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Abstract. We construct an example of two continuous mapsf andg of the circle to itself with
|f̂ (n)| = |̂g(n)| for all n ∈ Z but with different winding numbers, answering a question of Brezis.
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1. Introduction

A continuous cyclef in C \ {0} has a well defined winding number around zero, which
we shall denote by windf . If f is smooth and its image is in the circleT = {z : |z| = 1}

then the winding number has an elegant formula using the Fourier coefficients off (we
considerf as a function from [0,1] to T). Indeed, by the residue formula for the function
z−1 we have

windf =
1

2πi

∫
f ′

f

and since 1/f = f we get

windf =
1

2πi

∫
f ′f =

1

2πi

∑
f̂ ′(n)f̂ (n) =

∑
n|f̂ (n)|2. (1)

This paper is part of a line of research trying to understand what role smoothness plays
in (1). See Brezis [B06] for a fascinating review of related results and problems, high
dimensional analogs and applications.
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The earliest investigations in this direction are due to L. Boutet de Monvel and O. Gab-
ber. They realized that the left-most equality in (1) makes sense for functions in the frac-
tional Sobolev spaceW1/2,2, when the integral is understood in the sense ofW1/2,2-
W−1/2,2 duality (see the appendix of [BGP91]). This equality allowed them to extend the
notion of winding number to the discontinuous part ofW1/2,2. By approximating with
continuous functions they showed that this generalized winding number was still an inte-
ger. Interestingly,W1/2,2 is exactly the space of functions for which the right hand side
of (1) converges absolutely, but apparently Boutet de Monvel and Gabber were not aware
of (1). The connection to Fourier expansion was discovered by Brezis in 1995 (following
a question of Gelfand) and immediately begot new questions.

As a side remark, defining the winding number using approximation by continuous
functions is most natural in the space VMO of functions of vanishing mean oscillation
(VMO is the closure of the continuous functions in BMO and, heuristically, it relates to
BMO like continuous functions relate toL∞). Note that VMO containsW1/2,2 and the
VMO-winding number agrees with both the definition of [BGP91] and with (1) onW1/2,2

(see [B06]). A high dimensional analog, the VMO-degree, was developed by Brezis and
Nirenberg [BN95] (see also [BC83]).

Returning to (1), when one leavesW1/2,2 the picture gets more complicated. Follow-
ing a question of Brezis, Korevaar [K99] showed that in general the sum (1), considered
as the balanced limit

lim
N→∞

N∑
n=−N

n|f̂ (n)|2,

may converge to any desired value different from the winding number, including±∞,
or may diverge. Replacing convergence with Abel summability does not change the pic-
ture. On the other hand, Korevaar shows that (1) does hold for continuous functions with
bounded variation (this class is not contained inW1/2,2). More intriguing, perhaps, is
Kahane’s proof [K05] that for Hölder functions with exponent> 1/3 one can retrieve
the winding number by summing (1) using Riemann’s summation method. Brezis [B06,
Theorem 5] then noticed that Kahane’s proof works in the spaceW1/3,3. In particular Ka-
hane’s argument shows that inW1/3,3 the absolute values of the Fourier transform deter-
mine the winding number, which can be picturesquely described as “hearing the winding
number”. It is conjectured that one can hear the winding number in the classW1/p,p for
anyp. HereW1/p,p is in the sense of Sobolev–Slobodetskiı̆ spaces (see e.g. [KJF77]). We
remind the reader that in this case the definition of these spaces simplifies to the condition

W1/p,p
=

{
f :

∫ ∫
|f (x)− f (y)|p

|x − y|2
< ∞

}
.

This is an increasing family of classes and allW1/p,p
⊂ VMO.

Korevaar’s negative result, while strongly hinting that one cannot hear the winding
number in general, does not actually preclude it. In this paper we show that some kind of
smoothness must be assumed in order to hear the winding number. Specifically we show

Theorem. There exist two continuous functionsf, g : T → T with |f̂ (n)| = |̂g(n)| for
all n and with different winding numbers.
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The constructedf andg are highly singular. We made no attempt to optimize the
construction in this respect nor do we believe that our techniques are adequate for this
purpose. In fact, even forcingf andg to be continuous, as opposed to just VMO, required
a non-negligible increase in the complexity of the proof. Another interesting question
which we cannot address at this time is whether one can strengthen|f̂ (n)| = |̂g(n)| to
f̂ (n) = ±ĝ(n).

We remark that functions with identical absolute value and identical absolute value of
the Fourier transform are calledPauli partners. Thus in this language the theorem states
that there exist two Pauli partnersf andg with |f | = 1 and different winding numbers.
For many interesting techniques for producing Pauli partners, see [J99].

1.1. About the proof

Inspired by de Leeuw–Kahane–Katznelson [dLKK77] we constructf andg by an itera-
tive correction scheme with each stage combining a deterministic step and a probabilistic
step. We start with functions which take values outsideT, so (1) does not hold and one
may construct trigonometric polynomials with|f̂ (n)| = |̂g(n)| and different winding
numbers quite easily (see page 656). At each stage the polynomials are extended so as
to continue satisfying|f̂ (n)| = |̂g(n)| and preserve their winding number while getting
closer and closer toT.

Let us describe one correction. Assume|f | is too low in an intervalI . We always
correct upwards, increasing|f |—this is a corollary of the fact that extending a polynomial
increases itsL2 norm—so our lemmas are usually formulated non-symmetrically with
respect to|f |. We wish to correctf on I (call the correctionF ) in such a way thatF has
bigger absolute value onI but is highly oscillatory so thatF − f lives essentially in the
high end of the spectrum.

We employ two different techniques to getF from f . The first, and simpler, is de-
scribed in Lemma 2. Its advantage is thatF has the desired properties on all ofI . Its
disadvantage is thatF − f has no structure that can be used in order to extend the other
polynomial,g. Hence when using this technique we simply define

G = g +

∑
±F̂ − f (n)eint

where± are random signs. IfI is sufficiently small then‖F − f ‖2 would be small,
and we could bound‖G− g‖∞ efficiently by known properties of random trigonometric
series.

The second technique is used in Lemma 5 and especially in Lemma 7. We construct
F − f so as to have many small pieces sitting in different areas of the spectrum and
use this structure in order to constructG so that its distance from a unimodular function
is decreased as little as possible. The disadvantage of this technique is that we have not
figured out how to correct on the whole ofI . F has the desired absolute value on most of
I but a small exceptional set remains, and is handled using the first technique.
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1.2. Notations

We shall consider functions from [0,1] into C, which we consider as periodic e.g. when
we say thatf is continuous we mean also thatf (0) = f (1). A rotation is the action
of transformingf (t) into f (t + a) for somea ∈ [0,1], again periodically. The Fourier
coefficients are defined bŷf (n) =

∫ 1
0 f (t)e

−2πint . For a trigonometric polynomialf we
define itsspectrum, denoted by specf , and itsdegree, denoted by degf , by

specf := {n ∈ Z : f̂ (n) 6= 0}, degf := max{|n| : n ∈ specf }.

