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Abstract. We construct an example of two continuous mgpand g of the circle to itself with
| f(n)| = [g(n)| for all n € Z but with different winding numbers, answering a question of Brezis.
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1. Introduction

A continuous cyclef in C \ {0} has a well defined winding number around zero, which
we shall denote by wingd. If f is smooth and its image is in the cirdle= {z : |z| = 1}
then the winding number has an elegant formula using the Fourier coefficieyiténad
considerf as a function from [01] to T). Indeed, by the residue formula for the function

z~1 we have
. 1 [/
wind f = 5/ 7

and since 1f = f we get

. 1 _ 1 ~ = —~
wind f = 5 / fF=5= 2 Fmfm =Y nfml (1)

This paper is part of a line of research trying to understand what role smoothness plays
in (I)). See Brezis [B06] for a fascinating review of related results and problems, high
dimensional analogs and applications.
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The earliest investigations in this direction are due to L. Boutet de Monvel and O. Gab-
ber. They realized that the left-most equality[if (1) makes sense for functions in the frac-
tional Sobolev spacé1/%2, when the integral is understood in the senseidf?2-
W~1Y22 duality (see the appendix 6f [BGP91]). This equality allowed them to extend the
notion of winding number to the discontinuous partWf/%2. By approximating with
continuous functions they showed that this generalized winding number was still an inte-
ger. Interestinglyw /%2 is exactly the space of functions for which the right hand side
of (@) converges absolutely, but apparently Boutet de Monvel and Gabber were not aware
of (@). The connection to Fourier expansion was discovered by Brezis in 1995 (following
a question of Gelfand) and immediately begot new questions.

As a side remark, defining the winding humber using approximation by continuous
functions is most natural in the space VMO of functions of vanishing mean oscillation
(VMO is the closure of the continuous functions in BMO and, heuristically, it relates to
BMO like continuous functions relate t>). Note that VMO containg¥ /%2 and the
VMO-winding number agrees with both the definition'of [BGP91] and ith (1)o22
(seel[BO6]). A high dimensional analog, the VMO-degree, was developed by Brezis and
Nirenberg|[BN95] (see alsd [BC33]).

Returning to), when one leav#i/%2 the picture gets more complicated. Follow-
ing a question of Brezis, Korevaar [K99] showed that in general the sim (1), considered

as the balanced limit
N

; N2

ngnoon;Nnu(nn :
may converge to any desired value different from the winding number, inclutirg
or may diverge. Replacing convergence with Abel summability does not change the pic-
ture. On the other hand, Korevaar shows thht (1) does hold for continuous functions with
bounded variation (this class is not containedvit/>2). More intriguing, perhaps, is
Kahane’s proof([K0b] that for Holder functions with exponent1/3 one can retrieve
the winding number by summinf](1) using Riemann’s summation method. Brezis [BO6,
Theorem 5] then noticed that Kahane’s proof works in the spiabé-3. In particular Ka-
hane’s argument shows that /32 the absolute values of the Fourier transform deter-
mine the winding number, which can be picturesquely described as “hearing the winding
number”. It is conjectured that one can hear the winding number in the Bi&gs? for
any p. Herew1/?-? is in the sense of Sobolev—Slobodetsidaces (see e.g. [KIJE77]). We
remind the reader that in this case the definition of these spaces simplifies to the condition

Wi _ { / /If(x) g(zy)v’ oo}.

This is an increasing family of classes andilt/?-? ¢ VMO.

Korevaar's negative result, while strongly hinting that one cannot hear the winding
number in general, does not actually preclude it. In this paper we show that some kind of
smoothness must be assumed in order to hear the winding number. Specifically we show

Theorem. There exist two continuous functiofisg : T — T with | f(n)| = [g(n)| for
all n and with different winding numbers.
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The constructedf andg are highly singular. We made no attempt to optimize the
construction in this respect nor do we believe that our techniques are adequate for this
purpose. In fact, even forcing andg to be continuous, as opposed to just VMO, required
a non-negligible increase in the complexity of the proof. Another interesting question
which we cannot address at this time is whether one can strengfitey] = [g(m)| to
fn) =xgn).

We remark that functions with identical absolute value and identical absolute value of
the Fourier transform are calléthuli partners Thus in this language the theorem states
that there exist two Pauli partnefsandg with | f| = 1 and different winding numbers.

For many interesting techniques for producing Pauli partners|_see [J99].

1.1. About the proof

Inspired by de Leeuw—Kahane—Katznelson [dLKK77] we constfuahdg by an itera-

tive correction scheme with each stage combining a deterministic step and a probabilistic
step. We start with functions which take values outsigieso [1) does not hold and one

may construct trigonometric polynomials witlf (n)| = |g(n)| and different winding
numbers quite easily (see pgge |656). At each stage the polynomials are extended so as
to continue satisfyingf (n)| = |g(n)| and preserve their winding number while getting
closer and closer t@.

Let us describe one correction. Assumyé is too low in an intervall. We always
correct upwards, increasimg|—this is a corollary of the fact that extending a polynomial
increases itd.2 norm—so our lemmas are usually formulated non-symmetrically with
respect td f|. We wish to correctf on I (call the correctior¥) in such a way thaf” has
bigger absolute value ohbut is highly oscillatory so thak — f lives essentially in the
high end of the spectrum.

