J. Eur. Math. Soc. 9, 705737 © European Mathematical Society 2007

JEMS

Fabrizio CataneseFabio Tonoli
Even sets of nodes on sextic surfaces

Received October 25, 2005 and in revised form September 4, 2006

Abstract. We determine the possible even sets of nodes on sextic surfaB&sshowing in par-

ticular that their cardinalities are exactly the numbers in th¢2&t32, 40, 56}. We also show that

all the possible cases admit an explicit description. The methods that we use are an interplay of
coding theory and projective geometry on one hand, and of homological and computer algebra on
the other.

We give a detailed geometric construction for the new case of an even set of 56 nodes, but the
ultimate verification of existence relies on computer calculations. Moreover, computer calculations
have been used more than once in our research in order to get good guesses.

The construction gives a maximal family, unirational and of dimension 27, of nodal sextics with
an even set of 56 nodes.

As in [Ca-Ca] (where other cases were described), each such nodal strfaggven as the
determinant of a symmetric map : £¥Y — &, for an appropriate vector bundi& depending
on F. The first difficulty here is to show the existence of such vector bundles. This leads us to
the investigation of a hitherto unknown moduli space of rank 6 vector bundles which we show
elsewhere to be birational to a moduli space of plane representations of cubic surfaée3ie
resulting picture shows a very rich and interesting geometry. The main difficulty is to show the
existence of “good” mapg, and the interesting phenomenon which shows up is the following:
the “moduli space” of such pair&, ¢) is (against our initial hope) reducible, and for a general
choice of€ the determinant of is the double of a cubic surfaeg. Only when the vector bundle
£ corresponds to a reducible cubic surface, we get an extra component of the space of such pairs
(€, 9), and a general choice in this component yields one of our desired nodal sextic surfaces.

Introduction

Let F be a nodal surface i® of degreed, i.e., F has onlyu nodes (ordinary double
points) Py, ..., P, as singularities.

A natural and classical question is to ask for the maximum possible number of nodes
wu(d) that such a surfacg can have.

The theory of projectively dual surfaces shows easily [hat) < %d(d — 1)? for
d > 3 and the slightly better inequality given by Bassett in 1907 [(cf. [Bass]) was obtained
using this method.
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The functionu(d) is only known ford < 6, and ford < 5 one has an explicit
description of the nodal surfaces which attain the maximu@): the Cayley cubic, the
Kummer quartics, and the Togliatti quintics (¢f. [Cayl], [CayR2], [Kum], [Togl], [Tog2],
[Beg] and alsa [Ca-Ce], [Bal]).

An important tool to investigate the function(d) for small values ofi (d < 17),
and to characterize the maximizing surfaces, was introduced by Beauville_in [Bea]: he
attached a binary code to each nodal surfEcnd used coding theory in order to show
thatu(5) = 31.

The coding theory method was later used by Jaffe and Ruberman in order to show
(see [[Ja-Ru]) that(6) = 65, but their proof is not so short as the one by Beauville,
partly because at that time a complete knowledge of the cardinality of an even set of
node on a sextic was missing (the binary code consists of the even sets of no#tes on
introduced in[[Catl], where a complete classification of even sets for dégte& was
given).

Today we still do not know if the Barth sextics (sée [Bal]) are those which achieve
the maximumu (6) = 65 and until now an explicit description of the possible even sets
of nodes for sextic surfaces has been missing. A general structure theorem for even and
1/2-even sets was given in [CaiCa], but the cases where the cardinafign even set
would be> 40 were excluded as a consequence of a conceptual error which was pointed
out to the authors by Duco van Straten. Thus the simple proof by J. Wahl (cf./[Wahl]) of
w(6) = 65 also became invalid.

We rescue the situation here by showing the following

Main Theorem A. Let F be a nodal surface of degrek= 6 in P2 with an even set of
t nodes. Then € {24, 32,40, 56}. These four possibilities occur and can be explicitly
described.

The situation is thus more complicated thandox 5, and the list of possible cardinalities
t is (cf. e.g.[Ca-Ca]):

d=3, t=4,

d=4, te{8, 16},

d=05, te/{l6 20},

d =6, 1e{24,32 40,56}

We first show in Section 1 that an even set of 64 nodes cannot exist. The simple new
idea is to study the so called extended code (cf. e.g. [Cat2]) and we then use a mixture
of geometric and coding theory arguments, as was done in the papers cited above, for
instance in[[Ja-Ru], where the case of an even set of 48 nodes was excluded.

We then proceed, using the structure theorem of [Ca-Cal], to construct explicit cases
of sextics with an even set of 56 nodes.

The bulk of the paper is devoted to this purpose, and we get the following result.

1 We adopt here the terminology 6f [CaiCa] concerning the notion of even sets of nodes which
was introduced in_[Cail]: namely, the strictly even sets of [Catl] are called even sets, while the
weakly even sets of [Catl] are called half-even, (2-&ven sets of nodes.
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Main Theorem B. There is a family of nodal sextic surfaces wif nodes forming
an even set, parametrized by a smooth irreducible rational vadetyf dimensior83,
whose imageEg is a unirational subvariety of dimensidv of the space of sextic sur-
faces. Moreover, the above family is versal, ttisyields an irreducible component of
the subvariety of nodal sextic surfaces wsthnodes.

The fact that a maximal family of nodal sextics with 56 nodes forming an even set has
dimension equal to 27 means that these nodes impose independent conditions on the space
of sextic surfaces (cf[ [Bu-Wa]). It is an interesting question to find the nodal surfaces
of smallest degree which possess an even set of nodes failing to impose independent
conditions.

As already mentioned, it follows from the more general result of [Ca-Ca] that every
even nodal set on a sextic surfaEeoccurs as the corank 2 degeneracy locus of a sym-
metric mapy : £Y — &, for an appropriate vector bundfzdepending or¥ (and the
nodal set).

The method to construd is based on Beilinson’s theorem and on revisiting Hor-
rocks’ correspondence due to Charles Walter [(cf. [Wal]), which was exploited in [Ca-Ca].
The bundlef is constructed starting from a submodeof the intermediate cohomol-
ogy moduleH}(F) of the quadratic shed associated to the even set, and corresponding
to the choice of a Lagrangian subspdéef H(F(1)). The choice of\ determines a
unique vector bundlI&, if a certain generality assumption (which we call tinst assump-
tion) is satisfied.

The construction is quite explicit if we make another generality assumption, namely
that the two nonzero degree components of the artinian graded mydltes previously
mentionedU and another one denoted B¥, both have dimension equal to 3. If we
denote, as is customary, Bythe vector space of linear forms &4, then the modul@/
is completely determined by the multiplication tensbe U ® VYV ® W for M.

We then show that the tensBrdetermines explicitly the bundi as the kernel of an
exact sequence

05 E->U0VROW) Z9% Weol) e W eo®) — 0

where the first component is preciséty and the second is the standard Euler map, here
denoted by.

Section 3 then ends by showing that the family of paffsy) is parametrized (not
uniquely) by the following family of pairs:

Map ={(B,A) | BeU" QV'QW,
AcURV)QWUQV)®HY(Op:(2), A=A, (B,¢e)- A=0}.

M ap sits inside an affine space of dimension 816, and it is not possible to find the de-
composition of0t4 5 into irreducible components even by computer. It is clearffiat
dominates the space of the above teng®rand, if 945 were irreducible, one would
obtain the sextic surfaces immediately by a random choice.
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However, for a long time all the random choices would always give the double of
a cubic surfaces as determinant op, and it looked like even sets with 56 nodes did
not exist. We then tried to prove that this was indeed the case, and we had to find an
explanation for the occurrence of the cubic surféce

Now, it is classical that to a:33x 4 tensorB one can associate a cubic surfacBfby
taking the determinant of the corresponding 3 matrix of linear forms ofP3. However,
in our case we get a cubic surfacg in the dual projective spade®” = Proj(V"),
together with two different realizations 6f* as a blow up of a projective plane P(Gj")
(respectively, Pr@W)) in a set of six points. These are the points where the Hilbert—
Burch 3x 4 matrix of linear forms o/ drops rank by 1, and the rational mapR®’ is
given by the system of cubics through the 6 points, a system which is generated by the
determinants of the four 8 3 minors of the Hilbert—-Burch matrix.

One passes from one realization to the other simply by transposing the tensor, and we
will call this the trivial involution for 3x 3 x 4 tensors; but what we have discovered,
through geometry, is the existence of another involution fer3x 4 tensors, which we
call thecross-product involution

This second involution associates to a general tedsar UY ® VY ® W another
tensorB € WY @ V @ U, whereW’ := A2W andU"" is defined as the kernel of the
mapA2WY ® V — UY ® W" induced by contraction witi (cf.[4.19 for the proof that
we have indeed a birational involution).

In fact, to B corresponds now a cubic surfaéec P2, which is related to a general
bundle€ through the existence of an exact sequence

0—-60—&—1—0,

wherert is an invertible sheaf on the cubic surfa@eOne can see more precisely tlht
determines a shegfon G such that = G®2(—1).

We found in this way a nice explanation of the phenomenon pointed out by com-
puter calculations: we got as determinant the surtaceunted twice, simply because, in
view of the above exact sequence, for a smooth cubic surface (indeed, irreducible) all the
symmetric endomorphismys € H2(S2€) are induced by the inclusias?(60) — S2€.

It was clear at this point that i#9(S%€) always had dimension 21, then we could
not get any nodal sextic surface of the desired type, but it was of course possible that
the dimension could jump up for special surfacgsand that our parameter spaes g
would be reducible. As explained in Section 6, a small computational simplification and
the reduction to finite fields allowed us to make many more random attempts, until the first
sextic surface appeared. Since a determinantal approach predicts that the space of tensors
B for which the dimension oH%(52£) jumps has codimension 7, it was only natural to
guess that the case which works is the case of tefsomsresponding to reducible cubic
surfaces. This guess turned out to be true.

The cross-product involution can also be phrased as a duality theorem for a certain
moduli space of vector bundles &3. Namely, we prove elsewhere the following

Theorem C. Consider the moduli spac®t® (6; 3, 6, 4) of simple rankb vector bundles
£ onP? with Chern polynomial + 3¢ + 62 + 4¢3 (cf. [Koh]), and inside it the open set
20 corresponding to the simple bundles with minimal cohomology, i.e., those with
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() H(E) =0Vi > 1; (2 H(E(-1) =0Vi #1;
(3 H'(E(-2)=0Vi #1; (4) H'(£(—3)) = 0Vi;
(5) H (E(—4)) = 0Vi.