If f andF are two trigonometric polynomials we say thatF extendsf if they are identical
on the hull of the spectrum off , that is,

F̂ (n) = f̂ (n) ∀|n| ≤ degf.

ω(δ; f ) will denote the modulus of continuity, namely

ω(δ; f ) := max
|x−y|≤δ

|f (x)− f (y)|.

We shall denote byCn, n ∈ N, the space of functions withn continuous derivatives
and byCα, α ∈ ]0,1[, the space of Hölder continuous functions of orderα. The respective
norms are

‖f ‖Cn := max{‖f ‖∞, ‖f
(n)

‖∞}, ‖f ‖Cα := max
x 6=y

|f (x)− f (y)|

|x − y|α

(we shall not need otherCxs—in fact we shall only useC2, C1 andC1/2). Other norms
we will use are

‖f ‖2 :=

√∫ 1

0
|f |2, ‖f ‖∞ := ess sup

t∈[0,1]
|f (t)|,

and we denote byV (f ) the total variation off . We also remind the reader that

V (fg) ≤ V (f )‖g‖∞ + V (g)‖f ‖∞, ‖fg‖Cα ≤ ‖f ‖Cα‖g‖∞ + ‖g‖Cα‖f ‖∞. (2)

By f+ we mean max{f,0}. For a setE we denote by1E the indicator function which
is 1 onE and 0 elsewhere.bxc anddxe denote, respectively the floor and ceiling functions,
i.e. the largest integer≤ x and the smallest integer≥ x. By C andc we shall denote
absolute constants whose precise value is unimportant as far as this paper is concerned,
and could change from formula to formula or even within the same formula.C will pertain
to constants which are “big enough” andc to constants which are “small enough”. We will
number a fewC andcs—only those which we will reference later on. When we say “x is
sufficiently large” we mean “x > C”.



One cannot hear the winding number 641

2. Proof

2.1. The local correction scheme

Lemma 1. Leth be aC2 function. Then

V (
√
h+) ≤

√
‖h‖C2.

Proof. In fact we will prove the stronger

V (
√

|h|) ≤
√

‖h‖C2.

Let I = [a, b] be an interval such thath′(a) = h′(b) = 0 andh is monotone on [a, b].
Then

VI (h) = |h(b)− h(a)| ≤ (b − a)max
t∈I

|h′(t)| ≤
1
2(b − a)2 max

t∈I
|h′′(t)|

whereVI (h) is the variation ofh on I . If in additionh(t) 6= 0 for all t ∈ ]a, b[ then

VI (
√

|h|) =
∣∣√|h(b)| −

√
|h(a)|

∣∣ ≤

√
|h(b)− h(a)| ≤

√
1
2‖h‖C2(b − a).

If h(t) = 0 for somet ∈ ]a, b[ then

VI (
√

|h|) =

√
|h(b)| +

√
|h(a)| ≤

√
2|h(b)− h(a)|

so in both cases
VI (

√
|h|) ≤

√
‖h‖C2(b − a). (3)

A similar argument shows that ifh′(t) = 0 for any t ∈ [a, b] (and without assuming
monotonicity ofh) then∣∣√|h(a)| −

√
|h(b)|

∣∣ ≤
√

‖h‖C2(b − a). (4)

Let nowa1 < · · · < aN ∈ [0,1]. We need to estimate the variation with respect to
a1, . . . , aN . Clearly we may add points and we add, for any segment [ai, ai+1] whereh
is not monotonic, the maximal and minimal points in [ai, ai+1] whereh′

= 0, removing
duplicates if they arise (each may be equal to the boundary point, and the two points
may be equal). Denote the new list also byai . Let i1 < · · · < iK be the points where
h′(aik ) = 0 and assume thatai1 = 0 andaiK = 1 (as we may, by rotatingh and theais
and adding oneai , if necessary). It is now easy to verify that

h is monotone on [aik , aik+1] wheneverik+1 > ik + 1. (5)

Let us now write

V (
√

|h|; a1, . . . , aN ) :=
N−1∑
i=1

∣∣√|h(ai+1)| −

√
|h(ai)|

∣∣ =

K−1∑
k=1

vk
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where

vk :=
ik+1−1∑
i=ik

∣∣√|h(ai+1)| −

√
|h(ai)|

∣∣.
However, by (5) we can use (3) forh monotone on [aik , aik+1] and (4) forik+1 = ik + 1,
and in both cases we getvk ≤

√
‖h‖C2(aik+1 − aik ). This proves the lemma. ut

Lemma 2. Let f be a trigonometric polynomial with1 − c1 < |f | < 1 + c1 for some
absolute constant0< c1 < 1. Let [a, b] ⊂ T be some interval such that|f (a)| = |f (b)|

and |f (t)| < |f (a)| for all t ∈ [a, b]. Let ε ∈ ]0,1[ be some parameter. Then one can
extendf asF such that

||F(t)| − |f (a)|| < ε ∀t ∈ [a, b], (6)

|F(t)− f (t)| < ε ∀t 6∈ [a, b], (7)

degF ≤ C(degf )12/ε4. (8)

Proof. Assumea = 0 (otherwise we can rotate the whole thing). We shall need the
following function, defined on [0,∞[:

ϕ(x) =

∞∑
j=1

(−1)j+1

(2j)!

(
2j

j

)
4−jxj .

Clearly this is an analytic function withϕ(0) = 0 andϕ′(0) > 0. Hence we may invert
it in some neighborhood of 0. We get an analytic monotone functionψ : [0, c] → [0,1]
with ψ ′

≤ C andψ ′′
≤ C.

The construction now goes as follows. Writeτ = |f (0)|, N = degf and letM =

M(N) be some number to be fixed later. Define

δ(t) =

{√
ψ(1 − |f (t)|/τ), t ∈ [0, b],

0, otherwise,

f2(t) =


f (t)

|f (t)|
τeiδ(t) sinMt , t ∈ [0, b],

f (t), otherwise.