We employ two different techniques to ggtfrom f. The first, and simpler, is de-
scribed in Lemmé]2. Its advantage is thathas the desired properties on all bflts
disadvantage is thaf — f has no structure that can be used in order to extend the other
polynomial,g. Hence when using this technique we simply define

G=g+ Z +F — f(n)e™

where £ are random signs. I is sufficiently small then|F — f|l, would be small,
and we could boundG — g||, efficiently by known properties of random trigonometric
series.

The second technique is used in Lenjma 5 and especially in Lérhma 7. We construct
F — f so as to have many small pieces sitting in different areas of the spectrum and
use this structure in order to constretso that its distance from a unimodular function
is decreased as little as possible. The disadvantage of this technique is that we have not
figured out how to correct on the whole bf F has the desired absolute value on most of
I but a small exceptional set remains, and is handled using the first technique.
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1.2. Notations

We shall consider functions from [@] into C, which we consider as periodic e.g. when
we say thatf is continuous we mean also that0) = f(1). A rotation is the action
of transformingf (¢) into f(t 4+ a) for somea € [0, 1], again periodically. The Fourier
coefficients are defined bﬁ(n) = fol f(t)e=2"int For a trigonometric polynomiaf we
define itsspectrumdenoted by speg, and itsdegree denoted by ded, by

specf :={neZ: f(n) #0}, degf :=maxX|n|:n € specf}.

If f andF are two trigonometric polynomials we say thiaextendsf if they are identical
on the hull of the spectrum of, that is,

F(n)= f(n) Vin| < degf.
w(8; f) will denote the modulus of continuity, namely

w(; f) = \XT;IL((; Lf(x) = fOI-

We shall denote by, n € N, the space of functions with continuous derivatives
and byC%, o € ]0, 1[, the space of Holder continuous functions of or@efhe respective
norms are

1 Fller = max(l fllos £ @ oo}, I fllce = max L= SO
x#Ey  |x =yl

(we shall not need othaf*s—in fact we shall only us€?, 1 andC?/2). Other norms

we will use are
1
£l = ,/f F12 1flloe = eSSSUpF (1),
0 t€[0,1]

and we denote by (1) the total variation off. We also remind the reader that

V() =V(NHlgloo + V@ flloo,  Nfgllce =l fllcaligloo + lIgllcell flloo-  (2)

By f+ we mean maf, 0}. For a setE we denote byl the indicator function which
is1onE and 0 elsewhergx | and[x] denote, respectively the floor and ceiling functions,
i.e. the largest integex x and the smallest integer x. By C andc¢ we shall denote
absolute constants whose precise value is unimportant as far as this paper is concerned,
and could change from formula to formula or even within the same forreuldll pertain
to constants which are “big enough” antb constants which are “small enough”. We will
number a fenC andcs—only those which we will reference later on. When we sajs”
sufficiently large” we meanx' > C”.
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2. Proof
2.1. The local correction scheme

Lemma 1. Leth be aC? function. Then

V(WVhy) <V ce.

Proof. In fact we will prove the stronger

V1R < ikl ce.

Let I = [a, b] be an interval such thdt'(a) = h'(b) = 0 andh is monotone ond, b].
Then

Vi(h) = |h(b) — h(a)| = (b —a) mé}th/(f)l <3b—a)? mé}th”(I)l
te te

whereV; (h) is the variation of on I. If in addition(¢) # O for all ¢ € ]a, b[ then

Vi/1hD) = [V1h®)] = VIk@)]] < VIh®B) = h@)] < |/ 3hllc2 (b — a).

If h(r) = O for somet € ]a, b[ then

Vi/1hD) = VIR®)] + V1h(@)] < /2h(b) — h(a)]

so in both cases

Vi/1hD) < Iklic2(b — a). ®3)

A similar argument shows that if () = 0 for anyr € [a, b] (and without assuming
monotonicity ofz) then

Vik@] = VIh®)l| < /Ihlc2(b - a). (4)
Let nowas < --- < ay € [0, 1]. We need to estimate the variation with respect to
ai,...,ay. Clearly we may add points and we add, for any segment:[, 1] whereh

is not monotonic, the maximal and minimal points in,[a;+1] whereh’ = 0, removing
duplicates if they arise (each may be equal to the boundary point, and the two points
may be equal). Denote the new list alsody Leti; < --- < ig be the points where
h'(a;,) = 0 and assume that, = 0 anda;, = 1 (as we may, by rotating and thea;s

and adding one;, if necessary). It is now easy to verify that

h is monotone ond;, , a;,,] wheneveti; ;1 > iy + 1. (5)

Let us now write

N-1 K-1
VW/Ihlsai, ... an) ==Y |Vik@is0l = Vik@)l]| = ) w
i=1 k=1
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where
ir+1—1

vei= Y Vi@l = VikG)]|.
=iy
However, by([(b) we can usg]|(3) fermonotone ond;,, a;,,,] and [4) forix1 = ix + 1,
and in both cases we get < \/||hl¢c2(aj,, — ai,). This proves the lemma. ]

Lemma 2. Let f be a trigonometric polynomial with — ¢1 < |f| < 1+ ¢1 for some
absolute constarl < ¢1 < 1. Let[a, b] C T be some interval such thaf (a)| = | f(b)|
and|f ()| < |f(a)| forall ¢t € [a, b]. Lete € ]O, 1] be some parameter. Then one can
extendf as F such that

IF®| = f(@)|l <€ Vit ela,b], (6)
|[F@)— f@)] <e vt & [a, b], (7
degF < C(degf)?/e?. (8)

Proof. Assumea = 0 (otherwise we can rotate the whole thing). We shall need the
following function, defined on [Ooo[:

X (—1)/t1 <2j> L
= 4 J ].
v =2 g )

Clearly this is an analytic function wita(0) = 0 andg’(0) > 0. Hence we may invert
it in some neighborhood of 0. We get an analytic monotone funatiorO, ¢] — [0, 1]
with ¢/ < C andy” < C.

