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Maximizers for the Strichartz inequality
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Abstract. We compute explicitly the best constants and, by solving some functional equations, we
find all maximizers for homogeneous Strichartz estimates for thed8utger equation and for the
wave equation in the cases when the Lebesgue exponent is an even integer.
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1. Introduction

Let n be a positive integer and lgt = p(n) = 2 + 4/n. The Strichartz inequality for
the homogeneous Sddinger equation im spatial dimensions states that there exists a
constantS > 0 such that

lull poo wi+ny < SIF N 2wny s 1)
wheneven(z, x) is the solution of the equation
i0;u = Au (2)

with initial datau (0, x) = f(x); seel[8] for the original proof by Strichartz. We denote
by S(n) the best constant for the estimdtg (1),

||€_”Af||Lp(n)(Rl+n)

S(n) = sup
feL2(Rm) ”f”LZ(]Rn)

If n > 2, we can also consider the Strichartz inequality for the homogeneous wave
equation im spatial dimensions which states that there exists a congtantO such that

lull L po—v m1+ny = WIS O grzgny s g-1720rmy (3)
wheneven(z, x) is the solution of the equation

Btzu = Au (4)
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with initial data
u@,x) = f(x), 9u0,x) =gx). ®)
This was also proved in[8]. We denote B¥(n) the best constant for the estimdig (3),

“COS(I\/ _A)f + Mg” (n=1) (R1+n
Wm) =  sup oA TR

FeHY2RM) ICFs N grr2qnyx fi-172arm)
gerl/Z(Rn)

Kunze [6] has recently proved the existence of a maximizing funcfioe L2?(R)
for the estimate[{1) in the special case= 1 andp = 6, which means that for the
corresponding solution,,

ialu* = 33u*, u*(oy x) = f*(-x)v

we have the equalityu. |l srxr) = SV fillL2@)- The proof in [6] is based on an
elaborate application of the concentration compactness principle and does not provide an
explicit expression for a maximizer.

Here, we present a more direct and elementary approach which allows us to explicitly
determine the families of maximizers and compute the best constants for the esfifnates (1)
and [3) when the exponept= p(n) is an even integer. We show that the classes of max-
imizers are unique modulo the natural geometric invariance properties of the equations.
Moreover, maximizers turn out to be smooth solutions to some functional equations which
can be solved explicitly.

For the Schidinger equation we have:

Theorem 1.1. In the caser = 1 and p = 6, we haveS(1) = 12712 in the casen = 2
andp = 4, we haveS(2) = 2-1/2. In both cases an example of a maximifer L2(R")
for which ‘

le™"2 fill Lo @xrry = SO fill L2 (6)
is provided by the Gaussian functigh(x) = exp(—|x|?).

The geometric invariance properties of the equafidn (2) suggest a way to completely char-
acterize the class of all maximizers.

Definition 1.2. LetG be the Lie group of transformations generated by:

space-time translationsi(¢, x) ~ u(t + tg, x + xg) Withg € R, xg € R”;
parabolic dilations:u(z, x) ~ u(A%t, Ax) with A > O;

changes of scalei(z, x) ~ pu(t, x) with u > 0;

space rotationsu(z, x) ~ u(t, Rx) with R € SO (n);

phase shiftsu(z, x) ~ ¢!?u(t, x) with 6 € R;

Galilean transformations:

u(t, x) ~ exp(%(|v|2t +2 -x))u(t, X +1v)

withv € R”.
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If u solves[(2) ang € G thenv = g - u is still a solution to[(R). Moreover, the ratio
lull oo /1l (0) || .2 is left unchanged by the action 6t

Remark 1.3. We should mention that there exists another important (discrete) symmetry
for the Schodinger equation given by thEseudo-conformal inversion

u(t, x) ~ ,—rz/zeix|2/(4r>u<_}, f)_
tt

Combining the inversion with translations and dilations, we find that thed@ahger
equation is invariant under the representatio§ b{2, R) given by

c+dt X
a+bt’ a+bt

u(t,x) ~ (a+ bt)_”/Zeiblxlz/(4(“+b[))u< ), ad — bc = 1.

These transformations have many important applications. However, we do not really need
them in the context of our analysis and for simplicity we are not including them in the list
of generators of the group.

Theorem l4.Let(n,p) = (1,6 or (n,p) = (2,4). Let fi(x) = exp(—|x|?) and
us(t,x) = e~ f,(x) be the corresponding solution to the Satiinger equation(?).
Then the set of maximizers for which the equdBlyholds coincides with the set of initial
data of solutions tq2)) in the orbit ofu, under the action of the grou@. In particular,
all maximizers are given bg? functions of the form

fex) = exp(Alx|? +b-x 4+ O)
with A, C € C,b € C" andRe(A) < 0.
For the wave equation we have:

Theorem 1.5. In the caser = 2 and p = 6, we haveW (2) = (25/(64r))Y/6; in the
casen = 3andp = 4, we haveW (3) = (3/(167))Y/4. In both cases an example of a
maximizer pair fx, g«) € HY2(R") x H~Y2(R") for which we have

sin(t/—A)
N

is provided by the functiong.(x) = (1 + |x|2)~"~D/2 ¢, (x) = 0.

costv/—A) fy + = WI(fe, 8l gre@nxg-12@ny  (7)

Lpr (Rl+n)

The geometric invariance properties of the equafipn (4) suggest a way to completely char-
acterize the class of all maximizers.

Definition 1.6. Let £ be the Lie group of transformations acting solutionsof the wave
equation and generated by:

e space-time translationsi(t, x) ~ u(t + tg, x + xp) Withg € R, xg € R”;
e isotropic dilations:u(¢, x) ~ u(rt, Ax) with A > O;
e changes of scalai(r, x) ~ pu(t, x) with u > 0;
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e space rotationsu(z, x) ~» u(t, Rx) with R € SO (n);

e phase shiftsu(t, x) ~ /% u (¢, x)+e'%u_(t, x) with6,, 6_ € R (for the meaning
of uy andu_ see the next section);

e Lorentzian boosts:

u(t, x1, x') ~» u(cosha)t + sinh(a)xq, sinka)t + cosha)xq, x')
witha € R.

If u solves[#) and; € £ thenv = g - u is still a solution to[(}#). Moreover, the ratio
lullp po—v /11 (0), 3:u (0N |l 172, 172 is left unchanged by the action gt

Theorem 1.7. Let (n, p) = (2,6) or (n, p) = (3,4). We consider the initial data
fulx) = A+ |x|H~@D/2 ¢ (x) = 0, and letu, be the corresponding solution to
the wave equatio). Then the set of maximizers for which the equéffjyholds coin-
cides with the set of initial data of solutions ¢4) in the orbit ofu, under the action of
the groupL.

In order to understand how to construct maximizers, we first present sharp proofs of the
Strichartz estimates, based on the space-time Fourier transform in the spirit of Klainerman
and Machedon’s work on bilinear estimatgs [5], [2]. We then optimize each step of the
proof by imposing conditions under which all inequalities become equalities. What we
find are functional equations for the Fourier transform of maximizers; their solutions are
given by particular exponential functions with linear or quadratic exponents.

The key tool is the following well-known simple fact about Cauchy—Schwarz’s in-
equality for inner products.

Lemma 1.8. Let{(., -) be a (complex) inner product on a vector spatand letu, v € V
be two non-zero vectors. Cauchy—Schwarz's inequality says that

[, 0|7 < (u, u) (v, v);
moreover, equality holds if and only:if= «av for some scalat € C.

Remark 1.9. The uniqueness of maximizers modulo the transformation groups de-
scribed in Definition$ T2 ar{d 3.6 will be checkadposteriori after we obtain explicit
formulae for maximizers, and it is not used in the proof. While our proof relies heavily
on the fact thap is an even integer, the geometric characterization can be stated also in
higher dimensions whep is not an even integer. It would be interesting to prove our
results without making use of the Fourier transform. For the moment, we formulate the
following natural conjectures.

Conjecture 1.10. For any integem > 1, let p = 24 4/n, let f,(x) = exp(—|x|?) and
us(t, x) = e~'2 f,(x) be the corresponding solution to the Satiinger equation(?).
Then the set of maximizers for which the equdBlyholds coincides with the set of initial
data of solutions tq2) in the orbit ofu.. under the action of the groug.
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Conjecture 1.11. For any integem > 2, let p = 2+ 4/(n — 1) and let f,, be the function
onR"” whose Fourier transform ig;(éf) = |&|"Texp(—|£|). Letu, be the solution to the
wave equatiord) corresponding to the initial data.(0) = f, ;u.(0) = 0. Then the
set of maximizers for which the equal{@ holds coincides with the set of initial data of
solutions tofd) in the orbit ofu,. under the action of the groug.

2. Notation and preliminaries

For1< p < o0, L?(R") is the usual Lebesgue space with norm

1/p
1 o ny = (/ﬂ‘{ |f(x)|1’dx> .

