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Maximizers for the Strichartz inequality
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Abstract. We compute explicitly the best constants and, by solving some functional equations, we
find all maximizers for homogeneous Strichartz estimates for the Schrödinger equation and for the
wave equation in the cases when the Lebesgue exponent is an even integer.
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1. Introduction

Let n be a positive integer and letp = p(n) = 2 + 4/n. The Strichartz inequality for
the homogeneous Schrödinger equation inn spatial dimensions states that there exists a
constantS > 0 such that

‖u‖Lp(n)(R1+n) ≤ S‖f ‖L2(Rn), (1)

wheneveru(t, x) is the solution of the equation

i∂tu = 1u (2)

with initial datau(0, x) = f (x); see [8] for the original proof by Strichartz. We denote
by S(n) the best constant for the estimate (1),

S(n) = sup
f∈L2(Rn)

‖e−it1f ‖Lp(n)(R1+n)

‖f ‖L2(Rn)
.

If n ≥ 2, we can also consider the Strichartz inequality for the homogeneous wave
equation inn spatial dimensions which states that there exists a constantW > 0 such that

‖u‖Lp(n−1)(R1+n) ≤ W‖(f, g)‖Ḣ1/2(Rn)×Ḣ−1/2(Rn) (3)

wheneveru(t, x) is the solution of the equation

∂2
t u = 1u (4)
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with initial data
u(0, x) = f (x), ∂tu(0, x) = g(x). (5)

This was also proved in [8]. We denote byW(n) the best constant for the estimate (3),

W(n) = sup
f∈Ḣ1/2(Rn)
g∈Ḣ−1/2(Rn)

∥∥cos(t
√

−1)f +
sin(t

√
−1)

√
−1

g
∥∥
Lp(n−1)(R1+n)

‖(f, g)‖Ḣ1/2(Rn)×Ḣ−1/2(Rn)
.

Kunze [6] has recently proved the existence of a maximizing functionf∗ ∈ L2(R)
for the estimate (1) in the special casen = 1 andp = 6, which means that for the
corresponding solutionu∗,

i∂tu∗ = ∂2
xu∗, u∗(0, x) = f∗(x),

we have the equality‖u∗‖L6(R×R) = S(1)‖f∗‖L2(R). The proof in [6] is based on an
elaborate application of the concentration compactness principle and does not provide an
explicit expression for a maximizer.

Here, we present a more direct and elementary approach which allows us to explicitly
determine the families of maximizers and compute the best constants for the estimates (1)
and (3) when the exponentp = p(n) is an even integer. We show that the classes of max-
imizers are unique modulo the natural geometric invariance properties of the equations.
Moreover, maximizers turn out to be smooth solutions to some functional equations which
can be solved explicitly.

For the Schr̈odinger equation we have:

Theorem 1.1. In the casen = 1 andp = 6, we haveS(1) = 12−1/12; in the casen = 2
andp = 4, we haveS(2) = 2−1/2. In both cases an example of a maximizerf∗ ∈ L2(Rn)
for which

‖e−it1f∗‖Lp(R×Rn) = S(n)‖f∗‖L2(Rn) (6)

is provided by the Gaussian functionf∗(x) = exp(−|x|2).

The geometric invariance properties of the equation (2) suggest a way to completely char-
acterize the class of all maximizers.

Definition 1.2. LetG be the Lie group of transformations generated by:

• space-time translations:u(t, x) u(t + t0, x + x0) with t0 ∈ R, x0 ∈ Rn;
• parabolic dilations:u(t, x) u(λ2t, λx) with λ > 0;
• changes of scale:u(t, x) µu(t, x) withµ > 0;
• space rotations:u(t, x) u(t, Rx) withR ∈ SO(n);
• phase shifts:u(t, x) eiθu(t, x) with θ ∈ R;
• Galilean transformations:

u(t, x) exp

(
i

4
(|v|2t + 2v · x)

)
u(t, x + tv)

with v ∈ Rn.
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If u solves (2) andg ∈ G thenv = g · u is still a solution to (2). Moreover, the ratio
‖u‖Lp(n)/‖u(0)‖L2 is left unchanged by the action ofG.

Remark 1.3. We should mention that there exists another important (discrete) symmetry
for the Schr̈odinger equation given by thepseudo-conformal inversion:

u(t, x) t−n/2ei|x|
2/(4t)u

(
−

1

t
,
x

t

)
.

Combining the inversion with translations and dilations, we find that the Schrödinger
equation is invariant under the representation ofSL(2,R) given by

u(t, x) (a + bt)−n/2eib|x|
2/(4(a+bt))u

(
c + dt

a + bt
,

x

a + bt

)
, ad − bc = 1.

These transformations have many important applications. However, we do not really need
them in the context of our analysis and for simplicity we are not including them in the list
of generators of the groupG.

Theorem 1.4. Let (n, p) = (1,6) or (n, p) = (2,4). Let f∗(x) = exp(−|x|2) and
u∗(t, x) = e−it1f∗(x) be the corresponding solution to the Schrödinger equation(2).
Then the set of maximizers for which the equality(6) holds coincides with the set of initial
data of solutions to(2) in the orbit ofu∗ under the action of the groupG. In particular,
all maximizers are given byL2 functions of the form

f∗(x) = exp(A|x|2 + b · x + C)

withA,C ∈ C, b ∈ Cn andRe(A) < 0.

For the wave equation we have:

Theorem 1.5. In the casen = 2 andp = 6, we haveW(2) = (25/(64π))1/6; in the
casen = 3 andp = 4, we haveW(3) = (3/(16π))1/4. In both cases an example of a
maximizer pair(f∗, g∗) ∈ Ḣ 1/2(Rn)× Ḣ−1/2(Rn) for which we have∥∥∥∥cos(t

√
−1)f∗ +

sin(t
√

−1)
√

−1
g∗

∥∥∥∥
Lp(R1+n)

= W(n)‖(f∗, g∗)‖Ḣ1/2(Rn)×Ḣ−1/2(Rn) (7)

is provided by the functionsf∗(x) = (1 + |x|2)−(n−1)/2, g∗(x) = 0.

The geometric invariance properties of the equation (4) suggest a way to completely char-
acterize the class of all maximizers.

Definition 1.6. LetL be the Lie group of transformations acting onsolutionsof the wave
equation and generated by:

• space-time translations:u(t, x) u(t + t0, x + x0) with t0 ∈ R, x0 ∈ Rn;
• isotropic dilations:u(t, x) u(λt, λx) with λ > 0;
• changes of scale:u(t, x) µu(t, x) withµ > 0;
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• space rotations:u(t, x) u(t, Rx) withR ∈ SO(n);
• phase shifts:u(t, x) eiθ+u+(t, x)+e

iθ−u−(t, x)with θ+, θ− ∈ R (for the meaning
of u+ andu− see the next section);

• Lorentzian boosts:

u(t, x1, x
′) u(cosh(a)t + sinh(a)x1, sinh(a)t + cosh(a)x1, x

′)

with a ∈ R.

If u solves (4) andg ∈ L thenv = g · u is still a solution to (4). Moreover, the ratio
‖u‖Lp(n−1)/‖(u(0), ∂tu(0))‖Ḣ1/2×Ḣ−1/2 is left unchanged by the action ofL.

Theorem 1.7. Let (n, p) = (2,6) or (n, p) = (3,4). We consider the initial data
f∗(x) = (1 + |x|2)−(n−1)/2, g∗(x) = 0, and letu∗ be the corresponding solution to
the wave equation(4). Then the set of maximizers for which the equality(7) holds coin-
cides with the set of initial data of solutions to(4) in the orbit ofu∗ under the action of
the groupL.

In order to understand how to construct maximizers, we first present sharp proofs of the
Strichartz estimates, based on the space-time Fourier transform in the spirit of Klainerman
and Machedon’s work on bilinear estimates [5], [2]. We then optimize each step of the
proof by imposing conditions under which all inequalities become equalities. What we
find are functional equations for the Fourier transform of maximizers; their solutions are
given by particular exponential functions with linear or quadratic exponents.

The key tool is the following well-known simple fact about Cauchy–Schwarz’s in-
equality for inner products.

Lemma 1.8. Let 〈·, ·〉 be a (complex) inner product on a vector spaceV and letu, v ∈ V

be two non-zero vectors. Cauchy–Schwarz’s inequality says that

|〈u, v〉|2 ≤ 〈u, u〉〈v, v〉;

moreover, equality holds if and only ifu = αv for some scalarα ∈ C.

Remark 1.9. The uniqueness of maximizers modulo the transformation groups de-
scribed in Definitions 1.2 and 1.6 will be checkeda posteriori, after we obtain explicit
formulae for maximizers, and it is not used in the proof. While our proof relies heavily
on the fact thatp is an even integer, the geometric characterization can be stated also in
higher dimensions whenp is not an even integer. It would be interesting to prove our
results without making use of the Fourier transform. For the moment, we formulate the
following natural conjectures.

Conjecture 1.10. For any integern ≥ 1, let p = 2 + 4/n, let f∗(x) = exp(−|x|2) and
u∗(t, x) = e−it1f∗(x) be the corresponding solution to the Schrödinger equation(2).
Then the set of maximizers for which the equality(6) holds coincides with the set of initial
data of solutions to(2) in the orbit ofu∗ under the action of the groupG.
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Conjecture 1.11. For any integern ≥ 2, letp = 2+4/(n−1) and letf∗ be the function
onRn whose Fourier transform iŝf∗(ξ) = |ξ |−1 exp(−|ξ |). Letu∗ be the solution to the
wave equation(4) corresponding to the initial datau∗(0) = f∗, ∂tu∗(0) = 0. Then the
set of maximizers for which the equality(7) holds coincides with the set of initial data of
solutions to(4) in the orbit ofu∗ under the action of the groupL.

2. Notation and preliminaries

For 1≤ p < ∞, Lp(Rn) is the usual Lebesgue space with norm

‖f ‖Lp(Rn) =

(∫
Rn

|f (x)|p dx

)1/p

.

The homogeneous Sobolev spacesḢ 1/2(Rn) andḢ−1/2(Rn) are defined by the norms

‖f ‖Ḣ1/2(Rn) = ‖D1/2f ‖L2(Rn), ‖f ‖Ḣ−1/2(Rn) = ‖D−1/2f ‖L2(Rn),

whereD =
√

−1. In the context of the wave equation we set

‖(f, g)‖Ḣ1/2(Rn)×Ḣ−1/2(Rn) = (‖f ‖
2
Ḣ1/2(Rn) + ‖g‖2

Ḣ−1/2(Rn))
1/2.

If f (x) is an integrable function defined onRn, we define its (spatial) Fourier trans-
form by

f̂ (ξ) =

∫
Rn
f (x)e−ix·ξ dx.

If F(t, x) is an integrable function defined onR × Rn, we define its space-time Fourier
transform by

F̃ (τ, ξ) =

∫
R×Rn

F(t, x)e−i(tτ+x·ξ) dt dx.

These definitions extend in the usual way to tempered distributions. The Fourier transform
acts like an isometry onL2 and, with our definition for the Fourier transform, Plancherel’s
theorem states that

‖f̂ ‖L2(Rn) = (2π)n/2‖f ‖L2(Rn), ‖F̃‖L2(R1+n) = (2π)(1+n)/2
‖f ‖L2(R1+n).

