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1. Introduction

For a twice differentiable functionu defined in a domain� ⊂ Rn thek-Hessian operator
(k = 1, . . . , n) is defined by

Sk(D
2u) = Sk(λ(D

2u)) =

∑
1≤i1<···<ik≤n

λi1 · · · λik , (1.1)

where theλ’s are the eigenvalues of the Hessian matrixD2u of u andSk is thekth ele-
mentary symmetric function. For example, fork = 1, S1(D

2u) = 1u, while, for k = n,
Sn(D

2u) = detD2u. Equations involving these operators, and some more general equa-
tions of the form

F(λ1, . . . , λn) = f in �, (1.2)

have been widely studied by many authors, who restrict their considerations to convenient
cones of solutions with respect to which the operator in (1.2) is elliptic. Following [25]
we define the cone0k of ellipticity for (1.1) to be the connected component containing
the positive cone0+

= {λ ∈ Rn : λi > 0 ∀i = 1, . . . , n} of the set whereSk is positive.
Thus0k is an open, convex, symmetric cone with vertex at the origin and

∂Sk

∂λi
(λ) > 0 on0k, ∀i = 1, . . . , n.

This implies that (1.1) is elliptic on functionsu ∈ C2(�) such that at each point of� the
vector of eigenvalues ofD2u belongs to0k.

Following [7] we call such functionsadmissible(with respect toSk, k ≥ 2) or k-
convex. We will denote by8k0(�) the set of admissible functions that vanish on the
boundary of�.

In [12] Korevaar has shown that0k can also be characterized as

0k =

{
λ ∈ Rn : Sk(λ) > 0,

∂Sk

∂λi1
(λ) > 0, . . . ,

∂k−1Sk

∂λi1 . . . ∂λik−1

(λ) > 0,

∀1 ≤ i1 < · · · < ik−1 ≤ n

}
;
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while in [11] Ivochkina proved that

0k = {λ ∈ Rn : S1(λ) > 0, . . . , Sk(λ) > 0}.

In this paper we deal with the following Dirichlet problem:{
Sk(D

2u) = g(x, u) in �,

u = 0 on∂�,
(1.3)

whereg is a positive function satisfying the growth condition

g(x, u) ≤ f (x)+ σ |u|p, (1.4)

wheref > 0 is a “smooth” function,σ > 0, 0 < p ≤ k. We also consider the sym-
metrized problem {

Sk(D
2v) = f #

+ σ |v|p in BR,

v = 0 on∂BR,
(1.5)

wheref # is the spherically decreasing rearrangement off andBR is the ball centered
at the origin, having the samekth mean radius as� (see Section 2 for definitions). Our
purpose is to compare solutions to problems (1.3) and (1.5).

Existence of solutions to (1.3) in8k0(�) has been investigated by Caffarelli, Niren-
berg and Spruck in [7], where they treat the casef = f (x) and establish the classical
solvability for the Dirichlet problem{

Sk(D
2u) = f (x) in �,

u = 0 on∂�,

if and only if ∂� satisfies

Sk−1(k1, . . . , kn−1) > c0 > 0

wherekj denotes the principle curvatures of∂�, oriented so that convex domains have
nonnegative curvatures. Many other authors have been interested in the problem of exis-
tence and regularity of classical or viscosity solutions to (1.3) under suitable hypotheses
(see e.g. [20], [25], [26]). In any case existence and uniqueness of classical solutions to
(1.3) are strictly related to the definition of the first eigenvalue of the Hessian operator
Sk(D

2u). In [13] and [24] for the casek = n and in [26] for the general case 1≤ k ≤ n,
it is shown that there exists a positive constantλ1, which depends only onk, n and�,
such that: (i) the problem {

Sk(D
2u) = |λu|k in �,

u = 0 on∂�,
(1.6)

has a negative solutionψ1 ∈ C∞(�) ∩ C1,1(�) for λ = λ1; (ii) if (λ?, ψ?) ∈ [0,∞[ ×

(C∞(�)∩C1,1(�)) is another solution to (1.6), thenλ? = λ1, ψ? = αψ1 for some posi-
tive constantα. All these features suggest the well-known properties of the first eigenvalue
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of linear second order elliptic operators. For this reason we refer toλ1 as thefirst eigen-
valueof the Hessian operator. Moreover, the following variational characterization holds
true (see [26]):

(λ1(�))
k

= inf

{
−

∫
�

uSk(D
2u) dx : u ∈ 8k0(�), ‖u‖Lk+1(�) = 1

}
.