If c1 is sufficiently small thenδ is always well defined. Fix some value ofc1 < 1/2
satisfying this requirement. The following properties off2 now follow:

|f2(t)| = τ ∀t ∈ [0, b], (9)

f2(t) = f (t) ∀t 6∈ [0, b]. (10)

To estimatêf2 developeiδ(t) sinMt in a Taylor series. We get

eiδ(t) sinMt
= 1 +

∞∑
j=1

1

j !
(iδ(t) sinMt)j .
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Expanding sinj Mt = ((eiMt − e−iMt )/2i)j we get for oddj a sum with no constant
coefficient and for evenj the constant coefficient is

(
j
j/2

)
2−j . Hence we may write, for

all t ∈ [0, b],

eiδ(t) sinMt
= 1 +

∞∑
j=1

(−1)j

(2j)!

(
2j

j

)
4−j δ2j (t)+ R(t) = 1 − ϕ(δ2(t))+ R(t)

=
|f (t)|

τ
+ R(t)

whereR(t) contains all terms depending onM. Hence we getf2(t) = f (t)+ S(t) where

S(t) :=


f (t)

|f (t)|
τR(t), t ∈ [0, b],

0, otherwise.

The next step is to ask how largeM has to be to ensure thatS lives only in the high end
of the spectrum. This is pretty straightforward, but let us do it in detail nonetheless.

Let therefore|n| ≤ N and let us examinêS(n). Integrating by parts we get

Ŝ(n) =

∫ 1

0
S(t)e−2πint dt =

∫ 1

0
S(t) dt + 2πin

∫ 1

0
e−2πins

∫ s

0
S(t) dt ds.

To estimate this we start by writing, fors ∈ [0, b],

∣∣∣∣∫ s

0
S(t) dt

∣∣∣∣ ≤

∞∑
j=1

1

j !

j∑
′

k=0

(
j

k

)
2−j τ

∣∣∣∣∫ s

0
eiM(j−2k)t f (t)

|f (t)|
δj (t) dt

∣∣∣∣ (11)

where6′ means that forj even the sum does not contain the termk = j/2. Every term
on the right is again estimated by integration by parts to get∣∣∣∣∫ s

0
eiM(j−2k)t f (t)

|f (t)|
δj (t) dt

∣∣∣∣ ≤
2

M

(
C + V

(
f

|f |
δj

))
. (12)

Forj even we can simply estimate the variation by the maximum of the derivative. We use
Bernstein’s inequality1 to get|f ′(t)| ≤ N‖f ‖∞ ≤ N(1+ c1) and|(|f |)′(t)| ≤ |f ′(t)| ≤

CN . Further,

|(δ2j )′| ≤
Cj

τ
|f |

′
≤ CjN

and therefore

V ((f/|f |)δ2j ) ≤ ‖(f/|f |)δ2j
‖C1 ≤ CjN. (13)

1 In fact here it is enough to use the trivial inequality|f ′
| ≤ N2

‖f ‖∞.
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In the case ofj odd we use Lemma 1 to get

V

(
f

|f |
δ2j+1

)
(2)
≤ CV

(
f

|f |
δ2j

)
+ CV (δ) ≤ CjN +

√∥∥∥∥ψ(
1 −

|f |

τ

)∥∥∥∥
C2

(∗)
≤ CjN + C

√
‖ |f | ‖C2 + ‖ |f | ‖

2
C1 ≤ CjN (14)

where in(∗)we used the fact thatψ ′
≤ C andψ ′′

≤ C, and in the last inequality we again
used Bernstein’s inequality. Inserting this into (12) and the result into (11) and summing
overk andj gives|

∫ s
0 S(t)| dt ≤ CN/M. Hence|Ŝ(n)| ≤ CnN/M. Summing overn

we get ∥∥∥ N∑
n=−N

Ŝ(n)e2πint
∥∥∥

∞

≤
CN3

M
. (15)

Next we need to estimate|Ŝ(n)| for largen. The square root in the definition ofδ
meansS is not smooth, but we shall show thatS is Hölder-12. We remind the reader that
in general such functions have uniformly convergent Fourier expansion. In fact, by the
Dini–Lipschitz test [Z68, §2.71]∥∥∥ ∑

|n|>ν

Ŝ(n)eint
∥∥∥

∞

≤ Cν−1/2(logν)‖S‖C1/2. (16)

Write therefore∥∥∥∥eiM(j−2k)t f

|f |
δj

∥∥∥∥
C1/2

(2)
≤

∥∥∥∥ f|f |
δj

∥∥∥∥
C1/2

+ C‖eiM(j−2k)t
‖C1/2

≤

∥∥∥∥ f|f |
δj

∥∥∥∥
C1/2

+ C
√
jM.

To estimate the term(f/|f |)δj , note that for evenj we have∥∥∥∥ f|f |
δ2j

∥∥∥∥
C1/2

≤

∥∥∥∥ f|f |
δ2j

∥∥∥∥
C1

(13)
≤ CjN. (17)

Further, since

‖δ‖C1/2 ≤

√∥∥∥∥ψ(
1 −

|f |

τ

)∥∥∥∥
1

≤ C

we see that (17) holds for 2j + 1 as well. Hence∥∥∥∥eiM(j−2k)t f

|f |
δj

∥∥∥∥
C1/2

≤ CjN + C
√
jM.

We now sum overk andj with the final result being‖S‖C1/2 ≤ C(N +
√
M). Returning

to (16) this gives ∥∥∥ ∑
|n|>ν

Ŝ(n)eint
∥∥∥

∞

≤ Cν−1/2(logν)(N +
√
M). (18)
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Combining (15) and (18) allows us to define

F = f +

∑
N<|n|≤M4

Ŝ(n)eint

and get‖F − f2‖∞ ≤ CN3/M. We pickM = dCN3/εe, get

‖F − f2‖∞ ≤ ε (19)

and the lemma is proved (remember (9) and (10)). ut

Lemma 3. With the notations of Lemma2, if one replaces[a, b] with a simple setE
(such that|f | is constant on∂E) then the lemma holds with condition(8) replaced by

degF ≤ C(degf )16/ε4. (20)

Proof. We note that|f |
2 is a trigonometric polynomial of degree≤ 2 degf and hence

the number of solutions of|f |
2

= τ for any numberτ is ≤ 4 degf + 1 (we assume here
that |f | is not constant—if it is, just takeF = f ). ThereforeE is composed of no more
than 2 degf intervalsIk. Apply Lemma 2 for each intervalIk with εLemma 2= ε/2 degf .
Call the resulting functionsF(Ik) and defineF = f +

∑
k(F (Ik)−f ). All the conditions

are obviously satisfied. ut

Lemma 4. Letη ∈ C andτ ∈ R+ with |η| < τ . Then∣∣∣∣η ±

√
τ2 − |η|2

iη

|η|

∣∣∣∣ = τ, (21)

and for anyσ ∈ [−1,1],

|η| ≤

∣∣∣∣η + σ

√
τ2 − |η|2

iη

|η|

∣∣∣∣ ≤ τ. (22)

This follows from Pythagoras’ theorem since we are adding orthogonal vectors.