We recall also that the Fourier transform of a pointwise product (when it is defined) is
given by the convolution product of the Fourier transform of each factor,

f̂g(ξ) =
1

(2π)n
f̂ ∗ ĝ(ξ) =

1

(2π)n

∫
Rn×Rn

f̂ (η)ĝ(ζ )δ(ξ − η − ζ ) dη dζ,

F̃G(τ, ξ) =
1

(2π)n+1
F̃ ∗ G̃(τ, ξ)

=
1

(2π)n+1

∫
R×Rn×R×Rn

F̃ (λ, η)G̃(µ, ζ )δ

(
τ − λ− µ

ξ − η − ζ

)
dλ dη dµ dζ.
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Hereδ(·) denotes Dirac’s delta measure concentrated at 0,
∫

δ(x)f (x) dx = f (0). We
also denote the tensor product of two delta functions by

δ

(
a

b

)
= δ(a)δ(b).

If u(t, x) is the solution of the Schrödinger equation (2) then its space-time Fourier
transform is

ũ(τ, ξ) = 2πδ(τ − |ξ |2)f̂ (ξ),

wheref is the initial data at timet = 0. This shows that̃u is a measure supported
on the paraboloidτ = |ξ |2. We notice, in connection with the invariance of equation (2)
under Galilean transformations, that the measureδ(τ−|ξ |2) is invariant under the volume
preserving affine change of variables

(τ, ξ) (τ + 2v · ξ + |v|2, ξ + v), (8)

for anyv ∈ Rn.
If u(t, x) is the solution of the wave equation (4) with initial data (5), then we can

split it asu = u+ + u−, where

u+(t) = eitDD−1/2f+, f+ =
1

2
(D1/2f − iD−1/2g),

u−(t) = e−itDD−1/2f−, f− =
1

2
(D1/2f + iD−1/2g).

We callu+ a (+)-wavewith dataf+ andu− a (−)-wavewith dataf−. Observe that, by
the parallelogram law,

‖(f, g)‖2
Ḣ1/2(Rn)×Ḣ−1/2(Rn) = 2(‖f+‖

2
L2(Rn) + ‖f−‖

2
L2(Rn)).

The space-time Fourier transforms ofu+ andu− are

ũ+(τ, ξ) = 2π |ξ |−1/2δ(τ − |ξ |)f̂+(ξ), ũ−(τ, ξ) = 2π |ξ |−1/2δ(τ + |ξ |)f̂−(ξ).

Hence,̃u+ and ũ− are measures supported on the null conesτ = |ξ | and τ = −|ξ |,
respectively. We also notice that the measures|ξ |−1δ(τ ∓ |ξ |) are invariant under proper
Lorentz transformations. Indeed, we can write

δ(τ ∓ |ξ |)

|ξ |
= 2δ(τ2

− |ξ |2)χ(±τ > 0).

The invariance properties of these delta measures on paraboloids and on null cones
later will help us in the computation of some convolution integrals. Eventually we will
need the following simple property of convolutions.
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Lemma 2.1. Let A be ann × n invertible matrix andb a vector inRn. Supposef is
a function (or a distribution) onRn which is invariant under the linear affine change of
variablex  Ax + b, in the sense thatf (x) = f (Ax + b) for all x ∈ Rn. Then, if the
convolutionf ∗ f is well defined, we have

f ∗ f (x) =
1

detA
f ∗ f (Ax + 2b),

and, if the convolutionf ∗ f ∗ f is well defined, we have

f ∗ f ∗ f (x) =
1

(detA)2
f ∗ f ∗ f (Ax + 3b).

For a complex numberz ∈ C, we denote its real and imaginary parts byRe(z) andIm(z)
and its complex conjugate byz. Whenever they are mentioned, log(z) and

√
z are the

branches of the complex logarithm and of the complex square root defined onC \ R−

which extend analytically the standard real logarithm and the standard square root of
positive real numbers.

For a vectorx = (x1, x2, . . . , xn) ∈ Rn, we writex′
= (x2, . . . , xn) ∈ Rn−1, so that

x = (x1, x
′).

If E is a subset ofRn we denote its closure with respect to the usual topology byE.

3. Schr̈odinger equation in dimensionn = 2

Consider the casen = 2,p = 4 for estimate (1). By Plancherel’s theorem,u ∈ L4 if and
only if ũ2 ∈ L2 and

‖u‖2
L4(R3)

= ‖u2
‖L2(R3) = (2π)−3/2

‖ũ2‖L2(R3). (9)

The Fourier transform ofu2 reduces to

ũ2(τ, ξ) =
1

(2π)3
ũ ∗ ũ(τ, ξ) =

1

2π

∫
R2×R2

f̂ (η)f̂ (ζ )δ

(
τ − |η|2 − |ζ |2

ξ − η − ζ

)
dη dζ. (10)

Whenξ = η + ζ andτ = |η|2 + |ζ |2, by the parallelogram law we have

2τ = |η + ζ |2 + |η − ζ |2 ≥ |ξ |2.

It follows thatũ2 is supported in the closure of the region

P2 = {(τ, ξ) ∈ R × R2 : 2τ > |ξ |2}.

For each choice of(τ, ξ) ∈ P2, we denote by〈·, ·〉(τ,ξ) theL2 inner product associated
with the measure

µ(τ,ξ) = δ

(
τ − |η|2 − |ζ |2

ξ − η − ζ

)
dη dζ, (11)
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ξ

τ

O

2τ ≥ |ξ |2

(|η|2, η)

(|ζ |2, ζ )

(|η|2 + |ζ |2, η + ζ )

Fig. 1.The regionP2.

and by‖ · ‖(τ,ξ) the corresponding norm; more precisely, we set

〈F,G〉(τ,ξ) =

∫
R2×R2

F(η, ζ )G(η, ζ )δ

(
τ − |η|2 − |ζ |2

ξ − η − ζ

)
dη dζ,

‖F‖(τ,ξ) =

(∫
R2×R2

|F(η, ζ )|2δ

(
τ − |η|2 − |ζ |2

ξ − η − ζ

)
dη dζ

)1/2

.

Remark 3.1. The measureµ(τ,ξ) defined in (11) is thepull-backof the Dirac delta on
R × R2 by the function8(τ,ξ) : R2

× R2
→ R × R2 given by

8(τ,ξ)(η, ζ ) = (τ − |η|2 − |ζ |2, ξ − η − ζ ).

This pull-back is well defined as long as the differential of8(τ,ξ) is surjective at the
points where8(τ,ξ) vanishes (we refer to [3, Theorem 6.1.2 and Example 6.1.3] for more
details about pull-backs of distributions). A quick computation shows that the differen-
tial of 8(τ,ξ) is surjective at a point(η, ζ ) if and only if η 6= ζ . On the other hand, if
8(τ,ξ)(η, η) = 0 we must have

2τ = 2(|η|2 + |η|2) = |η + η|2 = |ξ |2.

This tells us thatµ(τ,ξ) is not well defined on the boundary ofP2, when 2τ = |ξ |2.
However, we can safely ignore the problems at this boundary and observe instead that
for any locally integrable functionF(η, ζ ) defined onR2

× R2 the integralG(τ, ξ) =∫
F dµ(τ,ξ) defines a locally integrable function onR×R2. Indeed, ifK is a compact set

in R × R2, we have∫∫
K

|G(τ, ξ)| dτ dξ ≤

∫∫
(τ,ξ)∈K

∫∫
|F(η, ζ )|δ

(
τ − |η|2 − |ζ |2

ξ − η − ζ

)
dη dζ dτ dξ

=

∫∫
(|η|2+|ζ |2,η+ζ )∈K

|F(η, ζ )| dη dζ,

and{(η, ζ ) : (|η|2 + |ζ |2, η + ζ ) ∈ K} is a compact set inR2
× R2.
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We can now write (10) as

ũ2(τ, ξ) =
1

2π
〈f̂ ⊗ f̂ ,1 ⊗ 1〉(τ,ξ),

where the tensor product is defined by(f ⊗g)(η, ζ ) = f (η)g(ζ ). By Cauchy–Schwarz’s
inequality we obtain

|ũ2(τ, ξ)| ≤
1

2π
‖f̂ ⊗ f̂ ‖(τ,ξ)‖1 ⊗ 1‖(τ,ξ). (12)

Hence,

‖ũ2‖L2(R3) ≤
1

2π
( sup
(τ,ξ)∈P2

‖1 ⊗ 1‖(τ,ξ))

(∫
P2

‖f̂ ⊗ f̂ ‖
2
(τ,ξ) dτ dξ

)1/2

. (13)

The next lemma shows that‖1 ⊗ 1‖(τ,ξ) is not only uniformly bounded with respect to

(τ, ξ), but actually constant on the support ofũ2.

Lemma 3.2. For each(τ, ξ) ∈ P2 we have‖1 ⊗ 1‖(τ,ξ) =
√
π/2.

Proof. The quantity

I (τ, ξ) = ‖1 ⊗ 1‖
2
(τ,ξ) =

∫
R2

δ(τ − |ξ − η|2 − |η|2) dη

is just the convolution of the measureδ(τ − |ξ |2) with itself. The invariance of this mea-
sure with respect to the transformation (8) together with Lemma 2.1 implies that

I (τ, ξ) = I (τ + 2v · ξ + |v|2, ξ + v)

for any v ∈ R2. If we takev = −ξ/2 we obtainI (τ, ξ) = I (τ ∗,0), whereτ ∗
=

τ −|ξ |2/2. Moreover, it is evident from the definition that, by homogeneity,I is invariant
under parabolic dilations,I (τ, ξ) = I (λ2τ, λξ). Hence, whenτ ∗ > 0 we have

I (τ, ξ) = I (τ ∗,0) = I (1,0) =

∫
R2

δ(1 − 2|η|2) dη

= 2π
∫

∞

0
δ(1 − 2r2)r dr = π

∫
∞

0
δ(1 − 2s) ds =

π

2
. ut

We also have∫
P2

‖f̂ ⊗ f̂ ‖
2
(τ,ξ) dτ dξ

=

∫
R2×R2

|f̂ (η)f̂ (ζ )|2
∫
P2

δ

(
τ − |η|2 − |ζ |2

ξ − η − ζ

)
dτ dξ dη dζ

= ‖f̂ ⊗ f̂ ‖
2
L2(R2×R2)

= ‖f̂ ‖
4
L2(R2)

= (2π)4‖f ‖
4
L2(R2)

. (14)
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It follows from (9), (13), (14) and Lemma 3.2 that

‖u‖L4(R3) ≤
1

√
2
‖f ‖L2(R2). (15)

This proves that forn = 2 the best constantS(2) in (1) is no larger that 1/
√

2.

Remark 3.3. We observe that in the above computations the only place where we have
used an inequality instead of an equality is in (13) as a consequence of the Cauchy–
Schwarz inequality (12). If we can find a functionf for which we have equality in (12)
for all (τ, ξ) ∈ P2 then there will be equality also in (15). This will show thatf is a
maximizer for the estimate and thatS(2) = 1/

√
2.

