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Abstract. Let X be a complex manifold with strongly pseudoconvex bounddryf v is a defin-
ing function forM, then— log v is plurisubharmonic on a neighborhoodMfin X, and the (real)
2-formo = i99(—logvy) is a symplectic structure on the complementisfin a neighborhood
of M in X; it blows up alongM.

The Poisson structure obtained by invertingextends smoothly acrosdg and determines a
contact structure oM which is the same as the one induced by the complex structure. When
compact, the Poisson structure naaiis completely determined up to isomorphism by the contact
structure onM. In addition, when—log is plurisubharmonic throughouf, and X is compact,
bidifferential operators constructed by Erfgfor the Berezin—Toeplitz deformation quantization
of X are smooth up to the boundary. The proofs use a complex Lie algebroid determined by the CR
structure onM, along with some ideas of Epstein, Melrose, and Mendoza concerning manifolds
with contact boundary.

Keywords. Poisson structure, pseudoconvexity, plurisubharmonic function, contact structure, Lie
algebroid

1. Introduction

Let u be a real-valued function on a complex manifaid The 2-formo = ¢, = i99u

is of type (1, 1), real, and exact (sinc@ = d9). In addition,o (x,y) = o(Jx, Jy),
whereJ is the complex structure viewed as an endomorphisifiXf so the “hermitian
hessian” bilinear forny, (x, y) = o(x, Jy) is symmetric. Wherg, is positive definite,

u is said to bestrongly plurisubharmonicin this caseg, is a Kahler metric onX, and

the formo is nondegenerate, i.e. symplectic. The functiois called aKahler potential

for g,. Conversely, the Dolbeault lemma implies that arghler metric onX arises from

a potential on a neighborhood of each poin&kofwhile the local geometry of thedhler
metric depends very much on the choice of potential, the symplectic form has no local
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invariants. (See [7] for global results about the symplectic geometryabfd€ manifolds
with global potential functions.)

In this paper, we will investigate what happens when the complex manifdids a
boundaryM. The hyperplane fieldy; x = TM N JT M is called themaximal complex
subbundleof T M. A defining functiorfor M is a smooth nonnegative functignwhose
zero set isM, and which has no critical points alf. The restriction toF; x of the
hermitian hessiagy is, up to a positive conformal factor, independent of the choice of
defining function. The associated invariant object, a symmetric bilinear form with values
in the conormal bundle a¥/, is called thd_evi formof M. M is calledLevi nondegenerate
when this form is nondegenerate, asttbngly pseudoconvexhen it is negative definite.

M is Levi nondegenerate if and only My, x is a contact structure.

When M is strongly pseudoconvex; log ¢ is strongly plurisubharmonic ol \ M
for some neighborhoo® of M in X, ando_jogy ONU \ M is a symplectic structure
which blows up along/. We will show that the corresponding Poisson structtir,g .
extends smoothly ta¢4, along which it is zero.

In fact, using Epstein, Melrose and Mendoza’s|[11] notiorBe$tructure, we will
show that, whenevel is Levi nondegenerate, the local isomorphism type of the Pois-
son structurer_ogy is independent of everything but the dimensionXaf The local
model is LeBrun’s[[22] Poisson structure on the normal bundle to a contact structure, and
equivalence with this model gives the smoothness_qfg, up to the boundary.

Contact structures also play a role in the global f6nversion of this result: the germ
alongM of the Poisson structure is determined, up to diffeomorphisms fixingy the
contact structurdy, x. Its isomorphism class is thus independent of the choice of the
defining function and of the choice of (compatible) complex structure. Again, the model
for m_ogy is given by LeBrun’s construction.

Similar results, for flows and infinitesimal deformations on pseudoconvex manifolds,
have been obtained by Kamyi and Reimann [21], [29].

We turn next to quantization. Whefiis compact and is strongly plurisubharmonic
throughoutX, 7_ gy is the semiclassical commutator of the Berezin—Toeplitz defor-
mation quantization product oK. The construction of this product involves the action
of smooth functions oX by multiplication and projection on a parameterized family of
weighted Bergman spaces of holomorphic functions on the interiaf. dfhe Berezin—
Toeplitz product was analyzed in the pseudoconvex setting by &&jlifollowing many
earlier studies on closed manifolds. He showed that the induced product on smooth func-
tions has an asymptotic expansion in the weight parameter; the terms in the expansion
are bidifferential operators whose coefficients are algebraic combinations ofatilerK
metric, its curvature, and covariant derivatives thereof.

We will use the notion oftomplex Lie algebroido show that all the bidifferen-
tial operators in the Berezin—-Toeplitz—Erigtjuantization are smooth up to the bound-
ary. In fact, we will show something stronger. Karabedou [19] has defined a notion of
guantization with separation of variables on ahter manifold, and it is known that the
Berezin—EngE—Toeplitz quantization has this property on the interiokofVe will ex-
tend Karabegov’s definition by introducing a notionpafra-Kahler structureon a com-
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plex Lie algebroid, and we will show that the separation of variables property then holds
up to the boundary.

In the future, we plan to extend our results to more general manifolds, replacing the
global strongly plurisubharmonic functiaf by a family of local functions obtained from
a connection on a hermitian line bundle. These results will be used in the proof of a
topological formula for the relative index of CR structures defined by Epstein [9] which
was conjectured by Atiyah and Weinstein[[31]. (A proof of the conjecture by Ep5téein [10]
has recently appeared, but his methods are quite different from ours.)

2. Normal forms

For most of this section, we will forget about complex geometry and look at what Ep-
stein, Melrose, and MendoZa [11] célstructuresM will now be the boundary of any
manifold X of real dimension 2 + 2.

Definition 2.1. An EMM form is a 1-form ® on X whose pullback taV is a contact
form.

Our model example of an EMM form will be the pullbackXo= M x R* of a contact
form ¢ on M; we identify M with the zero set of the coordinate functioron Rt =
[0, 00). The symplectic formi(® /r) blows up alongV, but LeBrun [22] observed that
the Poisson structure inversed@ /r) extends to a smooth Poisson structurédbr R ™.
If¢p=du+) pjdqj in local coordinatesu, ¢, p) on M, then, onM x R¥,

d©/r) = (1/,»2)[—(1,» A (du +y pjdqj) + rdp; A dqf], 1)
and the Poisson structure CorresponEitng—d@/r) is
a a a a a
1= — i— | A— — A —. 2
r[<rar+zpjapj> o g ap]} @

2.1. Local normal form

We will use the following local theorem in order to obtain a global normal form. (It would
be nice to get the global form all at once, but we do not know how to do it.)

Theorem 2.2. Let ® be an EMM form on the manifold with boundaryM, and let

Y be a defining function for the boundary. Then, near eacle M, there exist local
coordinates(q, p,u,r) on X in whichy = r and d(®/y) has the form() on the
complement oM. In particular, —d(® /) is symplectic on the complementMfin a
neighborhood ofn in X; the corresponding Poisson structure on this neighborhood has
the local normal form(2).

