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Abstract. Following a problem posed by Léagz in 1969, it is believed that every finite connected
vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs
arising from finite groups having @, s, 3)-presentation, that is, for grougs = {(a, b | a? =1,

b =1, (ab)3 =1,...) generated by an involutianand an elemerit of orders > 3 such that their
productad has order 3. More precisely, it is shown that the Cayley greph Cay(G, {a, b, b~1})

has a Hamilton cycle whefG| (and thuss) is congruent to 2 modulo 4, and has a long cycle
missing only two adjacent vertices (and thus necessarily a Hamilton path)|@hencongruent to

0 modulo 4.

1. Introductory remarks

In 1969, Lowasz [22] asked whether every finite connected vertex-transitive graph has a
Hamilton path, thus tying together two seemingly unrelated concepts: traversability and
symmetry of graphs. (In this article all graphs are assumed to be finite.) Tlest pvob-

lem is, somewhat misleadingly, usually referred to as theakaconjecture, presumably

in view of the fact that, after all these years, a connected vertex-transitive graph without
a Hamilton path is yet to be produced. Moreover, only four connected vertex-transitive
graphs (having at least three vertices) not possessing a Hamilton cycle are known to ex-
ist: the Petersen graph, the Coxeter graph, and the two graphs obtained from them by
replacing each vertex with a triangle. All of these are cubic graphs, suggesting perhaps
that no attempt to resolve the above problem can bypass a thorough analysis of cubic
vertex-transitive graphs. Besides, none of these four graphs is a Cayley graph. This has
led to a folklore conjecture that every connected Cayley graph is hamiltonian.

This problem has spurred quite a bit of interest in the mathematical community. In
spite of a large number of articles directly and indirectly related to this subject (s€e [1-9,
12,[16+19, 211, 2530, 35-37] for some of the relevant references), not much progress has
been made with regard to either of the two conjectures.

For example, most of the results proved thus far in the case of Cayley graphs depend
on various restrictions made either on the class of groups dealt with or on the generating
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sets of Cayley graphs. For example, one may easily see that connected Cayley graphs of
abelian groups have a Hamilton cycle. Also, following a series of articles [17, 21, 25] it
is now known that every connected Cayley graph of a group with a cyclic commutator
subgroup of prime power order is hamiltonian. This result has later been generalized
to connected vertex-transitive graphs whose automorphism group contains a transitive
subgroup whose commutator subgroup is cyclic of prime power order, with the Petersen
graph being the only counterexamglel[16]. And finally, perhaps the biggest achievement
on the subject is a result of Witte (now Morris) which says that a Cayley (di)graph of
any p-group has a Hamilton cyclé [37]. (For further results not explicitly mentioned or
referred to here see the survey paper [15].)

In this article we consider hamiltonicity for cubic Cayley graphs arising from groups
that have a2, s, 3)-presentation that is, for groupsG = (a,b | a®> = 1,b° = 1,
(ab)® = 1, ...) generated by an involutiom and an elemert of orders > 3 such that
their productzb has order 3. More precisely, the following is the main result of this article.
(We remark that two verticeg, i € G in the Cayley graph Cay, S) are adjacent if and
onlyif glh € S.)

Theorem 1.1. Lets > 3 be an integer and leG = (a,b | a® = 1, b* = 1,
(ab)® = 1,...) be a group with a2, s, 3)-presentation. Then the Cayley graph =
Cay(G, {a, b, b~1}) has a Hamilton cycle whefG| (and thus alsa) is congruent te2
modulo4, and has a cycle of lengtlG| — 2 through all but two adjacent vertices, and
thus necessarily a Hamilton path, whgr| is congruent td@ modulo4.

Let us comment that the class of groups considered in Thgorém 1.1 is by no means restric-
tive. First, these groups are quotients of the modular groupgB%l). Second, byi[23],

[24], [33] and [38] every finite nonabelian simple group except the Suzuki groups, a thin
family of PSp,(¢) and a thin family of PS(q) groups,M11, M22, M23, McL and at most
finitely many other non-sporadic finite simple groups havg,a, 3)-presentation. Also,
methods similar to those in this article have been used i [13, 14] to find Hamilton cycles
in certain Cayley graphs. And third, ¥ is a cubic arc-transitive graph ad < Aut X

acts 1-regularly orX, then it is easily seen th&t has a(2, s, 3)-presentation for some
Namely, the ordered paiX, G) gives rise to a unique orbit of those undirected cycles in