The homogeneous Sobolev spagg¥2(R") and H ~Y/2(R") are defined by the norms
1l gazny = IDY2 fll2gey. 11 g-v2@n, = 172 £l L2ggny.

whereD = /—A. In the context of the wave equation we set

2 2 1/2
1CF @)z i-v2@n = UF 1z + 1815120 Y

If f(x) is an integrable function defined &¥, we define its (spatial) Fourier trans-

form by
F& =] fe ™ ax.
Rn
If F(z,x) is an integrable function defined & x R", we define its space-time Fourier
transform by
F(t,£) :/ F(t, x)e T8 g d.
RxR»

These definitions extend in the usual way to tempered distributions. The Fourier transform

acts like an isometry oh? and, with our definition for the Fourier transform, Plancherel’s
theorem states that

11l 2@y = @21 fll 2@y, IF 2@y = @YD) £ 2@

We recall also that the Fourier transform of a pointwise product (when it is defined) is
given by the convolution product of the Fourier transform of each factor,

_ 2E) = —— 2@)6E —n— O dyd,
f8® = Gon F+3® = 5o A@ o TO0B©SE =0 =0y dnde
FG(r.6) = —FxGr,8)

(271)”"‘1

1 o .
- (277)”“/1@ I F,mG(u, )0 <2 o _l;) dirdndupds.
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Hered(-) denotes Dirac’s delta measure concentrated gtdx) f(x)dx = f(0). We
also denote the tensor product of two delta functions by

b (Z) = 6(a)d(b).

If u(z, x) is the solution of the Scbdinger equatior] {2) then its space-time Fourier
transform is

it &) = 2n8(t — € F (&),

where f is the initial data at time = 0. This shows thafi is a measure supported
on the paraboloid = |£]2. We notice, in connection with the invariance of equatjgn (2)
under Galilean transformations, that the measigre- |£|?) is invariant under the volume
preserving affine change of variables

(T,&) ~ (T +2v-&+v% & +v), (8)

for anyv € R".
If u(z, x) is the solution of the wave equatidn (4) with initial ddta (5), then we can
splititasu = uy + u_, where

; 1

M+([) — @”DD_l/ZfJ,_, f+ — E(D:I./Zf _ iD_l/Zg),
i 1

u ()= e PDTV2f . f = S(DVEf +iDTH2).

We calluy a(+)-wavewith dataf, andu_ a (—)-wavewith dataf_. Observe that, by
the parallelogram law,

2 2 2
”(f? g)”Hl/Z(Rn)XH—l/Z(Rn) = 2(||f+ ”LZ(R”) + ”f— ||L2(RVL))'
The space-time Fourier transformsuof andu_ are

Hi(r, &) = 2n[E|7Y28(x — [ENFL(5),  W_(1,&) = 2n|E|7Y28(x + |ED F- (&)

Hence,u, andz_ are measures supported on the null cones || andt = —|&]|,
respectively. We also notice that the measi§¢std(r  |£|) are invariant under proper
Lorentz transformations. Indeed, we can write

d(r F 15D
1€

The invariance properties of these delta measures on paraboloids and on null cones
later will help us in the computation of some convolution integrals. Eventually we will
need the following simple property of convolutions.

= 20(z? — [P x(£T > 0).
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Lemma 2.1. Let A be ann x n invertible matrix andb a vector inR". Supposef is

a function (or a distribution) orR” which is invariant under the linear affine change of
variablex ~» Ax + b, in the sense that (x) = f(Ax + b) for all x € R". Then, if the
convolutionf = f is well defined, we have

1
f*f(x)sz*f(Ax—i-Zb),

and, if the convolutiory * f = f is well defined, we have

1

For a complex numbery € C, we denote its real and imaginary partsiBy(z) andIm(z)
and its complex conjugate iy Whenever they are mentioned, {eyand ,/z are the
branches of the complex logarithm and of the complex square root defin€d\dR_
which extend analytically the standard real logarithm and the standard square root of
positive real numbers.

For a vectorr = (x1, xo, ..., x,) € R", we writex” = (x2, ..., x,) € R*"1 sothat
x = (x1, x").

If £ is a subset oR” we denote its closure with respect to the usual topolog¥ by

3. Schrddinger equation in dimensionn = 2

Consider the case = 2, p = 4 for estimate[([1). By Plancherel’'s theoreme L*ifand
only if u2 € L? and

luelZ a3y = 16?1l 2rs) = )"l 2qs). ©)

The Fourier transform af? reduces to

- 1 1 L 2 A2
26 = psiriee =5 [ Fonfos (T T ET) ane. ao)

Whené = + ¢ andt = || + |¢|?, by the parallelogram law we have
2t =In+cP+In—cP =52
It follows thatu? is supported in the closure of the region
Pr={(r,€) e R x R?: 2t > |£|%}.

For each choice ofz, £) € P2, we denote by, -)(r,¢) the L? inner product associated
with the measure

2 s2
H(r,s>=5<r El_mn_lfl ) dndg, (11)
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Fig. 1. The regionP,.

and by|| - I,y the corresponding norm; more precisely, we set

(F.G) :/ F(. )G, 06 (T‘ Inf® — '4'2) dnde
DT Jpege ’ §—n—¢ ’

2 2 1/2
1Pl (/szRz' (n. )] ( cl g )dnds

Remark 3.1. The measurgs, ¢ defined in[(IlL) is thepull-backof the Dirac delta on
R x R? by the function®, ¢) : R? x R? — R x R? given by

Dy, 0) = (T — P —1¢1% & —n—20).

This pull-back is well defined as long as the differentiald®f ¢ is surjective at the
points whered, ¢ vanishes (we refer to [3, Theorem 6.1.2 and Example 6.1.3] for more
details about pull-backs of distributions). A quick computation shows that the differen-
tial of @, ¢) is surjective at a poingy, ¢) if and only if » # ¢. On the other hand, if
D(r.6)(n, n) = 0 we must have

2t =2(n1? + 0% = In + nl* = 1%

This tells us thau, & is not well defined on the boundary &, when 2 = l€]2.
However, we can safely ignore the problems at this boundary and observe instead that
for any locally integrable functioF (5, ¢) defined onR? x R? the integralG(z, &) =

[F dp . ¢ defines alocally integrable function @hx RR?. Indeed, ifK is a compact set

in R x R?, we have

/f G, s)|drds<// / P, c>|6( ""2 '“2) dnd dv de
(r.6)ek §—n—¢

—/f F(y, 0] dnde,
(nl2+I¢ 12 n+¢)eK

and{(n, 2) : (In|>+ |¢|%, n + ¢) € K} is a compact set ifR? x R2.
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We can now write[(TI0) as

~ 1 ~ ~
2 = — 1®1
us(t, %) 2ﬂ<f®f» ® 1) (2.,

where the tensor product is definedy® g)(n, ¢) = f(n)g(¢). By Cauchy—Schwarz's
inequality we obtain

1

u2(r, £)| < an ® flleslll® Lre). (12)

Hence,

~ 1 R 1/2
1420 2es) < 5 Sup ||1®1||<f,g)>(/ ||f®f||(2,,§)drd$> . @)
(1,£)eP2 P2

The next lemma shows th#ill ® 1||(c,¢) is not only uniformly bounded with respect to
(t, £), but actually constant on the supportat

Lemma 3.2. For each(t, &) € P> we have|l® 1|16y = /7/2.

Proof. The quantity
I(t.6) = 11 117 ) =/ 8(t — & —nl® = nlP dn
RZ

is just the convolution of the measufér — |£|2) with itself. The invariance of this mea-
sure with respect to the transformatiph (8) together with Lefnmja 2.1 implies that

I(,&) =I(t +2v-& + [v% & +v)

for anyv € R2. If we takev = —&/2 we obtain/(r,&) = I(z*,0), wheret* =
T — |£]2/2. Moreover, it is evident from the definition that, by homogenéiig invariant
under parabolic dilationd,(z, £) = I (127, A&). Hence, when* > 0 we have

1<r,s>=1<r*,0>=1<1,0>=/ 51— 22 dny
RZ
o o T
:271/ 5(1—2r2)rdr:rr/ 5(1—25)ds = —. O
0 0 2
We also have

| 170 Fi g dva
P2

_~ o~ _ 2 2
=f If(n)f(é“)IZ/ §(° M1 grde anac
R2xR2 P, E—n—¢

=17 ® FIZ2gape = 171 2@z, = @O I} 2 ge)- (14)
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It follows from (9), (I3), [T%) and Lemnia 3.2 that
1
lullpars) = ﬁ”f”Lz(Rz)‘ (15)

This proves that for = 2 the best constarst(2) in () is no larger that 1v/2.

Remark 3.3. We observe that in the above computations the only place where we have
used an inequality instead of an equality is[in](13) as a consequence of the Cauchy—
Schwarz inequality (12). If we can find a functighfor which we have equality irf (12)

for all (r,&) € P2 then there will be equality also ifi (]L5). This will show thatis a
maximizer for the estimate and th§2) = 1/+/2.