1 There is a choice of sign when one says that a Poisson structure corresponds to a symplectic
structure. Unlike LeBruri[22], we use the convention in whigha dp corresponds to the relation



684 Eric Leichtnam et al.

Proof. We begin by setting = . By the Darboux theorem for contact 1-forms [4], we
may find local coordinates oM for which the pullback of® has the expressiogu +
pjdqj. In fact, the pullback o® to each level of nearM is still a contact structure, so we
may choose coordinates on all these levels, depending smooth|gothat the pullbacks
all have the same form. It follows th@itself may be written agu + p;dq’ +adr, where
a is a smooth function of all the variables.

To eliminate the termdr, we use Moser’s method, i.e. constructing a diffeomorphism
(preserving and fixed onM) by integrating a time-dependent vector figlgd As usual,
we define®, by interpolation agu+ p;jdq’ +tadr and choose; to satisfy the condition
X, _1d(®;/r) = —(a/r)dr. Now

d(©,/r) = (1/r)d®, — (1/r?)dr A O,
= (1/r)(dp; A dq’ + tda A dr) — (1/r®)dr A (du + pjdq’ + tadr). (3)

If we take X; to be a functionf; (¢, p, u, r) times the (Reeb) vector fiel)ou, it will be
tangent to the levels of X, must satisfy the equation

Xy 1d(©/r) = (t/r)(fi(da/0u) + (1/r) fi)dr = —(a/r)dr,

which has the solutiotf; = —ra/(1+ rt da/du). The denominator is invertible neaf,
and the factor of in the numerator off; insures thaf(, vanishes along/, in addition to
being smooth and tangent to the levels of O

2.2. Global normal form

To put ® in normal form on a neighborhood of the entire boundary, we can no longer
fix the yr levels, because the characteristic line element field of the pullba¢kapfy)
has a global dynamics which may vary from ofidevel to another. This also makes it
impossible to use the Darboux theorem as we did for the local normal form. Instead, we
use Gray's theorem, which asserts that deformations of a casttactureon a compact
manifold are trivial. We refer the reader to Cannas da Silva [4] for a proof, noting for
use below that the transformations in Gray’s theorem may easily be chosen to depend
smoothly on a parameter.

Like the local model, the global normal form comes from LeBiun [22]. For any con-
tact structureF C T M, the conormal bundle* = (T M/F)* may be identified with
the 1-dimensional subbundle &f M consisting of all real multiples of any contact form
defining the contact structure. The pullbackutoof the canonical symplectic structure
onT*M is nondegenerate on the complement of the zero sectioh 8/e may identify
this complement by “inversion” with the complement of the zero section in the normal
bundlev = TM/F. LeBrun shows that the Poisson structure corresponding to this form
onv now extends smoothly over the zero section. Whénoriented, a choice of contact
form identifiesv with M x R, and the nonnegative normal bundfe is identified with
M x R*. The Poisson structure is given By (2).
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Theorem 2.3. Let ® be an EMM form for the manifol& with boundaryM, andyr a
defining function for the boundary. Then a neighborhoodfoin X, with the structure
corresponding to-d(® /), is Poisson isomorphic to a neighborhood of the zero section
in the nonnegative normal bundie”, with the LeBrun—Poisson structure associated to
the contact structure induced lByon M.

Proof. As in the proof of Theorern 2.2, we will work with the 2-forms. Since the diffeo-
morphism we construct will be smooth along the singular locus of these forms, it will
automatically be a Poisson isomorphism.

To begin, we identify botlx neard andv™ near the zero section with a neighborhood
of the zero section in the trivial bundlg x R*. For v+, we use the trivialization of
given by the contact form which is the pullback &fto M. For X near M, we first
arrange that the projection onR s the given functiony, i.e. we setr = ; we then
use Gray's theorem to arrange that the projection of eladbvel ontoM is a contact
diffeomorphism.

Let us write®q for the standard formau + > pjdqj (independent of) and®; for
the given form. Sinc®1 defines the same contact structur&gson each level of, and
it agrees with®q on the zero level@1 = O¢ + a dr + br®g, wherea andb are smooth
functions. As before, we linearly interpolate to g&t = ©qg + ra dr + tbr®q. Note for
later use in this proof that these are all EMM forms, so we can apply Thgorém 2.2 to put
them in local normal form.

Once again, we seek a time-dependent vector figldo generate our normalizing
transformation. The required condition on this vector field is

X, 1d(®,/r) = —(a/r)dr + bOq.

The unique solution of this equation is (on the complemenM)fthe contraction of
the right hand side with the Poisson structure correspondingdt®,/r). We already
know from the local normal form that this Poisson structure vanishes albngo the
contraction extends smoothly ovef. It remains to show that the contraction vanishes
along M. For this, it suffices to show that the contraction with vanishes to second
order. But, from the local normal forn](2), we find immediately that, in normal form
coordinates, this contraction is equakfalu, and our proof is complete. O

Remark 2.4. Although the normal form theorem above may suggest that the LeBrun—
Poisson structure is rigid with respect to arbitrary higher-order perturbations, this is in
fact not the case. For instance, whihis 1-dimensional, the Poisson structure is simply
I = r23/9r A 3/0u. This structure is exact in the sense that there is a vector £ield
(namelyd/ar) satisfying E, 1] = I1, but the Poisson structu@? + r3)d/dr A 3/du

does not admit suchéif M is a circle. A related fact is that/ (2 + r3))dr A du is not
d(®/r) for any EMM form®.

We also note the following relative form of Theorgm|2.3.

Corollary 2.5. If ®yand®; are EMM forms which agree to infinite order aloi, then
there is a diffeomorphism germ ot along M which agrees with the identity to infinite
order alongM and pulls bacl®1 to ©g.
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Proof. By Theorenj 2B, we may assume that= M x [0, 1) and that® is the standard
form. We then repeat the proof of Theorfm|2.3; the functioresidb vanish to infinite
order alongM, hence so does the vector fietd which generates the normalizing trans-
formation. O

2.3. Application to pseudoconvex boundaries

Let X be a complex manifold with boundad. By elementary calculus on complex
manifolds,

Af = %(df +iJ*df)

for any smooth functiory, whereJ : TX — TX is the almost complex structure. It
follows that

= - 1 LAY 1.,
i99(—logy) = idd(—logy) = =d( J*— | =d| =J*dy /v ).
2 Y 2
Let ¢ be a defining function for the boundary and set ¢ and® = %J*dw. We will
show that® is an EMM form. In fact, inTy; X, T M is kerdyr, so

ker@NTM =kerJ*dy NTM = J(kerdy)NTM =JTMNTM = Fy x,

the maximal complex subbundle #fV. SinceM is Levi nondegeneratd;y, x is a con-
tact structure, and henégis an EMM form. It follows that all the results of this section
apply to the formv_ g and the corresponding Poisson structureog .