X which have the property that each of these cycles is rotated by some automorphism in
G (that is, the so calledonsistent cycle the terminology of Biggd [11]). These cycles

give rise to the faces of the corresponding (orientably) regular map associated with
and their length is then precisely our parametirthe (2, s, 3)-presentation of;. Going
backwards, the well defined correspondence between these groups (or rather their Cay-
ley graphs) and the class of all those cubic arc-transitive graphs which admit a subgroup
acting regularly on the arcs is, geometrically, best seen via the concept of the hexagon
graphs, explained in the subsequent section. (However, this correspondence is not 1-1,
for a cubic arc-transitive graph may admit nonisomorphic 1-regular groups.)

The article is organized as follows. In Sectjgn 2 we describe our method for con-
structing Hamilton cycles and paths in cubic Cayley graphs of groups haviag 23)-
presentation by analyzing six examples of such graphs. They are associated with, re-
spectively, the group&e and Sz x Zz with a (2, 6, 3)-presentation, the grougy with a
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(2, 4, 3)-presentation, the groufdg x S3 with a (2, 8, 3)-presentation, the groug, with

a(2, 3, 3)-presentation and the grougs having a(2, 5, 3)-presentation. In Secti¢r} 3 we
introduce the graph-theoretic concepts of cyclic stability and cyclic connectivity. In par-
ticular, we discuss an old theorem of Payan and Sakarovit¢h [32] which gives the exact
cardinality of a maximum cyclically stable set in a cyclically 4-edge-connected cubic
graph (Propositiofi 3}2), a result that proves to be of crucial importance for the purpose
of this article. Using a result of Nedela aB#toviera[[31] on cyclic connectivity in cubic
vertex-transitive graphs (Propositjon3.3), together with an analysis of cubic arc-transitive
graphs of girth at most 5 (Propositipn B.4), we then obtain a slight refinement of the above
mentioned result of Payan and Sakarovitch (Propositidn 3.5), thus laying the groundwork
for the proof of Theorerp 1]1 which is carried out in Secfipn 4.

2. The method of proof illustrated

In this section we give examples illustrating our method of proof of Theprem 1.1. In par-
ticular, each Cayley graph we study has a canonical Cayley map given by an embedding
of the Cayley graptX = Cay(G, {a, b, b~1}) of the (2, s, 3)-presentation of a group

G = (a,b|a?=1,b" =1, (ab)® = 1,...) in the corresponding closed orientable
surface with the set of faceB(X) comprising|G|/s vertex-disjoints-gons andG|/3
hexagons. This map is given by using the same rotation obthe b—! edges at every
vertex and results in onegon and two hexagons adjacent to each vertex. Applying the
formula for the Euler characteristic

X =2-2¢=|V(X)| = |[E(X)|+ |F(X)I,

we see that the genygof this surface is + (s —6)|G|/12s. As an immediate consequence
we have the following observation abouand the order of the groug.

Proposition 2.1. Lets > 3 be an integer and le6 = (a,b | a® = 1,b* = 1, (ab)®
= 1,...) be a group with a(2, s, 3)-presentation with ordefG| = 2 (mod4. Then
s =2 (mod4.

In each of the six examples presented here we give a trégs0f— 2)/4 hexagons if

|G| = 2 (mod 4, and(|G| — 4)/4 hexagons ifG| = 0 (mod 4. This tree of hexagons
necessarily contains, respectively, all or all but two of the vertices of the Cayley graph,
and as a subspace of the Cayley map is a topological disk. The boundary of that disk is
a (simple) cycle passing through, respectively, all or all but two adjacent vertices of the
Cayley graph. We give two examples in the caGé = 2 (mod 4 and four examples in

the caseéG| = 0 (mod 4. In each example we show the tree of hexagons in the Cayley
map, in the first case giving rise to a Hamilton cycle of the graph and in the second
case giving rise to a long cycle missing only two adjacent vertices. Finally, we do show
a Hamilton cycle in the Cayley graph in the cd¢8 = 0 (mod4 when the tree of

(IG| — 4)/4 hexagons does not give a Hamilton cycle in the Cayley graph. We do this
by exhibiting aHamilton treeof faces in the Cayley map (a tree of faces such that each
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vertex of the Cayley graph lies in the boundary of at least one of these faces) by using
an appropriate number efgons. In Examples 2.2 afd 2.3 we ha@ = 2 (mod 4 and

s = 2 (mod4), in Examples 2}4 and 2.5 we ha\@| = 0 (mod4 ands = 0 (mod 4,

and in Examplef 2|6 afd 2.7 we have: 1 (mod 2 and thugG| = 0 (mod 4.

