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Abstract. Following a problem posed by Lovász in 1969, it is believed that every finite connected
vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs
arising from finite groups having a(2, s, 3)-presentation, that is, for groupsG = 〈a, b | a2

= 1,
bs

= 1, (ab)3 = 1, . . .〉 generated by an involutiona and an elementb of orders ≥ 3 such that their
productab has order 3. More precisely, it is shown that the Cayley graphX = Cay(G, {a, b, b−1

})
has a Hamilton cycle when|G| (and thuss) is congruent to 2 modulo 4, and has a long cycle
missing only two adjacent vertices (and thus necessarily a Hamilton path) when|G| is congruent to
0 modulo 4.

1. Introductory remarks

In 1969, Lov́asz [22] asked whether every finite connected vertex-transitive graph has a
Hamilton path, thus tying together two seemingly unrelated concepts: traversability and
symmetry of graphs. (In this article all graphs are assumed to be finite.) The Lovász prob-
lem is, somewhat misleadingly, usually referred to as the Lovász conjecture, presumably
in view of the fact that, after all these years, a connected vertex-transitive graph without
a Hamilton path is yet to be produced. Moreover, only four connected vertex-transitive
graphs (having at least three vertices) not possessing a Hamilton cycle are known to ex-
ist: the Petersen graph, the Coxeter graph, and the two graphs obtained from them by
replacing each vertex with a triangle. All of these are cubic graphs, suggesting perhaps
that no attempt to resolve the above problem can bypass a thorough analysis of cubic
vertex-transitive graphs. Besides, none of these four graphs is a Cayley graph. This has
led to a folklore conjecture that every connected Cayley graph is hamiltonian.

This problem has spurred quite a bit of interest in the mathematical community. In
spite of a large number of articles directly and indirectly related to this subject (see [1–9,
12, 16–19, 21, 25–30, 35–37] for some of the relevant references), not much progress has
been made with regard to either of the two conjectures.

For example, most of the results proved thus far in the case of Cayley graphs depend
on various restrictions made either on the class of groups dealt with or on the generating
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sets of Cayley graphs. For example, one may easily see that connected Cayley graphs of
abelian groups have a Hamilton cycle. Also, following a series of articles [17, 21, 25] it
is now known that every connected Cayley graph of a group with a cyclic commutator
subgroup of prime power order is hamiltonian. This result has later been generalized
to connected vertex-transitive graphs whose automorphism group contains a transitive
subgroup whose commutator subgroup is cyclic of prime power order, with the Petersen
graph being the only counterexample [16]. And finally, perhaps the biggest achievement
on the subject is a result of Witte (now Morris) which says that a Cayley (di)graph of
anyp-group has a Hamilton cycle [37]. (For further results not explicitly mentioned or
referred to here see the survey paper [15].)

In this article we consider hamiltonicity for cubic Cayley graphs arising from groups
that have a(2, s, 3)-presentation, that is, for groupsG = 〈a, b | a2

= 1, bs
= 1,

(ab)3
= 1, . . .〉 generated by an involutiona and an elementb of orders ≥ 3 such that

their productab has order 3. More precisely, the following is the main result of this article.
(We remark that two verticesg, h ∈ G in the Cayley graph Cay(G, S) are adjacent if and
only if g−1h ∈ S.)

Theorem 1.1. Let s ≥ 3 be an integer and letG = 〈a, b | a2
= 1, bs

= 1,
(ab)3

= 1, . . .〉 be a group with a(2, s, 3)-presentation. Then the Cayley graphX =

Cay(G, {a, b, b−1
}) has a Hamilton cycle when|G| (and thus alsos) is congruent to2

modulo4, and has a cycle of length|G| − 2 through all but two adjacent vertices, and
thus necessarily a Hamilton path, when|G| is congruent to0 modulo4.

