,X 0 is a complete intersection of two quadrics and the
mapX 0

→ B is equidimensional. The latter statement follows because overB the matrix[
t(12)(34) t(13)(24) t(14)(23) t(12)(34)+ t(13)(24)+ t(14)(23)

t(13)(24)− t(14)(23) t(14)(23)− t(12)(34) t(12)(34)− t(13)(24) 0

]
is of rank 2 hence any fiber overB is a complete intersection of two non-proportional
quadrics. HenceX 0

→ B is flat because of [Ei, Thm. 18.16].
Denote byT0 the 4-dimensional torus associated to the lattice spanned by the leaves

with coordinatesχv∗i , wherevi , i = 1, . . . , 4, are the leaves ofT0. The torusT0 acts on
P7
× B via the first coordinate, that is, for a leafvi of T0 and a socketκ we have

λvi
(t)(xκ , t(·)(·)) = (tκ(vi )xκ , t(·)(·)).

Then by looking at the equations definingX 0 we see that the inclusionX 0 ↪→ P7
× B is

equivariant with respect to this action.
We also note that a rational mapP7

−→ P3, regular outside 16 linearP3’s, which is
given by four quadrics:

[xκ ] 7→ [x0000x1111, x0011x1100, x0101x1010, x0110x1001]

defines a good quotient with respect to the action ofT0 onP7 (cf. [B-B, 7.1.1]). If we take
a subvarietyZ0 in the productP3

× B defined by the equations

t(12)(34) · z1+ t(13)(24) · z2+ t(14)(23) · z3 = (t(12)(23) + t(13)(24) + t(14)(23)) · z0,

(t(23)(14) − t(14)(23)) · z1+ (t(14)(23) − t(12)(34)) · z2+ (t(12)(34) − t(23)(14)) · z3 = 0,

thenZ0
→ B is equidimensional andX 0 is the fiber product ofP7

−→ P3 andZ0
→

P3. As a result the induced rational mapX 0
−→ Z0 defines a good quotient ofX 0 with

respect to the action ofT0 [B-B, 7.1.4].

In what follows we construct an ambient variety which contains as locally complete
intersections a flat family of varieties containing a geometric model of a tree as well as
models of the tree’s elementary mutations.

Construction 2.21. Let T be a tree with an inner edgee0 which contains two 3-valent
inner vertices. We can writeT as a graft of five trees: a labeled treeT0 with four leavesvi ,
i = 1, . . . , 4, containinge0 as an inner edge and four pointed trees(Ti, `i), i = 1, . . . , 4,
attached toT0 along the respectively labeled leaves. The edges inT which have common
nodes withe0 are denoted byei , whereei comes from a petiole of̀i (or vi). Recall
(see 1.13) thatM(T ) and1(T ) can be expressed as fiber products ofM(Ti) and1(Ti),
respectively. That is,

M(T ) =

4∏
i=0

M(Ti) ∩

4⋂
i=1

ker(`i − vi), 1(T ) =

4∏
i=0

1(Ti) ∩

4⋂
i=1

ker(`i − vi).
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Now, as in 2.5, we consider the latticẽM0 spanned on the non-trivial sockets of the
treeT0 together with the unit simplex̃10 ⊂ M̃0 ⊗ R and the maps̃M0 → M0 and
1̃0 → 10 which give the inclusionX(T0) ⊂ P7 as a complete intersection of two
quadrics. The formsvi , i = 1, . . . , 4, pull back to forms̃vi on M̃0. Now we define

M =
(
M̃0×

4∏
i=1

M(Ti)
)
∩

4⋂
i=1

ker(`i − ṽi),

1 =
(
1̃0×

4∏
i=1

1(Ti)
)
∩

4⋂
i=1

ker(`i − ṽi).

As in Section 1.2 we define the toric varietyY = X(1). We note that, by A.4, the poly-
tope1 is normal in the latticẽM0×

∏4
i=1 M̂(Ti)∩

⋂4
i=1 ker(`i− ṽi), which is spanned by

its vertices. Also, by the construction we have the embeddingsX(T ) ↪→ Y ↪→ PL which
are induced by identifying generators of the corresponding graded algebras (cf. 2.5).