Note that the above construction has a direct translation into a more graph-theoretic
language by associating with the Cayley graph= Cay(G, {a, b, b~1}) of G the so
calledhexagon graphHex(X) whose vertex set consists of all the hexagonX iarising
from the relation(ab)3, with two hexagons adjacent in Hex) if they share an edge
in X. It may be easily seen that HEX) is nothing else than the so calledbital graph
of the left action ofG on the setH of left cosets of the subgroufl = (ab), arising
from the suborbifa H, abaH, ababa H} of length 3. (But note thatH = bH and so
abaH = ab’H andababaH = b~1H.) More precisely, the graph has vertex $ét
with adjacency defined as follows: an arbitrary cos#tis adjacent to precisely the three
cosetsxbH, xb~'H andxab’H. Clearly, G acts 1-regularly on HgX). Conversely,
let X be a cubic arc-transitive gragh admitting a 1-regular action of a subgroGpof
AutY. Letv € V(Y) and leth be a generator off = G, = Z3. Then there must exist
an element: € G such thatG = (a, h) and such that’ is isomorphic to the orbital
graph of G relative to the suborbita H, haH, h?aH). Moreover, a short computation
shows that: may be chosen to be an involution, and letting= ak we get the desired
presentation foG. There is therefore a well defined correspondence between these two
classes of objects, as noted in the introductory section. However, this correspondence is
not 1-1, for a cubic arc-transitive graph may possess nonisomorphic 1-regular subgroups.
A typical example is the Nbius—Kantor graph on 16 vertices, that is, the generalized
Petersen grapfi P (8, 3), which admits two nonisomorphic 1-regular subgroups, one with
a (2, 8, 3)-presentation and the other with(2, 12, 3)-presentation. The former and the
corresponding Cayley graph is discussed in Exafnple 2.5 below. (Note that the generalized
Petersen graptt P(n, r), wheren > 3 and 1< r < |n/2], has vertices;, v;, i € Z,,
and edges of the form; v;, u;u; 1, v;viyr, i € Zy.)

The trees of hexagonal faces in the associated Cayley mggraentioned in the first
paragraph) then correspond to vertex subsets inMeinducing trees with the property
that the complement if¥ (X) either is an independent set whgi| = 2 (mod 4, or
induces a subgraph with a single edge whéh= 0 (mod 4. That this approach works
in general will follow from the results given in Sectiph 3.

Example 2.2. In the middle picture of Figurie] 1 we show a trivial tree of hexagons (con-
sisting of a single hexagon) whose boundary is a Hamilton cycle in the toroidal Cayley

S

Fig. 1. A (trivial) Hamilton tree of faces in a toroidal Cayley mapki 3 giving rise to a Hamilton
cycle, and the associated hexagon graph.
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map of X = K33, the Cayley graph of the group = Zg with a (2, 6, 3)-presentation
(a,b | a® = b® = (ab)® = 1, ...), wherea = 3 andb = 1. The left picture shows the
corresponding hexagon gragh, and the right picture shows the corresponding Hamil-
ton cycle inX.

Example 2.3. In the middle picture of Figurg]2 we show a Hamilton tree of hexagons
whose boundary is a Hamilton cycle in the toroidal Cayley map of the Pappus graph
a Cayley graph of the groug = S3 x Z3 with a (2, 6, 3)-presentationa, b | a® =

b8 = (ab)® = 1,...), wherea = ((12),0) andb = ((13), 1). The left picture shows
this same tree in the corresponding hexagon gigh, and the right picture shows the
corresponding Hamilton cycle K.

=/
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Fig. 2. A Hamilton tree of faces in a toroidal Cayley map of the Pappus graph giving rise to a
Hamilton cycle, and the associated hexagon graph.

Example 2.4. In the middle picture of Figuig 3 we show a tree of hexagons whose bound-
ary is a cycle missing only two adjacent vertices in the spherical Cayley map of a Cayley
graphX of the groupG = S, with a (2, 4, 3)-presentatioria, b | a2 = b* = (ab)3 = 1),
wherea = (12) andb = (1234). The left picture shows this same tree in the correspond-
ing hexagon graplQs, the cube, and the right picture shows a modified tree of faces,
including also a square, whose boundary is a Hamilton cycle in this map.