Let us comment that the class of groups considered in Theorem 1.1 is by no means restric-
tive. First, these groups are quotients of the modular group PSL(2, Z). Second, by [23],
[24], [33] and [38] every finite nonabelian simple group except the Suzuki groups, a thin
family of PSpn(q) and a thin family of PSUn(q) groups,M11, M22, M23, McL and at most
finitely many other non-sporadic finite simple groups have a(2, s, 3)-presentation. Also,
methods similar to those in this article have been used in [13, 14] to find Hamilton cycles
in certain Cayley graphs. And third, ifX is a cubic arc-transitive graph andG ≤ Aut X
acts 1-regularly onX, then it is easily seen thatG has a(2, s, 3)-presentation for somes.
Namely, the ordered pair(X, G) gives rise to a unique orbit of those undirected cycles in
X which have the property that each of these cycles is rotated by some automorphism in
G (that is, the so calledconsistent cyclesin the terminology of Biggs [11]). These cycles
give rise to the faces of the corresponding (orientably) regular map associated withX,
and their length is then precisely our parameters in the(2, s, 3)-presentation ofG. Going
backwards, the well defined correspondence between these groups (or rather their Cay-
ley graphs) and the class of all those cubic arc-transitive graphs which admit a subgroup
acting regularly on the arcs is, geometrically, best seen via the concept of the hexagon
graphs, explained in the subsequent section. (However, this correspondence is not 1-1,
for a cubic arc-transitive graph may admit nonisomorphic 1-regular groups.)

The article is organized as follows. In Section 2 we describe our method for con-
structing Hamilton cycles and paths in cubic Cayley graphs of groups having a(2, s, 3)-
presentation by analyzing six examples of such graphs. They are associated with, re-
spectively, the groupsZ6 andS3 × Z3 with a (2, 6, 3)-presentation, the groupS4 with a
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(2, 4, 3)-presentation, the groupQ8 o S3 with a (2, 8, 3)-presentation, the groupA4 with
a (2, 3, 3)-presentation and the groupA5 having a(2, 5, 3)-presentation. In Section 3 we
introduce the graph-theoretic concepts of cyclic stability and cyclic connectivity. In par-
ticular, we discuss an old theorem of Payan and Sakarovitch [32] which gives the exact
cardinality of a maximum cyclically stable set in a cyclically 4-edge-connected cubic
graph (Proposition 3.2), a result that proves to be of crucial importance for the purpose
of this article. Using a result of Nedela andŠkoviera [31] on cyclic connectivity in cubic
vertex-transitive graphs (Proposition 3.3), together with an analysis of cubic arc-transitive
graphs of girth at most 5 (Proposition 3.4), we then obtain a slight refinement of the above
mentioned result of Payan and Sakarovitch (Proposition 3.5), thus laying the groundwork
for the proof of Theorem 1.1 which is carried out in Section 4.

2. The method of proof illustrated

In this section we give examples illustrating our method of proof of Theorem 1.1. In par-
ticular, each Cayley graph we study has a canonical Cayley map given by an embedding
of the Cayley graphX = Cay(G, {a, b, b−1

}) of the (2, s, 3)-presentation of a group
G = 〈a, b | a2

= 1, bs
= 1, (ab)3

= 1, . . .〉 in the corresponding closed orientable
surface with the set of facesF(X) comprising|G|/s vertex-disjoints-gons and|G|/3
hexagons. This map is given by using the same rotation of theb, a, b−1 edges at every
vertex and results in ones-gon and two hexagons adjacent to each vertex. Applying the
formula for the Euler characteristic

χ = 2 − 2g = |V (X)| − |E(X)| + |F(X)|,

we see that the genusg of this surface is 1+(s−6)|G|/12s. As an immediate consequence
we have the following observation abouts and the order of the groupG.

Proposition 2.1. Let s ≥ 3 be an integer and letG = 〈a, b | a2
= 1, bs

= 1, (ab)3

= 1, . . .〉 be a group with a(2, s, 3)-presentation with order|G| ≡ 2 (mod 4). Then
s ≡ 2 (mod 4).

