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Abstract. We investigate projective varieties which are binary symmetric models of trivalent phy-
logenetic trees. We prove that they have Gorenstein terminal singularities and are Fano varieties of
index 4 and dimension equal to the number of edges of the tree in question. Moreover any two such
varieties which are of the same dimension are deformation equivalent, that is, they are in the same
connected component of the Hilbert scheme of the projective space. As an application we provide
a simple formula for computing their Hilbert—Ehrhart polynomial.
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0. Introduction

The grand idea of phylogenetics is to reconstruct the historical relations between species
by analyzing their present features and putting their common ancestors in a diagram
which forms a tree. This leads to describing the evolution in terms of a Markov pro-
cess on a tree. Subsequently, by looking at the distribution of random variables associated
to this process one arrives at geometric models of phylogenetic trees, which eventually
yields algebraic varieties. These, in turn, can be studied in purely algebro-geometric way
in order to get algebraic relations which describe the dependency between the variables
encoded in the underlying tree.

Our original task was to compute the Hilbert—Ehrhart polynomial for a variety arising
as a binary symmetric model of trivalent phylogenetic trees. The Hilbert—Ehrhart poly-
nomial provides information on the number of algebraic relations defining the variety in
guestion. Unexpectedly, however, the polynomial does not depend on the shape of the
tree but merely on its size, the number of leaves or, equivalently, the dimension of its geo-
metric model. Looking for an explanation of this phenomenon we found one of the main
results of the present papler, 4.24, which asserts that models of trees with the same number
of leaves are deformation equivalent, that is, they are in the same connected component of
the Hilbert scheme of the projective space in question (hence they have the same Hilbert
polynomial).
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The fact that the geometric models of trees modeling some processes—which are
discrete objects—Ilive in a connected continuous family of geometric objects probably
deserves an explanation in terms of algebraic statistics or even biology (ctl[BHV]). For
the algebraic geometry part we have a natural question of irreducibility of the component
of the Hilbert scheme containing these models and (if the irreducibility is confirmed)
about varieties which arise as general deformations (that is, over a general point of the
component of the Hilbert scheme in question). The question about a general deforma-
tion of the model is related to the other main result of the present dape}, 2.15, which
is that these models are index 4 Fano varieties with Gorenstein terminal singularities.
Thus one would expect that their general deformationsisiaothFano variety of index 4
(cf. [Na]).

The present paper is organized as follows. We deal with varieties defined over the
complex humbers. In the first section we recall and restate definitions and results about
binary symmetric models of trivalent trees. We do it on the level of toric varieties, by
defining toric data associated to a tree and then using a standard toric construction of
associating a variety to a polytope in a lattice. For an explanation regarding the reduction
to toric varieties we refer the reader {o [StSu] and [ERSS], with original derivations in
[EiSt] and [SSE]; another view is presented[in [BUWi].

In Section 1 we also present important technical results: a fiber product formula for
polytopes of tree§, 1.13, and its counterpart for varieties, a quotient fgrmula 1.20 which is
a special case pf 1.[19. The latter asserts that, under suitable assumptions, the toric variety
associated to a fiber product of two polytopes is a Mumford’s GIT (Geometric Invariant
Theory) quotient of the product of the corresponding varieties. We notg that 1.13 can be
derived from [StSu].

The second section of the present paper contains its main results. After a brief dis-
cussion of equations defining a geometric model of a tree, with special consideration of
a tree with two inner nodes and four leaves, we examine fans of geometric models and
resolution of their singularities, with 2.JL5 being the main structural result of this part.
Next we consider deformations of models of trees. The approach is, roughly, as follows:
we know how to deform equations of a small tree with four leaves and one inner edge,
the result of the deformation is another tree with the inner edge “mutated”:

1 3 1 3
. L
2 4 2 4
Applying the GIT quotient formulg, .19, we are able to use this elementary deformation
associated to four-leaf trees to get a similar deformatiom¥eryinner edge of any tree,
[2.22. This implies a result about deforming one geometric model to another, 2.24.

In the last part of Section 2, we discuss the Hilbert—Ehrhart polynomial of binary
symmetric models of trivalent trees. We define a relative version of the polynomial and
then a product of such polynomials which is related to gluing the corresponding trees.
The deformation procedure implies associativity of the product which not only implies

the invariance of the Hilbert—Ehrhart polynomial for trees with the same number of leaves
but also provides a simple formula for computing it, 2.36.
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In the appendix we prove that a fiber product of two polytopes admitting unimodular
covers has this property as w¢ll, A.3. This provides a straightforward proof of normality
of polytopes associated to trivalent trees and, what is equally important, it is used in
constructing corresponding normal objects in the proofs of| 1.19 andl 2.24. We note that
the part regarding normality of polytopes associated to trees follows from known results.
Namely, in [StSU] it is proved that the ideal of the binary symmetric model of a trivalent
tree has a Grobner basis consisting of quadrics, hence by [St2, Prop. 13.15] the toric
variety in question and its underlying polytope are normal.

In the last part of the appendix, usirgolymake | software, we verify a simple (yet
9-dimensional) example to check that the polytope models of different trees in this case
are different. The question if the models of non-isomorphic trees are non-isomorphic is
open (cf. [AIRAY)).

The paper uses consistently the language of algebraic geometry, including toric ge-
ometry. We ignore relations to algebraic statistics and biology, suggesting the reader to
look into [PaSt], [Se$t] o [Fe] (or intd [ERS$S] for a concise exposition), to get an idea
about the background of the problems that we deal with. It was our primary intention to
make the paper self-contained so that it can be read by an algebraic geometer with no
knowledge of its possible applications outside algebraic geometry. On the other hand, a
reader who is not familiar with algebraic geometry but is interested in acquiring ideas
which are important in our approach (regarding quotients and deformations) is advised to
look into [Re] and[[Al] for a short exposition of these matters.

0.1. Notation

| A| denotes the cardinality of a finite sdt

A lattice is a finitely generated free abelian group.

Depending on the context a subscript denotes the extension of the basic ring or a fiber
of a morphism, e.gMr = M ®z R.

o

[¢]

[¢]

o Given a finite-dimensional vector space (or a lattigeyvith a basis{vy, ..., v,}, we
will denote by{v], ..., v;} the dual basis oV *, that is, v} (v;) = 1 andv’(v;) = O if
i# .

For a vector spac¥ we denote by SymiV) its symmetric algebra.

[e]

1. Preliminaries: trees and toric geometry
1.1. Trees, lattices, polytopes

Notation 1.1. A tree7 is a simply connected graph (1-dimensional CW complex) with
aseté = £(7) of edges and’ = V(7) of vertices and the (unordered) boundary map
3 : & — V"2, whereV"2 denotes the set of unordered pairs of distinct elements e
note thafV| = |£|+1 where|€] is assumed to be positive. We writér) = {01(e), d2(e)}
and saw is a vertex ok or e containsv if v € {31(e), d2(e)}; we then simply writew € e.
Thevalencyof a vertexv is the number of edges which contailit is positive sincel is
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connected and assumed to have at least one edge). A vastealled deaf if its valency

is 1, otherwise it is called aimner vertexor anode If the valency of each inner node is
m then the tree will be callegi-valent The sets of leaves and nodes will be denafed
and\, respectively, s& = £ U N. An edge which contains a leaf is callegetiolg an
edge which is not a petiole is called emmer edggor branch, and the set of inner edges
will be denoted by”.

Example 1.2. A caterpillar of lengthn is a 3-valent tree withx inner edges and + 1

inner nodes which after removing all leaves and petioles becomes just a string of edges.
That is, there are exactly two inner nodes to which there are attached two petioles, and
any other inner node has exactly one petiole attached.

TS

Given a treel” we encode it in terms of dual lattices.

Definition 1.3. Let 7 be a tree with the seV of vertices and€ of edges. We define
M = M(T) = @,.¢ Z- e to be the lattice (free abelian group) spanned on thefsekiet
N = N(7T) = Hom(M, Z) be the dual lattice. We represent element¥’ afs elements
of N. Namely, fow € V we set(e) = 1if e contains the vertex andv(e) = 0 otherwise.
The pair(M, N) together with the choice of the bagiof M and the seV C N is called
thelattice pairof the tree7 .