Fig. 3. A tree of faces in the spherical Cayley map of a Cayley grapfydfiving rise to a cycle
missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of faces.

Example 2.5. In the middle picture of Figurg]4 we give the genus 2 Cayley map of a
Cayley graphx of the groupG = Qg x S3 with a(2, 8, 3)-presentatiora, b | a® = b® =
(ab)® = 1,...), wherea = (1, (23)) andb = (i, (12)). The action of the transposition
(12) € S3 0n Qg is given by the rulei(12) = —j, j(12) = —i, k(12) = —k, and the
rules of action of the other two transpositions are then obvious. In partic@l@3) =
i(23)(12) = j, and similarly j(123) = k andk(123) = i. It is then easily checked
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Fig. 4. A tree of faces in the genus 2 Cayley map of a Cayley grap@® S3 giving rise to a
cycle missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of
faces.

thata is an involution,b has order 8 andb has order 3. Note that this map is given by
identifying antipodal octagons as numbered (and the associated adjacency of hexagons).
Note also that the sixth octagon is omitted from this picture, but occurs as the outer
edges of the outer hexagons. We show a tree of hexagons in this map, whose boundary
is a cycle missing only two adjacent vertices. The left picture shows this same tree in the
corresponding hexagon graph, théblus—Kantor graph of order 16, and the right picture
shows a Hamilton tree of faces, including also an octagon, whose boundary is a Hamilton
cycle in this map.

Example 2.6. In the middle picture of Figufg 5 we show a tree of hexagons whose bound-
ary is a cycle missing only two adjacent vertices in the spherical Cayley map of a Cayley
graphX of the groupG = A4 with a(2, 3, 3)-presentatiotia, b | a® = b3 = (ab)3 = 1),
wherea = (12)(34) andb = (123). The left picture shows this same tree in the corre-
sponding hexagon grapky, and the right picture shows a Hamilton tree of faces, includ-
ing also two triangles, whose boundary is a Hamilton cycle in this map.

Fig. 5. A tree of faces in the spherical Cayley map of a Cayley graph0fiving rise to a cycle
missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of faces.

Example 2.7. In the middle picture of Figufg 6 we show a tree of hexagons whose bound-
ary is a cycle missing only two adjacent vertices in the spherical Cayley map of a Cayley
graphX of the groupG = As with a(2, 5, 3)-presentatioria, b | a® = b° = (ab)® = 1),
wherea = (12)(34) andb = (12345. The left picture shows this same tree in the cor-
responding hexagon graph, the dodecahedron, and the right picture shows a Hamilton
tree of faces, including also two pentagons, whose boundary is a Hamilton cycle in this
map.
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Fig. 6. A tree of faces in the spherical Cayley map of a Cayley grapAggiving rise to a cycle
missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of faces.

3. Cyclic stability and cyclic connectivity

A successful application of the method described in the previous section depends heavily
on two purely graph-theoretic results. The first one, due to Payan and Sakarovitch [32],
goes back to 1975 and deals with maximum cardinalities of vertex subsets in cubic graphs
inducing acyclic subgraphs, whereas the second one, due to Nedeskaridra[[31], is
somewhat more recent and concerns cyclic connectivity of vertex-transitive graphs.
Following [32], a paper that is presumably not readily available, we say that, given a
graph (or more generally a loopless multigragh) subses of V (X) is cyclically stable
if the induced subgraplX[S] is acyclic (a forest). The cardinalitys| of a maximum
cyclically stable subsef of V(X) is said to be theyclic stability numberwof X. The
following result giving an upper bound on the cyclic stability number is due to Jaeger
[20]. For the sake of completeness we include its proof.

Proposition 3.1 (Jaeger, 1974)Let X be a cubic loopless multigraph of orderand let
S be a maximum cyclically stable subsettfX). Then

IS| = (3n — 2¢ — 2¢) /4, 1)

wherec is the number of connected components (treesy[ifi] and e is the number of
edges inX[V (X) \ S]. In particular, |S| < (3n — 2)/4.