The construction now goes as follows. Write= | f(0)|, N = degf and letM =
M(N) be some number to be fixed later. Define

50 < | VA= TF@1D. 1< o.0)
o, otherwise
P O

2(f) =
@, otherwise.

If ¢1 is sufficiently small ther$ is always well defined. Fix some value of < 1/2
satisfying this requirement. The following propertiesfgfnow follow:

2Ol =7 vt € [0, 0], ©)

fa(t) = f(1) Vi ¢]0,b]. (10)

To estimatef, developei®SiNM? jn g Taylor series. We get

0
o 1 . .
eonsinMe _ q E —(i8(r) sinM1)/.
=t
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Expanding sin M: = ((e'™" — e~"M")/2i)/ we get for oddj a sum with no constant
coefficient and for ever the constant coefficient |(s )2—-/. Hence we may write, for
allt € [0, b],

s~ 113 ((;j;f (7)o 52700+ R = 1= 96200 + RO

If(t)l RO

whereR(¢) contains all terms depending afi. Hence we gef>(¢) = f(z) + S(t) where

S
TR(), 0, ],
sy = | ifa RO el
0, otherwise.

The next step is to ask how largé has to be to ensure th&tlives only in the high end
of the spectrum. This is pretty straightforward, but let us do it in detail nonetheless.
Let therefordn| < N and let us examin§(n). Integrating by parts we get

1 1 1 s
S(n):/ S(t)e‘z’”"’dtzf S(t)dt~|—2nin/ 6_2”””/ S(1)dt ds.
0 0 0 0

To estimate this we start by writing, foere [0, b],

/OSS(t)dt iii<>

D'
whereX’ means that foj even the sum does not contain the tdrma: j/2. Every term
on the right is again estimated by integration by parts to get

Cemu2n L0 g 2<c v(iy)) 12
/0 ol U=\ VR (12)

For j even we can simply estimate the variation by the maximum of the derivative. We use
Bernstein's inequaliffto get| /(1)] < N flloo < N(L+c1) and|(| D' (0)] < |f'(1)] <
CN. Further,

/ im(—2r SO 22§/ (t)dt
0

11
|f (Ol ()

. Ci .
16%Y| < 7’|f|’ < CjN

and therefore
V(F/1FD8¥) < ICF/1FD8% lea < CIN. (13)

1 In fact here it is enough to use the trivial inequalify/| < N2|| f|loo.
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In the case of odd we use Lemnfg 1 to get

V(iszf“) @ CV(%M') +CV () <CjN + \/Hw 1-— m)

| f1 T

c?2

(G .
< CiN+C 112 +11£112, < CiN (14)

where in(x) we used the fact that’ < C andy” < C, and in the last inequality we again
used Bernstein's inequality. Inserting this info](12) and the resultfinfo (11) and summing
overk andj glves|[O S(t)|dt < CN/M. Hence|S(n)| < CnN/M. Summing ovemn

we get
N
H Z §(n)62ﬂint
n=—N

Next we need to estimaﬂ@(n)l for largen. The square root in the definition &f
meanss is not smooth, but we shall show th&is Hblder—;. We remind the reader that
in general such functions have uniformly convergent Fourier expansion. In fact, by the
Dini—Lipschitz test[[Z68, §2.71]

CN3

H 3 Sme™ | < cv2(ogv) S e (16)
|n|>v o
Write therefore
eiM(j—Zk)tigj @ ’ i(gj + C”eiM(j—Zk)t”Cl/2
| f] cvz |f] cl2
< H—af +CJjM.
L1 e
To estimate the terraf/| f|)8/, note that for everj we have
H S s2i < | L] @ CjN. (17)
|f crz 11 et

Further, since

=C
1

18l c1z = Hlﬁ(l— m)

T

we see tha{ (17) holds forj2+ 1 as well. Hence

siMii-201 L
[f]

We now sum ovek and; with the final result being S||-12 < C(N + v M). Returning

to (18) this gives
H > Stme™| < cv

n|>v

<CjN+C\/jM.
cl/2

~2(logv)(N + VM), (18)
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Combining [(I5) and (18) allows us to define
F=f+ Y Sme™

N<|n|<M*
and getl| F — f2lleo0 < CN3/M. We pickM = [CN3/e], get
IF = follo <€ (19)
and the lemma is proved (remembgr (9) gnd (10)). ]

Lemma 3. With the notations of Lemn{g if one replaceda, b] with a simple set£
(such that f| is constant ord E) then the lemma holds with conditi@8) replaced by

degF < C(degf)8/e*. (20)

Proof. We note that f|2 is a trigonometric polynomial of degree 2 degf and hence
the number of solutions dff |2 = t for any number is < 4degf + 1 (we assume here
that| f| is not constant—if it is, just také = f). ThereforeE is composed of no more
than 2 degf intervals/y. Apply Lemmg 2 for each interva}, with € emmd2= €/2 degy .
Call the resulting function$ (1) and defineF = f+ ), (F (Ix) — f). All the conditions
are obviously satisfied. O

Lemma 4. Letn € C andz € R with [5| < r. Then
el = 1)
and for anyo € [—1, 1],

Il < . (22)

/ in
n+oyt2— |77|2||

This follows from Pythagoras’ theorem since we are adding orthogonal vectors.

