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Abstract. Recently Umirbaev has proved the long-standing Anick conjecture, that is, there exist
wild automorphisms of the free associative algebraK〈x, y, z〉 over a fieldK of characteristic 0.
In particular, the well-known Anick automorphism is wild. In this article we obtain a stronger re-
sult (the Strong Anick Conjecture that implies the Anick Conjecture). Namely, we prove that there
exist wild coordinates ofK〈x, y, z〉. In particular, the two nontrivial coordinates in the Anick au-
tomorphism are both wild. We establish a similar result for several large classes of automorphisms
of K〈x, y, z〉. We also find a large new class of wild automorphisms ofK〈x, y, z〉 which is not
covered by the results of Umirbaev. Finally, we study the lifting problem for automorphisms and
coordinates of polynomial algebras, free metabelian algebras and free associative algebras and ob-
tain some interesting new results.

Keywords. Automorphisms of free and polynomial algebras, tame automorphisms, wild automor-
phisms, coordinates in free algebras

1. Introduction

LetK be a field of characteristic 0 and letX = {x1, . . . , xn}, n ≥ 2, be a finite set. We
denote byK[X] the polynomial algebra in the set of variablesX and byK〈X〉 the free as-
sociative algebra (or the algebra of polynomials in the setX of noncommuting variables)
with the same set of free generators. For smalln we shall denote the free generators also
by x, y, etc. We write the automorphisms ofK[X] andK〈X〉 asn-tuples of the images
of the coordinates, andϕ = (f1, . . . , fn) means thatϕ(xj ) = fj (X) = fj (x1, . . . , xn),
j = 1, . . . , n. Also, the productϕψ of the automorphismsϕ andψ acts onu(X) by
(ϕψ)(u) = ϕ(ψ(u)). An automorphism ofK[X] or K〈X〉 is calledelementaryif it is of
the form

(x1, . . . , xj−1, αxj + f (x1, . . . , xj−1, xj+1, . . . , xn), xj+1, . . . , xn), α ∈ K∗,

and the polynomialf (x1, . . . , xj−1, xj+1, . . . , xn) does not depend on the variablexj .
The automorphisms belonging to the group generated by elementary automorphisms are
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calledtame, all the others arewild. A polynomialp ∈ K[X] is called acoordinateif it
is an automorphic image ofx1. Moreover, a coordinatep ∈ K[X] is calledtameif there
exists a tame automorphismϕ ∈ AutK[X] such thatϕ(x1) = p, otherwisep is called a
wild coordinate. One defines in a similar way the coordinates and tame and wild coordi-
nates ofK〈X〉 and other relatively free algebras. In noncommutative algebra coordinates
are often calledprimitive elements. Obviously, the existence of wild coordinates implies
the existence of wild automorphisms, but not vice versa in general.

Problems concerning automorphisms of free objects are similar for free groups, poly-
nomial algebras, free associative and free Lie algebras, and relatively free groups and
algebras (see the recent book [MSY] by Mikhalev, Shpilrain, and Yu). One of the most
important problems in the theory of automorphisms of polynomial and free associative
algebras is whether all automorphisms ofK[X] andK〈X〉 are tame. The answer is in
the affirmative forK[x, y] (Jung–van der Kulk [J, K]) and forK〈x, y〉 (Czerniakiewicz–
Makar-Limanov [Cz, ML1, ML2]). In 1970, Nagata [N] constructed his famous automor-
phism ofK[x, y, z] which is wild as an automorphism fixingz and conjectured that it is
also wild as a usual automorphism ofK[x, y, z]. More than 30 years later Shestakov and
Umirbaev [SU1, SU2, SU3], using methods of Poisson brackets, degree estimations and
peak reduction, proved the Nagata Conjecture, in particular, they proved that the Nagata
automorphism is wild. Umirbaev and J.-T. Yu [UY] proved the Strong Nagata Conjecture,
namely, there exist wild coordinates ofK[x, y, z]. In particular, the two nontrivial Nagata
coordinates are both wild. There were also attempts, unfortunately unsuccessful, to lift
the Nagata automorphism to an automorphism ofK〈x, y, z〉 (see, for instance, our paper
with Gutierrez [DGY]). (A lifting of the Nagata automorphism would provide immedi-
ately a wild automorphism ofK〈x, y, z〉.) There is another automorphism ofK〈x, y, z〉,
suggested by Anick,

(x + y(xy − yz), y, z+ (xy − yz)y) ∈ AutK〈x, y, z〉

(see the book by Cohn [C2, p. 343]), which was suspected to be wild, although it in-
duces a tame automorphism ofK[x, y, z]. Exchanging the places ofy andz in the above
automorphism, we replace it with the automorphism

ω = (x + z(xz− zy), y + (xz− zy)z, z).

It fixes z, andω(x) andω(y) are linear inx andy. From now on, we shall refer toω as
theAnick automorphism.

Conjecture 1 (Anick Conjecture). There exist wild automorphisms inAutK〈x, y, z〉.
In particular, the Anick automorphism is wild.

We established [DY3] that the Anick automorphism is wild in the class of automorphisms
fixing the variablez, and very recently Umirbaev [U2] has proved the Anick Conjecture,
that is, the wildness of the Anick automorphism as an automorphism ofK〈x, y, z〉.

The work of Nagata [N] motivated the study of automorphisms fixing a variable. More
generally, we introduce another setZ = {z1, . . . , zm} and consider the algebrasK[X,Z]
andK〈X,Z〉, freely generated by the setX∪Z. Studying automorphisms fixing the setZ,
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we use the same notationϕ = (f1, . . . , fn, z1, . . . , zm), meaning thatϕ(xj ) = fj (X,Z),
j = 1, . . . , n, andϕ(zi) = zi , i = 1, . . . , m, and denote the corresponding automorphism
group by AutZ K[X,Z] and AutZ K〈X,Z〉, respectively. Again, an automorphism isZ-
elementaryif it is of the form ϕ = (x1, . . . , αxj + f (X,Z), . . . , xn, z1, . . . , zm), and
f (X,Z) does not depend onxj . The automorphism is tame in the class of automorphisms
fixingZ (orZ-tame) if it belongs to the group generated byZ-elementary automorphisms.
In the general case, this group may be smaller than the group generated byZ-triangular
andZ-affine automorphisms because someZ-affine automorphisms may not be products
of Z-elementary ones.

An important consequence of [SU1, SU2, SU3, DY1, DY2] is that everyz-wild auto-
morphism ofK[x, y, z] is a wild automorphism ofK[x, y, z]. A method of constructing
a large class of such automorphisms was given by us in [DY2].