In each of the six examples presented here we give a tree of(|G| − 2)/4 hexagons if
|G| ≡ 2 (mod 4), and(|G| − 4)/4 hexagons if|G| ≡ 0 (mod 4). This tree of hexagons
necessarily contains, respectively, all or all but two of the vertices of the Cayley graph,
and as a subspace of the Cayley map is a topological disk. The boundary of that disk is
a (simple) cycle passing through, respectively, all or all but two adjacent vertices of the
Cayley graph. We give two examples in the case|G| ≡ 2 (mod 4) and four examples in
the case|G| ≡ 0 (mod 4). In each example we show the tree of hexagons in the Cayley
map, in the first case giving rise to a Hamilton cycle of the graph and in the second
case giving rise to a long cycle missing only two adjacent vertices. Finally, we do show
a Hamilton cycle in the Cayley graph in the case|G| ≡ 0 (mod 4) when the tree of
(|G| − 4)/4 hexagons does not give a Hamilton cycle in the Cayley graph. We do this
by exhibiting aHamilton treeof faces in the Cayley map (a tree of faces such that each
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vertex of the Cayley graph lies in the boundary of at least one of these faces) by using
an appropriate number ofs-gons. In Examples 2.2 and 2.3 we have|G| ≡ 2 (mod 4) and
s ≡ 2 (mod 4), in Examples 2.4 and 2.5 we have|G| ≡ 0 (mod 4) ands ≡ 0 (mod 4),
and in Examples 2.6 and 2.7 we haves ≡ 1 (mod 2) and thus|G| ≡ 0 (mod 4).

Note that the above construction has a direct translation into a more graph-theoretic
language by associating with the Cayley graphX = Cay(G, {a, b, b−1

}) of G the so
calledhexagon graphHex(X) whose vertex set consists of all the hexagons inX arising
from the relation(ab)3, with two hexagons adjacent in Hex(X) if they share an edge
in X. It may be easily seen that Hex(X) is nothing else than the so calledorbital graph
of the left action ofG on the setH of left cosets of the subgroupH = 〈ab〉, arising
from the suborbit{aH, abaH, ababaH } of length 3. (But note thataH = bH and so
abaH = ab2H andababaH = b−1H.) More precisely, the graph has vertex setH,
with adjacency defined as follows: an arbitrary cosetxH is adjacent to precisely the three
cosetsxbH , xb−1H andxab2H . Clearly,G acts 1-regularly on Hex(X). Conversely,
let X be a cubic arc-transitive graphY admitting a 1-regular action of a subgroupG of
Aut Y . Let v ∈ V (Y ) and leth be a generator ofH = Gv

∼= Z3. Then there must exist
an elementa ∈ G such thatG = 〈a, h〉 and such thatY is isomorphic to the orbital
graph ofG relative to the suborbit{aH, haH, h2aH }. Moreover, a short computation
shows thata may be chosen to be an involution, and lettingb = ah we get the desired
presentation forG. There is therefore a well defined correspondence between these two
classes of objects, as noted in the introductory section. However, this correspondence is
not 1-1, for a cubic arc-transitive graph may possess nonisomorphic 1-regular subgroups.
A typical example is the M̈obius–Kantor graph on 16 vertices, that is, the generalized
Petersen graphGP(8, 3), which admits two nonisomorphic 1-regular subgroups, one with
a (2, 8, 3)-presentation and the other with a(2, 12, 3)-presentation. The former and the
corresponding Cayley graph is discussed in Example 2.5 below. (Note that the generalized
Petersen graphGP(n, r), wheren ≥ 3 and 1≤ r ≤ bn/2c, has verticesui, vi , i ∈ Zn,
and edges of the formuivi , uiui+1, vivi+r , i ∈ Zn.)

The trees of hexagonal faces in the associated Cayley map ofX (mentioned in the first
paragraph) then correspond to vertex subsets in Hex(X) inducing trees with the property
that the complement inV (X) either is an independent set when|G| ≡ 2 (mod 4), or
induces a subgraph with a single edge when|G| ≡ 0 (mod 4). That this approach works
in general will follow from the results given in Section 3.