We have equality in (13) if there is equality in (12) for almost all(τ, ξ) ∈ P2. By
Lemma 1.8, this happens if there exists a scalar functionF : P2 → C such that

(f̂ ⊗ f̂ )(η, ζ ) = F(τ, ξ)(1 ⊗ 1)(η, ζ )

for almost all(η, ζ ) (with respect to the measure (11)) in the support of the measure (11)
and for almost all(τ, ξ) in P2 (with respect to the Lebesgue measure onR × R2). This
means that we are looking for functionsf andF such that

f̂ (η)f̂ (ζ ) = F(|η|2 + |ζ |2, η + ζ ) (16)

for almost all(η, ζ ) ∈ R2
× R2. An example of such functions is given by the pair

f̂ (ξ) = e−|ξ |2, F(τ, ξ) = e−τ .
If f is a maximizer,f̂ must solve the equation (16) and it follows from Proposi-

tion 7.15 that
f̂ (ξ) = exp(Â|ξ |2 + b̂ · ξ + Ĉ), ξ ∈ R2, (17)

for some constantŝA ∈ C, b̂ = (̂b1, b̂2) ∈ C2, Ĉ ∈ C, with Re(Â) < 0 in order to have
f ∈ L2(R2). The inverse Fourier transform of (17) is again a function of the same class

f (x) = exp(A|x|2 + b · x + C), x ∈ R2, (18)

where the relations between the parametersA ∈ C, b ∈ C2, C ∈ C and the parameters
Â, b̂, Ĉ are given by

A =
1

4Â
, b = −

ib̂

4Â
, C = Ĉ −

b̂2
1 + b̂2

2

4Â
− log(−4πÂ).

The class of initial data of the form (18) is invariant under the action of the groupG
described in Definition 1.2. The coefficients change according to the following rules:

• space-time translations:(Â, b̂, Ĉ) (Â+ it0, b̂ + ix0, Ĉ);
• parabolic dilations:(Â, b̂, Ĉ) (Â/λ2, b̂/λ, Ĉ − n logλ);
• changes of scale:(Â, b̂, Ĉ) (Â, b̂, Ĉ + logµ);
• space rotations:(Â, b̂, Ĉ) (Â, Rb̂, Ĉ);
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• phase shifts:(Â, b̂, Ĉ) (Â, b̂, Ĉ + iθ);
• Galilean transformations:

(Â, b̂, Ĉ) 

(
Â, b̂ + Av, Ĉ −

Â

4
|v|2 −

b̂

2
· v

)
.

Hence, after a translation and a phase shift we can make all coefficients real; by a
Galilean transformation we can makêb = 0; then, by a parabolic dilation we can have
Â = −1/4; finally, a change of scale giveŝC = log(−π). This would correspond to the
caseA = −1, b = 0,C = 0, which is the functionf∗(x) = e−|x|2. Thus, we have proved
that any maximizer is connected tof∗ by the action ofG.

4. Schr̈odinger equation in dimensionn = 1

Consider the casen = 1, p = 6 for estimate (1). This case was considered in [6]. By
Plancherel’s theorem,u ∈ L6 if and only if ũ3 ∈ L2 and

‖u‖3
L6(R2)

= ‖u3
‖L2(R2) = (2π)−1

‖ũ3‖L2(R2). (19)

The Fourier transform ofu3 reduces to

ũ3(τ, ξ) =
1

(2π)4
ũ ∗ ũ ∗ ũ(τ, ξ)

=
1

2π

∫
R×R×R

f̂ (η1)f̂ (η2)f̂ (η3)δ

(
τ − η2

1 − η2
2 − η2

3
ξ − η1 − η2 − η3

)
dη1 dη2 dη3

=
1

2π

∫
R3
f̂ (η1)f̂ (η2)f̂ (η3)δ

(
τ − |η|2

ξ − (1,1,1) · η

)
dη, (20)

where nowη = (η1, η2, η3). Whenξ = (1,1,1) · η andτ = |η|2, we have 3τ ≥ ξ2. It
follows thatũ3 is supported in the closure of the region

P1 = {(τ, ξ) ∈ R × R : 3τ > ξ2
}.

For each choice of(τ, ξ) ∈ P1, we denote by〈·, ·〉(τ,ξ) theL2 inner product associated
with the measure

δ

(
τ − |η|2

ξ − (1,1,1) · η

)
dη, (21)

and by‖ · ‖(τ,ξ) the corresponding norm. We can then write (20) as

ũ3(τ, ξ) =
1

2π
〈f̂ ⊗ f̂ ⊗ f̂ ,1 ⊗ 1 ⊗ 1〉(τ,ξ),

where the tensor product is defined by(f ⊗ g ⊗ h)(η) = f (η1)g(η2)h(η3). By Cauchy–
Schwarz’s inequality we obtain

|ũ3(τ, ξ)| ≤
1

2π
‖f̂ ⊗ f̂ ⊗ f̂ ‖(τ,ξ)‖1 ⊗ 1 ⊗ 1‖(τ,ξ). (22)
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Hence,

‖ũ3‖L2(R2) ≤
1

2π
( sup
(τ,ξ)∈P1

‖1 ⊗ 1 ⊗ 1‖(τ,ξ))

(∫
P1

‖f̂ ⊗ f̂ ⊗ f̂ ‖
2
(τ,ξ) dτ dξ

)1/2

. (23)

The next lemma shows that‖1⊗ 1⊗1‖(τ,ξ) is not only bounded, but actually constant on

the support of̃u3.

Lemma 4.1. For each(τ, ξ) ∈ P1 we have‖1 ⊗ 1 ⊗ 1‖(τ,ξ) =

√
π/

√
3.

Proof. The quantity

I (τ, ξ) = ‖1 ⊗ 1 ⊗ 1‖
2
(τ,ξ) =

∫
R3

δ

(
τ − |η|2

ξ − (1,1,1) · η

)
dη

is just a twofold convolution of the measureδ(τ − ξ2) with itself. From Lemma 2.1
and the invariance of this measure with respect to the transformation (8), it follows that
I (τ, ξ) = I (τ ∗,0) whereτ ∗

= τ − ξ2/3. Moreover, by homogeneityI is invariant under
parabolic dilations,I (λ2τ, λξ) = I (τ, ξ). Hence, whenτ ∗ > 0 we have

I (τ, ξ) = I (τ ∗,0) = I (1,0) =

∫
R3

δ

(
1 − |η|2

−(1,1,1) · η

)
dη =

∫
R3

δ

(
1 − |η|2

|(1,1,1)|η1

)
dη

=
1

√
3

∫
R2

δ(1 − |ζ |2) dζ =
2π
√

3

∫
∞

0
δ(1 − r2)r dr =

π
√

3
. ut

We also have∫
P1

‖f̂ ⊗ f̂ ⊗ f̂ ‖
2
(τ,ξ) dτ dξ

=

∫
R3

|f̂ (η1)f̂ (η2)f̂ (η3)|
2
∫
P1

δ

(
τ − |η|2

ξ − (1,1,1) · η

)
dτ dξ dη

= ‖f̂ ⊗ f̂ ⊗ f̂ ‖
2
L2(R3)

= ‖f̂ ‖
6
L2(R) = (2π)3‖f ‖

6
L2(R). (24)

It follows from (19), (23), (24) and Lemma 4.1 that

‖u‖L6(R2) ≤ 12−1/12
‖f ‖L2(R). (25)

This proves that forn = 1 the best constantS(1) in (1) is no larger than 12−1/12.
As before, we observe that if we could find a functionf for which we have equality

in (22) for all (τ, ξ) ∈ P1 then we would have equality in (25) and we would have found
a maximizer for the estimate. We have equality in the Cauchy–Schwarz inequality (22)
for (almost) all(τ, ξ) ∈ P1 if there exists a scalar functionF : P1 → C such that

(f̂ ⊗ f̂ ⊗ f̂ )(η) = F(τ, ξ)(1 ⊗ 1 ⊗ 1)(η)
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for (almost) allη in the support of the measure (21). This means that we are looking for
functionsf andF such that

f̂ (η1)f̂ (η2)f̂ (η3) = F(η2
1 + η2

2 + η2
3, η1 + η2 + η3) (26)

for (almost) allη ∈ R3. Again, an example of such functions is given by the pairf̂ (ξ) =

e−ξ
2
, F(τ, ξ) = e−τ .

If f is a maximizer,f̂ must solve the equation (26) and it follows from Proposi-
tion 7.10 that

f̂ (ξ) = exp(Âξ2
+ B̂ξ + Ĉ), ξ ∈ R, (27)

for some complex constantŝA, B̂, Ĉ, with Re(Â) < 0 in order to havef ∈ L2(R). The
inverse Fourier transform of (27) is again a function of the same class

f (x) = exp(Ax2
+ Bx + C), x ∈ R, (28)

where the relations between the parametersA, B, C andÂ, B̂, Ĉ are

A =
1

4Â
, B = −

iB̂

4Â
, C = Ĉ −

B̂2

4Â
−

1

2
log(−4πÂ).

As we have seen at the end of Section 3, the class of initial data of the form (28) is
invariant under the action of the groupG and any maximizer is connected to the function
f∗(x) = e−x

2
by the action ofG.

5. Wave equation in dimensionn = 3

Consider the casen = 3,p = 4 for estimate (3). We have

ũ+u+(τ, ξ) =
1

(2π)2

∫
R3×R3

f̂+(η)f̂+(ζ )

|η|1/2|ζ |1/2
δ

(
τ − |η| − |ζ |

ξ − η − ζ

)
dη dζ. (29)

In particular,ũ+u+ is supported in the closure of the region

C++ = {(τ, ξ) ∈ R × R3 : τ > |ξ |}.

Similarly, ũ+u− is supported in the closure of

C+− = {(τ, ξ) ∈ R × R3 : |τ | < |ξ |};

andũ−u− is supported in the closure of

C−− = {(τ, ξ) ∈ R × R3 : τ < −|ξ |}.

We remark that formulae like (29) are the starting point for the bilinear estimates
studied in [2].

We first prove the estimate foru+. By Plancherel’s theorem we have

‖u+‖
2
L4(R4)

= ‖u2
+‖L2(R4) = (2π)−2

‖ũ2
+‖L2(R4). (30)
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For each choice of(τ, ξ) ∈ C++, we denote by〈·, ·〉(τ,ξ) theL2 inner product associated
with the measure

µ(τ,ξ) = δ

(
τ − |η| − |ζ |

ξ − η − ζ

)
dη dζ (31)

and by‖ · ‖(τ,ξ) the corresponding norm.

Remark 5.1. The measureµ(τ,ξ) defined in (31) is thepull-backof the Dirac delta on
R1+3 by the function8(τ,ξ) : (R3

\ 0)× (R3
\ 0) → R × R3 given by

8(τ,ξ)(η, ζ ) = (τ − |η| − |ζ |, ξ − η − ζ ).