We remark that our results correspond very closely to results on flows and deforma-
tions due to Koanyi and Reimanri [21]| [29]. Since the Poisson structure determines the
contact structure on the boundary, our methods also give a simple proof of their (easier)
converse result that a smooth map which is symplectic on the interior must be contact on
the boundary.

Here is a direct nondegeneracy proof which is independent of the normal form theo-
rem. It involves a volume element computation which we will use in the proof of Propo-
sition[4.7 below.

Proposition 2.6. Let  be a defining function for the boundany of X. The close®-
formo_ogy is nondegenerate on a neighborhoodéfin the interior of X if M is Levi
nondegenerate.

Proof. We compute:

5_w) =0y + Y A DY
v ) Y2 '
Raising this 2-form to thén + 1)st power gives
vy dy /\M)"“_ (_35_1/;)”“ (_351/;)" Y A IV
( PR U U e

(1/i)0_togy = 83(— logy) = _a<




Poisson geometry and deformation quantization near a strictly pseudoconvex boundary 687

which isy— 12 times
Y (—=93y)" T+ (=33Y)" A Y A DY

Our lemma will be proven if we can show that this form is nonzero a¢avhen M
is Levi nondegenerate. Since the first term vanishes aldrigsuffices to show that the
second is nonzero. Sinda A 3y is nonzero and annihilates the contact structyey,
the nonvanishing of the term is equivalent to nondegeneracy of the restriction oof
(—33y)". But—davy is just the 2-form associated viato the Levi form. o

Remark 2.7. There are natural 1-1 correspondences among several bundles along the
boundaryM whose sections admit natural simple and transitive actions of the smooth
positive functions or:

1. 1-jets alongVf of defining functions.

2. Sections of the conormal bundfe* C T, X which are “positive” in the sense that
they take positive values on inward-pointing vectorgjpX.

3. Contact forms realizing the cooriented contact structurgfon

4. \olume elements oM compatible with the natural boundary orientatiomof

The correspondence4- 2 is almost tautological, since any section of the conormal

bundle may be realized as the derivative aladgf a defining function. (For instance,

if we multiply the defining functiony: by a positive function, its differential along

M is also multiplied byx.) For 2 <» 3, we associate to each positive sectioof the
conormal bundle the pullback td of J*«. (To go in the other direction, we extend any
contact form along to a section off’y; X by requiring it to annihilate/ 7 M.) Finally,

for 3 <> 4, we associate to each contact fatrthe volume elemertt A (d6)". Rescaling

6 by A multiplies the volume element by*+1.

3. Geometry on complex Lie algebroids

Complex Lie algebroids were defined ir [5] and have been studied in more deiéil in [1]
and [32]. In this section, we will review the definitions and use a complex Lie algebroid
to “regularize” the geometry of a complex manifold near a pseudoconvex boundary.

3.1. Definition and first examples

We recall that d_ie algebroidover a smooth manifold is a real vector bundI& over X

with a Lie algebra structure (ové&) on its sections and with a bundle magcalled the
anchoi) from E to the tangent bundIl€ M, satisfying the Leibniz rule

la. fb] = fla.b] + (p(a) /)b

for sections: andb and smooth functiong.
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There is an analogous definition for complex manifolds, in whidls a holomorphic
vector bundle ovek, and the Lie algebra structure is defined on the sheaf of local sec-
tions. Such objects are called complex Lie algebroids by Cherla [6], but, @s in [5], we
will reserve this term for the “hybrid” concept defined below.

From now on,C°(X) will denote the algebra of smoottomplex-valuedunctions
on a manifoldX.

Definition 3.1. A complex Lie algebroidver a smooth (real) manifol& is a complex
vector bundleE over X with a Lie algebra structure (ovet) on its spacef of sections
and a bundle map (called theancho} from E to the complexified tangent bundfe X,
satisfying the Leibniz rule

la, fb] = fla,b] + (p(a) )b
fora andb in £ and f in C*°(X).

A “trivial” class of complex Lie algebroids consists of the complexifications of real Lie
algebroids, such &B: X itself. More interesting are general “involutive systems,” which
are subbundles of-X whose spaces of sections are closed under the (complexified)
bracket of vector fields. (Up to isomorphism, these are just the complex Lie algebroids
with injective anchor.) Among these are the complex structures and CR structures. By a
complex structure, we mean here a subbundle of the fbre Tjo’lX ={v+iJv |

v € TX}, whereJ : TX — TX is an integrable almost complex structure. These are
characterized among all complex subbundles by closure under bracket and the algebraic
property thatfcM = E @ E. By a CR structure, we mean an involutive systé&nfor

which E N E = {0} andE + E has codimension 1 ific X. Any real hypersurfac#/ in a
complex manifoldX (such as a boundary) inherits a CR structure, namely the intersection
Gu.x = TcM N T X. (The problem of realizing a given CR structure in this way has
been crucial in the development of linear PDE theory.) The siynx @ EM,X is the
complexification of the maximal complex subbundig x.

The main example of our paper, introduced in Sedtiop 3.3, will not have an injective
anchor. However, its anchor will be bijective on an open dense subset of the base mani-
fold X, and the use of Lie algebroids with this property could be viewed as an application
of the method of moving frames, extended to allow certain “singular” frame fields.

No discussion of complex Lie algebroids should fail to mention the important example
of generalized complex structurés [15],[18], but having thus fulfilled this obligation, we
will not discuss them further.

3.2. Some constructions on complex Lie algebroids

Many notions can be extended from real to complex Lie algebroids without any extra
effort. Here are some which we will use later. Parts of this section are almost transcribed
verbatim from[[26]. Note that all the constructions below are local and may thus be carried
out on the sheaf level.
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Definition 3.2. Let(E, p,[,]) be a complex Lie algebroid ovét. TheE-de Rham com-
plex (FQ*(X), £d) is given by? Q*(X) = I'(\°(E*)), with

Edu(an, ..., axs1) = Z(—l)ip(ai)u(al, e @y e, Ay1)

1

+ Z(—l)i+j_lu([ai, aj], a1y oy Giy e,y &j, s A1)

i<j
Elements of the complex are call&ddifferential formson X; the cohomology of d is
denoted by H*(X) and is called theZ-de Rham cohomologgf X.

WhenE = TcX, £H*(X) is the usual de Rham cohomology Xfwith complex coeffi-
cients.

Definition 3.3. An E-connectioron a vector bundlg over X is a map

(a7 V) = Vlly

from& x I'(F) to I'(F) which isC*° (X)-linear in a and satisfies the Leibniz rule

Va(fy) = fVay + (p(a) fy

for f € C*°(X). Equivalently, anE-connection orF isamapV : I'(F) —» I'(E* ® F)
satisfyingV(fy) = fVy + Edf @ y.