The next step in studying automorphisms of free algebras is to studycoordinates, or
automorphic images ofx1. In noncommutative algebra coordinates are also calledprim-
itive elements. There are algorithms to recognize coordinates ofK[x, y] (Shpilrain and
Yu [SY]) and z-coordinates ofK[x, y, z] (see our paper [DY2] as well as our survey
[DY1]). As a consequence of their proof of the Strong Nagata Conjecture, Umirbaev and
J.-T. Yu [UY] established that iff (x, y, z) is az-wild coordinate inK[x, y, z], then it is
immediately a wild coordinate inK[x, y, z].

Obviously, results for (commutative) polynomial algebras inspire problems on free
associative algebras as there is a natural surjective homomorphism fromK〈X〉 toK[X]
which induces a natural (not necessarily surjective) homomorphism from AutK〈X〉 to
AutK[X]. In this paper we shall be interested in the following problem motivated by
[UY]:

Problem 1. If f (X,Z) ∈ K〈X,Z〉 is the image ofx1 under aZ-wild automorphism, is
there a tame automorphism (maybe not fixingZ) which also sendsx1 to f (X,Z)?

If such a tame automorphism does not exist, then we callf (X,Z) a wild coordinateof
K〈X,Z〉.

As an analog of the Strong Nagata Conjecture in [UY], we state

Conjecture 2 (Strong Anick Conjecture). There exist wild coordinates inK〈x, y, z〉.
In particular, the two nontrivial coordinates of the Anick automorphism are both wild.

The Anick automorphism has the property that it fixesz, andω(x) andω(y) are linear
in x andy. In our paper [DY3] we showed that such an automorphism ofK〈x, y, z〉 is
z-tame if and only if a certain 2× 2 matrix with entries fromK[z1, z2] is a product of
elementary matrices. This idea has been used by Umirbaev [U2] in the final step of his
proof of the wildness of the Anick automorphism. Now we show that iff (x, y, z) is
a wild z-coordinate inK〈x, y, z〉, andf (x, y, z) is linear inx, y, thenf (x, y, z) is also
wild in the sense of Problem 1. This is one of the main results of the paper. It immediately
confirms the Strong Anick Conjecture.

The class of wild automorphisms ofK〈x, y, z〉 discovered by Umirbaev [U2] is larger
than the class ofz-wild automorphisms(f, g, z) such that the polynomialsf, g are linear
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in x, y. Our method also shows that all automorphisms of Umirbaev’s class have the
property that at least two of their coordinates are wild. The same result holds for another
large class of automorphisms ofK〈x, y, z〉 which is not covered by Umirbaev [U2].

Our main result suggests an algorithm deciding whether a polynomialf (x, y, z) ∈

K〈x, y, z〉 which is linear inx andy, is a tame coordinate. If it is, then the algorithm
shows how to find a product ofz-elementary automorphisms which sendsx to f (x, y, z).
(Of course, in all algorithmic considerations we assume that the ground fieldK is con-
structive, and we may perform calculations there.) In this part of the paper we use the
approach and the results of Umirbaev [U2], combined with our approach from [DY3].

On the other hand, we show that the situation is completely different in the case of
the free metabelian algebraM(x, y, z). We construct an automorphism which fixesy
andz and cannot be lifted to an automorphism ofK〈x, y, z〉. The proof is based on a
test recognizing some classes of endomorphisms which are not automorphisms. This test
originates from group theory (see Bryant, Gupta, Levin and Mochizuki [BGLM]) and was
adapted to algebras by Bryant and Drensky [BD].

In addition, we show that an automorphism ofK[X,Z] or K〈X,Z〉 which isZ-wild
cannot be lifted to aZ-automorphism of the absolutely free algebraK{X,Z}. (As a con-
sequence of a result of Kurosh [Ku], all automorphisms of the absolutely free algebra are
tame.) This is equivalent to the fact that there exist noZ-wild automorphisms ofK{X,Z}.

2. Proof of main results

Dicks and Lewin [DL] introduced the Jacobian matrix of an endomorphism ofK〈X〉.
This is ann × n matrix with entries from the tensor productK〈X〉 ⊗K K〈X〉

op of the
free algebraK〈X〉 and its opposite (or anti-isomorphic) algebraK〈X〉

op. Forn = 2 they
proved that the Jacobian matrix is invertible overK〈x, y〉 ⊗K K〈x, y〉op if and only if
the endomorphism is an automorphism. The general case of anyn was established by
Schofield [Sc]; this is the Jacobian Conjecture for free associative algebras. The partial
derivatives and the Jacobian matrix of Dicks and Lewin can be defined as follows:

∂xi

∂xi
= 1,

∂xj

∂xi
= 0, j 6= i,

and, for a monomialw = xi1 · · · xim ∈ K〈X〉,

∂w

∂xi
=

m∑
k=1

(xi1 · · · xik−1)⊗ (xik+1 · · · xim)
∂xik

∂xi
,

wherexi1 · · · xik−1 ∈ K〈X〉 andxik+1 · · · xim ∈ K〈X〉
op. Then, as usual,

J (ϕ) =

(
∂ϕ(xj )

∂xi

)
, ϕ ∈ EndK〈X〉.

We need the following lemma.
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Lemma 2.1. The only automorphisms ofK〈X〉 fixing x2, . . . , xn are the tame automor-
phisms of the form

τ = (αx1 + f (x2, . . . , xn), x2, . . . , xn), α ∈ K∗, f (x2, . . . , xn) ∈ K〈x2, . . . , xn〉.

Proof. The shortest way to establish the lemma is to use the invertibility of the Jacobian
matrix. Letτ = (g(X), x2, . . . , xn) ∈ AutK〈X〉 fix x2, . . . , xn. Then the matrix

J (τ) =


∂g
∂x1

0 . . . 0
∂g
∂x2

1 . . . 0
...

...
. . .

...
∂g
∂xn

0 . . . 1


is invertible overK〈X〉 ⊗K K〈X〉

op and this implies that∂g/∂x1 is equal to a nonzero
constantα. Hence the only term ofg(X) depending onx1 is αx1. ut

ForK〈x, y, z〉, the endomorphisms which fixz and are linear inx andy are of the
form ρ = (f (x, y, z), g(x, y, z), z), where

f (x, y, z) =

∑
p,q≥0

αpqz
pxzq +

∑
p,q≥0

βpqz
pyzq + f0(z),

g(x, y, z) =

∑
p,q≥0

γpqz
pxzq +

∑
p,q≥0

δpqz
pyzq + g0(z),

αpq , βpq , γpq , δpq ∈ K, andf0(z), g0(z) are polynomials inz. Applying the Jacobian
matrix of Dicks and Lewin in this concrete case, in [DY3] we obtained:

Proposition 2.2. (i) The endomorphismρ = (f (x, y, z), g(x, y, z), z) which fixesz
and is linear inx andy is an automorphism if and only if the2 × 2 matrix

Jz(ρ) =

(∑
p,q≥0 αpqz

p

1z
q

2

∑
p,q≥0 γpqz

p

1z
q

2∑
p,q≥0 βpqz

p

1z
q

2

∑
p,q≥0 δpqz

p

1z
q

2

)

with entries fromK[z1, z2] is invertible. All such automorphisms inducez-tame au-
tomorphisms ofK[x, y, z].