We have equality in[(13) if there is equality in {12) for almost@ll &) € P,. By
Lemmd 1.8, this happens if there exists a scalar fundtiorP> — C such that

(F® N =Fr, A1, L)

for almost all(n, ¢) (with respect to the measufe [11)) in the support of the medsure (11)
and for almost allz, £) in P, (with respect to the Lebesgue measureRor R?). This
means that we are looking for functiofisand F such that

FF@) =FnPP+1cPn+1¢) (16)

for almost all(n, ) € R? x R2. An example of such functions is given by the pair
J& =¥ Fre)=e¢".
If f is a maximizer,/ must solve the equatiof ({16) and it follows from Proposi-
tion[7.15 that
F& =expAlg?+b-£+0), ek (17)
for some constantd e C, b= (31,32) e 2, Ce C, with ERe(Zf) < 0in order to have
f € L?(R?). The inverse Fourier transform ¢f {17) is again a function of the same class

f(x)=expAlx?+b-x+C), xeR? (18)

where the relations between the parameters C, b € C?, C € C and the parameters
A, b, C are given by

S 2 | 72
1 b . D24b .
A==, b=-—"2 c=C-2T72 _\og—4rA).
v v 4A

The class of initial data of the forr (]L8) is invariant under the action of the gfoup
described in Definitiof T]2. The coefficients change according to the following rules:

space-time translationsz\, Z; 6) ~ (X+ ito, b+ ixo, 5);
parabolic dilations(A, b, C) ~ (X/Az, 3/A, C—n log1);
changes of scaleﬁ;fj;, 6) ~ (Z,E C + logw);

space rotations(';f, b, 6) s (X, Ri;, 5);
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e phase shifts(A, b, C) ~ (A, b, C + if);
e Galilean transformations:
S S )
(A, b, C) ~ A,b+Av,C—Z|v| —E-v .

Hence, after a translation and a phase shift we can make all coefficients real; by a
Galilean transformation we can make= 0; then, by a parabolic dilation we can have
A = —1/4; finally, a change of scale give€s = log(—x). This would correspond to the
cased = —1,b = 0, C = 0, which is the functiory, (x) = e~*I”. Thus, we have proved
that any maximizer is connected fi by the action ofj.

4. Schrddinger equation in dimensionn = 1

Consider the case = 1, p = 6 for estimgte[]]l). This case was considered_ In [6]. By
Plancherel’s theorem, € L8 if and only if u3 € L2 and

Il s gz, = 16l 2y = @0)~Hulll 22 (19)
The Fourier transform af® reduces to

W3(z, £) = ! W x 1z, £)

—— U x*
(2m)*
= Fan f2) f(13)é (T i "5) dnidnzdnz
27 JRxRxR E—n1—n2—n3
X FonFunfaes(, T Y4 (20)
T ox Joao I WIURIURON ¢ 1 1 1)) T

where nown = (11, n2, n3). Whené = (1,1, 1) - n andr = |5|?, we have 3 > &2. It
follows thatu3 is supported in the closure of the region

Pr={(t.§) e RxR:3r > &£2).

For each choice ofr, £) € P1, we denote by, -)(r¢) the L? inner product associated

with the measure
s T Y4y 21)
g - (17 17 1) -n ’

and by| - ||r.¢) the corresponding norm. We can then wijte| (20) as

~ 1 <~ ~ -
u3(r,é)=Z(f®f®f,1®1®1><r,§>7

where the tensor product is defined Yy ® ¢ ® h)(n) = f(n1)g(n2)h(n3). By Cauchy—
Schwarz’s inequality we obtain

~ 1 ~ ~ ~
lud(z, §)| < lef@) O fleslll®1® Lre). (22)
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Hence,

~ 1 PR 1/2
||u3I|Lz(Rz) =< 2—( sup I1®1® 1||(r,$))</ Ifere fll?,,g)df dé) . (23)
T (1,6)ePy P2

The next lemma shows thit ® 1® 1| &) is not only bounded, but actually constant on
the support ofi3.

Lemma 4.1. For each(z, &) € Prwe have|1® 1 ® 1| (r.¢) = 1/ 7/+/3.

Proof. The quantity

2
10,5 =101012,, = /RB‘S <§ _T(l I177|1) : n) dn

is just a twofold convolution of the measudér — £2) with itself. From Lemml

and the invariance of this measure with respect to the transformption (8), it follows that
I(z, &) = I(r*, 0) wherer* = t — £2/3. Moreover, by homogeneityis invariant under
parabolic dilations] (A%, &) = I(t, £). Hence, when* > 0 we have

et O — _ 1—|n|2) _/ (1—|77I2)
I(T’S)_I("0)_1(1’0)_/1[@35(%1,1,1)-:7 M= Lo Va1 i)

1 2 [ T
- — | sa- Zd:—/ S —rdrdr = —.
\/542( elfyae =% [ sa-rtrar= 2 !

We also have

/p 17® F® FI2 ., dr d
1

T T2 T — |nf?
= [ 17w For For /7>15<€ ) dededn
= 1F®F® f122q3 = 11152, = @O f 182, (24)
It follows from (19), [23),[(2}) and Lemnja 4.1 that
luell o ey < 12720 £l 2y (25)

This proves that fon = 1 the best constast(1) in () is no larger than 121/,
As before, we observe that if we could find a functigrior which we have equality
in (22) for all (z, §) € P1 then we would have equality ifi (25) and we would have found
a maximizer for the estimate. We have equality in the Cauchy—Schwarz ineq[ality (22)
for (almost) all(z, &) € P1 if there exists a scalar functiahk : P; — C such that

(FRF® N =Fr,5111 (1)
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for (almost) all in the support of the measufe {21). This means that we are looking for
functions f and F such that

Fa0) F2) Fnz) = FZ + 03 + n3. n1+ n2+ n3) (26)

for (almost) ally € R3. Again, an example of such functions is given by the p?z(ir}‘) =
e F(r,6) = e .
If fisa maximizer,f must solve the equatiof (26) and it follows from Proposi-
tion[Z.10 that R R R
f(&) =expAs? + Bt +C), £€R, (27)
for some complex constanis B, C, with 9%(2) < 0in order to havef € L2(R). The
inverse Fourier transform df (R7) is again a function of the same class

f(x) = exp(Ax? + Bx +C), xR, (28)
where the relations between the parameters, C andA, B, C are
S Z] c=C B 1 log(—4r A)
= —=, = ——=, = - —= — = —4an .
4A 4A 44 2 g

As we have seen at the end of Secf{idn 3, the class of initial data of the[fofm (28) is
invariant under the action of the grogpand any maximizer is connected to the function
felx) = e’ by the action of7.

5. Wave equation in dimensiorm = 3

Consider the case = 3, p = 4 for estimate[(3). We have

1 / ﬁ(n)ﬁ(§)6<r—|n|—|4|
(27)? Jraxrs [nY/?|¢ |12 E§—n—¢

In particular,uu is supported in the closure of the region

uyui(t,£) =

) dnde.  (29)

Crv ={(r.§) eRxR3:7 > &),
Similarly, ,u_ is supported in the closure of

Cim ={(1.6) e Rx R3: |7] < [£[};
andu_u_ is supported in the closure of

C_={(r,6) e RxR®: 7t < —[¢|}.

We remark that formulae likg (29) are the starting point for the bilinear estimates
studied in[[2].
We first prove the estimate far.. By Plancherel's theorem we have

412 0 sy = Il 2@y = )b Nl 2qe)- (30)
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For each choice oft, &) € C1, we denote by(-, -)(r.¢) the L2 inner product associated
with the measure

Krg =0 (rg__hg B |§§|> dndg (31)

and by|| - ||,y the corresponding norm.

Remark 5.1. The measurgs, ¢ defined in[(31L) is theull-backof the Dirac delta on
R¥*3 by the function®, ¢ : (R3\ 0) x (R3\ 0) — R x R given by

P ey ) =@ —Inl—15.§ —n—27).

A quick computation shows that the differential ®f; ¢) is surjective at a pointy, ¢) if
and only ifn/|n| # ¢/I¢]. On the other hand, if/|n| = ¢/I¢] and P gy (n, £) = O we
must haver = [n| + [¢] = |n + ¢| = |&]. This tells us thag, ¢ is not well defined
on the boundary of , , whent = |&|. However, we can safely ignore the problems at
this boundary and observe instead that for any locally integrable fun&tigns) defined
onR3 x RS the integralG(t, £) = f Fdp, ) defines a locally integrable function on

R x R3. Indeed, ifK is a compact set it x R%, we have

// |G(r,s>|drdssf/ / |F<n,;)|6<”_'"'_'“> dnd dv de
K (r.6)eK §-n—-¢

_ /f \F(1. ©)] dndc.
(Inl+1¢l.n+0)ek

and{(n,¢) : (In| +1¢].n + ¢) € K} is a compact set iiR® x R3,

We can now write[(29) as

W2 (1.8) = Fr® Fiul- 1720 |- 7Y% ). (32)

(21)?

