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Abstract. LetX be a complex manifold with strongly pseudoconvex boundaryM. If ψ is a defin-
ing function forM, then− logψ is plurisubharmonic on a neighborhood ofM in X, and the (real)
2-form σ = i∂∂(− logψ) is a symplectic structure on the complement ofM in a neighborhood
of M in X; it blows up alongM.

The Poisson structure obtained by invertingσ extends smoothly acrossM and determines a
contact structure onM which is the same as the one induced by the complex structure. WhenM is
compact, the Poisson structure nearM is completely determined up to isomorphism by the contact
structure onM. In addition, when− logψ is plurisubharmonic throughoutX, andX is compact,
bidifferential operators constructed by Engliš for the Berezin–Toeplitz deformation quantization
of X are smooth up to the boundary. The proofs use a complex Lie algebroid determined by the CR
structure onM, along with some ideas of Epstein, Melrose, and Mendoza concerning manifolds
with contact boundary.

Keywords. Poisson structure, pseudoconvexity, plurisubharmonic function, contact structure, Lie
algebroid

1. Introduction

Let u be a real-valued function on a complex manifoldX. The 2-formσ = σu = i∂∂u

is of type (1,1), real, and exact (since∂∂ = d∂). In addition,σ(x, y) = σ(Jx, Jy),
whereJ is the complex structure viewed as an endomorphism ofTX, so the “hermitian
hessian” bilinear formgu(x, y) = σ(x, Jy) is symmetric. Whengu is positive definite,
u is said to bestrongly plurisubharmonic. In this case,gu is a Kähler metric onX, and
the formσ is nondegenerate, i.e. symplectic. The functionu is called aKähler potential
for gu. Conversely, the Dolbeault lemma implies that any Kähler metric onX arises from
a potential on a neighborhood of each point ofX. While the local geometry of the K̈ahler
metric depends very much on the choice of potential, the symplectic form has no local
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invariants. (See [7] for global results about the symplectic geometry of Kähler manifolds
with global potential functions.)

In this paper, we will investigate what happens when the complex manifoldX has a
boundaryM. The hyperplane fieldFM,X = TM ∩ JTM is called themaximal complex
subbundleof TM. A defining functionfor M is a smooth nonnegative functionψ whose
zero set isM, and which has no critical points onM. The restriction toFM,X of the
hermitian hessiangψ is, up to a positive conformal factor, independent of the choice of
defining function. The associated invariant object, a symmetric bilinear form with values
in the conormal bundle ofM, is called theLevi formofM.M is calledLevi nondegenerate
when this form is nondegenerate, andstrongly pseudoconvexwhen it is negative definite.
M is Levi nondegenerate if and only ifFM,X is a contact structure.

WhenM is strongly pseudoconvex,− logψ is strongly plurisubharmonic onU \M

for some neighborhoodU of M in X, andσ− logψ on U \ M is a symplectic structure
which blows up alongM. We will show that the corresponding Poisson structureπ− logψ
extends smoothly toM, along which it is zero.

In fact, using Epstein, Melrose and Mendoza’s [11] notion of2-structure, we will
show that, wheneverM is Levi nondegenerate, the local isomorphism type of the Pois-
son structureπ− logψ is independent of everything but the dimension ofX. The local
model is LeBrun’s [22] Poisson structure on the normal bundle to a contact structure, and
equivalence with this model gives the smoothness ofπ− logψ up to the boundary.

Contact structures also play a role in the global (onM) version of this result: the germ
alongM of the Poisson structure is determined, up to diffeomorphisms fixingM, by the
contact structureFM,X. Its isomorphism class is thus independent of the choice of the
defining function and of the choice of (compatible) complex structure. Again, the model
for π− logψ is given by LeBrun’s construction.

Similar results, for flows and infinitesimal deformations on pseudoconvex manifolds,
have been obtained by Korányi and Reimann [21], [29].

We turn next to quantization. WhenX is compact andψ is strongly plurisubharmonic
throughoutX, π− logψ is the semiclassical commutator of the Berezin–Toeplitz defor-
mation quantization product onX. The construction of this product involves the action
of smooth functions onX by multiplication and projection on a parameterized family of
weighted Bergman spaces of holomorphic functions on the interior ofX. The Berezin–
Toeplitz product was analyzed in the pseudoconvex setting by Engliš [8], following many
earlier studies on closed manifolds. He showed that the induced product on smooth func-
tions has an asymptotic expansion in the weight parameter; the terms in the expansion
are bidifferential operators whose coefficients are algebraic combinations of the Kähler
metric, its curvature, and covariant derivatives thereof.

We will use the notion ofcomplex Lie algebroidto show that all the bidifferen-
tial operators in the Berezin–Toeplitz–Engliš quantization are smooth up to the bound-
ary. In fact, we will show something stronger. Karabegov [19] has defined a notion of
quantization with separation of variables on a Kähler manifold, and it is known that the
Berezin–Englǐs–Toeplitz quantization has this property on the interior ofX. We will ex-
tend Karabegov’s definition by introducing a notion ofpara-Kähler structureon a com-
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plex Lie algebroid, and we will show that the separation of variables property then holds
up to the boundary.

In the future, we plan to extend our results to more general manifolds, replacing the
global strongly plurisubharmonic functionψ by a family of local functions obtained from
a connection on a hermitian line bundle. These results will be used in the proof of a
topological formula for the relative index of CR structures defined by Epstein [9] which
was conjectured by Atiyah and Weinstein [31]. (A proof of the conjecture by Epstein [10]
has recently appeared, but his methods are quite different from ours.)

2. Normal forms

For most of this section, we will forget about complex geometry and look at what Ep-
stein, Melrose, and Mendoza [11] call2-structures.M will now be the boundary of any
manifoldX of real dimension 2n+ 2.

Definition 2.1. An EMM form is a 1-form2 on X whose pullback toM is a contact
form.

Our model example of an EMM form will be the pullback toX = M × R+ of a contact
form φ onM; we identifyM with the zero set of the coordinate functionr on R+

=

[0,∞). The symplectic formd(2/r) blows up alongM, but LeBrun [22] observed that
the Poisson structure inverse tod(2/r) extends to a smooth Poisson structure onM×R+.
If φ = du+

∑
pjdq

j in local coordinates(u, q, p) onM, then, onM × R+,

d(2/r) = (1/r2)
[
−dr ∧

(
du+

∑
pjdq

j
)

+ rdpj ∧ dqj
]
, (1)

and the Poisson structure corresponding1 to −d(2/r) is

5 = r

[(
r
∂

∂r
+

∑
pj

∂

∂pj

)
∧
∂

∂u
+

∑ ∂

∂qj
∧

∂

∂pj

]
. (2)

2.1. Local normal form

We will use the following local theorem in order to obtain a global normal form. (It would
be nice to get the global form all at once, but we do not know how to do it.)

Theorem 2.2. Let 2 be an EMM form on the manifoldX with boundaryM, and let
ψ be a defining function for the boundary. Then, near eachm ∈ M, there exist local
coordinates(q, p, u, r) on X in which ψ = r and d(2/ψ) has the form(1) on the
complement ofM. In particular, −d(2/ψ) is symplectic on the complement ofM in a
neighborhood ofm in X; the corresponding Poisson structure on this neighborhood has
the local normal form(2).