A quick computation shows that the differential of8(τ,ξ) is surjective at a point(η, ζ ) if
and only ifη/|η| 6= ζ/|ζ |. On the other hand, ifη/|η| = ζ/|ζ | and8(τ,ξ)(η, ζ ) = 0 we
must haveτ = |η| + |ζ | = |η + ζ | = |ξ |. This tells us thatµ(τ,ξ) is not well defined
on the boundary ofC++, whenτ = |ξ |. However, we can safely ignore the problems at
this boundary and observe instead that for any locally integrable functionF(η, ζ ) defined
on R3

× R3 the integralG(τ, ξ) =
∫
F dµ(τ,ξ) defines a locally integrable function on

R × R3. Indeed, ifK is a compact set inR × R3, we have∫∫
K

|G(τ, ξ)| dτ dξ ≤

∫∫
(τ,ξ)∈K

∫∫
|F(η, ζ )|δ

(
τ − |η| − |ζ |

ξ − η − ζ

)
dη dζ dτ dξ

=

∫∫
(|η|+|ζ |,η+ζ )∈K

|F(η, ζ )| dη dζ,

and{(η, ζ ) : (|η| + |ζ |, η + ζ ) ∈ K} is a compact set inR3
× R3.

We can now write (29) as

ũ2
+(τ, ξ) =

1

(2π)2
〈f̂+ ⊗ f̂+, | · |

−1/2
⊗ | · |

−1/2
〉(τ,ξ). (32)

The quantity we want to compute this time is
∥∥| · |

−1/2
⊗ | · |

−1/2
∥∥
(τ,ξ)

.

Lemma 5.2. For each(τ, ξ) ∈ C++ we have
∥∥| · |

−1/2
⊗ | · |

−1/2
∥∥
(τ,ξ)

= (2π)1/2.

Proof. The quantity

I (τ, ξ) =
∥∥| · |

−1/2
⊗ | · |

−1/2
∥∥2
(τ,ξ)

=

∫
R3

δ(τ − |ξ − η| − |η|)

|ξ − η| |η|
dη

is just the convolution of the measure|ξ |−1δ(τ − |ξ |) with itself. If τ > |ξ |, from the in-
variance of this measure with respect to proper Lorentz transformations and from the fact
that it is always possible to find a proper Lorentz transformation which takes(τ, ξ) to the
point (τ ∗,0) whereτ ∗

= (τ2
− |ξ |2)1/2, it follows thatI (τ, ξ) = I (τ ∗,0). Moreover, it

is evident from the definition that by homogeneityI is invariant under isotropic dilations,
I (λτ, λξ) = I (τ, ξ). Hence, whenτ > |ξ |,

I (τ, ξ) = I (1,0) =

∫
R3

δ(1 − 2|ξ |)

|ξ |2
dξ = 4π

∫
∞

0
δ(1 − 2r) dr = 2π. ut
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Cauchy–Schwarz’s inequality applied to (32) together with Lemma 5.2 gives

‖ũ2
+‖

2
L2(R4)

≤
1

(2π)3

∫
C++

‖f̂+ ⊗ f̂+‖
2
(τ,ξ) dτ dξ =

1

(2π)3
‖f̂+ ⊗ f̂+‖

2
L2(R3×R3)

=
1

(2π)3
‖f̂+‖

4
L2(R3)

= (2π)3‖f+‖
4
L2(R3)

. (33)

Hence, combining (30) and (33) we obtain

‖u+‖L4(R4) ≤ (2π)−1/4
‖f+‖L2(R3). (34)

This time, equality holds if there exists a functionF : C++ → C such that

(f̂+ ⊗ f̂+)(η, ζ ) = F(τ, ξ)|η|−1/2
|ζ |−1/2

for all (η, ζ ) in the support of the measure (31). This means that

|η|1/2f̂+(η)|ζ |
1/2f̂+(ζ ) = F(|η| + |ζ |, η + ζ )

for almost allη, ζ ∈ R3. An example of such functions is given by the pair

f̂+(ξ) = |ξ |−1/2e−|ξ |, F (τ, ξ) = e−τ .

It follows from Proposition 7.23 that any maximizer for the estimate (34) is a function
whose Fourier transform has the form

f̂ (ξ) = |ξ |−1/2 exp(A|ξ | + b · ξ + C), (35)

with A,C ∈ C, b ∈ C3, Im(C) ∈ [0,2π [ and |Re(b)| < −Re(A) (in order to have
f ∈ L2(R3)). In the next lemma we compute an explicit expression for homogeneous
waves with data of the form (35).

Lemma 5.3. Letu be the(+)-wave corresponding to anL2 data of the form(35),

u(t, x) =
1

(2π)3

∫
R3

exp((A+ it)|ξ | + (b + ix) · ξ + C)
dξ

|ξ |
. (36)

Then we have the explicit formula

2π2e−iIm(C)u(t − Im(A), x − Im(b))

=
eRe(C)

(Re(A))2 − |Re(b)|2 + |x|2 − t2 + 2i(Re(A)t − Re(b) · x)
. (37)



754 Damiano Foschi

Proof. The integral

F(t, x) =

∫
R3

exp(t |ξ | + x · ξ)
dξ

|ξ |

is well defined fort ∈ C andx ∈ C3 whenRe(t) < −|Re(x)|. For t ∈ R andx ∈ R3

with t < −|x|, using polar coordinates,r = |ξ | andu = (x/|x|) · (ξ/|ξ |), we find

F(t, x) = 2π
∫ 1

−1

∫
∞

0
exp((t + |x|u)r)r dr du =

∫ 1

−1

2π du

(t + |x|u)2

=
4π

t2 − x2
1 − x2

2 − x2
3

.

By analytic continuation this formula remains valid for complext andx with Re(t) <
−|Re(x)|. Formula (37) follows from the identity

e−iIm(C)u(t − Im(A), x − Im(b)) =
eRe(C)

(2π)3
F(Re(A)+ it,Re(b)+ ix). ut

Remark 5.4. If u is the(+)-wave corresponding to anL2 data of the form (35), then the
knowledge of|u(t, x)| uniquely determines the value of the coefficientsA, b andRe(C).
Indeed, by Lemma 5.3 the imaginary partsIm(A) andIm(b) are determined by the fact
that |u(t, x)| has a unique maximum at the pointt = −Im(A), x = −Im(b), while the
real partsRe(A) < 0, Re(b) andRe(C) are determined by the coefficients of the poly-
nomial

|u(t − Im(A), x − Im(b))|−2

= 4π4e−2Re(C)(((Re(A))2 − |Re(b)|2 + |x|2 − t2)2 + 4(Re(A)t − Re(b) · x)2).

We can repeat the above procedure for the termu2
− (the only difference is thatτ must

be replaced by−τ ):
‖u−‖L4(R4) ≤ (2π)−1/4

‖f−‖L2(R3), (38)

with equality if and only iff− is of the form (35).
For the termu+u−, we observe that by Ḧolder’s inequality we have

‖u+u−‖L2(R4) ≤ ‖u+‖L4(R4)‖u−‖L4(R4) ≤ (2π)−1/2
‖f+‖L2(R3)‖f−‖L2(R3). (39)

The first inequality in (39) is an equality if there is a constantµ ∈ R such that|u+(t, x)| =

µ|u−(t, x)| for (almost all)(t, x) ∈ R × R3. The second inequality in (39) is an equality
if f+ andf− are functions of the form (35).

Combining theL2 orthogonality of the termsu2
+, u2

− andu+u− (due to the disjoint-
ness of the supports of their Fourier transforms) with (34), (38) and (39), we obtain

‖u‖4
L4 = ‖(u+ + u−)

2
‖

2
L2 = ‖u+‖

4
L4 + ‖u−‖

4
L4 + 4‖u+u−‖

2
L2

≤
1

2π
(‖f+‖

4
L2 + ‖f−‖

4
L2 + 4‖f+‖

2
L2(R3)

‖f−‖
2
L2(R3)

)

≤
3

4π
(‖f+‖

2
L2 + ‖f−‖

2
L2)

2
=

3

16π
‖(f, g)‖4

Ḣ1/2×Ḣ−1/2, (40)
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where we have used the sharp inequality

X2
+ Y 2

+ 4XY ≤
3

2
(X + Y )2, X, Y ≥ 0,

for which equality holds if and only ifX = Y . This proves that forn = 3 the best constant
W(3) in (3) is no larger that(3/(16π))1/4. The next proposition tells us that maximizers
exist and that the inequalities in (40) are sharp; hence,W(3) = (3/(16π))1/4.

Proposition 5.5. We have‖u‖L4 = (3/(16π))1/4‖(f, g)‖Ḣ1/2×Ḣ−1/2 if and only if

f̂+(ξ) = |ξ |−1/2 exp(A|ξ |+b · ξ +C), f̂−(ξ) = |ξ |−1/2 exp(A|ξ |−b · ξ +D), (41)

whereA,C,D ∈ C andb ∈ C3 with |Re(b)| < −Re(A) andRe(D) = Re(C).

Proof. By the above discussion, we have equalities in (40) if and only iff+, f− are both
functions of the form (35) and|u+(t, x)| = |u−(t, x)| for all (t, x) ∈ R × R3. Observe
that if u− is a(−)-wave with dataf−, where

f̂−(ξ) = |ξ |−1/2 exp(A−|ξ | + b− · ξ + C−),

then its complex conjugateu− is a(+)-wave with data

f̂−(−ξ) = |ξ |−1/2 exp(A−|ξ | − b− · ξ + C−).

By Remark 5.4, if two(+)-waves with initial data of the form (35) have the same absolute
value at every point of the space-time then they must have the same coefficientsA, b and
Re(C). ut

A particular case of (41), corresponding toA = −1, b = 0,C = D = log(2π2), is given
by the initial data

f∗(x) =
1

1 + |x|2
, g∗(x) = 0, x ∈ R3. (42)

The class of initial data of the form (41) is invariant under the action of the groupL
described in Definition 1.6. The coefficients change according to the following rules:

• space-time translations:(A, b, C,D) (A+ it0, b + ix0, C,D);
• isotropic dilations:(A, b, C,D) (A/λ, b/λ,C − n logλ,D − n logλ);
• changes of scale:(A, b, C,D) (A, b, C + logµ,D + logµ);
• space rotations:(A, b, C,D) (A,Rb,C,D);
• phase shifts:(A, b, C,D) (A, b, C + iθ+,D + iθ−);
• Lorentzian boosts:

(A, (b1, b
′), C,D) (A cosh(a)− b1 sinh(a), (−A sinh(a)+ b1 cosh(a), b′), C,D).
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Hence, after a translation and a phase shift we can make all coefficients real; by a rotation
we can makeb′

= 0 and by a Lorentzian boost we can makeb1 = 0; then, by an isotropic
dilation we can haveA = −1; finally, a change of scale givesC = D = log(2π2). This
would correspond to the functions

f̂+(ξ) = f̂−(ξ) = −2π2
|ξ |−1/2 exp(−|ξ |),

which are the Fourier transforms of the(+) and(−) parts of the initial data (42). Thus,
we have proved that any maximizer is connected to(f∗, g∗) by the action ofL.

6. Wave equation in dimensionn = 2

Consider the casen = 2, p = 6 for estimate (3). We decomposeu into its (+) and(−)
parts and treat theL6 norm ofu as anL2 norm ofu3. By expanding the products we find

‖u‖6
L6 = ‖(u+ + u−)

3
‖

2
L2 = ‖u3

+ + 3u2
+u− + 3u+u

2
− + u3

−‖
2

= ‖u3
+‖

2
+ ‖u3

−‖
2
+ 9‖u2

+u−‖
2
+ 9‖u+u

2
−‖

2

+ 6Re〈u3
+, u

2
+u−〉 + 6Re〈u+u

2
−, u

3
−〉 + 18Re〈u2

+u−, u+u
2
−〉

+ 6Re〈u3
+, u+u

2
−〉 + 2Re〈u3

+, u
3
−〉 + 6Re〈u2

+u−, u
3
−〉,

where‖·‖ and〈·, ·〉 now stand for the standard norm and inner product inL2(R×R2). We
shall study one term at a time, but first we compute some integrals which will be needed
later.