From this point on we identify the edges and verticeg ofith the appropriate elements
in M(7) andN (7). The elements of the basis 8fdual to{e € £} will be denoted by*.
Then for anyv € V we have, by definitiony = ), e* : M — Z. In particulary is a
leaf if and only ifv = ¢* for somee which is a petiole fow.
Let us recall thafy| = |€| + 1 so the set of vertices has to be linearly dependeitin
The set of vertices df” can be divided into two disjoint classes, Say= V~ U V™, each
class consisting of vertices which can be reached from one another by passing through an
even number of edges. The following observation is known.

Lemma 1.4. The equality) .- v = >, .+ v IS, up to multiplication by a constant,
the only linear relation inV between vectors froii. In particular, any proper subset of
Y consists of linearly independent vectorshNin

Definition 1.5. Given a tree7” with the lattice pair(M, N) = (M(7), N(7)) we define
its normalized lattice paitM, N) = (M(T), N(7)) as follows:M = {u € M : Vv € V
v(u) € 2Z} and N is a dual of M which containsV and the seV' /2 = {v/2 1 v € N}.

Lety = {u € Mg : Ve € £ 0 < ¢*(u) < 1} be the unit cube in the spadég. If Aisa
polytope inMR whose vertices are contained in the set of verticds gfthen we call it
a 0/1 polytope(or asubcubg

Definition 1.6. Given a binary tree7 with its lattice pair (M, N), its polytope model
A(T) is a polytope in the latticdf which is the convex hull ofu = Y aje; € M : a; =
0, 1andv(u) € 27 for everyv € N}.
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We note that the vertices df are precisely those vertices(@fy, which are in the sublat-
tice M C M. The vertices ofdy, can be interpreted as remainders of dividing elements
of M by 2 or, in other words, as vectors in the linear spitg = M ®z, Z,. Thus we

get the following.

Lemma 1.7. If the vertices of the cubig,, are identified with vectors in the linear space
M ® 7 then the vertices oA (7') form the linear subspac&~ ¢ M ® Z, of zeros of
the formsv € N ® Z,, wherev € (7).

Corollary 1.8. The polytopeA (7) has2!£1-1 vertices.

Proof. We usg 1.J7: by T]4 the's in \/ are linearly independent iN' ® Z> so the dimen-
sion of the space of their zerosM ® Zy is |E| — IN| = |£] — 1. o

Example 1.9. An m-star treds a tree with one inner node and> 3 leaves. The 3-star
tree will be denoted byl.. The vertices of the polytopa () with edgeseo, e1, e are
asiollows: 0.1 + €2, e2 + eg andeg + e1 so thatA (L) is a 3—dimenAsionaI tetrahedron.
If M c M is the sublattice spanned by the vertices\gfL) thenM /M = 7.

We note that the inequalities definirg_L) are as follows:

(—v/2)(-) = =1,  (v/2—ep)(-) =0, (v/2—e)(-) =0, (v/2—e5)(-) =0,
where (recally = ej + e] + e5.

Construction 1.10. A pointed treg(7, £) is a pair consisting of a tre& and a leaf €
L(T). Given two pointed treeg7;, £1) and (72, £2) we define theirgraft as follows:
T =Ty ¢,Ve, T2 is a tree obtained by removing from ea&hthe leaf¢; and identifying
their respective petioles, which become an inner edge of the resulting tree

For example, a graft of two 3-star trees with distinguished leaves denotedshifie

following operation:
ye{ )<

We note that any 3-valent tree is obtained from 3-star trees by a sequence of consec-
utive grafts.

Let us take two latticed4;, i = 1, 2, with distinguished baseﬁzg, .. .,eﬁnl} and
corresponding L polytopesA;, with the sets of vertices;. Let¢; = (66)* M > Z
be the projection to the zeroth coordinate; by abuse of notatjowjll also denote its
composition with the projectiod; x M, — M; — 7Z. Now we can take the fiber
product of these objectd/y ¢,x¢, M2 C M1 x M> consists of the pairé&s, uz) such
that1(u1) = €2(u2). In other words My ¢,x, Mo = ker(€y — £2) and Ay ¢,x¢, Ap =
(A1 x A2) Nker(¢1 — £2).

The proof of the following observation is fairly standard and we skip it.
Lemma 1.11. In the above situatioth = Aj4,x¢, Az isa0/1 polytope inM = M1¢,x¢,
M> with the set of verticesl = A1 ¢,x¢, A2. In general, ifA; C (M;)gr andy¢; : M; — Z

are lattice homomorphisms such tha{A;) c [0, 1] then the set of vertices & =
A1 g%, Az is the fiber product of the vertices Af’s.
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Example 1.12. Let us consider two copies of a tetrahedron, as in Exapple 1.9. That is,
fori = 1,2,in alatticeM’ = Ze{, ® Ze} & Ze), we consider the tetrahedr spanned

on the vertices Ggl) + e}, ¢} + ¢} ande), + €. We take the projectiong)* : M’ — Z

and in the fiber product

M = My %0, Ma = ker((e3 — ed)*) c My x M
we denote by the elementeé + eS. The resulting fiber product of tetrahedrons
= (A3 x A3 N Mg
has the following vertices:,@} + e, €2 + €3, el + el + ¢ + €3, e0 + el + €2, e0 + 1
+e§,eo+e%+e%,eo+e%+e%.
Proposition 1.13. Let (71, £1) and (72, £2) be two pointed trees. Then

M(Ti ¢ Ve, T2) = M(Th) e;xe, M(T2),
A(T1 Ve, T2) = A(Th) ¢%e, A(T2).

Proof. Let M1y = M(71), M2 = M(72), and similarly forN's, M’ and N's. We set
T = T1 ¢Ve, T2. Then, by Construction .10/ = M(7) = M1 ¢;x¢, M2 andlly =
Emy eXe, Bu,. The two projectiong; : M — M, yield the corresponding injections
of Hom( - , Z)-spacesy; : N; — N (infact N = (N1 x N2)/Z(£1 — £2)). If N; and
N denote, respectively, the inner nodesZpfand7 thenN = 11(N1) U 12(N2). Since
N, N1, N7 are defined by extending, N1, N2 by N'/2, N1/2 and/N>2/2, respectively, it
follows thatN = N1 + N2 in Ng. This implies the first equality of the lemma. Similarly,
since the sef\V' determines those vertices &fy; which spanA(7) we get the second
equality. O

Thus, in view of the above result, the structure of the polytayg&) can be described
briefly as follows:A(7) is the fiber product of the polytopes of the star trees associated
to the inner nodes of the tree, fibered over the relations encoded in the inner branches of
the tree. Since\ (1) is a 3-dimensional tetrahedron, this is especially straightforward in
the case of 3-valent trees becausg) is then the product of copies of the tetrahedron
labeled by the inner nodes @f, fibered by the relations presented by the inner branches
of 7.

1.2. Toric variety arising from a tree

First, we recall the construction of a projective toric variety from a lattice polytope of
characters. For generalities regarding toric geometry we refer the readerr to [Fu] ahd [Oda].
Let M andN be dual lattices of characters and 1-parameter subgroups for an algebraic
torusTy = N ®z C*.

Definition 1.14. A lattice polytopeA C A7IR is callednormalif

o the sublattice of/ spanned by the differences of pointsm M is equal toM,
o for every integed > 0 any pointind A N M is equal to a sum aof points inA N M.
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Equivalently, the second condition in the above definition can be restated as follows. Let
M =M Z and take an affine mag : M — M’ such thatiy(u) = (u,1). ThenA

is normal inM if and only if the semigroup spanned i byii(AN M) is equal to the
semigroup of lattice points in the cone spanneMﬁ by i1(A), that is, the semigroup

R-o(i1(A)) N M.

Definition 1.15. Suppose thaA is a normal polytope . LetA‘i be aC-linear space
with the basidx" : u € dA mVI}. We consider the grade@-algebraA(A) = @ -0 A‘i
with multiplication x“1 x%2 = y*“1t“2_ ThenX (A) = ProjA(A) is called theprojective
modelof A.