(ii) The automorphismρ is z-tame if and only if the matrixJz(ρ) belongs to the group
generated by elementary matrices with entries fromK[z1, z2].

For example, for the Anick automorphism,

Jz(ω) =

(
1 + z1z2 z2

2
−z2

1 1 − z1z2

)
and by a result of Cohn [C1], the matrixJz(ω) cannot be represented as a product of
elementary matrices.
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Let Z = {z1, . . . , zm}. We denote byGE2(K[Z]) the subgroup ofGL2(K[Z]) gen-
erated by the diagonal and by the elementary matrices(

α1 0
0 α2

)
,

(
1 f (Z)

0 1

)
,

(
1 0

f (Z) 1

)
with entries fromK[Z]. There is an algorithm deciding whether a matrix inGL2(K[Z])
belongs toGE2(K[Z]). It was suggested by Tolhuizen, Hollmann, and Kalker [THK] for
the partial ordering by degree and, independently, by Park [P1, P2] for any monomial
ordering onK[Z]. One applies Gaussian elimination process to the matrix based on the
Euclidean division algorithm forK[Z]. The matrix belongs toGE2(K[Z]) if and only if
this procedure brings it to the identity matrix. For our purposes, we need the following
version of the Euclidean algorithm. Ifa(Z), b(Z) are two nonzero polynomials with ho-
mogeneous components of maximal degreea(Z), b(Z), respectively, then the Euclidean
algorithm can be applied toa(Z) andb(Z) if a(Z) = b(Z)q(Z) for someq(Z) ∈ K[Z]
(or b(Z) = a(Z)q(Z)) when we replacea(Z) with a(Z) − b(Z)q(Z) (or, respectively,
we replaceb(Z) with b(Z) − a(Z)q(Z)). In matrix form, these operations correspond,
respectively, to (

a(Z)− b(Z)q(Z)

b(Z)

)
=

(
1 −q(Z)

0 1

)(
a(Z)

b(Z)

)
, (1)(

a(Z)

b(Z)− a(Z)q(Z)

)
=

(
1 0

−q(Z) 1

)(
a(Z)

b(Z)

)
. (2)

For us, the most convenient form of the result in [P1, P2, THK] is as stated in [THK].

Proposition 2.3. Let a(Z), b(Z) be two polynomials inK[Z]. Then there exist
c(Z), d(Z) ∈ K[Z] such that the matrix

G =

(
a(Z) c(Z)

b(Z) d(Z)

)
belongs toGE2(K[Z]) if and only if we can bring the pair(a(Z), b(Z)) to (α,0), 0 6=

α ∈ K, using the Euclidean algorithm only.

Clearly, in this case the equations (1) and (2) give the decomposition ofG as a product of
elementary matrices.

We need a description of the free metabelian associative algebra and a short exposition
of the results of Umirbaev. Recall that thefree metabelian algebra

M(X) = K〈X〉/([t1, t2][ t3, t4])T

is the relatively free algebra of rankn in the variety of associative algebras defined by the
polynomial identity [t1, t2][ t3, t4] = 0. In order to define partial derivatives and the Jaco-
bian matrix of an endomorphism, we need two more sets of variablesU = {u1, . . . , un}
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andV = {v1, . . . , vn} of the same cardinality asX. We consider the polynomial alge-
braK[U,V ]. Changing a little the notation of Umirbaev [U1], we define formal partial
derivatives∂M/∂Mxi assuming that

∂Mxi

∂Mxi
= 1,

∂Mxj

∂Mxi
= 0, j 6= i,

and, for a monomialw = xi1 · · · xim ∈ M(X),

∂Mw

∂Mxi
=

m∑
k=1

ui1 · · · uik−1vik+1 . . . vim
∂Mxik

∂Mxi
.

These are the homomorphic images of the partial derivatives of Dicks and Lewin under
the natural homomorphismK〈X〉⊗KK〈X〉

op
→ K[U,V ] which sendsxi⊗1 and 1⊗xj

to ui andvj , respectively. A polynomialf (X) ∈ M(X) belongs to the commutator ideal
of M(X), i.e., to the kernel of the natural homomorphismM(X) → K[X], if and only if

n∑
i=1

(ui − vi)
∂Mf

∂Mxi
= 0.

The Jacobian matrix of an endomorphismϕ of M(X) is

JM(ϕ) =

(
∂Mϕ(xj )

∂Mxi

)
,

which is a matrix with entries fromK[U,V ]. One of the main results in [U1] is that the
Jacobian matrixJM(ϕ) is invertible (as a matrix with entries fromK[U,V ]) if and only
if ϕ is an automorphism ofM(X). Clearly, the invertibility ofJM(ϕ) is equivalent to
0 6= det(JM(ϕ)) ∈ K. In this section we shall work with free algebras of rank 3 only and
shall assume that the setsX,U, V are, respectively,

X = {x, y, z}, U = {x1, y1, z1}, V = {x2, y2, z2}.

Let T (K〈x, y, z〉), T (M(x, y, z)) andT (K[x, y, z]) be, respectively, the groups of tame
automorphisms ofK〈x, y, z〉, M(x, y, z), andK[x, y, z]. There is a natural homomor-
phism

T (K〈x, y, z〉) → T (M(x, y, z)) → T (K[x, y, z]).

Let Ker(π) be the kernel ofπ : T (M(x, y, z)) → T (K[x, y, z]). Further developing the
methodology in [SU1, SU2, SU3], Umirbaev [U2] discovered the defining relations of
T (K[x, y, z]). As a consequence, he proved the following.

Proposition 2.4. As a normal subgroup ofT (M(x, y, z)), the kernel ofπ is generated
by the automorphisms

ψ = (x + f (y, z), y, z), f (y, z) =

∑
p,q,r,s≥0

αpqrsy
pzq [y, z]yrzs, αpqrs ∈ K.
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Moreover, any tame automorphismϑ from Ker(π) has a Jacobian matrix which is a prod-
uct of elementary matrices. The next key observation of Umirbaev is the following. Let
ϑ be any automorphism from the kernel of the natural homomorphism AutM(x, y, z) →

AutK[x, y, z]. Then

JM(ϑ) = JM(ϑ)(x1, y1, z1, x2, y2, z2)

is a 3× 3 matrix with entries fromK[x1, y1, z1, x2, y2, z2]. If we replacex1, y1, x2, y2
with zeros, then the matrixJM(ϑ)(0,0, z1,0,0, z2) will be of the form

JM(ϑ)(z1, z2) =

1 + w11 w12 w13
w21 1 + w22 w23
0 0 1

 ,
where the polynomialswij = wij (z1, z2) have no constant terms. Define the 2×2 matrix

J2(ϑ)(z1, z2) =

(
1 + w11(z1, z2) w12(z1, z2)

w21(z1, z2) 1 + w22(z1, z2)

)
.