Lemma 5. Letf , ε and[a, b] be as in Lemma2, and let[a′, b′] be another interval, with
b′

− a′
≥ b− a. Letg be a polynomial satisfying|f̂ (n)| = |̂g(n)| for all n. Then one can

extendf andg asF andG still satisfying|F̂ (n)| = |Ĝ(n)| and such that(6), (7) hold,
as well as

|g(t)−G(t)| < C
√
(b − a)/(b′ − a′) ∀t ∈ [a′, b′],

|g(t)−G(t)| < ε ∀t 6∈ [a′, b′].
(23)

Proof. Assume without loss of generality thata = a′
= 0. Letl satisfy that 4−l ≥ b/b′ >

4−l−1, and assumel > 0 (otherwise one can takeF from Lemma 2 andG = g+F −f ).
Let δ ∈ ]0, ε[ andM be some parameters to be fixed later—δ will be taken sufficiently
small andM sufficiently large, depending onδ. Letψ be anM-approximation of the first
Rademacher functionr1 := 1[0,1/2] − 1[1/2,1], namely

ψ =

∑
|n|≤M

r̂1(n)
M − |n|

M
eint .
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As is well known,ψ is real,|ψ | ≤ 1 and

|r1(t)− ψ(t)| ≤ CM−1/2
∀t, 〈2t〉 > M−1/2 (24)

where〈x〉 is defined (somewhat nonstandardly) as the distance ofx from the integers. For
any integerm defineψ[m] using

ψ[m](t) = ψ(mt)

where we understandψ as a 1-periodic function. We define 3l functions which mimic the
behavior of 3l different Rademacher functions:

si := ψ[(3M)i ], i = 1, . . . ,3l.

The reason we are approximating the Rademacher functions is the following innocuous
equality:

|r1 + r2 + r3 − r1r2r3| = 2,

which holds at every point except the jump points. This of course holds for other triplets,
i.e. |r3i−2+r3i−1+r3i−r3i−2r3i−1r3i | = 2. With this in mind let us construct 4l functions
which mimic products of the four Walsh functionsr1, r2, r3,−r1r2r3. Formally, for every
sequence{εi}li=1with εi ∈ {1,2,3,4} we define

σ{εi } = 2−l
l∏
i=1

{
s3(i−1)+εi , εi = 1,2,3,

−s3i−2s3i−1s3i, εi = 4.

For convenience, ifj =
∑α
i=1(εi − 1)4i−1 is some number between 0 and 4l

− 1 we will
write σj := σ{εi }. Theσjs have the following properties:

(i) For all j andt ,
|σj (t)| ≤ 2−l . (25)

(ii) Let B be the set of “bad”ts satisfying〈2(3M)i t〉 ≤ M−1/2 for somei = 1, . . . ,3l.
Then

1 − ClM−1/2 <

∣∣∣ ∑
j

σj (t)

∣∣∣ ≤ 1 ∀t 6∈ B. (26)

This follows because∑
j

σj (t) = 2−l
l∏
i=1

(s3i−2 + s3i−1 + s3i − s3i−2s3i−1s3i).

As explained above,|r1 + r2 + r3 − r1r2r3| = 2 and hence so does each term in the
product (with an error ofCM−1/2) and the product has absolute value 2l . Further,
an easy calculation shows thatx + y + z− xyz ≤ 2 for all x, y, z ∈ [−1,1] so∣∣∣ ∑

j

σj (t)

∣∣∣ ≤ 1 ∀t (27)

both outside and insideB.
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(iii) The spectra ofσj are disjoint. IfM > 3 degf then they are also disjoint from specf .
This is also easy—in fact the spectra of any product ofsis are disjoint, and disjoint
from specf .

Let τ := |f (0)|, letϕ be defined by

ϕ(t) =


√
τ2 − |f (t)|2

if (t)

|f (t)|
, t ∈ [0, b],

0, otherwise,

and letP be a trigonometric polynomial approximatingϕ, ‖P − ϕ‖∞ < δ. Assume
M > 3 degP so that the spectra ofPσj are all disjoint and disjoint from specf .

We are now in a position to define our first approximation step,

f2(t) := f (t)+

4l−1∑
j=0

Pσj (t),

g2(t) := g(t)+

4l−1∑
j=0

(Pσj )(t − jb).

It is clear that|f̂2(n)| = |̂g2(n)| since the only difference between them is a rotation of
eachPσj . Since they have disjoint spectra, this preserves the absolute value of the Fourier
transform.

Examine onet ∈ [0, b] \ B. We use (26) to sum over thejs to get

f2 = f ± ϕ(t)+ R(t), |R| ≤ ClM−1/2
+ δ ∀t ∈ [0, b] \ B.

Notice that by Pythagoras’ theorem (21),|f ± ϕ| = τ for everyt ∈ [0, b], so

| |f2(t)| − τ | ≤ ClM−1/2
+ δ ∀t ∈ [0, b] \ B. (28)

On [0, b] ∩ B we use (22) and (27) to get

|f (t)| − δ < |f2(t)| < τ + δ. (29)

Finally, outside [0, b] we have|f2(t)− f (t)| ≤ δ regardless of whethert ∈ B or not.
As for g2, because the various translatesϕ(t − jb) have disjoint supports we get

(remember (25))

|g2(t)− g(t)| ≤ 2−l maxϕ + 2lδ ≤ C
√
b/b′ + 2lδ ∀t ∈ [0, b′],

|g2(t)− g(t)| ≤ 2lδ ∀t 6∈ [0, b′].
(30)

These are the properties we need forf2 andg2.

Second approximation step.Now,f2 andg2 satisfy the conditions of the lemma except
on the small setB. On it we correct using Lemma 3. Assume therefore thatδ is sufficiently
small andM sufficiently large such that

1 − c1 < |f2| < 1 + c1 (31)
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and we can use Lemma 3 forf2. Apply it with the parameterεLemma 3=
1
2ε and the set

E = {t ∈ [0, b] ∩ B : |f2(t)| ≤ τ −
1
2ε}.

If δ is sufficiently small andM sufficiently large then by (28) we know thatE is contained
in the interior ofB and therefore the condition that|f2| is constant on∂E is satisfied. Call
the resulting functionF . We get

| |F(t)| − τ | ≤ ε ∀t ∈ E, (32)

|F(t)− f2(t)| ≤
1
2ε ∀t 6∈ E. (33)

As for degF , since degf2 ≤ (3M)3l+1 we get

degF ≤ C(3M)48l+16/ε4.

