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The Strong Anick Conjecture is true
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Abstract. Recently Umirbaev has proved the long-standing Anick conjecture, that is, there exist
wild automorphisms of the free associative algekre, y, z) over a fieldK of characteristic O.

In particular, the well-known Anick automorphism is wild. In this article we obtain a stronger re-
sult (the Strong Anick Conjecture that implies the Anick Conjecture). Namely, we prove that there
exist wild coordinates oK (x, y, z). In particular, the two nontrivial coordinates in the Anick au-
tomorphism are both wild. We establish a similar result for several large classes of automorphisms
of K(x, y, z). We also find a large new class of wild automorphism¥dk, y, z) which is not

covered by the results of Umirbaev. Finally, we study the lifting problem for automorphisms and
coordinates of polynomial algebras, free metabelian algebras and free associative algebras and ob-
tain some interesting new results.

Keywords. Automorphisms of free and polynomial algebras, tame automorphisms, wild automor-
phisms, coordinates in free algebras

1. Introduction

Let K be a field of characteristic 0 and I8t = {x1, ..., x,}, n > 2, be a finite set. We
denote byK [ X] the polynomial algebra in the set of variablgsand byK (X) the free as-
sociative algebra (or the algebra of polynomials in theXsef noncommuting variables)
with the same set of free generators. For smalle shall denote the free generators also
by x, y, etc. We write the automorphisms &f] X] and K (X) asn-tuples of the images
of the coordinates, angd = (f1, ..., f,) means thap(x;) = fi(X) = fj(x1,..., xn),

Jj = 1,...,n. Also, the productpys of the automorphismg and acts onu(X) by
(p¥)(u) = (¥ (u)). An automorphism oK [X] or K (X) is calledelementaryf it is of

the form

(X1, Xjm,ax + (XL, oo X, Xy, oo Xp) s Xjg L, .. X)), o € KT,

and the polynomialf (x1, ..., xj_1, Xj4+1, ..., X,) does not depend on the variablg
The automorphisms belonging to the group generated by elementary automorphisms are
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calledtame all the others arevild. A polynomial p € K[X] is called acoordinateif it

is an automorphic image afi. Moreover, a coordinate € K[X] is calledtameif there
exists a tame automorphisgne Aut K[X] such thatp(x1) = p, otherwisep is called a

wild coordinate One defines in a similar way the coordinates and tame and wild coordi-
nates ofK (X) and other relatively free algebras. In noncommutative algebra coordinates
are often callegrimitive elementsObviously, the existence of wild coordinates implies
the existence of wild automorphisms, but not vice versa in general.

Problems concerning automorphisms of free objects are similar for free groups, poly-
nomial algebras, free associative and free Lie algebras, and relatively free groups and
algebras (see the recent bobk [MSY] by Mikhalev, Shpilrain, and Yu). One of the most
important problems in the theory of automorphisms of polynomial and free associative
algebras is whether all automorphismsfX] and K (X) are tame. The answer is in
the affirmative forK [x, y] (Jung—van der Kulk]J, K]) and foK (x, y) (Czerniakiewicz—
Makar-Limanov|[CZ, ML1, ML2]). In 1970, Nagata [N] constructed his famous automor-
phism ofK[x, y, z] which is wild as an automorphism fixingand conjectured that it is
also wild as a usual automorphismKfx, y, z]. More than 30 years later Shestakov and
Umirbaev [SU1| SUZ, SU3], using methods of Poisson brackets, degree estimations and
peak reduction, proved the Nagata Conjecture, in particular, they proved that the Nagata
automorphism is wild. Umirbaev and J.-T. Yu [UY] proved the Strong Nagata Conjecture,
namely, there exist wild coordinates K{x, y, z]. In particular, the two nontrivial Nagata
coordinates are both wild. There were also attempts, unfortunately unsuccessful, to lift
the Nagata automorphism to an automorphisnk ¢f, y, z) (see, for instance, our paper
with Gutierrez [DGY]). (A lifting of the Nagata automorphism would provide immedi-
ately a wild automorphism ok (x, y, z).) There is another automorphism &f(x, y, z),
suggested by Anick,

x+ylxy —y2),y, 2+ (xy —yz2)y) € AutK(x, y, z)

(see the book by Cohn [C2, p. 343]), which was suspected to be wild, although it in-
duces a tame automorphism&fx, y, z]. Exchanging the places gfandz in the above
automorphism, we replace it with the automorphism

w=x+z(xz—2y),y+ (xz—2y)z,2).

It fixes z, andw (x) andw(y) are linear inx andy. From now on, we shall refer 1@ as
the Anick automorphism

Conjecture 1 (Anick Conjecture). There exist wild automorphisms Aut K (x, y, z).
In particular, the Anick automorphism is wild.

We established [DY3] that the Anick automorphism is wild in the class of automorphisms
fixing the variablez, and very recently Umirbaev [U2] has proved the Anick Conjecture,
that is, the wildness of the Anick automorphism as an automorphiskinof y, z).

The work of Nagaté [N] motivated the study of automorphisms fixing a variable. More
generally, we introduce another sét= {z1, ..., z,,} and consider the algebr&q X, Z]
andk (X, Z), freely generated by the s&tJZ. Studying automorphisms fixing the sét
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we use the same notatign= (f1, ..., fu, 21, ..., Zm), Meaning thap (x;) = f; (X, Z),
j=1...,n,ande(z;) = z;,i =1, ..., m, and denote the corresponding automorphism
group by Auy; K[X, Z] and Aut; K (X, Z), respectively. Again, an automorphism4s
elementanyif it is of the form¢ = (x1,...,ax; + f(X,Z), ..., xp, 21, ..., Zm), and
f(X, Z) does not depend or). The automorphism is tame in the class of automorphisms
fixing Z (or Z-tamg if it belongs to the group generated Byelementary automorphisms.

In the general case, this group may be smaller than the group generatettiapgular
andZ-affine automorphisms because sofmaffine automorphisms may not be products
of Z-elementary ones.

An important consequence 6f [SU1, SU2, $U3, DY1, DY?2] is that eyemyld auto-
morphism ofK[x, vy, z] is a wild automorphism oK [x, y, z]. A method of constructing
a large class of such automorphisms was given by usin[DY2].

