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Abstract. We show that there exists a family of simply connected, symplectic 4-manifolds such
that the (Poincaré dual of the) canonical class admits both connected and disconnected symplectic
representatives. This answers a question raised by Fintushel and Stern.
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1. Introduction and statement of the result

An important result of 4-dimensional symplectic topology, proven first by Taubes in [T]
using the relation between Seiberg–Witten and Gromov invariants and then (under minor
assumptions) by Donaldson and Smith in [DS] via Lefschetz fibration techniques, is the
existence of a symplectic representative of the (Poincaré dual of the) canonical class of
a symplectic 4-manifold withb+ > 1. These proofs, in general, do not provide a suffi-
ciently explicit construction of such a representative, nor make any statement concerning
uniqueness, number of components, or their genus. It is therefore a non-obvious task,
given a symplectic 4-manifold, to provide explicitly such a representative.

An interesting case of this problem is described in [FS4]; Fintushel and Stern show
that, for any choice of positive integers{(gi, mi) : i = 1, . . . , n}, there exists a (mini-
mal) simply connected symplectic manifoldX whose canonical classKX ∈ H2(X, Z) is
represented by an embedded symplectic surface6 with

∑n
i=1 mi connected components:

6 =

n∐
i=1

mi∐
j=1

6gi ,j ∈ KX, (1.1)

where6gi ,j is a connected surface of genusgi . These manifolds are obtained through nat-
ural symplectic operations, i.e. symplectic fiber sum and symplectic rational blowdown,
on simply connected elliptic surfaces without multiple fibersE(s). The representative6
of (1.1) is, in some sense, the natural result of such operations when we start with the
algebraic representative of the canonical class of the elliptic surface, namely the disjoint
union ofs − 2 copies of the fiber.
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Led by this construction, Fintushel and Stern ask whether, for a symplectic manifold
whose canonical class admits a symplectic representative as in (1.1), the set of integers
{(gi, mi) : i = 1, . . . , n} is a symplectic invariant. This question is carefully asked under
the hypothesis of allgi ≥ 2; without this constraint, plenty of counterexamples can be
found in [FS3], [S], [V], where it is shown (with different constructions) that the canonical
class ofE(s), for s ≥ 4, can be symplectically represented by a connected (non-algebraic)
torus.

In this paper, we will provide an answer, in the negative, to the aforementioned ques-
tion, by showing that it is possible to exhibit a connected symplectic representative for
KX for the family of manifolds constructed in [FS4]. With obvious modifications, sym-
plectic representatives with any number of components between 1 and

∑n
i=1 mi can be

obtained.
Roughly speaking, the idea behind our construction consists in “sewing together”

some (or all) the components of the symplectic representative of (1.1), while keeping the
resulting representative symplectic. For the manifoldsX considered in this paper such
an internal surgery is explicitly exhibited, and similar cases can be treated analogously.
However, it is conceivable that a similar process exists in general, whenever a discon-
nected representative is available: we are not aware, at this point, of obstructions to the
existence of a connected symplectic representative of the canonical class.

We want to point out that, without contradiction, the result we obtain does not exclude
the use of a numerical symplectic invariant related to the number of components of sym-
plectic representatives of the canonical class (the set of integers{(gi, mi) : i = 1, . . . , n}

for amaximal numberof components
∑n

i=1 mi could be such an example); it just stresses
the need of accounting for the various representatives. In particular it is possible that the
set of integers{(gi, mi), i = 1, . . . , n} determined in [FS4] is a symplectic invariant of
the family of manifolds defined therein.

Organization of the paper.Sections 2 and 3 provide some preliminary material that will
be of use in Section 4 for our main construction. More precisely, in Section 2 we discuss
a presentation of the elliptic surfacesE(n), n ≥ 2, as symplectic link surgery manifolds,
as the first step in identifying some natural submanifolds. In Section 3 we exhibit various
symplectic spheres and tori inE(n) that will be the building blocks of our construction.
Section 4 contains an inductive presentation of the manifoldX, reviewing some of the
steps of [FS4], which leads to the construction of the disconnected and connected sym-
plectic representatives ofKX.

2. Elliptic surfaces as link surgery manifolds

The construction of the manifoldX in [FS4] starts by symplectic summing of elliptic
surfaces along the fiberF (obviously a symplectic submanifold) and along a second sym-
plectic torusR (a rim torus) that arises, in the surfaceE(n + 2) = E(n + 1)#F1=F2E(1)

(n ≥ 0), by identifying two tori, in the exterior of the fibersFi , that become essential after
the sum. In order to study this construction, we will present an elliptic surfaceE(n + 2)

as a link surgery manifold (see [FS2] for the definition) obtained from the Hopf link. This
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presentation will help us identify some symplectic submanifolds (spheres and tori) in the
elliptic surfaceE(n + 2), for n ≥ 0, that we will use in our construction.