Proposition 2.5 (Umirbaev [U2]). If ϑ ∈ Ker(π), thenJ2(ϑ)(z1, z2) is a product of
elementary matrices with entries fromK[z1, z2].

Note that the matrixJ2(ρ) of the automorphismρ of M(x, y, z) induced by the au-
tomorphismρ of K〈x, y, z〉 coincides with the matrixJz(ρ), the Jacobian matrix of
(ρ(x), ρ(y)), whenρ fixesz and is linear with respect tox, y.

Now we are ready to prove the main results in this article.

Theorem 2.6. LetK be a field of characteristic0 and let the polynomialf (x, y, z) ∈

K〈x, y, z〉 be linear inx, y. If there exists a wild automorphism ofK〈x, y, z〉 which fixes
z and sendsx to f (x, y, z), then every automorphism ofK〈x, y, z〉 which sendsx to
f (x, y, z) is also wild. So,f (x, y, z) is a wild coordinate ofK〈x, y, z〉.

Proof. Let σ = (f (x, y, z), h(x, y, z), z) be a wild automorphism ofK〈x, y, z〉 which
fixesz and sendsx to f (x, y, z). We writef (x, y, z) in the form

f (x, y, z) =

∑
p,q≥0

αpqz
pxzq +

∑
p,q≥0

βpqz
pyzq + f0(z),

whereαpq , βpq ∈ K, andf0(z) is a polynomial inz. Let

a(z1, z2) =

∑
p,q≥0

αpqz
p

1z
q

2, b(z1, z2) =

∑
p,q≥0

βpqz
p

1z
q

2.

First we shall show that the polynomialsa(z1, z2), b(z1, z2) cannot constitute the first
column of a matrix fromGE2(K[z1, z2]). Suppose, on the contrary,

J =

(
a(z1, z2) c(z1, z2)

b(z1, z2) d(z1, z2)

)
∈ GE2(K[z1, z2]),

c(z1, z2) =

∑
p,q≥0

γpqz
p

1z
q

2, d(z1, z2) =

∑
p,q≥0

δpqz
p

1z
q

2.
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Consider the polynomial

g(x, y, z) =

∑
p,q≥0

γpqz
pxzq +

∑
p,q≥0

δpqz
pyzq .

By Proposition 2.2(ii), the automorphismρ = (f (x, y, z), g(x, y, z), z) is tame in the
group of automorphisms fixingz. Hence the automorphismρ−1σ is also wild. But

ρ−1σ = (x, k(x, y, z), z)

for somek(x, y, z) ∈ K〈x, y, z〉. This contradicts Lemma 2.1.
Hence a(z1, z2), b(z1, z2) cannot constitute the first column of a matrix from

GE2(K[z1, z2]).
The next step is to produce a wild automorphism ofK〈x, y, z〉 which induces the

identity automorphism ofK[x, y, z].
Let σ = (f (x, y, z), h(x, y, z), z) be the above wild automorphism ofK〈x, y, z〉

which fixesz and sendsx to f (x, y, z), and leth1(x, y, z) be the component ofh which
is linear with respect tox, y. Thenτ = (f (x, y, z), h1(x, y, z), z) is also a wild automor-
phism ofK〈x, y, z〉 which induces az-tame automorphism ofK[x, y, z]. (The automor-
phismτ is wild sinceσ−1τ sendsx to x andz to z, so by Lemma 2.1,σ−1τ is tame. The
induced automorphism isz-tame by Proposition 2.2.) Letψ be the correspondingz-tame
automorphism ofK〈x, y, z〉, linear inx, y. Thenτ̃ = ψ−1τ is still wild and induces the
identity automorphism ofK[x, y, z].

Now, let ϕ be any tame automorphism ofK〈x, y, z〉 which sendsx to f (x, y, z).
Replacingϕ with ϕ̃ = ψ−1ϕ, we obtain a tame automorphism for which̃ϕ(x) = τ̃ (x).

The automorphism̃ϕ induces a tame automorphism ofK[x, y, z] which fixesx. By
results in [DY1, DY2, SU1, SU3], such an automorphism is tame in the class of auto-
morphisms fixingx and we can lift it to anx-tame automorphismθ of K〈x, y, z〉. So
we obtain a tame automorphism̂ϕ = ϕ̃θ−1 which induces the identity automorphism of
K[x, y, z] andϕ̂(x) = τ̃ (x).

Let ξ be the automorphism ofM(x, y, z) induced byϕ̂. It is in the kernel of the
homomorphismπ of AutM(x, y, z) → AutK[x, y, z]. The first columns of the matrices
J2(ξ) andJ2(π(̃τ )) coincide. As remarked above, this column cannot be a column of a
matrix fromGE2(K[z1, z2]) sincẽτ is wild. On the other hand, by Proposition 2.5 it is a
column of a matrix fromGE2(K[z1, z2]). This contradiction completes the proof. ut

Theorem 2.6 and Proposition 2.3 give an algorithm deciding whether a polynomial
f (x, y, z) ∈ K〈x, y, z〉 which is linear inx andy, is a tame coordinate. If it is, then the
algorithm finds a product ofz-elementary automorphisms which sendsx to f (x, y, z).

The following consequence of Theorem 2.6 proves the Strong Anick Conjecture.

Theorem 2.7. The Strong Anick Conjecture is true. Namely, there exist wild coordinates
in K〈x, y, z〉. In particular, the two nontrivial coordinatesx + z(xz− zy) andy + (xz−

zy)z of the Anick automorphism

ω = (x + z(xz− zy), y + (xz− zy)z, z)

are both wild.
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Proof. The partial derivatives off (x, y, z) = ω(x) = x + z(xz− zy) are

a(z1, z2) =
∂f

∂x
= 1 + z1z2, b(z1, z2) =

∂f

∂y
= −z2

1.

Since we cannot apply the Euclidean algorithm toa(z1, z2) andb(z1, z2), Theorem 2.6
implies thatf (x, y, z) is a wild coordinate. ut

We call an automorphismϕ = (f (x, y, z), g(x, y, z), z) of K〈x, y, z〉 Anick-like if
f (x, y, z) and g(x, y, z) are linear inx, y and the matrixJz(ϕ) does not belong to
GE2(K[z1, z2]). The following corollary is an analogue of a result from [UY].

Corollary 2.8. The two nontrivial coordinatesf (x, y, z), g(x, y, z) of any Anick-like
automorphism

ϕ = (f (x, y, z), g(x, y, z), z)

ofK〈x, y, z〉 are wild.

Proof. Let
∂f

∂x
= a(z1, z2),

∂f

∂y
= b(z1, z2).