1 There is a choice of sign when one says that a Poisson structure corresponds to a symplectic
structure. Unlike LeBrun [22], we use the convention in whichdq ∧ dp corresponds to the relation
{q, p} = 1.
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Proof. We begin by settingr = ψ . By the Darboux theorem for contact 1-forms [4], we
may find local coordinates onM for which the pullback of2 has the expressiondu +

pjdq
j . In fact, the pullback of2 to each level ofr nearM is still a contact structure, so we

may choose coordinates on all these levels, depending smoothly onr, so that the pullbacks
all have the same form. It follows that2 itself may be written asdu+pjdq

j
+adr,where

a is a smooth function of all the variables.
To eliminate the termadr, we use Moser’s method, i.e. constructing a diffeomorphism

(preservingr and fixed onM) by integrating a time-dependent vector fieldXt . As usual,
we define2t by interpolation asdu+pjdq

j
+tadr and chooseXt to satisfy the condition

Xt d(2t/r) = −(a/r)dr. Now

d(2t/r) = (1/r)d2t − (1/r2)dr ∧2t

= (1/r)(dpj ∧ dqj + tda ∧ dr)− (1/r2)dr ∧ (du+ pjdq
j

+ tadr). (3)

If we takeXt to be a functionft (q, p, u, r) times the (Reeb) vector field∂/∂u, it will be
tangent to the levels ofr.Xt must satisfy the equation

Xt d(2t/r) = (t/r)(ft (∂a/∂u)+ (1/r)ft )dr = −(a/r)dr,

which has the solutionft = −ra/(1+ rt ∂a/∂u). The denominator is invertible nearM,
and the factor ofr in the numerator offt insures thatXt vanishes alongM, in addition to
being smooth and tangent to the levels ofr. ut

2.2. Global normal form

To put2 in normal form on a neighborhood of the entire boundary, we can no longer
fix theψ levels, because the characteristic line element field of the pullback ofd(2/ψ)

has a global dynamics which may vary from oneψ level to another. This also makes it
impossible to use the Darboux theorem as we did for the local normal form. Instead, we
use Gray’s theorem, which asserts that deformations of a contactstructureon a compact
manifold are trivial. We refer the reader to Cannas da Silva [4] for a proof, noting for
use below that the transformations in Gray’s theorem may easily be chosen to depend
smoothly on a parameter.

Like the local model, the global normal form comes from LeBrun [22]. For any con-
tact structureF ⊂ TM, the conormal bundleν∗

= (TM/F)∗ may be identified with
the 1-dimensional subbundle ofT ∗M consisting of all real multiples of any contact form
defining the contact structure. The pullback toν∗ of the canonical symplectic structure
onT ∗M is nondegenerate on the complement of the zero section ofν∗. We may identify
this complement by “inversion” with the complement of the zero section in the normal
bundleν = TM/F . LeBrun shows that the Poisson structure corresponding to this form
onν now extends smoothly over the zero section. Whenν is oriented, a choice of contact
form identifiesν with M × R, and the nonnegative normal bundleν+ is identified with
M × R+. The Poisson structure is given by (2).
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Theorem 2.3. Let2 be an EMM form for the manifoldX with boundaryM, andψ a
defining function for the boundary. Then a neighborhood ofM in X, with the structure
corresponding to−d(2/ψ), is Poisson isomorphic to a neighborhood of the zero section
in the nonnegative normal bundleν+, with the LeBrun–Poisson structure associated to
the contact structure induced byθ onM.

Proof. As in the proof of Theorem 2.2, we will work with the 2-forms. Since the diffeo-
morphism we construct will be smooth along the singular locus of these forms, it will
automatically be a Poisson isomorphism.

To begin, we identify bothX nearM andν+ near the zero section with a neighborhood
of the zero section in the trivial bundleM × R+. For ν+, we use the trivialization ofν
given by the contact form which is the pullback of2 to M. For X nearM, we first
arrange that the projection ontoR is the given functionψ , i.e. we setr = ψ ; we then
use Gray’s theorem to arrange that the projection of eachψ level ontoM is a contact
diffeomorphism.

Let us write20 for the standard formdu +
∑
pjdq

j (independent ofr) and21 for
the given form. Since21 defines the same contact structure as20 on each level ofr, and
it agrees with20 on the zero level,21 = 20 + a dr + br20, wherea andb are smooth
functions. As before, we linearly interpolate to get2t = 20 + ta dr + tbr20. Note for
later use in this proof that these are all EMM forms, so we can apply Theorem 2.2 to put
them in local normal form.

Once again, we seek a time-dependent vector fieldXt to generate our normalizing
transformation. The required condition on this vector field is

Xt d(2t/r) = −(a/r)dr + b20.

The unique solution of this equation is (on the complement ofM) the contraction of
the right hand side with the Poisson structure corresponding to−d(2t/r). We already
know from the local normal form that this Poisson structure vanishes alongM, so the
contraction extends smoothly overM. It remains to show that the contraction vanishes
alongM. For this, it suffices to show that the contraction withdr vanishes to second
order. But, from the local normal form (2), we find immediately that, in normal form
coordinates, this contraction is equal tor2du, and our proof is complete. ut

Remark 2.4. Although the normal form theorem above may suggest that the LeBrun–
Poisson structure is rigid with respect to arbitrary higher-order perturbations, this is in
fact not the case. For instance, whenM is 1-dimensional, the Poisson structure is simply
5 = r2∂/∂r ∧ ∂/∂u. This structure is exact in the sense that there is a vector fieldξ

(namely∂/∂r) satisfying [ξ,5] = 5, but the Poisson structure(r2
+ r3)∂/∂r ∧ ∂/∂u

does not admit such aξ if M is a circle. A related fact is that(1/(r2
+ r3))dr ∧ du is not

d(2/r) for any EMM form2.

We also note the following relative form of Theorem 2.3.

Corollary 2.5. If 20 and21 are EMM forms which agree to infinite order alongM, then
there is a diffeomorphism germ onX alongM which agrees with the identity to infinite
order alongM and pulls back21 to20.
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Proof. By Theorem 2.3, we may assume thatX = M × [0,1) and that20 is the standard
form. We then repeat the proof of Theorem 2.3; the functionsa andb vanish to infinite
order alongM, hence so does the vector fieldXt which generates the normalizing trans-
formation. ut

2.3. Application to pseudoconvex boundaries

Let X be a complex manifold with boundaryM. By elementary calculus on complex
manifolds,

∂f =
1

2
(df + iJ ∗df )

for any smooth functionf , whereJ : TX → TX is the almost complex structure. It
follows that

i∂∂(− logψ) = id∂(− logψ) =
1

2
d

(
J ∗
dψ

ψ

)
= d

(
1

2
J ∗dψ/ψ

)
.

Let ψ be a defining function for the boundary and setr = ψ and2 =
1
2J

∗dψ . We will
show that2 is an EMM form. In fact, inTMX, TM is kerdψ , so

ker2 ∩ TM = kerJ ∗dψ ∩ TM = J (kerdψ) ∩ TM = JTM ∩ TM = FM,X,

the maximal complex subbundle ofTM. SinceM is Levi nondegenerate,FM,X is a con-
tact structure, and hence2 is an EMM form. It follows that all the results of this section
apply to the formσ− logψ and the corresponding Poisson structureπ− logψ .

We remark that our results correspond very closely to results on flows and deforma-
tions due to Koŕanyi and Reimann [21], [29]. Since the Poisson structure determines the
contact structure on the boundary, our methods also give a simple proof of their (easier)
converse result that a smooth map which is symplectic on the interior must be contact on
the boundary.

Here is a direct nondegeneracy proof which is independent of the normal form theo-
rem. It involves a volume element computation which we will use in the proof of Propo-
sition 4.7 below.

Proposition 2.6. Letψ be a defining function for the boundaryM of X. The closed2-
form σ− logψ is nondegenerate on a neighborhood ofM in the interior ofX if M is Levi
nondegenerate.