The next step in studying automorphisms of free algebras is to statginates or
automorphic images of;. In noncommutative algebra coordinates are also calted-
itive elementsThere are algorithms to recognize coordinate&X§f, y] (Shpilrain and
Yu [SY]) and z-coordinates ofK[x, y, z] (see our paper [DY?2] as well as our survey
[DY1]). As a consequence of their proof of the Strong Nagata Conjecture, Umirbaev and
J.-T. Yu [UY] established that if (x, y, z) is az-wild coordinate inK[x, y, z], then it is
immediately a wild coordinate i [x, y, z].

Obviously, results for (commutative) polynomial algebras inspire problems on free
associative algebras as there is a natural surjective homomorphisnkft&mto K[ X]
which induces a natural (not necessarily surjective) homomorphism fronk AXif to
Aut K[X]. In this paper we shall be interested in the following problem motivated by
[UY]:

Problem 1. If f(X, Z) € K(X, Z) is the image ok, under aZ-wild automorphism, is
there a tame automorphism (maybe not fixifigwhich also sends; to f (X, Z)?

If such a tame automorphism does not exist, then we £@ll, Z) awild coordinateof
K(X,Z).
As an analog of the Strong Nagata Conjecturé in[UY], we state

Conjecture 2 (Strong Anick Conjecture). There exist wild coordinates iK (x, y, z).
In particular, the two nontrivial coordinates of the Anick automorphism are both wild.

The Anick automorphism has the property that it fixeandw(x) andw(y) are linear

in x andy. In our paper([DY3] we showed that such an automorphismk ¢f, y, z) is
z-tame if and only if a certain % 2 matrix with entries fromK|[z1, z2] is a product of
elementary matrices. This idea has been used by Umirbaev [U2] in the final step of his
proof of the wildness of the Anick automorphism. Now we show thaf (t, y, z) is

a wild z-coordinate inK (x, y, z), and f (x, y, z) is linear inx, y, then f (x, v, z) is also

wild in the sense of Problefn} 1. This is one of the main results of the paper. It immediately
confirms the Strong Anick Conjecture.

The class of wild automorphisms &f(x, y, z) discovered by UmirbaeV [U2] is larger

than the class aof-wild automorphisms £, g, z) such that the polynomialg, g are linear
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in x, y. Our method also shows that all automorphisms of Umirbaev’s class have the
property that at least two of their coordinates are wild. The same result holds for another
large class of automorphisms &f(x, y, z) which is not covered by Umirbaey [U2].

Our main result suggests an algorithm deciding whether a polyngftialy, z) €
K{x,y,z) which is linear inx andy, is a tame coordinate. If it is, then the algorithm
shows how to find a product efelementary automorphisms which sends f (x, y, z).

(Of course, in all algorithmic considerations we assume that the groundkfigddcon-
structive, and we may perform calculations there.) In this part of the paper we use the
approach and the results of Umirbakev [U2], combined with our approach from [DY3].

On the other hand, we show that the situation is completely different in the case of
the free metabelian algeb® (x, y, 7). We construct an automorphism which fixes
andz and cannot be lifted to an automorphism K6fx, y, z). The proof is based on a
test recognizing some classes of endomorphisms which are not automorphisms. This test
originates from group theory (see Bryant, Gupta, Levin and Mochizuki [BGLM]) and was
adapted to algebras by Bryant and Drensky|[BD].

In addition, we show that an automorphismofX, Z] or K (X, Z) which is Z-wild
cannot be lifted to &-automorphism of the absolutely free algelsféX, Z}. (As a con-
sequence of a result of Kurosh [Ku], all automorphisms of the absolutely free algebra are
tame.) This is equivalent to the fact that there exisZraild automorphisms oK { X, Z}.

2. Proof of main results

Dicks and Lewin[[DL] introduced the Jacobian matrix of an endomorphism ©f).

This is ann x n matrix with entries from the tensor produkt(X) ®x K (X)°P of the

free algebrak (X) and its opposite (or anti-isomorphic) algel&aX)°P. Forn = 2 they
proved that the Jacobian matrix is invertible ovétx, y) ® K (x, y)°P if and only if

the endomorphism is an automorphism. The general case ot avgs established by
Schofield [Sk]; this is the Jacobian Conjecture for free associative algebras. The patrtial
derivatives and the Jacobian matrix of Dicks and Lewin can be defined as follows:

8x,~ ij
-~ = 17 = Oa j i»
Bxl- Bxl- J 7&
and, for a monomial = x;, - - - x;,, € K(X),
Jw i 8xik
3_)61‘ = ;(xll e ‘xzk,l) ® (szl e ‘xtm)a_xi’

wherex;, - - - x;,_, € K(X) andx;, ---x;, € K(X)°P. Then, as usual,

m

—) ¢ € EndK (X).

We need the following lemma.
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Lemma 2.1. The only automorphisms &f (X) fixing x, ..., x, are the tame automor-
phisms of the form

T=(ax1+ f(x2, ..., %), X2, ..., X,), o« €K* f(xo,...,x5) € K{x2,...,x).

Proof. The shortest way to establish the lemma is to use the invertibility of the Jacobian
matrix. Lett = (g(X), x2, ..., x,) € Aut K(X) fix xo, ..., x,. Then the matrix
3
ﬁ 0
9g
Jo)=| "
oo 1

0xp

is invertible overk (X) ®x K (X)°P and this implies thabg/dx; is equal to a nonzero
constantx. Hence the only term of (X) depending or1 is axj. O

For K (x, y, z), the endomorphisms which fixand are linear inc andy are of the
formp = (f(x,y,2), gx, y,2), 2), where

fx,y,2) = Z opgzlxz? + Z Bpqzl yz? + fo(2),

r,q=0 p.9=0
206y, = Y ypgfxzt 4+ ) 8pgz’ vz + gol2),
r,q=0 p.4=0

Apgs Bpgs Vpg- Spg € K, and fo(z), go(z) are polynomials inc. Applying the Jacobian
matrix of Dicks and Lewin in this concrete case,lin [DY 3] we obtained:

Proposition 2.2. (i) The endomorphismp = (f(x,y,z), g(x,y, 2), z) which fixesz
and is linear inx andy is an automorphism if and only if thH&x 2 matrix

P4 P4

J(p) = (Zp,qu“MZ1Z2 2 p.q=0 quZﬂz)
z - P4 P4
Zp,qzoﬁpqzlz2 Zp,qZOSPqZIZZ

with entries fromK|[z1, z2] is invertible. All such automorphisms induggame au-
tomorphisms oK[x, y, z].