We note that in the above situatiof(A) is a normal ring, that is, it is integrally closed

in its field of fractions. This, by definition, is equivalent to saying that the affine spectrum
SpecA(A)) is a normal affine variety. In fact, in such a caseA) is the semigroup
algebra ofR>q(i1(A)) N M’ so Spe€A(A)) is an affine toric variety with the big torus
T5¢z- In the projective case we have the following general result which summarizes the
properties of the projective model of a normal polytope (5ee[Oda, Sect. 2.1+2.4], [St1],

[St2, Sect. 13] or[[Fu]).We denote PBymm(AY)) = PIAMMI=1 py P,

Proposition 1.16. Suppose that is a normal polytope in the lattic#f of characters of
atorusTy. Then the following holds:

1. X(A)is atoric variety in the sense {@dé]and[Fu] with thebig torusTs which acts
effectively onX (A) with an open orbit.

2. X(Ad) is embedded if* 5 as a projectively normal variety such thaC (X (A), Ox (d))
= A4.

3. The characters froms N M define a diagonal action dfy; onP5 which restricts to
the torus action orX (A) so that the inclusiorX (A) < P, is Tx-equivariant.

4. The mduced action of’j; on HO(X(A), Ox(d)) is Ilneanzable with weights in
dANM.

5. X(A) C P, isthe closure of the image of the m&p — P» defined by the characters
fromANM.

Because df A5 the polytope mod&l7) of a 3-valent tre¢/ is normal so we can con-
sider its projective model as defined above.

Definition 1.17. Let 7 be a3-valent tree. Then the variet¥ (7) := X(A(7)) in the
projective spac®7 := Px (7 is called thebinary symmetric modedf the tree7 .

The above toric model of a phylogenetic tree is, in fact, obtained from a binary symmetric
model in algebraic statistics via Fourier transform (or diagonalization). This reduction is
explained in[[StSu] and [ERSS], with original derivations|in [EvSp] and [SeSt]. Another
purely algebro-geometric view is provided in [BUWi].

It is worth noting that the fiber product formuJla 1}13 as well as normalita¢I)
(seg¢ A.5) are also consequences of resulfs of [StSu]. More generally, using the language of
[StSu], its main theorem implies that group based models with friendly labeling functions
yield polytopes that are fiber products.
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1.3. l-parameter group action, quotients

In this section we consider quotients of projective varieties as in Mumford’s [GIT [Mul].
For a comprehensive exposition of the theory, including a relevant definition of good
quotient we refer to[B-B]. In the present section as well as in Seftidn 2.3 we consider
an algebraic action of the multiplicative gro@ on a projective varietyX — P™.

The action is given by a choice of weights, hence it extends to the affine con&over
which determines its linearization, its set of semi-stable pofritsand itsgood quotient

X5 — X% //C* (seel[B-B, Ch. 6]).

Construction 1.18. Let A; C (M;)g for i = 1,2 be two lattice polytopes admitting
unlmodular covers, hence normal (.A 1), and)den ) C Pum 1 wheren; =
|M N A;|, be their associated toric varieties. Mi* = Ml X Mz we take the prod-
uct polytopeA* = A1 x A which is also normal because.2. Then the associated
toric variety X* = X (A*) C P21 s the Segre image df(Al) x X (A»).

Suppose that; : M; — 7 are lattice homomorphisms such thigHr (A;) C [0, 1].
We lift ¢; to the product of the lattices and <Mi1 X M2 we define the formt; — . It
defines a diagonal actioty, —, of C* onx* cC pmrr 1 which on the coordinate as-
sociated toy “1-42) whereu; € A; N M;, has the We|ghfl(u1) — lo(u2) € {—1,0, 1}.
Accordingly, we regroup the coordinates®fi”2~1 and write them aszf, zf, z,f] de-
pending on whether they are of weighfl, 0 and 1, respectively. That is,

)\'ll lz(t)[zl 7Z ’ ]—[t Zl ,Z ,le]

The above formula defines an action xaf _,, on the cone oveX* and thus aC*-
linearization of the bundl®y (1) in the sense of GIT. Denote by° the intersection
of X with the complement of the space spanned on the eigenvectbys @f of weight
# 0, thatis, X% = X\ {[z, 20, {1 : Vj 20 = O}.

We setM = ker(¢1 — £2) andA = AX Nkerly — €2) = Aq ¢;xe, Ap. By|A4the
polytopeA is normal and thus we denote B(A) its associated toric variety.

Proposition 1.19. In the above situatio&x © is equal to the set of semistable points of the
action ofx¢,_¢,. The projection to the weiglteigenspacez;” ,z e [zo] defines

a regular map ofx° to X (A), and X (A) is a good quotient for the action ‘3‘@1762-

Proof. The sections 00y« (m) for m > 0 make up a vector space spanneg@nwhere

u € mA* N M*. Among them, those which are invariant with respect to the action of

A¢,—e, are associated t@'s in the intersection with kéf1 — £5), thus inmA N M. By

the normality ofA (seq A.4), the algebra of invariant sections is generated by those from
Oxx(1). Thus the set of semistable points of the actionQf ¢, is where at least one of

the coordmates is non-zero and the quotient map is the projection to the weight zero
eigenspace. O

Corollary 1.20. Let (71, £1) and (72, £2) be two pointed trees. Thexi(7y ¢,V¢, 72) is a
good quotient o (71) x X (72) with respect to an action ofy,_g,.
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Example 1.21. Consider theC*-action on the produd®? x P3 given by the formula

A(t)([z%, z%,z%, z%], [zg, zf, z%, z%]) = ([z%, tz%, tz%, z%], [z%, 1z§, _115, z3])
where the superscripts of the coordinates indicate the factor in the pnBiim:]P’g. The
following rational map}P’f X IP’% — — P’ is A-equivariant and regular outside the set
(=23 =22 =22 =0)U{z} = 2} = 22 = 25 = 0}, each component of which is a
quadricP! x P
1.2 1 1.2 1.2 12 1

(28, 23, 23, 231, [23, 22, 23, 23)) > 2523, 2343, 2322, 2343, 2322, 2342, 2375, 2542).
If [xo, . . ., x7] are the coordinates i’ then the image of this map is the intersection of
two quadrics{xgx7 = x1x6} N {x2x5 = x3x4}.

The above claim will be clear if we write the functioml%z]? in terms of characters
of the relevant torus, which we denote b)lklandej?, respectively. Namely, dividing the

right hand side of the above displayed formulazéyg we get the following sequence of
rational functions (c{_T]9):

[1’ Xe%+e§’ Xeé+e%xeg+e%’ Xeé+eixe(2)+eg’ XE%+E:ZLX6(2J+6§7
Xeé+eéxeg+e§’ Xe:{—i-e%7 Xe%—i—eéxei—ﬁ—e%]‘
If we write the sums of the exponents of the above rational function;isy M, and set
eo = e} +eZ then we get the vertices af(_L v L) which we computed in Example 1]12.

Note that from the above formula one can read off the weights with which the 1-parameter
groups iy« i, j = 1,2, associated to leaves, act on the quotient varieB/in
J

2. Geometry of phylogenetic trees
2.1. Paths, networks and sockets

From now on we assume thatis a 3-valent tree an8l (7) in the spac@®r = Py =

P2 -1isits binary symmetric model defined by the polytap€/). The linear coordi-
nates on the ambient projective space are identified with the verticR§7of which are
among the vertices of the cub#y, satisfying the parity relation with respect to the forms
veN CN,asinlp.

Definition 2.1. Apathy of lengthm > 1 on a3-valent tree7 is a choice ofn + 1 distinct
verticesuy, ..., v, such thatvg andv,, are leaves (called the ending pointsjof and
there exisin edgesey, .. ., e,, such thab(e;) = {v;_1, v;} fori =1, ..., m. Anetwork
of paths(or just anetwork I' on 7 is a set of paths (possibly empty), no two of which
have a common vertex.

Atree7 islabeledif its leaves are numbered Hdy. .., |£|. Any subset. C L is rep-
resented by itgharacteristic sequene€l), ..., «(|£]), wherekx (i) = 1 or 0 depending
on whether the leaf numbereds in i or not. Asocketof a labeled tree7 is a subset of
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L which has an even number of elements; each socKetisfidentified with its charac-
teristic sequence. For any network of path®n 7 we define its socket(I") C L to be
the set of leaves which are ending points of pathB.in

Example 2.2. Let us consider a labeled 3-valent tree with four leaves. In the following
diagram, in the upper row we draw all possible networks on this tree, where paths are de-
noted by solid line segments. In the lower row we write down the characteristic sequences
of the respective sockets.