Lemma5. Let f, e and[a, b] be as in Lemm{, and let[a’, b'] be another interval, with
b'—a' > b—a.Letg be apolynomial sat|sfy|ngf(n)| = |g(n)| for all n. Then one can
extendf andg as F and G still satisfying|F(n)| = |G(n)| and such tha{g), (7)) hold,
as well as

lg(t) —G@®)| < Cy/(b—a)/(b —a’) vt € [d, b],

lg(t) = G@)| <€ vt & [d',b'].

Proof. Assume without loss of generality that= ¢’ = 0. Let/ satisfy that 4! > b/b’ >
471-1 and assume> 0 (otherwise one can takefrom Lemmg 2 and; = g + F — f).
Let§ € ]0, ¢[ and M be some parameters to be fixed latérwill be taken sufficiently
small andM sufficiently large, depending ah Let s be anM-approximation of the first
Rademacher function := 1jp,1/2) — 1j1/2,1], namely

~ M — |l’l| int
w = Z rl(H)TE .
[n|<M

(23)
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As is well known,y is real,|y| < 1 and
r1(t) — ()] < CM™Y2 v, (2t) > M2 (24)
where(x) is defined (somewhat nonstandardly) as the distangdroim the integers. For
any integern defineyr,,) using
Yim] (1) = ¥ (mt)
where we understand as a 1-periodic function. We definéfainctions which mimic the
behavior of 3 different Rademacher functions:
S; = I//[(3M)i], i=1,...,3.

The reason we are approximating the Rademacher functions is the following innocuous
equality:

lr1+r2+r3 —rirarsl = 2,
which holds at every point except the jump points. This of course holds for other triplets,
i.e.|r3i_o+rai_1+r3i —rai_ora3i—1r3i| = 2. With this in mind let us construct &unctions
which mimic products of the four Walsh functions ro, r3, —r1ror3. Formally, for every
sequencée; }_,with ¢; € {1, 2, 3, 4} we define

1
— 2—1 s3(i—l)+ei, € = 1, 2, 3,
o =2 [[{20
j=1 | —53i—253i—-153i, € =4

For convenience, if = Y 7 (e — 1)4'~1 s some number between 0 arfd-41 we will
write o; := o(¢;). Theo;s have the following properties:

(i) Forallj ands,
loj (] <27 (25)

(i) Let B be the set of “bad?s satisfying(2(3M)'t) < M~/2 for somei = 1, ..., 3.
Then
1-cM ™ < | Y o] <1 wi¢B. (26)
J
This follows because

!
-1
E oj(t) =2 | |(53i—2 +53i—1+ $3i — $3/-253i-153;)-
7 i=1

As explained abovdr + r» + r3 — rirors| = 2 and hence so does each term in the
product (with an error oM ~1/2) and the product has absolute valde Rurther,
an easy calculation shows that- y +z — xyz < 2forallx, y, z € [-1, 1] so

‘ZU,(I)‘ <1 v 27)
]

both outside and insidB.
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(iii) The spectra of; are disjoint. IfM > 3 degf then they are also disjoint from spgc
This is also easy—in fact the spectra of any produd}; sfare disjoint, and disjoint
from specf.

Lett :=|f(0)], lety be defined by

[ 2_ 2 1f ()
oy = (VT Oy 0L

0, otherwise,

and let P be a trigonometric polynomial approximating ||P — ¢llcc < 8. Assume
M > 3degP so that the spectra dfo; are all disjoint and disjoint from spet.
We are now in a position to define our first approximation step,

4-1

o) = )+ ) Poj(1),
j=0
41

ga(t) :=g(t) + Y _ (Poy)(t — jb).
j=0

Itis clear that|f2(n)| = [g2(n)| since the only difference between them is a rotation of
eachPo;. Since they have disjoint spectra, this preserves the absolute value of the Fourier
transform.

Examine one € [0, b] \ B. We use[(Zb) to sum over thyes to get

fo=f+o®)+R@), |RI<CIMY?+s viel0,b]\B.
Notice that by Pythagoras’ theorem [2[Lj,+ ¢| = t for everyr € [0, b], so

I f2()] — Tl < CIM~Y2 45 Vi €[0,b]\ B. (28)
On [0, b] N B we use[(ZR) and (27) to get
lfOl =8 < |f2(D] <T+38. (29)

Finally, outside [0b] we have| f2(¢) — f(¢)| < & regardless of whethere 5 or not.
As for go, because the various translate@ — jb) have disjoint supports we get
(remember{(25))
lg2(t) — g(1)| < 27 'maxg + 28 < C\/b/b +2's Vi €]0,b],
g2(t) — g(1)] < 28 Vi ¢ [0, b'].

These are the properties we need forandgs.

(30)

Second approximation step.Now, f> andg satisfy the conditions of the lemma except
on the small seB. On it we correct using Lemnja 3. Assume therefore dhssufficiently
small andM sufficiently large such that

l-a<l|fidl<l+a (31)
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and we can use Lemrﬂi 3 f@s. Apply it with the parametet| emmaz= %e and the set
E={tel[0,5]NB:|f2(1)] <1 — 3e.