(i) The automorphism is z-tame if and only if the matri¥,(p) belongs to the group
generated by elementary matrices with entries fifa1, z2].

For example, for the Anick automorphism,

1+ z1z20 23
J.(w) = 2
(@) ( -2 1-z122
and by a result of Cohn [C1], the matrik (w) cannot be represented as a product of
elementary matrices.
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Let Z = {z1, ..., zm}- We denote byG E2(K[Z]) the subgroup o&GL2(K[Z]) gen-
erated by the diagonal and by the elementary matrices

a1 O 1 f(2) 1 0

(52 G'7) (i)
with entries fromK[Z]. There is an algorithm deciding whether a matrixdi.o (K [Z])
belongs taG E2(K[Z]). It was suggested by Tolhuizen, Hollmann, and Kalker [THK] for
the partial ordering by degree and, independently, by Rark [P1, P2] for any monomial
ordering onK[Z]. One applies Gaussian elimination process to the matrix based on the
Euclidean division algorithm foK[Z]. The matrix belongs t@ E2(K[Z]) if and only if
this procedure brings it to the identity matrix. For our purposes, we need the following
version of the Euclidean algorithm. df(Z), b(Z) are two nonzero polynomials with ho-
mogeneous components of maximal degrég), b(Z), respectively, then the Euclidean
algorithm can be applied @(Z) andb(2) if a(Z) = b(Z)q(Z) for someq(Z) € K[Z]
(orb(Z) = a(Z)q(Z)) when we replace(Z) with a(Z) — b(Z)q(Z) (or, respectively,
we replaceb(Z) with b(Z) — a(Z)q(Z)). In matrix form, these operations correspond,
respectively, to

(a(Z) - b(Z)q(Z)> _ <1 —q(Z)) (a(Z)> (1)
b(Z) “lo 1 b(Z))"

( a(Z) ) _ ( 1 0) (a(Z)) B
b(Z) —a(Z)q(Z) —qZ2) 1J\b(2D))"

For us, the most convenient form of the resultin/[P1,P2, THK] is as statéd in|[THK].

Proposition 2.3. Let a(Z),b(Z) be two polynomials inK[Z]. Then there exist
c(Z2),d(Z) € K[Z] such that the matrix

G_ca)da)
“\b(2) d2)

belongs toG E2(K[Z]) if and only if we can bring the paita(Z), b(Z)) to («, 0), 0 #
a € K, using the Euclidean algorithm only.

Clearly, in this case the equation$ (1) (2) give the decompositiGrasfa product of
elementary matrices.

We need a description of the free metabelian associative algebra and a short exposition
of the results of Umirbaev. Recall that three metabelian algebra

M(X) = K(X)/([11, ][ t3, ta])"

is the relatively free algebra of ramkin the variety of associative algebras defined by the
polynomial identity f1, ][ #3, 4] = O. In order to define partial derivatives and the Jaco-
bian matrix of an endomorphism, we need two more sets of varidbles{us, ..., u,}
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andV = {v1,...,v,} of the same cardinality a&. We consider the polynomial alge-
bra K[U, V]. Changing a little the notation of Umirbaev [U1], we define formal partial
derivativesd,, /9y, x; assuming that

BMx,- aij

=1, =0, j#i,
aMx,' aMx,' J # !

and, for a monomialy = x;, - - - x;,, € M(X),

m

m
aMw _ ” i i i 8Mxik
_ 1 AR 1 1 .. 1 .
. § i 1 k—1Y1k+1 m 3Mxi

These are the homomorphic images of the partial derivatives of Dicks and Lewin under
the natural homomorphisii (X) ®x K (X)°P — K[U, V] which sends; ® 1 and 1® x;

to u; andv;, respectively. A polynomiaf (X) € M(X) belongs to the commutator ideal

of M(X), i.e., to the kernel of the natural homomorphisfiiX) — K[X], if and only if

D (i —v) Wl _o
i=1

oM Xx;

The Jacobian matrix of an endomorphignof M (X) is
3M§0(Xj)>

aMx,'

Ju(p) = <

which is a matrix with entries fronK[U, V]. One of the main results in [U1] is that the
Jacobian matrix/y; (¢) is invertible (as a matrix with entries fro&[U, V]) if and only

if ¢ is an automorphism oM (X). Clearly, the invertibility of Jy;(¢) is equivalent to

0 # det(Jy (@) € K. In this section we shall work with free algebras of rank 3 only and
shall assume that the sefsU, V are, respectively,

X={x,y,z}, U={x1,y.z1}, V ={x2, y2, z2}.

LetT(K{x,y,z)), T(M(x,y,z)) andT (K[x, y, z]) be, respectively, the groups of tame
automorphisms oK (x, v, z), M(x, y, z), andK[x, y, z]. There is a natural homomor-
phism

T(K(x,y,2)) = T(M(x,y,z) - T(K[x,y,z]).

Let Ker(r) be the kernel ofr : T (M (x, vy, z)) - T(K]x, y, z]). Further developing the
methodology in[[SUL, SU2, SWU3], Umirbaev [U2] discovered the defining relations of
T(K[x,y,z]). As a consequence, he proved the following.

Proposition 2.4. As a normal subgroup dof (M (x, y, z)), the kernel ofr is generated
by the automorphisms

I/I - (x / (Va Z)1 Vs Z), f(Yv Z) - Apgrsy" 2 [Vs Z]yrZs, Upgrs € K.
p q
Psq,rs>0
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Moreover, any tame automorphishfrom Ker(;r) has a Jacobian matrix which is a prod-
uct of elementary matrices. The next key observation of Umirbaev is the following. Let
¢ be any automorphism from the kernel of the natural homomorphismAut y, z) —
AutK|[x,y, z]. Then

I (P) = Iy () (x1, y1, 21, X2, ¥2, 22)

is a 3x 3 matrix with entries fromK [x1, y1, z1, x2, y2, z2]. If we replacex1, y1, x2, y2
with zeros, then the matriX; (¢)(0, 0, z1, 0, 0, z2) will be of the form

14+win w12 w13
I (D) (z1, 22) = wp1 14wz wasl],
0 0 1

where the polynomials;; = w;;(z1, z2) have no constant terms. Define the 2 matrix

_ (1+wuz1,z2)  wi2(z1, 22)
Jo(9)(z1, 22) = ( wr(z1,22) 14 waa(z1, zz)) '

Proposition 2.5 (Umirbaev [UZ2]). If & € Ker(xr), then Jo2(9)(z1, z2) is a product of
elementary matrices with entries froki{z1, z2].