Proof. We compute:

(1/i)σ− logψ = ∂∂(− logψ) = −∂

(
∂ψ

ψ

)
=

−ψ∂∂ψ + ∂ψ ∧ ∂ψ

ψ2
.

Raising this 2-form to the(n+ 1)st power gives(
−
∂∂ψ

ψ
+
∂ψ ∧ ∂ψ

ψ2

)n+1

=

(
−
∂∂ψ

ψ

)n+1

+

(
−
∂∂ψ

ψ

)n
∧
∂ψ ∧ ∂ψ

ψ2
,
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which isψ−(n+2) times

ψ(−∂∂ψ)n+1
+ (−∂∂ψ)n ∧ ∂ψ ∧ ∂ψ.

Our lemma will be proven if we can show that this form is nonzero nearM whenM
is Levi nondegenerate. Since the first term vanishes alongM it suffices to show that the
second is nonzero. Since∂ψ ∧ ∂ψ is nonzero and annihilates the contact structureFM,X,
the nonvanishing of the term is equivalent to nondegeneracy of the restriction toFM,X of
(−∂∂ψ)n. But −∂∂ψ is just the 2-form associated viaJ to the Levi form. ut

Remark 2.7. There are natural 1-1 correspondences among several bundles along the
boundaryM whose sections admit natural simple and transitive actions of the smooth
positive functions onM:

1. 1-jets alongM of defining functions.
2. Sections of the conormal bundleTM⊥

⊂ T ∗

MX which are “positive” in the sense that
they take positive values on inward-pointing vectors inTMX.

3. Contact forms realizing the cooriented contact structure onM.
4. Volume elements onM compatible with the natural boundary orientation ofM.

The correspondence 1↔ 2 is almost tautological, since any section of the conormal
bundle may be realized as the derivative alongM of a defining function. (For instance,
if we multiply the defining functionψ by a positive functionλ, its differential along
M is also multiplied byλ.) For 2 ↔ 3, we associate to each positive sectionα of the
conormal bundle the pullback toM of J ∗α. (To go in the other direction, we extend any
contact form alongM to a section ofT ∗

MX by requiring it to annihilateJTM.) Finally,
for 3 ↔ 4, we associate to each contact formθ the volume elementθ ∧ (dθ)n. Rescaling
θ by λ multiplies the volume element byλn+1.

3. Geometry on complex Lie algebroids

Complex Lie algebroids were defined in [5] and have been studied in more detail in [1]
and [32]. In this section, we will review the definitions and use a complex Lie algebroid
to “regularize” the geometry of a complex manifold near a pseudoconvex boundary.

3.1. Definition and first examples

We recall that aLie algebroidover a smooth manifoldX is a real vector bundleE overX
with a Lie algebra structure (overR) on its sections and with a bundle mapρ (called the
anchor) fromE to the tangent bundleTM, satisfying the Leibniz rule

[a, f b] = f [a, b] + (ρ(a)f )b

for sectionsa andb and smooth functionsf .
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There is an analogous definition for complex manifolds, in whichE is a holomorphic
vector bundle overX, and the Lie algebra structure is defined on the sheaf of local sec-
tions. Such objects are called complex Lie algebroids by Chemla [6], but, as in [5], we
will reserve this term for the “hybrid” concept defined below.

From now on,C∞(X) will denote the algebra of smoothcomplex-valuedfunctions
on a manifoldX.

Definition 3.1. A complex Lie algebroidover a smooth (real) manifoldX is a complex
vector bundleE overX with a Lie algebra structure (overC) on its spaceE of sections
and a bundle mapρ (called theanchor) fromE to the complexified tangent bundleTCX,
satisfying the Leibniz rule

[a, f b] = f [a, b] + (ρ(a)f )b

for a andb in E andf in C∞(X).

A “trivial” class of complex Lie algebroids consists of the complexifications of real Lie
algebroids, such asTCX itself. More interesting are general “involutive systems,” which
are subbundles ofTCX whose spaces of sections are closed under the (complexified)
bracket of vector fields. (Up to isomorphism, these are just the complex Lie algebroids
with injective anchor.) Among these are the complex structures and CR structures. By a
complex structure, we mean here a subbundle of the formE = T

0,1
J X = {v + iJ v |

v ∈ TX}, whereJ : TX → TX is an integrable almost complex structure. These are
characterized among all complex subbundles by closure under bracket and the algebraic
property thatTCM = E ⊕ E. By a CR structure, we mean an involutive systemE for
whichE ∩E = {0} andE+E has codimension 1 inTCX. Any real hypersurfaceM in a
complex manifoldX (such as a boundary) inherits a CR structure, namely the intersection
GM,X = TCM ∩ T

0,1
J X. (The problem of realizing a given CR structure in this way has

been crucial in the development of linear PDE theory.) The sumGM,X ⊕ GM,X is the
complexification of the maximal complex subbundleFM,X.

The main example of our paper, introduced in Section 3.3, will not have an injective
anchor. However, its anchor will be bijective on an open dense subset of the base mani-
foldX, and the use of Lie algebroids with this property could be viewed as an application
of the method of moving frames, extended to allow certain “singular” frame fields.

No discussion of complex Lie algebroids should fail to mention the important example
of generalized complex structures [15], [18], but having thus fulfilled this obligation, we
will not discuss them further.

3.2. Some constructions on complex Lie algebroids

Many notions can be extended from real to complex Lie algebroids without any extra
effort. Here are some which we will use later. Parts of this section are almost transcribed
verbatim from [26]. Note that all the constructions below are local and may thus be carried
out on the sheaf level.
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Definition 3.2. Let(E, ρ, [ , ]) be a complex Lie algebroid overX. TheE-de Rham com-
plex (E�•(X), Ed) is given byE�•(X) = 0(

∧
•
(E∗)), with

Edµ(a1, . . . , ak+1) =

∑
i

(−1)iρ(ai)µ(a1, . . . , âi, . . . , ak+1)

+

∑
i<j

(−1)i+j−1µ([ai, aj ], a1, . . . , âi, . . . , âj , . . . , ak+1).

Elements of the complex are calledE-differential formsonX; the cohomology ofEd is
denoted byEH •(X) and is called theE-de Rham cohomologyofX.

WhenE = TCX, EH •(X) is the usual de Rham cohomology ofX with complex coeffi-
cients.

Definition 3.3. AnE-connectionon a vector bundleF overX is a map

(a, γ ) 7→ ∇aγ

fromE × 0(F) to 0(F) which isC∞(X)-linear in a and satisfies the Leibniz rule

∇a(f γ ) = f∇aγ + (ρ(a)f )γ

for f ∈ C∞(X). Equivalently, anE-connection onF is a map∇ : 0(F) → 0(E∗
⊗ F)

satisfying∇(f γ ) = f∇γ +
Edf ⊗ γ.

Like an ordinary linear connection, anE-connection extends to a map

∇ : 0(
∧

•
(E∗)⊗ F) → 0(

∧
•+1
(E∗)⊗ F).

The square of this extended operator is given by∇
2γ = R ∧ γ, where thecurvatureR is

the element of
∧2
(E∗)⊗ End(F ) defined by

R(a, b) = ∇a∇b − ∇b∇a − ∇[a,b] .

When the curvature is zero, the connection is also called arepresentationof E onF .
WhenF = E, we may also define thetorsionof ∇ by the formulaT (a, b) = ∇ab −

∇ba− [a, b]. As in the case of the tangent bundle, the torsion is a skew-symmetric tensor,
i.e. a section of

∧2
(E∗)⊗E. The usual construction of the Levi-Civita connection applies,

so that, given a field of nondegenerate symmetric inner products onE, there is a unique
connection without torsion which is compatible with the inner product.