Example 2.2. In the middle picture of Figure 1 we show a trivial tree of hexagons (con-
sisting of a single hexagon) whose boundary is a Hamilton cycle in the toroidal Cayley

Fig. 1. A (trivial) Hamilton tree of faces in a toroidal Cayley map ofK3,3 giving rise to a Hamilton
cycle, and the associated hexagon graph.
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map ofX = K3,3, the Cayley graph of the groupG = Z6 with a (2, 6, 3)-presentation
〈a, b | a2

= b6
= (ab)3

= 1, . . .〉, wherea = 3 andb = 1. The left picture shows the
corresponding hexagon graph22, and the right picture shows the corresponding Hamil-
ton cycle inX.

Example 2.3. In the middle picture of Figure 2 we show a Hamilton tree of hexagons
whose boundary is a Hamilton cycle in the toroidal Cayley map of the Pappus graphX,
a Cayley graph of the groupG = S3 × Z3 with a (2, 6, 3)-presentation〈a, b | a2

=

b6
= (ab)3

= 1, . . .〉, wherea = ((12), 0) andb = ((13), 1). The left picture shows
this same tree in the corresponding hexagon graphK3,3, and the right picture shows the
corresponding Hamilton cycle inX.

Fig. 2. A Hamilton tree of faces in a toroidal Cayley map of the Pappus graph giving rise to a
Hamilton cycle, and the associated hexagon graph.

Example 2.4. In the middle picture of Figure 3 we show a tree of hexagons whose bound-
ary is a cycle missing only two adjacent vertices in the spherical Cayley map of a Cayley
graphX of the groupG = S4 with a (2, 4, 3)-presentation〈a, b | a2

= b4
= (ab)3

= 1〉,
wherea = (12) andb = (1234). The left picture shows this same tree in the correspond-
ing hexagon graphQ3, the cube, and the right picture shows a modified tree of faces,
including also a square, whose boundary is a Hamilton cycle in this map.

Fig. 3. A tree of faces in the spherical Cayley map of a Cayley graph ofS4 giving rise to a cycle
missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of faces.

Example 2.5. In the middle picture of Figure 4 we give the genus 2 Cayley map of a
Cayley graphX of the groupG = Q8oS3 with a(2, 8, 3)-presentation〈a, b | a2

= b8
=

(ab)3
= 1, . . .〉, wherea = (1, (23)) andb = (i, (12)). The action of the transposition

(12) ∈ S3 on Q8 is given by the rule:i(12) = −j , j (12) = −i, k(12) = −k, and the
rules of action of the other two transpositions are then obvious. In particular,i(123) =

i(23)(12) = j , and similarlyj (123) = k and k(123) = i. It is then easily checked
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Fig. 4. A tree of faces in the genus 2 Cayley map of a Cayley graph ofQ8 o S3 giving rise to a
cycle missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of
faces.

thata is an involution,b has order 8 andab has order 3. Note that this map is given by
identifying antipodal octagons as numbered (and the associated adjacency of hexagons).
Note also that the sixth octagon is omitted from this picture, but occurs as the outer
edges of the outer hexagons. We show a tree of hexagons in this map, whose boundary
is a cycle missing only two adjacent vertices. The left picture shows this same tree in the
corresponding hexagon graph, the Möbius–Kantor graph of order 16, and the right picture
shows a Hamilton tree of faces, including also an octagon, whose boundary is a Hamilton
cycle in this map.

Example 2.6. In the middle picture of Figure 5 we show a tree of hexagons whose bound-
ary is a cycle missing only two adjacent vertices in the spherical Cayley map of a Cayley
graphX of the groupG = A4 with a(2, 3, 3)-presentation〈a, b | a2

= b3
= (ab)3

= 1〉,
wherea = (12)(34) andb = (123). The left picture shows this same tree in the corre-
sponding hexagon graphK4, and the right picture shows a Hamilton tree of faces, includ-
ing also two triangles, whose boundary is a Hamilton cycle in this map.

Fig. 5. A tree of faces in the spherical Cayley map of a Cayley graph ofA4 giving rise to a cycle
missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of faces.