This gives all properties required fromF . Hence we need to defineG. For this purpose
examine the random function

h :=
∑
n

±F̂ − f2(n)e
int

where the± stands for independent Bernoulli variables. It is well known (see [K85, Chap-
ter 6, Theorem 2]) that with high probability

‖h‖∞ ≤ C‖F − f2‖2
√

log degF

and in particular there exists a choice of signsξn satisfying this inequality. Define

G := g2 +

∑
n

ξnF̂ − f2(n)e
2πint .

Clearly we have|F̂ (n)| = |Ĝ(n)|. Further,‖F − f2‖2 ≤ C
√

|B| ≤ Cl1/2M−1/4 so

‖G− g2‖∞ ≤ Cl1/2M−1/4
√
l logM + log(1/ε). (34)

All that is required is to pickδ andM correctly. Requirements (6) and (7) will follow if
only ClM−1/2

+ δ +
1
2ε < ε. To see (6) note that on [0, b] \ B it follows from (28) and

(33). On [0, b] ∩ E it follows from (32), and on [0, b] ∩ (B \ E) from (29), (33) and the
definition ofE. The proof of (7) is similar. Next, (23) will follow if the right hand side of
(34) is< min{

1
2ε,

√
b/b′} and 2lδ < min{

1
2ε,

√
b/b′} (remember (30)). We remind the

reader that in addition we assumedM > 3 degf ,M > 3 degP , that

δ + ClM−1/2 < c1 − max
t

| |f (t)| − 1|,

which ensures (31), and thatδ + ClM−1/2 < 1
2ε, which ensures that|f2| is constant on

∂E. Clearly choosingδ sufficiently small and thenM sufficiently large depending onδ
(the most important dependency is viaM > 3 degP ) will satisfy all these requirements
and prove the lemma. ut
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2.2. Intermediate remarks

Since you reached so far down in the proof itself we believe you might be interested
in some remarks on the structure of the proof more substantial than the ones given in
the introduction. We start with a remark on Lemma 5. A tempting simplification is as
follows: use Lemma 2 to correctf to F and then the probabilistic argument above to
constructG = g +

∑
±F̂ − f (n)eint . This would give the lemma with an additional

benign-looking factor of
√

log degF . However, this
√

log factor is not so easy to get rid
of! To appreciate how serious a burden was removed, try to estimate the relation between
n = degf andN = degF in Lemma 10 below. We got the tetration

N ≈ nn
n.
..
n

︸ ︷︷ ︸
C log2(1/ε) times

(this is after some optimizations; directly following the proof would give much more).
This, by the way, is also the best we can say about the smoothness of the finalF andG,
i.e.ω(δ;F) andω(δ;G) decrease like an inverse tetration.

This is why we chose the current approach, and starting from Lemma 6 we no longer
need to control the spectrum ofF . Put differently, degF is the only parameter which gets
worse when one increases the various parameters of our construction (e.g. thel andM of
Lemma 5, thel,N andM of Lemma 7 below etc.). Removing the requirement to control
degF gives us the flexibility to increase these parameters with no punishment.

2.3. The global correction scheme

Lemma 6. Lemma5 holds with[a, b] replaced by a simple setE if (23) is replaced by

‖g −G‖∞ ≤ C
√

|E|.

Note that there is no [a′, b′] in this formulation (or rather it is [0,1]).

Proof. Write E as a disjoint unionE = I1 ∪ · · · ∪ IN and letJ1, . . . , JN be disjoint
intervals with|Ji | = |Ii |/|E| (so they cover [0,1]). Denote byτ the common value of
|f (t)| for all t ∈ ∂E. Let ε2 be sufficiently small such that for anyδ ≤ ε2 and any interval
I ⊂ E, {t ∈ I : |f (t)| < τ − δ} is an interval. Letε3 = min{ε, ε2,

√
|E|}. Now use

Lemma 5 inductivelyN times to get functionsfi , gi satisfying

(i) | |fi(t)| − τ | < ε3(1 − 2−i−2) for all t ∈
⋃i
j=1 Ij ,

(ii) |fi(t)− f (t)| ≤ ε3(
1
4 − 2−i−2) for all otherts,

(iii) |gi(t)− g(t)| ≤ C
√

|E| + ε3(
1
4 − 2−i−2) for all t ∈

⋃i
j=1 Jj , and

(iv) |gi(t)− g(t)| ≤ ε3(
1
4 − 2−i−2) for all otherts.
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Initiate the induction withf0 = f , g0 = g. We need to define the parameters for
Lemma 5, most importantly the interval. Examine thereforeIi . Use the definition ofε2
with δ =

3
4ε3 to see that

I ∗

i := {t ∈ Ii : |f (t)| < τ −
3
4ε3}

is an interval. By the second induction assumption we know that|fi−1(t)| < τ −
1
2ε3 for

all t ∈ I ∗

i and|fi−1(t)| > τ − ε3(1− 2−i−1) for all t ∈ Ii \ I
∗

i . Let I ∗∗

i be the component
of {t ∈ Ii : |fi−1(t)| ≤ τ −

1
2ε3} containingI ∗

i . Now use Lemma 5 with the parameters
as in the following table:

Lemma 5 f g ε [a, b] [a′, b′] F G

here fi−1 gi−1 ε32−i−2 I ∗∗

i Ji fi gi

i.e. the lemma’s output will be used to definefi andgi . It is easy to verify (i)–(iv) and the
induction is complete. NowF = fN andG = gN are the desired functions. ut

Definition. Letf be a trigonometric polynomial, letE be a set and letmaxE |f | ≤ α <

β. Let ε > 0. Then anε-lifting of f onE from α to β is a trigonometric polynomialF
extendingf such that

(i) |f (t)− F(t)| < ε for all t 6∈ E,
(ii) for all t ∈ E minus a set of measure< ε,

(β − α)+ |f (t)| − ε < |F(t)| < β + ε, (35)

(iii) for all t ∈ E,
|f (t)| − ε < |F(t)| < β + ε,

(iv) ‖F − f ‖∞ < 2
√
β2 − α2.

See Figure1. If F andG are two liftings off andg which satisfy|F̂ (n)| = |Ĝ(n)| for
all n then we call themcompatible liftings.

Lemma 7. Let f andg be as in Lemma5. Let ε > 0 be some parameter. Letl ≥ 0 be
some integer, letI be an interval with length≤ 4−l and letJ be an interval of length4l |I |.
Assume that|f (t)| < τ for all t ∈ I whereτ < 1. Then there exist compatibleε-liftingsF
off onI fromτ to 1 andG of g onJ from anyν ≥ maxJ |g| toµ =

√
ν2 + 4−l(1 − τ2).