Lemma 2.22. The inclusions

M ↪→ M̃0×

4∏
i=1

M(Ti) and 1 ↪→ 1̃0×

4∏
i=1

1(Ti)

induce a rational map

P7
×

4∏
i=1

X(Ti) −→ Y

which is a good quotient map (of the set over which it is defined) with respect to the action
of the4-dimensional torusT0 generated by the1-parameter groupsλvi−`i

, i = 1, . . . , 4.
The subvariety

X̂ = X 0
×

4∏
i=1

X(Ti) ↪→ B × P7
×

4∏
i=1

X(Ti)

is T0-equivariant and its quotientX is a locally complete intersection inB × Y.

Proof. The first (quotient) part is the same as in 1.19; this time however we repeat the
argument for all four fiber products in question. The invariance of the varietyX̂ follows
from the invariance ofX 0 ↪→ B × P7 discussed in 2.20. Finally, sincêX is a complete
intersection inB × P7

×
∏4

i=1 X(Ti) its imageX is a locally complete intersection in
the quotient, which isB × Y. This follows from the definition of good quotient which
is locally an affine quotient [B-B, Ch. 5], hence functions definingX̂ locally descend to
functions definingX . ut

Lemma 2.23. Over an open setB′ ⊂ P2 containing the points[1, 0, 0], [0, 1, 0], [0, 0, 1]
the projection morphismX → B′ is flat. The fibers over these points are reduced and
isomorphic to, respectively, the geometric model ofT and of its elementary mutations
along the edgee0.
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Proof. First, the fibers in question,X[∗,∗,∗] , of X → B are models of the claimed trees.
Indeed, this follows from the universal properties of good quotients (cf. [B-B]), as they
are quotients of the respective productsX 0

[∗,∗,∗] ×
∏4

i=1 X(Ti), which are located, as

three invariant subvarieties, in̂X = X 0
×

∏4
i=1 X(Ti). This, in particular, implies that

the corresponding fibers ofX → B are of the expected dimension, hence are contained
in a setB′ ⊂ P2 over which the map in question is equidimensional. SinceY is toric it is
Cohen–Macaulay and becauseX is locally complete intersection inY, it is also Cohen–
Macaulay [Ei, Prop. 18.13]. Finally, the mapX → B′ is equidimensional, hence flat,
becauseB′ is smooth (see [Ei, Thm. 18.16]). ut

Theorem 2.24. The geometric models of3-valent trees with the same number of leaves
are deformation equivalent inPL.

Proof. This is a combination of 2.18 and 2.23. ut

2.4. Hilbert–Ehrhart polynomial

Definition 2.25. Given two pointed trees(T1, `1) and (T2, `2) we define theirpointed
graft to be the pointed tree(T , o) = (T1, `1) ? (T2, `2) whereT = T1 `1∨o1 qqMM

o2∨`2 T2,
ando, o1 ando2 are the leaves ofqqMM.

Example 2.26. The pointed graft of two 3-valent stars is
11


 ◦ ?



11◦ = MM
11


 qq



11

◦

By arguments used in the proof of 1.13 we also get

Proposition 2.27. Let (T1, `1) and(T2, `2) be two pointed trees. Then

1(T1 `1?`2 T2) = 1(T1) `1×o1 1(qqMM) o2×`2 1(T2).

Let us consider a 3-dimensional latticeM = Ze0⊕Ze1⊕Ze2 with a fixed tetrahedron
10 with vertices 0,e0+ e1, e0+ e2, e1+ e2. By M̂ ⊂ M we denote the index 2 sublattice
spanned on the vertices of10.

Definition 2.28. Let n be a positive integer and letf n
1 = f1, f n

2 = f2 be two functions
defined on the set{0, . . . , n} with values inZ or, more generally, in an arbitrary ring or
algebra (we use the superscriptn to indicate the domain off ’s). For anyk ∈ {0, . . . , n}

we define
(f1 ? f2)(k) =

∑
u∈M̂∩n10

e∗0(u)=k

f1(e
∗

1(u)) · f2(e
∗

2(u)).

We note that? is commutative, that is,f n
1 ? f n

2 = f n
2 ? f n

1 , but possibly not associative.
By (f n)?m we denote the consecutive? product ofm copies off n, that is,f n ? (f n ?

(. . . (f n ? f n) . . .). By 1n we denote the constant function{0, . . . , n} → {1} ⊂ Z.
A functionf n : {0, . . . , n} → Z will be calledsymmetricif f n(k) = f n(n− k).
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Lemma 2.29. If f1 = f n
1 , f2 = f n

2 : {0, . . . , n} → Z are symmetric functions then
f1 ? f2 is also symmetric and fork ≤ n/2 we have

(f1 ? f2)(k) = 2 ·
(k−1∑

i=0

i∑
j=0

f1(i)f2(k + i − 2j)
)
+

(n−k∑
i=k

k∑
j=0

f1(i)f2(k + i − 2j)
)
.