Concerning uniqueness results for solutions to problem (1.3) we refer to [13], [24], [25],
[26]. No attempt has been made here to investigate existence or regularity questions for
problem (1.3). Our aim is to prove comparison results by means of symmetrization tech-
niques in the framework of papers [17], [4] in the casek = n = 2, and [22], [23] in the
general case 1≤ k ≤ n. In [17], [22], [23] the caseσ = 0 is considered, while in [4]
the caseσ > 0 has been investigated whenk = n = 2. Here we assumeσ > 0 and
1 ≤ k ≤ n. The paper is organized as follows. After introducing notation in Section 2, in
Section 3 we state our main result and we prove a comparison result between a suitable
rearrangement of the solution to (1.3) with the solution to the symmetrized problem (1.5).
The rearrangements involved are those which preserve the so called “quermassintegrals”
of level sets of solutions (see [17], [22], [23]) and the main tools are the Alexandrov–
Fenchel inequalities (see Section 2). In the last section we prove some kind of Moser
inequality related to Hessian integrals in the framework of papers by Moser [14] and
Trudinger [19], [22].

2. Notation and preliminaries

Given a measurable functionu : � → R, we recall the definition of decreasing rear-
rangement ofu. After defining thedistribution functionof u by

µ(t) = Ln({x ∈ � : |u(x)| > t}), t ≥ 0,

whereLn denotes then-dimensional Lebesgue measure inRn, thedecreasing rearrange-
mentof u is the distribution function ofµ, i.e.

u∗(s) = sup{t ≥ 0 : µ(t) ≥ s}, s ∈ [0, |�|].

The following properties will prove useful in Section 3:

(i) ‖u‖Lp(�) = ‖u∗
‖Lp(0,|�|), p ≥ 1;

(ii) (Hardy–Littlewood theorem) ifu, v : � → R are measurable functions, then∫
�

|uv| dx ≤

∫
|�|

0
u∗(s)v∗(s) ds.

By thespherically decreasing rearrangementof u we mean

u#(x) = u∗(ωn|x|
n), x ∈ �#,
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whereωn denotes the measure of the unit ball ofRn and�# is the ball centered at the
origin, having the same measure as� (for more details see [18] and the references given
there).

We go on with an appropriate definition of quermassintegral for non-convex domains
(see [22]). For the basic theory of convex sets, the reader is referred, for example, to
[6], [16]. Let � be a bounded domain inRn with boundary∂� ∈ C2, having princi-
pal curvaturesk′

= (k1, . . . , kn−1) (oriented so that convex domains have non-negative
curvatures). Fork = 1, . . . , n− 1 we define thekth mean curvatureof ∂� by

Hk(∂�) = Sk(k1, . . . , kn−1),

while
H0 = S0 ≡ 1.

Fork = 0, . . . , n− 1 thequermassintegralVk(�) is then defined by

Vk(�) =
1

n
(
n−1
k

) ∫
∂�

Hn−k−1(∂�) dHn−1, (2.1)

whereHn−1 denotes the(n − 1)-dimensional Hausdorff measure inRn. For k = n we
takeVn(�) = Ln(�). Whenk ≤ n− 2, we restrict attention to quermassintegralsVk(�)

of domains� which are(n− k − 1)-convex, that is

Hj (∂�) ≥ 0, j = 1, . . . , n− k − 1, (2.2)

thereby ensuring that the integrand in (2.1) is non-negative. When∂� is connected, (2.2)
is equivalent toHn−k−1(∂�) ≥ 0, while fork = 0 we have to assume that� is (n− 1)-
convex, that is, the components of� are convex in the usual sense. We explicitly mention
that in the latter case the following equality holds:

V0(�) = ωn × number of components of�.