Then2 is irreducible of dimensior9 and it is bimeromorphic t&(°, where2° is an
open set of the G.1.T. quotient space of the projective spioétensors of typé€3, 4, 3),
B :={B cPUY ® VY ® W)} by the natural action 08L(W) x SL(U).

Let moreovefB] € 2° be a general point. Then {a] corresponds a vector bundle
Ep onP3, and also a vector bundl€}; on P3V, obtained from the direct construction
applied to the sheafj;; defined by

0— U®Opyy(-1) 2 W & Opyy — G — 0.

&y is the vector bundl€z, where[B] € 20 is obtained fromB via the cross-product
involution.

Section 6 is devoted to a brief account of the random approach which we already men-
tioned, while the two Macaulay scripts, which are needed for the ultimate verification of
the existence of surfaces which have an even set of 56 distinct nodes as the only singular-
ities, can be found on the web pages of the authors.

1. Excluding via coding theory

Throughout this sectio will be a normal surface i3 of degreed having at most
rational double points as singularities, and possessing morgaovades (ordinary double
points) Py, ..., P, among its singularities.

We letr : F — F be the minimal resolution of the singularitiesif It is well known
(cf. [Tju]) that F is diffeomorphic to a smooth surface of degeeim P3; in particularF
is simply connected and for its second Betti number we bavg) = d(d?—4d +6) — 2.

We letAy, ..., A, be the exceptiondal-2)-curves & PP1) coming from the blow up
of the nodesPy, ..., P, and we letd be the full transform of a plane section Bf

Let X be theZ/2-vector space freely generated by theés and consider the map

€1 X = é(Z/z)Ai — H?(F,7/2),
i=1
given by the reduction modulo two of the integral first Chern class of a divisor:
€} ;aiAi) ==c1(3 ; aiA;) (mod 2. LetU be the image of.

SinceA; - A; = =255, Ai - H = 0, H? = d, it follows that U is an isotropic
subspace of1%(F, 7Z./2), and since the intersection product modulo 2 is non-degenerate
its dimension does not excegg(F)/2.

In the case where the surface has even degree 0 (mod 2, we consider more
generallyX := X & (Z/2)H, ¢ : X — H?(F,Z/2), and the corresponding isotropic
subspacé/ := Im(é).
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Definition 1.1. 1) The strict codeK associated to the nodal s¢P, ..., P,} on the
surfaceF is the binary cod&k := ker(e).

2) If d = 0 (mod 2 theenlarged cod& associated to the nodal sgPy, . . .., P,}onthe
surfaceF is the binary codeX := ker(é).

By the above inequality for dirty, we get
1 ~ 1 ~ 1
dimK > p— Sby(F) = ,u,—éd(dz—4d+6)+1, dimK > u—zd(d2—4d+6)+2.

Remark 1.2. By Miyaoka’s inequality (cf.[[Miy])u < éd(d — 1)?, therefore only for
d < 17 we get for sure a nontrivial cod€, because dink > u — %d(d2 —4d +6) + 1.

Notice that the notion of an even, respectively half-even, set of nodes can be derived
from the coding-theory framework.

Definition 1.3. A vectorv € X is completely determined by iwipportN, = {i |
v; = 1}. The cardinality of the support is called theeight of v and denoted by
w(v) ;= #N,.

By the universal coefficients theorem and Lefschétzl) theorem the condition
v € K is equivalent to the-divisibility of 3, A; in Pic(F). We denote by. a di-
visor on F such thaL = ZieNv A;. The class of in Pic(F) is uniquely determined,

becausePic(F) has no torsion. We then have a finite double coverf F branched ex-
actly on the nodal curved; such that € N,, and moreoverf,O; = Oz ® O(—-L).
Correspondingly, we have a double covér S — F, with f,Os = O & F, ramified
exactly inA := {P; € F | i € N,} (cf. [Catl] and[Ca-Ca]for more details). These sets
A are calledeven sets of noddsf. [Catl)).

Similarly, one defines half-even set of nodea by the condition that its associated
wordd := (vy, ..., vy, 1), obtained by setting; = 1 < P; € A, belongs to the enlarged
codeK . This condition is again equivalent to the existence of a divisor Pic(F) with
2L = ZieNU A; + H.

We define theveightand supportof v as the weight and support of the wovd:=
(v1,...,v,) € X (these notions are different from the corresponding ones in coding
theory). Observe finally tha& = K N {# | 41 = O}.

As shown in[[Catll, Prop. 2.11 and Prop. 2.13], the geometric interpretation of even sets
of nodes in terms of double coverings allows one to give the following restrictions on the
cardinalityr of an even (resp. half-even) set of nodes:

Proposition 1.4. Letz := w(u) be the weight of a code word

(1) Ifu € K, thenr = 0 (mod 4. Moreover, ifd is even, them = 0 (mod 8.
(2) If (disevenandy € K \ K, thenr = d(2d — 7)/2 (mod 4. In particular, ford = 6,
t =—-1(mod4.

Corollary 1.5. Letd = 2(2k + 1) be twice an odd inNteger and assume tkatK are the
codes corresponding to an even set of natle$henk = K.
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Proof. Our assumption is that the code c K contains the vectdr whose coordinates
are all equal to 1, except the last which equals 0. If we have a vectoik \ K and let
¢ be its weight, then the weight @f+ w € K \ K is congruent to-+ modulo 4. Since
t=d2d —7)/2 =2k + 1 (mod4, we have—r # d(2d — 7)/2 (mod 4, contradicting
(2) of the previous proposition. O

Let us examine by means of coding theory which even sets of nodes can occur on sextic
nodal surfaces. The main result of this section is the following theorem.

Theorem 1.6. On a sextic normal surfacg& with only rational double points as singu-
larities there does not exist an even set of nodes of cardinaityb4.

In order to prove the theorem we first prove some preliminary results.

Lemma 1.7. Suppose that there exists an even/setf nodes of cardinality = 64 0n a
normal sextic surfac&. Lety : F --» FV c P3 be the Gauss map df, given by the
partial derivativesd F/dx;.

(1) y corresponds to a linear subsystefrof |5H — >i_; A;| on F whose fixed par®
is contained in the preimage of the singular pointg'ovhich are not the nodes af.
(2) LetL be adivisor onF with2L = >"!_; A;. ThenH%(F, Oz(2H — L)) = 0.

Proof. The first assertion follows since the zero locus of the partial derivadiy&s x;
on F is exactly the singular locus df, and at each node the derivativeE /dx; define
the maximal ideal. Thug is a morphism around eagh-2)-curve A;, which is indeed
embedded as a plane conic.

Assertion (2) is proven by contradiction. Assume in fact thag [2H — L|. Then
C-(5H—Y'_,A;)=60—64=—4.

However,® - H = ® - A; = 0 by our first assertion, wheneg - (5H — Zle Ap)
equals the intersection number@fwith the movable part of the linear systefnwhich
is obviously non-negative.

We have obtained the desired contradiction. O

Proposition 1.8. Suppose there exists an even set of nodes of cardi@dion a sextic
normal surface with only rational double points as singularities, andfletS — F be
the corresponding finite double cover. THenS, Og) = 5.

Proof. We have y
hA(S, Os) = h*(F, F) = h*(F, Op(~L)).

Moreover, sinced - L = 0 one easily sees thaf(F, O (—L)) = 0 and argues then that
h2(F,0x(=L)) = h%(F,0z(2H + L)) = h°%(F, Oz(2H — L)) = 0 by the previous
lemma, the second equality following from the fact that every divis¢2 #h+ L| contains
> i_1 Ai. Hence

—hY(S, O5) = —hX(F, Op(~L)) = x(F, Oz(~L))
= x(Op) + (L) - (~L —2H) =11 16= 5. O
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Lemma 1.9. Suppose there exists an even set of natled cardinality 64 on a sextic
normal surfacer” with only rational double points as singularities. L&t K denote the
corresponding binary codes. Thdm K = 12> dimK = 11.

Proof. By the previous proposition the surfaSethe finite double cover of' ramified
exactly alongA, has invariantg, = 10,4 =5, K? =48, x(S) = 6. The corresponding
(non-minimal) smooth surfacg the double cover of’, has the same invariants 8is

By [Bed, Lemma 2] or[[Ja-Ru, Thm. 4.5] it follows that the cakiehas dimension
b1(S) + 1 = 11. We already remarked that dikh> 65— 53 = 12, and it is obvious that
K C K has codimension at most 1. O

Proof of Theorerfi 1|6 The conclusion of Lemma 1.9 contradicts Corolfary] 1.5. o
As an immediate consequence of Tim] 1.6 and [Ja-Ru, Sec. 7], we obtain the following.

Corollary 1.10. Let F be a sextic normal surface iP? with only rational double points
as singularities with an even setohodes. Then € {24, 32, 40, 56}.

Proof. Sincer = 0 (mod 8, the inequalityr < 64 follows from the classical inequalities
of Bassett and of Miyaoka, and the case 64 has just been excluded. [n[CalCa] it is
shown that > 24, and that the cases= 24, 32, 40 do exist.

The non-existence of even sets of 48 nodes on nodal sextics is provien_in![Ja-Ru,
Sec. 7]. O

2. Cohomology modules and bundle symmetric maps

In this section, after recalling the main resultlof [Ca-Ca], namely the correspondence be-
tween even sets of nhodes and bundle symmetric maps, we shall give bounds for the coho-
mology groupsH' (F(;)) of the quadratic sheaF associated to an even set of nodes

We first recall the main result of [Ca-Ca], according to the following notatsos:
{0, 1} ands/2-even stands for evendf= 0, and half-even i = 1.

Theorem 2.1([Ca-Ca, Thm. 0.3]).Let A be ad/2-even set of nodes on a normal surface
F of degreed, let f : S — F denote a corresponding double coverfofand letF be
the anti-invariant part of f,Os. Then there exists a locally free she@fon P° and a
symmetric map yielding an exact sequence

O—>5v(—d—8)£>5—>55—>0. (xx)

In particular, F = {x | det(p(x)) = 0}, A = {x | coranKg(x)) > 2}.

Conversely, assume that one is given an exact sequenceas iwith ¢ symmetric,
such thatF' = {x | det(¢(x)) = 0} is a normal surface and := {x | coranK¢(x)) > 2}
is a reduced set afpoints. Them is aé/2-even set of nodes an.
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The ideal of the reduced subschemeis the second Fitting ideal af, i.e., on local
trivializing affine sets fofg, it is given by the determinants of thek(£) — 1)-minors
of ¢.