In particular, for k ≤ n/2,

(f1 ? 1)(k) = 2
k−1∑
i=0

(i + 1)f1(i)+

n−k∑
i=k

(k + 1)f1(i).

Proof. Let us look at sections of the tetrahedronn10 with hyperplanes(e∗0)
−1(k). We

picture the situation forn = 6 andk = 0, . . . , 6. For everyk the dotted square is a
suitable section of the cuben�M with the lower left corner satisfyinge∗1 = e∗2 = 0. Then
the section of the tetrahedron is denoted with solid lines and the points of the latticeM̂

inside the (closed) tetrahedron are denoted by•.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

•

•������������•
•
•
•
•

•
•??

•����������

•����������

??

•
•
•
•

•
•
•
•

•

•????

•��������

•��������

????

•
•
••

•
•

•
•
•
•
•

•

•??????

•������

•������

??????

•
•

•
•

•
•

•
•

•
•

•
•

•

•????????
•����

•����

????????
•
•
• •
•
•

•
•
•
•
•

•

•?????????? •��

•��
??????????
•
•
•
•

•
•
•
•

•

•
??

??
??

??
??

??

•
•
•
•
•

The definition off1 ? f2 involves the sum of products offi ’s over the lattice points of
such a section. The sections overk andn − k are obtained by reflection with respect to
eithere∗1 = n/2 or e∗2 = n/2. Thus if one offi ’s is symmetric then so isf1 ? f2.

On the other hand, for 0≤ k ≤ n − k the tetrahedron’s section is a rectangle with
vertices(k, 0), (0, k), (n − k, n), (n, n − k) which we divide into two triangles and a
parallelogram; the division is indicated by dotted vertical line segments for boxes labeled
by k = 1, 2 in the above diagram. Because the functionsfi are symmetric the values of
the productf1 · f2 are the same for two points which are symmetric with respect to the
center of the square. Thus in the formula of the lemma we take the valuef1(a)f2(b) for
all integral pairs(a, b) in the left hand side triangle and multiply it by 2 (that yields the
first summand in the formula) and add the sum over the parallelogram. ut

Example 2.30. We note that(1n)?2(k) = (k + 1)(n − k + 1) is the number of lattice
points in the rectangle used in the argument in the above proof of 2.29. On the other hand,
by using the formula from 2.29 one gets

(1n)?3(k) =
1

6
(k + 1)(n− k + 1)(n2

+ kn− k2
+ 5n+ 6).

Let us recall that given a lattice polytope1 ⊂ M̂R, we define theEhrhart function
h1 as follows:

h1(n) = |n ·1 ∩ M̂| for any positive integern.
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If moreover 1 is normal, as in Section 1.2, thenh1 = hX(1) where the latter is
the Poincaré–Hilbert polynomial of(X(1),O(1)), which, by definition, is equal to
dimC H 0(X(1),O(m)) for m� 0 (cf. 1.16).

Definition 2.31. Let 1 ⊂ M̂R be a lattice polytope which is not contained in any hy-
perplane and letv be a non-zero form on̂M. Suppose thatv(1) ⊂ [0, 1]. We define the
relative Ehrhart functionf n

1,v : {0, . . . , n} → Z with respect to the latticêM by setting

f n
1,v(k) = |v−1(k) ∩ n ·1 ∩ M̂|

We note that, clearly,
∑n

k=0 f n
1,v(k) = h1(n) is the usual Ehrhart function. Thus, for

normal polytopes the above definition can be restated in a purely geometric fashion.

Lemma 2.32. Suppose that1 is a normal lattice polytope andv is as in2.31. Consider
a linearization of the action of the1-parameter groupλv onH 0(X(1),O(n)) which has
non-negative weights and the eigenspace of the zero weight is non-trivial. Thenf n

1,v(k)

is equal to the dimension of the eigenspace of the action ofλv of weightk.

Proof. This is a consequence of the standard properties ofX(1), 1.16.4. ut

Lemma 2.33. Let (T1, `1), (T2, `2) be two pointed trees and letf n
`1

andf n
`2

be the rel-
ative Ehrhart functions associated to1(T1), 1(T2), respectively. If(T , o) = (T1, `1) ?

(T2, `2) andf n
o is the relative Ehrhart function associated to1(T ) thenf n

o = f n
`1

? f n
`2

.