Example 3.4. The flat “Bott connection” on the normal bundle to a foliation is the lin-
earization of the holonomy. But the construction is purely formal and can be extended to
the situation whereE′ is any subalgebroid of a Lie algebroidE. Namely, we define an
E′-connection on the quotient vector bundleE/E′ by the rule∇a〈b〉 = 〈[a, b]〉, wherea
andb are sections ofE and〈·〉 denotes the equivalence class moduloE′. (We use angled
instead of the usual square brackets for the equivalence class to avoid confusion with
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the Lie algebroid operation.) It is straightforward to check that this∇ is a Lie algebroid
representation.

We note that∇ can be seen as the representation on homology, as in Appendix A of
[13], associated to a natural representation up to homotopy ofE on the short complex of
Lie algebroids 0→ E′

→ E → 0.

We also introduce a universal enveloping object first defined in a slightly different
way by Rinehart [30].

Definition 3.5. Let (E, ρ, [ , ]) be a complex Lie algebroid onX, andT the free asso-
ciative (i.e. tensor) algebra with generators inC∞(X) (of degree0) and0(E) (of degree
1). The algebraEOp of E-differential operators onX is defined asT /I, whereI is the
two-sided ideal ofT generated by elements of the form

f ⊗ g − fg, f ⊗ a − f a, a ⊗ b − b ⊗ a − [a, b],

and
a ⊗ (f b)− (f a)⊗ b − (ρ(a)f )b,

for a, b ∈ E andf, g ∈ C∞(X).

The grading ofT defines a filtrationEOpn of EOp, and the following result is a straight-
forward application of Theorem 3.1 in [30].

Lemma 3.6. For any complex Lie algebroid(E, ρ, [ , ]) overX, there is a natural iso-
morphismGrEOp(X) ' 0(X, S(E)), whereS(E) is the bundle of symmetric algebras
on the fibres ofE. In particular, the algebraC∞(X) may be identified with a subalgebra
of EOp.

Following Calaque [3], we may also introduce the space ofE-polydifferential (or multi-
differential) operators with its Gerstenhaber bracket operation. (This structure was already
suggested by Xu [34] and used implicitly by Nest and Tsygan [26].)

The usual jet spaces of functions onX are not sensitive enough to the action ofE,
since sections of the isotropy act trivially, so we must use the following generalization.

Definition 3.7. Let (E, ρ, [ , ]) be a complex Lie algebroid overX. The space ofE-jets
onX is the linear spaceEJ (X) = HomC∞(X)(

EOp(X), C∞(X)).

In the real case, theE-jets may be identified with the jets of functions along the units of
a (local) groupoid integratingE. A similar identification also works in the complex case,
though the integration in the sense of [32] may be only formal.

The complex analog of Proposition 2.7 in [26] is:

Proposition 3.8. EJ (X) introduced in Definition3.7 is the space of global sections of a
profinite-dimensional vector bundleEJets.

We define the “Grothendieck connection”∇
G : E ×

EJ (X) →
EJ (X) by

(∇G(a)(l))(D) = a(l(D))− l(a(D)),

for l ∈ 0(EJets) (= EJ (X)), a ∈ E andD ∈
EOp(X). As in the real case, this is a flat

connection.
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3.3. A natural complex Lie algebroid on a complex manifold with boundary

We introduce here the complex Lie algebroid which will be central in what follows. Let
X be a complex manifold of dimensionn + 1 with boundaryM, and letEM,X be the
space of complex vector fields onX (i.e. sections ofTCX) whose values alongM lie
in the induced CR structureGM,X. ThenEM,X is a module overC∞(X) and is closed
under bracket. The following lemma shows thatEM,X may be identified with the space of
sections of a complex Lie algebroidEM,X.

Lemma 3.9. EM,X is a locally freeC∞(X)-module.

Proof. Away from the boundary,EM,X is the same asTCM, hence locally free. Near a
boundary point, we may choose a local basisv1, . . . , vn of GM,X, which we then ex-
tend to a linearly independent set of sections ofT 0,1X, still denoted byvj , defined in an
open subset ofX. We leave the name of the open subset unspecified and will shrink it as
necessary. Letvj be the complex conjugate ofvj . These vectors all annihilateψ onM;
there is no obstruction to having them annihilateψ everywhere. Next, we choose a local
sectionv0 of T 0,1X such thatv0 · ψ = 1, and we letv0 be its conjugate. This gives a
local basis(v, v) for the complex vector fields. Such a vector field belongs toEM,X if
and only if, when it is expanded with respect to this basis, the coefficients ofv0 and all
thevj vanish alongM. Since this means that all these coefficients are divisible byψ with
smooth quotient, we get a local basis(u, u′) for EM,X by settingu′

0 = ψv0, u′

j = vj for
j = 1, . . . , n, anduj = ψvj for j = 0, . . . , n. ut

The local basis(u, u′) constructed in the proof above may be thought of as a moving
frame, some of whose entries vanish alongM. The crucial property here is that the struc-
ture functions which express Lie brackets in the given frame are smooth up toM.

We note that the complex conjugates of the basis vectors areu0 = u′

0 anduj =

ψu′

j for j = 1, . . . , n. The Lie algebroidEM,X doesnot admit an operation of complex
conjugation.

We will also use the coframe(θ, θ ′) dual to(u, u′). Denoting by(γ, γ ) the basis of
complex-valued 1-forms dual to(v, v), we find thatγ 0

= ∂ψ andγ 0
= ∂ψ . For the

vector bundleE∗

M,X dual toEM,X, we get the local basis of sectionsθ j = (1/ψ)γ j for

j = 0, . . . , n (so thatθ0
= ∂(log |ψ |), θ ′0

= (1/ψ)γ 0
= (1/ψ)∂ψ = ∂(log |ψ |), and

θ ′j
= γ j for j = 1, . . . , n. The complex conjugates areθ0 = θ ′0 andθ j = (1/ψ)θ ′j for

j = 1, . . . , n.
The coframe(θ, θ ′) is an ordinary coframe on the interior ofX. Some of these forms

blow up alongM, but the structure functions which express the exterior differentials of
these forms in terms of the coframe are smooth up toM.

3.4. Para-K̈ahler Lie algebroids

Recall that a pseudo-K̈ahler structure on a manifoldX is a symplectic structure together
with a totally complex polarization. This means that we have a (real) nondegenerate
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closed 2-formω on X and an integrable subbundleT 0,1X of TCX which is isotropic
with respect to the complex extension ofω and for whichTCX = T 0,1X ⊕ T 0,1X. We
write T 1,0X for T 0,1X. The structure is K̈ahler when the nondegenerate quadratic formg
defined onT 1,0X by g(u, v) = ω(u, Jv) is positive definite.

Thinking of a general complex Lie algebroidE overX as a substitute forTCX, it is
natural to try to define an analogous notion of Kähler structure, but we lack the operation
of complex conjugation. On the other hand, the study of pseudo-Kähler structures often
makes little or no use of the quadratic formg, but only of the nondegenerate pairing be-
tweenT 1,0X andT 0,1X defined by the restriction of the symplectic form. We are thus
dealing with a generalization (by complexification and passing from tangent bundles to
general Lie algebroids) of the so-called “para-Kähler” [23] or “bilagrangian” [17] struc-
tures, which consist of a symplectic form together with a transverse pair of lagrangian
foliations.

The following definitions are useful in both the real and complex cases.

Definition 3.10. A [complex] symplectic Lie algebroidis a [complex] Lie algebroidE
together with anE-differential 2-form ω which isEd closed and nondegenerate. Apo-
larizationof (E, ω) is a lagrangian subalgebroid ofE, i.e. a subbundle which is closed
under brackets and maximal isotropic with respect toω. A [complex] para-K̈ahler Lie
algebroidis a [complex] symplectic Lie algebroid with a splittingE = E1,0

⊕ E0,1 as
the direct sum of two polarizations.