Whenk = n, we clearly haveVn(�1) ≤ Vn(�2) whenever�1 ⊂ �2. For convex
domains we also haveVk(�1) ≤ Vk(�2) whenever�1 ⊂ �2. But this property is not
true in general when�1 and�2 are simply(n − k − 1)-convex. We get around this
difficulty by only considering functions belonging to8k0(�), whose sublevel sets have the
monotonicity property. Indeed, first of all, it is easy to see that, ifk > 0 andu ∈ 8k0(�),
thenu is subharmonic and thusu ≤ 0 in �; so let�t = {x ∈ � : u(x) < t} and
�s = {x ∈ � : u(x) < s}, with min� u < s ≤ t < 0. If 6s = {x ∈ � : u(x) = s} and
6t = {x ∈ � : u(x) = t} are non-degenerate level surfaces withs ≤ t , then (see [22])

Vn−k+1(�s) ≤ Vn−k+1(�t ). (2.3)

One can also show a derivation formula for quermassintegrals of sublevel sets of a func-
tion u ∈ 8k0(�) (see [15]):

d

dt
Vn−k+1(�t ) =

1(
n
k

) ∫
6t

Hk−1(6t )|Du|
−1 dHn−1. (2.4)
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Remark 2.1. Actually, (2.3) and (2.4) are still valid in a set wider than8k0(�) (see [22]).

Now we introduce another useful notion. Let� be an(n−k−1)-convex domain with
k ≤ n− 2. We define thekth mean radiusof � by

ζk(�) = (Vk(�)/ωn)
1/k, k = 1, . . . , n, ζk(∅) = 0.

The isoperimetric inequalities, or Alexandrov–Fenchel inequalities, for quermassintegrals
contained in [21] provide

ζl(�) ≤ ζk(�), 1 ≤ k ≤ l ≤ n. (2.5)

We note that (2.5) includes the classical isoperimetric inequality whenl = n andk =

n− 1.
Now we are able to symmetrize a function. Letu ∈ 8k0(�), k = 1, . . . , n; the k-

symmetrandu∗

k−1 of u is defined by

u∗

k−1(x) = sup{t ≤ 0 : ζn−k+1(�t ) ≤ |x|, Du 6= 0 on6t } (2.6)

for |x| ≤ R = ζn−k+1(�).
The following statements hold (see [22], [23]):

(1) setũk−1(r) = u∗

k−1(|x|) for r = |x|; thenũk−1(0) = min� u andũk−1(R) = 0;
(2) ũk−1 is a non-decreasing function on [0, R];
(3) ũk−1 ∈ C0,1([0, R]) and moreover

0 ≤ ũ′

k−1 ≤ sup
�

|Du| a.e.

Remark 2.2. For k = 1 we findu∗

0(x) = u#(x), the Schwarz symmetrand ofu. For
k = n = 2 we findu∗

1(x) = u?(2π |x|), whereu? is the rearrangement ofu with respect
to the perimeter of its level sets (see [17]).

By definition, through (2.5), it follows thatζk(�t ) ≤ ζk({u
∗
m < t}) for k ≥ n − m,

and equality holds whenn−m = k; this implies

‖u‖Lp(�) ≤ ‖u∗

k‖Lp(BR), p ≥ 1. (2.7)

Let u ∈ 8k0(�) and let min� < t < 0. We recall the followingReilly equality(see [15]):∫
�t

Sk(D
2u) dx =

1

k

∫
6t

|Du|kHk−1(6t ) dHn−1. (2.8)

Finally, we consider the following functional, known as theHessian integral:

Ik,p[u,�] =

∫ 0

m

dt

∫
6t

Hk−1(6t )|Du|
p−1 dHn−1

;

the followingPólya–Szeg̋o principleholds (see [22]):

Ik,p[u,�] ≥ Ik,p[u∗

k−1, BR], p ≥ 1. (2.9)
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In the radial case the Hessian integral can be written as follows:

Ik,p(u
∗

k−1, BR)) = n

(
n− 1

k − 1

)
ωn

∫ R

0
f p(ωnρ

n−k+1)ρn−k dρ (2.10)

wheref (ωn|x|n−k+1) = |∇u∗

k−1(x)|.

3. Comparison results

In this section we will prove that the rearranged solution to problem (1.3) can be estimated
by the solution to the conveniently symmetrized problem (1.5). In order to prove this
comparison result we will adapt an argument which appears in [9] in the case of the
p-laplacian operator and in [4] in the casek = n = 2.