Proof. The two definitions of? are consistent. ut

Example 2.34. By using 2.30 we find out that

n∑
k=0

(1n)?2(k) =
(n+ 1)(n+ 2)(n+ 3)

6
,

which is the Poincaré–Hilbert polynomial of(P3,O(1)), while

n∑
k=0

(1n)?3(k) =
(n+ 1)(n+ 2)(n+ 3)(n2

+ 4n+ 5)

30
,

which is the Poincaré–Hilbert polynomial of the intersection of two quadrics inP7.

Theorem 2.35. Consider three pointed trees(Ti, `i), i = 1, 2, 3, with relative Ehrhart
functionsf n

i = f n
`i

associated to the polytopes1(Ti), respectively. Then

(f n
1 ? f n

2 ) ? f n
3 = f n

1 ? (f n
2 ? f n

3 ).
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Proof. Let ` denote the distinguished leaf of the result of the? operation on the trees.
Then the relative Ehrhart functions

(
f n

1 ? f n
2

)
? f n

3 andf n
1 ? (f n

2 ? f n
3 ) are respectively

related to the following trees, each of which is obtained by an elementary mutation from
the other:

11
`





T3




T1

11

T2

←→

11
`





T1




T3

11

T2

Now we repeat Construction 2.21, with obvious modifications. Namely, we define a
polytope

1 =
(
1̃0×

3∏
i=1

1(Ti)
)
∩

3⋂
i=1

ker(`i − ṽi)

where1̃0 is the unit simplex as in 2.5. We define a toric varietyY = X(1) with the
embedding inPL and the action of the groupλ`.

Next, as in 2.22 we define a subvarietyX ⊂ B×Y such that the projectionpB : X →
B is flat and its two fibers are varieties associated to the above two pointed trees (see 2.23).
By flatness the sheaf(pB)∗(p

∗

Y (O(n))) is locally free for eachn ≥ 0 (see [Ha, III.9.9,
III.12.9] and 2.16). Moreover, by construction, the action of the groupλ` on Y leaves
X ⊂ B × Y invariant, as noted in 2.20. Finally, the decomposition into eigenspaces of
the action ofλ` on H 0(Y,O(n)) restricts to a corresponding eigenspace decomposition
of the action ofλ` on the fibers of(pB)∗(p

∗

Y (O(n))), which are equal toH 0(Xb,O(n))

for b ∈ B. This implies that the dimension of those eigenspaces is locally constant with
respect tob ∈ B, hence the relative Ehrhart function of fibers ofpB is constant, which
concludes the argument. ut

Let us underline the fact that although the invariance of the Hilbert polynomial is a stan-
dard property of a flat family the above result is about the invariance of the family with
respect to an action of a 1-parameter group, the groupλ` in our case.

Theorem 2.35 implies that the operation? on the relative Ehrhart functions of poly-
topes of 3-valent trees is not only commutative (which is obvious from its definition) but
also associative. This implies that the function depends neither on the shape of the trees in
question nor on the location of the leaf. Therefore we have the following formula which
allows one to compute the Hilbert–Ehrhart polynomial very efficiently.

Corollary 2.36. If (T , `) is a pointed3-valent tree withr + 1 leaves then

f n
1(T ),` = (1n)?r .

A. Appendix

A.1. Normal polytopes, unimodular covers

A lattice simplex10
⊂ MR with verticesv0, . . . , vr is calledunimodularif the vectors

v1 − v0, . . . , vr − v0 spanM. We say that a lattice polytope1 ⊂ MR has aunimodular
coveringif 1 =

⋃
ν 10

ν where the10
ν are unimodular simplexes. This definition is taken

from [BGT] where we also have the following result.
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Lemma A.1. If a lattice polytope1 ⊂ MR has a unimodular covering then it is normal.

The following observation is probably known but we include its proof because of the
proof of the subsequent lemma.

Lemma A.2. Let 11 ⊂ (M1)R and 12 ⊂ (M2)R be two unimodular simplexes. Then
11×12 has a unimodular covering inM1×M2.

Proof. We can assume that the simplex11 has vertices 0, e1, . . . , er and12 has vertices
0, f1, . . . , fs . Suppose thatx ∈ (M1)R × (M2)R is as follows:

x =

r∑
i=1

aiei +

s∑
i=j

bjfj

whereai, bj ≥ 0 and
∑

ai ≤
∑

bj ≤ 1.
The union of the unimodular simplexes contained in11 × 12 is a closed subset.