1 3 1 3 1 3 3 1\_/3 :
2 4 2> """ ‘42 <4 > """ < L\ ﬁ/4 2ﬁ\4
0,000 11,00 0011 1111 1010 1001 0110 0101

Lemma 2.3. Let 7 be a3-valent tree. Associating to a netwofk the pointu(I") =
> .T(e)-e e M(T), wherel'(e) = 1, 0 depending on whetheris onT" or not, defines
a bijection between networks and vertices\af7).

Proof. First note thau(I") € A(7). To define the inverse df — u(T"), for any vertex
U =7 ,¢€ e c A(T)we define thesupportof « to consist of the edges a@f whose
contribution tou is non-zero, i.efe € £ : ¢*(u) = 1}. The parity condition (for alb € N/
eitherv(u) = 0 orv(u) = 2) implies that these edges define a networkion O

We note that, because|of [L.8, there dfé-2 networks. On the other hand, the association

of the socket to a network gives a map from the set of networks to the subsets of leaves.
This map is surjective, that is, every subgedf £ with an even number of elements is

the socket of a network. Indeed, this follows by a straightforward induction with respect
to the number of leaves of the tree: in the induction step we write afregewith n + 1

leaves as a graft of a treég with n leaves and a 3-star tre& and consider three cases
depending on how many of the two new leaves replacing the single old one are in the set
u C L. Finally, because the number of all subset£afith an even number of elements
equals ¥£1-1 we get the following.

Lemma 2.4. Let 7 be a3-valent tree. Then associating to a network its socket defines a
bijection between the set of networks of pathgoend the set of subsets 6fwhich have
an even number of elements.

Construction 2.5. Using networks and sockets, and the toric formalism, one can restate
the inclusionX (7) C P7 as follows. LetM = @K#OZ - k be the free abelian group
generated by the non-empty sockets of a fe&Ve interpret the empty socket= 0 as

the zero of the lattice. Defirie, as the toric varlety((AO) associated to the unit simplex
Ain M spanned on the vectors of the distinguished basis.

_ Now the bijective magsockets— networksgives rise to a homomorphism of lattices

M — M(T), where (reca5), the latter lattice is spanned47’) by the points asso-
ciated to networks. This gives the identificatil®p = Pz and a surjective map from the
symmetric graded algebra spanned by all the sockets, which is just the algebra of polyno-
mialsC[ x*], to the algebrai(A), hence the inclusio (7) < P (cf. Sectio 1.p).
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As stated i 1.16, there is an action of the tdfigson Pz which makes the embedding
X(7T) — Pg equivariant. Using the identificatidh; = P, we can easily describe the
action of each leaf of* .. Namely, the 1-parameter group associated to a ledfacts
on the coordinate,, wherex denotes the characteristic function of a socket, with weight
« (£) which is one if¢ is in the socket and zero otherwise.Ni: = @, Z - v is the
sublattice ofN spanned by the leaves afid. = N; ®z C* its associated torus then the
above rule defines an action Bf;. on P, which, in fact, does not depend on the actual
shape of the tre@ but only on the labeling of the leaves.

Example 2.6. The equations defining iR = P, the model of a tree with four leaves
from Examplg 1.21 can be described in terms of relations between networks representing
relevant points im\ (7)) (cf. Exampld 2.P). They are as follows:

1 3 1 4,3 1 .3 1,3
2 a4’ 2>7 <4 B 2> """ Rt <4
and

L 3,1 3

In other words, using the coordinateal)...KM) in P, the respective equations defin-
ing X (7) are as follows:

X0000° X¥1111 = X1100* X0011
X1001° X0110 = X1010° X0101-

Next, note that renumbering the leaves as below or, equivalently, changing the shape
of a 3-valent tree connecting the four numbered leaves, produces the following equations,
respectively:

1>_< 2 X0000* X1111 = X1010* X0101
3 4  X1001°X0110 = X1100° X0011,

1>_<2 X0000° X1111 = X1001° X0110,
4 3 X1001° X0110 = X1010° X0101-

We note that all the above equations involve only four quadratic monomilssx1111,
X1100X0011; X1010%0101, X1001X0110 Moreover, given any leaf, the 1-parameter groupy
acts with weight 1 on each of these monomials. Thus the mod@}.imf each of the
above three trees is invariant with respect to the actidfvof

2.2. Dual polytopes, fans, resolutions and Fano varieties

In the situation of 1.15 the fan of the varie¥(A) in N can be described in terms of its
support functiond [Oda, Thm. 2.22] or dual polytoges [Ful].
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Example 2.7. By looking at Exampl@ 1|9 and the inequalities which appear there we see
that the fan ofY (L) in N O N has rays generated by the following elementsy2 =
—(eg+e] +e3)/2,v/2 — ey = (e] +e5 —ef)/2,v/2 —e] = (eg + €5 —e])/2,
v/2—e5 = (ef+e] —e5)/2.

The formula fronj .13 can be used to describe the polytope dug{19, and hence
to describe the fan of (7) for 3-valent trees.

Lemma 2.8. Let 7 be a3-valent tree withn inner nodes. Then the polytope(7) is
defined inMR by the followingdn inequalities: for any inner node € N at which edges
€,0, ey.1, ey2 Meet, sothat = e} + e | + e ,, we take

(—v/2)(-) = -1, (v/2—e;)(-) =0, (v/2—€;1)(-) =0, (vV/2—¢;,)(-)=0.

Proof. Let (71, ¢1) and (72, £2) be pointed trees. I\, = A(7;)) C (M;)R is defined
by inequalities with respect to some form§ in (N;)r then A1 x Az is defined by
the forms(wl, 0) and (0, w?) in (N1)r x (N2)r. Then the classes of these forms in
N = (N1 x N2)r/R(¢1 — ¢2) define the fiber product of\;’s. Therefore the lemma
follows by induction with respect to the number of inner node of O

Definition 2.9. For a binary symmetri@-valent tree7 we define a polytopa " (7) in
Ngr which is the convex hull ofv/2 = — (e} + €1 + e ,)/2, v/2— e}y = (ef 1 +
€2 =€ 0)/2v/2 =€ =(egot ey, —e;)/2,v/2 =€, = (gt e — e 5)/2,
for all inner nodesy € NV, wheree, g, e, 1, e, 2 are the edges containing

Let us note that the points listed above are in fact vertices*af7). Indeed, by looking
at the points which spanY(7) we see thate, o + e,.1 + ey.2)(AY(T)) > —3/2, with
equality only for the point-(e} , + e ; + e ,)/2, which is therefore a vertex. Similarly,
(ev.0+ €1 — ey2)(AY(T)) < 3/2, with equality only for(e* , + e | —e* ) /2.

Lemma 2.10. Letc = ) _,.c e. Then the polytope$A(T) — 26 and AY(T) are dual,
or polar, to each other in the sense that

AV(T) = {w € Ng : w@A(T) — 25) > —1},
AN(T)— 26 ={u € Mg - u(AV(T)) > —1}.

Proof. The first equality is a restatement[of 2.8, the second follows because the polar
polytope of the polar is the original polytope |Fu, Sect. 1.5]. O

Notation 2.11. For any vertex: of A(7) we define its dual face™ = AY(7) N {w :
w(4u — 26) = —1}. Letiit be the polytope which is the convex hullot and Oc Ng,
while 77+ will denote the cone spanned Nk by u'.

Letu be a vertex ofA (7)) which can be represented as a network of pdtlis). Then
for v € N the numbew(u) is either 0 or 2, depending on whether or figt:) containsv,
and similarlye*(u) is respectively 0 or 1. Thus-v/2)(4u — 26) = —1if visin I'(u),
and(—v/2)(4u — 20) = 3 otherwise. On the other han@,/2 — ¢! )(4u — 20) = —1if
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eitherv is not inT"(«), or bothv ande ; are inI" (). Finally, (v/2 — e} ;)(4u — 25) = 3
if visinI'(u) bute’ ,is not.

Therefore, for any vertex of A(7) and any node € N exactly three of the four
points—v/2 = —(e; g+ ey 1 +€,,)/2,v/2— ¢, o= (ey 1+ €, ,— €, 0)/2,v/2— €)1 =
(ef g+ e, —er)/2,v/2— et , = (e} o+ e — e 5)/2 are inut, which therefore has
3n vertices.