We briefly explain how the shedf is explicitly constructed in[[Ca-Ca] by means
of C. Walter’s interpretation of Horrocks’ correspondence (cf. [Wal]).

Assume that the intermediate cohomology modife F, F) := @, ., H(F, F(i))
is known (it is an Artinian graded module over the polynomial ringFdf A :=
Clxo, x1, x2, x3]).

One then considers the (Artinian) graded module

M=U® @ HYF, F@)). (2.1)
i>(d—4)/2

where, ifd is even,U is a Lagrangian subspace in the Serre self-dual cohomology space
HY(F, F((d — 4)/2)), andU := 0 if 4 is odd.

Remark 2.2. Recall that the first syzygy bundle Sya1) is obtained from a projective
graded resolution of the moduM by free. A-modules

0> P'— ... Pt P02 o0

as follows: the homomorphisey : P — P?induces a corresponding homomorphism
(a1)~ between the (Serre-) associated sheaws™ and (P°)~ and the first syzygy
bundle ofM is defined as Sy2M) := ker(a]).

One has a natural homomorphism &) — F (cf. [Ca-Ca, pp. 240-241]) induced
by truncation, whence one gets a homomorphlﬁfmSyzl(M)) — Hf(f), which need
not be surjective.

The bundlef is then defined as the direct sum of $¢i7) and a direct sum of line
bundles, whose generators induce a minimal set of generators of the cokernel. One obtains
in this way a surjection betwee?(P3, £) and HO(F, F).

Thus a first important step is to determine the intermediate (Artinian) cohomology
moduIeH*l(F, F) =Py HY(F, F(i)), in particular one has to determine the possible
dimensions of its graded pieces, i.e., the numhérs (i)). Later on, when we want to
impose the surjectivity o2(P3, £) — HO(F, F), it will also be important to determine
the dimension&®(F(i)).

In short, the first necessary task is to determine the possible values for the cohomology
tables’/ (F(i)) of F (a priori only x (F(i)) is known, and it is determined by the degree
d of F and the number of nodes ofA).

Besides geometrical estimates, an important tool used in [Ca-Ca] is the Beilinson
complex (cf. [Bei]) constructed from the cohomology tabl&F (i)).

Remark 2.3. It is well known that for any coherent shegfon " the complexlC =
@j(H’—/ (P*, G(j)) ® Q7 (—j)), calledBeilinson’s monagdhas cohomologyd’ (X*)
equal tog in degree = 0 and 0 in all other degrees (df. [Bei]).
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In the case of even sets of nodes on sextics, [Ca-Ca] classifies the sets of cardinalities
t = 24,32, 40.

Let us therefore restrict ourselves to the cdse- 6 andr = 56, and consider the
moduleM = U & @,_, HX(F, F(i)).

We shall use the analysis in [CaiCa, p. 254] §ory, where H is a smooth plane
section of F’; it shows thati®(F, F(1)) = h%(F, F(1)) = 0 (it is shown there that this
holds unlessF|y is of type(2, 4), but if |y is of type(2, 4) then so isF, in the sense
of [Catd, Thm. 2.2 and Thm. 2.16], and= 24).

Hence we may assume thel(F, F(1)) = h?(F, F(1)) = 0, so that by Riemann—
Roch applied ta¥,

t
WHF, FD) = —x(F(1) = -8+, =6.
According to the notation i [Ca-Ca, p. 254], set 2= hl(F, F(1)), a := h}(F, F)
= hY(F, F(2), b := h3(F, F) = hO(F, F(2)), the equalities following by Serre duality.
Our previous calculation yields = 3.
The exact sequence

HO(F, F(1)=0— H°(H, F)|g) — HYF,F) — HYF, F(1)
— HYH, FQ)|yg) > HX(F,F) > HX(F, F1) = HF, F1) =0 (2.2)

gives the relatiory (F(1)|y) — a + 2t + b = 0. An application of Riemann—Roch d#
yields x (F(1)|g) = —3 and the above relation becomes® = a — 3.
Finally, notice that (seé [Ca-Ca, formula (3.2), p. 248])

HYF, F(-m)) X HY\(F,Fm +2)" =0, m>0,

and trivially alsoH°(F, F(—m)) =0, m > 0.

Since the rank ofF at the generic point dP® is 0, a computation of the ranks of all
the terms of Beilinson’s monad ¢of (3) yields the relation 4 + 6t — 4a — ¢ = 0, i.e.
c=12—-2t =6.

Proposition 2.4. Let F be a nodal surface of degréewith 7 nodes and with an even set
A oft = 56nodes, and. € Pic(F) the corresponding divisor such that A; = 2L.

Thenb = h%2H — L) < 1.

ieNA

Proof. Assumeb := hO(F, F(2)) = h°%(2H — L) > 2 and write|]2H — L| = |M| + ¥,
whereW is the fixed part of the linear systef@H — L|. Let £ be the Gaussian linear
subsystem of B — Y"i_; A; andC any effective divisor if2H — L|.

SinceF is nodal it follows by our previous argument thais free from base points,
hence for any effective divisaf’ < C we haveC’'L < CL =60—t = 4.

Observe that by [Ja-Ru] the numbkeof nodes ofF satisfiesr < 65; since£? >
150 — 27 > 20, the index theorem ensures tli@t)? < 0. In particular, it follows that
M? =0.
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Since the dual surfacg" is birational toF and therefore it is still of general type,
y (M) has degree at least 4.

Hence, by the previous calculatioM,£ = 4 andV £ = 0, the general curve ifV|
is irreducible (hence smooth) and maps 1 : 1 to a quatrtic.

Since the arithmetic genus &1 is at least 2, it follows thaM maps 1 : 1 to a plane
quartic, and therefore its arithmetic genus is at most 3.

Butthen4> 2p,(M) —2=M - M+ Kr)=M - -Kr=2M -H,i.e.M-H <2,a
contradiction sincé” is of general type. O

We can summarize the above discussion in the following statement.

Theorem 2.5. Let F be a nodal surface of degréewith an even set 056 nodes. Then
M is an Artinian module of lengt® with Hilbert function(z, a) = (3, 3) or (3, 4).

Proof. By hypothesisz = 3. Propositio yieldé = hl(F, F(2)) < 1. Therefore
only the following two cases are possible=0,a =3 orb =1,a = 4. O

In what follows we shall treat only the first case, for the second one we observe

Remark 2.6. Case(3, 4) of Theoren{ 2 cannot be excluded by coding theory since
there exists a 9-dimensional coffec (Z/27)%° with weights(24, 32, 56).

Question. Does cas€3, 4) of Theorem 2.5 occur?

Proof. This code is constructed as follows: consider a cbde (Z/27)% of dimen-
sion 8 and weight§24, 32), and lete € (Z/27)°° be the vector with all coordinates equal
to 1. It suffices to defin& as the span af/ ande.

The existence o/ (cf. [McW-SI, p. 229]) is easily established if we [Bte the finite
field with 28 elements, ané a generator of*. Then&® is a primitive 51-st root of unity,
it generated as a field, thu® = (Z/27)[£°]/(P), whereP is an irreducible polynomial
of degree 8 dividing® — 1. By the Chinese remainder theor@ e (Z/27)[£5]/(P)
is a direct summand afZ/27)[x]/(x°1 — 1) = (z/27)°1, and it suffices to let/ be the
subspace 0fZ/27)°! which corresponds tB. O

3. Hilbert function (3, 3): general features

We shall assume, throughout the rest of the paper, that we have an exeof$8 nodes,

and thath = 0, i.e.,a = 3 (cf. Theorenj 2J5) . In other terms, the Artinian modMehas

dimensionr = 3 in degree 1, dimensian= 3 in degree 2, and 0 in degreel, 2.
Therefore, the Beilinson table & (3) is:

N
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By Theoreni 211, if we denote by the previoust (3), we have a resolution of (3)
of the form
0>&" 5 & F@B) 0. (3.1)

In this setting, the symmetric mapappearing in the resolution ¢f(3) belongs to
HOP3, 52(€)) € Hom(EY, &).

Definition 3.1. Throughout the rest of the paper we denotdbg given Lagrangiarg-
dimensional subspace &f1(F (1)), and we denote by the 3-dimensional spac# :=
HY(F(2)).

Moreover, we shall denote by the 4-dimensional vector spacé := H%(O(1)).
Later on, more generallyy shall denote &-dimensional vector space and we shall often
continue to denot®roj(V) by P3.

Remark 3.2. Beilinson’s theorem and the cohomology table fai2) imply that€(—1)
is obtained by adding a direct sum of line bundles to

E'(=1) = kernU ® Q1) = 3Q(1) - W ® O = 30),

and that (since Beilinson’s complex has no cohomology in degr&gthe above map is
surjective; hencé’ is a vector bundle with €’) = 6.
Consider now the Euler sequence

0—> QY1) > VRO =40 - O1) — 0. (3.2)

It implies thath%(Q1(1)) = 0 andh%(Q1(2)) = 6, thush%¢E'(—1)) = 0 and, since
Beilinson’s table forF(3) implies thath(£) = 0, we infer thath°(&’) = 3 x 6 —
4 x 3=6.

On the other hand, Beilinson’s complex 1(3) yields an exact sequence

0 — 30(—4) — 6Q%(2) — 39 (1) ® 60 — F(3) — 0,
and we make the following simplifying

First assumption. F is generated in degre@and the linear mag%(£’) — HO(F(3))
is an isomorphism.

Proposition 3.3. According to the previous notation, the above first assumption implies
that £ = &', equivalently, thatk(£) = 6. More precisely, it means that there exists a
homomorphisng : U @ Q1(2) = 3Q1(2) - W ® O(1) = 30(1) such that€ = kerp

and that we have an exact sequence

0> > UL =322 5 we o) =301) - 0. (3.3)

Conversely, if€ is obtained in this way, it is a rank bundle with an intermedi-
ate cohomology modul®f with the required Hilbert function of typ€3, 3). Moreover
HOEY) =0.
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Proof. If F is generated in degree 3, there is an exact sequence
0> G — 60— F(3) — 0,

wherer%(G) = h1(G) = 0 (cf. Beilinson’s table).
Dualizing the sequence-& £ — 3Q%(2) LY 30(1) — 0Ovyields

0— 30(-1) —» 3T(-2) - &Y — 0.