Note that the matrix/2(p) of the automorphisnp of M(x, y, z) induced by the au-
tomorphismp of K (x, y, z) coincides with the matrix/,(p), the Jacobian matrix of
(p(x), p(y)), whenp fixesz and is linear with respect to, y.

Now we are ready to prove the main results in this article.

Theorem 2.6. Let K be a field of characteristi© and let the polynomialf (x, y, z) €
K(x, v, z) belinearinx, y. If there exists a wild automorphism &f(x, y, z) which fixes
z and sendsc to f(x, y, z), then every automorphism & (x, y, z) which sendsc to
f(x,y,z)isalsowild. Sof(x, y, z) is a wild coordinate oK (x, y, z).

Proof. Leto = (f(x, y,2), h(x, y, z), z) be a wild automorphism oK (x, y, z) which
fixesz and sends to f(x, y, z). We write f (x, y, z) in the form

fx,y,2)= Z apgzPxz? + Z Bpqzlyzl + fo(2),
p.q>0 p.q=0
wherea,q, Bpq € K, and fo(z) is a polynomial inz. Let
a(z1,22) = Z OéqufZg, b(z1,z2) = Z ,quZfZ%-
P,q=0 p,q=0
First we shall show that the polynomiaigzs, z2), b(z1, z2) cannot constitute the first
column of a matrix fromG E2(K[z1, z2]). Suppose, on the contrary,

J— a(z1,z2) c(z1,22)
b(z1,z2) d(z1,22)

c@1.22) = Y Vpg2h7h. dz1.z2) = Y 8pg2i7d.
p.q=0 p.q=0

) € GE2(K|[z1, z2]),
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Consider the polynomial

g(x,y,2) = Z YpgzPxz? + Z 8pgalyzl.
p.q=0 p.q=0

By Propositior] 2.R(ii), the automorphisjm = (f(x, y, z), g(x, y, z), z) is tame in the
group of automorphisms fixing Hence the automorphispt 1o is also wild. But

Yo = (x, k(x, y,2),2)

0
for somek(x, y, z) € K (x, y, z). This contradicts Lemnja4.1.

Hence a(z1, z2), b(z1, z2) cannot constitute the first column of a matrix from
GE2(K|z1, z2]).

The next step is to produce a wild automorphismkofx, y, z) which induces the
identity automorphism oK [x, y, z].

Leto = (f(x,y,2),h(x,y,2),z) be the above wild automorphism &f(x, y, z)
which fixesz and sends to f(x, y, z), and leth1(x, y, z) be the component dgf which
is linear with respect te, y. Thent = (f(x, y, 2), h1(x, y, 2), z) is also a wild automor-
phism ofK {x, y, z) which induces g-tame automorphism |x, y, z]. (The automor-
phismz is wild sinces ~1t sendsx to x andz to z, so by Lemmlq‘lf is tame. The
induced automorphism istame by Proposition 22.) Let be the correspondingtame
automorphism oK (x, y, z), linear inx, y. Then? = 1z is still wild and induces the
identity automorphism oK |[x, y, z].

Now, let ¢ be any tame automorphism &f(x, y, z) which sendsx to f(x, y, z).
Replacingy with & = v ~1¢, we obtain a tame automorphism for whighx) = T(x).

The automorphisng induces a tame automorphism &{x, y, z] which fixesx. By
results in [DY1, DY2, SUL, SUS3], such an automorphism is tame in the class of auto-
morphisms fixingx and we can lift it to anc-tame automorphismi of K (x, y, z). So
we obtain a tame automorphisph= 61 which induces the identity automorphism of
K[x,y,z]andg(x) = T(x).

Let & be the automorphism o/ (x, y, z) induced byg. It is in the kernel of the
homomorphismr of Aut M (x, y, z) — AutK|[x, y, z]. The first columns of the matrices
Jo(&) and J2(m (7)) coincide. As remarked above, this column cannot be a column of a
matrix from G E2(K [z1, z2]) sinceT is wild. On the other hand, by Proposition2.5 it is a
column of a matrix fromG E2(K [z1, z2]). This contradiction completes the proof. O

Theorem[ 2.6 and Propositign P.3 give an algorithm deciding whether a polynomial
f(x,y,z) € K{x,y, z) which is linear inx andy, is a tame coordinate. If it is, then the
algorithm finds a product af-elementary automorphisms which send® f (x, y, z).

The following consequence of Theorgm|2.6 proves the Strong Anick Conjecture.

Theorem 2.7. The Strong Anick Conjecture is true. Namely, there exist wild coordinates
in K(x, y, z). In particular, the two nontrivial coordinates+ z(xz — zy) andy + (xz —
zy)z of the Anick automorphism

w=x+z(xz—2y),y +(xz—2y)z,2)

are both wild.
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Proof. The partial derivatives of (x, y, z) = w(x) = x + z(xz — zy) are

b 0
a(zi, z2) = A =1+z122, b(z1,22) = o =72
ox ay
Since we cannot apply the Euclidean algorithmutes, z2) andb(z1, z2), Theorenj 2.6

implies thatf (x, v, z) is a wild coordinate. O

We call an automorphisp = (f(x,y,2), g(x, y,z),z) of K(x,y,z) Anick-like if
f(x,y,z) and g(x, y, z) are linear inx, y and the matrixJ,(¢) does not belong to
GE2(K][z1, z2]). The following corollary is an analogue of a result fram [UY].

Corollary 2.8. The two nontrivial coordinate¥ (x, y, z), g(x, ¥, z) of any Anick-like
automorphism

o=(f(x,y,2),8(x,y,2),2)
of K (x, y, z) are wild.