Therefore ifx is not contained in any modular subsimplex of11 × 12 then neither is
any small perturbation ofx. Thus we are free to assume that allai ’s andbj ’s are non-
zero and any two non-empty subsets ofai ’s andbj ’s have different sum, in particular
a1+· · ·+ap 6= b1+· · ·+bq for any reasonable(p, q). Letm be suchb1+· · ·+bm−1 <

a1+ · · · + ar < b1+ · · · + bm. We setb′m = (b1+ · · · + bm)− (a1+ · · · + ar).
In order to prove the lemma we will findr +m− 1 positive numbersci,j indexed by

some pairs(i, j) ∈ {1, . . . , r} × {1, . . . , m} such that

x =
∑
(i,j)

ci,j (ei + fj )+ b′mfm + bm+1fm + · · · + bsfs

where the sum is over the chosen pairs (for the other pairs(i, j) the coefficientsci,j are
assumed to be zero) and the set of corresponding vectorsei+fj together withfm, . . . , fs

can be modified via addition and subtraction to the standard basise1, . . . , er , f1, . . . , fs .
The coefficientsci,j are defined inductively according to the following rules. The

first coefficient isc1,1 = min{a1, b1}. Suppose that the last coefficient defined isci0,j0.
If (i0, j0) = (r, m) then we are done so assume that it is not the case. Then, because
of our assumption that the sequences(ai) and (bj ) have no equal partial sums, either
a1 + · · · + ai0 > b1 + · · · + bj0, or a1 + · · · + ai0 < b1 + · · · + bj0. In the former case
we set

ci0,j0+1 = min{bj0+1, (a1+ · · · + ai0)− (b1+ · · · + bj0)},

whereas in the latter case we define

ci0+1,j0 = min{ai0+1, (b1+ · · · + bj0)− (a1+ · · · + ai0)}.

The verification that
∑r

i=1 ci,j = bj for j = 1, . . . , m − 1,
∑r

i=1 ci,m = bm − b′m and∑m
j=1 ci,j = ai for i = 1, . . . , r is left to the reader. Also, a simple backtracking allows

us to modify the set consisting of the corresponding vectorsei +fj andfm, . . . , fs to the
standard basis forM1×M2. ut
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Lemma A.3. Let11 ⊂ (M1)R and12 ⊂ (M2)R be two unimodular simplexes. Consider
two homomorphisms̀i : Mi → Z such that(`i)R(1i) ⊂ [0, 1]. Then the fiber product
1 = (11) `1×`2 (12) has a unimodular covering with respect to the fiber product lattice
M = M1 `1×`2 M2.

Proof. The argument is a variation of the one used in the previous lemma. We can as-
sume that11 has vertices 0, e0

1, . . . , e
0
r0

, e1
1, . . . , e

1
r1

and12 has vertices 0, f 0
1 , . . . , f 0

s0
,

f 1
1 , . . . , f 1

s1
where`1(e

0
i ) = `2(f

0
j ) = 0 and`1(e

1
i ) = `2(f

1
j ) = 1 for suitablei’s and

j ’s. Suppose thatx ∈ (M1)R × (M2)R is as follows:

x =

r0∑
i=1

a0
i e

0
i +

r1∑
i=1

a1
i e

1
i +

s0∑
j=1

b0
j f 0

j +

s1∑
j=1

b1
j f 1

j

wherea0
i , a

1
i , b

0
j , b1

j ≥ 0,
∑

a0
i +

∑
a1
i ≤ 1,

∑
b0
j +

∑
b1
j ≤ 1 and moreover

∑
a1
i =∑

b1
j . The last condition ensures that`1(x) = `2(x) and it is the only condition which

cannot be perturbed as in the proof of the previous lemma.
We writex = x0+x1 wherex0 =

∑
a0
i e

0
i +

∑
b0
j f 0

j andx1 =
∑

a1
i e

1
i +

∑
b1
j f 1

j and
we repeat the proof of A.2 forx0 andx1 separately. The only difference is that, because
of the equality

∑
a1
i =

∑
b1
j , the construction will giver1 + s1 − 1 coefficientsc1

i,j and

associated pairs of vectorse1
i + f 1

j , which will enable us to writex1 =
∑

c1
i,j (e

1
i + f 1

j ).