Like an ordinary linear connection, @rconnection extends to a map
V:iT(AYE") QF) - I(\*"THE*) ® F).

The square of this extended operator is giver'VBy = R A y, where thecurvatureR is
the element of\?(E*) ® End(F) defined by

R(a,b) =V,Vp — VpV, — V[a,b]-

When the curvature is zero, the connection is also callegesentatiorof £ on F.

WhenF = E, we may also define thersionof V by the formulal (a, b) = Vb —
Viea —[a, b]. As in the case of the tangent bundle, the torsion is a skew-symmetric tensor,
i.e.asection of\Z(E*)®E. The usual construction of the Levi-Civita connection applies,
so that, given a field of nondegenerate symmetric inner products dimere is a unique
connection without torsion which is compatible with the inner product.

Example 3.4. The flat “Bott connection” on the normal bundle to a foliation is the lin-
earization of the holonomy. But the construction is purely formal and can be extended to
the situation where’ is any subalgebroid of a Lie algebroid. Namely, we define an
E’-connection on the quotient vector bundl¢ E’ by the rulev, (b) = ([a, b]), wherea

andb are sections of. and(-) denotes the equivalence class modHlo(We use angled
instead of the usual square brackets for the equivalence class to avoid confusion with
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the Lie algebroid operation.) It is straightforward to check that this a Lie algebroid
representation.

We note thatv can be seen as the representation on homology, as in Appendix A of
[13], associated to a natural representation up to homotogyaf the short complex of
Lie algebroids 0> E' — E — 0.

We also introduce a universal enveloping object first defined in a slightly different
way by Rinehart[[30].

Definition 3.5. Let (E, p,[,]) be a complex Lie algebroid ok, and7 the free asso-
ciative (i.e. tensor) algebra with generatorsdit° (X) (of degredd) andI'(E) (of degree
1). The algebraf Op of E-differential operators orX is defined ag /Z, whereZ is the

two-sided ideal off” generated by elements of the form

f®g—feg, [f®a—fa, a®b—-bR®a—|a,b],

and
a® (fb) — (fa) ®b— (p(a) )b,
fora,b e £and f, g € C*°(X).

The grading off defines a filtratiorf Op, of £0p, and the following result is a straight-
forward application of Theorem 3.1 in [30].

Lemma 3.6. For any complex Lie algebroidE, p, [,]) over X, there is a natural iso-
morphismGrf Op(X) ~ I'(X, S(E)), whereS(E) is the bundle of symmetric algebras
on the fibres of. In particular, the algebraC> (X) may be identified with a subalgebra
of £Op.

Following Calaque [3], we may also introduce the spacé&gfolydifferential (or multi-
differential) operators with its Gerstenhaber bracket operation. (This structure was already
suggested by Xu [34] and used implicitly by Nest and Tsy@an [26].)

The usual jet spaces of functions &nhare not sensitive enough to the actionfof
since sections of the isotropy act trivially, so we must use the following generalization.

Definition 3.7. Let(E, p,[,]) be a complex Lie algebroid ovef. The space ok -jets
on X is the linear spacéJ (X) = Homee(x)(EOp(X), C*®(X)).

In the real case, th&-jets may be identified with the jets of functions along the units of
a (local) groupoid integrating. A similar identification also works in the complex case,
though the integration in the sense[of|[32] may be only formal.

The complex analog of Proposition 2.7 [n[26] is:

Proposition 3.8. £7(X) introduced in Definitio@is the space of global sections of a
profinite-dimensional vector bundfelets

We define the “Grothendieck connectiow? : £ x £7(X) — E7(X) by
(Vg (@)()(D) = a(l(D)) — l(a(D)),

forl e I'(Elety (= T (X)), a € £ andD e £Op(X). As in the real case, this is a flat
connection.
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3.3. A natural complex Lie algebroid on a complex manifold with boundary

We introduce here the complex Lie algebroid which will be central in what follows. Let
X be a complex manifold of dimension+ 1 with boundaryM, and let€y x be the
space of complex vector fields on (i.e. sections off¢c X) whose values along/ lie

in the induced CR structur€ y; x. Then&y x is a module ovelC*°(X) and is closed
under bracket. The following lemma shows thait x may be identified with the space of
sections of a complex Lie algebroifth, x.

Lemma 3.9. &y x is a locally freeC*°(X)-module.

Proof. Away from the boundary€y, x is the same a%cM, hence locally free. Near a
boundary point, we may choose a local basis. .., v, of Gy x, which we then ex-
tend to a linearly independent set of sectiong’8f- X, still denoted by;, defined in an
open subset oK. We leave the name of the open subset unspecified and will shrink it as
necessary. Let; be the complex conjugate of. These vectors all annihilatg on M;
there is no obstruction to having them annihilgteeverywhere. Next, we choose a local
sectionvg of 71X such thatp - ¥ = 1, and we letyg be its conjugate. This gives a
local basis(v, v) for the complex vector fields. Such a vector field belongg oy if
and only if, when it is expanded with respect to this basis, the coefficienis afd all
thev; vanish along/. Since this means that all these coefficients are divisiblg ith
smooth quotient, we get a local basis u") for £y, x by settingug = o, u; = v; for
j=1...,n,andu; = yv;jfor j =0,..., n. O

The local basigu, u") constructed in the proof above may be thought of as a moving
frame, some of whose entries vanish alafigThe crucial property here is that the struc-
ture functions which express Lie brackets in the given frame are smoothMp to

We note that the complex conjugates of the basis vectoraz@re uy andu; =
wu} for j = 1,...,n. The Lie algebroidt ), x doesnotadmit an operation of complex
conjugation.

We will also use the cofram@, 6’) dual to (u, u’). Denoting by(y, ) the basis of
complex-valued 1-forms dual tw, v), we find thaty® = 9y and7° = 9v. For the
vector bundleE}, , dual to Ey x, we get the local basis of sectiofi$ = (1/v)y/ for
j=0,...,n(sothatt® = ddog|y|), 6° = (1/¥)¥° = (L/y)ay = d(log|y|), and
0"/ =%/ for j = 1,...,n. The complex conjugates af€ = 6’° andg/ = (1/v)6"/ for
j=1...,n.

The coframg®, 0) is an ordinary coframe on the interior & Some of these forms
blow up alongM, but the structure functions which express the exterior differentials of
these forms in terms of the coframe are smooth u@/to

3.4. Para-Kahler Lie algebroids

Recall that a pseudodtler structure on a manifold is a symplectic structure together
with a totally complex polarization. This means that we have a (real) nondegenerate
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closed 2-formw on X and an integrable subbund®®'X of TcX which is isotropic
with respect to the complex extensionwfand for whichTcX = 701X @ 701X, We
write 719X for 70.1X. The structure is Khler when the nondegenerate quadratic form
defined on7' %X by g(u, v) = w(u, J7) is positive definite.