Lemma 6.1. For (τ, ξ) ∈ R × R2 with τ > |ξ |, we define

I2(τ, ξ) =

∫
(R2)2

δ

(
τ − |η1| − |η2|

ξ − η1 − η2

)
dη1 dη2

|η1| |η2|
,

I3(τ, ξ) =

∫
(R2)3

δ

(
τ − |η1| − |η2| − |η3|

ξ − η1 − η2 − η3

)
dη1 dη2 dη3

|η1| |η2| |η3|
.

ThenI2(τ, ξ) = 2π/
√
τ2 − |ξ |2 andI3(τ, ξ) = 4π2.

Proof. The fact thatI2 andI3 are well defined locally integrable functions onR×R2 fol-
lows from considerations similar to the ones made at the end of Remark 5.1. Let us define
µ to be the measureµ(τ, ξ) = |ξ |−1δ(τ − |ξ |); we haveI2 = µ ∗ µ andI3 = µ ∗µ ∗µ.
The measureµ is invariant under proper Lorentz transformations, and given(τ, ξ) such
thatτ > |ξ |, there always exists a proper Lorentz transformation which takes(τ, ξ) to the
point (τ ∗,0) whereτ ∗

=

√
τ2 − |ξ |2. By Lemma 2.1, it follows thatIk(τ, ξ) = Ik(τ

∗,0)
for k = 2,3. The integralI2 is homogeneous of degree−1 while I3 is homogeneous of
degree 0. Hence, forτ > |ξ | we have

I2(τ, ξ) =
I2(1,0)

τ ∗
=

1

τ ∗

∫
R2

δ(1 − 2|η|)

|η|2
dη =

2π

τ ∗

∫
∞

0

δ(1 − 2r)

r
dr =

2π√
τ2 − |ξ |2
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and

I3(τ, ξ) = I3(1,0) =

∫
2|η|≤1

I2(1 − |η|,−η)
dη

|η|
=

∫
2|η|<1

2π dη

((1 − |η|)2 − |η|2)1/2|η|

= 4π2
∫ 1/2

0

dr
√

1 − 2r
= 4π2. ut

Let us now begin the proof of the estimate for the term‖u3
+‖. The Fourier transform of

u3
+ is

ũ3
+(τ, ξ) =

1

(2π)3

∫
(R2)3

f̂+(η1)f̂+(η2)f̂+(η3)

|η1|
1/2|η2|

1/2|η3|
1/2

δ

(
τ − |η1| − |η2| − |η3|

ξ − η1 − η2 − η3

)
dη1 dη2 dη3.

(43)
The support of̃u3

+ is contained in the closure of the regionC+++ = {(τ, ξ) : τ > |ξ |}.
For each choice of(τ, ξ) ∈ C+++, we denote by〈·, ·〉(τ,ξ) theL2 inner product associated
with the measure

δ

(
τ − |η1| − |η2| − |η3|

ξ − η1 − η2 − η3

)
dη1 dη2 dη3. (44)

We can then write

ũ3
+(τ, ξ) =

1

(2π)3
〈f̂+ ⊗ f̂+ ⊗ f̂+, | · |

−1/2
⊗ | · |

−1/2
⊗ | · |

−1/2
〉(τ,ξ), (45)

Lemma 6.2. For each(τ, ξ) ∈ C+++ we have
∥∥| · |

−1/2
⊗ | · |

−1/2
⊗ | · |

−1/2
∥∥
(τ,ξ)

= 2π .

Proof. The square of the norm we want to compute is the integralI3 of Lemma 6.1,∥∥| · |
−1/2

⊗ | · |
−1/2

⊗ | · |
−1/2

∥∥2
(τ,ξ)

= I3(τ, ξ) = 4π2. ut

Cauchy–Schwarz’s inequality applied to (45) and Lemma 6.2 give

‖u3
+‖

2
=

1

(2π)3
‖ũ3

+‖
2

≤
1

(2π)7

∫
R×R2

‖f̂+ ⊗ f̂+ ⊗ f̂+‖
2
(τ,ξ) dτ dξ

=
1

(2π)7
‖f̂+ ⊗ f̂+ ⊗ f̂+‖

2
L2((R2)3)

=
1

(2π)7
‖f̂+‖

6
=

1

2π
‖f+‖

6. (46)

This time, equality holds if there exists a functionF : C+++ → C such that

(f̂+ ⊗ f̂+ ⊗ f̂+)(η1, η2, η3) = F(τ, ξ)|η1|
−1/2

|η2|
−1/2

|η3|
−1/2

for all (η1, η2, η3) in the support of the measure (44). This means that

|η1|
1/2f̂+(η1)|η2|

1/2f̂+(η2)|η3|
1/2f̂+(η3) = F(|η1| + |η2| + |η3|, η1 + η2 + η3)

for η1, η2, η3 ∈ R2. Examples of such functions are again̂f+(ξ) = |ξ |−1/2e−|ξ |, F(τ, ξ)
= e−τ . More generally, by Proposition 7.19 all maximizers for the estimate (46) are given
by the family

f̂ (ξ) = |ξ |−1/2 exp(A|ξ | + b · ξ + C) (47)

with A,C ∈ C, b ∈ C2 and|Re(b)| < −Re(A) (in order to have anL2 function).
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Lemma 6.3. Letu be the(+)-wave corresponding to anL2 function of the form(47),

u(t, x) =
1

(2π)2

∫
R2

exp((A+ it)|ξ | + (b + ix) · ξ + C)
dξ

|ξ |
.

Then we have the explicit formula

2πe−iIm(C)u(t − Im(A), x − Im(b))

=
eRe(C)√

(Re(A))2 − |Re(b)|2 + |x|2 − t2 + 2i(Re(A)t − Re(b) · x)
. (48)

Proof. The integral

F(t, x) =

∫
R2

exp(t |ξ | + x · ξ)
dξ

|ξ |

is well defined fort ∈ C andx ∈ C2 whenRe(t) < −|Re(x)|. For t ∈ R andx ∈ R2

with t < −|x|, using polar coordinates we find

F(t, x) =

∫ 2π

0

∫
∞

0
exp((t + |x| cosθ)r) dr dθ =

∫ 2π

0

dθ

−t − |x| cosθ
=

2π√
t2 − |x|2

.

By analytic continuation this formula remains valid for complext andx with Re(t) <
−|Re(x)|. Formula (48) follows from the identity

e−iIm(C)u(t − Im(A), x − Im(b)) =
eRe(C)

(2π)2
F(Re(A)+ it,Re(b)+ ix). ut

Remark 6.4. If u is the (+)-wave corresponding to anL2 function of the form (47),
then the knowledge of|u(t, x)| uniquely determines the value of the coefficientsA, b
andRe(C). The proof of this fact is similar to the one outlined in Remark 5.4.

Similarly, for the term‖u3
−‖ we have

‖u3
−‖

2
≤

1

2π
‖f−‖

6,

with equality whenf− takes the form (47).
For the term‖u2

+u−‖, we observe that by Ḧolder’s inequality we have

‖u2
+u−‖

2
≤ ‖u3

+‖
4/3

‖u3
−‖

2/3
≤

1

2π
‖f+‖

4
‖f−‖

2. (49)

The second inequality in (49) is an equality iff+ andf− are functions of the form (47).
The first inequality in (49) is an equality if there is a constantµ ≥ 0 such that|u+(t, x)| =

µ|u−(t, x)| for (almost all)(t, x) ∈ R × R2.
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Lemma 6.5. Letu+ be a(+)-wave andu− be a(−)-wave corresponding to initial data
f+ andf− of the form(47). If there existsµ ≥ 0 such that|u+(t, x)| = µ|u−(t, x)| for
all t andx, then

f̂+(ξ) = |ξ |−1/2 exp(A|ξ |+b ·ξ+C), f̂−(ξ) = |ξ |−1/2 exp(A|ξ |−b ·ξ+D) (50)

for someA,C,D ∈ C andb ∈ C2.

This lemma follows by the same argument used in the proof of Proposition 5.5.
Similarly, for the term‖u+u

2
−‖ we have

‖u+u
2
−‖

2
≤

1

2π
‖f+‖

2
‖f−‖

4,

with equality if and only iff+ andf− are functions of the form (50).
Let us now consider the termRe〈u3

+, u
2
+u−〉. We have

Re〈u3
+, u

2
+u−〉 ≤ |〈u3

+, u
2
+u−〉| ≤ ‖u3

+‖ ‖u2
+u−‖ ≤

1

2π
‖f+‖

5
‖f−‖.

Equality in the second and third inequalities here implies thatf+ and f− are of the
form (50), while we must haveIm(C) = Im(D) to have equality in the first inequal-
ity.

Similarly for the termsRe〈u+u
2
−, u

3
−〉 andRe〈u2

+u−, u+u
2
−〉 we have

|Re〈u+u
2
−, u

3
−〉| ≤

1

2π
‖f+‖‖f−‖

5, |Re〈u2
+u−, u+u

2
−〉| ≤

1

2π
‖f+‖

3
‖f−‖

3,

with equality whenf+ andf− are of the form (50) withIm(C) = Im(D).
The termsRe〈u3

+, u+u
2
−〉, Re〈u3

+, u
3
−〉, andRe〈u2

+u−, u
3
−〉 are always zero. Indeed,

the Fourier transform of the cubic termsu3
+, u2

+u−, u+u
2
−, u3

− areL2 functions supported
on the closures of the regions

C+++ = {(τ, ξ) ∈ R × R2 : τ > |ξ |},

C++− = {(τ, ξ) ∈ R × R2 : τ > −|ξ |},

C+−− = {(τ, ξ) ∈ R × R2 : τ > |ξ |},

C−−− = {(τ, ξ) ∈ R × R2 : τ > −|ξ |},

respectively, and the intersectionsC+++ ∩ C+−−, C+++ ∩ C−−−, C++− ∩ C−−− are of
measure zero.

We put together all the estimates for each single term and obtain

2π‖u‖6
L6 ≤ ‖f+‖

6
+ ‖f−‖

6
+ 9‖f+‖

4
‖f−‖

2
+ 9‖f+‖

2
‖f−‖

4

+ 6‖f+‖
5
‖f−‖ + 6‖f+‖‖f−‖

5
+ 18‖f+‖

3
‖f−‖

3. (51)
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Lemma 6.6. For X ≥ 0 andY ≥ 0 we have the sharp polynomial inequality

X6
+ Y 6

+ 9X4Y 2
+ 9X2Y 4

+ 6X5Y + 6XY 5
+ 18X3Y 3

≤
25

4
(X2

+ Y 2)3

with equality if and only ifX = Y .

Proof. By homogeneity we can assume thatY = 1. Let

P(X) = X6
+ 1 + 9X4

+ 9X2
+ 6X5

+ 6X + 18X3, Q(X) = X2
+ 1.