Proof. Let V = V(X). First, in view of maximality ofS, a vertex inV \ S has at most
one neighbor iV \ S, so that each of the edges inX[V \ S] is an isolated edge. Now
let f andg denote, respectively, the number of edgeX(i§] and the number of edges
with one endvertex it§ and the other iV \ S. Thenf = |S| — c andg = |S]| + 2¢. Of
courseg + f + g = 3n/2 and s + 2|S| + ¢ = 3r/2, giving us the desired expression
for |S|. Now, clearly, the maximum value fo§| occurs where = 0, that is, wher?/ \ §

is an independent set of vertices, and when at the sametimé, that is, whenx[S] is
atree. O

In order to explain the result of Payan and Sakarovitch, we need to introduce the concept
of cyclic connectivity. LetX be a connected graph. A subgeiC E(X) of edges ofX is
said to becycle-separatingf X — F is disconnected and at least two of its components
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contain cycles. We say that is cyclically k-edge-connected no set of fewer thark
edges is cycle-separating ¥h Furthermore, thedge cyclic connectivity(X) of X is the
largest integek not exceeding the Betti numbgE (X)| — [V (X)| + 1 of X for which

X is cyclically k-edge-connected. (This distinction is indeed necessary as, for example,
the theta grapl®,, K4 and K3 3 possess no cycle-separating sets of edges and are thus
cyclically k-edge-connected for atl, but their edge cyclic connectivities are 2, 3 and 4,
respectively.)

In [32, Theo®me 5], Payan and Sakarovitch proved that in a cyclically 4-edge-con-
nected cubic graph the above upper bound for its cyclic stability number given in Propo-
sition[3.] is always attained. More precisely, bearing in mind the expression for the cyclic
stability number given in formulg 1) of Propositipn B.1, the following result may be
deduced from [32, Téoeme 5].

Proposition 3.2 (Payan, Sakarovitch, 1975).et X be a cyclically4-edge-connected cu-
bic graph of ordern, and letS be a maximum cyclically stable subsetofX). Then
|S| = |(3n — 2)/4] and more precisely, the following hold.

(i) If n = 2 (mod4 then|S| = (3n — 2)/4, and X[S] is a tree andV (X) \ S is an
independent set of vertices.

(i) If n = 0 (mod4 then|S| = (3n — 4)/4, and eitherX[S] is a tree andV (X) \ S
induces a graph with a single edge, ¥fS] has two components arld(X) \ S is an
independent set of vertices.

The connection between cyclic stability and hamiltonicity is now becoming more trans-
parent. LetG be a group with &2, s, 3)-presentationX be the corresponding Cayley
graph andr = Hex(X) be its hexagon graph. As described in the previous section, it is
precisely the fact that one is able to decompose the vertex@étinto two subsets, the
first one inducing a tree, and its complement being an independent set of vertices, that en-
abled us to produce a Hamilton cycle in the original grapior the (2, 6, 3)-presentations
of Zg and S3 x Z3. Further, with a slight modification, when the decomposition is such
that the first set induces a tree and its complement induces a subgraph with a single edge,
then a long cycle missing only two adjacent vertices is producéd ifherefore if| G|,
and hence the order of the hexagon graph®egxis congruent to 2 modulo 4, then part
(i) of Propositiorj 3.p does the trick, provided of course that{gxs indeed a cyclically
4-edge-connected graph. On the other hand7|f and hence the order of HEX), is
divisible by 4, then we are not quite there yet, for only one of the possibilities given in
part (i) of Propositiof 3.2 will allow us to construct a long cycle in the original gr&ph
In what follows we explore this situation by, first, bringing into the picture an important
result on edge cyclic connectivity of cubic graphs due to NedelaSkodiera, and sec-
ond, by showing that, save for a few exceptions, a cyclically stable set in a hexagon graph
of order divisible by 4 may always be chosen in such a way that it induces a tree, and its
complement induces a subgraph with a single edge.

The following result is proved in[31, Theorem 17].

Proposition 3.3 (Nedela,ékoviera, 1995).The edge cyclic connectivity X) of a cubic
vertex-transitive graplX equals its girthg (X).
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Consequently, the edge cyclic connectivity of the hexagon graph, which is an arc-transi-
tive, and thus also a vertex-transitive cubic graph, coincides with its girth. As will soon
become clear, a lower bound on the girth is needed. This is what the next proposition
does, where we show that, with a few exceptions, the girth of such a graph is not less
than 6.

Proposition 3.4. Let X be a cubic arc-transitive graph. Then one of the following occurs.

() The girthg(X) of X is at least6; or
(i) X is one of the following graphs: the theta gra@, K4, K33, the cubeQs, the
Petersen graplt; P (5, 2) or the dodecahedron grapfi P (10, 2).