Proof. We may assumeI = [0, b] and J = [0,4lb]. Define two parametersN and
M that will accompany us throughout the proof and will be fixed at the end (think of
both as large but ofM as being much larger thanN ). The proof is very similar to the
proof of Lemma 5, and in particular we retain the notationsψ andψ[m] . We shall repeat
the construction of theσjs of Lemma 5,N times in disjoint spectra. Namely, we define
functionsσ qj , j = 0, . . . ,4l − 1 andq = 0, . . . , N − 1, satisfying
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|f |

|f | + β − α

β

α

|F |

Fig. 1. F is a lifting of f from α to β on the setE where|f | ≤ α. The graph depicts only the
absolute values off andF . |F | is drawn here taking the value

√
|f |2 + β2 − α2 which is what

will typically happen in our construction.

(i) LetB be the set of “bad”ts satisfying〈2(3M)i t〉 ≤ M−1/2 for somei = 1, . . . ,3lN .
Then

2−l
− ClM−1/2 < |σ

q
j (t)| ≤ 2−l

∀j, q, t 6∈ B. (36)

Further,|σ qj (t)| ≤ 2−l for all t .

(ii) For anyt andq, |
∑
j σ

q
j (t)| ≤ 1 and further

1 − ClM−1/2 <

∣∣∣ ∑
j

σ
q
j (t)

∣∣∣ ≤ 1 ∀q, t 6∈ B. (37)

(iii) The spectra ofPσ qj are disjoint. HereP is any polynomial with degP ≤ M.

Let P be anM-approximation of the indicator function1[0,b/N ] (in the same sense ofψ
in Lemma 5) so thatP is real,|P | ≤ 1 and

|P(t)− 1[0,b/N ](t)| ≤ CM−1/2
+ C

N/b

M
∀t, d(t, {0, b/N}) > M−1/2, (38)

whered is the usual distance of a point from a set considered periodically. We will assume
henceforth thatM > N2b−2 and avoid carrying theN/bM term. This allows us to define
our functions

F = f +

√
1 − τ2

N−1∑
q=0

4l−1∑
j=0

if (qb/N)

|f (qb/N)|
(Pσ

q
j )(t − qb/N), (39)

G = g +

√
1 − τ2

N−1∑
q=0

4l−1∑
j=0

ig(jb + qb/N)

|g(jb + qb/N)|
(Pσ

q
j )(t − (jb + qb/N)). (40)
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As in Lemma 5 it is clear that|F̂ (n)| = |Ĝ(n)| since each term is rotated and multiplied
by a unimodular number. Define

B′ :=
(N−1⋃
q=0

4l−1⋃
j=0

(B ∪ [−M−1/2,M−1/2])+ jb + qb/N
)

where the+ here stands for usual set addition, i.e.B + x := {b + x : b ∈ B}. Examine
somet 6∈ B′. We use (37) to sum over thejs in (39) to get

F = f ±

√
1 − τ2

N−1∑
q=0

if (qb/N)

|f (qb/N)|
P(t − qb/N)+O(lNM−1/2). (41)

By (38) all the terms in the sum overq giveP = O(M−1/2) unlesst ∈ [0, b], in which
case the termq = bNt/bc givesP = 1 +O(M−1/2). We get

F(t) = f (t)±

√
1 − τ2 if (qb/N)

|f (qb/N)|
+O(lNM−1/2) ∀t ∈ [0, b] \ B′. (42)

Now we use Pythagoras’ theorem (21) forη = τf (qb/N)/|f (qb/N)| to get∣∣∣∣1 −

∣∣∣∣f (qb/N)±

√
1 − |η|2

iη

|η|

∣∣∣∣ ∣∣∣∣
≤

∣∣∣∣(η ±

√
1 − |η|2

iη

|η|

)
−

(
f (qb/N)±

√
1 − |η|2

iη

|η|

)∣∣∣∣ = τ − |f (qb/N)|, (43)

which allows us to estimate, for anyt ∈ [0, b] \ B′,

|F(t)|
(42)
≥

∣∣∣∣f(
qb

N

)
±

√
1 − |η|2

iη

|η|

∣∣∣∣ −

∣∣∣∣f (t)− f

(
qb

N

)∣∣∣∣ − ClNM−1/2

(43)
≥ 1 − τ +

∣∣∣∣f(
qb

N

)∣∣∣∣ −

∣∣∣∣f (t)− f

(
qb

N

)∣∣∣∣ − ClNM−1/2

≥ 1 − τ + |f (t)| − 2ω(b/N; f )− ClNM−1/2.

Setω := 2ω(b/N; f ) + ClNM−1/2. In the other direction, (22) gives|f (qb/N)| ≤

|f (qb/N)+σ(iη/|η|)
√

1 − τ2| ≤ 1 for anyσ ∈ [−1,1]. We take the variation inf into
consideration as above and get

(1 − τ)+ |f (t)| − ω ≤ |F(t)| ≤ 1 + ω ∀t ∈ [0, b] \ B′,

|f (t)| − ω ≤ |F(t)| ≤ 1 + ω ∀t ∈ [0, b] ∩ B′.

Finally, we also have‖F − f ‖∞ ≤
√

1 − τ2 + ω.
Next we move to examineG. This time we first notice that the only meaningful term

in (40) is the one for whichj = bt/bc andq = bN(t/b − j)c. So we have (again for
t 6∈ B′)

G(t) = g(t)+

√
1 − τ2 ig(t + R(t))

|g(t + R(t))|
σbt/bc(R(t))+O(2lNM−1/2), |R(t)| ≤ b/N
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(we get here a 2l factor in the error, compared to thel in (41) because theσjs are no
longer “synchronized” so we cannot use (37) and have to use (36) and sum over all the
terms). We now use (36) to get

G(t) = g(t)± 2−l
√

1 − τ2 ig(t + R(t))

|g(t + R(t))|
+O(2lNM−1/2), ∀t ∈ [0, b′] \ B′.