Remark 3.11. The restriction ofω to E1,0
× E0,1 is a nondegenerate pairing which we

will continue to denote byω. This pairing is also the restriction of a uniquesymmetric
inner product onE for whichE1,0 andE0,1 are isotropic.

Example 3.12. The complex Lie algebroidEM,X of Section 3.3 is naturally split as a
direct sumE1,0

M,X ⊕ E
0,1
M,X. Sections ofE1,0

M,X are fields of holomorphic tangent vectors

which vanish on the boundary, while sections ofE
0,1
M,X are fields of antiholomorphic tan-

gent vectors which are tangent to the boundary.2 Near the boundary, the sections of the
two summands are spanned by theuj andu′

j respectively, forj = 0, . . . , n.
In Section 3.6, we will construct a complex symplectic structure for which these sum-

mands become lagrangian.

3.5. The para-K̈ahler connection

The complexification of the Levi-Civita connection on a pseudo-Kähler manifold has
many nice properties with respect to the splitting of the complexified tangent bundle into
its holomorphic and antiholomorphic summands. In fact, it can be constructed directly
from this splitting and from the pairing given by the complexified symplectic structure.
By imitating this construction, we may construct on any para-Kähler Lie algebroidE a
torsion freeE-connection which is compatible with the para-Kähler structure. (There is

2 In the language of [24], we are dealing with a hybrid of the 0-calculus and theb-calculus.



Poisson geometry and deformation quantization near a strictly pseudoconvex boundary 693

in fact just one connection with these properties.) In the case of a bilagrangian manifold,
the construction yields the bilagrangian connection of Hess [17], and in fact, beyond a
change of terminology, there is nothing we do here which is not taken from this special
case.

Proposition 3.13. Let (E = E1,0
⊕ E0,1, ω) be a para-K̈ahler Lie algebroid. There is

a unique torsion-freeE-connection∇ on E for which covariant differentiation leaves
the para-K̈ahler structure invariant; i.e. for anya, b, c ∈ 0(E), ∇a leaves the splitting
invariant, andρ(a)(ω(b, c)) = ω(∇ab, c)+ω(b,∇ac). The curvature of this connection
∇ is in (E1,0∗

∧ E0,1∗
)⊗ End(E).

Proof. Our connection∇ will be built from two flat partial connections onE defined on
the summands.

First, identifyingE0,1 with E/E1,0, we have via Example 3.4 anE1,0-connection on
E0,1. Writing p1,0 andp0,1 for the projection maps associated to the splitting ofE, we
therefore have

∇ab
′
= p0,1[a, b′]

for a ∈ 0(E1,0) andb′
∈ 0(E0,1).

This partial connection induces a connection on the dual bundle toE0,1, which we
identify withE1,0 via the pairingω. The resultingE1,0-connection onE1,0 is determined
by the equation

ω(∇ab, c
′) = ρ(a)(ω(b, c′)− ω(b, [a, c′]).

We recall thatρ is the anchor of the Lie algebroid and that we may omit the projection
from the last term becauseE1,0 is isotropic forω.

Putting together these two pieces, we get anE1,0-connection∇
1,0 on E which is

clearly compatible with the para-K̈ahler structure.
Now we may interchange the two summands and repeat everything above to get the

requiredE0,1-connection∇0,1 on E, and then assemble everything to get the required
E-connection onE. We leave to the reader the exercise of verifying (using the fact thatω

is aclosed2-form) that this connection has zero torsion.
By the Jacobi identity forE1,0 andE0,1 vector fields, we find that the curvatures

of the connections∇1,0 and∇
0,1 in (

∧2
(E1,0∗

) +
∧2
(E0,1∗

)) ⊗ End(E) vanish. This
implies that the curvatureR of theE-connection∇ = ∇

1,0
+ ∇

0,1 is a(1,1) form. ut

We call this connection thepara-Kähler connection.

Remark 3.14. A remark made in [12] is still valid here: the para-Kähler connection is
the Levi-Civita connection of the symmetric inner product of Remark 3.11. This must be
so, since the Levi-Civita connection is unique, and the symmetric inner product, being
built in a canonical way from the para-Kähler structure, must be invariant under the para-
Kähler connection.

Given basesξ0, . . . , ξn andξ ′

0, . . . , ξ
′
n of E1,0 andE0,1 respectively, we will write

ωij = ω(ξi, ξ
′

j ) andπ ij for the inverse matrix. We may expand the brackets between
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summands as [ξi, ξ ′

j ] = mkij ξk + m′k
ij ξ

′

k. It is straightforward to derive the following
formulas for the para-K̈ahler connection:

∇ξi ξj = π lk(ρ(ξi)ωj l − ωjpm
′p
il)ξk, ∇ξi ξ

′

j = m′k
ij ξ

′

k.

In the usual pseudo-K̈ahler case, we can chooseξi = ∂/∂zi andξ ′

i = ∂/∂zi to make
all the brackets vanish, in which case we get the familiar formulas

∇ξi ξj = π lk(∂ωj l/∂z
i)ξk, ∇ξi ξ

′

j = 0.

On the other hand, in any para-Kähler Lie algebroid, we may choose the bases
ξ0, . . . , ξn andξ ′

0, . . . , ξ
′
n to be dual to one another with respect to the pairing, so that

ωij andπ ij are identity matrices. Then we get

∇ξi ξj =

∑
k

−m′k
ij ξk, ∇ξi ξ

′

j =

∑
k

m′k
ij ξ

′

k.

As a result of the above observation, we see that all the calculations of Kähler geom-
etry can be carried out in an arbitrary para-Kähler Lie algebroid. This has the following
consequence.

Corollary 3.15. Let X be a manifold (possibly with boundary), andE → X a para-
Kähler Lie algebroid whose anchorρ : E → TCX is invertible on an open dense subset
U ⊂ X. Suppose that the induced para-Kähler structure onTCU comes from a pseudo-
Kähler structure onU . Then all contravariant tensors and multi-differential operators
on U which are constructed from the complex structure, the pseudo-Kähler metric, its
curvature and covariant derivatives thereof are the images underρ of smooth objects
defined on all ofE. In particular, they extend smoothly fromU toX.

Remark 3.16. One may apply this corollary to the Berezin transform and all the coeffi-
cients in the Berezin and Berezin–Toeplitz products, as analyzed by Engliš. This proves
smoothness up to the boundary of these constructions without any extra work. Also, we
can get smoothness of the canonical form (see Proposition 4.7), since it is the Ricci form
of the canonical connection. However, to identify the Berezin–Toeplitz product with an
E-product in Theorem 4.9, we need the machinery of formal integrals used by Karabegov
and Schlichenmaier [20].

Remark 3.17. It is a much more delicate problem to decide, when the pseudo-Kähler
structure onU is positive definite, whether elliptic analysis can be used as in the compact
Kähler setting to get results valid on all ofX. For instance, under what conditions on the
singularities ofρ does the deformation quantization with separation of variables, which
extends smoothly toX, arise from a Berezin–Toeplitz symbol calculus as is the case in
Theorem 4.9 below?
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3.6. The para-K̈ahler Lie algebroid near a pseudoconvex boundary

We return to our study of the Poisson geometry of a complex manifoldX with pseudo-
convex boundaryX, now using the complex Lie algebroidEM,X. We begin by showing
that the symplectic structureσ− logψ , which is singular alongM, is perfectly regular as
anEM,X-symplectic structure.