Proof. Let

0 d
o = a(z1, z2), 2 = b(z1, 22).
x ay

We cannot apply the Euclidean algorithm to bring the pait1, z2), b(z1, z2)) t0 («, 0),
0 # « € K, becausd;(¢) ¢ GE2(K[z1, z2]). Hence Theorein 2.6 shows thétx, y, z)
is a wild coordinate. Similar arguments work fgfx, y, z). O

In the spirit of the above results, we obtain the following theorem which is much stronger.

Theorem 2.9. Let f(x, y, z) be az-coordinate ofK (x, y, z) without terms depending
only onz (i.e. £(0,0,z) = 0). If the linear part (with respect ta and y) fi(x, y, z)
of f(x,y,z) is az-wild coordinate, thenf(x, y, z) itself is also a wild coordinate of
K{x,y,z).

Proof. Since f(x, y, z) is az-coordinate ofK (x, y, z), there exists g-automorphism
o= (f(x,y,2),g(x,y,2),z) of K{(x,y, z). Obviously we may assumg0, 0,z) = 0

(otherwise just replacg(x, vy, z) by (g(x,y,z) — g(0,0,z2)). Let o1 = (fi(x,y,2),

g1(x, y, 2), z) be the automorphism which is the linear partoaf By assumptions

is a wild automorphism. We have to prove the wildness of all automorphisms

(f(x,y,2),ulx,y,2),v(x,y,z)) of K{x, y, z) with first coordinate equal t¢ (x, v, z).

Consider the automorphismas= (f, g, z) andg = (f, u, v) of K[x, y, z] induced by
o andg, respectively. Ifz is wild, then, by the theorem of Umirbaev and Yu [UY],
is a wild coordinate oK [x, y, z]. Hencey is a wild automorphism oK [x, y, z]. This

implies thaty is a wild automorphism oK (x, y, z) and thereforef (x, y, z) is a wild

coordinate. Hence we may assume thad a tame automorphism &|[x, y, z].

Now we suppose that the automorphignis tame and repeat the main steps of the
proof of Theorenj 2]6. Since is tame, by [[DY1/ DY3[ SU1, SU3] it is also-tame.
Let ¢ be somez-tame automorphism ok (x, y, z) which inducess and lety; be the
linear part ofy. Replacings with & = v 1o and¢ with § = v ~1¢, we find that
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the tame automorphisi@ fixes x modulo the commutator ideal & (x, y, z). Sinces

is a composition of the-automorphismsy—! and o, its linear part(s); is also az-
automorphism which is equal to the compositimjlgol of the linear components of
l/f{l andg1. Hence(o); is wild and we may reduce our considerations to the case when
o(x) = f(x,y,z) is congruent tor modulo the commutator ideal & (x, y, z). Since

¢ induces a tame automorphism &fx, y, z], by [DY1} IDY3| [SU1,[SU3] again, the
induced automorphism is alsetame and we can lift it to am-tame automorphism

of K (x, y, z). The tame automorphis@i = @# ! induces the identity automorphism of
K[x,y,z]and@(x) = f(x,y,z). Now, as in Theorerh 26, the proof is completed by
considerations in the free metabelian algebfé, y, z). O

Remark 2.10. The restrictionf (0,0, z) = 0 is essential for the proof of Theorgm 2.9
(note that obviously we may assugé), 0, z) = 0, otherwise just replacg(x, y, z) by
g(x,y,2) — g(0,0, z)). We use it when, modifying simultaneously the automorphisms
o= (f(x,y,2),8x,y,2),2) andg = (f(x,y,2), u(x,y,z), v(x,y,2)) of K(x,y,z),

we bringo andg to automorphisms which sendto the same element congruentito
modulo the commutator ideal, still keeping the property that the linear component of the
image ofx is wild. Nevertheless, it seems very unlikely to have a wild automorphism
(f, g, z) with £(0,0,z) = 0 such thatf (x, y, z) + a(z) is a tame coordinate for some
polynomiala(z) in view of the next theorem.

Theorem 2.11. Let (f, g, z) be an automorphism of (x, y, z) and let the linear part
(with respect tax and y) of it, (f1, g1, z), be az-wild automorphism. Thenf, g, z) is
also a wild automorphism o (x, y, z).

Proof. Let f(x,y,2) = f'(x,y,2) + fo(z), g(x,y,2) = &'(x,y,2) + go(z), where
/', ¢’ do not contain monomials depending pronly. Define the automorphism =
(x — fo(z), y — go(2), z). Then the automorphism = (f, g, z) is tame (orz-tame) if and
only if ot = (f’, g, z) is tame (orz-tame). Since the polynomial§ /' andg, g’ have
the same linear componenfs andg, we apply Theorer 2]9. O

Remark 2.12. The above theorem is much stronger than the main reslult in [U2] where
only the automorphisms linear with respectttandy are dealt with.

The following example gives a large class of wild automorphisms and wild coordi-
nates. It is based on the polynomial — zy which appears in the Anick automorphism.

Example 2.13. Leth(t, z) € K{(t, z) and leth(0, 0) = 0. Then
op =x+zh(xz—2z2y,2),y +h(xz —2zy,2)z, 2)

is an automorphism ok (x, y, z) fixing xz — zy. If the linear component (with respect to
x,y)hi1(xz — zy, z) of h(xz — zy, 2) is not equal to 0, then this automorphism belongs to
the class of wild automorphisms in Theorem|2.9:(&8)1 = (x + zh1(xz — 2y, 2), y +
h1(xz — zy, 2)z, z) is an automorphism ok (x, v, z) and its matrix/;((o)1) IS

1+ q(z1, 22)2122 q(z1,22)75 >
J.((o = 2
2((on)) ( —q(z1, 7277 1-q(z1, 22)7122
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for some nonzero polynomigl(z1, z2) € K[z1, z2], it is easy to see that this matrix does
not belong toGL2(K[z1, z2]) because we cannot apply the Euclidean algorithm to its
first column.

Example 2.14. A minor modification of the Anick automorphism is the automorphism
of K{(x, y, z) given by

om = (x +z(xz —zy)", y + (xz — 20"z, 2).