Thinking of a general complex Lie algebroklover X as a substitute fof¢ X, it is
natural to try to define an analogous notion @ftifer structure, but we lack the operation
of complex conjugation. On the other hand, the study of pseuilddf structures often
makes little or no use of the quadratic fogmbut only of the nondegenerate pairing be-
tween710X and 791X defined by the restriction of the symplectic form. We are thus
dealing with a generalization (by complexification and passing from tangent bundles to
general Lie algebroids) of the so-called “paraffer” [23] or “bilagrangian”[[1¥] struc-
tures, which consist of a symplectic form together with a transverse pair of lagrangian
foliations.

The following definitions are useful in both the real and complex cases.

Definition 3.10. A [complex] symplectic Lie algebroits a [complex] Lie algebroidE
together with ank-differential 2-form & which is£d closed and nondegenerate.pa-
larizationof (E, w) is a lagrangian subalgebroid aof, i.e. a subbundle which is closed
under brackets and maximal isotropic with respect.toA [complex] para-Kahler Lie
algebroidis a [complex] symplectic Lie algebroid with a splittifg = E1° ¢ E®1 as
the direct sum of two polarizations.

Remark 3.11. The restriction ofv to EL0 x E%! is a nondegenerate pairing which we
will continue to denote bw. This pairing is also the restriction of a unigagmmetric
inner product orE for which E1-9 and E%1 are isotropic.

Example 3.12. The complex Lie algebroidty, x of Sectior] 3.8 is naturally split as a
direct sumE}fX &) E%X. Sections ofE,lj’X are fields of holomorphic tangent vectors

which vanish on the boundary, while sectionsﬂﬁ)lx are fields of antiholomorphic tan-

gent vectors which are tangent to the boun@mear the boundary, the sections of the
two summands are spanned by ﬂ}eandu;. respectively, forf =0,...,n.

In Sectiorf 3., we will construct a complex symplectic structure for which these sum-
mands become lagrangian.

3.5. The para-#&hler connection

The complexification of the Levi-Civita connection on a pseuddilér manifold has
many nice properties with respect to the splitting of the complexified tangent bundle into
its holomorphic and antiholomorphic summands. In fact, it can be constructed directly
from this splitting and from the pairing given by the complexified symplectic structure.
By imitating this construction, we may construct on any pagédyiér Lie algebroidt a
torsion freeE-connection which is compatible with the paré@ier structure. (There is

2 Inthe language of [24], we are dealing with a hybrid of the 0-calculus and-taéculus.
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in fact just one connection with these properties.) In the case of a bilagrangian manifold,
the construction yields the bilagrangian connection of Hess [17], and in fact, beyond a
change of terminology, there is nothing we do here which is not taken from this special
case.

Proposition 3.13. Let (E = EL0 @ E%1, ) be a para-Mhler Lie algebroid. There is

a unigue torsion-freeE-connectionV on E for which covariant differentiation leaves
the para-Kahler structure invariant; i.e. for any, b, ¢ € I'(E), V, leaves the splitting

invariant, andp (a) (w (b, ¢)) = w(V,b, ¢) + w(b, V,¢). The curvature of this connection
Visin (EL0" A EOY") @ ENd(E).

Proof. Our connectiorv will be built from two flat partial connections oA defined on
the summands.

First, identifying £%1 with £/E™-°, we have via Example 3.4 ai'-°-connection on
E%1, Writing p1-° and p®1 for the projection maps associated to the splittingZofve
therefore have

Vab/ — pO,l[a’ b/]

fora € T(EL%) andb’ € I'(E®D).

This partial connection induces a connection on the dual bundig?fg which we
identify with £1-0 via the pairingw. The resultinge1-°-connection ort10 is determined
by the equation

w(Vyb, ) = pa)(w(®, ) —wb,[a,c].

We recall thatp is the anchor of the Lie algebroid and that we may omit the projection
from the last term becauge!? is isotropic forw.

Putting together these two pieces, we getBrP-connectionv-? on E which is
clearly compatible with the para@fler structure.

Now we may interchange the two summands and repeat everything above to get the
required E%1-connectionv®?! on E, and then assemble everything to get the required
E-connection orE. We leave to the reader the exercise of verifying (using the factthat
is aclosed2-form) that this connection has zero torsion.

By the Jacobi identity forE10 and E%1 vector fields, we find that the curvatures
of the connection&10 and Vo1 in (A%(EL9") + A\2(E®1")) ® End(E) vanish. This
implies that the curvatur® of the E-connectionv = V10 4+ v0lisa(1, 1) form. 0

We call this connection theara-Kahler connection

Remark 3.14. A remark made in[[12] is still valid here: the pargiKler connection is

the Levi-Civita connection of the symmetric inner product of Rerpark|3.11. This must be
so, since the Levi-Civita connection is unique, and the symmetric inner product, being
built in a canonical way from the paradKler structure, must be invariant under the para-
Kahler connection.

Given basego, ..., & and&, ..., &, of EL0 and E®1 respectively, we will write
wij = w(&, éjf) andr¥/ for the inverse matrix. We may expand the brackets between
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summands asg], E;] = mf-‘jék + m’fjs,é. It is straightforward to derive the following
formulas for the para-&hler connection:

k
Ve & =1 (pE)wj — wjpmDE, Ve & =m' .

In the usual pseudo-#hler case, we can chooge= 9/9z’ andg! = /07 to make
all the brackets vanish, in which case we get the familiar formulas

Ve = (0wp/02)6. Ve =0

On the other hand, in any paraaHler Lie algebroid, we may choose the bases
£o..... & andg, ..., &, to be dual to one another with respect to the pairing, so that
w;j andz’/ are identity matrices. Then we get

k k
Ved = —mik Ve =) mig.
k k

As a result of the above observation, we see that all the calculationgldéKgeom-
etry can be carried out in an arbitrary paratfer Lie algebroid. This has the following
consequence.

Corollary 3.15. Let X be a manifold (possibly with boundary), aitl — X a para-
Kahler Lie algebroid whose ancher: E — Tc X is invertible on an open dense subset
U C X. Suppose that the induced parailer structure orlfci/ comes from a pseudo-
Kahler structure ort/. Then all contravariant tensors and multi-differential operators
on U which are constructed from the complex structure, the pseuildek metric, its
curvature and covariant derivatives thereof are the images updef smooth objects
defined on all of£. In particular, they extend smoothly framto X.

Remark 3.16. One may apply this corollary to the Berezin transform and all the coeffi-
cients in the Berezin and Berezin—Toeplitz products, as analyzed bySEmpls proves
smoothness up to the boundary of these constructions without any extra work. Also, we
can get smoothness of the canonical form (see PropoFitipn 4.7), since it is the Ricci form
of the canonical connection. However, to identify the Berezin—Toeplitz product with an
E-product in Theorern 4]9, we need the machinery of formal integrals used by Karabegov
and Schlichenmaier [20].