Example 2.7. In the middle picture of Figure 6 we show a tree of hexagons whose bound-
ary is a cycle missing only two adjacent vertices in the spherical Cayley map of a Cayley
graphX of the groupG = A5 with a(2, 5, 3)-presentation〈a, b | a2

= b5
= (ab)3

= 1〉,
wherea = (12)(34) andb = (12345). The left picture shows this same tree in the cor-
responding hexagon graph, the dodecahedron, and the right picture shows a Hamilton
tree of faces, including also two pentagons, whose boundary is a Hamilton cycle in this
map.
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Fig. 6. A tree of faces in the spherical Cayley map of a Cayley graph ofA5 giving rise to a cycle
missing two adjacent vertices, the associated hexagon graph, and a modified Hamilton tree of faces.

3. Cyclic stability and cyclic connectivity

A successful application of the method described in the previous section depends heavily
on two purely graph-theoretic results. The first one, due to Payan and Sakarovitch [32],
goes back to 1975 and deals with maximum cardinalities of vertex subsets in cubic graphs
inducing acyclic subgraphs, whereas the second one, due to Nedela andŠkoviera [31], is
somewhat more recent and concerns cyclic connectivity of vertex-transitive graphs.

Following [32], a paper that is presumably not readily available, we say that, given a
graph (or more generally a loopless multigraph)X, a subsetS of V (X) is cyclically stable
if the induced subgraphX[S] is acyclic (a forest). The cardinality|S| of a maximum
cyclically stable subsetS of V (X) is said to be thecyclic stability numberof X. The
following result giving an upper bound on the cyclic stability number is due to Jaeger
[20]. For the sake of completeness we include its proof.

Proposition 3.1 (Jaeger, 1974).LetX be a cubic loopless multigraph of ordern and let
S be a maximum cyclically stable subset ofV (X). Then

|S| = (3n − 2c − 2e)/4, (1)

wherec is the number of connected components (trees) inX[S] and e is the number of
edges inX[V (X) \ S]. In particular, |S| ≤ (3n − 2)/4.

Proof. Let V = V (X). First, in view of maximality ofS, a vertex inV \ S has at most
one neighbor inV \ S, so that each of thee edges inX[V \ S] is an isolated edge. Now
let f andg denote, respectively, the number of edges inX[S] and the number of edges
with one endvertex inS and the other inV \ S. Thenf = |S| − c andg = |S| + 2c. Of
course,e + f + g = 3n/2 and soe + 2|S| + c = 3n/2, giving us the desired expression
for |S|. Now, clearly, the maximum value for|S| occurs whene = 0, that is, whenV \ S

is an independent set of vertices, and when at the same timec = 1, that is, whenX[S] is
a tree. ut

In order to explain the result of Payan and Sakarovitch, we need to introduce the concept
of cyclic connectivity. LetX be a connected graph. A subsetF ⊆ E(X) of edges ofX is
said to becycle-separatingif X − F is disconnected and at least two of its components
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contain cycles. We say thatX is cyclically k-edge-connectedif no set of fewer thank
edges is cycle-separating inX. Furthermore, theedge cyclic connectivityζ(X) of X is the
largest integerk not exceeding the Betti number|E(X)| − |V (X)| + 1 of X for which
X is cyclically k-edge-connected. (This distinction is indeed necessary as, for example,
the theta graph22, K4 andK3,3 possess no cycle-separating sets of edges and are thus
cyclically k-edge-connected for allk, but their edge cyclic connectivities are 2, 3 and 4,
respectively.)

In [32, Th́eor̀eme 5], Payan and Sakarovitch proved that in a cyclically 4-edge-con-
nected cubic graph the above upper bound for its cyclic stability number given in Propo-
sition 3.1 is always attained. More precisely, bearing in mind the expression for the cyclic
stability number given in formula (1) of Proposition 3.1, the following result may be
deduced from [32, Th́eor̀eme 5].

Proposition 3.2 (Payan, Sakarovitch, 1975).LetX be a cyclically4-edge-connected cu-
bic graph of ordern, and letS be a maximum cyclically stable subset ofV (X). Then
|S| = b(3n − 2)/4c and more precisely, the following hold.