A calculation similar to the one done withf shows that

µ− ν + |g(t)| − ω′
≤ |G(t)| ≤ µ+ ω′

∀t ∈ [0, b′] \ B′,

|g(t)| − ω′
≤ |G(t)| ≤ µ+ ω′

∀t ∈ [0, b′] ∩ B′,

ω′ := 2ω(b/N; g)+ C2lNM−1/2

and‖G− g‖∞ ≤
√

1 − τ2 + ω′.
With these estimates the lemma will be finished once we pickN andM. First pickN

such thatω(b/N; f ) < min{
1
4ε,

1
4

√
1 − τ2} and similarly forg. Next pickM to satisfy

all past requirements. They are all of the type “M is sufficiently large (possibly depending
onN , l andε)”. Here is the full list (in chronological order):M > N2b−2,M > 3 degf ,
ClNM−1/2 < min{

1
2ε,

1
2

√
1 − τ2} (which boundsω and ensures|F(t) − f (t)| < ε

outside [0, b]) andC4lNM−1/2 < ε, which ensures|B′
| < ε,ω′ < ε and|G(t)−g(t)| <

ε outside [0, b′]. With all these satisfied we get everything we want forF andG. ut

Again we need to generate a set version from the interval version. We trust that by now
the reader will have no problem to prove:

Lemma 8. Letf , g, ε, τ and l be as in Lemma7. LetE be a simple set with|E| = 4−l

such that|f (t)| < τ for all t ∈ E. Then one can find compatibleε-liftings F of f onE
from τ to 1 andG of g on [0,1] fromν ≥ ‖g‖∞ toµ =

√
ν2 + 4−l(1 − τ2).

In the next lemma we get rid of the errors in the exceptional sets (compare clauses (i) and
(iii) below to requirement (35) from the definition of lifting). Hence it will be convenient
to use the following definition: The oscillation of the absolute value of a functiong is

Osc(g) := max
t

|g(t)| − min
t

|g(t)|.

Lemma 9. Letf andg be as in Lemma5 but with the additional requirements

1 − c2 < |f | < 1, 1 − c2 < |g| < 1 + c2 (44)

for some absolute constantc2 > 0. Letε > 0 be some parameter. Then one can extendf

andg to F andG such that

(i) 1 −
1
2‖1 − |f | ‖∞ − ε < |F(t)| < 1 + ε for all t ,

(ii) ‖F − f ‖∞ < C
√

‖1 − |f | ‖∞,
(iii) Osc(G) < Osc(g)+ ε,
(iv) ‖G− g‖∞ < C

√
‖1 − |f | ‖∞.
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Proof. Setτ = 1 −
1
2‖1 − |f | ‖∞. Let

E = {t : |f (t)| < τ −
1
4ε}

and write|E| in base 4,

|E| =

∞∑
l=1

αl4
−l, αl ∈ {0,1,2,3}.

Divide E into simple setsEl,i , l = 1,2, . . . andi = 0, . . . , αl − 1, with |El,i | = 4−l .
Order these sets by increasingl and call the resulting sequence{Ej }

∞

j=1. We now cre-

ate two sequences of polynomialsfi and gi with |f̂i(n)| = |̂gi(n)| for all n and all
i inductively by using Lemma 8 (at theith step) withfi−1, gi−1, the setEi , the pa-
rametersεLemma 8 = δ2−i (δ is some parameter< 1

7ε to be fixed later) andτ and
with νLemma 8 = µi−1 + δ2−i (the induction is initialized withf0 = f , g0 = g and
µ0 = ‖g‖∞). Call the output of the lemmafi , gi andµi . It is easy to verify that

(i) τ −
1
7ε < |fi(t)| < 1 +

1
7ε except on a setB of measureδ + 41−i/4 (the δ error

is the combined error from the previous stages while 41−i/4 is the set ofEjs not yet
handled).

(ii) Uniformly we have

‖fi − f ‖∞ < 2
√

1 − τ2 + δ. (45)

This requires both (i) and (iv) from the definition of lifting.
(iii) Outside a set of measure< δ we have

|gi(t)| > |gi−1(t)| + µi − (µi−1 + δ2−i)− δ2−i

> |gi−2(t)| + µi − µi−2 − 2δ(21−i
+ 2−i) > · · ·

> |g(t)| + µi − ‖g‖∞ − 2δ.

We prefer to write this as

µi − Osc(g)−
2
7ε < |gi(t)| < µi +

1
7ε. (46)

(iv) Uniformly

‖gi − g‖∞ < 2
√

1 − τ2 + δ. (47)

Take somei sufficiently large (to be fixed later) and examinefi andgi .
We now correct over the exceptional sets using Lemma 6 twice. First use the lemma

with fi , gi , the setB := {t : |fi(t)| ≤ τ −
1
7ε} andεLemma 6=

1
7ε. To enable this, fix

c2 := min
{

1
4c1,1 −

√
1 − c2

1/64
}
. (48)

With this value, the fact thatτ > 1 − c2 implies that 2
√

1 − τ2 < 1
4c1 and hence for

δ < 1
4c1, (45) and (44) give 1− c1 < |fi | < 1+ c1 and Lemma 6 may indeed be applied.
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Call the resulting functionsF ∗ andG∗. Since|B| < δ + 41−i/4 it is clear that forδ
sufficiently small andi sufficiently large we get

‖gi −G∗
‖∞ < min{

1
7ε,

1
4c1}. (49)

This correctsF ∗ in the sense that now

τ −
2
7ε < |F ∗(t)| < 1 +

2
7ε for all t. (50)

Now use Lemma 6 withfLemma 6 = G∗, gLemma 6 = F ∗ and the setB∗ := {t :
|G∗(t)| ≤ µi − Osc(g) −

3
7ε} and againεLemma 6=

1
7ε. The resulting functions are our

G andF . As above, from the definition (48) ofc2, (44), (47) and (49) we get 1− c1 <

|G∗
| < 1 + c1 so if δ < 1

4c1 we may apply the lemma. Further,

|B∗
|

(49)
≤ |{t : |gi | ≤ µi − Osc(g)−

2
7ε}|

(46)
< δ

so that‖F − F ∗
‖∞ ≤ C

√
δ and if δ is sufficiently small,‖F − F ∗

‖∞ ≤
1
7ε so with (50)

we have what we need forF . ForG we get

µi − Osc(g)−
4
7ε < |G(t)| < µi +

3
7ε

so Osc(G) < Osc(g)+ ε. Fixing δ sufficiently small andi sufficiently large to satisfy all
the past requirements completes the proof of the lemma. ut

Lemma 10. Letf , g andε be as in Lemma5 but with the additional requirement

1 − c3 < |f | < 1, 1 − c3 < |g| < 1 + c3.

Then one can extendf andg to F andG such that

(i) 1 − ε < |F(t)| < 1 + ε for all t ,
(ii) ‖F − f ‖∞ < C

√
‖1 − |f | ‖∞,

(iii) Osc(G) < Osc(g)+ ε,
(iv) ‖G− g‖∞ < C

√
‖1 − |f | ‖∞.