Consider the Hopf linkH = K0 ∪ K1 and, for future reference, denote byK the
simple closed curve, inS3

\ νH , which links onceK0 andK1 as in Figure 1.
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Fig. 1.The simple closed curveK and the Hopf linkH ; the spanning surface ofK0 is dashed.

A more suggestive presentation of the resulting three-component linkH ∪ K appears
by considering it as the closure, with the axis originatingK0, of the braid of Figure 2.
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Fig. 2.The closure of the braid givesH ∪ K.

The exterior of the linkS3
\ νH contains two annuliA andB that are fibers of two

distinct fibrations having homology class (inH 1(S3
\ νH, Z) = Z2) equal to(1, 0) and

(0, 1) respectively. Such annuli have boundaryλ(K0) ∪ −µ(K1) and−µ(K0) ∪ λ(K1)

respectively. It is useful, for future reference, to think ofB as the annulus swept by an
arc in the fiberA of the corresponding fibration. In what follows, we will consider all
the knots endowed with the framing defined by their spanning disk. Moreover, whenever
we will make reference to meridians and longitudes, we will implicitly assume a specific
choice of these curves is made.

Now observe that any elliptic surfaceE(n + 2) can be presented as the link surgery
manifold obtained by gluing the manifold (with two boundary components)S1

×(S3
\νH)

to the exterior of the elliptic fiber ofE(1) andE(n + 1): in fact S1
× (S3

\ νH) =

T 2
× (S2

\ ν{p0, p1}) = T 2
× A, whereA is the annulus defined above (removing an

open neighborhood of the Hopf link fromS3 gives a circle times the annulusA, with the
circle identified to the meridian ofK0). The usual fiber sum definition of elliptic surfaces
can therefore be interpreted as follows:

E(n + 2) = (E(n + 1) \ νF0) ∪ S1
× (S3

\ νH) ∪ (E(1) \ νF1) (2.1)
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where the first gluing map identifies, in the boundary 3-tori,F0 with S1
× µ(K0) and

(remembering that we reverse orientations) the meridian ofF0 with −λ(K0), while the
second gluing map identifiesF1 with S1

× λ(K1) and the meridian ofF1 with µ(K1).
After gluing, the fibersF0 andF1 get identified. Note moreover that the smooth structure
of the resulting manifold is unaffected by the choice of the diffeomorphism between the
fibers of the elliptic surfaces andS1

× µ(K0) andS1
× λ(K1); we will later choose a

particular identification.
We need to keep track of the two tori ofE(n + 2) that are images ofS1

× µ(K0) and
S1

×λ(K0) respectively. The first one, identified with the fiberF of the elliptic fibration of
E(n + 2), is clearly essential, but also the second one, which we denote byR, is essential
in E(n + 2) (see e.g. [GS]). Due to its origin, we will call it therim torus.

To analyze the symplectic submanifolds, we consider how the construction above
leads to presentE(n+2) as a symplectic fiber sum: Perform Dehn surgery alongH ⊂ S3

with coefficient 0 alongK0 and coefficient∞ alongK1 to getS1
× S2. Denote byC0

andC1 the cores of the solid tori: these are, up to isotopy, standard circles of the form
S1

× {pi} in the resultingS1
× S2. The manifoldS1

× (S1
× S2) has a natural symplectic

structure (of the formdt ∧ α + εβ, whereα represents the fibration ofS1
× S2 andβ is

a volume form on the sphere). The toriS1
× Ci are symplectic, framed, self-intersection

zero tori and, after scaling the symplectic forms on each summand if necessary, we can
write

E(n + 2) = E(n + 1) #F0=S1×C0
S1

× (S1
× S2) #S1×C1=F E(1). (2.2)

The symplectic form, away from the gluing locus, restricts to the symplectic forms of the
summands.

Note that the presentation of (2.2) can be interpreted, from a certain viewpoint, as a
glorified form of Weinstein’s Tubular Neighborhood Theorem, in the sense that it provides
information on the restriction of the symplectic form ofE(n+2) to the submanifoldF ×A

which separatesE(n+1)\νF andE(1)\νF ; application of Weinstein’s Theorem to a fiber
of E(1), and then fiber sum withE(n+1), tells us thatF ×A, up to symplectomorphism,
has product symplectic structure (where on the annulusA we take the restriction of the
symplectic form on the sphere). This is the same as the symplectic structure arising on
the image ofS1

× (S1
× S2

\ ν(C0 q C1)) = F × A in the fiber sum of (2.2).

3. Some symplectic spheres and tori inE(n + 2)

In this section we will exploit the presentation of the elliptic surfaceE(n+2) of Section 2
to identify some symplectically embedded spheres and tori that will be the building blocks
for our (and Fintushel–Stern’s) construction.

We start with the tori. Three symplectic, framed, self-intersection zero tori arise from
the presentations of (2.1) and (2.2). The first is the fiberF . The second one,R, is one
of the two “marked” rim tori that become nontrivial in the fiber sum ofE(n + 1) and
E(1) (see Section 3.1 of [GS]), the other one being identified with the image ofµ(K1) ×

λ(K1). This essential torus is naturally Lagrangian and becomes symplectic by a small
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perturbation of the symplectic structure, as discussed in [G]. The third one is the image
of S1

× K. Their properties are summarized in the following proposition.