We cannot apply the Euclidean algorithm to bring the pair(a(z1, z2), b(z1, z2)) to (α,0),
0 6= α ∈ K, becauseJz(ϕ) 6∈ GE2(K[z1, z2]). Hence Theorem 2.6 shows thatf (x, y, z)
is a wild coordinate. Similar arguments work forg(x, y, z). ut

In the spirit of the above results, we obtain the following theorem which is much stronger.

Theorem 2.9. Let f (x, y, z) be az-coordinate ofK〈x, y, z〉 without terms depending
only onz (i.e. f (0,0, z) = 0). If the linear part (with respect tox and y) f1(x, y, z)

of f (x, y, z) is a z-wild coordinate, thenf (x, y, z) itself is also a wild coordinate of
K〈x, y, z〉.

Proof. Sincef (x, y, z) is a z-coordinate ofK〈x, y, z〉, there exists az-automorphism
σ = (f (x, y, z), g(x, y, z), z) of K〈x, y, z〉. Obviously we may assumeg(0,0, z) = 0
(otherwise just replaceg(x, y, z) by (g(x, y, z) − g(0,0, z)). Let σ1 = (f1(x, y, z),

g1(x, y, z), z) be the automorphism which is the linear part ofσ . By assumptionσ1
is a wild automorphism. We have to prove the wildness of all automorphismsϕ =

(f (x, y, z), u(x, y, z), v(x, y, z)) of K〈x, y, z〉 with first coordinate equal tof (x, y, z).
Consider the automorphismsσ = (f , g, z) andϕ = (f , u, v) of K[x, y, z] induced by
σ andϕ, respectively. Ifσ is wild, then, by the theorem of Umirbaev and Yu [UY],f
is a wild coordinate ofK[x, y, z]. Henceϕ is a wild automorphism ofK[x, y, z]. This
implies thatϕ is a wild automorphism ofK〈x, y, z〉 and thereforef (x, y, z) is a wild
coordinate. Hence we may assume thatσ is a tame automorphism ofK[x, y, z].

Now we suppose that the automorphismϕ is tame and repeat the main steps of the
proof of Theorem 2.6. Sinceσ is tame, by [DY1, DY3, SU1, SU3] it is alsoz-tame.
Let ψ be somez-tame automorphism ofK〈x, y, z〉 which inducesσ and letψ1 be the
linear part ofψ . Replacingσ with σ̃ = ψ−1σ andϕ with ϕ̃ = ψ−1ϕ, we find that
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the tame automorphism̃ϕ fixes x modulo the commutator ideal ofK〈x, y, z〉. Sinceσ̃
is a composition of thez-automorphismsψ−1 andσ , its linear part(̃σ )1 is also az-
automorphism which is equal to the compositionψ−1

1 ϕ1 of the linear components of
ψ−1

1 andϕ1. Hence(̃σ )1 is wild and we may reduce our considerations to the case when
σ̃ (x) = f (x, y, z) is congruent tox modulo the commutator ideal ofK〈x, y, z〉. Since
ϕ̃ induces a tame automorphism ofK[x, y, z], by [DY1, DY3, SU1, SU3] again, the
induced automorphism is alsox-tame and we can lift it to anx-tame automorphismθ
of K〈x, y, z〉. The tame automorphism̂ϕ = ϕ̃θ−1 induces the identity automorphism of
K[x, y, z] and ϕ̂(x) = f (x, y, z). Now, as in Theorem 2.6, the proof is completed by
considerations in the free metabelian algebraM(x, y, z). ut

Remark 2.10. The restrictionf (0,0, z) = 0 is essential for the proof of Theorem 2.9
(note that obviously we may assumeg(0,0, z) = 0, otherwise just replaceg(x, y, z) by
g(x, y, z) − g(0,0, z)). We use it when, modifying simultaneously the automorphisms
σ = (f (x, y, z), g(x, y, z), z) andϕ = (f (x, y, z), u(x, y, z), v(x, y, z)) of K〈x, y, z〉,
we bringσ andϕ to automorphisms which sendx to the same element congruent tox
modulo the commutator ideal, still keeping the property that the linear component of the
image ofx is wild. Nevertheless, it seems very unlikely to have a wild automorphism
(f, g, z) with f (0,0, z) = 0 such thatf (x, y, z) + a(z) is a tame coordinate for some
polynomiala(z) in view of the next theorem.

Theorem 2.11. Let (f, g, z) be an automorphism ofK〈x, y, z〉 and let the linear part
(with respect tox and y) of it, (f1, g1, z), be az-wild automorphism. Then(f, g, z) is
also a wild automorphism ofK〈x, y, z〉.

Proof. Let f (x, y, z) = f ′(x, y, z) + f0(z), g(x, y, z) = g′(x, y, z) + g0(z), where
f ′, g′ do not contain monomials depending onz only. Define the automorphismτ =

(x−f0(z), y−g0(z), z). Then the automorphismσ = (f, g, z) is tame (orz-tame) if and
only if στ = (f ′, g′, z) is tame (orz-tame). Since the polynomialsf, f ′ andg, g′ have
the same linear componentsf1 andg1, we apply Theorem 2.9. ut

Remark 2.12. The above theorem is much stronger than the main result in [U2] where
only the automorphisms linear with respect tox andy are dealt with.

The following example gives a large class of wild automorphisms and wild coordi-
nates. It is based on the polynomialxz− zy which appears in the Anick automorphism.

Example 2.13. Let h(t, z) ∈ K〈t, z〉 and leth(0,0) = 0. Then

σh = (x + zh(xz− zy, z), y + h(xz− zy, z)z, z)

is an automorphism ofK〈x, y, z〉 fixing xz− zy. If the linear component (with respect to
x, y) h1(xz− zy, z) of h(xz− zy, z) is not equal to 0, then this automorphism belongs to
the class of wild automorphisms in Theorem 2.9: As(σh)1 = (x + zh1(xz − zy, z), y +

h1(xz− zy, z)z, z) is an automorphism ofK〈x, y, z〉 and its matrixJz((σh)1) is

Jz((σh)1) =

(
1 + q(z1, z2)z1z2 q(z1, z2)z

2
2

−q(z1, z2)z
2
1 1 − q(z1, z2)z1z2

)
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for some nonzero polynomialq(z1, z2) ∈ K[z1, z2], it is easy to see that this matrix does
not belong toGL2(K[z1, z2]) because we cannot apply the Euclidean algorithm to its
first column.

Example 2.14. A minor modification of the Anick automorphism is the automorphism
of K〈x, y, z〉 given by

ωm = (x + z(xz− zy)m, y + (xz− zy)mz, z).

Note that the automorphismsωm,m > 1, are not covered by Theorem 2.9, as the polyno-
mialsz(xz− zy)m and(xz− zy)mz have no linear components with respect tox andy.

Theorem 2.15. The above automorphismsωm are wild for allm ≥ 1.