Example 2.12. We will visualize the points ol on the graph of the tree in the following
way. Given a 3-valent nodewith edges, o, €,.1, €y.2, Which for simplicity we just mark
by numbers on the graph, the poiat /2 will be denoted by the dot at the vertex, while
the pointv/2 — e} by the secant opposite to the edge:

1Y2 1 2
0 0
Using this notation we can put in the same picture both the network of paths associated

to a vertexu of A(7') and the corresponding pointsuir-. We draw only four out of eight
networks fronj 2.p since the others are obtained by renumbering the leaves.

e e e

In each case the pontongL can be divided into two simplexes, each having edges which
form a basis of the lattic&/. For example:

1 31 3 1 31 3 1 .3
0 0 0 . .0 .0
PA = Do v DAY = e v L

2 4 27 4 2 4 27 4 27 "4

The first equality means that" in this case is the union of the simplex with edges
(e] +e5—ep)/2,(ef+e5—el)/2,(eg+ef —e5)/2,(e5+ ey —e)/2, (e +e3—ep)/2
and another one with edgeée] + e — ¢;)/2, (e + e5 — €7)/2, (e + €] — €3)/2,

(e5 + e; — e)/2, (ef + e, — e3)/2. The common part of these two simplexes is the
simplex with edgese; +e5 —eg) /2, (eg+e5 —e7)/2, (e +ei —e3) /2, (e5+e; —ep) /2,
which containgf/2 = ((ef + €5 — €})/2+ (e + ¢ — €3)/2) /2.

This example is even more transparent when we Wyitas the sum of the rank 2
lattice spanned bye7 + 5 — eg)/2 and(e3 + e; — e)/2, and the rank 3 lattice spanned
by (eg+e5—e7) /2, (ef+el—e3) /2, (ef+e;—ey)/2 which contains alseg+e; —e3) /2.
Then our division of the con@- comes by multiplying by the corR>o(e] +e5 —ep) +
R>o(e3 + e; — ep) the standard simplicial division of the 3-dimensional cone generated
by (e +e5 —e7)/2, (eg + €5 — €5)/2, (e + e3 — ey) /2 and(ef + ey — e3)/2 (seellFu,

p. 49]), which in geometric terms is a small resolution of a 3-dimensional quadric cone
singularity giving rise to the so-called Atiyah flop.
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The same argument works whenev&() does not contairg. Thenu' contains
(eg+e5—e])/2,(eg+ el —e3) /2, (ef + e —e3)/2, (ef + e5 — ey) /2 and we can make
a similar division ofu using the equality

(eg+e5—e1)/2+ (eg +e1 —e5)/2 = (eg+ ey —e3)/2+ (eg+ e5 — e;)/2.
If I (1) containseg then we use the identity
—(eg+e1+e3)/2+ (e] +e5—ep)/2=—(eg+e5+ex)/2+ (e5+ ey —ep)/2

which presents-e(/2 € u as an average (median) of two different pairs of vertices and
provides a similar decomposition

1 3 1 3 1 3 1 3 1 3
2 4 27 4 27 4 2 4 27 4

Now we shall show that the above discussion can be generalized to the case of trees
with more inner nodes.

Lemma 2.13. Suppose thaf is a binary symmetri@-valent tree withn inner nodes.
Then for any vertex of A(7) there exists a division of- (or equivalently, ofit) into a
union of2"~1 (normalized) volumé simplexes. Equivalently, the coié can be divided
into a union of simplicial cones which are regular (i.e. their generators form basa#9.of

Proof. The construction of the division will proceed along an ascending sequence of
subtrees off, starting from an inner node @f. That is, we have an ascending sequence
of 3-valent trees
’]’1 Cc.--C ’];1 =7

where7; hasi inner nodes and; .1 = 7; v . Forgetting the edges which are not in
7; gives a sequence of surjective may¢7) — --- — M(7;) — --- — M(771) which
yields a sequence of inclusioﬂfS(Tl) C---C JV(Ti) Cc---C ﬁ(?;). The restriction
of the networku to 7; is a network ornZ; as well and we will denote it by;. Clearly
ut N N(THr = ui-.

Now we will define the division ofi;- inductively. The polytope - is just a simplex
so let us assume tha)L => 8 wherej =1,..., 2'~1 and the normalized volume of

8{ with respect to the Iattic&(?}) is 1. Letv’ be an inner node df; . ; which was a leaf
of 7;, lete be a petiole of; which becomes an inner edgedf, 1, and lete] ande;, be
the two new petioles of;, 1 which containv’.

Now we argue as in 2.12. i} is in u then—(e})*/2 € u;* and we may assume that
¢t is inu ande), is not. Now from any simples/ from the original division ofu;- we
produce two simplexes by adding a new verte(((a{g)* + (e;)* — (e"l)*)/2 and another
one at either-((ep)* + (7)™ + (e5)*) /2 or ((e7))™ + (e5)* — (ep)*)/2. Because

—((ep)* + (D" + ()™) /24 ((€)* + () = (€))")/2 = —(ep)*
and—(ef)*/2 € u; this defines a good division af', ;.
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If 66 is not inu then(eg)*/Z € u} and we make a similar construction but now we
have to consider two cases: either nonelok), is inu or both are inu. In either case the
discussion is similar to that [N 212. u]

In terms of toric geometry the division process implies the following.

Corollary 2.14. The affine toric variety associated to the caffehas Gorenstein termi-
nal singularities which admit a small resolution.

Proof. The toric singularities are Cohen—Macaulay and since all the generators of the

rays ofu™ lie on the hyperplan€du — 20)( - ) = —1 the singularities in question are

Gorenstein. The division into regular simplicial cones involves adding no extra ray so the

appropriate resolution is small, which also implies that the original singularity is terminal.
O

We note that the construction of the division certainly depends on the choice of the root
of the tree, and changing the root gives a flop.

Let ¥ be a fan inﬁR consisting of the coneg* for everyu which is a vertex of
A(T), and their faces. In other words, contains the cones spanned by the proper faces
of AY(T) (including the empty face, whose cone is the zero cone). Recall that equivari-
ant line bundles on a toric variety are described in a standard way by piecewise linear
functions on its fan (seé [Oda, Sect. 2.1](orl[Fu, Sect. 3.4]). Setting = u we define a
continuous piecewise linear functignon the fant in Ng such that for every € A/ and
ey € £ containingv we haveA(—v/2) = —1 andA(v/2 — e;) = 0. The sections of the
bundle related ta\ (see[[Oda, Prop. 2.1] dr[FFu, p. 66]) aredhnN A(7T). Therefore the
toric variety X (X) given by the fark can be identified with the original varie/(A (7))
and the line bundle associatedocis Ox (1). On the other hand, the functiom4— 2o
assumes value-1 on the primitive vectors in rays d&, which allows us to identify the
anti-canonical divisor ok (A) (seel[Oda, Sect 2.1]). The result is the following.

Theorem 2.15. Let 7 be a3-valent binary symmetric tree. Then the varigfy7) is
Gorenstein and Fano with terminal singularities. Moreover it is of indexhat is, the
canonical divisorK x (7 is linearly equivalent t@y (7 (—4).

We note the following consequence of Kodaira—Kawamata—Viehweg vanishing (see e.g.
[KoMal Sect. 2.5]).

Corollary 2.16. In the above situatio’ (X (7), O(d)) = Ofori > 0andd > —3. In
particular for d > 0 we havedimg Ho(X(7), O(d)) = hxT)(d), the Poincaré—Hilbert
polynomial of(X (7)), O(1)).

2.3. Mutation of a tree, deformation of a model

In Examplg 2.5 we noted that a 4-leaf 3-valent tree can be labeled in three non-equivalent
ways. We can revert it to say that given four numbered leaves we have three 3-valent
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labeled trees connecting these leaves. By grouping in pairs the leaves whose petioles are
attached to common inner nodes we can list them as folloy2) (3, 4), (1, 3)(2, 4),
and(1, 4)(2, 3).