Thush®(EY) = 0.

Assume now thaﬂf(é’/) — H,?(]—‘(S)) is not surjective. Then, since by our assump-
tion H9(&') — HO(F(3)) is surjective £ will be obtained fromE’ by adding a direct
sum of line bundle®) (—m) wherem > 0. This, however, leads to a contradiction, since
then©O(m) is a direct summand &f" but it cannot embed i§ since H%(£'(—-1)) = 0
implies that HoniO(m), £) = H%(E(—m)) = H°(E' (-m)) = 0.

For the converse, we simply observe thaf if [3.3) holds, tHét€ (—2)) = 3H(QY)
andH1(E(—1)) = 3H%(0). Since&’ = & it follows right away thatH%(EY) =0. 0

Therefore we get the following exact commutative diagram:

0 0

0 &Y & FB3 —0

UV®T(-2) —2—UQlQ

WY @ O(-1) W ® 00

and the mapp yields, by composition, a homomorphism
® ¢ HomU" ® T(-2), U ® @1(2))

which is symmetric since is symmetric. Conversely, such a homomorphiéndeter-
minesg if and only if 3® = @ 8 = 0; since, however, we choogesymmetric, the two
conditions are equivalent to each other.

A more concrete way to set up the parameter space for such vector bundles is to
replace Honi7 (—2), 21(2)) by matrices of polynomials, as follows.
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RecallV := HO(P3, O(1)) is the space of linear forms d@?. Applying Hom(—, ©)
to the Euler sequence and tensoring®gl) yields, since HortO(2), O(1)) = 0 and
Ext{(0(2), 0(1)) =0,

Hom(Q1(2), O(1)) = Hom(V ® O(1), O(1)). (3.4)

Thus the magp factors throughamap : U ® (V ® O(1)) - W ® O(1) and the
sheaf magB is surjective. This surjectivity is obviously equivalenti®(B(—1)) : UQV
— W being surjective. We shall often identify the sheaf navith the corresponding
tensorH(B(—=1) e UV @ VYV @ W.

Let € be the tensor product of the identity map of the isotropic subspaegth the
evaluation mapy ® © — O(1). Then one sees easily that= ker(8) = ker(B) Nker(e),
the short exact sequenge (3.3) becomes

0-E-UVeoD L weol)eUeo0®@)—-0, (35)

and the previous diagram is replaced by

0 0

0 EY & FB3) —0

UY@VY®O(-1) —2=UeVeOod)

(B,e) (B,e)

WY ® O(-1) W ® O1)
® ®

UY ®O(-2) U®0O®2
0 0

where by a similar token to the one before, the mayields a symmetric matrid €
Mat(12 x 12, Hom(O(-1), O(1))), and conversely such a matrix determigeg and
onlyif (B,e)- A =0.

Thus we obtain, as a parameter space for the symmetric resolutigi{8p$atisfying
the open condition given by the first assumption, the variety of pairs

Mag = {(B, A) | B € Mat(3 x 12, C),
A € Mat(12 x 12, H%(Op3(2))), A="'A, (B.€)-A=0}. (3.6)

As a matter of fact, the equation of the surfacavill then be given as the G.C.D. of
the determinants of thex66 minors of the matrixd, whereas the even set of nodesvill
be found to be given by the ideal of the determinants of tkebbminors of the matridA.
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A direct but complicated calculation shows that for a general choice of the parame-
ter B (determining the bundlI€) the solution space for tha's (yielding the symmetric
mapg) has positive dimension.

However, by computer algebra, one checks that a random choiBeantl a random
choice ofA do not give a sextic surface with 56 nodes, but the square of a cubic surface.
Notice that the condition that a given paB,(A) yields a sextic with 56 nodes is an open
condition, and therefore there can exist sextics with an even set of 56 nodes and satisfying
the first assumption only if the above parameter space is reducible; we shall later show
that this is indeed the case.

We finish this section by remarking thatis the multiplication matrix of the module
H(&) (i.e., the matrix of the only part of the multiplication map which is not a priori
trivial).

Remark 3.4. The cohomology exact sequence associated to the following twist ¢f (3.5):

05 8-> UaVeOo-1) LY wWe o1 e U e0) -0

yields a canonical isomorphisth = H1(£(—2)).
Since there is a canonical isomorphism

HO%® (-1):U®V — U® HYO®Q)),

the projectionW & (U ® V) — W induces an isomorphism of the spadé(£(—1)) =
cokerHO((B & €)(—1)) with W such thatthe map : U ® V — W corresponds to the
multiplication map of the cohomology modul&!(€).

Remark 3.5. The condition that the linear maB has maximal rank 3 (which, as we
observed, follows from the first assumption) is obviously equivalent to the condition that
the moduleM is generated in degree2. On the other hand, it also implies that there is
an exact sequence

0 &—90(1) 3 302 - 0.

We proceed in the next section with the analysis of the vector bundles corresponding
to a general choice a8, giving a geometrical explanation of the phenomenon of which
the computer search made us aware.

4. General bundles and cubic surfaces

The main purpose of this section is to describe the beautiful geometry which relates the
main component of the moduli space of our vector bundles to a given intermediate coho-
mology moduleM and the space of cubic surfaces viewed as blow ups of the projective
plane in six points.

Let us first observe that, if the first assumption is satisfied, the vector bénidle
determined by the matrigB, hence we have an irreducible parameter space for our vector
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bundles, and each open condition, if satisfied at some point, is satisfied by the generic
bundlef.

Next, we have a surjectioH°(£) — HY(F(3)) and we have seen that both spaces
are 6-dimensional, whence we get a homomorphis®0O — £. We make the

Second assumption.1) ¢ : 60 — £ is injective, whence there is an exact sequence
0—->60—E&—1—0, (4.1)
2) the torsion sheaf is Og-invertible, whereG is the divisor ofA®(y).

Lemma 4.1. Let a vector bundl€ be given as if8.3or as in3.3 Then its total Chern
classis

c(€)(t) = 1+ 3t + 612 + 4%, (4.2)

In particular, if the second assumption is satisfied, the divisas a cubic surface.
Proof. The sheaft has Chern polynomial

(1) = c(€) = c(Q1(2)3c(O(1) 73 = (c(OD)*c(02)H3c(O(2) 3
=(L+0%1+2)"8 = (1+ 9 + 362 + 84r3) (1 — 61 + 242 — 80r%)
=1+ 3t + 662+ 4. 0

Remark 4.2. Observe that the spadé®(52£) of symmetric morphisms frorf" to £
containsH%($2(60)) since toa € HO(S2(60)) corresponds := (¥&:. For these mor-
phisms one has det) = det(@)(det(:))2, whence in this case didet«)) = 2G, and not
a sextic surface.

The next lemmas are meant to investigate the question: when does one have equality
hO0(828) = 21, i.e., wherH?(52€) = HO(S2(600))?

In order to answer this question, it is convenient first to analyze the geometry and the
cohomology of the invertible sheafon G.

Remark 4.3. Even without assuming to be Og-invertible, setr’ = Ext!(z, @). Then
the dual of the previous exact sequerice](4.1) gives

0-& —-60—-1—-0 4.3)

and:

(1) By (4.1) we clearly havei%(z) = H(r) = H?(r) = 0.

(2) From (4.8) and’(£Y) = h®~1(E(—4)) we geth®(t)) = 6, HL(7') = H?(z)) = 0.

(3) Since by definitionr’ = Ext}(z, ©), applying the functor Hortr, —) to the exact
sequence B> O — O3) — O¢(3) — 0 we getr’ = Hom(z, Og(3)). Therefore,
if T = Og(D), thent” = Og(3H — D).



Even sets of nodes on sextic surfaces 721

Sinceh! (D) = 0 for alli, h%3H — D) = 6,h' (3H — D) = 0fori = 1, 2, it follows
by Riemann—Roch thad? 4+ DH = —2 and 10= 36— 7D H + D?. ThereforeH D = 3,
D? = —5. By settingA := D + H, itturns out than H = 6, A2 + AKg = —2.

We give elsewhere the proof of the following lemma.

Lemma 4.4. Assume tha€ is a smooth cubic surface. Then there exists a realization of
G as the image of the plane under the syst@m— Z?:l E;| of plane cubics through six
points such that eitheA = 2L, i.e., A corresponds to the conics in the plane, or (up to
permutations of the six point®) = 3L — 2E1 — E».

Remark 4.5. The complete linear system has as image iff° either the Veronese em-
bedding ofP?, or the embedding d#* x P! throughH%(Op1,p1(1, 2)). In both cases we
have a surface of minimal degree 4).

Thus we have concluded that eith®er= 2L — H = —L+)_ E;,orD = 3L—2E1—
Ey—H=—-E1+ 2?23 E;. We shall see later that the latter case does not occur (Lemma

4.12).
Corollary 4.6. H (Og(2D)) = 0fori =0, 2, andh(Og(2D)) = 6.

Proof. The second part follows from the first by Riemann—Roch; for the first it suffices
to intersect withZ. (using Serre duality in the case BP(Og (2D))). O

We are now ready to show that the smoothness assumption for the cubic suifapbes
that all symmetric morphisms fro to £ factor through and are induced by symmetric
morphisms from & to 60, whence their determinant is a double cubic, instead of a nodal

sextic (cf. Rem[ 4]2).

Lemma4.7. Let

0—>.77L>E—>r—>0

be a locally free resolution of a coherent torsion sheafvhich isOg-invertible on a
divisor G. Then we have an exact sequence

0> AN F>FRE>SE—>1®T1—0 (4.4)

and a monad
0— S2F > F®E - A6 -0 (4.5)

whose cohomology in the middle is exadity’(z, 7).
Proof. Recall that locally, by our assumption, we can write
E=0e1®0e2®--- Ve, F=0xe1PDOVer®---® Oe,,

wherex is a local equation fo6.
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Since Tok(B, B) = 0 if B is locally free, we obtain the following commutative
diagram with exact rows and columns:

0 0 0
00— Torl(z, 1) F®Tt E®T T®T 0
0 FRE ERE T®E 0
0 FQF ERF TQF 0
0 0 Tork(z, 1)
0

Hence the composite m#&p &€ — 1 ® € — v ® 1 is surjective and has kernel generated
by (F® &) & (£ ® F), as the diagram shows. L& denote the kernel of the map
(FREDPER®F) - ER®E. Thenk contains the image of ® F under the injective
map(id ® i, —id ® i), wherei : F — £ is the inclusion.