Remark 3.1. Under the assumption that� is strictly (k − 1)-convex, in [8] it is shown
that, if� ∈ C3,1, f is a smooth positive function in� andσ < (λ1(�))

k whenp = k,
then problem (1.3) has a solution inC3,α(�) ∩ C(�) for someα ∈ (0,1). In fact, other
results concerning the existence of classical or non-classical solution to (1.3) may be
found, for instance, in [11], [10], [24], [25], [26]. For uniqueness of solutions to (1.3)
we refer to [26] for the casep < 1 and to [25] for the case 1≤ p ≤ k, provided� is
sufficiently narrow orσ sufficiently small.

Remark 3.2. We now turn our attention to the radial case. Letu(x) = φ(r), |x| = r, be
a radially symmetric function defined in the ballBR. We have

uxi = φ′
xi

r
,

uxixi = φ′′
x2
i

r2
+ φ′

r2
− x2

i

r3
, uxixj = φ′′

xixj

r2
− φ′

xixj

r3
, i 6= j,

for i, j = 1, . . . , n. At the pointx = (r,0, . . . ,0), D2u is diagonal, soux1x1 = φ′′ and
uxj xj = φ′/r, j ≥ 2. SinceSk is invariant under rotations,

Sk(D
2u) =

(n− 1)!

(n− k)!(k − 1)!
φ′′

(
φ′

r

)k−1

+
(n− 1)!

(n− k − 1)!k!

(
φ′

r

)k
=

(n− 1)!

(n− k)!(k − 1)!
r−n+1

(
rn−k

k
(φ′)k

)′

.

If f (x) = ψ(r) is also radially symmetric, then (1.5) becomes an ordinary differential
equation on [0, R], with limit conditionsφ′(0) = φ(R) = 0, i.e.

(n− 1)!

(n− k)!(k − 1)!
r−n+1

(
rn−k

k
(φ′)k

)′

= f #
+ σ |φ|

p in (0, R),

φ′(0) = φ(R) = 0,

(φ′′, φ′/r, . . . , φ′/r) ∈ 0k.
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The existence (and uniqueness) of a solution to such a problem can be proved follow-
ing the lines of [5], [3]. Furthermore, if(φ′′, φ′/r, . . . , φ′/r) ∈ 0k, thenS1(D

2φ) =

r−n+1(rn−1φ′)′ > 0. ThusG(r) = rn−1φ′ is an increasing function in(0, R); since
G(0) = 0, we deduce thatG ≥ 0 and henceφ is increasing in(0, R).

Theorem 3.1. Suppose thatf, g are smooth functions defined on a(k − 1)-convex do-
main� in Rn such that(1.4) is satisfied, and letu, v be classical solutions to problems
(1.3) and (1.5) respectively, withσ < min{(λ1(�))

k, (λ1(BR))
k
} whenp = k, andσ

sufficiently small when0< p < k. Then

0 ≥ u∗

k−1(x) ≥ v(x), x ∈ BR. (3.1)

Proof. Let min� u < t < 0 and let us integrate the equation in (1.3) on the sublevel set
�t ; then ∫

�t

Sk(D
2u) dx ≤

∫
�t

f dx + σ

∫
�t

(−u)p dx. (3.2)

By (2.8), the Ḧolder inequality and (2.4) we get∫
�t

Sk(D
2u) dx =

1

k

∫
6t

|Du|kHk−1(6t ) dHn−1
≥

1

k

(
∫
6t
Hk−1(6t ) dHn−1)k+1

(
∫
6t
Hk−1(6t )|Du|−1 dHn−1)k

=
1

k

(
∫
6t
Hk−1(6t ) dHn−1)k+1(
n
k

)k
( d
dt
Vn−k+1(�t ))k

.

We recall that, by definition,∫
6t

Hk−1(6t ) dHn−1
= n

(
n− 1

n− k

)
Vn−k(�t ) = n

(
n− 1

n− k

)
ωn (ζn−k(�t ))

(n−k)(k+1) ,

so we can write

∫
�t

Sk(D
2u) dx ≥

nk+1
(
n−1
n−k

)k+1
ωk+1
n

k
(
n
k

)k (ζn−k(�t ))
(n−k)(k+1)

( d
dt
Vn−k+1(�t ))k

.