The quantity we want to compute this timeffis- [“¥2 ® | - |71/2| .6
Lemma 5.2. For each(z, §) € 1y we have|| - |72 @ |- 72|, = @0)Y2

Proof. The quantity

o 10y ot — 1€ —nl—nD
1@& =11 /”(r@:/Rs € —alim "

is just the convolution of the measud 16 (¢ — |£|) with itself. If ¢ > |£|, from the in-
variance of this measure with respect to proper Lorentz transformations and from the fact
that it is always possible to find a proper Lorentz transformation which také&s to the

point (z*, 0) wheret* = (2 — |£|%) /2, it follows thatI (t, £) = I(t*, 0). Moreover, it

is evident from the definition that by homogeneltis invariant under isotropic dilations,

I (A1, A&) = I (7, &). Hence, whert > ||,

0(1—2§)
1§12

I(r,5)=1<1,0>=f d5=471/006(1—2r)dr=271. .
R3 0
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Cauchy-Schwarz’s inequality applied [0{32) together with Lefnma 5.2 gives

~ 1 -~ -~ 1 —~ ~
12 12z, = s /C 175 @ il gy dede = 7o ® Follaga g,
++
1 —~
= aniz(Rs) = 2030 1117 2z (33)
Hence, combinind (30) anfl (B3) we obtain
I 27) 4 34
utllpawey = @)~ f4ll 2R3y - (34)
This time, equality holds if there exists a functién: C;; — C such that
(f+ ® f) (1, ¢) = F(z, &)yl ?|g |72
for all (1, ¢) in the support of the measufe [31). This means that
Y2 Fr e M2 £ @) = F(nl + 161, n + ©)
for almost ally, ¢ € R3. An example of such functions is given by the pair
Fr@ =1g"%e L P =e

It follows from Propositiorf 7.23 that any maximizer for the estimatg (34) is a function
whose Fourier transform has the form

F&) =151 explAlE| +b -5 + O, (35)
with A,C € C, b € C3, IJm(C) € [0, 27[ and |Re(b)| < —NRe(A) (in order to have
f e L2(R?)). In the next lemma we compute an explicit expression for homogeneous

waves with data of the forn (B5).

Lemma 5.3. Letu be the(+)-wave corresponding to ah? data of the form(35),

dg

1
u(t,x) = / exp((A+it)é|+b+ix)-E+C)—. 36
el P &1 §40) 5 (36)
Then we have the explicit formula
2727 IOy (1 — Jm(A), x — Tm(b))
utie)
(37)

T (Re(A)2 — [Re®)Z+ [x[2 — 12+ 20 (Re(A) — Re(b) - x)’
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Proof. The integral

Ft, x) =/ explrle] +x - &)
s |

is well defined forr € C andx € C3 whenfRe(r) < —|Re(x)|. Fort € R andx € R3
with ¢ < —|x/[, using polar coordinates,= |&| andu = (x/|x|) - (§/]|&]), we find

1 poo L' 2ndu
F(t,x) = 271/ / exp((t + |x|u)r)rdrdu = /
-1J0

_q (t 4 |xu)?
B 47

— 2 _ 2 2 .2
t xl x2 X

By analytic continuation this formula remains valid for compteand x with Re(r) <
—|Re(x)|. Formula[3F) follows from the identity
N o2Re(0)
e IMO Y (1 — Tm(A), x — Tm(b)) = WF(ERe(A) +it,Re(b) +ix). O
JT

Remark 5.4. If u is the(4)-wave corresponding to at? data of the form[(35), then the
knowledge oflu(z, x)| uniquely determines the value of the coefficieAt® andfe(C).
Indeed, by Lemmp 5|3 the imaginary pabts(A) andJm(b) are determined by the fact
that |u(¢, x)| has a unique maximum at the point —Jm(A), x = —JIm(b), while the
real partsiRe(A) < 0,Re(b) andRe(C) are determined by the coefficients of the poly-
nomial

lu(t — Im(A), x — Im(b))| 2
= A% 2O (Re(A))? — |Red) |2 + |x]? — 12)% + 4(Re(A)t — Re(b) - x)?).

We can repeat the above procedure for the tefnfthe only difference is that must
be replaced by-t):
Nl pagrsy < O™ f-ll2gre). (38)
with equality if and only if f_ is of the form [[3b).
For the termu u_, we observe that by dlder’s inequality we have

|l 2qay < lugl agalu—llagey < @) 72| fill 2@ell f- Il 2ge- (39)

The firstinequality in[(3P) is an equality if there is a consfart R such thatu (¢, x)| =
wlu_(t, x)| for (@almost all)(z, x) € R x R3. The second inequality if (B9) is an equality
if f+ andf_ are functions of the fornj (35).

Combining theL? orthogonality of the terms? , u2 andu_.u_ (due to the disjoint-
ness of the supports of their Fourier transforms) with (34), (38)[anid (39), we obtain

4 2,2 4 4 2
lal%e = I+ u)?120 = Nug 1 + a6 + Alusu_|2,

A

1
5(||f+||‘12 F T2+ 4 130 | =112 2 s)

3 3
2 el + 11707 = T I D, yarer (40)

IA
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where we have used the sharp inequality
2 2 3 2

for which equality holds if and only ik = Y. This proves that for = 3 the best constant
W) in is no larger that3/(167))Y/4. The next proposition tells us that maximizers
exist and that the inequalities in (40) are sharp; hete) = (3/(16r))Y4.

Proposition 5.5. We have|u| ;4 = (3/(16m))Y4||(f, &)ll g1/, ;-1 if and only if

F1) = 16 Y2 exp(AlE| +b-+C),  [-(§) = €] Y2 exp(Al§| —b-& + D), (41)
whereA, C, D € C andb € C3 with |Re(b)| < —Re(A) andRe(D) = Re(C).

Proof. By the above discussion, we have equalitie$ i (40) if and onfy iff_ are both
functions of the form[(35) antli,- (¢, x)| = |u—(t, x)| for all (r,x) € R x R3. Observe
that if u_ is a(—)-wave with dataf_, where

&) = 5™ Y2 exp(A_IE| +b- - £+ C_),

then its complex conjugate_ is a(+)-wave with data

fo(=&) = £ exp(A_|g| —b_ £+ C_).

By Remari 5.4, if twa+)-waves with initial data of the forni (5) have the same absolute
value at every point of the space-time then they must have the same coeffitjéraad
Re(C). m]

A particular case of (41), correspondingdo= —1,b = 0,C = D = log(27?), is given
by the initial data

felx) = g«(x) =0, xeRS (42)

1
1+ |x|?

The class of initial data of the forrp (#1) is invariant under the action of the gfoup
described in Definitiop I]6. The coefficients change according to the following rules:

space-time translationgA, b, C, D) ~ (A + ito, b + ixo, C, D);
isotropic dilations(A, b, C, D) ~» (A/A,b/x,C —nlogi, D —nlogi);
changes of scal€A, b, C, D) ~ (A, b, C +logu, D + logw);

space rotationgA, b, C, D) ~ (A, Rb, C, D);

phase shifts(A, b, C, D) ~ (A, b,C +i64, D +i0_);

Lorentzian boosts:

(A, (b1, b)), C, D) ~ (Acosha) — by sinha), (—A sinha) + by cosha), b'), C, D).
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Hence, after a translation and a phase shift we can make all coefficients real; by a rotation
we can maké’ = 0 and by a Lorentzian boost we can make= 0; then, by an isotropic
dilation we can havel = —1; finally, a change of scale giv€s = D = log(27?). This

would correspond to the functions

Fr) = Fo &) = —2n25 "2 exp(— £ )),

which are the Fourier transforms of tit¢) and(—) parts of the initial datd (42). Thus,
we have proved that any maximizer is connectedfto g.) by the action of_.

6. Wave equation in dimensiorm = 2

Consider the case = 2, p = 6 for estimate[(3). We decomposénto its (+) and (—)
parts and treat the® norm ofu as anL? norm ofu3. By expanding the products we find

lul®s = g +u )35, = ud + 3udu_ + Buyu? +u? |2
= a3 1Z + e 17 + Oflufue—I? + Qw2
+ 69%(ui, uf_u_) + 69“1e(u+u3, ui) + 189‘ie(uiu_, u+u2_)
+ G%e(ui’_, u+u2_) + Z%e(uf_, u?j) + 69%e(u3_u_, ul ),

where||- || and(-, -) now stand for the standard norm and inner produgfi(R x R?). We
shall study one term at a time, but first we compute some integrals which will be needed
later.

Lemma 6.1. For (z, &) € R x R? with t > |&|, we define
I(r.§) =/ 5(f —ml - |nz|> dnydny
U e\ E—m=mz ) inaf el

T —|ml — In2l — dnidnzdns
Ia(r.£) = / s ( In1l — In2] |n3|) '
(R2)3 §—m—n2—mn3 In1l n2] In3l

Thenly(t, &) = 27/y/12 — |£|2 and I3(z, £) = 4.

Proof. The fact thatl, and/3 are well defined locally integrable functions Brnx R? fol-

lows from considerations similar to the ones made at the end of Rémark 5.1. Let us define
w to be the measure(t, £) = |£|~18(r — |£]); we havelo = p x p andls = p  u * 1.