Therefore we get the complex

O FRF > (FREDERF) > ERE—->TRT — 0,

exact except possibly &F  €) ® (£ ® F), where the cohomology is equal K/ (F ® F).

Now let K1 be the inverse image of Tr, 7) in F ® £ via the short exact sequence
0->FRF>FQRE—->FRt— 0.

We claim thatk = K. In fact, if k1 & (—h2) € K, the diagram shows that € K3
and moreover thak; is uniquely determined. Conversely,/if € Kj, then there is a
(unique) elements e EQ Fwithhy =ho e EQE.

This implies thatk /(F ® F) = Tor(z, 7).

Locally, K is generated bye; ® e1 (modF ® F). ThusK /F ® F is generated by
(xe1 ® e1) ® (—e1 ® xe1) € (FRE) d (€ ® F), which is an antisymmetric tensor, and
we are done. O

Corollary 4.8. According to the previous notation, assume tfas a smooth cubic sur-
face. Therh®(S2€) = 21, h1(S28) = 6, h2(S2€) = h3(S2€) = 0. The same conclusion
h0(528) = 21 holds if more generally¥ satisfies the first and second assumption and
HO%(z®?) = 0.
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Proof. Split the long exact sequenge (4.4) into
0—> 150 > 66 >H—0 0—H— 52— 1920

Recall from the construction &f thath°(£) = 6 andh’(§) = O fori = 1,2, 3. The
first corresponding long exact cohomology sequence yigldy) = 36 — 15 = 21 and
hi(H) =0fori =1,2,3.

Therefore it suffices to observe thatdf is smooth, then by the previous corollary,
one hagi®(t®2) = h2(®2) = 0, h1(1®2) = 6. The rest is straightforward. O

Recall now that the vector bundt provided that the first assumption and the second
assumption are satisfied, produces an invertible sheafa cubic surfacé&; conversely,
given such a sheaf, one can construe as an extension of andz as in [4.1).

Setting as before’ := Extl(z, ©), we see that such an extension is parametrized by
Extl(r, 60) = HO(6 Extl(r, 0)) = C38, if, as in Remark 4]3, we havé(r’) = 6.

Lemma 4.9. Let £ be a vector bundle as i@) with n°(£) = 6 and satisfying the
second assumption. Theom(&, £) = 1, i.e.,£ is simple.

Proof. We consider the exact sequence
0 — Hom(&, 60) — Hom(&, ) — Hom(E, 1) — Ext(E, O).

We have Ext(£,0) = HYEY) = H2(E(—4)) and from the exact sequende {3.3)
we infer H2(£(—4)) = 0. Since Hone€, 60) = 0 by Propositio3, it follows that
Hom(&, £) = Hom(€&, 7).

We compute hort€, ) by considering the exact sequence

0 — Hom(z, t) - Hom(&, t) — Hom(60, ).

Indeed, hom®, ) = h%z) = 0 (sinceh®(&) = 6) and, sincer is Og-invertible, we
have honir, ) = 1. O

Lemma 4.10. Assume thak%(£¥) = 0 (cf. the proof of Propositior.3), and thaté is
an extension as if@.1). Then the extension classfixt!(z, 60) = HO(6 Extl(z, 0)) =
C® @ CO is a rank6 tensor (we shall refer to this statement by saying thatextension
does not partially spljt In particular, £ is then uniquely determined up to isomorphism.

Proof. The extensions which yield vector bundles form an open set.
We canonically view these extension classes as

Hom(HO(z"), H°(600)) = Hom(H°(¢), C%)

through the coboundary map of the corresponding exact sequence. We then have an
action of GL(6, C) as a group of automorphisms o6 which induces an action on
Hom(HO(¢"), H°(600)) = Hom(H°(z"), C8) which is immediately identified with the
composition of the corresponding linear maps.
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The extensions which yield vector bundles form an open set, which contains an open
dense orbit, on which this action is free, namely, the tensors of rank 6.

If the rank of the tensor corresponding to an extensian is 6, it follows that the
extension is obtained from an extension9 rO — £’ — © — 0 by taking a direct
sum with(6 — r)O; but then(6 — ) is a direct summand &V, a contradiction. O

Corollary 4.11. € as in Lemm.1Qis a vector bundle i#7°(z") has no base points.

Proof. Our hypothesis shows that at each poinGathe local extension class is non-zero,
hence it yields a locally free sheaf. O

Let us now show that the second case in Leimp 4.4 does not occur, since it produces a
vector bundle€ with a different intermediate cohomology from the one we require.

Lemma 4.12. The second case in Lem@a]does not occur, since otherwise the associ-
ated vector bundl€ would haveh?(£(—-3)) = 1# b = 0.

Proof. Assume thaD = Z?=3 E; — E1. Then the linear systef@H — D| = |6L — E1 —
2E> — 3(2?23 E;)| has dimension greater than the expected dimension 28 = —1,
since it contains an effective diviquZL—El—(Z?::,; E;) |+2|2L—E2—(Zf.3:3 E})|. This
amounts to the non-vanishing of the cohomology gréifi—3H + D) = H%(t(—3)).

From the exact sequende (4.1) we infer th&t€(—3)) = 1, whereas we assumed
throughout that?(£(—3)) =: b = 0, a contradiction. O

We now assume that is a smooth cubic surface, and thais an invertible sheaf o,
corresponding to the divisor classl + Z?:l E;.

Consider the associated vector bunéllewve want to verify that has the required
cohomology table, i.e., we want to calculate the dimenstdnS(—n)) forn =0, 1, 2, 3.
This will allow us to verify that there are bundl€swhich satisfy the first and second
assumptions.

Lemma 4.13. Let G be a smooth cubic surface, and tebe the invertible sheaf o&
corresponding to the divisor classL + Z?zl E;. Then the associated vector bundle
has the required cohomology table.

Proof. Observe that:

e Clearlyh%(z(—n)) = hO%(D —nH) = h%(—(L+3n)L + (n+ 1) Y2, E;) = 0 for
n=0,1,2,3.

o Also h2(t(—n)) = h%((n — 1)H — D) = h%((Bn —2)L —n Y% | E;) = Oforn =
0, 1, 2, since a quartic with six double points is a union of four lines.

o hl(z(=3)) = h'(—3H + D) = nY(—(10L — 4Y° | E;)) = 0 by Ramanujam’s
vanishing trick for regular surfaces, since the linear sysfidih — 42?:1 E;| contains
a reduced and connected divisor, nam@ly+ - -- + Qs + Eg, WhereQ; € |2L —
Y51 Ej + Eil.

e Sincex(t(—n)) = 1+ %(D —nH)(D — (n— 1DH) = %n(n — 3), we also have
hl(z) =0, ht(z(-1) = hl(z(-2)) = 3, h%(z(-3)) = 0. o
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We have seen howto alinearmap V®U — W, whereV = HO(P3, Ops(1)) denotes
the space of linear formg] is a fixed isotropic subspace il (F (1)), W := H(F(2)),
corresponds a homomorphism of vector bundtesV @ U @ O — W ® O, inducing
B U®Q2 — W ® O, whence finally a vector bundlg := ker(g) if 8 is
surjective.

The second assumption yields a cubic surf@ce Proj(V) and an invertible sheaf
on G. If G is smooth, then the invertible sheafl) yields a birational morphism onto
a Veronese surface, whence represehtas the blow up of a projective plar® in a
subscheme consisting of six points, and as the imagéP8fthrough the linear system of
cubic curves passing throughThe Hilbert—Burch theorem allows us to make an explicit
construction which goes in the opposite direction.

Remark 4.14. Let U’, W’ be 3-dimensional vector spaces. Consider-a3x 4 tensor
B e (WY ®V ®U') and assume that the corresponding sheaf homomorpRism
W ® Op2(—1) — V ® Opz yields an exact sequence

0= W' ®Op2(—1) > V ©Op > Op2(3) > Op(3) — 0 (4.6)

which is the Hilbert—Burch resolution of a codimension 2 subschgwfdength 6.

We obtain a canonical isomorphisvh = HO(Ig (3)) and we letG c Proj(V) be the
image ofP? under the rational magp associated t&’. Under the above assumption Bn
and if moreover is a local complete intersectio6, is a normal cubic surface, and if we
defineg = v, O(1), then we have an exact sequence on @®fpjcorresponding again
to B:

0> We0-)E Voo —-g—o. 4.7)

Under the more general assumption tBatever drops rank by 27 is an invertible
sheaf on a cubic surfaa, andg = O (L) with K%(L) = 3.

Conversely, given an exact sequence a@ (4.7), the $p3@®), sinceg is generated
by global sections, yields a morphism: G — Proj(H%(G)). We calculate the Euler
characteristic of:

x(G(n)) = 3[(”;3> — (n;Z)} = %(3n2+9n + 6).

If the cubic surfaceG is normal, and we leGG’ be its minimal resolution, the Hilbert
polynomial ofOg/ (L) is equal to

X(L+nH) =14 3(L+nH)(L+n+DH) =1+ 3(L°+ LH)+ 3n° +n(3 + LH)
and thereford.H = 3, L2 = 1. SinceL? = 1, z is a birational morphism, and sinde

has genus 0 and degree thrég,is the birational image dP? under a linear system of
plane CUbng‘IO(Zz (3)), where¢ is a length six zero-dimensional subscheme.
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Proposition 4.15. More generally, assume thgtis an invertible sheaf on a (not neces-
sarily irreducible) cubic surfac&, given by Lemm@.7 Then the Cartier divisoL has
degree3, and the morphism yields a birational morphism of a component of the surface
G onto the plane. I is irreducible andr := G®2(—1), thenH%(r®2) = 0.

Proof. It suffices to consider two general divisats, Lo in the linear systenmd.|, and to
consider the Hilbert polynomials of the sheaves appearing in the two exact sequences

0— Og(mH) - Og(nH + L1) - Or,(nH + L1) — 0,
0— Op,(nH) - O,(nH + L1) - Opynr,(nH + L1) — 0.

The conclusion is thaHO(OleLZ(nH + L1)) = 1foralln > 0, thusL1 andL, meet
transversally in a smooth point.

Let us now assume thét is irreducible, and consider the inverse of the birational
morphismz. We can factor it as a sequence of blow wps ¥ — P? followed by a
projectionp : Y — G, to which corresponds a sublinear system of a complete linear
system onv’, which reads on the plane 88| = |bL — ), a; E;|. Here,b = H - L, and
if b > 3, clearlyL - (4L — 2H) < 0, hencg4L — 2H| = ¢ and our desired vanishing is
proven.