Remark 3.17. It is a much more delicate problem to decide, when the psetiddek
structure ord{ is positive definite, whether elliptic analysis can be used as in the compact
Kahler setting to get results valid on all &f For instance, under what conditions on the
singularities ofp does the deformation quantization with separation of variables, which
extends smoothly t&, arise from a Berezin—Toeplitz symbol calculus as is the case in
Theoren 4.8 below?
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3.6. The para-#hler Lie algebroid near a pseudoconvex boundary

We return to our study of the Poisson geometry of a complex manKoldth pseudo-
convex boundary, now using the complex Lie algebroi,, x. We begin by showing
that the symplectic structure_qqy , Which is singular along/, is perfectly regular as
an Ey x-symplectic structure.

Theorem 3.18. The pullback obr_ogy t0 Ep, x iS @ Smooth section qf\2 Ej{LX. This
section is nondegenerate along, hence on a neighborhood 1, if and only if M is
Levi nondegenerate.

Proof. We will expressr_ogy in terms of our bases of sections@f X and £}, . First
of all, with sums over repeated indices ranging from & tae have

30y = ay® AV + by ATF +byf AT+ iy AT,

wherea is real and the matrix;, is hermitian; it is the matrix of the Levi form. From this
we get

1/ i)o—10gy = — A/ @y AT+ by ATF + oy AT+ cjiyd AT
+ @Yy Ay
= — (/Y)(ap° A YO + bry8® A 0% + ot A + cjrpl A 6%)
+ 1/ ye° Ao
=L —9ya)0® A0"° —b® A0 — By oF AO° —cjr67 A O™
Along M, whereys = 0, this becomes
00 A (00 — b0y — cjn6? A O™

This is clearly smooth as a section Afz E}, x, and its nondegeneracy is equivalent to
that of the matrix;, i.e. to that of the Levi form. O

We get another proof of the smooth extension theorem obtained earlier from normal form
theory.

Corollary 3.19. The Poisson structure_ oqy Obtained by invertingr_ogy near M
extends smoothly over.

Proof. On the complement a¥/, nearM, this Poisson structure is the pushforward of the
section of/\2 Ey, x obtained by inverting the pullback af_|oq . We have just seen that
the inverse of this pullback extends smoothly o¥erhence so does its pushforwarda

We next turn to the hermitian hessian itself, related to the 2-tarmgg, by the formula

&—logy (X, y) = 0 logy (X, Jy).

The following result is part of a classical lemma usually attributed to Oka and Lelong.
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Proposition 3.20. If ¢ is any defining function for the strongly pseudoconvex boundary
M of X, then—log v is strongly plurisubharmonic (i.eg_ogy iS positive definite) on
the complement a¥/ in some neighborhood @f in X.

Proof. The quadratic forng (x) = g_10gy (x, X) iS expressed in terms of the components
of x in our special basis by

g(x) = — (/) @y’ () 7°x) — by ()7 (x) — By  ()7°(x) — cjiy? (07 (x))
+ 2/¥?)y () 7°).

The corresponding hermitian matrix is the positive functigny4 times the(1 + n) x

(1 + n) block matrix with 1— va in the upper left hand cornesycji in the lower
right block, and— b and its adjoint in the off-diagonal row and column. Singeis

the matrix of the Levi form, it is negative definite whéfis strongly pseudoconvex. By
the Sylvester criterion (hermitian version), the entire matrix will be positive definite if its
determinant is positive. Expanding this determinant (if we ignore the overall facfc? 1

in minors of the top row, we obtai” times the determinant efc;; plus terms divisible

by v"+1. Sufficiently close to the boundary, the sum must be positive. O

Proposition 3.21. If (with notation as above) the functionlog is strictly plurisub-
harmonic throughout the interior of, then the Khler metricg_ogy on the interior of
X extends to a para-#hler Lie algebroid structure o'y x.

Proof. We have only to show that the summands in the splitting of Examplé 3.12 are la-
grangian with respect to the symplectic form. But this follows immediately by continuity
from the corresponding fact on the interior. O

The nondegenerate pairiag: E/box X E%X — Cis given in our basis of sections by

B=1—-va)®®0° —560°® 0% +bryo* @ 0° — i’ @ 6.

4. Quantization

Deformation quantization on closedaller manifolds can be accomplished as a by-
product of Berezin—Toeplitz quantization. See, for instanck, [[2] [16] and references
thereir{f] On the other hand, Karabegav [19] studied special formal deformation quan-
tization adapted to the &hler structure, and he and Schlichenmaier [20] linked the two
approaches.

In this section, we will show how to extend the work cited above to the casalekK
manifolds with pseudoconvex boundary, using paeddi€r Lie algebroids.

3 This work applies only to the case where the symplectic structure is integral, but Mélrose [25]
has shown how to extend the method to the nonintegral case.
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4.1. Definitions

We start with the “complexification” of a basic definition of Nest and Tsyg@an [26] (sug-
gested already by X [34]).

Definition 4.1. Let (E, w) be a complex symplectic Lie algebroid ovEr An E-star
producton X is a formal series of:-bidifferential operators

B=1®1+ ) (ih'Bi, Br e Op(X)® “Op(X),
k>1

which is associative in the sense that the Gerstenhaber brBka®] is equal to zero,
and for which the antisymmetrization 8f is the E-bivector fieldr inverse tow.

PushingB forward by the anchor of, we obtain a formal series @i X-bidifferential
operators which gives a star produdbr the Poisson structure which is the pushforward
of .

Now we extend to the paradfiler case the notion of quantization with separation of
variables.

Definition 4.2. If E is a para-Kahler Lie algebroid, we call arE-star productbipolar-
izedif the bidifferential operatorsB; all belong toEl’OOp(X) ® EO’lOp(X).

A bipolarized E-star product has the property thatk ¢ = fg wheneverf is an anti-
holomorphic function og is holomorphic. When the anchor &fis injective, even on a
dense subset df, this property implies that the star product is bipolarized. In thél&r

case, this means that, after changing the sign of the complex structure (or replacing the
product by its opposite), we are dealing with a star product with separation of variables
in the sense of [19].

4.2. Bipolarized star products

Nest and Tsygan [26] showed that the quantization method of Fedosov [14] extends im-
mediately to (real) symplectic Lie algebroids to produce “Weyl-type” star products. Their
extension works for complex Lie algebroids as well. On the other hand, Neuralier [27]
showed that, when one starts the Fedosov construction with a “bipolarized” symplectic
connection (such as the Levi-Civita connection for a pseuébl& manifold) and an
“(anti)Wick-type” bipolarized product on the tangent spaces, the resulting star product is
bipolarized. In this section, we combine the two constructions above to obtain bipolarized
E-star products on paradler Lie algebroids.