If & is sufficiently small and/ sufficiently large then by (28) we know thatis contained
in the interior of B and therefore the condition thigh| is constant 0B E is satisfied. Call
the resulting functiorF. We get

[|[F(t)|—t| <€ VteE, (32)
|F(t) — fat)| < 3¢Vt € E. (33)

As for degF, since degf> < (3M)3+1 we get
degF < C(3M)*&+16/c4,

This gives all properties required frof. Hence we need to defin@. For this purpose
examine the random function

hi=Y £F — fame™

where thet stands for independent Bernoulli variables. It is well known (see[K85, Chap-
ter 6, Theorem 2]) that with high probability

Ihlleo = CIIF — f2ll2y/log degF

and in particular there exists a choice of sigpsatisfying this inequality. Define

Gi=g2+ ) &F — fa(m)e”".
n

Clearly we havéF (n)| = |G (n)|. Further,|F — fall < C/IB] < C1Y2p~Y4 so

IG — gallos < CIM?M~Y*/ITog M +log(1/e). (34)

All that is required is to picks andM correctly. Requirement§](6) arid (7) will follow if
only CIM~%2 + 5 + 3¢ < e. To see|(B) note that on [0] \ 3 it follows from (2§) and
(33). On [a b] N E it follows from (33), and on [0b] N (B \ E) from (29), [33) and the
definition of E. The proof of [T) is similar. Next[ (23) will follow if the right hand side of
) is < min{3e, \/b/b'} and 25 < min(3e, /b/b'} (remember)). We remind the
reader that in addition we assum&t> 3 degf, M > 3degP, that

§+CIM Y2 < ¢q — max| | f(n)] - 1.

which ensurel), and that- CIM~Y/2 < 1, which ensures thaif,| is constant on
dE. Clearly choosing sufficiently small and the/ sufficiently large depending oh
(the most important dependency is W& > 3 degP) will satisfy all these requirements
and prove the lemma. O
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2.2. Intermediate remarks

Since you reached so far down in the proof itself we believe you might be interested
in some remarks on the structure of the proof more substantial than the ones given in
the introduction. We start with a remark on Lemfrja 5. A tempting simplification is as
follows: use Lemm4]2 to correct to F and then the probabilistic argument above to
constructG = g + > iF/—\f(n)ei”’. This would give the lemma with an additional
benign-looking factor of /log degF. However, this,/log factor is not so easy to get rid

of! To appreciate how serious a burden was removed, try to estimate the relation between
n = degf andN = degF in Lemmg 10 below. We got the tetration

n

’l'.
Clog?(1/¢) times

(this is after some optimizations; directly following the proof would give much more).
This, by the way, is also the best we can say about the smoothness of the &ndiG,
i.e.w(8; F) andw(8; G) decrease like an inverse tetration.

This is why we chose the current approach, and starting from Lgmma 6 we no longer
need to control the spectrum &f Put differently, ded’ is the only parameter which gets
worse when one increases the various parameters of our construction (é gndhe of
Lemmd}, theé, N andM of Lemmg T below etc.). Removing the requirement to control
degF gives us the flexibility to increase these parameters with no punishment.

2.3. The global correction scheme

Lemma 6. Lemmdg holds with[a, b] replaced by a simple sét if (23) s replaced by

g — Glloo = CVIEI

Note that there is naif, 4] in this formulation (or rather it is [01]).

Proof. Write E as a disjoint unionE = I; U --- U Iy and letJy, ..., Jy be disjoint

intervals with|J;| = |I;|/|E| (so they cover [D1]). Denote byr the common value of
|f(®)| forallz € JE. Lete, be sufficiently small such that for ady< e; and any interval
I CE {tel:|f@t) <t—24)isaninterval. Lekz = min{e, 2, /]E[}. Now use

Lemmd % inductivelyV times to get functiong;, g; satisfying

M) 11Ol —7| <es@—2""Hforallt € Uiy I,

(i) 1f:(t) — f(0)] < es(3 — 2772) for all otherrs,
(iii) |gi(t) — g(t)| < CVIE] +ea(3 — 272 forall 1 e [ Ji_; J;, and
(iv) 1gi(1) — g()| < e3(3 — 27172) for all otherrs.
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Initiate the induction withfo = f, go = g. We need to define the parameters for
Lemma[$, most importantly the interval. Examine thereffrese the definition ot
with 8 = 3¢5 to see that

[Fi={teli:|f®] <t - je)

is an interval. By the second induction assumption we know|thai(t)| < T — %63 for
allr e I¥ and| fi_1(1)| > T —e3(1— 2" Yforallr € I \ I;*. Let I be the component
of{ftel;:|fi—1(t)| <t — %‘63} containing/;*. Now use Lemma(5 with the parameters
as in the following table:

Lemmd 5] f g € [a.b] | [, 01| F |G
here fic1 | gi-1 | 22772 | I Ji fi | &

i.e. the lemma’s output will be used to defifieandg;. It is easy to verify ()F(V) and the
induction is complete. Now = fxy andG = gy are the desired functions. O

Definition. Let f be a trigonometric polynomial, lef be a set and letnaxg | f| < «a <
B. Lete > 0. Then are-lifting of f on E from « to g is a trigonometric polynomialF
extendingf such that

() |f@®)— F@)| <eforallt ¢ E,
(ii) forall r € E minus a set of measure ¢,

B-—a)+[fOI—€e<[F(O] <p+e (35)

(iii) forallr € E,

(V) IF = flloo <2V B2 —a?.