Proof. Consider the automorphismτ = (x + 1, y, z) of K〈x, y, z〉. Clearly,ωm is wild
if and only ifωmτ is wild. Direct calculations show that the linear part of thez-automor-
phism

ωmτ = x + 1 + z((x + 1)z− zy)m, y + ((x + 1)z− zy)mz, z)

is equal to

(ωmτ)1 =

(
x + z

m−1∑
i=0

zi(xz− zy)zm−1−i, y +

m−1∑
i=0

zi(xz− zy)zm−1−iz, z
)
.

Hence the matrixJz((ωmτ)1) has the form

Jz((ωmτ)1) =

(
1 + q(z1, z2)z1z2 q(z1, z2)z

2
2

−q(z1, z2)z
2
1 1 − q(z1, z2)z1z2

)
,

whereq(z1, z2) = zm−1
1 + zm−2

1 z2 + · · · + zm−1
2 . As in Example 2.13, the automorphism

(ωmτ)1 is wild. Henceωm is also wild by Theorem 2.11. ut

It seems plausible that the nontrivial coordinates ofωm, m > 1, are wild. However, our
methods and the methods in [U2] are not applicable here.

Problem 2. Are the two nontrivial coordinates of the above automorphismωm, m > 1,
both wild?

Remark 2.16. The most general form of the result of Umirbaev [U2] shows that the auto-
morphismϑ = (f, g, h) of the free metabelian algebraM(x, y, z) is wild if it induces the
identity automorphism ofK[x, y, z] and the matrixJ2(ϑ)(z1, z2) cannot be represented
as a product of elementary matrices with entries fromK[z1, z2] (see Proposition 2.5).
Hence the classes of wild automorphisms and wild coordinates in Theorem 2.9, Example
2.13 and Example 2.14 are not covered by Umirbaev [U2].

Now we are going to show that at least two coordinates of the automorphisms of
Umirbaev’s class are wild.
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Theorem 2.17. Let ϑ = (f, g, h) be an automorphism of the free metabelian alge-
bra M(x, y, z) which induces the identity automorphism ofK[x, y, z] and the matrix
J2(ϑ)(z1, z2) does not belong toGE2(K[z1, z2]). Then the two coordinatesf (x, y, z)
andg(x, y, z) are both wild.

Proof. We repeat the main steps of the proof of Theorem 2.6. The polynomialf (x, y, z)

∈ M(x, y, z) is equal tox modulo the commutator ideal ofM(x, y, z) and has the form

f =

∑
p,q≥0

αpqz
pxzq +

∑
p,q≥0

βpqz
pyzq +

∑
k≥2

fk(x, y, z),

wherefi is the homogeneous component of degreei in x, y (andf0 = 0). Let

a(z1, z2) =

∑
p,q≥0

αpqz
p

1z
q

2, b(z1, z2) =

∑
p,q≥0

βpqz
p

1z
q

2.

The polynomials a(z1, z2), b(z1, z2) constitute the first column of the matrix
J2(ϑ)(z1, z2) which does not belong toGE2(K[z1, z2]). By Proposition 2.3,
a(z1, z2), b(z1, z2) cannot be reduced to(α,0), 0 6= α ∈ K, by the Euclidean algorithm
only.

Now, let ϕ = (f (x, y, z), u(x, y, z), v(x, y, z)) be any tame automorphism which
sendsx to f (x, y, z). Clearly,ϕ induces the tame automorphism

ϕ = (f , u, v) = (x, u, v)

of the polynomial algebraK[x, y, z]. Sinceϕ fixes x, the results in [DY1, DY2, SU1,
SU2, SU3] show thatϕ is also tame in the class of automorphisms fixingx. So, as
in the proof of Theorem 2.6, we may replaceϕ with a tame automorphismξ =

(f (x, y, z), u1(x, y, z), v1(x, y, z)) of M(x, y, z) such thatξ is in the kernel of the
natural homomorphism AutM(x, y, z) → AutK[x, y, z]. The tameness ofξ implies
thatJ2(ξ) ∈ GE2(K[z1, z2]). Since the first column ofJ2(ξ) consists ofa(z1, z2) and
b(z1, z2), this contradicts Proposition 2.5. The considerations for the other coordinateg

of ϑ are similar. ut

Remark 2.18. Any automorphismφ ∈ AutK〈x, y, z〉 which induces an automorphism
in AutM(x, y, z) of the type in Theorem 2.17 (in other words, any automorphism in
AutK〈x, y, z〉 obtained by lifting an automorphism in AutM(x, y, z) of the type in The-
orem 2.17) is a wild automorphism containing at least two wild coordinates.

The above results suggest the following problems.

Problem 3. Is it true that the two nontrivial coordinates of a wild automorphism of
K〈x, y, z〉 fixing z are both wild?

Problem 4. Is it true that every wild automorphism ofK〈x, y, z〉 contains at least two
wild coordinates?
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3. Special wild automorphisms of the free metabelian algebra

In this section we shall construct a wild automorphismτ of the free metabelian algebra
M(x, y, z) over any fieldK of arbitrary characteristic with the following properties:

(i) τ = (f (x, y, z), y, z) fixes two of the variables. (Hence Lemma 2.1 does not hold
for M(x, y, z).)

(ii) The Jacobian matrixJM(τ ) is a product of elementary matrices.
(iii) τ cannot be lifted to an automorphism ofK〈x, y, z〉.

Recall the definition of the Fox derivatives of the free algebraK〈X〉 (see e.g. [MSY]). If

f (X) =

n∑
i=1

xifi(X)+ α, α ∈ K, fi(X) ∈ K〈X〉,

then theright Fox derivativesof f (X) are

∂rf

∂rxi
= fi(X), i = 1, . . . , n.

Similarly, if

f (X) =

n∑
i=1

fi(X)xi + α, α ∈ K, fi(X) ∈ K〈X〉,

then theleft Fox derivativesof f (X) are

∂lf

∂lxi
= fi(X), i = 1, . . . , n.

The right and left Jacobian matrices of an endomorphismϕ of K〈X〉 are, respectively,

Jr(ϕ) =

(
∂rϕ(xj )

∂rxi

)
, Jl(ϕ) =

(
∂lϕ(xj )

∂lxi

)
.

The chain rule implies that ifϕ is an automorphism, thenJr(ϕ) andJl(ϕ) are invertible
(but the opposite is not true in the general case).

We need some machinery from [BGLM] and [BD]. We describe it in the case of
three variables only. We define an equivalence relation∼ onK〈x, y, z〉. We say that two
monomialsu and v are equivalent if they can be obtained from each other by cyclic
permutation (i.e.,u ∼ v if and only if u = w1w2 andv = w2w1 for some monomials
w1, w2), and then extend∼ toK〈x, y, z〉 by linearity.

Proposition 3.1 ([BGLM, BD]). Let σ be an endomorphism ofK〈x, y, z〉 which is
equal to the identity ofK〈x, y, z〉 modulo thek-th degree of the augmentation ideal, i.e.