Note that the automorphisras,, m > 1, are not covered by Theorém2.9, as the polyno-
mialsz(xz — zy)™ and(xz — zy)"z have no linear components with respecitandy.

Theorem 2.15. The above automorphisms, are wild for allm > 1.

Proof. Consider the automorphism= (x + 1, y, z) of K{(x, y, z). Clearly,w,, is wild
if and only if w,, T is wild. Direct calculations show that the linear part of thautomor-
phism

opt =x+1+z(c+Dz—20)", y+ (x + Dz —2y)"2,2)

is equal to
m—1 ) ) m—1 ) )
(7)1 = (x +z Z dxz—zy)?" Yy + Z 2 (xz — zy)Z" g, z).
i=0 i=0

Hence the matri¥, ((w,,7)1) has the form

1+ q(z1,22)212 21, 22)23
—q(z1,22)77 1—q(z1,22)7122

whereg (z1,22) = ZT& + g’l"*zzz +ooe zglfl_ Asin Exampl3, the automorphism
(wm 7)1 is wild. Hencew,, is also wild by Theorerh 2.71. O

It seems plausible that the nontrivial coordinatesgf m > 1, are wild. However, our
methods and the methods in [U2] are not applicable here.

Problem 2. Are the two nontrivial coordinates of the above automorphiggmm > 1,
both wild?

Remark 2.16. The most general form of the result of Umirbaev [U2] shows that the auto-
morphismd = (f, g, h) of the free metabelian algebs(x, y, z) is wild if it induces the
identity automorphism oK |[x, y, z] and the matrix/>(9)(z1, z2) cannot be represented

as a product of elementary matrices with entries fr&ifz1, zo] (see Propositiof 2]5).
Hence the classes of wild automorphisms and wild coordinates in Théorem 2.9, Example
[2.13 and Example 2.14 are not covered by Umirbaev [U2].

Now we are going to show that at least two coordinates of the automorphisms of
Umirbaev’s class are wild.
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Theorem 2.17. Let 9 = (f, g, h) be an automorphism of the free metabelian alge-
bra M(x, y, z) which induces the identity automorphism Kfx, y, z] and the matrix
J2(9)(z1, z2) does not belong t@ E>(K[z1, z2]). Then the two coordinateg(x, y, z)
andg(x, y, z) are both wild.

Proof. We repeat the main steps of the proof of Theofer 2.6. The polynofialy, z)
€ M(x, y, z) is equal tax modulo the commutator ideal @f (x, y, z) and has the form

f= 2 apgelaz + Y Bpgzlyzl + ) fulx.y.2),

p,q>0 p.q=>0 k>2

where f; is the homogeneous component of degraex, y (and fo = 0). Let

a(z1,z2) = Y apezizh, bz = Y Bpezias.
P.q=0 P-q=0

The polynomials a(z1, z2), b(z1,z2) constitute the first column of the matrix
J2(9)(z1,z2) which does not belong toGE>(K|[z1,z2]). By Proposition[2]3,
a(z1, z2), b(z1, z2) cannot be reduced t@, 0), 0 # « € K, by the Euclidean algorithm
only.

Now, letyp = (f(x,y,2),u(x,y,2),v(x,y,z)) be any tame automorphism which
sendsx to f(x, y, z). Clearly,¢ induces the tame automorphism

?=(fu,v) = (x,u,0)

of the polynomial algebr&[x, y, z]. Sincegp fixes x, the results in[[DYL| DYP, SU1,
SUZ,[SU3B] show thap is also tame in the class of automorphisms fixingSo, as

in the proof of Theorenj 2|6, we may replagewith a tame automorphisng =
(f(x,y,2),u1(x,y,2),v1(x, y,2)) of M(x,y,z) such thaté is in the kernel of the
natural homomorphism AW (x, y,z) — AutK[x, y, z]. The tameness of implies
that J2(§) € GE2(K|[z1, z2])- Since the first column of2(¢) consists ofu(z1, z2) and
b(z1, z2), this contradicts Propositign 2.5. The considerations for the other coorginate
of ¢ are similar. O

Remark 2.18. Any automorphisny € Aut K (x, y, z) which induces an automorphism
in Aut M (x, y, z) of the type in Theorerp 2.17 (in other words, any automorphism in
Aut K (x, y, z) obtained by lifting an automorphism in Al (x, y, z) of the type in The-
orem 2.1¥) is a wild automorphism containing at least two wild coordinates.

The above results suggest the following problems.

Problem 3. Is it true that the two nontrivial coordinates of a wild automorphism of
K{x,y, z) fixing z are both wild?

Problem 4. Is it true that every wild automorphism &f (x, y, z) contains at least two
wild coordinates?
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3. Special wild automorphisms of the free metabelian algebra
In this section we shall construct a wild automorphisraf the free metabelian algebra
M (x,y, z) over any fieldK of arbitrary characteristic with the following properties:

() T = (f(x,y,2),y.2) fixes two of the variables. (Hence Lemina]2.1 does not hold
forM(x,y,2).)
(i) The Jacobian matri¥y, (7) is a product of elementary matrices.
(iii) T cannot be lifted to an automorphism &fx, v, z).

Recall the definition of the Fox derivatives of the free algelif& ) (see e.g/[MSY]). If

FXO=Y"xfiX)+a. ack, fi(X)eK(X),

i=1
then theright Fox derivativeof f(X) are
o f

arx,'

=f(X), i=1...,n

Similarly, if
X)) = fiXxi+a, ackK, fi(X)e K(X),

i=1
then theeft Fox derivativeof f(X) are

d
i f = fi(X), i=1...,n.
0 x;

The right and left Jacobian matrices of an endomorphysoh K (X) are, respectively,

3, . 9 .
5 = (TEER), s = (M),

3rx, 31)(,'

The chain rule implies that ip is an automorphism, the#. (¢) and J;(¢) are invertible
(but the opposite is not true in the general case).

We need some machinery from [BGL.M] and [BD]. We describe it in the case of
three variables only. We define an equivalence relatian K (x, y, z). We say that two
monomialsu and v are equivalent if they can be obtained from each other by cyclic
permutation (i.e.x ~ v if and only if u = wiwz andv = wpws for some monomials
w1, w2), and then extend to K (x, y, z) by linearity.