On the other hand, by the definition of thekth mean radius we have

d

dt
Vn−k+1(�t ) =

ωn

n− k + 1
ζ n−kn−k+1(�t )

d

dt
ζn−k+1(�t );

thus, recalling the isoperimetric inequalities (2.5), we obtain

∫
�t

Sk(D
2u) dx ≥

nk+1

kωk−1
n

(
n−1
n−k

)k+1(
n
k

)k (n− k + 1)k
ζ n−kn−k+1(�t )

( d
dt
ζn−k+1(�t ))k

. (3.3)
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Let us come back to (3.2). For the first integral on the right hand side of (3.2), by the
Hardy–Littlewood inequality and (2.5), we obtain∫

�t

f dx ≤

∫ µ(t)

0
f ∗(s) ds ≤

∫ ωnζ
n
n−k+1(�t )

0
f ∗(s) ds, (3.4)

while for the second one we get∫
�t

(−u)p dx =

∫ t

−∞

(−s)pµ′(s) ds = (−t)pµ(t)+ p

∫ t

−∞

(−s)p−1µ(s) ds ≤

≤ ωn(−t)
pζ nn−k+1(�t )+ ωnp

∫ t

−∞

(−s)p−1ζ nn−k+1(�s) ds,

which, in terms of rearrangements, becomes∫
�t

(−u)p dx ≤ ωnr
n(−ũk−1(r))

p
+ ωnp

∫ r

0
sn(−ũk−1(s))

p−1ũk−1(s)
′ ds

= nωn

∫ r

0
sn−1(−ũk−1(s))

p ds, (3.5)

with r = ζn−k+1(�t ). Observing that

ζ n−kn−k+1(�t )

( d
dt
ζn−k+1(�t ))k

= rn−k(ũk−1(r)
′)k,

by (3.3)–(3.5) we get

cn,k r
n−k(ũk−1(r)

′)k ≤

∫ ωnr
n

0
f ∗(s) ds + nωnσ

∫ r

0
sn−1(−ũk−1(s))

p ds (3.6)

where

cn,k =
nk+1

kωk−1
n

(
n−1
n−k

)k+1(
n
k

)k (n− k + 1)k.

Obviously the radial solutionv to the symmetrized problem (1.5) satisfies

cn,kr
n−k(ṽk−1(r)

′)k =

∫ ωnr
n

0
f ∗(s) ds + nωnσ

∫ r

0
sn−1(−ṽk−1(s))

p ds. (3.7)

Let U(r) =
∫ r

0 s
n−1ũk−1(s)

p ds and V (r) =
∫ r

0 s
n−1ṽk−1(s)

p ds; let us prove that
U(r) ≤ V (r) for all r ∈ [0, R]. Set

ϕ1(s) =
(U(s)(p+1)/p

− V (s)(p+1)/p)+

U(s)1/p
;
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integrating by parts we obtain∫
U>V

(−ũk−1(r)
′)ϕ1(r) dr =

∫
U>V

ũk−1(r)ϕ
′

1(r) dr

=

∫
U>V

ũk−1(r)

(
rũk−1(r)

p
−
p + 1

p

(
V (r)

U(r)

)1/p

rṽk−1(r)
p

+
1

p

(
V (r)

U(r)

)(p+1)/p

rũk−1(r)
p

)
dr. (3.8)

Analogously, by considering

ϕ2(s) =
(U(s)(p+1)/p

− V (s)(p+1)/p)+

V (s)1/p

and integrating by parts we have∫
U>V

(−ṽk−1(r)
′)ϕ2(r) dr =

∫
U>V

ṽk−1(r)ϕ
′

2(r) dr

=

∫
U>V

ṽk−1(r)

(
−rṽk−1(r)

p
+
p + 1

p

(
U(r)

V (r)

)1/p

rṽk−1(r)
p

−
1

p

(
U(r)

V (r)

)(p+1)/p

rṽk−1(r)
p

)
dr. (3.9)

Let γ = (p + 1)/p; subtracting (3.9) from (3.8) we get∫
U>V

[(−ũk−1(r)
′)ϕ1(r)+ ṽk−1(r)

′ϕ2(r)] dr =∫
U>V

r Uγ
[(
ũ

1/(γ−1)
k−1

U

)γ
−

(
ṽ

1/(γ−1)
k−1

V

)γ
−γ

(
ṽ

1/(γ−1)
k−1

V

)γ−1( ũ1/(γ−1)
k−1

U
−
ṽ

1/(γ−1)
k−1

V

)]
+

∫
U>V

r V γ
[(
ṽ

1/(γ−1)
k−1

V

)γ
−

(
ũ

1/(γ−1)
k−1

U

)γ
−γ

(
ũ

1/(γ−1)
k−1

U

)γ−1( ṽ1/(γ−1)
k−1

V
−
ũ

1/(γ−1)
k−1

U

)]
= I1 + I2.