(i) If n ≡ 2 (mod 4) then |S| = (3n − 2)/4, andX[S] is a tree andV (X) \ S is an
independent set of vertices.

(ii) If n ≡ 0 (mod 4) then |S| = (3n − 4)/4, and eitherX[S] is a tree andV (X) \ S

induces a graph with a single edge, orX[S] has two components andV (X) \ S is an
independent set of vertices.

The connection between cyclic stability and hamiltonicity is now becoming more trans-
parent. LetG be a group with a(2, s, 3)-presentation,X be the corresponding Cayley
graph andY = Hex(X) be its hexagon graph. As described in the previous section, it is
precisely the fact that one is able to decompose the vertex setV (Y ) into two subsets, the
first one inducing a tree, and its complement being an independent set of vertices, that en-
abled us to produce a Hamilton cycle in the original graphX for the(2, 6, 3)-presentations
of Z6 andS3 × Z3. Further, with a slight modification, when the decomposition is such
that the first set induces a tree and its complement induces a subgraph with a single edge,
then a long cycle missing only two adjacent vertices is produced inX. Therefore if|G|,
and hence the order of the hexagon graph Hex(X), is congruent to 2 modulo 4, then part
(i) of Proposition 3.2 does the trick, provided of course that Hex(X) is indeed a cyclically
4-edge-connected graph. On the other hand, if|G|, and hence the order of Hex(X), is
divisible by 4, then we are not quite there yet, for only one of the possibilities given in
part (ii) of Proposition 3.2 will allow us to construct a long cycle in the original graphX.
In what follows we explore this situation by, first, bringing into the picture an important
result on edge cyclic connectivity of cubic graphs due to Nedela andŠkoviera, and sec-
ond, by showing that, save for a few exceptions, a cyclically stable set in a hexagon graph
of order divisible by 4 may always be chosen in such a way that it induces a tree, and its
complement induces a subgraph with a single edge.

The following result is proved in [31, Theorem 17].

Proposition 3.3 (Nedela,Škoviera, 1995).The edge cyclic connectivityζ(X) of a cubic
vertex-transitive graphX equals its girthg(X).
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Consequently, the edge cyclic connectivity of the hexagon graph, which is an arc-transi-
tive, and thus also a vertex-transitive cubic graph, coincides with its girth. As will soon
become clear, a lower bound on the girth is needed. This is what the next proposition
does, where we show that, with a few exceptions, the girth of such a graph is not less
than 6.

Proposition 3.4. LetX be a cubic arc-transitive graph. Then one of the following occurs.

(i) The girthg(X) of X is at least6; or
(ii) X is one of the following graphs: the theta graph22, K4, K3,3, the cubeQ3, the

Petersen graphGP(5, 2) or the dodecahedron graphGP(10, 2).

Proof. Clearly,22 is the only arc-transitive cubic (multi)graph of girth 2.
Let G = Aut X. Suppose first thatg(X) = 3. Let v ∈ V (X) and letu0, u1 andu2

be its neighbors. By arc-transitivity there exists an automorphismα of X fixing v and
cyclically permuting its neighbors, that is,α(ui) = ui+1, i ∈ Z3. Sinceg(X) = 3 it
clearly follows that eachui is adjacent to the other two neighbors ofv, and soX ∼= K4.

Suppose next thatg(X) = 4. Let v ∈ V (X), N(v) = {ui | i ∈ Z3} andα ∈ Gv

have the same meaning as above. Sinceg(X) = 4, there are no edges inN(v), but there
must exist, say, a vertexx01 which is adjacent to bothu0 andu1. If x01 is also a neighbor
of u2, then it is easily seen that there exists a third common neighbor ofu0, u1 andu2,
implying thatX ∼= K3,3. If on the other hand,x01 is not adjacent tou2, then there must
exist verticesx12 andx20 which are common neighbors of, respectively,u1 andu2, and
of u2 andu0. But then, using the fact thatX is an arc-transitive graph of girth 4, one can
easily show that the three verticesx01, x12 andx20 have a common neighbor, forcingX
to be the cubeQ3.