Proof. Clearly, ®; is the only arc-transitive cubic (multi)graph of girth 2.

Let G = Aut X. Suppose first thag(X) = 3. Letv € V(X) and letug, u1 andus
be its neighbors. By arc-transitivity there exists an automorphisofi X fixing v and
cyclically permuting its neighbors, that is(u;) = u;4+1,i € Z3. Sinceg(X) = 3 it
clearly follows that each; is adjacent to the other two neighborswpfand soX = K.

Suppose next thaf(X) = 4. Letv € V(X), Nw) = {u; | i € Z3} anda € G,
have the same meaning as above. SgICé) = 4, there are no edges M(v), but there
must exist, say, a vertexy; which is adjacent to bothg andu1. If xo1 is also a neighbor
of up, then it is easily seen that there exists a third common neighbeg,of; anduy,
implying thatX = K3 3. If on the other handyo1 is not adjacent tay, then there must
exist verticesv12 and xg which are common neighbors of, respectivedy,andu,, and
of uo andug. But then, using the fact that is an arc-transitive graph of girth 4, one can
easily show that the three verticeg, x12 andxzg have a common neighbor, forcing
to be the cub&)s.

Finally, suppose thag(X) = 5. We show first that the order @f is divisible by 5.
Letv € V(X), and letN (v) = {u; | i € Z3} be its neighborhood. We may assume that
the 2-arcugvus is contained in a 5-cycle. By arc-transitivity the arg, must also be
contained in a 5-cycle, and so either the 2+agcu, or the 2-arai1vus is contained in a
5-cycle. But then both 2-arcs are on a 5-cycle (in view of the fact that the vertex stabilizer
G, contains an element of order 3 which cyclically permutes the neighborise Z3).

In short, an edge of is contained in at least two distinct 5-cycles. On the other hand, an
edge ofX cannot be contained in more than four 5-cycles. Namely, i@ = 5, a

3-arc of X is contained in at most one 5-cycle, and so a 2-atX &f contained in at most

two 5-cycles, and a 1-arc in at most four 5-cycles. More precisely, either each 3Xrc in
gives rise to a unique 5-cycle or each 2-arc gives rise to a unigue 5-cycle. In the first case
there is a total of &/5 cycles of length 5 inX (with each edge on four 5-cycles), and in

the second case there is a total af/3 cycles of length 5 inX (with each edge on two
5-cycles), where is the order ofX. In both cases we see that 5 dividedn particular,

X has an automorphism of order 5.

Next, by considering the action @f on the set of all 5-cycles inX, we show that
this automorphism ok of order 5 may be chosen in such a way that it rotates a 5-cycle
in X (and so in the terminology of [11]X has a consistent 5-cycle). This will prove
crucial in the final steps of our proof. To do that it suffices to show that there exists an
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automorphism of order 5 fixing a 5-cycle. Note that, by the classical result of Tufte [34],
we have|G| = 3-2" - n, wherer < 2, asG is at most 3-arc-transitive. Le® be a
Sylow 5-subgroup ofz, say of order 5, k > 1. In view of the above remarks on the
cardinality ofC, we can easily see that eithéris transitive onC or G has two equal
length orbits in its action od. But the important thing is tha€| is of the form 51 . m,
where(5, m) = 1, and so there must be an orbit in the actiorPasn C of cardinality 5,
wherej < k. Consequently, a stabilizer in the action@fon C contains a nonidentity
element ofP, and so, in particular, an element of order SRafTherefore there exists a
5-cycleC = vguivovsvg in X and an automorphism of order 5 &f, call it p, fixing C.
But sinceX is a cubic graphy must necessarily be fixed-point-free in its actionloqX),
and hence semiregular with all orbits of length 5. It follows thatyclically rotatesC,
that is, with no loss of generality,(v;) = v; 11 for eachi € Zs.