Both I1 andI2 are non-negative since the functiong(t) = tγ is convex for allγ > 1. On
the other hand, by (3.6) and (3.7),

I1 + I2 ≤

∫
U>V

(
U(r)(p+1)/p

− V (r)(p+1)/p

r(n−k)/k

)
×

[(
c1F(r)+ c2U(r)

U(r)k/p

)1/k

−

(
c1F(r)+ c2V (r)

V (r)k/p

)1/k]
dr, (3.10)

whereF(s) =
∫ ωnsn

0 f ∗(r) dr, c1 = 1/cn,k, c2 = nωn/cn,k. The right hand side of (3.10)
is always negative, since the functionh(t) = (1+ t)/tk/p is decreasing wheneverp ≤ k.
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It follows that|U > V | = 0, i.e.U(s) ≤ V (s) for all s ∈ (0, R). This estimate, combined
with (3.6) and (3.7), gives (3.1) and the claim follows. ut

Remark 3.3. We recall thatV0(�) = ωn × number of components of�. Since aC2

domain is(n− 1)-convex if and only if it is convex (see [21]), ifu is a classical solution
to (1.3) fork = n andλ(D2u) ∈ 0n, its level sets�t are convex for a.e.t and this implies
V0(�t ) = ωn for a.e.t .

Remark 3.4. It immediately follows from (3.1) and (2.7) that

‖u‖Lp(�) ≤ ‖v‖Lp(BR), p ≥ 1.

Proposition 3.1. Under the assumptions of Theorem3.1we have

Ik,k+1(u,�) ≤ Ik,k+1(v, BR).

Proof. The above estimate is an easy consequence of the inequality∫
6t

|Du|kHk−1(6t ) dHn−1
≤ k

∫ ωnζn−k+1(�t )

0
f ∗(r) dr

+ nωnk

∫ ζn−k+1(�t )

0
sn−1(−ũk−1(s))

p ds

and the equality holding forv. ut

4. Moser type inequalities for Hessian integrals in the limit casep = n− k + 1

In [22] Trudinger has proved some kind of Sobolev inequalities for functions inAk−1(�).
Namely, if� is a(k − 1)-convex subset ofRn, k = 1, . . . , n, andu ∈ 8k0(�), then

‖u‖
p

Lq (�) ≤ CIk,p(u,�)

for anyq ≤ np/(n − k + 1 − p) if p < n − k + 1, and forq ≤ +∞ if p > n − k + 1,
with a constantC depending onk, n, p and�. In the limit casep = n − k + 1, he has
obtained the estimate

‖u‖
p

L9 (�)
≤ CIk,p(u,�), (4.1)

whereL9(�) is the Orlicz space associated to the function

9(t) = e|t |
p′

− 1.

This last result recovers the traditional one whenk = 1 (see [19]); in this case it is well
known that the estimate (4.1) has been made more precise by many authors in many
directions (see, e.g., [14], [1], [2]). For example, in [14] it is proved that ifu ∈ C∞

0 (�)

and‖∇u‖Ln(�) ≤ 1, then∫
�

eβ|u(x)|n
′

dx ≤ C(n)|�|, ∀β ≤ βn = (nω
1/n
n )n

′

. (4.2)
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As a matter of fact the integral in (4.2) is finite for anyβ, but it is uniformly bounded only
for β ≤ βn = (nω

1/n
n )n

′

. Indeed, ifβn = (nω
1/n
n )n

′

, then a sequence{um} ⊂ C∞

0 (�) can
be constructed so that‖∇um‖Ln(�) ≤ 1 and

lim
m→+∞

∫
�

eβ|um(x)|
n′

dx = +∞.

Similar questions arise concerning estimate (4.1). We will prove the following

Theorem 4.1. Let� be a(k − 1)-convex subset ofRn, k = 1, . . . , n, and letu ∈ 8k0(�)

be such that

Jk,p(u,�) =
Ik,p(u,�)(

n−1
k−1

) ≤ 1 for p = n− k + 1.