We want to prove that 4P(X) ≤ 25Q(X)3 for X ≥ 0, with equality if and only ifX = 1.
Since we have the identity

4P(X) = 4Q(X)3 + 24(XQ(X)2 +X2Q(X)+X3),

our inequality is equivalent to

24(XQ(X)2 +X2Q(X)+X3) ≤ 21Q(X)3,

which reduces to

8(Z + Z2
+ Z3) ≤ 7, Z =

X

Q(X)
=

X

X2 + 1
∈ [0,1/2].

On the interval [0,1/2] the polynomialZ + Z2
+ Z3 is strictly increasing and takes its

maximum value 7/8 whenZ = 1/2, which corresponds toX = 1. ut

We apply Lemma 6.6 to (51) and finally obtain

‖u‖L6 ≤

(
25

8π

)1/6

(‖f+‖
2
L2 + ‖f−‖

2)1/2 =

(
25

64π

)1/6

‖(f, g)‖Ḣ1/2(Rn)×Ḣ−1/2(Rn),

(52)
which proves thatW(2) ≥ (25/(64π))1/6. The next proposition tells us that maximizers
exist and that all the inequalities are sharp; hence,W(2) = (25/(64π))1/6.

Proposition 6.7. We have‖u‖L6 = (25/(64π))1/6‖(f, g)‖Ḣ1/2×Ḣ−1/2 if and only if

f̂+(ξ) = |ξ |−1/2 exp(A|ξ |+b ·ξ+C), f̂−(ξ) = |ξ |−1/2 exp(A|ξ |−b ·ξ+C), (53)

whereA,C ∈ C andb ∈ C2 with |Re(b)| < −Re(A).

Proof. From the above discussion we have equalities in the estimates for each single
cubic term if and only iff+ andf− are of the form (50) withIm(C) = Im(D). To have
equality in (52) we also need‖f+‖ = ‖f−‖, which in this case impliesRe(C) = Re(D).

ut

A particular case of (53), corresponding toA = −1, b = 0,C = log(2π), is given by the
initial data

f∗(x) =
1√

1 + |x|2
, g∗(x) = 0, x ∈ R3. (54)

As we have seen at the end of Section 5, the class of initial data of the form (53) is
invariant under the action of the groupL and any maximizer is connected to the functions
(f∗, g∗) by the action ofL.
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7. Functional equations

In this section we study the functional equations which characterize the families of max-
imizers that we have found in the previous sections. They are:

f (x)f (y)f (z) = F(x2
+ y2

+ z2, x + y + z) for a.e.(x, y, z) ∈ R3, (55)

f (x)f (y) = F(|x|2 + |y|2, x + y) for a.e.(x, y) ∈ R2
× R2, (56)

f (x)f (y)f (z) = F(|x| + |y| + |z|, x + y + z) for a.e.(x, y, z) ∈ (R2)3, (57)

f (x)f (y) = F(|x| + |y|, x + y), for a.e.(x, y) ∈ R3
× R3, (58)

wheref andF are unknown complex-valued measurable functions and the identities are
supposed to hold almost everywhere with respect to the Lebesgue measure. We are going
to show that locally integrable solutions to these equations are actually smooth functions;
this is a general principle which holds for a large class of functional equations (actually
even assuming only measurability implies continuity, see the work of A. Járai in [4]), but
for the sake of completeness we include a direct proof adapted to our equations. Once
the smoothness off andF is established, it is not difficult to solve the equation using
geometric or differential methods. It turns out that in all cases the functionF must be an
exponential function of the form

F(t, x) = exp(At + b · x + C).

A simpler model for the above functional equations is provided by the exponential
law, f (x)f (y) = f (x + y), which is one of the four basic Cauchy functional equations.
We refer the reader to [1] for a general introduction to the subject of functional equations.
Here, we only require the following result which is a simple exercise in real analysis.

Lemma 7.1. Let� be an open subset ofRn such thatx+ y ∈ � wheneverx, y ∈ �. Let
f : � → C be a non-trivial locally integrable solution of the Cauchy functional equation

f (x)f (y) = f (x + y) for a.e.(x, y) ∈ �×�. (59)

Then there exists a vectorb ∈ Cn such thatf (x) = exp(b · x) for a.e.x ∈ �.

Proof. Let Q be a cube contained in� such that
∫
Q
f (y) dy 6= 0. If we integrate (59)

with respect toy ∈ Q we see thatf (x) must coincide (almost everywhere) with the
continuous function

x 7→

∫
Q
f (x + y) dy∫
Q
f (y) dy

.

If f is continuous the above function is differentiable. Hence, we may assume thatf is
differentiable. Fixy0 ∈ � and letb = (∇f (y0))/f (y0). If we differentiate (59) with
respect toy and sety = y0 we obtain the differential equation

∇f (x + y0) = f (x)∇f (y0) = f (x)f (y0)b = f (x + y0)b,

whose non-trivial solutions have the formf (z) = exp(b ·z+C) for some constantC ∈ C.
Substituting this expression forf into (59), we see that exp(C) must be 1. ut
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As was done in the lemma, regularity properties of solutions to functional equations can
be obtained by (partial) integration of the equation. The following lemmata, although not
expressed in their most general form, are what we need to deduce continuity from local
integrability in our equations.

Lemma 7.2. LetA,B,� be open subsets ofRn. Letf ∈ L
p

loc(�) and letϕ : A×B → �

be a smooth map such that

det

∣∣∣∣∂ϕ∂y (x, y)
∣∣∣∣ 6= 0 for (x, y) ∈ A× B. (60)

Let K be a compact subset ofB. For eachx ∈ A, let gx : B → � be the function
gx(y) = f (ϕ(x, y)). Then the mapx 7→ gx is a continuous map fromA toLp(K).

Proof. The case off continuous is immediate. The general case follows by density. The
condition on the partial Jacobian ofϕ is enough to apply, at least locally, the change of
variabley  z = ϕ(x, y) in the integration overK. We leave the details to the reader.ut

Remark 7.3. Lemma 7.2 does not hold if we remove condition (60). For example, if
A = B = � andϕ(x, y) = x then we would havegx(y) = f (x) and the mapx 7→

‖gx‖Lp(K) = |K|
1/p

|f (x)| may not be continuous.

Lemma 7.4. LetA,B,� be open subsets ofRn. Letfj ∈ L
pj
loc(�), j = 1, . . . , N , with∑

j 1/pj = 1. Letϕ1, . . . , ϕN : A× B → � be smooth maps such that

det

∣∣∣∣∂ϕj∂y (x, y)
∣∣∣∣ 6= 0, (x, y) ∈ A× B, j = 1, . . . , N.

Letψ : A× B → C be a continuous function. LetK be a compact subset ofB. Then the
function

F(x) =

∫
K

N∏
j=1

fj (ϕj (x, y))ψ(x, y) dy, x ∈ A,

is continuous.

Proof. The continuity ofF follows from the previous lemma and the continuity of the
functional

(x, g1, . . . , gN ) 7→

∫
K

∏
j

gj (y)ψ(x, y) dy

defined onA×
∏
j L

pj
loc(�). ut

Proposition 7.5. Let � be an open subset ofRn × Rn such that the section�x =

{y ∈ Rn : (x, y) ∈ �} is dense inRn for eachx ∈ Rn. LetP,Q : � → Rn be smooth
maps such that

det

∣∣∣∣∂P∂y (x, y)
∣∣∣∣ 6= 0, det

∣∣∣∣∂Q∂y (x, y)
∣∣∣∣ 6= 0 for (x, y) ∈ �. (61)
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If f : Rn → C is a locally integrable solution of the functional equation

f (x)f (y) = f (P (x, y))f (Q(x, y)) for a.e.(x, y) ∈ �, (62)

thenf is continuous.

Proof. We may assume thatf is non-trivial. Letg(x) =
√

|f (x)|. Whenf ∈ L1
loc(R

n)

we haveg ∈ L2
loc(R

n). Hence, by (61), it follows that for everyx ∈ Rn the function
y 7→ g(P (x, y))g(Q(x, y)) is locally integrable on�. Fix x0 ∈ Rn and choose a compact
domainD in �x0 such that

∫
D
f 6= 0.

We integrate the square root of the absolute value of equation (62) with respect toy

over the domainD and obtain

g(x)

∫
D

g(y) dy =

∫
D

g(P (x, y))g(Q(x, y)) dy.

By Lemma 7.4, the right hand side is a continuous function ofx for x in a neighborhood
of x0. Since

∫
D
g 6= 0, we deduce thatg is continuous atx0. This proves that|f | is a

continuous function. In particular it follows thatf ∈ L2
loc. We can bootstrap the argument:

if we integrate (62) with respect toy over the domainD, we obtain

f (x)

∫
D

f (y) dy =

∫
D

f (P (x, y))f (Q(x, y)) dy,

from which it follows thatf is continuous. ut

In the following subsections we will study in detail each of our four functional equations.
In each case we will adopt the following strategy:

(1) Local integrable solutions are continuous.
(2) Non-trivial continuous solutions never vanish.
(3) Continuous solutions which never vanish are of exponential form.

Remark 7.6. It is interesting to observe that there are functional equations which for-
mally look very similar to the ones we are considering, but for which each of the above
three steps fails. Take for instance the functional equation

f (x)f (y) = F(x2
+ y2, x + y) for a.e.(x, y) ∈ R2.

In this case, givenanyfunctionf we can always construct a solution by setting

F(s, t) = f

(
t +

√
2s − t2

2

)
f

(
t −

√
2s − t2

2

)
.

Even if the functionf is locally integrable, it does not need to be an exponential, it can
vanish on any set and does not need to be continuous.
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7.1. Equation(55)

As in Section 4 we letP1 = {(s, t) ∈ R × R : 3s > t2}.

Lemma 7.7. Let f : R → C andF : P1 → C be functions which solve equation(55).
If f is locally integrable thenf andF are continuous functions.

Proof. We first prove thatf locally integrable impliesF locally integrable. Indeed,∫∫∫
|x|2+|y|2+|z|2≤R2

|f (x)f (y)f (z)| dx dy dz =

∫
v∈R3

|v|≤R

|F(|v|2, v · (1,1,1))| dv

= 2π
∫ R

0

∫ 1

−1
|F(r2,

√
3ru)|r2 du dr =

π
√

3

∫∫
t2/3≤s≤R2

|F(s, t)| ds dt

for anyR > 0. Moreover, using the change of variables

(y, z) (s, t) = 8(y, z) = (y2
+ z2, y + z)

from the region{y > z} to {s > t2/2}, with ds dt = 2(y − z) dy dz, we have

f (x)

∫
�

f (y)f (z)(y − z) dy dz =

∫
�

F(x2
+ y2

+ z2, x + y + z)(y − z) dy dz

=
1

2

∫
8(�)

F(x2
+ s, x + t) ds dt

for any bounded domain� ⊆ {y > z}. The local integrability ofF implies that the
function x 7→

∫
8(�)

F(x2
+ s, x + t) ds dt is continuous. We choose� so that the

integral
∫
�
f (y)f (z)(y − z) dy dz is not zero and it follows thatf (x) is continuous.