Now, given four pointed tree%;,i = 1, ..., 4, we can produce a treg by grafting
the tree7; along thei-th leaf of a labeled 3-valent 4-leaf tr&g. Here are the possible
configurationsgg denotes the inner edge of the tree

T 73 7 Tz T T2

T T4 T3 T4 T4 T3

Definition 2.17. In the above situation we say that there existsefgmentary mutation
along ep from one of the above trees to the other two. (We note that a mutation may
actually yield an equivalent tree.) We say that two treesmamation equivalenif there
exists a sequence of elementary mutations from one to the other.

The following observation is fairly standard and it is obtained by easy induction with
respect to the number of inner nodes.

Lemma 2.18. Any two3-valent trees with the same number of leaves are mutation equiv-
alent.

Now, let us recall the basics regarding deforming subvarieties in projective space. Let
B be an irreducible variety (possibly non-complete). Consider the prdfuct 5 with

the two projectiongp and pg. Suppose thak’ ¢ P x B is a subscheme such that
the induced projectiopg|x : X — B is proper and flat. Suppose that for two points

a, b € B the scheme-theoretic fibeks, = X, and X, = X}, are reduced and irreducible.
Then we say that the subvarieky, in P”* can be deformed t&,, over the basés. This

gives rise to a notion of deformation equivalent subvarietié®"of

Definition 2.19. Given two subvarietieX1, X in P we say that they ardeformation
equivalentif their classes are in the same connected component of the Hilbert scheme
of P™,

Example 2.20. Let us conside®’ with homogeneous coordinates indexed by sockets
of a 4-leaf treeZp, as in Exampl¢ 2|6. I’ we consider a family of intersections of
two quadrics parametrized by an open suliset P2 with coordinates 234, #1324,

114 23] We setB = P2\ {[1, ¢, £?] : 3 = 1} and ove3 we considert© given inBB x P’

by the equations

1(12)(34) * X1100%0011 + 1(13)(24) * X¥1010¥0101
+ t(14)(23) - ¥1002%0110 = (¥(12)(34) + 1(13)(24) + (14)(23))X0000%¥1111,

(t13/24 — (14(23) - X1100X0011
+ (taa @23 — 112(34) - X1010¥0101
+ (t(12)(34) — 1(13)(24)) - X1001X0110 = O.
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Three special fibers of the projectiot® — B, namely X3 o, A9 1.6 and A 15,
are varieties associated to three 4-leaf trees labelgd ®y34), (13)(24) and (14)(23),
respectively. On the other han&? is a complete intersection of two quadrics and the
mapX® — Bis equidimensional. The latter statement follows because®tee matrix

1(12)(34 11324 f14 23 11234 T113 24 +114(23
11324 — 11423 (1423 —112(34 [(12(34 —1(13)(29) 0

is of rank 2 hence any fiber ovét is a complete intersection of two non-proportional
quadrics. Henc&’® — B is flat because of [[Ei, Thm. 18.16].

Denote byTy the 4-dimensional torus associated to the lattice spanned by the leaves
with coordinatesy”?, wherev;,i = 1, ..., 4, are the leaves dfy. The torusTy acts on
P’ x B via the first coordinate, that is, for a leafof 7o and a socket we have

A (D) (s 1)) = Ex, 10 ().

Then by looking at the equations definiaff we see that the inclusiot® — P’ x B is
equivariant with respect to this action.

We also note that a rational m&@ — — P2, regular outside 16 lined@®’s, which is
given by four quadrics:

[xc] — [X0000¥1111, ¥0011X1100, X0101X1010, X0110X1001]

defines a good quotient with respect to the actiofigadn P’ (cf. [B-B} 7.1.1]). If we take
a subvarietyZ? in the product?® x B defined by the equations

112)(34) - 21 + 1(13)(24) - 22 + 11423 - 23 = (f(12(23) + 1(13)(24) + 114 (23) - 20,
(t23 14 — t1a@3) - 21+ s @23 — ta@Ee) - 22 + (t12 34 — t23as) -3 =0,

then2® — B is equidimensional and? is the fiber product oP’ — — P2 and 2% —
P2, As a result the induced rational maf — — 29 defines a good quotient af® with
respect to the action df [B-B| 7.1.4].

In what follows we construct an ambient variety which contains as locally complete
intersections a flat family of varieties containing a geometric model of a tree as well as
models of the tree’s elementary mutations.

Construction 2.21. Let 7 be a tree with an inner edgg which contains two 3-valent
inner vertices. We can writ€ as a graft of five trees: a labeled trgewith four leaves);,

i =1,...,4, containinggg as an inner edge and four pointed tré¢&s ¢;),i =1, ..., 4,
attached t@g along the respectively labeled leaves. The edg&sivhich have common
nodes witheg are denoted by;, wheree; comes from a petiole of; (or v;). Recall
(seq 1.IB) thadt (7) and A(T) can be expressed as fiber product3&fZ;) and A(7;),
respectively. That is,

1

4 4 4 4
M(T) = HM(Ti) n ﬂ ker(¢; — v;), A(T) = ]_[ ACT) N[ kert; — v)).
i=0 i=1 i=0 =1
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Now, as in 2.5, we consider the Iattmléo spanned on the non-trivial sockets of the
tree 7o together with the unit S|mplexxo C Mp ® R and the mapsMo — My and
Ao — Ag which give the inclusionX (7p) ¢ P’ as a complete intersection of two
quadrics. The forms;, i =1, ..., 4, pull back to forms; on Mo. Now we define

4 4
M= (z% x HM(’T,-)) N () kertt; — o).
i=1 i=1
- 4 4
A= (Ao X HA(?})) N[ kere: — ).
i=1 i=1

Asin Sectior] 1.p we define the toric varigly= X (A). We note that, bjy Al4, the poly-
topeA is normal in the latticéo x [ [7_, M (T;) N, ker(¢; —;), which is spanned by
its vertices. Also, by the construction we have the embeddih@s) — ) — P, which
are induced by identifying generators of the corresponding graded algebfas](cf. 2.5).

Lemma 2.22. The inclusions

4 4
M~ Mox [[M(T) and A< Agx[[A)
i=1 i=1

induce a rational map
4
P’ x ]_[ X(T;) —
i=1

which is a good gquotient map (of the set over which it is defined) with respect to the action
of the4-dimensional torudp generated by thé-parameter groupg.,,—¢,, i = 1,..., 4.
The subvariety

4 4
X =a0x HX(T,-)<—> Bx]P’7xl_[X(’Z})
i=1 i=1
is To-equivariant and its quotient’ is a locally complete intersection ii x ).

Proof. The first (quotient) part is the same ag in 1.19; this time however we repeat the
argument for all four fiber products in question. The invariance of the vafiefyllows

from the invariance oft© — B x P7 discussed |-O Finally, sincé is a complete
intersection inB x P’ x ]_[l 1 X(7;) its imageX is a locally complete intersection in

the quotient, which i3 x Y. This follows from the definition of good quotient which

is locally an affine quotieni [B-B, Ch. 5], hence functions deflnmgocally descend to
functions definingt’. O

Lemma 2.23. Over an open séf’  P? containing the point§l, 0, 0], [0, 1, 0], [0, 0, 1]

the projection morphisnt’ — B’ is flat. The fibers over these points are reduced and
isomorphic to, respectively, the geometric modefoéind of its elementary mutations
along the edgeq.
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Proof. First, the fibers in questiom], . ., of X — B are models of the claimed trees.
Indeed, this follows from the universal properties of good quotients[(cf./[B-B]), as they
are quotients of the respective produdfg,*’*] X ]_[f.‘:lX (77), which are located, as

three invariant subvarieties, il = A0 x ]'[;‘:1X(7§). This, in particular, implies that
the corresponding fibers of — 5 are of the expected dimension, hence are contained
in a set’ c P2 over which the map in question is equidimensional. Sjyide toric it is
Cohen—Macaulay and becau¥éds locally complete intersection i, it is also Cohen—
Macaulay [Ei, Prop. 18.13]. Finally, the may — B’ is equidimensional, hence flat,
because’’ is smooth (see [EEi, Thm. 18.16]). ]

Theorem 2.24. The geometric models 8fvalent trees with the same number of leaves
are deformation equivalent ifi..

Proof. This is a combination ¢f 2.18 and 2]23. o

2.4. Hilbert—Ehrhart polynomial

Definition 2.25. Given two pointed tree€7;, ¢1) and (72, ¢2) we define theipointed
graftto be the pointed tre€7l’, o) = (71, £1) * (72, £2) whereT = 71 ¢;Vy, )\OZV(Z T,
ando, 01 andoy are the leaves ofl..