Theorem 3.18. The pullback ofσ− logψ to EM,X is a smooth section of
∧2

E∗

M,X. This
section is nondegenerate alongM, hence on a neighborhood ofM, if and only ifM is
Levi nondegenerate.

Proof. We will expressσ− logψ in terms of our bases of sections ofT ∗

CX andE∗

M,X. First
of all, with sums over repeated indices ranging from 1 ton, we have

∂∂ψ = aγ 0
∧ γ 0

+ bkγ
0
∧ γ k + bkγ

k
∧ γ 0

+ cjkγ
j

∧ γ k,

wherea is real and the matrixcjk is hermitian; it is the matrix of the Levi form. From this
we get

(1/i)σ− logψ = − (1/ψ)(aγ 0
∧ γ 0

+ bkγ
0
∧ γ k + bkγ

k
∧ γ 0

+ cjkγ
j
∧ γ k)

+ (1/ψ2)γ 0
∧ γ 0

= − (1/ψ)(aψθ0
∧ψθ ′0

+ bkψθ
0
∧ θ ′k

+ bkψθ
k
∧ψθ ′0

+ cjkψθ
j
∧ θ ′k)

+ (1/ψ2)ψθ0
∧ψθ ′0

= (1−ψa)θ0
∧ θ ′0

− bkθ
0
∧ θ ′k

− bkψθ
k
∧ θ ′0

− cjkθ
j
∧ θ ′k.

AlongM, whereψ = 0, this becomes

θ0
∧ (θ ′0

− bkθ
′k)− cjkθ

j
∧ θ ′k.

This is clearly smooth as a section of
∧2

E∗

M,X, and its nondegeneracy is equivalent to
that of the matrixcjk, i.e. to that of the Levi form. ut

We get another proof of the smooth extension theorem obtained earlier from normal form
theory.

Corollary 3.19. The Poisson structureπ− logψ obtained by invertingσ− logψ nearM
extends smoothly overM.

Proof. On the complement ofM, nearM, this Poisson structure is the pushforward of the
section of

∧2
EM,X obtained by inverting the pullback ofω− logψ . We have just seen that

the inverse of this pullback extends smoothly overM, hence so does its pushforward.ut

We next turn to the hermitian hessian itself, related to the 2-formσ− logψ by the formula

g− logψ (x, y) = σ− logψ (x, Jy).

The following result is part of a classical lemma usually attributed to Oka and Lelong.



696 Eric Leichtnam et al.

Proposition 3.20. If ψ is any defining function for the strongly pseudoconvex boundary
M of X, then− logψ is strongly plurisubharmonic (i.e.g− logψ is positive definite) on
the complement ofM in some neighborhood ofM in X.

Proof. The quadratic formq(x) = g− logψ (x, x) is expressed in terms of the components
of x in our special basis by

q(x) = − (1/ψ)(aγ 0(x)γ 0(x)− bkγ
0(x)γ k(x)− bkγ

k(x)γ 0(x)− cjkγ
j (x)γ k(x))

+ (1/ψ2)γ 0(x)γ 0(x).

The corresponding hermitian matrix is the positive function 1/ψ2 times the(1 + n) ×

(1 + n) block matrix with 1− ψa in the upper left hand corner,−ψcjk in the lower
right block, and−ψbk and its adjoint in the off-diagonal row and column. Sincecjk is
the matrix of the Levi form, it is negative definite whenM is strongly pseudoconvex. By
the Sylvester criterion (hermitian version), the entire matrix will be positive definite if its
determinant is positive. Expanding this determinant (if we ignore the overall factor 1/ψ2)
in minors of the top row, we obtainψn times the determinant of−cjk plus terms divisible
byψn+1. Sufficiently close to the boundary, the sum must be positive. ut

Proposition 3.21. If (with notation as above) the function− logψ is strictly plurisub-
harmonic throughout the interior ofX, then the K̈ahler metricg− logψ on the interior of
X extends to a para-K̈ahler Lie algebroid structure onEM,X.

Proof. We have only to show that the summands in the splitting of Example 3.12 are la-
grangian with respect to the symplectic form. But this follows immediately by continuity
from the corresponding fact on the interior. ut

The nondegenerate pairingω : E1,0
M,X × E

0,1
M,X → C is given in our basis of sections by

β = (1 − ψa)θ0
⊗ θ ′0

− bkθ
0
⊗ θ ′k

+ bkψθ
k
⊗ θ ′0

− cjkθ
j

⊗ θ ′k.

4. Quantization

Deformation quantization on closed Kähler manifolds can be accomplished as a by-
product of Berezin–Toeplitz quantization. See, for instance, [2] [16] and references
therein.3 On the other hand, Karabegov [19] studied special formal deformation quan-
tization adapted to the K̈ahler structure, and he and Schlichenmaier [20] linked the two
approaches.

In this section, we will show how to extend the work cited above to the case of Kähler
manifolds with pseudoconvex boundary, using para-Kähler Lie algebroids.

3 This work applies only to the case where the symplectic structure is integral, but Melrose [25]
has shown how to extend the method to the nonintegral case.
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4.1. Definitions

We start with the “complexification” of a basic definition of Nest and Tsygan [26] (sug-
gested already by Xu [34]).

Definition 4.1. Let (E, ω) be a complex symplectic Lie algebroid overX. An E-star
productonX is a formal series ofE-bidifferential operators

B = 1 ⊗ 1 +

∑
k≥1

(i~)kBk, Bk ∈
EOp(X)⊗

EOp(X),

which is associative in the sense that the Gerstenhaber bracket[B,B] is equal to zero,
and for which the antisymmetrization ofB1 is theE-bivector fieldπ inverse toω.

PushingB forward by the anchor ofE, we obtain a formal series ofTCX-bidifferential
operators which gives a star product? for the Poisson structure which is the pushforward
of π .

Now we extend to the para-K̈ahler case the notion of quantization with separation of
variables.

Definition 4.2. If E is a para-K̈ahler Lie algebroid, we call anE-star productbipolar-
ized if the bidifferential operatorsBk all belong toE

1,0
Op(X)⊗

E0,1
Op(X).

A bipolarizedE-star product has the property thatf ? g = fg wheneverf is an anti-
holomorphic function org is holomorphic. When the anchor ofE is injective, even on a
dense subset ofX, this property implies that the star product is bipolarized. In the Kähler
case, this means that, after changing the sign of the complex structure (or replacing the
product by its opposite), we are dealing with a star product with separation of variables
in the sense of [19].

4.2. Bipolarized star products

Nest and Tsygan [26] showed that the quantization method of Fedosov [14] extends im-
mediately to (real) symplectic Lie algebroids to produce “Weyl-type” star products. Their
extension works for complex Lie algebroids as well. On the other hand, Neumaier [27]
showed that, when one starts the Fedosov construction with a “bipolarized” symplectic
connection (such as the Levi-Civita connection for a pseudo-Kähler manifold) and an
“(anti)Wick-type” bipolarized product on the tangent spaces, the resulting star product is
bipolarized. In this section, we combine the two constructions above to obtain bipolarized
E-star products on para-K̈ahler Lie algebroids.

The idea of the construction of theE-star products can be summarized as follows.
In this paragraph, we suppose that our para-Kähler Lie algebroid can be integrated in

some sense to ans-connected groupoidG ⇒ X. The sections of our Lie algebroid can
be viewed as leftG-invariant vector fields along thes-fibers ofG. The symplectic Lie
algebroid structure defines aG-invariant para-K̈ahler structure on eachs-fiber. There-
fore, eachs-fiber ofG becomes a para-K̈ahler manifold and in particular a symplectic
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manifold.G is canonically foliated by thes-fibers with equal dimensions, and therefore
becomes a regular Poisson manifold, andX is a complete transversal to this foliation. A
para-K̈ahler connection onX can be lifted to aG-invariant symplectic connection onG.
Given a “symplectic connection” on a regular Poisson manifold, we can use Fedosov’s
construction (Neumaier’s construction in [27]) to obtain a star product onG. Since the
para-K̈ahler form and the para-K̈ahler connection are bothG-invariant, this product we
obtain onG is alsoG-invariant, and therefore can be expressed by aG-invariant bi-
differential operator onG, which is a Lie algebroid bidifferential operator and actually
bipolarized if the characteristic form is bipolarized.