The continuity ofF comes easily from the equation and the continuity off , since we
have

F(s, t) = f (0)f

(
t +

√
2s − t2

2

)
f

(
t −

√
2s − t2

2

)
. ut

Remark 7.8. We can write (55) as

(f ⊗ f ⊗ f )(v) = F(s, t), v ∈ R3, s = |v|2, t = v · (1,1,1),

which shows that the tensor productf ⊗f ⊗f , as a function onR3, is constant along any
circle0(s, t) obtained as the intersection of the sphere of radius

√
s centered at the origin

and the plane orthogonal to the vector(1,1,1) passing through the point(t/3, t/3, t/3).

Lemma 7.9. If f andF are continuous functions which solve equation(55) andf van-
ishes at one point thenf andF vanish everywhere.
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Proof. By continuity it is enough to prove that the set of all points wheref vanishes is
open. Supposef vanishes at a pointx∗. If f is not identically zero then there exists some
open setA in R on whichf never vanishes. Lety∗ andz∗ be two distinct points inA.
Consider the map

(y, z) 7→ (s, t) = (x2
∗ + y2

+ z2, x∗ + y + z).

Its Jacobian determinant at the point(y∗, z∗) is 2|y∗−z∗| 6= 0. Hence, the map is invertible
from a neighborhoodU ⊂ A × A of (y∗, z∗) to a neighborhoodV of (s∗, t∗) = (x2

∗ +

y2
∗ + z2

∗, x∗ + y∗ + z∗). It follows that, for eachx sufficiently close tox∗ so that(x2
+

y2
∗ + z2

∗, x + y∗ + z∗) lies inV , there exists a pair(y, z) ∈ U such that

(x2
+ y2

∗ + z2
∗, x + y∗ + z∗) = (x2

∗ + y2
+ z2, x∗ + y + z).

Using the functional equation (55) we obtain

f (x)f (y∗)f (z∗) = f (x∗)f (y)f (z) = 0,

and we know thatf (y∗)f (z∗) 6= 0. Hence,f (x) vanishes forx in a neighborhood ofx∗.
ut

Proposition 7.10. If f : R → C andF : P1 → C are non-trivial locally integrable
functions which satisfy the functional equation(55) for all x, y, z ∈ R, then there exists
complex constantsA, B, C such that

f (x) = exp(Ax2
+ Bx + C), F (t, x) = exp(At + Bx + 3C)

for (almost) all(t, x) ∈ P1.

Proof. By Lemma 7.7, we may assume thatf andF are continuous. By Lemma 7.9, we
may assume thatf andF never vanish. We define

g(x) =
f (x)

f (−x)
, G(s, t) =

F(s, t)

F (s,−t)
,

h(x) = f (x)f (−x), H(s, t) = F(s, t)F (s,−t).

The functiong corresponds to theodd component off , g(x)g(−x) = 1, g(0) = 1,
and satisfies the same equation

g(x)g(y)g(z) = G(x2
+ y2

+ z2, x + y + z), x, y, z ∈ R.

In particular,
G(2s,0) = g(

√
s)g(−

√
s)g(0) = 1

for all s ≥ 0. It follows that

g(x)g(y) = g(x+y)g(−x−y)g(x)g(y) = g(x+y)G((x+y)2+x2
+y2,0) = g(x+y).

By Lemma 7.1,g must be an exponential function of the formg(x) = exp(2Bx) for some
complex constantB.
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The functionh corresponds to theevencomponent off , h(x) = h(−x) and satisfies
the equation

h(x)h(y)h(z) = H(x2
+ y2

+ z2, x ± y ± z), x, y, z ∈ R,

for any combination of signs. By the same argument used in Remark 7.8, we deduce that
h⊗ h⊗ h is constant along circles obtained by intersecting spheres centered at the origin
with planes perpendicular to the four vectors(1,±1,±1). It follows thath⊗h⊗hmust be
constant on any sphere centered at the origin. In fact, any two points at the same distance
from the origin can be connected by a finite sequence of arcs of the above circles. This
means that there exists a functionϕ : R+ → C such that

h(x)h(y)h(z)

h(0)3
= ϕ(x2

+ y2
+ z2), x, y, z ∈ R.

In particular, fors ≥ 0 andt ≥ 0, we have

ϕ(s)ϕ(t) =
h(

√
s)h(0)2

h(0)3
·
h(

√
t)h(0)2

h(0)3
=
h(

√
s)h(

√
t)h(0)

h(0)3
= ϕ(s + t).

By Lemma 7.1,ϕ must be an exponential function of the formϕ(s) = exp(2As) for some
complex constantA. Hence,h(x) = h(0)exp(2Ax2).

We conclude the proof of the lemma by observing that

f (x)2 = g(x)h(x) = exp(2Bx)h(0)exp(Ax2) = exp(2Ax2
+ 2Bx + 2C),

whereC is a complex constant such thatf (0) = eC . ut

7.2. Equation(56)

If we integrate equation (56) with respect toy on a domain ofR2, we cannot apply directly
the regularity results of Lemma 7.4, because the domain ofF is a region inR3 and the
image of the mapy 7→ (|x|2 + |y|2, x + y) is a set of measure zero inR3. To overcome
this difficulty we exploit the geometric invariance properties of the equation.

Remark 7.11. Let I : R2
→ R2 be the identity onR2 and letH : R2

→ R2,H(x1, x2)

= (−x2, x1), be a counterclockwise rotation byπ/2 of the plane. Given two pointsx and
y in R2 the functions

P(x, y) =
x + y

2
+H

(
x − y

2

)
=
I +H

2
x +

I −H

2
y,

Q(x, y) =
x + y

2
−H

(
x − y

2

)
=
I −H

2
x +

I +H

2
y,

determine two other pointsp = P(x, y) andq = Q(x, y) so thatx, y andp, q are the
opposite vertices of a square (see Figure 2) and we have

p + q = x + y, |p|
2
+ |q|2 = |x|2 + |y|2. (63)
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O

x

Hx

x

y

P (x, y)

Q(x, y)

a

b

c

d

Fig. 2. The functionsH (left) andP,Q (center) described in Remark 7.11 and a rectangle (right)
used in Remark 7.14.

Moreover, the linear map(x, y) 7→ (p, q) is an isometry onR2
× R2. By property (63),

it follows that the equation (56) implies the equation

f (x)f (y) = f (P (x, y))f (Q(x, y)) for a.e.(x, y) ∈ R2
× R2. (64)

Observe also that∂P/∂y = (I − H)/2 and∂Q/∂y = (I + H)/2 are non-singular
matrices.

As in Section 3 we letP2 = {(s, v) ∈ R × R2 : 2s > |v|2}.

Lemma 7.12. Let f : R2
→ C andF : P2 → C be solutions of equation(56). If f is

locally integrable thenf andF are continuous functions.

Proof. By Remark 7.11, the lemma becomes a corollary of Proposition 7.5. ut

Lemma 7.13. If f is a continuous solution of equation(64)andf vanishes at one point
thenf vanishes everywhere.

Proof. Let y ∈ R2. If f vanishes at the pointx0, equation (64) implies thatf vanishes
at the pointx1, wherex1 is eitherP(x0, y) orQ(x0, y), and|x1 − y| = (1/

√
2)|x0 − y|.

By iterating this argument, we can construct a sequence of pointsxn such thatf (xn) = 0
and limn xn = y. By continuity it follows thatf (y) = 0. ut

Remark 7.14. It follows from equation (56) thatf solves the rectangular functional
equation

f (a)f (c) = f (b)f (d),

whenever the pointsa, c andb, d are the opposite vertices of a rectangle (see Figure 2).
Indeed, whena − b = d − c anda − b ⊥ c − b, we have

0 = (a− b) · (c− b) = a · c− (a+ c) · b+|b|2 = a · c− (b+ d) · b+|b|2 = a · c− d · b.

Hence,a · c = b · d and|a|2 + |c|2 = |a+ c|2 − 2a · c = |b+ d|2 − 2b · d = |b|2 + |d|2.
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Proposition 7.15. If f : R2
→ C andF : P2 → C are nontrivial locally integrable

functions which satisfy the functional equation(56) then there exist constantsA ∈ C,
b ∈ C2, C ∈ C such that

f (x) = exp(A|x|2 + b · x + C), F (t, x) = exp(At + b · x + 2C)

for (almost) all(t, x) ∈ P2.

In the proof of the proposition we follow a geometric construction which is an adaptation
of the one for odd orthogonally additive mappings found in [7].

Proof. By Lemma 7.12, we may assume thatf andF are continuous. By Lemma 7.13,
we may assume thatf andF never vanish. We define

g(x) =
f (x)

f (−x)
, G(t, z) =

F(t, z)

F (t,−z)
,

h(x) = f (x)f (−x), H(t, z) = F(t, z)F (t,−z).

The functiong corresponds to theodd component off , g(x)g(−x) = 1 andg(0) = 1.
By Remark 7.14 we know it satisfies the rectangular equationg(a)g(c) = g(b)g(d)

whenever the pointsa, c and b, d are the opposite vertices of a rectangle. Given two
vectorsx andy in R2 it is always possible to find a third vectorz such thatz ⊥ x + y

andx + z ⊥ y − z. Letp and−p be the components ofx andy perpendicular tox + y.
Consider the three rectangles formed by(0, x + z, x + y, y − z), (x, x + z, p+ z, p) and
(y, y − z,−p − z,−p) (see Figure 3); using the rectangular equation we have

g(x + y)g(0) = g(x + z)g(y − z),

g(x)g(p + z) = g(x + z)g(p),

g(y)g(−p − z) = g(y − z)g(−p);

O

x+z

p+zp

x

x+y

y−z

−p−z −p

y

−q

p

qO

−y y

Fig. 3. Constructions for the functiong (left) and the functionh (right) in the proof of Proposi-
tion 7.15.
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and using the parity properties ofg we obtain

g(x + y) = g(x + y)g(0) = g(x + z)g(y − z) = g(x + z)g(p)g(y − z)g(−p)

= g(x)g(p + z)g(y)g(−p − z) = g(x)g(y).

By Lemma 7.1,g must be an exponential function of the formg(x) = exp(2b · x) for
some complex vectorb ∈ C2.

The functionh corresponds to theevencomponent off , h(x) = h(−x), and satisfies
the rectangular equationh(a)h(c) = h(b)h(d) whenever the pointsa, c and b, d are
the opposite vertices of a rectangle. Given two pointsx andy with |x| = |y|, let p =

(x + y)/2, q = (x − y)/2 and consider the rectangles(0, p, x, q), (0, p, y,−q) (see
Figure 3); by the rectangular equation and the parity ofh we have

h(x)h(0) = h(p)h(q) = h(p)h(−q) = h(y)h(0).

Hence,|x| = |y| impliesh(x) = h(y). This means thath is spherically symmetric and
there exists a functionϕ : R+ → C such thath(x) = h(0)ϕ(|x|2) for x ∈ R2. Given
s ≥ 0 andt ≥ 0, letx andy be two points inR2 such that|x|2 = s, |y|2 = t andx ⊥ y;
by the Pythagorean theorem we have|x + y|2 = s + t . It follows that

ϕ(s)ϕ(t) =
h(x)h(y)

h(0)2
=
h(x + y)h(0)

h(0)2
= ϕ(s + t).

By Lemma 7.1,ϕ must be an exponential function of the formϕ(s) = exp(2As) for some
complex constantA. Hence,h(x) = h(0)exp(2A|x|2).