Example 2.26. The pointed graft of two 3-valent stars is

yove = WA
By arguments used in the proof[of 1,13 we also get
Proposition 2.27. Let (71, £1) and (72, £2) be two pointed trees. Then
A(7—1 1212 7’2) = A(ﬂ) 01X 01 A(/k) 02X {5 A(E)

Let us consider a 3-dimensional lattite = Zeo® Ze1 ® Ze2 with a fixed tetrahedron
AP with vertices Ogg + e1, eo + €2, e1 4+ e2. By M C M we denote the index 2 sublattice
spanned on the vertices af.

Definition 2.28. Letn be a positive integer and lef!’ = f1, f5 = f» be two functions
defined on the s40, ..., n} with values inZ or, more generally, in an arbitrary ring or
algebra (we use the superscripto indicate the domain of's). For anyk < {0, ..., n}
we define
(fix DR = Y fileiw)- fa(esw)).

LtEMﬁnAO

eg(u)=k
We note thak is commutative, that isf]' » f)' = f3 » f{', but possibly not associative.
By (f™)*" we denote the consecutieproduct ofm copies of /", that is, /" x (f"
(..(f"% f"...). By 1" we denote the constant functi®, ..., n} — {1} C Z.

A function f" : {0, ..., n} — Z will be calledsymmetridf f"(k) = f"(n — k).



628 Weronika Buczyska, Jarostaw A. VEniewski

Lemma2.29.1f f1 = f', f2 = f; : {0,...,n} — Z are symmetric functions then
f1* f2is also symmetric and far < n/2 we have

=~

k

n—

k=1 i
(xk) =2- (32 A fak+i —2)) + (

i=0 j=0 j

AG) falk +i = 2))).

j=0

Il
~

In particular, fork < n/2,
k—1 n—k
(Aix D) =2) G+ D A6+ Y (k+1D)fal).
i=0 i=k

Proof. Let us look at sections of the tetrahedron® with hyperplanes{eg)—l(k). We
picture the situation for = 6 andk = O, ..., 6. For everyk the dotted square is a
suitable section of the cubsly, with the lower left corner satisfying; = e5 = 0. Then
the section of the tetrahedron is denoted with solid lines and the points of the fefttice
inside the (closed) tetrahedron are denoted.by

k=1 k=2 k=3 k=4 k=5

The definition of f1 = f> involves the sum of products gf’s over the lattice points of
such a section. The sections okeandn — k are obtained by reflection with respect to
eithere] = n/2 ore; = n/2. Thus if one off;’s is symmetric then so igy * f2.

On the other hand, for & k < n — k the tetrahedron’s section is a rectangle with
vertices(k, 0), (0,k), (n — k,n), (n,n — k) which we divide into two triangles and a
parallelogram; the division is indicated by dotted vertical line segments for boxes labeled
by k = 1, 2 in the above diagram. Because the functignare symmetric the values of
the productfi - f> are the same for two points which are symmetric with respect to the
center of the square. Thus in the formula of the lemma we take the yalugf>(b) for
all integral pairs(a, b) in the left hand side triangle and multiply it by 2 (that yields the
first summand in the formula) and add the sum over the parallelogram. O

Example 2.30. We note that(1")*2(k) = (k + 1)(n — k + 1) is the number of lattice
points in the rectangle used in the argument in the above prfof gf 2.29. On the other hand,
by using the formula frorf 2.29 one gets

AM*3k) = %(k +1)(n —k + 1)(n? + kn — k? + 5n + 6).

Let us recall that given a lattice polytope C A?R, we define theehrhart function
ha as follows:

ha(n) =|n-AN M| for any positive integen.
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If moreover A is normal, as in Sectiop 1.2, them = hx ) where the latter is
the Poincaré—Hilbert polynomial ofX (A), O(1)), which, by definition, is equal to
dimc HO(X (A), O(m)) for m > 0 (ct.[1.1).

Definition 2.31. Let A C MR be a lattice polytope which is not contained in any hy-
perplane and lev be a non-zero form oM. Suppose that(A) C [0, 1]. We define the
relative Ehrhart functioryy  : {0, ..., n} — Z with respect to the lattica/ by setting

1Ll =tk N AN M|

We note that, clearly} "} _, fX,u(k) = ha(n) is the usual Ehrhart function. Thus, for
normal polytopes the above definition can be restated in a purely geometric fashion.

Lemma 2.32. Suppose thaA is a normal lattice polytope and s as in2.31 Consider
a linearization of the action of thé-parameter group., on H%(X (A), O(n)) which has
non-negative weights and the eigenspace of the zero weight is non-trivial. fEhgit)
is equal to the dimension of the eigenspace of the actiap of weightk.

Proof. This is a consequence of the standard properties(a), [1.16.4. O
Lemma 2.33. Let (71, £1), (72, £2) be two pointed trees and Igﬁg’l and fl”2 be the rel-
ative Ehrhart functions associated 10(71), A(72), respectively. {7, 0) = (71, £1) %
(72, £2) and f; is the relative Ehrhart function associatedAqT) then /' = f} * f;..

Proof. The two definitions ok are consistent. O

Example 2.34. By using[2.3D we find out that

n 1 2
Z(l”)*z(k) _ (n+ 1)@ Jg )(n + 3),
k=0
which is the Poincaré—Hilbert polynomial @3, O(1)), while

. 2
Z(ln)*S(k) _m+DHn+ 2)(n346 3)(n* + 4n + 5)’
k=0

which is the Poincaré—Hilbert polynomial of the intersection of two quadri@s in

Theorem 2.35. Consider three pointed tredq;, ¢;), i = 1, 2, 3, with relative Ehrhart
functionsf" = i associated to the polytopes(7;), respectively. Then

(T * ) * f3 = f1 * (2 * f3).
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Proof. Let ¢ denote the distinguished leaf of the result of theperation on the trees.
Then the relative Ehrhart functior(gl” * fz”) * f3 and f' x (f3 « f3') are respectively
related to the following trees, each of which is obtained by an elementary mutation from

the other: ; 7 ) e
— <> —
T3 T T T

Now we repeat Constructign 2]21, with obvious modifications. Namely, we define a
polytope

3 3
A= (Zo x il:[lA(Z)) miolker(zi — )

WhereZo is the unit simplex as i.5. We define a toric varigty= X (A) with the
embedding ifP and the action of the group.

Next, as if 2.2R we define a subvariétyC B x ) such that the projectiopp : X —
Bis flat and its two fibers are varieties associated to the above two pointed trges (see 2.23).
By flatness the sheafvg)*(p;,((’)(n))) is locally free for eaclh > 0 (seel[H&, I11.9.9,
111.12.9] and[2.1§). Moreover, by construction, the action of the grbupn ) leaves
X C B x Y invariant, as noted ip 2.20. Finally, the decomposition into eigenspaces of
the action of\, on H%(), O(n)) restricts to a corresponding eigenspace decomposition
of the action ofi, on the fibers otpg)*(py((?(n))), which are equal td/%(X,, O(n))
for b € B. This implies that the dimension of those eigenspaces is locally constant with
respect tab € B, hence the relative Ehrhart function of fibersygf is constant, which
concludes the argument. O

Let us underline the fact that although the invariance of the Hilbert polynomial is a stan-
dard property of a flat family the above result is about the invariance of the family with
respect to an action of a 1-parameter group, the gigup our case.

Theoren] 2.3 implies that the operatien the relative Ehrhart functions of poly-
topes of 3-valent trees is not only commutative (which is obvious from its definition) but
also associative. This implies that the function depends neither on the shape of the trees in
guestion nor on the location of the leaf. Therefore we have the following formula which
allows one to compute the Hilbert—Ehrhart polynomial very efficiently.

Corollary 2.36. If (7, £) is a pointed3-valent tree withr + 1 leaves then

fZ(T)’g — (171)*}‘.

A. Appendix
A.1l. Normal polytopes, unimodular covers

A lattice simplexA® ¢ My with verticesu, . . ., v, is calledunimodularif the vectors

v1 — vo, ..., U — vp SPAnM. We say that a lattice polytopt c Mk has aunimodular
coveringif A = J, A% where theA® are unimodular simplexes. This definition is taken
from [BGT] where we also have the following result.
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Lemma A.1. If a lattice polytopeA C Mk has a unimodular covering then it is normal.