The measure is invariant under proper Lorentz transformations, and gieg) such

thatt > |£|, there always exists a proper Lorentz transformation which takeéy to the
point(t*, 0) wheret* = /12 — |£|2. By Lemm, it follows thaf (t, &) = I;(t*, 0)

for k = 2, 3. The integrall; is homogeneous of degre€l while I3 is homogeneous of
degree 0. Hence, far > |£| we have

(L0 1 [ &1—27) 27 (% §(1—2r) o
= —/ —2 d = —*/ dr =
R2 0] ™ Jo

I(t,§) =

r VT2 — ]2

T* T*
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and
dn 21 dn
13<r,s)=13<1,o>=/ 12<1_|,7|,_,7>_=/
2ni<1 Inl Japi<1 (A= nD? = [nHY2n]
Yz gr
= 4772/ = 472, O
0 ~1-—2r

Let us now begin the proof of the estimate for the te|rmi||. The Fourier transform of

3.
u3 is

ul(r,€) = ) dn1dnz dna.
~ (43)
The support ohf{ is contained in the closure of the regi6n . = {(z,&) : T > |&|}.
For each choice ofr, £) € C4, we denote by-, -)(r,¢) the L2 inner product associated

with the measure
‘C — J— J—
5( 1] — [n2l Insl) dnydnadns. (44)

1 / Fr(m) i 0r2) £ 013) (r — [mal = In2l — Ins|
(21)3 Jraye 1l |n2lY/2(ns| /2 E—m—n2—n3

E—m1—n2—n3
We can then write

ud(z,€) = (Fr®Fr® - TV20 1 7YV20 1. 7Y2) s,  (45)

@2n)3
Lemma 6.2. For each(z, §) € C44+ we have|| - |72 @ |- |72 @[ |72 . = 27.
Proof. The square of the norm we want to compute is the intefgraf Lemmg 6.1,

[ 17201 20| 727, = Ia(r. &) = 472, o

Cauchy-Schwarz’s inequality applied fo(45) and Lemimp 6.2 give

1 ~
3% = (Zn)3||uiu2 <

1 I r =2
e fR RO R R drde

= W”f"‘ ® [+ ® f+ll72(Rr2)3) = W”f"‘” = Z||f+|| . (46)
This time, equality holds if there exists a functién: C+4+4+ — C such that

(f+ ® Fr ® F) (1. n2.n3) = F(x, &)l ~2(n2| =2 g 72
for all (n1, n2, n3) in the support of the measufe [44). This means that

Iml Y2 D) 212 - 12) I3l Y2 £ (n3) = F(nal + 2l + Inal, 1 + n2 + n3)

for n1, 12, n3 € R2. Examples of such functions are agdin(¢) = |&|~ Y21, F(z, &)
= e~ 7. More generally, by Propositilg all maximizers for the estinjaie (46) are given
by the family
F&) =g exp(AlE| +b - £ +O) (47)
with A, C € C, b € C? and|Re(b)| < —NRe(A) (in order to have ail? function).
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Lemma 6.3. Letu be the(+)-wave corresponding to ah? function of the forn{@7),

s
&l

u(t,x) =

1
1) /RZ exp((A+it)|E|+ (B +ix)-&+C)

Then we have the explicit formula

27Oy (r — Tm(A), x — Tm(b))
eiﬁe(C)

(48)

~ JRe(A)Z— ReB)R + P — 12+ 2iRe(A)r — Re(b) - 1)
Proof. The integral
ds
€]

is well defined forr € C andx € C2 whenfRe(r) < —|Re(x)|. Fort € R andx € R?
with ¢+ < —|x/|, using polar coordinates we find

F(t,x) :/ expt|El +x - &)
RZ

Zﬂ do 2
—t—|x|cost  JrZ |2’

By analytic continuation this formula remains valid for compteand x with Re(r) <
—|Re(x)|. Formula[(48) follows from the identity

2 [ee)
F(t,x) = / / exp((t + |x| cosd)r)dr do = /
o Jo 0

Re(C)

e~ IMO) (1 — Tm(A), x — Tm(b)) = ——— F(Re(A) + it, Re(b) +ix). 0O
(2m)2

Remark 6.4. If u is the (+)-wave corresponding to ah? function of the form [(4]7),
then the knowledge ofiu (¢, x)| uniquely determines the value of the coefficieAtsb
andRe(C). The proof of this fact is similar to the one outlined in Renfark 5.4.

Similarly, for the term|ju3 || we have

1
lu )% < ZIIﬂIIG,

with equality wheny_ takes the form[(47).
For the term|u2 u_||, we observe that by &lder’s inequality we have

1
lu2u_ || < lu1*3)1u® 173 < §||f+||4||f—||2. (49)

The second inequality iff (#9) is an equalityfif and f_ are functions of the fornj (47).
The first inequality in[(49) is an equality if there is a constant 0 such thatu (¢, x)| =
wlu_(t, x)| for (@most all)(z, x) € R x R2.
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Lemma 6.5. Letu, be a(+)-wave and:_ be a(—)-wave corresponding to initial data
f+ and f_ of the form(@7). If there existgx > 0 such thatju (¢, x)| = wulu_(z, x)| for
all r andx, then

&) = 572 expAlE| +b-+C),  [-(§) = &7 Y2 exp(AlE] —b-£+D)  (50)
for someA, C, D € C andb ¢ C2.

This lemma follows by the same argument used in the proof of Propogitipn 5.5.
Similarly, for the term|ju_«2 || we have

1
lugu?|? < Z||f+llzllf—ll4,

with equality if and only if £ and f_ are functions of the fornj ($0).
Let us now consider the termewi’;, uiu_). We have

1
3 2 3 2 3 2 5
Reu, ufu_) < [l ufu )| < Julll ufu_|l < o ISP

Equality in the second and third inequalities here implies thatand f_ are of the
form (5Q), while we must havem(C) = Jm(D) to have equality in the first inequal-

ity.
Similarly for the term$Re(uu? , u®) andRe(u u_, uu?) we have

1 1
1Re(uyu?, u®)| < lef+llllf—ll5, 1Re(wiu_, upu?)| < —n||f+ll3||f—I|3,

with equality whenf and f_ are of the form[(50) witlim(C) = Jm(D).

The termsRe(u3, usu?), Re(d, u), andRew2u_, u®) are always zero. Indeed,
the Fourier transform of the cubic term$, u? u_, uu? , u® areL? functions supported
on the closures of the regions

Copr ={(1.6) e Rx R?: 7 > [£]},
Core ={(r.6) e RxR?: 7 > —[g|},
Cime ={(r.6) e Rx R?: 7 > ||},
Co—_={(1.& eRxR*:7 > —[g]},

respectively, and the intersectiofis NCy__,Cy+y NC___,Cyy_ NC___ are of
measure zero.
We put together all the estimates for each single term and obtain

2 (|ullSe < A4+ 11+ QLN F= 1%+ Ol f 111
Bl LI =1+ BILF U= 1P + 281 £ P11 =11 (51)
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Lemma 6.6. For X > 0OandY > 0we have the sharp polynomial inequality
X8+ v® +9x%v2 + 9x%y* + 6X°Y + 6XY° + 18x3Y3 < 275()(2 +Y?)3
with equality if and only ifY =Y.
Proof. By homogeneity we can assume tivat 1. Let
PX)=X0+1+9x*+9x%2+6X°+6X+18X%, OX)=X2>+1
We want to prove thatB(X) < 250(X)3 for X > 0, with equality if and only ifx = 1.
Since we have the identity
4P(X) = 40(X)° + 24X Q(X)? + X*Q(X) + X3),
our inequality is equivalent to
24X Q(X)? + X2Q(X) + X°) = 210(X)°,

which reduces to
8Z+2°+2%<7 Z= X X . [0, 1/2].
B 0X) X2+1
On the interval [01/2] the polynomialZ + Z2 + Z3 is strictly increasing and takes its
maximum value 78 whenZ = 1/2, which corresponds t& = 1. O

We apply Lemm& 616 t¢ (1) and finally obtain

1/6 25\ /6
lullzs < <§> U falZz + 1 £ 1D = <@> 1Cf, O 172y fi-1/2(m)-
(52)
which proves thatv (2) > (25/(647))Y®. The next proposition tells us that maximizers
exist and that all the inequalities are sharp; hefié€2) = (25/(64r))YS.

Proposition 6.7. We have|u|l s = (25/(647)Y8|(f, &)ll g2, -2 if and only if

&) = 572 expAlE| +b-+C),  [-(€) = |E] Y2 exp(Alg|-b-£+C), (53
whereA, C € C andb € C2 with [RRe(b)| < —Re(A).

Proof. From the above discussion we have equalities in the estimates for each single
cubic term if and only iffy and f_ are of the form[(5PD) witim(C) = Jm(D). To have
equality in [52) we also nedflf+ || = |l /- |, which in this case implie3te(C) = Re(D).

]

A particular case of (§3), corresponding4o= —1,b = 0, C = log(2r), is given by the
initial data

f) = g0 =0, xeR (54)
V14 |x|?
As we have seen at the end of Secf{idn 5, the class of initial data of the[fofm (53) is
invariant under the action of the grodjpand any maximizer is connected to the functions
(fx, g+) by the action of_.
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7. Functional equations

In this section we study the functional equations which characterize the families of max-
imizers that we have found in the previous sections. They are:

FOFOFR) =Fa2+y2+22x+y+z) forae(x,y z) € RS (55)
FOf(O) =F(x)>+y%x+y) fora.e.(x,y) € R x R?,  (56)
FOFMF@ =F(x|+Iyl+Izl.x+y+2) forae(r.y.z) e ®)3 (57)
) f) = F(x|+1yl,x +y), fora.e.(x, y) €R3XR3, (58)

where f and F are unknown complex-valued measurable functions and the identities are
supposed to hold almost everywhere with respect to the Lebesgue measure. We are going
to show that locally integrable solutions to these equations are actually smooth functions;
this is a general principle which holds for a large class of functional equations (actually
even assuming only measurability implies continuity, see the work ofrai dn [4]), but

for the sake of completeness we include a direct proof adapted to our equations. Once
the smoothness of and F is established, it is not difficult to solve the equation using
geometric or differential methods. It turns out that in all cases the funétiorust be an
exponential function of the form

F(t,x) =exp(At +b - x + C).