Proposition 3.1 (BGLM| BD]). Let o be an endomorphism of (x, y, z) which is
equal to the identity oK (x, y, z) modulo thek-th degree of the augmentation ideal, i.e.

wheref;, g;, h; are the homogeneous components of degdede (x), o (), o (z), respec-
tively. If o is an automorphism and > 2, then the homogeneous component of degree
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k — 1 of the trace of the right Jacobian matrix

Or fk n Or 8k n Orhi
0r X ory 0rZ

is equivalent td. A similar statement holds for the trace of the left Jacobian matrix.
Theorem 3.2. The endomorphism
T=(x+xy,2. 5.2

of the free metabelian algeb (x, y, z) is a wild automorphism which cannot be lifted
to an automorphism of (x, y, z). Its Jacobian matrix

1 0
Ju@) = | x¥z2—z10 1 0
xZ(y1—y2) 0 1
is a product of two elementary matrices.

Proof. Obviouslyt is an automorphism and™! = (x —x?[y, z], y, z). Also, its Jacobian
matrix Jys () is a product of elementary matrices. Now, suppod#is to an automor-
phismo of K (x, v, z). Then

o=@+xy, 2+ f(x, 9,2,y + g, v, 2), 2+ h(x, y,2),

wheref (x, v, z), g(x, y, z), h(x, y, z) belong to the T-ideal generated by the polynomial
identity [x1, x2][x3, x4] = 0. Hencef, g, h have ho homogeneous components of degree
< 3and

where f;, g;, h; are homogeneous of degréeClearly, the componentgs, g4, hg are
linear combinations of products of two commutators of the variables. By Propdsition 3.1,

0 (Ply. A+ fa) | Drga  Ocha

0, 3)
Orx ary 0,z
a(xy, 2] + 3 ah
1 (x“[y. z] f4)+ﬁ+’4~o, @)
o x oy 92
Incex<|y, z] = x“yz — x“zy, we obtain
Sincex?[y 2yz — x%zy btai
3, x?[y, ax?y,
O xly. 2] = x[y, 2] ~ xyz — xzy, axly. z] -0 (5)
0, X X

The components of [3) anf](4) which are multilineariry, z are equivalent to 0. The
components of the Fox derivatives

Or f4 0r 84 rha
ox’ Oy’ 9z
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which are multilinear inx, y, z come, respectively, from

fz{ = Oll[x9 y][x’ Z] + ﬂl[xv Z][)C, y]a
g4 =[x, Yl[y, 2] + Baly, l[x, y].
hil = Ol3[x9 Z][yv Z] + :33[))? Z][X, Z]'

Direct calculations give
O fr  Orgy Ok
orx ory 0z
~ (a1y[x, 2] + Bazlx, y]) + (—a2x[y, z] + Baz[x, y]) — (asx[y, z] + Bay[x, z])
~ (-1 + B1— a2+ B2 — az+ B3)(xyz — xzY).
Together with[(b) this implies that

—a1+pr—a2+Po—az+P3+1=0. (6)

Similarly,

o x * oy * 91z
~ —(aa[x, ylz + Bilx, z]y) + (—az[x, ylz + Boly, z]x) + (aslx, z]y + B3[y, z]x)
~ (—a1+ 1 — a2+ P2 —az+ B3)(xyz —xzy) ~ 0

in virtue of (§). Hence
—a1+pr—oa2+Pr—az+p3=0. ()

Clearly, [§) and[([7) contradict each other. Henceannot be lifted to an automorphism
of K{x, y, z) and, therefore, is a wild automorphismMf(x, y, z). O

Problem 5. Is the polynomiak + x?[y, z] a wild coordinate ofM (x, y, z)? Can it be
lifted to a coordinate oK (x, y, z)?

Problem 6. Do there exist wild automorphisms and wild coordinates of the free met-
abelian algebraM (X) of rankn > 3? Are there wild automorphisms similar to the
automorphism constructed above?

4. Lifting of automorphisms fixing variables

The considerations in this section work over an arbitrary field of any characteristic.
Let G(X) be the free group generated by the finite ¥etThe theorem of Nielsen
[Ni] states that every automorphism 6f(X) is a product of the elementary automor-
phisms(xl‘l, X2, ..., Xp), (X1X2, X2, ..., Xp), ANA (X5 (1), - - -, X5(n)), Whereo belongs to
the symmetric grougs,,. The proof of Nielsen gives also an algorithm which finds such
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a decomposition. The theorem of Schreler [Sch] states that every subgroup of the free
group with any number of generators is also free.

There are several important varieties of algebras over a field with free objects which
share the above properties of free groups. A vafleétyf algebras is calle8chreierif the
subalgebras of the relatively free algebr&&l) are again relatively free, whete() is
freely generated by a set of any cardinality. The varigtig Nielsenif all automorphisms
of the free algebra$), (1) of finite rank are tame. A theorem of Lewinl[L] implies that
over an infinite fieldK the two notions coincide, i.e%J is Nielsen if and only if it is
Schreier. The same holds over an arbitrary fi€ldorovided that the variety is defined
by a multilinear system of polynomial identities. See the baok [MSY] for more details
about examples of Schreier varieties, and the properties of the subalgebras and the auto-
morphisms of their free objects.

The variety of all (not necessarily associative) algebras is Schreier, by the theorem
of Kurosh [KU]. Recall that the absolutely free algeliféX} consists of all polynomials
in the set of noncommuting and nonassociative varialfles.g. (xx)x # x(xx). One
of the key moments of the proof of Kurosh (and of all other proofs that some varieties
are Schreier) is the following (see [MSY, Theorem 11.1.1]). For a nonzero polynomial
f € K{X} we denote byf the homogeneous component of maximal degreg. of

Proposition 4.1. (i) Any finite setS of K{X} can be transformed into a set of free gen-
erators of the subalgebra generated$¥y a finite sequence of elementary transfor-
mations (with cancellation of possible zeros).

@iy f F ={f1,..., fu}is a set of free generators & {X}, andg € K{X}, theng
belongs to the subalgebra &f{X} generated byf 4, ..., f,.