If insteaddb < 2, since dimH| > 3, it follows thatH = 2L — E andG is a linear
projection of the cubic scrolt ¢ P* with centre a point ifP* \ Y. We claim, however,
that this case does not occur, essentially because othefnmisep, (Oy (L)) would not
be invertible.

As an alternative argument, observe that the factorizatiea = o p is not possible,
sinceo is an isomorphism on the complement of the line- Y, while the inverse image
of the double curve of; is a conic (possibly reducible) contained¥n O

Definition 4.16. We now define thdirect constructionof the bundlef relying on our
results above.

Consider a sheaf defined by an exact sequence a¢dry), and which is invertible
on a cubic surfac& (i.e.,rk(G ® C,) < lateachy e P3).

Definer := G®2(—1) and let€ be a vector bundle which is an extensiors6f by
as in(4.7) (here and elsewher€) := Oproj(v) ).

Proposition 4.17. £ as above is unique up to isomorphism in the following cases:

(1) if G is a smooth cubic surface;
(2) if G is reducible to the union of a plang and a smooth quadri@ intersecting
transversally.

Proof. As before, it suffices to show that dim Ext, ©) = 6.
Now, Ext(z, ©) = HO(Extl(z, ©)) and the exact sequence

0> 0(-3) - 0—->0g—0

yields
0 — Hom(z, Og) — Extl(r, O(=3)) — Extl(z, 0)

where the last map is 0 afi. Hence, Ext(z, ©) = Hom(t, O (3)) = H(tV(3)).
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Using the previous notation for the Cartier divisors corresponding &amd O¢ (1),
we want to show thati®(Og(4H — 2L)) = 6.

Assume first thatG is a smooth cubic surface: then by Riemann—Roch it suffices to
show the vanishing of the first cohomology graufiOg (4H — 2L)) = 0.

We argue as before using Ramanujam’s vanishing theorem, since

" (Oc4H — 2L)) = h*(OG(—5H + 2L)) = hl(OG (—13L +53° E))

and|13L —5% ", E;| D |10L —4)", E;|+ |H| contains a reduced and connected divisor.

In the second case, observe that there is no birational morphism of a smooth quadric
0 onto the plane, thug definesr which is an isomorphism on the plane, and has degree
zero onQ.

Since we know that is an embedding af N T, | ¢ is the projection o = P x P!
on the second factor, followed by the isomorphisnPébnto Q0 N 7.

SincetV(3)|r = Or(2), V()| = 0p4,0), andH°=V3)|r = O0r(2) —
HO(tV(3)|p = Og(4, 0)) is surjective, we obtain

dim Exti(z, ©) = K%z (3)) = 6. O

Remark 4.18. Indeed, the above proof shows thatGf = T U Q with Q a smooth
quadric, andj is invertible, then necessarily and Q intersect transversally.

We now observe that Lemrha 4.7 provides a resolution:ef G®2(—1) starting from
(4.7). We take the second symmetric power of the sequénde (4.7) to obtain a resolution

0 (A2W) ®0(-2) 255 (Y @ W) ® O(-1)
5 S2U")y® O - t(1) > 0, (4.8)

where =B is the contraction given by the composition of the natural inclusion from

(A2W)) @ O(=1) to (W' @ W) ® O(—1) with the mapB ® idy(—1), while B is the

composition of ig/~ ® B with the surjection of U"Y @ U" ® O onto(S2U"Y) ® O.
Consider now the exact sequence defirfing

0—-60—-E&—-1t—0,

and the above projective resolutionafby the mapping cone construction (cf. elg. [Eis,
pp. 650—651]) we obtain a projective resolutiorfof

0 AZW @ 0(=3) 2222 Y o W @ O(—2)

T2 600 (20 © 0(-1) > £ - 0. (4.9)

We now want to find a relation between the multiplicaton nap U V. — W,
whereU (resp.W) denotes as usud 1(£(—2)) (resp.H(£(—1))), and the above map
B:W ®VY — U"Y(cf. (4.7)). Let€ be the unique sheaf given By (cf. (3.5)).
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We split the above resolutiop (4.9) éfinto two short exact sequences, denoting by
K the image of B(—1), 1). This givesHX(£) = H2(K) = ker[H3(A?W' ® O(—3)) —
H3(U" ® W ® O(-2))]. Fixing these isomorphisms, we can make the following identi-
fications:U = ker[-B: A2W' @ VY — U @ W'], W = A2W’, and the multiplication
map B is given as the composition in the following diagram:

UV —T 1y — a2

| <

AW VYRV
of the natural inclusion with the natural contractien VV @ V — C.

One can also obtain the above factorization in the following alternative way: Beilin-
son’s complex yields the short exact sequence

0> URQ0Q) > W) @60 - & > 0,

whereU (resp.W) denotes as usudl 1(£(—2)) (resp.H1(£(—1))).
From the above we get

0— (U®O(=2)d (W O(-3) - (U AV @ O(-1)
B WAV RQO(-2)—> 608 (WRAV(-1) > E—0. (4.10)

Comparing[(4.0) and (4.10), we obtain the following identifications:

(1) W = A2W,U Zket[-B: A2W @ VY — U @ W',
(2 UV QW = (WQA3V)/U, S2UNY = (W A2V)/(U ® V).

Based on the above considerations we give the following

Definition-Proposition 4.19. Thecross-product involution on tensors of typg 3x 4 is
given as follows: to &-uple (U’, W', V, §', B), whereU’, W’ are 3-dimensional vector
spacesy is a4-dimensional vector spac, ¢ Hom(W' @ VY, U) =WV VeU",
8 ASW' = Can isomorphism, we associate theiple (U, W, VY, §, B), where:

(1) W := A2W’ and, sinceW is then canonically isomorphic t&’", by the duality
W ® A2W’ — C induced by’, we lets := §",

(2) U :=ker[-B : A2W @ VY — U’ ® W’'], where—B is the contraction with the
tensorBB described above;

(3) BeHomU®V,W)=WQVYQU is the composition of the inclusidh® V —
A’W' ® VV ® V with the natural contraction-.

The dimension af/ is equal to three if we make
Main assumption. =B is surjective (this in turn obviously implies the injectivity of the
mapB:U — V Q W).

The cross-product involution is then defined through the assoctatgde on the open set
of tensors satisfying the main assumption, and it is involutive whenever the composition
is defined.
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Proof. Given a 5-uple(U’, W', V,§,B), let (U, W,V",8, B) be its corresponding
5-uple, to which corresponds a third 5-uple”, W”, v, §, B”). We haveB € W ® V
QUY,BeWVVQUY,B"eWVWU"".

We claim that there exists a canonical isomorphigii = (U”)Y, equivalently, a
canonical isomorphisty” = U’.

To show this, we shall first observe that both spaces can be canonically regarded as
subspaces oW ® V, and then, since they have the same dimension{{farthis is a
consequence of the hypothesis ttidt W, V'V, §, B) also satisfies the main assumption),
it will suffice to show thaty’ c U”.

U” is the kernel of—-B : A2W' @ V. — UY ® W’. Upon identifying A2W’ with
W, the previous map becomes3 : W @ V — UY ® WY. We now consideB as the
mapB : U — W ® V. It suffices to show—B) o B(U’) = 0, i.e., by dualizing, that
BY o (=B)Y(U ® W) = 0. This is a consequence of the commutativity of the following
diagram:

U®W VV®W\/ >U/v

s

(AZW’®VV)®WB®Id UVQWHYeW o

5. The explicit unirational family

Up to now we have studied extensively the vector bundlssich that an even set of 56
nodes on a sextic surfadeshould come from a symmetric homomorphism associated to
a section of§2€.

We have almost shown, however, in Corollpry]4.8 and Propogition 4.15, that all such
sections have as determinant the square of a cubic sutfai€¢he cubicG appearing in
the direct construction is irreducible.

It seems therefore only natural to try to see what happens for a reducible cubic, hoping
that them:%(52€) > 21.

We assume henceforth that is the union of a smooth quadri@ with a planeT
intersecting transversally. We have already observed in the proof of Prop§sitipn 4.17 that
in this case there is a unique choice ¢hrlikewise for€.

Lemma 5.1. If G is the union of a smooth quadri@ and of a planel’ which intersect
transversally, the®(t®2) = 1 andh%(S2€) = 22.

Proof. In this case the she& corresponds to the sheéify (0, 2) on Q and toOr (1)
on 7. Thereforer := G®2(—1) corresponds t@p(—1,3) on Q and toOp(1) on P.
Thus the sections off%(r®2) vanish identically onQ and correspond to sections of
Or(2) vanishingonQ N T.

The second statement then follows from the proof of Coro[lary 4.8. ]

We also remark that, since we assuf@en T is smooth,G is unique up to projective
equivalence.
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We shall now give an explicit tensdy whose associated sheaf is the uniguen a
reducible cubic of the forr U Q, whereQ andQNT are smooth, and compute explicitly
that the tensor corresponding to the uniguebtained from the direct construction is
againBo; this will allow us to calculate explicitly the determinant of a generic symmetric
map&¥ — &, and to show that it is a nodal sextic.

Lemma 5.2. Consider the followin@ x 3 x 4 tensorBy:

0 —x3 x2 1 0 O
Bo=| x3 0 —x1]+x|0 1 O0]. (5.1)
—X2 X1 0 0 0 1

The sheafGg associated toBg is an invertible sheaf on the reducible cubity =
{xo(}; xl.2) = 0}. Its class in2° is invariant under the cross-product involution. More
precisely, the vector bundig&) obtained fromBg via the direct construction has the re-
quired cohomology table and its multiplication matrix is agdig for the intermediate
cohomology modul#fy := H}(Eo). Moreoverh®(52&g) = 22.

Proof. The determinant oBg equalsGo. On the planeag = 0 the Pfaffians are; = x2 =
x3 = 0 andu has rank 2. Elsewher@g is smooth, whenc§ is everywhere invertible.

It is a routine calculation to verify that its class is invariant under the cross-product
involution. The direct construction then gives a unique vector bufidief. Proposition
4.17), and we claim that its cohomology table is as required. As in the proof of Lemma
4.13 it suffices to calculate the dimensidrigt(—n)) for 0 < n < 3, and to show they
vanish fori =0,i = 2.