A simpler model for the above functional equations is provided by the exponential
law, f(x) f(y) = f(x + y), which is one of the four basic Cauchy functional equations.
We refer the reader t0][1] for a general introduction to the subject of functional equations.
Here, we only require the following result which is a simple exercise in real analysis.

Lemma 7.1. Let2 be an open subset &* such thatr + y € Q whenever, y € Q. Let
f : Q — C be anon-trivial locally integrable solution of the Cauchy functional equation

fX)f(y)=fx+y) forae.(x,y) e xQ. (59)
Then there exists a vectbre C" such thatf (x) = exp(b - x) for a.e.x € Q.

Proof. Let QO be a cube contained if2 such thath F(»dy # 0. If we integrate[(59)
with respect toy € Q we see thatf (x) must coincide (almost everywhere) with the

continuous function
Jo fG&+y)dy

fQ fdy
If f is continuous the above function is differentiable. Hence, we may assumég tbat
differentiable. Fixyo € € and letb = (V f(y0))/f (o). If we differentiate [[GP) with
respect toy and sety = yg we obtain the differential equation

Vfx+yo) = f(x)Vf(yo) = f(x)f(yo)b = f(x + yo)b,

whose non-trivial solutions have the forfiiz) = exp(b-z+ C) for some constar€ < C.
Substituting this expression fgiinto (59), we see that ex@’) must be 1. O

X =
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As was done in the lemma, regularity properties of solutions to functional equations can
be obtained by (partial) integration of the equation. The following lemmata, although not
expressed in their most general form, are what we need to deduce continuity from local
integrability in our equations.

Lemma 7.2. LetA, B, Q be open subsets Bf*. Let f € Lf(’)c(sz) andletp : AxB — Q
be a smooth map such that

de[(g—z(x,y)‘ #0 for(x,y) € A x B. (60)

Let K be a compact subset d&. For eachx € A, letg, : B — Q be the function
2x(y) = f(¢(x,y)). Then the map — g, is a continuous map from to L?(K).

Proof. The case off continuous is immediate. The general case follows by density. The
condition on the partial Jacobian @fis enough to apply, at least locally, the change of
variabley ~ z = ¢(x, y) in the integration ovek . We leave the details to the reade

Remark 7.3. Lemma[ 7.2 does not hold if we remove conditipn](60). For example, if
A = B = Q andg(x,y) = x then we would have,(y) = f(x) and the map +—
lgxllirky = |K|YP| f (x)| may not be continuous.

Lemma 7.4. Let A, B, Q be open subsets 8. Let f; € L/.(Q), j = 1,..., N, with
Zj 1/pj = 1 Letgy,...,¢n : A x B — Q be smooth maps such that

a .
det‘a—%(x,y)‘yéo, (x,y)eAxB, j=1,...,N.
y

Lety : A x B — C be a continuous function. L&t be a compact subset 8f Then the
function

N
F(x)=/K1"[ﬁ(<pj(x,y>)w(x,y)dy, X €A,
j=1

is continuous.
Proof. The continuity of F follows from the previous lemma and the continuity of the
functional
(X.81.....8N) > /K [Teiwx, y)dy
J
defined onA x [, Li(<). O

Proposition 7.5. Let 2 be an open subset dR” x R"” such that the sectio®, =
{y e R": (x,y) € Q}is dense inR" for eachx € R". LetP, Q : 2 — R" be smooth
maps such that

de[{B_P(x, y)‘ # 0, det'a—Q(x, y)' #0 for(x,y) € Q. (61)
ay dy
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If f:R" — Cis alocally integrable solution of the functional equation

FO )= f(Px, y)f(Qx,y) forae.(x,y) €, (62)
then f is continuous.

Proof. We may assume that is non-trivial. Letg(x) = +/[f(x)]. When f € LL _(R")

loc
we haveg € L%C(IR{”). Hence, by|[(6[L), it follows that for every € R” the function
y = g(P(x, y)g(Q(x, y))is locally integrable of2. Fix xg € R" and choose a compact
domainD in Q,, such that(,, f # 0.
We integrate the square root of the absolute value of equétipn (62) with respect to

over the domairD and obtain
g(X)/Dg(y)dy=/Dg(P(x,y))g(Q(x,y))dy-

By Lemmg 7.4, the right hand side is a continuous function fufr x in a neighborhood
of xo. SincefD g # 0, we deduce that is continuous akg. This proves thatf| is a

continuous function. In particular it follows thgte Lﬁ,c. We can bootstrap the argument:
if we integrate[(6R) with respect tpover the domairD, we obtain

f(x)fDﬂy)dy=/Df<P<x,y))f(Q<x,y>)dy,

from which it follows thatf is continuous. O

In the following subsections we will study in detail each of our four functional equations.
In each case we will adopt the following strategy:

(1) Local integrable solutions are continuous.
(2) Non-trivial continuous solutions never vanish.
(3) Continuous solutions which never vanish are of exponential form.

Remark 7.6. It is interesting to observe that there are functional equations which for-
mally look very similar to the ones we are considering, but for which each of the above
three steps fails. Take for instance the functional equation

) f(y) =Fx?+y% x+y) forae.(x,y) eR2
In this case, givemanyfunction f we can always construct a solution by setting

t—l—\/?)f(t—\/ﬁ).

F(s,t):f(

Even if the functionf is locally integrable, it does not need to be an exponential, it can
vanish on any set and does not need to be continuous.
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7.1. Equation(55)
As in Sectior] i we leP; = {(s,1) e R x R : 35 > 12},

Lemma7.7. Letf : R — C andF : P; — C be functions which solve equati55).
If f is locally integrable thery and F are continuous functions.

Proof. We first prove thatf locally integrable implieg locally integrable. Indeed,

f// If(x)f(y)f(z)ldxdydz=f 5 IF(v%,v-(1,1,1)|dv
%24y [2+]z[2<R? veR

[v|<R

R 1
= 271/ / \FO2, N 3ru) |2 dudr = 2= |F(s,t)|ds dt
0 J-1 x/:—g t2/3<s<R?

forany R > 0. Moreover, using the change of variables
(3,2~ (5,0 =Dy, ) = (P +2% y+2)

from the region(y > z} to {s > r2/2}, with ds dt = 2(y — z) dy dz, we have

f(x)/ f(y)f(z)(y—z)dydzzf F?+y2+ 2% x+y+2)(y—2)dydz
Q Q

:1'/ F(xz—i-s,x—i-t)dsdt

2 )o@

for any bounded domaif < {y > z}. The local integrability ofF implies that the

function x — f<b<sz) F(x2 + s,x + t)dsdt is continuous. We choos@ so that the

integralfQ fO) f(2)(y — 2)dydz is not zero and it follows thaf (x) is continuous.
The continuity ofF comes easily from the equation and the continuity pince we

have
t+ /25 — t2>f<t — /25 — tz)
2 2 '

F(s, 1) = f(O)f<
Remark 7.8. We can write[(5p) as
(f®f®HW)=F@,1n, veR: s=pP t=v-111D,
which shows that the tensor prodye® f ® f, as a function oiR3, is constant along any
circleT'(s, ¢) obtained as the intersection of the sphere of ra¢iugentered at the origin

and the plane orthogonal to the vectty 1, 1) passing through the poiiit/3,7/3,¢/3).

Lemma 7.9. If f and F are continuous functions which solve equat{6f) and /' van-
ishes at one point theyi and F vanish everywhere.
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Proof. By continuity it is enough to prove that the set of all points whéreanishes is
open. Supposg vanishes at a point,. If f is not identically zero then there exists some
open setd in R on which f never vanishes. Let, andz, be two distinct points im.
Consider the map

3= (6,0 = @+ Y+ 25 x+y+2).

Its Jacobian determinant at the paint, z.) is 2|y.—z«| # 0. Hence, the map is invertible

from a neighborhood/ ¢ A x A of (yx, zx) t0 a neighborhood’ of (s, t,) = (xf +

y2 4 22, x4 + ¥« + z4). It follows that, for eachx sufficiently close tox, so that(x? +

y2 422, x 4 y« + z4) lies in V, there exists a pality, z) € U such that
G222 etz =2+ Y2+ 22+ y +2).

Using the functional equatiof (b5) we obtain

JSf ) f(z) = fa) f(0) () =0,

and we know thay (y.) f (z«) # 0. Hence,f (x) vanishes for in a neighborhood aof,.
|

Proposition 7.10. If f : R — C and F : P; — C are non-trivial locally integrable
functions which satisfy the functional equati@@d) for all x, y, z € R, then there exists
complex constants, B, C such that

f(x) = exp(Ax2 4+ Bx + C),  F(t,x) = exp(Ar + Bx + 3C)
for (almost) all(z, x) € P.