For an automorphism = (f1, ..., f,) of K{X} we define the degree gfas the sum of
the degrees of the coordinatgs

degp) = ) _ deg /).
i=1

Clearly, dedgy) > n. The following consequence of Propositjon]4.1 can be used effec-
tively to decompose an automorphism Kf X} as a product of elementary automor-
phisms.

Corollary 4.2. Letgp = (f1, ..., fn) € Aut K{X} withded ) > n. Then there exists an
integeri and a polynomiag (y1, ..., yi—1, Yi+1, - - - » Yu) SUch that

fi=e(fr o ficts Fixae oo F)-
Lett be the elementary automorphismiofX} defined by
T= (X0 ey Xim1, Xi — 8(X1, ooy Xim 2y Xig Ly e s Xn)s Xig 1, ooy Xn)-
Thendegpt) < dedp).

Now we are able to prove the following.
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Theorem 4.3. Let
(p = (fl(Xa Z)v I ) fn(X’ Z)a Zla o »Zm) S AUtZK{X5 Z}

be an automorphism & {X, Z} fixing the variablesZ. Theng is tame in the class of
Z-automorphisms.

Proof. Let us considep as an automorphism & {X, Z} in the usual sense. The total
degree ofp is

degp) = ) deg fi(X.2))+ Y degzj) =Y deg fi)+m.
i=1 j=1 i=1

Sincey is aZ-automorphism, each polynomi#, . .., f, essentially depends ox.
If deg(¢) = n+m, then all polynomialsf; (X, Z) are of total degree 1 anglis affine.
We replacep with the producty = @19, whererg is the translation

0= (x1— f1(0,0),...,x, — f4(0,0), 21, ..., Zm)-

Clearly, g is a product ofZ-elementary automorphisms atidis a linear automorphism.
Its matrix, as a linear operator of the vector space with h¥sisZ, is

o011 o112 ... o1, O O... O
o1 o022 ... o2, O O... O
(A O>_ oyl o2 ... oy, O 0... O
B E,) |pB11 B2 ... B 1 0... 0|
Bor Boo ... Boy O 1... O

andA = (apq), B = (By5) are, respectively; x n andm x n matrices with entries ik,

E,, is them x m identity matrix, andA is invertible. Since we work over a field, is

a product of elementary matrices and this implies that, multiplyingy a product of
elementary linear automorphisms fixilg we bring it to the automorphism

Tl = (xl + gl(Z)a e »xn + g}’l(Z)? Zlv AR ] Zm)’

which is a product of elementary automorphisms fixifig
Now, let dedp) > n + m. Then at least one of the polynomigig X, Z) is not linear.
The leading components of thet m coordinates are

fl(X’ Z)v’”a.fﬂ(Xa Z)’ 21=Zl,~~,Zrn=Zm~

By Corollary[4.2, one of these homogeneous components can be expressed by the oth-
ers. Obviously,z; cannot be expressed as a polynomialfgf ..., f,, and the other
21,4 Zj—1, Zj+1s - - - Zm- It fOllows that somef; is a polynomial of f1, ..., fi_q,
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fitts---» fn @ndza, ...,z This implies that the elementary automorphismof
K{X, Z} given by Corollary 4P is of the form

T = (x17-~'5~xl.717xi _g(X7 Z)’xi+la <o Xn,y 21, ~~,Zm)’

whereg(X, Z) does not depend o). Then degpt) < ded) and the proofis completed
by an obvious induction on the degreegof O

The theorem below is an immediate concequence of Thelorém 4.3.

Theorem 4.4. Let ¢ be an automorphism &€ [ X, Z] or K (X, Z) which fixesZ. If ¢ is
wild as aZ-automorphism, then it cannot be lifted to an automorphisi pf, Z} which
also fixesz.

Remark 4.5. The Nagata automorphism is wild ag-automorphism oK [x, y, z] (see

[ND), as well as wild in the usual sense [SUI, $U3]. Hence it cannot be lifted to any
automorphism oK {x, y, z}. On the other hand, by the theorem of Smith [Sm], automor-
phisms ofK [ X] of a large class become tame as automorphisnis[df, ¢] if we extend
them to act identically on. In particular, the extension of the Nagata automorphism

V= (x = 2y(3% +x2) — 20 +x0)% y + 202 + x2), 7, 1)

is tame as an automorphism Kfx, y, z, t]. It is easy to see that it is wild in the class of
automorphisms oK [x, y, z, 7] fixing z andz. Hence, Theorein 4.4 shows thétcannot
be lifted to an automorphism & {x, y, z, t} which fixesz and:.

Similarly, the automorphism of Anick is wild as an automorphism fixing a variable
[DY3] and even wild in the usual sense [U2]. But it becomes tame when extended to an
automorphism oK (x, y, z, #). The technique of [DY3] implies that the extension of the
Anick automorphism

(x+z(xz—z2y),y+ (xz2—2y)z, 2, 1)

is wild in the group of automorphisms &f (x, y, z, t) which fix z, ¢, although this auto-
morphism is tame in the usual sense. Hence, our theorem shows that it cannot be lifted to
an automorphism oK {x, y, z, ¢} which fixesz, ¢.

We conclude this section with several open problems.

Problem 7. (i) If ¢ is an automorphism ok [X], can it be lifted to an automorphism of
K (X)? (If ¢ is wild, and nevertheless the answer is positive, this would mean that it
is not “too wild".)

(i) If ¢ € Autz K[X, Z], can it be lifted to aZ-automorphism oK (X, Z)? Are Z-wild
automorphisms wild also in the usual sense?

Problem 8. How far can one lift the automorphisms &f[X]? Describe the varieties
U of algebras with the property that every automorphismk¢#] can be lifted to an
automorphism of the relatively free algebFa () of rankn = | X]|.
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For example, a theorem of Umirbaév [U1] implies that every automorphiski{ &f can
be lifted to an automorphism of the free metabelian algéi(X).

Problem 9. (i) If p(X) is a coordinate ofK[X], can it be lifted to a coordinate of
K(X)?

(i) How far can one lift the coordinates &f[ X]? Describe the varietie¥ of algebras
with the property that every coordinate &f[X] can be lifted to a coordinate of
F, (D).

(i) Can the two nontrivial Nagata coordinatas— 2y(y% + xz) — z(y? + xz)? and
y + z(y2 + x2) be lifted to coordinates of (x, y, z)?
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