σ = (x + fk + · · · + fm, y + gk + · · · + gm, z+ hk + · · · + hm),

wherefi, gi, hi are the homogeneous components of degreei ofσ(x), σ (y), σ (z), respec-
tively. If σ is an automorphism andk ≥ 2, then the homogeneous component of degree



The Strong Anick Conjecture is true 673

k − 1 of the trace of the right Jacobian matrix

∂rfk

∂rx
+
∂rgk

∂ry
+
∂rhk

∂rz

is equivalent to0. A similar statement holds for the trace of the left Jacobian matrix.

Theorem 3.2. The endomorphism

τ = (x + x2[y, z], y, z)

of the free metabelian algebraM(x, y, z) is a wild automorphism which cannot be lifted
to an automorphism ofK〈x, y, z〉. Its Jacobian matrix

JM(τ ) =

 1 0 0
x2

1(z2 − z1) 1 0

x2
1(y1 − y2) 0 1


is a product of two elementary matrices.

Proof. Obviouslyτ is an automorphism andτ−1
= (x−x2[y, z], y, z). Also, its Jacobian

matrix JM(τ ) is a product of elementary matrices. Now, supposeτ lifts to an automor-
phismσ of K〈x, y, z〉. Then

σ = (x + x2[y, z] + f (x, y, z), y + g(x, y, z), z+ h(x, y, z)),

wheref (x, y, z), g(x, y, z), h(x, y, z) belong to the T-ideal generated by the polynomial
identity [x1, x2][x3, x4] = 0. Hencef, g, h have no homogeneous components of degree
≤ 3 and

f = f4 + · · · + fm, g = g4 + · · · + gm, h = h4 + · · · + hm,

wherefi, gi, hi are homogeneous of degreei. Clearly, the componentsf4, g4, h4 are
linear combinations of products of two commutators of the variables. By Proposition 3.1,

∂r(x
2[y, z] + f4)

∂rx
+
∂rg4

∂ry
+
∂rh4

∂rz
∼ 0, (3)

∂l(x
2[y, z] + f4)

∂lx
+
∂lg4

∂ly
+
∂lh4

∂lz
∼ 0. (4)

Sincex2[y, z] = x2yz− x2zy, we obtain

∂rx
2[y, z]

∂rx
= x[y, z] ∼ xyz− xzy,

∂lx
2[y, z]

∂lx
= 0. (5)

The components of (3) and (4) which are multilinear inx, y, z are equivalent to 0. The
components of the Fox derivatives

∂rf4

∂rx
,

∂rg4

∂ry
,

∂rh4

∂rz
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which are multilinear inx, y, z come, respectively, from

f ′

4 = α1[x, y][x, z] + β1[x, z][x, y],

g′

4 = α2[x, y][y, z] + β2[y, z][x, y],

h′

4 = α3[x, z][y, z] + β3[y, z][x, z].

Direct calculations give

∂rf
′

4

∂rx
+
∂rg

′

4

∂ry
+
∂rh

′

4

∂rz

∼ (α1y[x, z] + β1z[x, y])+ (−α2x[y, z] + β2z[x, y])− (α3x[y, z] + β3y[x, z])

∼ (−α1 + β1 − α2 + β2 − α3 + β3)(xyz− xzy).

Together with (5) this implies that

−α1 + β1 − α2 + β2 − α3 + β3 + 1 = 0. (6)

Similarly,

∂lf
′

4

∂lx
+
∂lg

′

4

∂ly
+
∂lh

′

4

∂lz

∼ −(α1[x, y]z+ β1[x, z]y)+ (−α2[x, y]z+ β2[y, z]x)+ (α3[x, z]y + β3[y, z]x)

∼ (−α1 + β1 − α2 + β2 − α3 + β3)(xyz− xzy) ∼ 0

in virtue of (5). Hence

−α1 + β1 − α2 + β2 − α3 + β3 = 0. (7)

Clearly, (6) and (7) contradict each other. Henceτ cannot be lifted to an automorphism
of K〈x, y, z〉 and, therefore, is a wild automorphism ofM(x, y, z). ut

Problem 5. Is the polynomialx + x2[y, z] a wild coordinate ofM(x, y, z)? Can it be
lifted to a coordinate ofK〈x, y, z〉?

Problem 6. Do there exist wild automorphisms and wild coordinates of the free met-
abelian algebraM(X) of rank n > 3? Are there wild automorphisms similar to the
automorphismτ constructed above?

4. Lifting of automorphisms fixing variables

The considerations in this section work over an arbitrary field of any characteristic.
Let G(X) be the free group generated by the finite setX. The theorem of Nielsen

[Ni] states that every automorphism ofG(X) is a product of the elementary automor-
phisms(x−1

1 , x2, . . . , xn), (x1x2, x2, . . . , xn), and(xσ(1), . . . , xσ(n)), whereσ belongs to
the symmetric groupSn. The proof of Nielsen gives also an algorithm which finds such
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a decomposition. The theorem of Schreier [Sch] states that every subgroup of the free
group with any number of generators is also free.

There are several important varieties of algebras over a field with free objects which
share the above properties of free groups. A varietyV of algebras is calledSchreierif the
subalgebras of the relatively free algebrasF(V) are again relatively free, whereF(V) is
freely generated by a set of any cardinality. The varietyV is Nielsenif all automorphisms
of the free algebrasFn(V) of finite rank are tame. A theorem of Lewin [L] implies that
over an infinite fieldK the two notions coincide, i.e.,V is Nielsen if and only if it is
Schreier. The same holds over an arbitrary fieldK, provided that the varietyV is defined
by a multilinear system of polynomial identities. See the book [MSY] for more details
about examples of Schreier varieties, and the properties of the subalgebras and the auto-
morphisms of their free objects.

The variety of all (not necessarily associative) algebras is Schreier, by the theorem
of Kurosh [Ku]. Recall that the absolutely free algebraK{X} consists of all polynomials
in the set of noncommuting and nonassociative variablesX, e.g.(xx)x 6= x(xx). One
of the key moments of the proof of Kurosh (and of all other proofs that some varieties
are Schreier) is the following (see [MSY, Theorem 11.1.1]). For a nonzero polynomial
f ∈ K{X} we denote byf̄ the homogeneous component of maximal degree off .

Proposition 4.1. (i) Any finite setS ofK{X} can be transformed into a set of free gen-
erators of the subalgebra generated byS by a finite sequence of elementary transfor-
mations (with cancellation of possible zeros).

(ii) If F = {f1, . . . , fn} is a set of free generators ofK{X}, and g ∈ K{X}, then ḡ
belongs to the subalgebra ofK{X} generated byf 1, . . . , f n.

For an automorphismϕ = (f1, . . . , fn) of K{X} we define the degree ofϕ as the sum of
the degrees of the coordinatesfi :

deg(ϕ) =

n∑
i=1

deg(fi).