The construction defined above is based on the uncertain notion of integration of a
complex Lie algebroid. We can bypass this problem by working with theE-jets intro-
duced in Definition 3.7, which can be viewed as the infinite jets alongX of smooth func-
tions onG. The Grothendieck connection defines a natural lift of the Lie algebroid action
to the infinite jets. Therefore, we can construct a bipolarized star product by working with
E-jets.

We begin our construction with the fiberwise anti-Wick product. LetE be a para-
Kähler Lie algebroid overX. Then each fiberEx has a natural translation-invariant para-
Kähler structure given by the symplectic form and the lagrangian subspacesE

1,0
x and

E
0,1
x . Given a basisξ0, . . . , ξn ∈ E1,0, ξ ′

0, . . . , ξ
′
n ∈ E0,1 and the dual basisθ0, . . . , θn ∈

E0,1∗
, θ ′0, . . . , θ ′n

∈ E1,0∗
, ω is expressed asωij θ i ∧ θ ′j .

We define a bipolarized star product on the algebra

Wx := C[η0, . . . , ηn, η′0, . . . , η′n][[ ~]]

of C[[~]]-valued polynomial functions onEx by

f ∗ g := exp

(
−
i~
2
π ij

∂

∂η′i
⊗

∂

∂ηj

)
(f ⊗ g), (4)

where(π ij ) is the inverse matrix to(ωij ). Taking a union of the algebrasWx , x ∈ X, we
obtain a formal anti-Wick algebra bundleW.

In the following, we adapt Fedosov’s construction of star products on symplectic man-
ifolds to our situation.

The para-K̈ahler connection introduced in Section 3.5 naturally lifts to a connection
denoted∇ lc on the anti-Wick algebra bundleW.

Definition 4.3. A Fedosov connectiononW is a flat connectionD onW of the formD =

∇
lc

+ A, withA ∈ �1(M,End(W)) andD2(a) = (i/~)[�, a] = 0 for all a ∈ 0(W).�
is aC[[~]] -valued2-form and is usually called theWeyl curvatureof the connectionD.

The following theorem is an extension of Fedosov’s theorem on symplectic manifolds to
para-K̈ahler manifolds.

Theorem 4.4. Let µ be an element of−ω + ~ E1,0
�1(X,C) ∧

E0,1
�1(X,C)[[~]] such

that dµ = 0. There exists anEnd(W)-valuedE-formAµ onX such that∇µ = ∇
lc

+

Aµ defines a Fedosov connection onW with ∇µAµ +
1
2[Aµ, Aµ] = µ. The complexes

(E�(X,W),∇µ) and(E�(X, EJets⊗W),∇G+∇µ) are acyclic in positive dimensions.
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Proof. The proof of this theorem is an application of Fedosov’s iteration method. The
following construction is a generalization of Theorem 3.1 in [27]. We outline the main
steps in the following, and omit the detail check.

Notice that the anti-Wick algebra is naturally graded by the sum of the degree of the
polynomial and the power of~. Therefore, the algebraE�(X,W) is graded by the total
degree, which is denoted by “deg”. Following Fedosov [14], we introduce operationsδ

andδ−1 onE�(X,W), as follows:

δ(a) =

∑
i

(
θ i ∧

∂

∂ηi
a + θ ′i

∧
∂

∂η′i
a

)
,

δ−1(a) =
1

deg(a)

∑
i

(ηi · ιθ ia + η′i
· ι
θ ′ia),

for homogeneousa ∈
E�(X,W) with positive degree. We look forAµ of the form

−δ + (i/~)[rµ, ·], whererµ is in E�1(X,W) with total degree 5.
According to∇µAµ +

1
2[Aµ, Aµ] = µ, rµ is the unique solution of the equations

δrµ = −ω + ∇
lcrµ +

i

~
rµ ∗ rµ + Rlc − µ, δ−1(rµ) = 0, (5)

whereRlc is the curvature of∇ lc, which is inE1,0∗
∧ E0,1∗

.
The solution of equation (5) can be obtained by iteration, using the following relation:

rµ = δ−1(r0)+ δ−1
(

∇
lcrµ +

i

~
rµ ∗ rµ

)
,

wherer0 = −ω + Rlc − µ. ut

By the flat connection∇µ constructed in Theorem 4.4, we have isomorphisms

τ : C∞(X)[[~]] → ker(∇µ|E�0(X,W)), (6)

and
EJ (X) → ker((∇G + ∇µ)|E�0(X,EJets⊗EW)). (7)

By the isomorphism (7), the fiberwise product onE�0(X, EJets⊗ EW) defines an
associative product∗ on the space ofE-jets. By the duality between the space ofE-
jets andEOp(X), the product∗ defines a leftC∞(X)-module mapχ : EOp(X) →
EOp(X)⊗C∞(X)

EOp(X), i.e. l1 ∗ l2(D) = l1 ⊗ l2(χ(D)). In particular, evaluatingχ on
the constant function 1 inEOp(X), we obtain anE-bidifferential operatorχ(1).

By arguments like those used for Theorem 4.3 of [26], we find thatχ(1) ∈
EOp(X)⊗

EOp(X) defines an associativeE-star product.

Lemma 4.5. For anyE-jetf constant alongE1,0 in an open setU ofX, χ(1)(f, g)|U =

f ∗ g|U = fg|U for all g ∈
EJ (X).

For anyE-jet g constant alongE0,1 in an open setV ofX, χ(1)(f, g)|V = f ∗g|V =

fg|V for all f ∈
EJ (X).
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Proof. WhenE1,0 andE0,1 are the holomorphic and antiholomorphic tangent bundles
of a Kähler manifold, Lemma 4.5 is Proposition 4.4 of [27]. The present case is a small
generalization thereof. In the following, we sketch the proof.

We study the isomorphism (6) in more detail. Letf̂ denote the lifting of anE-jet f
to a flat section inE�0(X, EJets⊗ EW). Thenf̂ is the only solution of the differential
equation∇µf̂ = 0 with f̂ |

ηi=η′i=0 = f . We write f̂ =
∑
k f̂

(k) as a sum of its homo-

geneous degreek components.f̂ (k) can be constructed through the following iteration:

f̂ 0
= f,

f̂ (p) = δ−1
(

∇
lcf̂ (p) +

i

~

p−1∑
k=0

[r(k+2)
µ , f̂ (p−k)]

)
,

(8)

wherer(k+2)
µ is the degreek + 2 component ofrµ.

The product∗ on EJ (X) is then defined to bef ∗ g := σ(f̂ ◦ ĝ), whereσ :
E�0(X, EJets⊗

EW) → �∗(X, EJets) by setting allηi, η′i equal to 0 and◦ is the
fiberwise multiplication inE�0(X, EJets⊗ EW).

To prove Lemma 4.5, we look at each fiberW of the bundleW. In (4), we notice that
the product∗ in the first component only involvesη′, and in the second component only
involvesη. Due to this property of∗, we introduce onW a projectionτ1,0 : W → W

onto the component ofC(η′0, . . . , η′n)[[~]], the (1,0) component, and a projectionτ0,1 :
W → W onto the component ofC(η0, . . . , ηn)[[~]], the (0,1) component.τ1,0 andτ0,1

lift onto W naturally; denote the composition ofτ1,0 and f̂ by f̂ 1,0 and similarly the
composition ofτ0,1 andĝ by ĝ0,1.