Finally, suppose thatg(X) = 5. We show first that the order ofG is divisible by 5.
Let v ∈ V (X), and letN(v) = {ui | i ∈ Z3} be its neighborhood. We may assume that
the 2-arcu0vu1 is contained in a 5-cycle. By arc-transitivity the arcvu2 must also be
contained in a 5-cycle, and so either the 2-arcu0vu2 or the 2-arcu1vu2 is contained in a
5-cycle. But then both 2-arcs are on a 5-cycle (in view of the fact that the vertex stabilizer
Gv contains an element of order 3 which cyclically permutes the neighborsui , i ∈ Z3).
In short, an edge ofX is contained in at least two distinct 5-cycles. On the other hand, an
edge ofX cannot be contained in more than four 5-cycles. Namely, sinceg(X) = 5, a
3-arc ofX is contained in at most one 5-cycle, and so a 2-arc ofX is contained in at most
two 5-cycles, and a 1-arc in at most four 5-cycles. More precisely, either each 3-arc inX

gives rise to a unique 5-cycle or each 2-arc gives rise to a unique 5-cycle. In the first case
there is a total of 6n/5 cycles of length 5 inX (with each edge on four 5-cycles), and in
the second case there is a total of 3n/5 cycles of length 5 inX (with each edge on two
5-cycles), wheren is the order ofX. In both cases we see that 5 dividesn. In particular,
X has an automorphism of order 5.

Next, by considering the action ofG on the setC of all 5-cycles inX, we show that
this automorphism ofX of order 5 may be chosen in such a way that it rotates a 5-cycle
in X (and so in the terminology of [11],X has a consistent 5-cycle). This will prove
crucial in the final steps of our proof. To do that it suffices to show that there exists an
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automorphism of order 5 fixing a 5-cycle. Note that, by the classical result of Tutte [34],
we have|G| = 3 · 2r

· n, wherer ≤ 2, asG is at most 3-arc-transitive. LetP be a
Sylow 5-subgroup ofG, say of order 5k, k ≥ 1. In view of the above remarks on the
cardinality ofC, we can easily see that eitherG is transitive onC or G has two equal
length orbits in its action onC. But the important thing is that|C| is of the form 5k−1

· m,
where(5, m) = 1, and so there must be an orbit in the action ofP onC of cardinality 5j ,
wherej < k. Consequently, a stabilizer in the action ofG on C contains a nonidentity
element ofP , and so, in particular, an element of order 5 ofP . Therefore there exists a
5-cycleC = v0v1v2v3v4 in X and an automorphism of order 5 ofX, call it ρ, fixing C.
But sinceX is a cubic graph,ρ must necessarily be fixed-point-free in its action onV (X),
and hence semiregular with all orbits of length 5. It follows thatρ cyclically rotatesC,
that is, with no loss of generality,ρ(vi) = vi+1 for eachi ∈ Z5.

Let ui , i ∈ Z5, respectively, be the additional neighbors ofvi , i ∈ Z5, so thatρ(ui) =

ui+1 for all i ∈ Z5. Supposing first thatU = {ui | i ∈ Z5} induces a cycle, one may easily
deduce thatX is isomorphic to the Petersen graphGP(5, 2). We may therefore assume
thatU is an independent set of vertices. Now if the additional neighbors ofui , i ∈ Z5,
were in two orbits ofρ, then no edgeviui would be contained in a 5-cycle. Hence there is
a third orbitW = {wi | i ∈ Z5} of ρ, with ρ(wi) = wi+1 for all i ∈ Z5, containing all of
the additional neighbors of vertices inU . Of course,W is an independent set of vertices,
and there is a fourth orbitQ = {qi | i ∈ Z5} of ρ containing the additional neighbors
of vertices inW . But now in order for the edges with one endvertex inW and the other
endvertex inQ to lie on a 5-cycle, the orbitQ must necessarily induce a cycle. In other
words,ρ has precisely four orbits and soX is a nonbipartite cubic arc-transitive graph
of order 20. HenceX is isomorphic to the graph of the dodecahedron, that is, the graph
GP(10, 2) in the generalized Petersen graph notation. ut

Using the previous two results we will give a refinement of the Payan and Sakarovitch
result in Proposition 3.2 by showing that for cubic arc-transitive graphs of girth 6 the
maximum cyclically stable subset may always be chosen to induce a tree.