Proof. This follows easily by applying Lemma 9 repeatedly (to preserve the requirement
|f | < 1 you need to multiplyf andg by normalization factors). Let us do it in detail
nonetheless. Writeρ = ‖1 − |f | ‖∞ and letδ be some parameter sufficiently small to
be fixed later. We definef0 = f andg0 = g and then inductivelyfi andgi with the
following properties:

(a) |f̂i(n)| = |̂gi(n)| for all n, (1+ δ2−i)fi extendsfi−1 and(1+ δ2−i)gi extendsgi−1.
(b) 1 − (ρ + 2iδ)2−i < |fi | < 1.
(c) ‖fi − fi−1‖∞ ≤ C

√
ρ2−i for i > 0.

(d) Osc(gi) < Osc(g)+ δ(1 − 2−i).
(e) ‖gi − gi−1‖∞ ≤ C

√
ρ2−i for i > 0.
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Let us verify the induction steps. At theith step (i ≥ 1) we wish to apply Lemma 9 to the
functionsfi−1 andgi−1. For this to hold we must know that (44) holds for our functions
fi−1 andgi−1. First we note that ifc3 < c2 and δ < 1

3c2 then the second induction
assumption ensures that 1− c2 < |fi−1| < 1. As forgi−1, we first estimate‖gi−1‖∞ by
noting that

‖gi−1‖∞ ≤ ‖gi−1‖2 + Osc(gi−1)
(d)
≤ ‖gi−1‖2 + Osc(g)+ δ

(a)
= ‖fi−1‖2 + Osc(g)+ δ

(b)
≤ 1 + 2c3 + δ.

A similar calculation shows that

‖gi−1‖∞ ≥ 1 − (ρ + 2iδ)2−i
− 2c3 − δ ≥ 1 − 3c3 − 2δ.

With these estimates we write

‖ |gi−1| − 1‖∞ ≤ Osc(gi−1)+ | ‖gi−1‖∞ − 1| ≤ 5c3 + 3δ.

Hence if we definec3 := 1
10c2 and ensureδ < 1

6c2 then the requirements for Lemma 9
are ensured.

We now apply Lemma 9 withεLemma 9 = δ2−i . Call the resulting functionsf ∗ and
g∗ and definefi = f ∗/(1 + δ2−i) andgi = g∗/(1 + δ2−i). It is quite easy to verify that
all the inductive assumptions hold—let us do two examples in detail. First, let us verify
the left hand inequality of (b). We have

|fi | ≥
1 −

1
2‖1 − |fi−1| ‖ − δ2−i

1 + δ2−i

(b)
>

1 − (ρ + (2i − 1)δ)2−i

1 + δ2−i
> 1 − (ρ + 2iδ)2−i

where the inequality labeled (b) uses this clause fori − 1 inductively. Secondly we
discuss (d). We have Osc(gi) = Osc(g∗)/(1 + δ2−i) < Osc(g∗) while clause (iii) of
Lemma 9 gives Osc(g∗) < Osc(gi−1)+ δ2−i . This completes the induction.

Now take i sufficiently large and defineλi =
∏i
j=1(1 + δ2−j ), F := fiλi and

G := giλi . We note that

|F | ≤ λi ≤ 1 + Cδ, |F | ≥ 1 − (ρ + 2i)2−i
≥ 1 − C2−i,

hence fori sufficiently large andδ sufficiently small the first requirement onF is satisfied.
The other requirements onF andG may be verified with similar ease. ut

Proof of the Theorem.Let ϕ : T → T be a function which makes one rotation around 0
very quickly, namely for someε > 0 to be fixed later define

ϕ(t) =

{
e2πit/ε, t ≤ ε,

1, t > ε.



One cannot hear the winding number 657

Letf1 be a trigonometric polynomial satisfying‖f1−ϕ‖∞ < ε, degf1 < Cε−C . Clearly
windf1 = 1 and‖f1 − 1‖2 < C

√
ε. Examine the random function

h =

∑
n 6=0

±f̂1(n)e
int .

As before we have‖h‖∞ ≤ C
√
ε log(1/ε) with high probability. Pick one combination

of signsξn such that this holds and defineg1 = f̂1(0)+
∑
ξnf̂1(n)e

int . Clearly|f̂1(n)| =

|ĝ1(n)| and if ε is sufficiently small, windg1 = 0.
We now apply Lemma 10 inductively as follows. For evenjs we apply it with

fLemma 10= fj−1νj , gLemma 10= gj−1νj , νj =
1

max{‖fj−1‖∞,1}
,

and then definefj = FLemma 10andgj = GLemma 10. For oddjs we reverse the roles
of f andg, i.e. take the normalization factor to beνj = 1/max{‖gj−1‖∞,1} and then
fLemma 10= νjgj−1 andgLemma 10= νjfj−1 etc. In both cases we takeεLemma 10= 2−j ε.
An argument similar to that of Lemma 10 now shows that throughout this process

Osc(fj ) < 5ε2−j , Osc(gj ) < 5ε2−j . (51)

Let us show (51) for the case ofj even (the other case is identical). Herefj follows
immediately since by clause (i) of Lemma 10, Osc(fj ) < 2ε2−j . As for g, the same
clause (i) in stepj − 1 shows that Osc(gj−1) < 4ε2−j so Osc(gj−1νj ) < 4ε2−j . We
apply clause (iii) of Lemma 10 in stepj and get Osc(gj ) < 5ε2−j .

A similar argument shows that both are close to 1 in the sense that

‖ |fj | − 1‖∞ < 6ε2−j , ‖ |gj | − 1‖∞ < 6ε2−j . (52)

Again we demonstrate this under the assumption thatj is even. Forfj this is immediate
from clause (i) of Lemma 10. Forgj , since‖gj‖2 = ‖fj‖2 we see that| ‖gj‖2−1| < ε2−j

and since|gj (t)− ‖gj‖2 | ≤ Osc(gj ) we get (52).
This implies that ifε is sufficiently small the induction actually works in the sense that

1−c3 < νjfj−1 < 1+c3 and 1−c3 < νjgj−1 < 1+c3 are preserved throughout. Further

it implies ‖fj+1 − fj‖∞ < C
√
ε2−j and in particular we find that (ifε is sufficiently

small) windfj = windfj+1, f = lim fj exists and is continuous,|f (t)| = 1 for all t and
windf = windf1 = 1. Similarly we deduce thatg = lim gj exists and is continuous,
|g(t)| = 1 for all t and windg = 0. The property that|f̂j (n)| = |̂gj (n)| is preserved in
the limit so|f̂ (j)| = |̂g(j)| for all j and the theorem is proved. ut
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