Then ∫
�

eβ|u(x)|(n−k+1)/(n−k)
dx ≤ cn,k(Vn−k+1(�))

n/(n−k+1) (4.3)

for all β ≤ βn,k = (nω
1/(n−k+1)
n )(n−k+1)/(n−k).

In order to prove the above theorem we need the following lemma due to Adams [1].

Lemma 4.1. Let a(s, t) be a non-negative measurable function onR × [0,+∞[ such
that, for somep ∈ ]1,+∞[,

a(s, t) ≤ 1 for a.e.0< s < t, (4.4)

sup
t>0

(∫ 0

−∞

a(s, t)p
′

ds +

∫
+∞

0
a(s, t)p

′

ds

)1/p′

= γ < +∞. (4.5)

Suppose that a non-negative functionF(s) onR satisfies∫
+∞

−∞

F(s)p ds ≤ 1.

Then there exists a constantc0 = c0(p, γ ) such that∫
+∞

0
e−G(t) dt ≤ c0, where G(t) = t −

(∫
+∞

−∞

a(s, t)F (s) ds

)p′

.

Proof of Theorem 4.1.Let us first observe that by the Pólya–Szeg̋o principle (2.9) and by
(2.7) we have

Jk,p(u
∗

k−1, BR) ≤ Jk,p(u,�),∫
�

exp(β|u|(n−k+1)/(n−k)) dx ≤

∫
BR

exp(β|u∗

k−1|
(n−k+1)/(n−k)

) dx;

then it is enough to prove the statement foru(x) = u∗

k−1(x). Set

f (ωn|x|
n−k+1) = |∇u∗

k−1(x)|;
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this implies thatf (s) = ωn(n− k + 1)ũ′

k−1(s)(s/ωn)
(n−k)/(n−k+1). We have

−ũk−1(s) =
1

(n− k + 1)ω1/(n−k+1)
n

∫ Vn−k+1(�)

s

f (r)r1/(n−k+1) dr

r
.

It follows that

−ũk−1(e
−(n−k+1)t/nVn−k+1(�))

=
1

nω
1/(n−k+1)
n

∫ t

0
f (e−(n−k+1)s/nVn−k+1(�))(e

−(n−k+1)s/nVn−k+1(�))
1/(n−k+1) ds

=
1

nω
1/(n−k+1)
n

∫
+∞

−∞

a(s, t)F (s) ds,

where

a(s, t) =

{
0 if s < 0 or s > t,

1 if 0 ≤ s ≤ t,

F (s) =

{
f (e−(n−k+1)s/nVn−k+1(�))(e

−(n−k+1)s/nVn−k+1(�))
1/p if s ≥ 0,

0 if s < 0.

It is clear that (4.4) and (4.5) are satisfied. On the other hand, by (2.10),

Jk,p(u
∗

k−1, BR) =
Ik,p(u

∗

k−1, BR)(
n−1
k−1

) = nωn

∫ R

0
f p(ωnρ

n−k+1)ρn−k dρ

=
n

n− k + 1

∫ Vn−k+1(�)

0
f p(r) dr

=

∫
+∞

0
f (e−(n−k+1)s/nVn−k+1(�))

n−k+1e−(n−k+1)s/nVn−k+1(�) ds

=

∫
+∞

0
F(s)p ds ≤ 1.

Then Lemma 4.1 gives∫
+∞

0
exp(−t + (|ũk−1(e

−(n−k+1)t/nVn−k+1(�))|nω
1/(n−k+1)
n )(n−k+1)/(n−k)) dt ≤ c0,

that is,∫ Vn−k+1(�)

0
exp(|ũk−1(s)|nω

1/(n−k+1)
n )

n−k+1
n−k s

k−1
n−k+1 ds

≤ c0

(
n− k + 1

n

)
(Vn−k+1(�))

n/(n−k+1)

and the claim follows. ut
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Remark 4.1 (Casek ≤ n/2). As a matter of fact, by definition of8k0(�), the integral in
(4.3) is finite for everyβ, but it is uniformly bounded only forβ ≤ βn,k. Let us show that,
if β > βn,k, then there exists a sequence{um}m∈N ⊂ 8k0(�) such thatJk,p(um, �) ≤ 1
and

lim
n→+∞

∫
�

eβ|um(x)|
(n−k+1)/(n−k)

dx = +∞.