Proposition 3.5. Let X be a cubic arc-transitive graph of ordern ≡ 0 (mod 4), not
isomorphic to any of the following graphs:K4, the cubeQ3, or the dodecahedron graph
GP(10, 2). Then there exists a cyclically stable subsetS of V (X) which induces a tree
and such thatV (X) \ S induces a graph with a single edge.

Proof. Observe that, in view of Proposition 3.4, the girth ofX is at least 6, and hence,
in view of Proposition 3.3,X is a cyclically 6-edge-connected graph. Note also that the
statement of this proposition really says that in part (ii) of Proposition 3.2, a particular
one of the two possibilities may be chosen.

We proceed as follows. Let us first modify our graphX by deleting a pair of adjacent
vertices, sayu andv. This modified graphY = X −{u, v} hasn−2 vertices with the two
neighborsu1 andu2 of u and the two neighborsv1 andv2 of v having valency 2, and all
the remaining vertices having valency 3. “Forgetting” the four verticesu1, u2, v1 andv2,
we may therefore also think of this modified graph as being cubic of ordern − 6. The
important thing however is thatY must be a cyclically 4-edge-connected graph. Namely,
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taking two vertex-disjoint cyclesC1 andC2 in Y , a maximum number of additional paths
separating these two cycles one can obtain by adding the verticesu andv (and all their
neighbors) is 2. This would occur if each of the two verticesu andv had one of their two
(additional) neighbors inC1 and the other inC2. We conclude that by going fromY back
to the original graphX, the edge cyclic connectivity can go up by at most 2. SinceX is
cyclically 6-edge-connected it follows thatY is cyclically 4-edge-connected.

But the order ofY is congruent to 2 modulo 4 and by part (i) of Proposition 3.2 (in this
particular instance we are forgetting the four neighbors to makeY cubic!), there exists a
maximum cyclically stable subsetR of V (Y ) inducing a tree and such that its complement
V (Y ) \ R is an independent set of vertices. Now the maximum cyclically stable subsetS

of V (X) is obtained by takingS = R ∪ {u1, u2, v1, v2}. (The edgeuv is thus the single
edge of the graph induced on the complementV (X) \ S.) ut

4. Proof Theorem 1.1

Suppose first that|G| ≡ 2 (mod 4). Then by Proposition 2.1, we haves ≡ 2 (mod 4).
As demonstrated in Section 2, a tree in Hex(X) whose complement is an independent
set of vertices gives rise to a Hamilton tree of faces in the Cayley map associated with
X and thus to a Hamilton cycle inX. In view of Example 2.2, which takes care of the
case Hex(X) ∼= 22, and Propositions 3.2–3.4 which combined together take care of
the case Hex(X) 6∼= 22, the graphX is then clearly hamiltonian. As for the case when
|G| ≡ 0 (mod 4), we use Examples 2.4, 2.6 and 2.7 for the case when Hex(X) is isomor-
phic, respectively, to one ofK4, Q3 or GP(10, 2) and Proposition 3.5 for the case when
Hex(X) 6∼= K4, Q3, GP (10, 2), to ensure the existence in the hexagon graph Hex(X) of
a tree whose vertex complement (in Hex(X)) is a graph with a single edge. This tree then
translates inX into a tree of faces in the Cayley map (associated withX) whose boundary
misses only two adjacent vertices, namely, those two adjacent vertices inX with the cor-
responding edge being shared by the two hexagons which (in Hex(X)) are the endvertices
of the single edge in the complement of the tree chosen above. Consequently,X contains
a long cycle missing only two adjacent vertices. In particular,X has a Hamilton path in
this case. This completes the proof of Theorem 1.1. ut
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