Proof. By Lemmd 7.7, we may assume thyaand F are continuous. By Lemnja 7.9, we
may assume that and F' never vanish. We define

S _ F(s,0)
00 =~ G0 = 5o
hx) = f(x)f(—x), H(s,t) = F(s,t)F(s, —t).

The functiong corresponds to thedd component off, g(x)g(—x) = 1,2(0) = 1,
and satisfies the same equation

gg(g() =G’ +y?+ 2 x+y+2), x,y,zeR.
In particular,
G(25,0) = g(/5)g(—+/5)g(0) = 1
for all s > 0. It follows that
gg() = g(x +3)g(—x —»)g()g(y) = g(x+Y)G((x+y)2+x2+y?, 0) = g(x +).

By Lemmg 7.1 ¢ must be an exponential function of the fogitx) = exp(2Bx) for some
complex constanB.
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The functionk corresponds to thevencomponent off, 2(x) = h(—x) and satisfies
the equation

h)h(Wh(z) = Hx? +y? + 2%, x £ y£2), x,y,z€R,

for any combination of signs. By the same argument used in R§mark 7.8, we deduce that
h ® h ® h is constant along circles obtained by intersecting spheres centered at the origin
with planes perpendicular to the four vectgts+1, £+1). It follows thath @ h @ h must be
constant on any sphere centered at the origin. In fact, any two points at the same distance
from the origin can be connected by a finite sequence of arcs of the above circles. This
means that there exists a functipn R, — C such that

%O);)gh@:w(xz—i—yz—i-zz), x,y,z€R.

In particular, fors > 0 andr > 0, we have

ol = h(V$)R©0? h(vDh(O? _ h(V)A/DhO) _ G+9)
PP =" 03 hO3 1(0)3 =elsTh.
By Lemmd 7.1Lp must be an exponential function of the fouts) = exp(2As) for some
complex constantt. Hence i (x) = h(0) exp(2Ax2).

We conclude the proof of the lemma by observing that

F(x)? = g(x)h(x) = exp2Bx)h(0) exp(Ax?) = exp(2Ax? + 2Bx + 2C),

whereC is a complex constant such tha¢0) = €. O

7.2. Equation(56)

If we integrate equatiof (56) with respectiton a domain oR?, we cannot apply directly
the regularity results of Lem .4, because the domaifi isf a region inR2 and the

image of the map — (|x|2 + |y|%, x + y) is a set of measure zero R?. To overcome

this difficulty we exploit the geometric invariance properties of the equation.

Remark 7.11. Let I : R2 — R? be the identity orR? and letH : R2 — R2, H(x1, x2)
= (—x2, x1), be a counterclockwise rotation lry'2 of the plane. Given two pointsand
y in R? the functions

x + x — I+H I —H
P(x,y) = y+H< y)= X+ Y,

2 2 2 2
x+y x—=y I1—-H I+H
= - H =
0(x,y) > < 5 ) S Xt

determine two other points = P(x, y) andg = Q(x, y) so thatx, y and p, g are the
opposite vertices of a square (see Figyre 2) and we have

prg=x+y, IpP+lgl? =xI?+ 1y (63)



Maximizers for the Strichartz inequality 767

b

Fig. 2. The functionsH (left) and P, Q (center) described in Remll and a rectangle (right)
used in Remark7.14.

Moreover, the linear magx, y) — (p, ¢) is an isometry oiR? x R2. By property [(68),
it follows that the equatiorj ($6) implies the equation

FFO) = F(Px, y)f(Q(x,y) forae.x,y) € R? x R% (64)

Observe also thatP/d0y = (I — H)/2 anddQ/dy = (I + H)/2 are non-singular
matrices.

As in Sectior] Bwe leP; = {(s,v) € R x R?: 25 > [v[3}.

Lemma7.12. Let f : R? — Cand F : P, — C be solutions of equatiofG8). If f is
locally integrable thenf and F are continuous functions.

Proof. By Remark 7.1]1, the lemma becomes a corollary of Propogitign 7.5. o

Lemma 7.13. If f is a continuous solution of equatid64) and s vanishes at one point
then f vanishes everywhere.

Proof. Let y € R?. If f vanishes at the pointy, equation[(6f4) implies thaf vanishes
at the pointxy, wherex is eitherP (xg, y) or Q(xo, y), and|xy — y| = (1/«/§)|xo -yl
By iterating this argument, we can construct a sequence of pgjraisch thatf (x,) = 0
and lim, x,, = y. By continuity it follows thatf (y) = 0. O

Remark 7.14. 1t follows from equation[(56) thaif solves the rectangular functional
equation

fla)f(c) = fb)f(d),

whenever the points, ¢ andb, d are the opposite vertices of a rectangle (see Figure 2).
Indeed, wher — b =d — canda — b L ¢ — b, we have

O=(a—b)-(c—b)=a-c—(a+c)-b+|bP=a-c—(b+d)-b+|b°=a-c—d-b.
Hencea-c=b-dandjal?+|cl?=|a+c|?—2a-c = |b+d|?—2b-d = |b|?+ |d|2.
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Proposition 7.15. If f : R> — C and F : P, — C are nontrivial locally integrable
functions which satisfy the functional equatifBf]) then there exist constants € C,
b € C?, C e C such that

f) =exp(Alx[?+b-x+C), F(t,x)=expAt +b-x+2C)
for (almost) all(z, x) € Pa.

In the proof of the proposition we follow a geometric construction which is an adaptation
of the one for odd orthogonally additive mappings foundin [7].

Proof. By Lemmd7.1IR, we may assume thatnd F are continuous. By Lemnja 7]13,
we may assume thgt and F never vanish. We define

fw _ F(t,2)
g0 =25 G = 7

h(x) = f(x)f(—=x), H(t,z) =F(t,2)F(t,—2z).

The functiong corresponds to thedd component off, g(x)g(—x) = 1 andg(0) = 1.

By Remark{ 7.I4 we know it satisfies the rectangular equagieng(c) = g(b)g(d)
whenever the pointg, ¢ and b, d are the opposite vertices of a rectangle. Given two
vectorsx andy in R? it is always possible to find a third vectersuch that: L x + y
andx + z L y — z. Let p and—p be the components afandy perpendicular ta + y.
Consider the three rectangles formed®yx + z, x + y, y — z), (x, x +z, p +z, p) and
(y,y —z, —p — z, —p) (see Figurg]3); using the rectangular equation we have

gx+ g0 =gx+2)g(y—2),
gx)g(p+2)=gkx+2)8g(p),
gWg(=p—2) =g —2)g(=p);

X x+z

—-q o q

—p—z —p 0 p p+z

Fig. 3. Constructions for the functiop (left) and the functiom: (right) in the proof of Proposi-
tion[Z.15.
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and using the parity properties gfwe obtain

gx+y) =g+ g0 =gx+2)g(y —2) =g(x +2)g(P)g(y —2)g(—p)
=gx)g(p+2)g(g(=p —2) = gx)g(y).

By Lemma[7.1L¢ must be an exponential function of the fogx) = exp(2b - x) for
some complex vectdr € C2.

The functioni corresponds to thevencomponent off, 2(x) = h(—x), and satisfies
the rectangular equatiol(a)h(c) = h(b)h(d) whenever the pointa, ¢ and b, d are
the opposite vertices of a rectangle. Given two poinendy with |x| = |y|, let p =
(x+y)/2,q = (x — y)/2 and consider the rectanglé3, p, x, ¢), (0, p, y, —q) (see
Figure 3); by the rectangular equation and the parity ofe have

h(x)h(0) = h(p)h(q) = h(p)h(—q) = h(y)h(0).
Hence,|x| = |y| impliesh(x) = h(y). This means thak is spherically symmetric and
there exists a functiop : R, — C such thati(x) = h(0)p(|x|?) for x € R?. Given
s > 0andr > 0, letx andy be two points inR? such thatx|? = s, |y|2 = r andx L y;
by the Pythagorean theorem we haver y|2 = s + ¢. It follows that

h(x)h(y) _ h(x + y)h(0)
t) = = = 1).
P(s)p(1) 7(0)2 7(0)2 p(s +1)
By Lemmd 7.1Ly must be an exponential function of the fouts) = exp(2As) for some
complex constanti. Henceji(x) = h(0) exp(2A|x|2).
We conclude the proof of the lemma by observing that

F(x)? = g(x)h(x) = exp(2b - x)h(0) exp(A|x|?) = exp(2Ax® + 2b - x + 2C),
whereC is a complex constant such thaf0) = €. O

7.3. Equation(57)
As in Sectiof] bwe le€, 4 = {(r,v) e R x R?: ¢ > |v]}.

Lemma7.16. Let f : R> - CandF : C,,, — C be functions which solve equa-
tion (57). If 1 is locally integrable thery’ and F are continuous functions.