Let BR be the ball centered at the origin such thatVn−k+1(�) = ωnR
n−k+1

= 1 and
define

um(x)

=


m−1/(n−k+1)

nω
1/(n−k+1)
n

(
n

n− k + 1

)(n−k)/(n−k+1)

log(ωn|x|n−k+1) if ωn|x|n−k+1 > e−m,

am|x|3 + bm|x|2 + dm if ωn|x|n−k+1
≤ e−m,

where

am = −
2

3
m−1/(n−k+1)ω

2/(n−k+1)
n

(
n

n− k + 1

)−1/(n−k+1)

e3m/(n−k+1)
;

bm =
3

2
m−1/(n−k+1)ω

1/(n−k+1)
n

(
n

n− k + 1

)−1/(n−k+1)

e2m/(n−k+1)
;

dm = −
m(n−k)/(n−k+1)

nω
1/(n−k+1)
n

(
n

n− k + 1

)(n−k)/(n−k+1)

−
5

6
m−1/(n−k+1) n− k + 1

nω
1/(n−k+1)
n

(
n

n− k + 1

)(n−k)/(n−k+1)

.

We explicitly mention thatum ∈ C2(BR) andSj (D2u) > 0 for any 1≤ j ≤ k so that
u ∈ 8k0(�). First of all we computeJk,p(um, BR). We have

f (ωn|x|
n−k+1) = |∇um(x)|

=


m−1/(n−k+1)

nω
1/(n−k+1)
n

(n− k + 1)

(
n

n− k + 1

)(n−k)/(n−k+1) 1

|x|
if ωn|x|n−k+1 > e−m,

3am|x|2 + 2bm|x| if ωn|x|n−k+1
≤ e−m;

then, settingrm = (e−m/ωn)
1/(n−k+1), we have

Ik,p(um, BR) = n

(
n− 1

k − 1

)
ωn

∫ R

0
f p(ωnρ

n−k+1)ρn−k dρ

= n

(
n− 1

k − 1

)
ωn

[∫ rm

0
f p(ωnρ

n−k+1)ρn−k dρ +

∫ R

rm

f p(ωnρ
n−k+1)ρn−k dρ

]
=
c(n, k)

m
+

(
n− 1

k − 1

)
,
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wherec(n, k) is a positive constant depending only onn andk. This implies

lim
m→+∞

Ik,p(um, BR) =

(
n− 1

k − 1

)
and then

lim
m→+∞

Jk,p(um, BR) = 1.

Furthermore, we have∫
BR

eβ|um(x)|
(n−k+1)/(n−k)

dx ≥

∫ e−m

0
exp

(
mβ

βn,k

n

n− k + 1

)
s(k−1)/(n−k+1) ds

=
n− k + 1

n
exp

[
n

n− k + 1

(
β

βn,k
− 1

)
m

]
,

which tends to+∞ asm goes to+∞ whenβ > βn,k.

Remark 4.2. Whenu ∈ C2(�) is a convex function, vanishing on the boundary∂�,
estimate (4.3) can be improved in the sense that, ifJk,p(u,�) ≤ 1, then there exists
a positive constantC = C(n, k) such that‖u‖L∞(�) ≤ C. In fact, in this case thek-
symmetrand ofu, u∗

k−1, is a radially symmetric, convex function in the ballBR, vanishing

on ∂BR and belonging toC2(BR) ∩ C(BR). By the Ṕolya–Szeg̋o principle and (2.7) we
know that

‖u‖L∞(�) ≤ ‖u∗

k−1‖L∞(BR), Ik,p(u,�) ≥ Ik,p(u
∗

k−1, BR),

so, once again, it is enough to consideru∗

k−1. Without loss of generality we suppose that
Vn−k+1(�) = Vn−k+1(BR) = 1; we obtain, recalling thatJk,p(u,�) ≤ 1,

‖u∗

k−1‖L∞(BR) = |u∗

k−1(0)| =

∫ 1

0
(ũk−1(s))

′ ds

≤

∫ 1

0

1

1 − s

(∫ 1

s

(ũk−1(r))
′ dr

)
ds =

∫ 1

0
(ũk−1(s))

′
|log(1 − s)| ds

≤

(∫ 1

0
(ũk−1(s)

′)n−k+1sn−k ds

) 1
n−k+1

(∫ 1

0

|log(1 − s)|(n−k+1)/(n−k)

s
ds

) n−k
n−k+1

≤ C(n, k).
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