See Figurel. If F and G are two liftings of f and g which satisfy1f(n)| = |5(n)| for
all n then we call thensompatible liftings

IfOl —€ <|F@®)| < B +e,

Lemma 7. Let f andg be as in Lemmf] Lete > 0 be some parameter. Let> 0 be
some integer, lek be an interval with lengtks 4~/ and letJ be an interval of lengtd/|7].
Assume thatf ()| < ¢ forall t+ € I wherer < 1. Then there exist compatibdeliftings F
of fonI fromz to1andG of g onJ from anyv > max; |g|tou = /v2 + 4-1(1 — 2).

Proof. We may assumé = [0,5] and J = [0, 4'b]. Define two parameter®/ and

M that will accompany us throughout the proof and will be fixed at the end (think of
both as large but oM as being much larger thai). The proof is very similar to the
proof of Lemmd b, and in particular we retain the notatignandu,,;. We shall repeat
the construction of the;s of Lemmd},N times in disjoint spectra. Namely, we define
functionSqu, j=0,....,4 —1andg =0,..., N — 1, satisfying
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Fig. 1. F is a lifting of f from « to B on the setE where|f| < «. The graph depicts only the

absolute values of and F. |F| is drawn here taking the valug| /|2 + 82 — «2 which is what
will typically happen in our construction.

() LetB be the set of “bad?s satisfying2(3M)'t) < M~Y2forsomei =1, ..., 3IN.
Then

27l —cimY? < lo! )l <27 Vj, g, 1 ¢B. (36)

Further, |a"(z)| < 2! forall ¢.
(i) For anyr andq |Z "(t)| < 1 and further

1-CIMY2? < ‘Zcﬁ(r)‘ <1 Vq,t¢B. (37)
J

(iii) The spectra oPa]fI are disjoint. HereP is any polynomial with de@ < M.

Let P be anM-approximation of the indicator functiahy ,, ) (in the same sense gf
in Lemmd%) so thaP is real,| P| < 1and

N/b
IP(t) — Lo.pym ()] < CM~Y2 ¢ CW/

vt,d(t,{0,b/N}) > M~ /2, (38)
whered is the usual distance of a point from a set considered periodically. We will assume
henceforth thads > N2b—2 and avoid carrying th&/ /bM term. This allows us to define

our functions

F=f+v1 —rZNZ“Zl iGN poayr — g/ (39)
2 25 Tqb/my] T T AP
=ML ig(ib + gb/N)

G=g+V1-12) Y == (Pol)(t — (jb+qb/N)). (40)

4 %5 18Gib + qb/N)]
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As in Lemm@ it is clear tha'rf?\(n)| = |5(n)| since each term is rotated and multiplied
by a unimodular number. Define

N-14—
(U U(BU[ M2 M ‘1/2])+jb+qb/N)

q=0 j=

where the+ here stands for usual set addition, iBe+4 x ;= {b + x : b € B}. Examine
somer ¢ B'. We use[(3]7) to sum over ths in (39) to get

Fe fimjvi:lwp(;_qb/N)—i—O(lNM_l/z) (41)
=41/ (gb/N)] ’

By ) all the terms in the sum overgive P = O(M~1/2) unlesst € [0, b], in which
case the termg = | Nt/b] givesP = 1+ O(M~1/2). We get

f(q /N) —1/2 /
F(t) = +vV1—1s————— 4+ O(NM v 0,p]\ . 42
()= f() If( b/N)|+ ( ) Vte[0,b]\ (42)
Now we use Pythagoras’ theorem|21) foe= tf(gb/N)/| f(gb/N)| to get

‘ ‘f(qb/N)i 1- |n|2”H

< (ni\/l—hﬂz'nl)—<f(qb/N)i\/l—| |2|"|>’=r—|f(qb/1v>|, (43)

which allows us to estimate, for amye [0, ] \ B/,

’7 _ (9P| _ -1/2
f(N)i\/l |2 ‘f() (N)‘ CINM
@, aby| _ _ (90 _ 172
=1 t+’f(N)’ ‘f(t) f<N>' CINM

>1—t+|f@)|—2w(0b/N; f) — CINM~Y?.

|[F(O] =

Setw := 2w(b/N; f) + CINM~Y2. In the other direction] (22) givesf (gb/N)| <
| f(gb/N)+o(in/In)~/1— 12| < 1foranyo € [—1, 1]. We take the variation irf into
consideration as above and get

A-D+IfOl—w<|FO| <1l+w Viel0,b]\B,
lfOl—w<|Ft)|<l+w Vtel[0,blNB.
Finally, we also havgi F — f|loc < v1— 12 + w.
Next we move to examin&. This time we first notice that the only meaningful term
in (@0) is the one for whicly = [¢/b] andg = |N(t/b — j)]. So we have (again for
t¢B)

5ig(t + R(1)) 12
Gt)=g®)+v1 —|g(t+ RO)| ol (R) + 0@ NM%),  |R()| <b/N
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(we get here a’2factor in the error, compared to ttien @) because the;s are no
longer “synchronized” so we cannot u$e](37) and have to[uge (36) and sum over all the
terms). We now usé¢ (36) to get

— —l1 _ 2ig(t+R(t)) [ -1/2 / /
G =g)£2'V1—¢ TRy T O@NMTA, Ve HI\E.

A calculation similar to the one done withshows that

n—v+lg) —o < |G| <p+o Viel0,b]\B,
g —o' <IGO =pn+o Vie[0,b]NB,
o = 2w(b/N; g) + C2ZNM~ 2

and||G — glleo < V1—T124w'.