The idea of the construction of thfe-star products can be summarized as follows.

In this paragraph, we suppose that our paédilér Lie algebroid can be integrated in
some sense to arrconnected groupoidr = X. The sections of our Lie algebroid can
be viewed as lefG-invariant vector fields along thefibers of G. The symplectic Lie
algebroid structure defines@-invariant para-Khler structure on eacfifiber. There-
fore, eachs-fiber of G becomes a paradbler manifold and in particular a symplectic
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manifold. G is canonically foliated by the-fibers with equal dimensions, and therefore
becomes a regular Poisson manifold, ahds a complete transversal to this foliation. A
para-Kahler connection oX can be lifted to as-invariant symplectic connection di.

Given a “symplectic connection” on a regular Poisson manifold, we can use Fedosov's
construction (Neumaier’s construction in_[27]) to obtain a star produaf oBince the
para-Kahler form and the paradbler connection are botfi-invariant, this product we
obtain onG is also G-invariant, and therefore can be expressed hy-mvariant bi-
differential operator orG, which is a Lie algebroid bidifferential operator and actually
bipolarized if the characteristic form is bipolarized.

The construction defined above is based on the uncertain notion of integration of a
complex Lie algebroid. We can bypass this problem by working withAHets intro-
duced in Definition 3.7, which can be viewed as the infinite jets aldrg smooth func-
tions onG. The Grothendieck connection defines a natural lift of the Lie algebroid action
to the infinite jets. Therefore, we can construct a bipolarized star product by working with
E-jets.

We begin our construction with the fiberwise anti-Wick product. Eebe a para-
Kahler Lie algebroid oveK. Then each fibeE, has a natural translation-invariant para-
Kahler structure given by the symplectic form and the lagrangian subsmlic(éand
E%. Given a basigo, . . ., &, € EL0, £, ..., & € E%L and the dual bas#’, ..., 0" €
EOY 00, .. 0" € ELO", wis expressed as;;6' A 0.

We define a bipolarized star product on the algebra

We:=C° ..o 0% ™LAl
of C[[ A]]-valued polynomial functions o, by

ih .. 0 d
fxgi= exp(—l—n”

> o & W)(f@)g)v 4)

where(x'/) is the inverse matrix tdw;;). Taking a union of the algebra&,, x € X, we
obtain a formal anti-Wick algebra bundk.

In the following, we adapt Fedosov’s construction of star products on symplectic man-
ifolds to our situation.

The para-Kahler connection introduced in Sectjon|3.5 naturally lifts to a connection
denotedv/ on the anti-Wick algebra bundig.

Definition 4.3. AFedosov connectioon )V is a flat connectiorD on W of the formD =
Ve + A, with A € QY (M, EndW)) and D%(a) = (i /h)[RQ,a] =0foralla e TOW). Q
is aC[[ h]]-valued2-form and is usually called th@/eyl curvatureof the connectiorD.

The following theorem is an extension of Fedosov’s theorem on symplectic manifolds to
para-Kahler manifolds.

Theorem 4.4. Let  be an element of-w + i E-°QL(X, C) A E*'QL(X, C)[[]] such
thatdu = 0. There exists aEndWV)-valued E-form A,, on X such thatv,, = vie 4+
A, defines a Fedosov connection W with V, A, + %[A,L, A,] = p. The complexes
EQx, W), v, and(EQ(X, £Jets® W), Vs +V,,) are acyclic in positive dimensions.
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Proof. The proof of this theorem is an application of Fedosov’s iteration method. The
following construction is a generalization of Theorem 3.1in [27]. We outline the main
steps in the following, and omit the detail check.

Notice that the anti-Wick algebra is naturally graded by the sum of the degree of the
polynomial and the power df. Therefore, the algebraQ (X, W) is graded by the total
degree, which is denoted by “deg”. Following FedodoV [14], we introduce operaitions
ands—1on£Q(X, W), as follows:

. d ; d
8(a):2(9’/\—.a+0”/\ .a),
; an' an"
1
deda)

s Ya) = Yt a+ - gua),
i
for homogeneous € £Q(X, W) with positive degree. We look foA,, of the form
—8 + (i/W)[ry, -], wherer,, is in £QY(X, W) with total degree 5.
According toV, A, + %[AM, A,] = u, ry is the unique solution of the equations

Sry = —w+Vir, + lﬁrﬂ sry+RC—p, 871w =0, ()

whereR'® is the curvature of7/¢, which is in EL0" A 01",
The solution of equatiorf [5) can be obtained by iteration, using the following relation:

ru =8 1(ro) + (Sl(Vlcru + il_ir“ * ru>,

whererg = —w + R — p. O
By the flat connectiorv,, constructed in Theorefn 4.4, we have isomorphisms

and
ET(X) = ker(Ve + Vi) leqox EetsEW))- 7)

By the isomorphism| {7), the fiberwise product Be°(X, £Jets® £W) defines an
associative product on the space of:-jets. By the duality between the space Bf
jets andfOp(X), the productt defines a leftC>(X)-module mapy : £Op(X) —
EOp(X) ®coo(x) EOP(X), i.e.11 % [2(D) = 11 ® l2(x (D)). In particular, evaluating on
the constant function 1 iiOp(X), we obtain an&-bidifferential operatory (1).

By arguments like those used for Theorem 4.3 of [26], we find tlta) € £Op(X) ®
EOp(X) defines an associative-star product.

Lemma 4.5. For any E-jet f constant alongz1% in an open set of X, x (1)(f, g)|y =
fxglu = feglyforall g e ET(X).

For any E-jet g constant alongz®1 in an open seV of X, x (1)(f, &)lv = f*gly =
fgly forall f e £E7(X).
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Proof. When E1-0 and E%* are the holomorphic and antiholomorphic tangent bundles
of a Kahler manifold, Lemmp 4}5 is Proposition 4.4 [of[27]. The present case is a small
generalization thereof. In the following, we sketch the proof.

We study the isomorphier](G) in more detail. Létenote the lifting of arE-jet f
to a flat section irf QO(X, £Jets® £W). Then f is the only solution of the differential
equationvV,, f = O with f1,;_ i_o = f. We write f = 3", f* as a sum of its homo-

geneous degrele componentsf®) can be constructed through the following iteration:

=1

. p—1 (8)
N _ c A 1 Al —
f(P) =5 1(Vl f(P) + = E [r;(lk+2)v f(P k)]>’
k=0

wherer(Hz) is the degreé + 2 component of,,.

The product+ on £7(X) is then defined to bef x g := o(f o §), whereo :
EQO(X, EJets® EW) — Q*(X, EJets by setting alln’, n" equal to 0 and is the
fiberwise multiplication irf QO(X, £Jets® £W).