Thus, clearly, the vectorse1
i + f 1

j do not constitute a basis of the lattice spanned by

e1
1, . . . , e

1
r1

, f 1
1 , . . . , f 1

s1
but of this lattice intersected with ker(`1 − `2). That is, among

the chosenr1 + s1 − 1 vectorse1
i + f 1

j we havee1
1 + f 1

1 ande1
r1
+ f 1

s1
, and if e1

i + f 1
j

is chosen then so is eithere1
i+1 + f 1

j or e1
i + f 1

j+1 (but not both). We have to prove that

any vectore1
i + f 1

j , wherei = 1, . . . , r1, j = 1, . . . , s1, can be obtained as an integral
coefficient sum of ther1+s1−1 vectors chosen in our algorithm. But this follows because

(e1
i + f 1

j )+ (e1
i+1+ f 1

j+1) = (e1
i+1+ f 1

j )+ (e1
i + f 1

j+1)

so any one of the above four vectors is a combination of the other three and this observa-
tion can be used repeatedly to prove our claim. ut

Corollary A.4. Let 11 ⊂ (M1)R and12 ⊂ (M2)R be two polytopes which have uni-
modular coverings. Consider two homomorphisms`i : Mi → Z such that(`i)R(1i) ⊂

[0, 1]. Then the fiber product1 = 11 `1×`2 12 has a unimodular covering with respect
to the fiber product latticeM = M1 `1×`2 M2.

Proof. The fiber product of11 and12 is covered by fiber products of simplexes from
the unimodular covers of each of them. Thus the result follows by A.3. ut

Since the polytope of the star 3-valent tree is a unit tetrahedron, because of 1.13, by
induction on the number of inner nodes we get the following result.

Proposition A.5. If T is a trivalent tree then its polytope1(T ) in M̂(T ) has a unimod-
ular covering, hence it is normal.



Binary symmetric models of phylogenetic trees 633

A.2. Two 3-valent trees with six leaves

One of the fundamental questions regarding phylogenetic trees is the following. Given
two treesT1 andT2 suppose that1(T1) ∼= 1(T2) as lattice polytopes, or the projective
modelsX(T1) andX(T2) are projectively equivalent. Does this imply that the trees are
equivalent (as CW complexes) as well?

We tackled this problem and compared models of the two simplest non-equivalent
trees. These are the 6-leaf trees pictured below, a 3-caterpillar and a snow flake tree [StSu].

????

���
� \\\\

��
�

eeee
""
"" \\\\

����
???

? TTT
444

��
� jjj





00

0

zzz DDD

The snow flake tree is obtained from the 3-caterpillar tree by elementary mutation along
its middle inner edge. Therefore their Hilbert–Ehrhart polynomials are equal and com-
puted with [maxima ] to be as follows:

h(n) =
1

22680
(n+ 1)(n+ 2)(n+ 3)

· (31n6
+ 372n5

+ 1942n4
+ 5616n3

+ 9511n2
+ 8988n+ 3780).

On the other hand, we can distinguish their polytopes in terms of some combinatorial
invariants.

Given a polytope1 we define itsincidence matrix(aij ) as follows:(aij ) is a sym-
metric matrix with integral entries such that fori ≤ j the numberaij is equal to the
number ofi-dimensional faces contained inj -dimensional faces of1. In particularaii is
the number ofi-dimensional faces. The following is the incidence matrix of the polytope
of the snow flake tree:

32 480 2400 6144 9312 8832 5280 1920 384
480 240 2400 9456 19920 24960 19200 8880 2256
2400 2400 760 5944 19008 32552 32408 18792 5872
6144 9456 5944 1316 8400 21744 29308 21720 8388
9312 19920 19008 8400 1392 7200 14640 14640 7200
8832 24960 32552 21744 7200 940 3820 5760 3820
5280 19200 32408 29308 14640 3820 406 1224 1224
1920 8880 18792 21720 14640 5760 1224 108 216
384 2256 5872 8388 7200 3820 1224 216 16

And this is the incidence matrix of the polytope of the 3-caterpillar tree:

32 480 2400 6144 9312 8832 5280 1920 384
480 240 2400 9456 19904 24896 19104 8816 2240
2400 2400 760 5944 18976 32408 32168 18616 5824
6144 9456 5944 1316 8384 21648 29112 21552 8336
9312 19904 18976 8384 1392 7184 14584 14576 7176
8832 24896 32408 21648 7184 940 3816 5752 3816
5280 19104 32168 29112 14584 3816 406 1224 1224
1920 8816 18616 21552 14576 5752 1224 108 216
384 2240 5824 8336 7176 3816 1224 216 16
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Both matrices were computed by [polymake ]. We note that although both polytopes
have the same number of faces of the same dimension their incidences are different (in-
dicated in boldface).
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