We conclude the proof of the lemma by observing that

f (x)2 = g(x)h(x) = exp(2b · x)h(0)exp(A|x|2) = exp(2Ax2
+ 2b · x + 2C),

whereC is a complex constant such thatf (0) = eC . ut

7.3. Equation(57)

As in Section 6 we letC+++ = {(t, v) ∈ R × R2 : t > |v|}.

Lemma 7.16. Let f : R2
→ C andF : C+++ → C be functions which solve equa-

tion (57). If f is locally integrable thenf andF are continuous functions.

Proof. Suppose first thatf ∈ L
p

loc(R
2) for somep > 2. Using the results of Lemma 6.1

we can see thatF ∈ L1
loc(C+++); indeed,∫

|v|2≤t≤R

|F(t, v)| dv dt =
1

8π2

∫
|v|2≤t≤R

|F(t, v)|I3(t, v) dv dt

=
1

8π2

∫
t≤R

|F(|x| + |y| + |z|, x + y + z)|

|x| |y| |z|
δ

(
t − |x| − |y| − |z|

v − x − y − z

)
dx dy dz dv dt

=
1

8π2

∫
|x|+|y|+|z|≤R

|f (x)f (y)f (z)|

|x| |y| |z|
dx dy dz ≤

1

8π2

(∫
|x|≤R

|f (x)|

|x|
dx

)3

≤ C(R1−2/p)3‖f ‖
3
Lp(B(0,R)).



770 Damiano Foschi

We now choose a bounded domain� ⊆ R2
× R2 such that the integral

C� =

∫
�

f (y)f (z)

|y| |z|I2(|y| + |z|, y + z)
dy dz

is finite and not zero (hereI2 is the function defined in Lemma 6.1). This is possible
whenf is not trivial, sincef (x)/|x| is locally integrable and 1/I2 is bounded on compact
subsets ofC+++. We divide both sides of (57) by|y| |z|I2(|y| + |z|, y + z) and integrate
with respect to(y, z) ∈ � to obtain

f (x)C� =

∫
D

F(|x| + t, x + v)ϕ�(t, v) dv dt (65)

for almost everyx ∈ R2, where

ϕ�(t, v) =
1

I2(t, v)

∫
�

δ

(
t − |y| − |z|

v − y − z

)
dy dz

|y| |z|
≤ 1

is a bounded continuous function and the regionD is its support. The continuity off now
follows from the continuity of the right hand side in (65) by Lemma 7.4.

Suppose now thatf ∈ L1
loc(R

2). Then forp > 2 the functionsg = |f |
1/p

∈

L
p

loc(R
2), G = |F |

1/p also solve equation (57) and it follows from the previous argu-
ment thatg is continuous. Hence,|f | is also continuous and sof ∈ L

p

loc(R
2) for anyp.

The continuity ofF comes easily from the equation and the continuity off : if t ≥

r ≥ 0 andω is a unit vector, we have

F(t, rω) = f (0)f

(
r + t

2
ω

)
f

(
r − t

2
ω

)
. ut

Lemma 7.17. If f and F are continuous functions which solve equation(57) and f
vanishes at one point thenf andF vanish everywhere.

Proof. Equation (57) implies that

f

(
x

3

)3

= F(|x|, x) = f (x)f (0)2. (66)

Supposef (x0) = 0. Thenf (x1) = 0 for x1 = x0/3. By iterating this argument,xk+1 =

xk/3, we can construct a sequence of pointsxn such thatf (xn) = 0 and limn xn = 0. By
continuity it follows thatf (0) = 0, and by (66),f must vanish everywhere. ut

Lemma 7.18. Letn ≥ 1. LetN = {(t, x) ∈ R × Rn : t = |x|} be the cone of future null
vectors andC = {(t, x) ∈ R × Rn : t > |x|} the cone of future time-like vectors. Observe
thatN +N = C = N ∪ C. If F : N ∪ C → C is a continuous solution of the conditional
functional equation

U,V ∈ N ⇒ F(U)F(V ) = F(U + V ) (67)

thenF is also a solution of the unconditional functional equation

F(X)F(Y ) = F(X + Y ), ∀X, Y ∈ C.
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O

(a+c)U

aU

cU

(b+d)V

dV

bV

X

Y

X+Y

Fig. 4.Construction for the proof of Lemma 7.18.

Proof. LetX andY be two vectors inN ∪ C which are not both inN . Let5 be a two-
dimensional plane through the origin which containsX andY ; the intersection of the
plane5 with the coneN is the union of two null directed half lines,

5 ∩N = (R+U) ∪ (R+V ),

whereU andV are two linearly independent vectors inN . We writeX andY as linear
combinations ofU andV ,

X = aU + bV, Y = cU + dV,

for some non-negative coefficientsa, b, c, d. Then, by (67),

F(X + Y ) = F((aU + bV )+ (cU + dV )) = F((a + c)U + (b + d)V )

= F((a + c)U)F ((b + d)V ) = (F (aU)F (cU))(F (bV )F (dV ))

= (F (aU)F (bV ))(F (cU)F (dV ))

= F(aU + bV )F (cU + dV ) = F(X)F(Y ). ut

Proposition 7.19. If f : R2
→ C andF : C+++ → C are non-trivial locally integrable

functions which satisfy the functional equation(57) then there exist constantsA ∈ C,
b ∈ C2, C ∈ C such that

f (x) = exp(A|x| + b · x + C), F (t, x) = exp(At + b · x + 3C)

for (almost) all(t, x) ∈ C+++.

Proof. By Lemma 7.16, we may assume thatf andF are continuous. By Lemma 7.17,
we may assume thatf andF never vanish. Settingy = 0 andz = 0 in (57) we obtain
F(|x|, x) = f (x)f (0)2. We defineG(t, x) = F(t, x)/F (0,0). Then

G(|x|, x) =
F(|x|, x)

F (0,0)
=
f (x)

f (0)
, x ∈ R2.
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We also have

G(|x|, x)G(|y|, y) =
f (x)f (y)f (0)

f (0)3
=
F(|x| + |y|, x + y)

F (0,0)
= G(|x| + |y|, x + y).

We can apply first Lemma 7.18 and then Lemma 7.1 to the functionG to deduce that
G(t, x) = exp(At + b · x) for some constantsA ∈ C andb ∈ C2. The result then follows
by choosingC so thatF(0,0) = exp(3C). ut

7.4. Equation(58)

Lemma 7.20. It is possible to construct an open set� ⊂ R3
× R3 whose sections

�x = {y : (x, y) ∈ �} are dense inR3 for everyx ∈ R3, and a pair of smooth maps
P,Q : � → R3 such that, for every(x, y) ∈ �,

|P(x, y)| + |Q(x, y)| = |x| + |y|, (68)

P(x, y)+Q(x, y) = x + y, (69)

det

∣∣∣∣∂P∂y (x, y)
∣∣∣∣ 6= 0, det

∣∣∣∣∂Q∂y (x, y)
∣∣∣∣ 6= 0.

µ

λ

E(x, y)

H(x, p)

H(x, q)

O

x

y

x+y

p
q

p−x
q−x

Fig. 5.Constructions of the functionsP ,Q and their inverses as described in Lemma 7.20.

Proof. The set� = {(x, y) ∈ R3
× R3 : x × y 6= 0} of linearly independent pairs of

vectors clearly has sections�x dense inR3 for everyx. Given(x, y) ∈ �, the ellipsoid
of revolution

E(x, y) = {u ∈ R3 : |u| + |x + y − u| = |x| + |y|},

with foci at 0 andx + y and which contains the pointsx andy, is non-degenerate, and
any line passing through one of the foci intersects the ellipsoid in exactly two points.
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In particular, the lineλ passing throughy and 0 intersectsE(x, y) in y and in another
pointp; similarly, the lineµ passing throughx andx + y intersectsE(x, y) in x and in
another pointq. By symmetry we havep + q = x + y and from the definition ofE it
follows that

|p| + |q| = |p| + |x + y − p| = |x| + |y|.

It is evident from the geometric construction that the correspondence(x, y) 7→ (p, q)

is a smooth map as long as the vectorsx andy remain linearly independent; moreover,
whenx andy are linearly independent, also(x, p) and(x, q) are pairs of linearly inde-
pendent vectors. SettingP(x, y) = p andQ(x, y) = q, we obtain two smooth maps
P,Q : � → R3 which satisfy (68) and (69).

To verify that, for fixedx ∈ R3, the mapsy 7→ P(x, y) andy 7→ Q(x, y) are locally
invertible we provide a smooth geometric construction of their inverses.

Given a pair of points(x, p) ∈ �, we defineH(x, p) to be the branch of the hyper-
boloid with foci at 0 andp − x passing through the pointp,

H(x, p) = {u ∈ R3 : |u| − |p − x − u| = |p| − |x|},

and we notice that it is non-degenerate sincep does not belong to the line passing through
0 andp − x. The line passing throughp and 0 intersectsH(x, p) in p and in another
pointy∗. The map(x, p) 7→ y∗ is smooth as long asx andp remain linearly independent.
We claim thatP(x, y∗) = p; indeed,p belongs to the line passing throughy∗ and 0, and
from the definition ofH(x, p) it follows that

|p| + |p − x − y∗| = |x| + |y∗|,

which means thatp ∈ E(x, y∗).
Similarly, given a pair of points(x, q) ∈ �, we considerH(x, q), the branch of the

hyperboloid with foci at 0 andq−x passing through the pointq. The line passing through
q − x and 0 intersectsH(x, q) in one pointy∗∗, the vertex of the hyperboloid. The map
(x, q) 7→ y∗∗ is smooth as long asx andq remain linearly independent, and it easy to
check thatQ(x, y∗∗) = q. Indeed, sinceq − x belongs to the line passing throughy∗∗

and 0, by a translation we find thatq belongs to the line passing throughx + y∗∗ andx,
moreover from the definition ofH(x, q) it follows that

|q| + |q − x − y∗∗| = |x| + |y∗∗|,

which means thatq ∈ E(x, y∗∗). ut

Remark 7.21. Explicit formulae for the functionsP andQ constructed in the previous
lemma are given by

P(x, y) =

(
x · y − |x||y|

x · y + |x| |y| + 2|y|2

)
y, Q(x, y) = x + y − P(x, y).

As in Section 5 we letC++ = {(t, v) ∈ R × R3 : t > |v|2}.
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Lemma 7.22. Let f : R3
→ C andF : C++ → C be functions which solve equa-

tion (58). If f is locally integrable thenf andF are continuous functions.

Proof. LetP andQ be the functions constructed in Lemma 7.20. Iff andF are solutions
to (58) it follows that

f (x)f (y) = f (P (x, y))f (Q(x, y)) for a.e.(x, y) ∈ R3
× R3,

and the lemma then becomes a corollary of Proposition 7.5. ut

Once the continuity of locally integrable solutions to (58) is established, one proceeds in
the same manner as in the previous subsection and obtains the following result.

Proposition 7.23. If f : R3
→ C andF : C++ → C are non-trivial locally integrable

functions which satisfy the functional equation

f (x)f (y) = F(|x| + |y|, x + y)

for all x, y ∈ R3, then there exist constantsA ∈ C, b ∈ C3, C ∈ C such that

f (x) = exp(A|x| + b · x + C), F (t, x) = exp(At + b · x + 2C)

for (almost) all(t, x) ∈ C++.
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