To prove Lemm@ 415, we look at each fib&rof the bundle/V. In (4), we notice that
the product in the first component only involveg, and in the second component only
involvesn. Due to this property ok, we introduce orW a projectiont® : W — W
onto the component cﬁi(n e n’")[[h]] the (1, 0) component, and a projectia®-! :

W — W onto the component &£(n°, ..., n™)[[A]], the (0, 1) componentz© and® 1
lift onto W naturally; denote the composition ot and # by £1-° and similarly the
composition ofr%! andg by 3%1.

We observe thaf = g can be rewritten as (19(f) o t%1(8)), and therefore it is
enough to construcf:? and g% to computef * g. Following the idea of Proposition
4.2 of [27], we can restrict t&€1? and E% to calculate /10 and g%1. They can be
constructed by the following iterations analogoug {o (8):

1 A
gt1.0(]61,0 o r&,o))

. - . 1 .
Ol gy 50&<V6c1g0 1, 201501, rg,l))’

e CTa

h

Wherevllco, Vécl, andri 0, 21 are the restrictions o¥ andr, to their components in

EY0andEOL,
With the formulas above, it is straightforward to check thaf ifs constant along
EL0 thenf10 = fandf x g = fg, and the same holds for te?1-component. O

Proposition 4.6. The isomorphismg6) and (7) define a bipolarized:-deformation of a
para-Kahler Lie algebroid.

Proof. We need to show that (1) < El'OOp(X) ® EO’lOp(X), but this is implied by
Lemmd4.b. O
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4.3. Strictly pseudoconvex boundary of a complex manifold

Proposition 4.6 shows that the paréier Lie algebroid associated to the boundary

of a complex domain has a polarizétistar product. On the other hand, in [8], Efgli
constructed a differential star product on a bounded pseudoconvex domain by Berezin—
Toeplitz quantization. In this subsection, we identify E&géitar product with what we
constructed in Proposition 4.6.

Engli§’ Berezin—Toeplitz quantization is an example of a deformation quantization
with separation of variables. In Theorem 5.9 0fI[20], Karabegov and Schlichenmaier iden-
tified the opposite of the Berezin—Toeplitz star product with a star product with separation
of variables whose Karabegov form is equaH(l/i#)w + wcanand characteristic form
is (1/ih)w — wcan/2i, Wherewcan is the curvature form of the canonical line bundle.

Proposition 4.7. Near the boundary/ of a pseudoconvex domakf the canonical form

wcan pulls back to a smooth section Eﬁf; ® E,O‘;l;.

Proof. According to the definition given in[ [20]wcan is equal to —iddv, where
i"tlevdzd?z is the symplectic volume. (We writé for dz1- - - dz"*1.) To calculateocan,
we follow the calculation in Propositign 2.6, where the volume form is shown to be

3y ay Aay "t doy\" 1 v \" Y Ad
(e (B (e
¥ v ¥ ¥ ¥
This form can be written as
_a_pdeW ;0,9 — 0;90;9)
1//”
It has been shown in Theorém 3|18 that= det(y9;9;y — 3;¥3;v)/y" is nonzero and

smooth up to the boundary. Therefords equal to logy ~"~2vo) = —(n + 2) log(¥) +
log(vp), andadv is

v dzdz.

—(n + 2)99 log(y/) + 99 (log(vo)).

To show tha®dv pulls back to a smooth section E‘;boz A E,?fx we may check the

two terms separately.

1. —(n + 2)d9log(y): By Theoren] 3.1893 log(y) pulls back to be a smooth section
1,0¢ 0.1*
of EyxNEyy
2. 99(log(vg)): Sincevy is nonzero near the bounda@élog(vo) is smooth up to the
boundary, and therefore expressed in termg‘odndy"’, which are smooth sections
of A\? E}, y- Finally, the bipolarization 083 (log(vo)) is obvious. O

Sincewean € £ QL(X, C) A E*'QL(X, C), we obtain a bipolarized-star producig on

X constructed from Propositign 4.6 with the Weyl curvaturequal tou = —w+ihwcan

Proposition 4.8. When restricted to the interior of, the Karabegov form of is equal
to _(1/lh)(l) + wcan
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Proof. When restricted to the interior of, E x coincides with the tangent bundle of
the Kahler manifoldX. By the locality of our construction of star products, we find that
in the interior ofX, our quantization of a paradbler Lie algebroidZ, x coincides with

the quantization of the &hler manifold. This allows us to use Theorem 6.7 and Deduction
6.9 in [27] to obtain the characteristic form. O

Now we are ready to state the following theorem.

Theorem 4.9. The opposite Berezin—Toeplitz star produt. near a strictly pseudo-
convex boundary is equal to the-star productsz constructed in Propositio@.6, and
therefore is smooth up to the boundaryXof

Remark 4.10. Smoothness up to the boundary for EBgBerezin—Toeplitz star product
can be directly derived from Corolldry 3]15. (See Rerpark|3.16.) But Thgorém 4.9 sets up a
nice connection between the Berezin—Toeplitz quantization and deformation quantization.

Proof of Theorem 4.9We know that both thé&-star produck g and the opposite Berezin
—Toeplitz star product, ;. in the interior of X are star products with separation of vari-
ables defined by Karabegov. In Theorem 2[of| [19] Karabegov showed that star products
with separation of variables on &kler manifoldX are in one-to-one correspondence to
the set of power series inof closed(, 1) forms onX, i.e. Z3, (X, C)XD[[A]].

We have shown in Propositi¢n 4.8 that the Karabegov form offtretar produck g
is equal to—(1/ih)w + wcan A Similar calculation as Karabegov and Schlichenmaier
did on compact lhler manifolds showd that the Karabegov form of Esiglipposite
Berezin—Toeplitz star produet; ;. is also equal te-(1/ih)w 4 wcan Therefore, we have

/
*BT = XE.

And sincexg is smooth up to the boundary a&f, ;. is also smooth up to the boundary,
which was already proved in Corollgry 3]15.

We end the proof by explaining the computation of the Karabegov form of £ngli
opposite Berezin—Toeplitz star product.

Karabegov and Schlichenmaier’s calculatioriin [20] requires thielé& manifold un-
der consideration to be compact. In20], they use the compactness assumption to prove
that the Berezin—Toeplitz quantization defines a local differential product. Their Proposi-
tions 5.1 and 5.2 give an asymptotic expansion of the Berezin transform and the twisted
operator product, while Theorem 5.6 gives an asymptotic expansion of the Bergman ker-
nel. All of the remaining calculations are local. For the case of the boundary of a strictly
pseudoconvex domain, the analogs of the above asymptotic expansions have been estab-
lished by Engl in Theorems 1-3 of [8]. Therefore, we can still use the method of formal
integrals as in[20] to compute the Karabegov form of the star prodyctlt turns out to
be again equal te-(1/ih)w + wcan O
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