We observe thatf ∗ g can be rewritten asσ(τ1,0(f̂ ) ◦ τ0,1(ĝ)), and therefore it is
enough to construct̂f 1,0 and ĝ0,1 to computef ∗ g. Following the idea of Proposition
4.2 of [27], we can restrict toE1,0 andE0,1 to calculatef̂ 1,0 and ĝ0,1. They can be
constructed by the following iterations analogous to (8):

f̂ 1,0
= f + δ−1

1,0

(
∇
lc
1,0f̂

1,0
+

1

~
τ1,0(f̂ 1,0

◦ r1,0
µ )

)
,

ĝ0,1
= g + δ−1

0,1

(
∇
lc
0,1ĝ

0,1
+

1

~
τ0,1(ĝ0,1

◦ r0,1
µ )

)
,

where∇
lc
1,0,∇

lc
0,1, andr1,0

µ , r0,1
µ are the restrictions of∇ andrµ to their components in

E1,0 andE0,1.
With the formulas above, it is straightforward to check that iff is constant along

E1,0, thenf̂ 1,0
= f andf ? g = fg, and the same holds for theE0,1-component. ut

Proposition 4.6. The isomorphisms(6) and(7) define a bipolarizedE-deformation of a
para-Kähler Lie algebroid.

Proof. We need to show thatχ(1) ∈
E1,0

Op(X) ⊗
E0,1

Op(X), but this is implied by
Lemma 4.5. ut
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4.3. Strictly pseudoconvex boundary of a complex manifold

Proposition 4.6 shows that the para-Kähler Lie algebroid associated to the boundary
of a complex domain has a polarizedE-star product. On the other hand, in [8], Engliš
constructed a differential star product on a bounded pseudoconvex domain by Berezin–
Toeplitz quantization. In this subsection, we identify Engliš’ star product with what we
constructed in Proposition 4.6.

Engliš’ Berezin–Toeplitz quantization is an example of a deformation quantization
with separation of variables. In Theorem 5.9 of [20], Karabegov and Schlichenmaier iden-
tified the opposite of the Berezin–Toeplitz star product with a star product with separation
of variables whose Karabegov form is equal to−(1/i~)ω + ωcan and characteristic form
is (1/i~)ω − ωcan/2i, whereωcan is the curvature form of the canonical line bundle.

Proposition 4.7. Near the boundaryM of a pseudoconvex domainX, the canonical form
ωcan pulls back to a smooth section ofE1,0∗

M,X ⊗ E
0,1∗

M,X.

Proof. According to the definition given in [20],ωcan is equal to −i∂∂ν, where
in+1eνdzdz̄ is the symplectic volume. (We writedz for dz1

· · · dzn+1.) To calculateωcan,
we follow the calculation in Proposition 2.6, where the volume form is shown to be(

−
∂∂ψ

ψ
+
∂ψ ∧ ∂ψ

ψ2

)n+1

=

(
−
∂∂ψ

ψ

)n+1

+

(
−
∂∂ψ

ψ

)n
∧
∂ψ ∧ ∂ψ

ψ2
.

This form can be written as

ψ−n−2 det(ψ∂i∂jψ − ∂iψ∂jψ)

ψn
dzdz̄.

It has been shown in Theorem 3.18 thatν0 = det(ψ∂i∂jψ − ∂iψ∂jψ)/ψ
n is nonzero and

smooth up to the boundary. Therefore,ν is equal to log(ψ−n−2ν0) = −(n+ 2) log(ψ)+
log(ν0), and∂∂ν is

−(n+ 2)∂∂ log(ψ)+ ∂∂(log(ν0)).

To show that∂∂ν pulls back to a smooth section ofE1,0∗

M,X ∧E
0,1∗

M,X, we may check the
two terms separately.

1. −(n + 2)∂∂ log(ψ): By Theorem 3.18,∂∂ log(ψ) pulls back to be a smooth section
of E1,0∗

M,X ∧ E
0,1∗

M,X.

2. ∂∂(log(ν0)): Sinceν0 is nonzero near the boundary,∂∂ log(ν0) is smooth up to the
boundary, and therefore expressed in terms ofγ i andγ i , which are smooth sections
of

∧2
E∗

M,X. Finally, the bipolarization of∂∂(log(ν0)) is obvious. ut

Sinceωcan ∈
E1,0

�1(X,C)∧E0,1
�1(X,C), we obtain a bipolarizedE-star product?E on

X constructed from Proposition 4.6 with the Weyl curvatureµ equal toµ = −ω+i~ωcan.

Proposition 4.8. When restricted to the interior ofX, the Karabegov form of?E is equal
to −(1/i~)ω + ωcan.
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Proof. When restricted to the interior ofX, EM,X coincides with the tangent bundle of
the Kähler manifoldX. By the locality of our construction of star products, we find that
in the interior ofX, our quantization of a para-K̈ahler Lie algebroidEM,X coincides with
the quantization of the K̈ahler manifold. This allows us to use Theorem 6.7 and Deduction
6.9 in [27] to obtain the characteristic form. ut

Now we are ready to state the following theorem.

Theorem 4.9. The opposite Berezin–Toeplitz star product?′BT near a strictly pseudo-
convex boundary is equal to theE-star product?E constructed in Proposition4.6, and
therefore is smooth up to the boundary ofX.

Remark 4.10. Smoothness up to the boundary for Engliš’ Berezin–Toeplitz star product
can be directly derived from Corollary 3.15. (See Remark 3.16.) But Theorem 4.9 sets up a
nice connection between the Berezin–Toeplitz quantization and deformation quantization.

Proof of Theorem 4.9.We know that both theE-star product?E and the opposite Berezin
–Toeplitz star product?′BT in the interior ofX are star products with separation of vari-
ables defined by Karabegov. In Theorem 2 of [19] Karabegov showed that star products
with separation of variables on a Kähler manifoldX are in one-to-one correspondence to
the set of power series in~ of closed(1,1) forms onX, i.e.Z2

dR(X,C)
(1,1)[[~]].

We have shown in Proposition 4.8 that the Karabegov form of theE-star product?E
is equal to−(1/i~)ω + ωcan. A similar calculation as Karabegov and Schlichenmaier
did on compact K̈ahler manifolds showd that the Karabegov form of Engliš’ opposite
Berezin–Toeplitz star product?′BT is also equal to−(1/i~)ω+ ωcan. Therefore, we have

?′BT = ?E .

And since?E is smooth up to the boundary ofX, ?′BT is also smooth up to the boundary,
which was already proved in Corollary 3.15.

We end the proof by explaining the computation of the Karabegov form of Engliš’
opposite Berezin–Toeplitz star product.

Karabegov and Schlichenmaier’s calculation in [20] requires the Kähler manifold un-
der consideration to be compact. In [20], they use the compactness assumption to prove
that the Berezin–Toeplitz quantization defines a local differential product. Their Proposi-
tions 5.1 and 5.2 give an asymptotic expansion of the Berezin transform and the twisted
operator product, while Theorem 5.6 gives an asymptotic expansion of the Bergman ker-
nel. All of the remaining calculations are local. For the case of the boundary of a strictly
pseudoconvex domain, the analogs of the above asymptotic expansions have been estab-
lished by Englǐs in Theorems 1–3 of [8]. Therefore, we can still use the method of formal
integrals as in [20] to compute the Karabegov form of the star product?′BT . It turns out to
be again equal to−(1/i~)ω + ωcan. ut
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