Clearly, deg(ϕ) ≥ n. The following consequence of Proposition 4.1 can be used effec-
tively to decompose an automorphism ofK{X} as a product of elementary automor-
phisms.

Corollary 4.2. Letϕ = (f1, . . . , fn) ∈ AutK{X} with deg(ϕ) > n. Then there exists an
integeri and a polynomialg(y1, . . . , yi−1, yi+1, . . . , yn) such that

f i = g(f 1, . . . , f i−1, f i+1, . . . , f n).

Let τ be the elementary automorphism ofK{X} defined by

τ = (x1, . . . , xi−1, xi − g(x1, . . . , xi−1, xi+1, . . . , xn), xi+1, . . . , xn).

Thendeg(ϕτ) < deg(ϕ).

Now we are able to prove the following.
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Theorem 4.3. Let

ϕ = (f1(X,Z), . . . , fn(X,Z), z1, . . . , zm) ∈ AutZK{X,Z}

be an automorphism ofK{X,Z} fixing the variablesZ. Thenϕ is tame in the class of
Z-automorphisms.

Proof. Let us considerϕ as an automorphism ofK{X,Z} in the usual sense. The total
degree ofϕ is

deg(ϕ) =

n∑
i=1

deg(fi(X,Z))+

m∑
j=1

deg(zj ) =

n∑
i=1

deg(fi)+m.

Sinceϕ is aZ-automorphism, each polynomialf1, . . . , fn essentially depends onX.
If deg(ϕ) = n+m, then all polynomialsfi(X,Z) are of total degree 1 andϕ is affine.

We replaceϕ with the productψ = ϕτ0, whereτ0 is the translation

τ0 = (x1 − f1(0,0), . . . , xn − fn(0,0), z1, . . . , zm).

Clearly,τ0 is a product ofZ-elementary automorphisms andψ is a linear automorphism.
Its matrix, as a linear operator of the vector space with basisX ∪ Z, is

(
A 0
B Em

)
=



α11 α12 . . . α1n 0 0. . . 0
α21 α22 . . . α2n 0 0. . . 0
...

...
. . .

...
...

...
. . .

...

αn1 αn2 . . . αnn 0 0. . . 0
β11 β12 . . . β1n 1 0. . . 0
β21 β22 . . . β2n 0 1. . . 0
...

...
. . .

...
...

...
. . .

...

βm1 βm2 . . . βmn 0 0. . . 1


,

andA = (αpq), B = (βrs) are, respectively,n× n andm× nmatrices with entries inK,
Em is them × m identity matrix, andA is invertible. Since we work over a field,A is
a product of elementary matrices and this implies that, multiplyingψ by a product of
elementary linear automorphisms fixingZ, we bring it to the automorphism

τ1 = (x1 + g1(Z), . . . , xn + gn(Z), z1, . . . , zm),

which is a product of elementary automorphisms fixingZ.
Now, let deg(ϕ) > n+m. Then at least one of the polynomialsfi(X,Z) is not linear.

The leading components of then+m coordinates are

f1(X,Z), . . . , fn(X,Z), z1 = z1, . . . , zm = zm.

By Corollary 4.2, one of these homogeneous components can be expressed by the oth-
ers. Obviously,zj cannot be expressed as a polynomial off 1, . . . , f n and the other
z1, . . . , zj−1, zj+1, . . . , zm. It follows that somef i is a polynomial off 1, . . . , f i−1,
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f i+1, . . . , f n and z1, . . . , zm. This implies that the elementary automorphismτ of
K{X,Z} given by Corollary 4.2 is of the form

τ = (x1, . . . , xi−1, xi − g(X,Z), xi+1, . . . , xn, z1, . . . , zm),

whereg(X,Z) does not depend onxi . Then deg(ϕτ) < deg(ϕ) and the proof is completed
by an obvious induction on the degree ofϕ. ut

The theorem below is an immediate concequence of Theorem 4.3.

Theorem 4.4. Letϕ be an automorphism ofK[X,Z] or K〈X,Z〉 which fixesZ. If ϕ is
wild as aZ-automorphism, then it cannot be lifted to an automorphism ofK{X,Z} which
also fixesZ.

Remark 4.5. The Nagata automorphism is wild as az-automorphism ofK[x, y, z] (see
[N]), as well as wild in the usual sense [SU1, SU3]. Hence it cannot be lifted to any
automorphism ofK{x, y, z}. On the other hand, by the theorem of Smith [Sm], automor-
phisms ofK[X] of a large class become tame as automorphisms ofK[X, t ] if we extend
them to act identically ont . In particular, the extension of the Nagata automorphism

ν′
= (x − 2y(y2

+ xz)− z(y2
+ xz)2, y + z(y2

+ xz), z, t)

is tame as an automorphism ofK[x, y, z, t ]. It is easy to see that it is wild in the class of
automorphisms ofK[x, y, z, t ] fixing z andt . Hence, Theorem 4.4 shows thatν′ cannot
be lifted to an automorphism ofK{x, y, z, t} which fixesz andt .

Similarly, the automorphism of Anick is wild as an automorphism fixing a variable
[DY3] and even wild in the usual sense [U2]. But it becomes tame when extended to an
automorphism ofK〈x, y, z, t〉. The technique of [DY3] implies that the extension of the
Anick automorphism

(x + z(xz− zy), y + (xz− zy)z, z, t)

is wild in the group of automorphisms ofK〈x, y, z, t〉 which fix z, t , although this auto-
morphism is tame in the usual sense. Hence, our theorem shows that it cannot be lifted to
an automorphism ofK{x, y, z, t} which fixesz, t .

We conclude this section with several open problems.

Problem 7. (i) If ϕ is an automorphism ofK[X], can it be lifted to an automorphism of
K〈X〉? (If ϕ is wild, and nevertheless the answer is positive, this would mean that it
is not “too wild”.)

(ii) If ϕ ∈ AutZ K[X,Z], can it be lifted to aZ-automorphism ofK〈X,Z〉? AreZ-wild
automorphisms wild also in the usual sense?

Problem 8. How far can one lift the automorphisms ofK[X]? Describe the varieties
V of algebras with the property that every automorphism ofK[X] can be lifted to an
automorphism of the relatively free algebraFn(V) of rankn = |X|.
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For example, a theorem of Umirbaev [U1] implies that every automorphism ofK[X] can
be lifted to an automorphism of the free metabelian algebraM(X).

Problem 9. (i) If p(X) is a coordinate ofK[X], can it be lifted to a coordinate of
K〈X〉?

(ii) How far can one lift the coordinates ofK[X]? Describe the varietiesV of algebras
with the property that every coordinate ofK[X] can be lifted to a coordinate of
Fn(V).

(iii) Can the two nontrivial Nagata coordinatesx − 2y(y2
+ xz) − z(y2

+ xz)2 and
y + z(y2

+ xz) be lifted to coordinates ofK〈x, y, z〉?
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