Letu;,i € Zs, respectively, be the additional neighboragfi € Zs, so thato(u;) =
ui41 foralli € Zs. Supposing firstthal/ = {u; | i € Zs} induces a cycle, one may easily
deduce thafX is isomorphic to the Petersen gragtP (5, 2). We may therefore assume
thatU is an independent set of vertices. Now if the additional neighbors,af € Zs,
were in two orbits ofo, then no edge; u; would be contained in a 5-cycle. Hence there is
a third orbitW = {w; | i € Zs} of p, with p(w;) = w; 41 for all i € Zs, containing all of
the additional neighbors of verticesin Of course W is an independent set of vertices,
and there is a fourth orbi® = {q; | i € Zs} of p containing the additional neighbors
of vertices inW. But now in order for the edges with one endvertextinand the other
endvertex inQ to lie on a 5-cycle, the orbi® must necessarily induce a cycle. In other
words, p has precisely four orbits and s0 is a nonbipartite cubic arc-transitive graph
of order 20. Henc& is isomorphic to the graph of the dodecahedron, that is, the graph
G P(10, 2) in the generalized Petersen graph notation. O

Using the previous two results we will give a refinement of the Payan and Sakarovitch
result in Propositiofi 3]2 by showing that for cubic arc-transitive graphs of girth 6 the
maximum cyclically stable subset may always be chosen to induce a tree.

Proposition 3.5. Let X be a cubic arc-transitive graph of order = 0 (mod 4, not
isomorphic to any of the following graphks, the cubeQ3, or the dodecahedron graph
G P(10, 2). Then there exists a cyclically stable subSeif V (X) which induces a tree
and such thaV (X) \ S induces a graph with a single edge.

Proof. Observe that, in view of Propositign 8.4, the girthXofis at least 6, and hence,

in view of Propositiof 3]3X is a cyclically 6-edge-connected graph. Note also that the
statement of this proposition really says that in part (ii) of Proposjtioh 3.2, a particular
one of the two possibilities may be chosen.

We proceed as follows. Let us first modify our graptby deleting a pair of adjacent
vertices, say andv. This modified graply = X — {u, v} hasn — 2 vertices with the two
neighbors:1 andus of u and the two neighbors; andv, of v having valency 2, and all
the remaining vertices having valency 3. “Forgetting” the four vertiges2, v1 andvy,
we may therefore also think of this modified graph as being cubic of erdei6. The
important thing however is that must be a cyclically 4-edge-connected graph. Namely,
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taking two vertex-disjoint cycle€1 andC; in Y, a maximum number of additional paths
separating these two cycles one can obtain by adding the vestiaad v (and all their
neighbors) is 2. This would occur if each of the two vertigedv had one of their two
(additional) neighbors id’1 and the other ifC». We conclude that by going from back
to the original graphX, the edge cyclic connectivity can go up by at most 2. Sikide
cyclically 6-edge-connected it follows thitis cyclically 4-edge-connected.

But the order oft’ is congruent to 2 modulo 4 and by part (i) of Proposifior} 3.2 (in this
particular instance we are forgetting the four neighbors to n¥akabic!), there exists a
maximum cyclically stable subsgtof V (Y) inducing a tree and such that its complement
V(Y) \ R is an independent set of vertices. Now the maximum cyclically stable sSbset
of V(X) is obtained by takingg = R U {u1, uz, v1, v2}. (The edge:v is thus the single
edge of the graph induced on the complemiénx) \ S.) O

4. Proof Theorem[1.1

Suppose first thatG| = 2 (mod 4. Then by Propositioh 2|1, we have= 2 (mod 4.

As demonstrated in Sectign 2, a tree in kEx whose complement is an independent
set of vertices gives rise to a Hamilton tree of faces in the Cayley map associated with
X and thus to a Hamilton cycle i¥. In view of Exampld 2.2, which takes care of the
case HexX) = O, and Propositions 3.P-3.4 which combined together take care of
the case Hef) Z Oy, the graphX is then clearly hamiltonian. As for the case when
|G| = 0 (mod 4, we use Examplds 3.4, 2.6 gnd]2.7 for the case wheriX)ei® isomor-
phic, respectively, to one d€4, Q3 or G P(10, 2) and Propositiofi 3|5 for the case when
Hex(X) 2 K4, 03, GP(10, 2), to ensure the existence in the hexagon graph( Mgxof

a tree whose vertex complement (in H&Y) is a graph with a single edge. This tree then
translates irX into a tree of faces in the Cayley map (associated Witlwhose boundary
misses only two adjacent vertices, namely, those two adjacent vertigewith the cor-
responding edge being shared by the two hexagons which (itdHgare the endvertices

of the single edge in the complement of the tree chosen above. Consegiertlytains

a long cycle missing only two adjacent vertices. In particulahas a Hamilton path in
this case. This completes the proof of Theofen 1.1. O
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