With these estimates the lemma will be finished once we pidnd M. First pick N
such thatw (b/N; f) < min{}e, 2+/1— 72} and similarly forg. Next pick M to satisfy
all past requirements. They are all of the typé Is sufficiently large (possibly depending
on N, [ ande)”. Here is the full list (in chronological order) > N2b=2, M > 3degf,
CINM~Y2 < min{e, $v/1— 72} (which boundso and ensure$F (1) — f(1)| < €
outside [Qb]) andC4'NM 12 < ¢, which ensure§5’| < €, w’ < € and|G(t) —g(1)| <
€ outside [Q b']. With all these satisfied we get everything we want foandG. O

Again we need to generate a set version from the interval version. We trust that by now
the reader will have no problem to prove:

Lemma 8. Let f, g, ¢, T andl be as in Lemm@ Let E be a simple set withE| = 4~/
such that f ()| < 7 for all r € E. Then one can find compatibdeliftings F of f on E

fromt to1andG of g on[0, 1] fromv > ||g|leo tO 1t = V2 + 471(1 — 72).

In the next lemma we get rid of the errors in the exceptional sets (compare ¢lalises (i) and
(i) Joelow to requirement (35) from the definition of lifting). Hence it will be convenient
to use the following definition: The oscillation of the absolute value of a fungtimn

Osdg) := max|g(1)| — min|g()].
Lemma 9. Let f andg be as in Lemm@ but with the additional requirements
l—c<|fl<l 1—co<|gl<l+4+ec (44)

for some absolute constarnt > 0. Lete > 0 be some parameter. Then one can extgnd
andg to F and G such that

() 1= 211—1f1llc —€ < |F(1)| < 1+eforall s,
(i) IIF = flloo < CVIL=1f1lloos
(i) OsaG) < Osag) + e,

(V) 1G —glloo < CVIIT—=1fTloo-
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Proof. Setr = 1 — 3||1— | f] [loo. Let
E={t:1f()] <t — ¢}

and write| E| in base 4,

o0
E|=) a4, o €{0,123]
=1

Divide E into simple setsF;;,/ = 1,2,... andi = 0, ..., — 1, with |E; ;| = 47,
Order these sets by increasih@nd call the resulting sequen(;Ej}J?'il. We now cre-

ate two sequences of polynomiafs and g; with |ﬁ(n)| = [gi(n)| for all n» and all

i inductively by using Lemmg]s (at thigh step) with f;_1, g;—1, the setE;, the pa-
rameterseLemmd® = 627" (§ is some parametex %e to be fixed later) and and

With viemmd® = 1i—1 + 82 (the induction is initialized withfo = f, go = g and
1o = |lglleo)- Call the output of the lemmg;, g; andy;. It is easy to verify that

(i) T — 3¢ < |fi()] < 1+ e except on a seB of measures + 41~/4 (the § error
is the combined error from the previous stages white/4 is the set ofE;s not yet
handled).

(i) Uniformly we have

1fi = flloo < 2V/1= 12435, (45)

This requires both (i) ar{d (ilv) from the definition of lifting.
(iii) Outside a set of measure s we have

lgi (D] > gi—1(D)] + i — (i1 +827") — 627"
> |gi—a(O] + pi — pi—p — 2827 427 > - ..
> g + i — llglloo — 25.

We prefer to write this as
i —0sag) — %€ < [gi (1] < i + €. (46)

(iv) Uniformly
lgi — glloo <2vV1—12+38. (47)

Take some sufficiently large (to be fixed later) and examifieandg;.
We now correct over the exceptional sets using Lernina 6 twice. First use the lemma
with f;, g;, the seB3 := {t : | fi(1)| < T — 1€} andeLemmdB= 3¢. To enable this, fix

o= min{%cl, 1- 1/1—c§/64}. (48)

With this value, the fact that > 1 — ¢, implies that 2/1 — 12 < %cl and hence for
8 < %cl, ) and) give :c1 < |fi| <14c1and Lemmﬂi may indeed be applied.
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Call the resulting functiong* and G*. Since|B| < & + 4-1/4 it is clear that fors
sufficiently small and sufficiently large we get

Igi — G*lloo < Min{3e, Zca}. (49)
This correctsF™* in the sense that now
t—%e<|F*(t)| <1+%e forall 7. (50)

Now use Lemma |6 Withfiemmd® = G*, gLemmd® = F* and the seB3* = {r :
|G*(1)| < ni — Osdg) — 3¢} and agaireL.emma®= €. The resulting functions are our
G and F. As above, from the definitiof (48) @b, (44), [47) and[(49) we get % c1 <
|G*| <14+ c1501if8 < %cl we may apply the lemma. Further,

1B @ {2 1gil < pi — Osg) — Ze}| D;

so that| F — F*|los < C/8 and if§ is sufficiently small|| F — F*||o < 1e so with )
we have what we need fdf. For G we get

i — 0sag) — 7€ < |G®)] < pi + 3¢

s0 Os¢G) < Osdg) + €. Fixing § sufficiently small and sufficiently large to satisfy all
the past requirements completes the proof of the lemma. O

Lemma 10. Let f, g ande be as in Lemmg but with the additional requirement
l—c3<|fl<l1l 1—c3<]|gl<l4cs.