The following observation is probably known but we include its proof because of the
proof of the subsequent lemma.

LemmaA.2. Let A1 C (M1)r and A> C (M>2)r be two unimodular simplexes. Then
A1 x Ay has a unimodular covering iny x M».

Proof. We can assume that the simplax has vertices (1, ..., e, and A has vertices
0, f1, ..., fs. Suppose that € (M1)r x (M2)R is as follows:

r N
x =) aieit+ ) bif;
i=1 i=j

wherea;, b; > 0and) a; <) b; < 1.

The union of the unimodular simplexes containedAin x Az is a closed subset.
Therefore ifx is not contained in any modular subsimplex®f x A then neither is
any small perturbation of. Thus we are free to assume thatals andb;’s are non-
zero and any two non-empty subsetsagb andb;’s have different sum, in particular
ai+---+ap # b1+---+b, for any reasonablép, g). Letm be suctby+- - - +by—1 <
ar+---+ar <bi+---+by. Weset, = b1+---+by)— (@1 + -+ a).

In order to prove the lemma we will find+ m — 1 positive numbers; ; indexed by

some pairgi, j) € {1,...,r} x {1,...,m} such that
x = Zci,j(ei + fi) + By fn 4 b1 fn + -+ by f
@)

where the sum is over the chosen pairs (for the other paiy3 the coefficients; ; are
assumed to be zero) and the set of corresponding vegterg; together withf,,,, ..., f;
can be modified via addition and subtraction to the standard bgsis. , e;, fi, ..., fs-

The coefficients; ; are defined inductively according to the following rules. The
first coefficient isc1,1 = min{ay, b1}. Suppose that the last coefficient defined;js;,.
If (io, jo) = (r,m) then we are done so assume that it is not the case. Then, because
of our assumption that the sequences and (b;) have no equal partial sums, either
ai+---+aj >bi+---+bj,0ra1+---+aj, < by+---+ bjy. In the former case
we set

Cig, jor1 = Min{bjoy1, (a1 + - - - + ajy) — (b1 + - - - + bjp)},

whereas in the latter case we define
Cig+1jo = Minfaigy1, (b1 + -+ bjp) — (a1 + -+ + aip)}-

The verification thad ;_;¢; j =bjforj=1,....m —21,%"_;¢im = by — b), and
Z;”Zl ci,j =a fori =1,...,risleft to the reader. Also, a simple backtracking allows
us to modify the set consisting of the corresponding veetotsf; and f,,, . .., f; to the
standard basis fav/1 x Mo. ]
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Lemma A.3. LetA1 C (M1)gr andA, C (M2)gr be two unimodular simplexes. Consider
two homomorphismé : M; — 7Z such that(¢;)r(A;) C [0, 1]. Then the fiber product
A = (A1) g%, (A2) has a unimodular covering with respect to the fiber product lattice
M = My ¢, %0, M>.

Proof. The argument is a variation of the one used in the previous lemma. We can as-
sume thatA; has vertices (9, ..., e2 el, ... ¢l andA; has vertices Of7. ..., f2,

fE. f} wherety(e?) = Ez(fjo) = 0 and?y(el) = £a( fjl) = 1 for suitablei’s and
Jj’s. Suppose that € (M1)r x (M>)R is as follows:

0 r 50 51
0,0 1.1 000 1,1
x=) alel+) ajel+) B)fP+) b,
i=1 i=1 j=1 j=1

wherea?, al,b%,b1 > 0,3 a) + Y a! < 1,3 6%+ 3 b} < 1 and moreoved_a! =
ijl. The last condition ensures that(x) = £2(x) and it is the only condition which
cannot be perturbed as in the proof of the previous lemma.

We writex = xg-+x1 wherexo = Y a%e®+3" b}’fjo andxy = Y alel +3° bjlfjl and
we repeat the proof ¢f A|2 forg andx; separately. The only difference is that, because
of the equality)" a} = 3_ b7, the construction will give; + s1 — 1 coefficients} ; and
associated pairs of vectors + fjl, which will enable us to write; = Y ci{j(e} + fjl).

Thus, clearly, the vectorsi1 + fjl do not constitute a basis of the lattice spanned by
el.....ek, fi. ..., fL but of this lattice intersected with kg — ¢2). That is, among
the chosems + s1 — 1 vectorse! + /! we havee + fi ande!, + f}, and ifel + £}

is chosen then so is eithef,; + f" or e} + f1,; (but not both). We have to prove that
any vectorei1 + fjl, wherei =1,...,r1,j = 1,...,s1, can be obtained as an integral
coefficient sum of the; +s1 — 1 vectors chosen in our algorithm. But this follows because

(€ + [+ (efa + [ = (e + D)+ (e + fh)

so any one of the above four vectors is a combination of the other three and this observa-
tion can be used repeatedly to prove our claim. O

Corollary A.4. Let A3 € (M1)r and Az C (M2)r be two polytopes which have uni-
modular coverings. Consider two homomorphistns M; — Z such that(¢;)g(A;) C
[0, 1]. Then the fiber produch = A1 ¢,x¢, A2 has a unimodular covering with respect
to the fiber product latticdd = M1 ¢,x ¢, M>.

Proof. The fiber product ofA; and A, is covered by fiber products of simplexes from
the unimodular covers of each of them. Thus the result follows by A.3. o

Since the polytope of the star 3-valent tree is a unit tetrahedron, becalise Jof 1.13, by
induction on the number of inner nodes we get the following result.

Proposition A.5. If 7 is a trivalent tree then its polytop&(7) in 1\71(7) has a unimod-
ular covering, hence it is normal.
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A.2. Two 3-valent trees with six leaves

One of the fundamental questions regarding phylogenetic trees is the following. Given
two trees7; and 7> suppose that(71) = A(72) as lattice polytopes, or the projective
modelsX (71) and X (72) are projectively equivalent. Does this imply that the trees are
equivalent (as CW complexes) as well?

We tackled this problem and compared models of the two simplest non-equivalent
trees. These are the 6-leaf trees pictured below, a 3-caterpillar and a snow flgke tree [StSul].

< S

The snow flake tree is obtained from the 3-caterpillar tree by elementary mutation along
its middle inner edge. Therefore their Hilbert—Ehrhart polynomials are equal and com-
puted with fjnaxima] to be as follows:

h(n) =

1
22680(n + D +2)(n+3)

(3118 + 372:° + 1942* + 561613 + 95112 + 8988 + 3780).

On the other hand, we can distinguish their polytopes in terms of some combinatorial
invariants.

Given a polytopeA we define itsincidence matrixa;;) as follows:(a;;) is a sym-
metric matrix with integral entries such that for< j the number;; is equal to the
number ofi-dimensional faces contained jadimensional faces oA. In particularg;; is
the number of-dimensional faces. The following is the incidence matrix of the polytope
of the snow flake tree:

32 480 2400 6144 9312 8832 5280 1920 384
480 240 2400 9456 19920 24960 19200 8880 2256
2400 2400 760 5944 19008 32552 32408 18792 5872
6144 9456 5944 1316 8400 21744 29308 21720 8388
9312 19920 19008 8400 1392 7200 14640 14640 7200
8832 24960 32552 21744 7200 940 3820 5760 3820
5280 19200 32408 29308 14640 3820 406 1224 1224
1920 8880 18792 21720 14640 5760 1224 108 216
384 2256 5872 8388 7200 3820 1224 216 16

And this is the incidence matrix of the polytope of the 3-caterpillar tree:

32 480 2400 6144 9312 8832 5280 1920 384
480 240 2400 9456 19904 24896 19104 8816 2240
2400 2400 760 5944 18976 32408 32168 18616 5824
6144 9456 5944 1316 8384 21648 29112 21552 8336
9312 19904 18976 8384 1392 7184 14584 14576 7176
8832 24896 32408 21648 7184 940 3816 5752 3816
5280 19104 32168 29112 14584 3816 406 1224 1224
1920 8816 18616 21552 14576 5752 1224 108 216
384 2240 5824 8336 7176 3816 1224 216 16
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Both matrices were computed bgdlymake ]. We note that although both polytopes
have the same number of faces of the same dimension their incidences are different (in-
dicated in boldface).
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