We use the exact sequence

0= 1= 0p(-1,3)0r(1) = Opnr (D) = Op1(2) — O,

which is easily seen to be exact on global sections, hence the cade follows right
away.
For the casé = 2 we observe that in the exact cohomology sequence

0— HY(t(-n)) = HY{(Op(~1—n,3—n)) ¥, HY(Opnr(1—n)) = H?*(t(—n)) — 0

¥ is surjective, since its cokernel is isomorphidiS(OQ(—z —n, 2—n)) whose dimen-
sion equalg:®(Og (n, n — 4)) = 0 (sincen < 4).
The last claim follows from Lemnma3.1. O

Remark 5.3. Consider the invertible sheaf given by

0— 30(=1) 2% 30 = Gy — 0. (5.2)

We havei®(Go) = 3 and the associated morphisnfrom G to P? is determined by the
rational map given by the entries of any column of(8g):

x% + xg X1X2 — X0X3 X1X3 + X0Xx2
Ad(Bp) = 2+ x8 -
(Bo X1x2 +X0X3 X5+ X5 X2X3 — X0X1
X1X3 — X0X2 X2X3 + X0X1 x§ + xg
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We see right away that is the identity on the plan&, and the projection along one
ruling from the quadriQtoQ N T.

Proposition 5.4. For a sectionp € H°(52&), denote by € Hom(EY, &) its associated
symmetric morphism. Then, forgeneral,F ;= {x | det{p) = 0} is a nodal sextic surface
with, as singularities, exactly an even sets@fnodesA = {x | corankg) = 2}.

Proof. The required computations were performed and can be verified by using the com-
puter-algebra systern [GriSt] over a finite field, or oger

The first step is to compute explicitly the fibre o&yinside the variety of pair®i s s
(cf. (3:8)). i.e., the vector space of symmetric matrides Mat(12 x 12, HO(Ops (2))
satisfying the equatiofBg, €) - A = 0.

Step two: for a random in such a fibre one computes the G.C.D. of two (different)

6 x 6 minors ofA: if the G.C.D. has degree 6, then it is the equation of the sdktic

Step three: one verifies with the jacobian criterion that the singular loclisofisists
exactly of a O-dimensional subscheme of length 56.

Step four: one verifies that the ideal sheaf of the singular locus is a radical ideal. Then
the singularities are just a set of nodes.

A further (but not absolutely necessary) check consists in verifying that the scheme
coincides with the subscheme formed by those 56 reduced points; this can be performed
by computing a set of % 5 minors ofA sufficient to generate the ideal of the 56 points.

]

Remark 5.5. Since the space of reducible cubic surfaces has dimension 12 (9 + 3), we
obtain an explicit family parametrized by a rational variétyof dimension 33= 21+12.

Proof. We simply construct a parameter space by choosing a 12-dimensional subgroup
H c PGL(V) such that the orbit of;o dominates the space of reducible cubics, and then
we take as parameter spakiex P(H(S2€)).

Then to the pai(g, ¢o) corresponds the vector bungf&(€) .= £,¢, and the section
g*(¢o), and, correspondingly, the sextic surfacgdet(p) = 0). O

Lemma 5.6. The morphismdg — P(S®V) associating to(g, ¢) the corresponding
nodal sexticF = det(p) has fibres of dimensiofi

Proof. Recall first that we have already shown that the surgck)) uniquely determines
a vector bundl& and conversely.

Second, observe that f has exactly 56 nodes thefi determines the quadratic
sheafF uniquely (observe moreover thathas only constant automorphisms).

Suppose that there are two different vector bundle§’ and respective morphisms
@, ¢’ forming exact sequences as in Theo@ 2.1 which define isomorphic cokernels
F,F.

By abuse of notation we identiff’ with 7 and assume that we haye: £ — F,
y’ . & — F inducing such isomorphisms of the respective cokernels fith
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A first question is whether there exist lifts: £ — £ andg : £V — &Y of the
identity idz on F such that the following diagram commutes:

0 &t F—>0
T,s Ta Tid; (5.3)
0—> ¢V ——>¢ ——>F—>0

If such ana exists, then necessarily the submodde:= Im(H2(y)) of H1(F) equals
the submodulés’ := Im(H1(y")).

Assume now thad” = M; then since any automorphism #f lifts to an isomor-
phism of two minimal resolutions a7, this automorphism induces an isomorphiem
of the respective first syzygy bundles, hé€rgesp.£’ (cf. Section 2). We can henceforth
assume that i/ = M’, then = &', and then, using Hotd, £) = C (cf. Lemmd 4.D)
we conclude thak is multiplication by a constant, necessagdyO.

From the exact sequence

0 — Hom(EY, £Y) — Hom(EY, &) X2 HomEY, F),

it follows that there exists a unique homomorphigmmaking the diagram commute.
Again, using Honi, £) = C, we infer thatg is multiplication by a non-zero constant,
and we have thus shown thatif = M’ then the sectiong and¢’ are proportional.

On the other hand, the choice #f is completely determined by the choice of a
Lagrangian subspadé of the 6-dimensional spadé(F(1)), and we saw that for each
choice ofU there is a bundl€ and a¢ yielding an exact sequence as in Theofen 2.1,
with M equal to the image a2 (&).

We are done, since the dimension of the Lagrangian Grassmanni&g, l6equals 6.

O

We want to show that the explicit unirational family that we constructed is locally max-
imal. To this purpose, observe that to a p&ir¢o) corresponds a vector bund¢é&(&p)
and a sectiog*(¢p), but more precisely a tensgf (B) and a matrix of quadratic forms
Ag 4 rEpresenting*(¢o) as in ).

Thus®g maps in a generically finite way to the variety of palits z (cf. (3.6)) and
we can consider the GLJ) x GL(W)-orbit of its image.

Observe that we then obtain an irreducible algebraiclgedf dimension 33+ 1 +
9+9-1=51

The following lemma shows thaltg is indeed a component 8ft 4 5.

Lemmab5.7. Let (Bo, Ag) € Map be a general point of the fibre ovely. Then the
tangent space tt, 5 at the point(Bg, Ag) has dimensiob1.

Proof. Fix the pair(Bg, Ag) € M4p. For a generic paikB, A) € Mat(3,12 C) x
Matsym(12, 12, H%(Ops3(2))) we search for the solutions of the equations

(Bo+ B, €)(Ag + tA) = 0 (modz?).
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The above equation is equivalent to the two equati®As + BpA = 0,¢A = 0, and we
have to compute the space of solutions.

Again this is done by means of a computer-algebra system over a finite field; it suf-
fices to choose a poimg at random for which the tangent space has dimension 51. The
computation works out successfully. O

We can now summarize the result of the construction of the above explicit family:

Main Theorem B. There is a family of nodal sextic surfaces wif nodes forming
an even set, parametrized by a smooth irreducible rational vadetyf dimensior83,
whose imageEg is a unirational subvariety of dimensidv of the space of sextic sur-
faces. Moreover, the above family is versal, ttisyields an irreducible component of
the subvariety of nodal sextic surfaces wsthnodes.

Proof. The first assertions were proven between Lemma 5.1 and Lemma 5.6.

Let E be the subvariety of nodal sextic surfaces with 56 nodes. Since the property
that the set of nodes is even is a topological property (cf. for instancel [Catl]] [Cat2]), it
follows that there is an open and closed 8étC E such that forF € &’ the set of 56
nodes is even. We only need to prove tBatC E’ is open.

But E’ contains the open s&” such that, forF € &7, H1(F(2)) has dimension 3
and the first assumption is satisfied.

We can form a variety¢’ consisting of quadruple&, U, B, ¢) where:

(i) F € E'is a sextic surface,
(i) U c HY(F (1)) is a Lagrangian subspace,
(iii) B is the multiplication tensor for the intermediate cohomology submodilef
H}(F) determined as iff (21) by the choicelsf
(iv) if £ is the unique vector bundle determined Byas in [3.5), ther is a section of
the vector bundl&2€ such that detp) = F.

Then we see that the map’ — M4 3 is an embedding. Now Lemnja 5.7 shows that
Yy C ¥ is open, and we are done. ]

It is a natural question to ask if the above is the unique irreducible component of the
subvariety of nodal sextic surfaces with 56 nodes forming an even set. For this purpose
one should first settle the case of Hilbert functi@n4) for M.

6. The random approach

Let M be a variety defined over a finite field of ordeand letMy c M be a subvariety
of codimensionk. The random approach consists in finding a poiniig by choosing
points inM at random. Since the probability of hitting a pointMdh is ¢ =%, it is evident
that this method is only successful if the computation time to decide whether a point of
M actually belongs t&/g is small enough (cf[[S¢h]. [Sch-To]).

In this section we show how this method was applied to find the first examples of
sextic surfaces with an even set of 56 nodes.
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Let A denote the coordinate ring & and letB be the multiplication matrix of the
intermediate cohomology module. If B is general, sinc&€ is a syzygy bundle (cf.
Section 3), it follows (cfl 35 ar{d 4.9) thaf has a resolution of the form

0« M <« 3A4[2] < 9A4[1] « 6A P 6A[—1] <« 9A[-2] « 3A[-3] <« 0. (6.1)

In an analogous way to the one followed after the exact sequenge (3.5) we find that
the symmetric morphisms : £¥ — £ are exactly induced by the symmetric morphisms
a : 90(—1) — 90(1) such thab o a = 0, according to the following diagram:

0<~——30(2) —2—90(1) £

P

00— 30(=2) —2 > 90(—1) —> gV

It is clear that the replacement 6A, B) with (a, b) reduces the memory and the time
required for computations.
Repeated random choices/oéllow one to find arf€ with

r0(s28) = dim{a : 90(-1) - 90(1) |a ='a, boa = 0} > 22
This property leads to the definition b andMp.
Definition 6.1. LetM be the Zariski open set

M := {b:90(1) — 30(2) | M := cokel(b) has a resolution as ii§6.1)and

1160 — &£ := Syz (M) is injectivg
and let

Mo = {b € M | h2(5%€) > 22}.

We already remarked thaf is non-empty. A resolution fo§2£ is provided by the fol-
lowing lemma.

Lemma6.2.If 0 -~ A - B - C — £ — 0is an exact sequence of locally free
sheaves, then the following sequence is also exact:

0—>S°A—>A®B— A°B®(AR®C)— B®C — S°C — S%€ — 0.