Then one can extenfland g to F and G such that

() 1—e<|F(@)| <1l+¢eforallz,
(i) IF = flloo < CVIL=1fTllc0s
(i) OsaG) < Osag) + «,

(V) IG —gllo < CVIIL = [f1lloo-

Proof. This follows easily by applying Lemnig 9 repeatedly (to preserve the requirement
|f] < 1 you need to multiplyf andg by normalization factors). Let us do it in detail
nonetheless. Write = ||1 — |f]| |loo @and lets be some parameter sufficiently small to
be fixed later. We defingyp = f andgg = g and then inductivelyf; and g; with the
following properties:

@) |7:(n)| = [3:(n)| for all n, (1+8277) f; extendsf;_1 and(1+ 62~F)g; extendsg;_1.
(b) 1—(p+2i8)27" < |fi] < 1.

©) Ifi = fieillo < Cy/p27 fori > 0.

(d) Osdgi) < Osdg) +8(1—27").

() llgi — gi—1lloo < Cy/p27i fori > 0.
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Let us verify the induction steps. At thith step ( > 1) we wish to apply Lemm[g 9 to the
functions f;_1 andg;_1. For this to hold we must know that (44) holds for our functions
fi—1 and g;_1. First we note that it3 < c2 andd§ < %cz then the second induction
assumption ensures that-ley < | fi—1| < 1. As forg;_1, we first estimaté|g; _1( oo by
noting that

lgi-1lloc < llgi—1ll2 + Osdgi-1) < llgi—1ll2 + Osdg) + &

Il fi—1ll2 + Osdg) + & @ 1+ 2c3+8.
A similar calculation shows that
lgi-1lloc = 1= (p+2i8)27" —2c3 —§ = 1—3c3 — 25.
With these estimates we write
Igi-1l — oo < Osagi-1) + | lIgi-1lloc — 1| < Sc3 + 34.

Hence if we defines := %)cz and ensuré < %cg then the requirements for Lemlﬂa 9
are ensured.

We now apply LemmE]9 witla emmd® = 82~ Call the resulting functiong™* and
g* and definef; = f*/(1+827") andg; = g*/(1+ 627"). Itis quite easy to verify that
all the inductive assumptions hold—let us do two examples in detail. First, let us verify
the left hand inequality ¢f (). We have

1-d11—1ficalll =827 @ 1— (p+ (2 — 1§)2~
1+ 68278 146820

| fil = >1—(p+2i8)27"
where the inequality labelgd {b) uses this clauseifer 1 inductively. Secondly we
discusg (d). We have Ogg) = Osdg*)/(1 + §27%) < Osag*) while clausd (iii) of
Lemma3 9 gives Ogg*) < Osdg;_1) + 82~. This completes the induction.

Now takei sufficiently large and defing; = ]_[j:l(l +68277), F := f;»; and
G = g;iA;. We note that

|Fl <2 <14+C8, |F|>1—(p+2)2">1-C27,

hence fori sufficiently large and sufficiently small the first requirement dnis satisfied.
The other requirements di andG may be verified with similar ease. O

Proof of the TheoremLet ¢ : T — T be a function which makes one rotation around 0
very quickly, namely for some > 0 to be fixed later define

eth/e’ t <e,

o) =
y 1 > €.
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Let f1 be a trigonometric polynomial satisfyinigfy — ¢|llo < €, degfi < Ce~C. Clearly
wind f1 = 1 and|| f1 — 1|2 < C./e. Examine the random function

h=>"£f1m)e".
n#0

As before we havédii| ., < C./€log(1/¢) with high probability. Pick one combination
of signs&,, such that this holds and defige = fl(O) +> énﬁ(n)ei”’. Clearly|fl(n)| =
|g1(n)| and if e is sufficiently small, wingg; = O.

We now apply Lemmp_10 inductively as follows. For evierwe apply it with

1
V=,
max{|| fj-1lloo, 1}
and then defingf; = Flemmgmpandg, = GLemmdIp For oddjs we reverse the roles

of f andg, i.e. take the normalization factor to bg = 1/max| g;-1ll«, 1} and then

fLemmdTo= v;gj—1 andgLemmdo= v; fj—1 €tc. In both cases we takeemmaTo= 2 €.
An argument similar to that of Lemnja]10 now shows that throughout this process

fLemme{I@= fj—le, gLemmdI0= &j—-1Vj,

Osq(fj) <5627/, Osag;) < 5¢27. (51)

Let us show|(5]1) for the case gfeven (the other case is identical). Hefefollows
immediately since by clauge|(i) of Lemrha] 10, ©f8 < 2e27/. As for g, the same
clause (i) in step — 1 shows that Ogg;—1) < 42/ s0 Os€gj—1v;) < 4€27/. We
apply clause (i) of Lemmp 30 in stepand get Os(g;) < 5¢27/.

A similar argument shows that both are close to 1 in the sense that

1] — Lloo <6277, |l 1gjl — Llloo < 6277, (52)

Again we demonstrate this under the assumption thateven. Forf; this is immediate
from clausé (i) of Lemmi 30. Fay, sincellg; 2 = |l f; |2 we see that||g;ll2—1] < €27/
and sinceg; (1) — llgjll2| < Osdg;) we get[(52).

This implies that if is sufficiently small the induction actually works in the sense that
1—c3 <vjfj—1 < 14+czand 1-c3 < vjgj_1 < 1+4c3 are preserved throughout. Further
it implies || fi+1 — fillo < Cv€27J and in particular we find that (i is sufficiently
small) windf; = wind fj1, f = lim f; exists and is continuou$f ()| = 1 for all r and
wind f = wind f1 = 1. Similarly we deduce that = lim g; exists and is continuous,
lg()] = 1 for all7 and windg = 0. The property thaltf;(n)| = Igj(n)| is preserved in
the limit so| f(j)| = |g(j)| for all j and the theorem is proved. O
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