Proof. Suppose first that € L} (R?) for somep > 2. Using the results of Lemnja 6.1

we can see that € Li (C+4); indeed,

1
/ IF(t,v)ldvdi = == \F(t, v)|I3(t, v) dv dt
lv2<i<R 81 Jjv<i<r

1 F |, 4 — — —
_ 2/ [F(lx| + [y + |z x—l—y—l—z)|6<t x| — |y |z|> dxdydzdvdr
87< Ji<r x| |yl Izl VX —y—2

3
=i/ |f(x)f(y)f(Z)|dxdde§i(/ |f(x)|dx)
872 Jixi+iyl+zi<k X1yl lz] 872 \Jixj<r %l

< C(Rl_z/p)3||f||ip(B(O,R))'
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We now choose a bounded dom&inc R? x R? such that the integral

c _/ F) f(z)
Q_
o Iylzll2(yl + Izl y + 2)

is finite and not zero (heré is the function defined in Lemnia 6.1). This is possible
when f is not trivial, sincef (x)/|x| is locally integrable and /> is bounded on compact
subsets of ;. We divide both sides of ($7) by| |z|I2(|y| + |z|, ¥ + z) and integrate
with respect tdy, z) € 2 to obtain

fx)Cq = / F(lx| +1t,x +v)pq(t, v)dvdt (65)
D

for almost every € R?, where

oot v) = — /é(t_m_m) dydz
L(t,v) Jo v—y—=2/ |yllz|

is a bounded continuous function and the regibis its support. The continuity of now
follows from the continuity of the right hand side [n {65) by Lemimg 7.4.

Suppose now thaf e Li (R?). Then forp > 2 the functionsg = |f|¥/?
L (R?), G = |F|YP also solve equatiof (57) and it follows from the previous argu-
ment thatg is continuous. Hencef | is also continuous and sb L{;C(RZ) for any p.

The continuity of F comes easily from the equation and the continuityfoff r >

r > 0 andw is a unit vector, we have

F(t,ra))=f(0)f<r;tw)f(r;tw>. o

Lemma7.17. If f and F are continuous functions which solve equati@1]) and f
vanishes at one point thefiand F vanish everywhere.

Proof. Equation[(5]) implies that
3
f(g) = F(x],x) = f() (0% (66)

Supposef (xg) = 0. Thenf(x1) = 0 for x1 = xo/3. By iterating this argumenty. 1 =
x/3, we can construct a sequence of poitsuch thatf (x,) = 0 and lim, x, = 0. By
continuity it follows thatf (0) = 0, and by[(6p),/ must vanish everywhere. O

Lemma 7.18. Letn > 1. Let NV = {(t,x) € R x R" : t = |x|} be the cone of future null
vectors and’ = {(r, x) € R x R" : r > |x|} the cone of future time-like vectors. Observe
that V' + N =C =N UC. If F : NUC — Cis a continuous solution of the conditional
functional equation

UVeN = FUFUV)=FU+YV) (67)
thenF is also a solution of the unconditional functional equation

F(X)F(Y)=F(X+Y), VX,Y€C.
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(b—l—d)V‘

Fig. 4. Construction for the proof of Lem18.

Proof. Let X andY be two vectors in\" U C which are not both inV. Let IT be a two-
dimensional plane through the origin which contaiisand Y; the intersection of the
planeIl with the coneV is the union of two null directed half lines,

NNN =@®R.U)UR,Y),

whereU andV are two linearly independent vectors M. We write X andY as linear
combinations ot/ andV,

X=aU+bV, Y=cU+4dV,
for some non-negative coefficientsb, ¢, d. Then, by[(6F),

FX+Y)=F((aU+bV)+(cU+dV))=F{(a+aU+ b+d)V)
= F((a+c)U)F((b+d)V) = (F(aU)F(cU))(F(BV)F@AV))
= (F(aU)F(V))(F(cU)F(dV))
= F(aU +bV)F(cU +dV) = F(X)F(Y). O

Proposition 7.19. If f : R? - CandF : C4,, — C are non-trivial locally integrable
functions which satisfy the functional equatifB¥]) then there exist constants € C,
b € C?,C e C such that

fx)=exp(Alx|+b-x+C), F(t,x)=expAt+b-x+3C)
for (almost) all(z, x) € C44+.

Proof. By Lemmg 7.1p, we may assume thfaand F are continuous. By Lemnja 7]17,
we may assume thagt and F never vanish. Setting = 0 andz = 0 in (57) we obtain
F(lx|, x) = f(x)f(0)2. We defineG(z, x) = F(z, x)/F (0, 0). Then

CF(xlx) )

2
G(lxl,x) = F0.0) ~ fO)’ x € R
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We also have

JOSfWMFO _ Flx|+1yl.x+y)
f@*  — F@O0

We can apply first Lemmia 7.]18 and then Lenimg 7.1 to the fundfido deduce that

G(t, x) = exp(Ar + b - x) for some constanta € C andb € C2. The result then follows
by choosingC so thatF (0, 0) = exp(3C). O

G(xl, )Gyl y) = =G(x[+ |yl x +y).

7.4. Equation(58)

Lemma 7.20. It is possible to construct an open s@t ¢ R3 x R3 whose sections
Q, ={y: (x,y) € Q} are dense irR® for everyx € R3, and a pair of smooth maps
P, O : Q@ — R3such that, for everyx, y) € Q,

[P(x, )|+ 10, y)| = |x|+ |yl (68)
P(x,y)+ Qx,y) =x+y, (69)

de#g(x,y)‘ # 0, de[{%(x,y)‘ # 0.
dy dy

Fig. 5. Constructions of the functionB, Q and their inverses as described in Le .20.

Proof. The set2 = {(x,y) € R3 x R® : x x y # 0} of linearly independent pairs of
vectors clearly has sectios, dense inR3 for everyx. Given(x, y) € ©, the ellipsoid
of revolution

Ex,y) = {u € R Jul + |x +y —ul = x| + [y]},

with foci at 0 andx + y and which contains the pointsandy, is non-degenerate, and
any line passing through one of the foci intersects the ellipsoid in exactly two points.
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In particular, the line. passing througly and 0 intersect€ (x, y) in y and in another
point p; similarly, the linex passing through andx + y intersect£(x, y) in x and in
another poiny. By symmetry we have + ¢ = x + y and from the definition of it
follows that

Ipl +lgl = Ipl+Ix +y — pl = |x] + |yl

It is evident from the geometric construction that the correspondence — (p, q)
is a smooth map as long as the vecterandy remain linearly independent; moreover,
whenx andy are linearly independent, alg®, p) and(x, ¢) are pairs of linearly inde-
pendent vectors. Setting(x, y) = p and Q(x,y) = ¢, we obtain two smooth maps
P, Q : Q@ — R3which satisfy[(6B) and (§9).

To verify that, for fixedx € R3, the mapsy — P(x, y) andy — Q(x, y) are locally
invertible we provide a smooth geometric construction of their inverses.

Given a pair of pointgx, p) € @, we defineH(x, p) to be the branch of the hyper-
boloid with foci at 0 andp — x passing through the poimnt,

Hx, p) ={u e R3: |u| — |p — x —ul = |p| — x|},

and we notice that it is non-degenerate sipamoes not belong to the line passing through
0 andp — x. The line passing through and 0 intersect${(x, p) in p and in another
pointy,. The map(x, p) — y, is smooth as long asandp remain linearly independent.
We claim thatP (x, y,) = p; indeed,p belongs to the line passing throughand 0, and
from the definition ofH(x, p) it follows that

[Pl +1p —x — yul = |x| + |yl

which means thap € £(x, y,).

Similarly, given a pair of pointgx, ¢) € 2, we considefH(x, g), the branch of the
hyperboloid with foci at 0 and — x passing through the poigt The line passing through
g — x and O intersect${(x, ¢) in one pointy,., the vertex of the hyperboloid. The map
(x,g) > v« is sSmooth as long as andg remain linearly independent, and it easy to
check thatQ (x, y.«x) = ¢. Indeed, sincg — x belongs to the line passing through,
and 0, by a translation we find thatbelongs to the line passing throught y.. andx,
moreover from the definition df{(x, ¢) it follows that

Ig| +1g — X — Yase| = [X] + Vs,
which means thag € £(x, y)- O

Remark 7.21. Explicit formulae for the function® and Q constructed in the previous
lemma are given by

x -y —|x|lyl
x-y+ x|yl +2y?

P(xvy)z( )yﬂ Q(X’Y)Zx"'y_P(xay)

Asin Sectio) bwe lef, . = {(r,v) e R x R3: ¢ > [v[3).
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Lemma7.22.Let f : R® - CandF : C,, — C be functions which solve equa-
tion (58). If f is locally integrable thery’ and F are continuous functions.

Proof. Let P andQ be the functions constructed in Lemma 7.20f Kind F are solutions
to (59) it follows that

FOOFO) = fF(PO, ) F(Qx,y) forae.(x,y) e R®xR3,

and the lemma then becomes a corollary of Proposition 7.5. ]

Once the continuity of locally integrable solutions[to](58) is established, one proceeds in
the same manner as in the previous subsection and obtains the following result.

Proposition 7.23. If f : R® — Cand F : C,, — C are non-trivial locally integrable
functions which satisfy the functional equation

FE ) = F(x]+ |y, x +y)
for all x, y € R3, then there exist constantse C, b € C3, C € C such that
fx) = expAlx| +b-x +C), F(t,x) = eXpAr + b - x + 2C)
for (almost) all(¢, x) € C4 4.
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proof of Lemmd 7.18; to A.&rai for comments on regularity properties of solutions to functional
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