Proof. By hypothesis we have 8> B/A — C — & — 0. Therefore we get G-
A%(B/A) - (B/A)QC — S2C — S2€ — 0. Resolutions fon?(B/A) and(B/A)QC
are standard, respectively-8 S?A4 — A® B — A’B — A%(B/A) — 0 and 0—
A®C - BRC — (B/A) ® C — 0. The resolution fos2£ stated in the lemma is the
mapping cone of the previous resolutions. O

Hence it was guessed that the “good” locus has codimension 7:

Proposition 6.3. The conditioni%(S2€) > 22 is expected to hold on a codimensidn
algebraic subset oM.
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Proof. By applying the previous lemma to a minimal free resolutior€ afee get a (not
necessarily minimal) free resolution §f¢&:

180(—4) 210(-2)
® 540(—3) ®
0— 60(—6) — 270(-5 2 180(-3) 2 @ 3 360(-1) 2 s2¢ -0
® 540(—2) ®
360(—4) 210

Denote byK; the image of the map;, split the above exact sequence into short exact
sequences and look at the associated long exact cohnomology sequences. From

2,0
0— HOKy) — H°210) &5 HO(S28) — HY(Ky) — 0

and sinces2.9 is injective ¢ : 60 — & being injective), we get, using also the other
cohomology sequences0 HO(K1) = H1(K2) = H%(K3) and HO(528)/HO(210) =
HK1 = H?K,.

We also have the short exact sequence

H3(K3) = 0 — H3(60(-6)) - H3(270(-5)) — H3(K3) — 0,

henceH3(KC3) has dimension 48.
Finally, the exact sequence

0 — H2(Kp) — H3(K3) & H3(540(~4)) — H3(K2) — 0,
sinceH3(K2) = H2(K1) = HL(S2E), yields

HO(s2¢)

% —_—

H%(210)

Therefore the condition thai(s28) = H9(210) is equivalent to the linear map
having maximal rank, and since we know that this happens in general, the condition
h0(82€) > 22 holds in a determinantal subschemébbf expected codimension 54
484+ 1=17. O

Let M, be the variety, analogous Wi, (cf. (3.6)), of pairs(b, a) such thata =
‘a,ab = 0. Computations similar to the ones in Lemmnal 5.7 verified over a finite field
that at a random pointbo, ag) the variety of pair9),, is smooth of dimension 123. A
standard argument then ensures the existence of a lift of the/aitg) from a finite
field to a number field (cfL[Sc¢h]).

This random approach, and the remark that the space of reducible cubic surfaces is a
codimension 7 subvariety of the projective space of cubic surfaces, led then to the explicit
family constructed in the previous section.

- 8L ™ gis2) - 0. (6.2)

AcknowledgmentsWe would like to thank Marian Aprodu and especially Frank Schreyer and
Charles Walter for some useful conversations.

The present research was carried out in the realm of the DFG Schwerpunkt “Globale Methoden
in der komplexen Geometrie”. The second author also profited from a travel grant from a DAAD-
VIGONI program.



736

Fabrizio Catanese, Fabio Tonoli

References

[Bal]

[Ba2]

[Bass]

[Bea]

[Bei]
[Bu-Wa]

[Ca-Ca]

[Catl]

[Cat2]

[Ca-Ce]
[Cayl]
[Cay2]
[Eis]
[End]
[Gr-St]
[Ja-Ru]

[Kob]

[Kum]

[MCW-SI]

Barth, W.: Two projective surfaces with many nodes, admitting the symmetries of the
icosahedron. J. Algebraic Geof).173-186 (1996) Zbl 0860.14032 MR 1358040

Barth, W.: Counting singularities of quadratic forms on vector bundles. In: Vector Bun-
dles and Differential Equations (Nice, 1979), Progr. Math. 7, Bitder, Boston, MA,
1-19 (1980) | Zbl 0442.14021 MR 0589218

Basset, A. B.: The maximum number of double points on a surface. NEgug6
(1905) | JFM 37.0646.03

Beauville, A.: Sur le nombre maximum de points doubles d'une surface Bfans
(u(5) = 31). In: Algebraic Geometry (Angers, 1979), A. Beauville (ed.), Sijthoff &
Noordhoff, 207-215 (1980) Zbl 0445.14016 MR 0605342

Beilinson, A.: Coherent sheaves B and problems of linear algebra. Functional Anal.
Appl. 12, 214-216 (1978) Zbl 0424.14003 MR 0509388

Burns, D. M. Jr., Wahl, J. M.: Local contributions to global deformations of surfaces.
Invent. Math.26, 67-88 (1974)| Zbl 0288.14010 MR 0349675

Casnati, G., Catanese, F.: Even sets of nodes are bundle symmetric. J. Differen-
tial Geom. 47, 237-256 (1997). Erratum, J. Differential Geo®0, 415 (1998)
Zbl 0896.14017 MR 1601608

Catanese, F.: Babbage’s conjecture, contact of surfaces, symmetric determinantal
varieties and applications. Invent. MatB3, 433-465 (1981) | Zbl0472.14024
MR 0620679

Catanese, F.: Generalized Kummer surfaces and differentiable invariants of Noether—
Horikawa surfaces. I. In: Manifolds and Geometry (Pisa, 1993), Sympos. Math. 36,
Cambridge Univ. Press, Cambridge, 132-177 (1996) Zbl 0872.14031 MR 1410071

Catanese, F., Ceresa, G.: Constructing sextic surfaces with a given nuofberdes.
J. Pure Appl. Algebr23, 1-12 (1982) | Zbl 0484.14011 MR 0638117

Cayley, A.: A memoir on cubic surfaces. Trans. London Math. 368, 231-326
(1869) | JFM 02.0576.01

Cayley, A.: A third memoir on quartic surfaces. Proc. London Math. $,0234-266
(1871) | JFM 03.0391.02

Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Grad.
Texts in Math. 150, Springer, New York (199%) Zbl 0819.13001 MR 1322960

Endral, S.: Minimal even sets of nodes. J. Reine Angew. Mxt8.87-108 (1998)
Zbl 0911.14017 MR 1650323

Grayson, D., Stillman, M.: Macaulay 2—a software system for algebraic geometry and
commutative algebra. http://www.math.uiuc.edu/Macaulay?2 (1999)

Jaffe, D. B., Ruberman, D.: A sextic surface cannot have 66 nodes. J. Algebraic Geom.
6, 151-168 (1997)| Zbl 0884.14015 MR 1486992

Kobayashi, S.: On moduli of vector bundles. In: Complex Geometry and Analysis (Pisa,
1988), Lecture Notes in Math. 1422, Springer, Berlin, 45-57 (1990) Zbl 0718.32020
MR 1055842

Kummer, E.: Ueber diejenigen &then, welche mit ihren reciprok polareraéthen von
gleicher Ordnung sind und dieselben Singudeh besitzen. Berl. Monatsbdi878
25-36 [ JFM 10.0510.03

MacWilliams, F. J., Sloane, N. J. A.: The Theory of Error-Correcting Codes I, II.
North-Holland Math. Library 16, North-Holland, Amsterdam (1977) Zbl 0369.94008
MR 0465509


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0860.14032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1358040
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0442.14021&format=complete
http://www.ams.org/mathscinet-getitem?mr=0589218
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=37.0646.03&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0445.14016&format=complete
http://www.ams.org/mathscinet-getitem?mr=0605342
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0424.14003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0509388
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0288.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0349675
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0896.14017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1601608
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0472.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0620679
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0872.14031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1410071
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0484.14011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0638117
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=02.0576.01&format=complete
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=03.0391.02&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0819.13001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1322960
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0911.14017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1650323
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0884.14015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1486992
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0718.32020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1055842
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=10.0510.03&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0369.94008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0465509

Even sets of nodes on sextic surfaces 737

[Miy]

[Sch]

[Sch-To]

[Tju]

[Tog1]

[Tog2]

[Wahl]

[Wal]

Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given nu-
merical invariants. Math. Anr268, 159-171 (1984) Zbl 0521.14013 MR 0744505
Schreyer, F.-O.: Small fields in constructive algebraic geometry. In: Moduli of Vector
Bundles (Sanda and Kyoto, 1994), Lecture Notes in Pure Appl. Math. 179, Dekker,
221-228 (1996)| Zbl 0876.14040 MR 1397991

Schreyer, F.-O., Tonoli, F.: Needles in a haystack: special varieties via small fields.
In: Computations in Algebraic Geometry with Macaulay 2, D. Eisenbud et al. (eds.),
Springer, 251-279 (2002). Zbl 0994.14037 MR 1949554

Tjurina, G. N.: Resolution of singularities of plane (= flat) deformations of double
rational points. Funktsional. Anal. i Prilozhed, no. 1, 77-83 (1970) (in Russian)
Zbl 0221.32008 MR 0267129

Togliatti, E. G.: Sulle forme cubiche dello spazio a cinque dimensioni aventi il massimo
numero finito di punti doppi. In: Scritti Mat. off. a Luigi Berzolari, 577-593 (1936)
Zbl 0016.22102; Ancora sulle forme cubiche dello spazio a 5 dimensioni aventi il mas-
simo numero finito di punti doppi. In: Atti 1. Congr. Un. Mat. Ital. (Firenze 1937),
254-258 (1938)| JFM 64.0697/04

Togliatti, E. G.: Una notevole superficie dP Sordine con soli punti doppi iso-
lati. Vierteljschr. Naturforsch. Ges.ifich 85, 127-132 (1940) | JFM 66.0796/02
MR 0004492

Wabhl, J.: Nodes on sextic hypersurfaces"r?’l J. Differential Geon¥8, 439-444 (1998)

Zbl 0931.14025 MR 1638049

Walter, C.: Pfaffian subschemes. J. Algebraic Gebi1f1996), 671-704.

Zbl 0864.14032 MR 1486985


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0521.14013&format=complete
http://www.ams.org/mathscinet-getitem?mr=0744605
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0876.14040&format=complete
http://www.ams.org/mathscinet-getitem?mr=1397991
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0994.14037&format=complete
http://www.ams.org/mathscinet-getitem?mr=1949554
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0221.32008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0267129
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0016.22102&format=complete
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=64.0697.04&format=complete
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=66.0796.02&format=complete
http://www.ams.org/mathscinet-getitem?mr=0004492
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0931.14025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1638049
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0864.14032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1486985

	Excluding via coding theory
	Cohomology modules and bundle symmetric maps
	 Hilbert function (3,3): general features
	General bundles and cubic surfaces
	The explicit unirational family
	The random approach