Proposition 1. Consider the inclusion map

S1
× (S3

\ νH) ↪→ E(n + 2).

The following holds:

(1) The imageF of the torusS1
× µ(K0) under the inclusion above is a symplectic,

framed, connected submanifold ofE(n + 2).
(2) The imageR of the torusS1

×λ(K0) is a Lagrangian, framed, connected submanifold
of E(n + 2).

(3) The imageT of the torusS1
× K is a symplectic, framed, connected submanifold of

E(n + 2) satisfying[T ] = [F ] + [R] ∈ H2(E(n + 2)).

Moreover, the three tori above can be assumed to be disjoint.

Proof. The first part of the statement clearly holds true. The nonobvious part is to prove
thatR andT are respectively Lagrangian and symplectic with respect to the symplectic
structure onE(n + 2) induced by the symplectic fiber sum of (2.2). Up to isotopy, we
can assume thatλ(K0) lies on a spanning disk ofK0 (see Figure 1); it is therefore con-
tained in a fiber of the fibration ofS1

× S2 obtained by capping off the disk fibration
of S3

\ νK0 induced by the spanning disks. As a consequence, the symplectic structure
onS1

× (S1
× S2) restricts trivially toS1

× λ(K0) (its tangent space is spanned by∂/∂t

and a vector tangent to the sphere) so that the torusR (homologically nontrivial) is a La-
grangian submanifold ofE(n + 2). This proves (2) above. For what concerns (3) we note
that, up to isotopy,K is transversal to the fibration ofS1

× S2 (see Figure 2), so that the
symplectic form onS1

× (S1
× S2) never vanishes on the torusS1

× K. As this torus
is symplectic in one summand, it will be symplectic in the fiber sum of (2.2). For what
concerns the homology class, observe that, in the homology ofS3

\ νH ,

[K] = lk(K,K0)[µ(K0)] + lk(K,K1)[µ(K1)]

= [µ(K0)] + [µ(K1)] ∈ H1(S
3
\ νH). (3.1)

The meridianµ(K1) is homologous (actually, isotopic) toλ(K0), so the relation follows at
this point from the identification ofS1

×µ(K0) andS1
×λ(K0) with F andR respectively.

The fact that these tori are disjoint follows directly from the construction. ut

The output of the previous proposition, namely that the (primitive) class [F ] + [R] can be
represented by two symplectic submanifolds, one given by the disjoint unionF q R and
the second byT , will be, in fact, the main tool for our construction. Note that the curveK

can be interpreted as the result ofcircle summingof the meridianµ(K0) and the longitude
λ(K0). The resulting operation on the toriF andR, which produces the symplectic torus
T from the symplectic torusF and the Lagrangian torusR, represents at local level the
“sewing” referred to in the Introduction.
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Having dealt with tori, we will now consider spheres. Specifically, we are interested
in two groups of spheres. The first group is the “sections” of elliptic nuclei, where an
elliptic nucleusis the regular neighborhood of the union of a cusp fiber and a section of
an elliptic fibration. The second group of spheres is those contained in a configuration that
we can use forrational blowdown. Remember that this surgery consists in replacing, in a
4-manifold, a regular neighborhood of a configuration0n of n − 1 spheres as in Figure 4,
the first with self-intersection−(n + 2) and the remaining of self-intersection−2, with
a certain rational homology ballBn. This rational homology ball naturally embeds in
the Hirzebruch surfaceFg−1, as the exterior of the configuration of spheres(S+ + f )

∪ S−, whereS+ (resp.S−) is the positive (negative) section andf the fiber of the sphere
fibration ofFg−1; see [FS1] for the details of this construction.

We will start with the first group. It is well known that an elliptic surfaceE(n + 2)

contains several disjoint elliptic nuclei (see [GS] for example). We will be interested in
two of them. We have the following proposition:

Proposition 2. LetE(n + 2), n ≥ 0, be an elliptic surface, with the symplectic structure
inherited from the construction of Section2. The following holds true:

(1) E(n + 2) contains an elliptic nucleusNF , with symplectic fiberF and symplectic
sphereSF of self-intersection−(n + 2), given by a section of the elliptic fibration.

(2) E(n + 2) contains an elliptic nucleusNR, with Lagrangian fiberR and Lagrangian
sphereSR of self-intersection−2; with a small perturbation of the symplectic struc-
ture ofE(n + 2) we can makeR andSR symplectic.

(3) The nucleiNF and NR are disjoint, and the torusT intersects their spheres in a
single, transverse point.

Proof. The first nucleusNF arises, in the picture of (2.2), as a regular neighborhood of
a cusp fiber of the elliptic fibration and its−(n + 2)-sphere sectionSF ; the symplectic
fiber of this nucleus isF , and the sectionSF arises by gluing together a disk section of
E(n+1)\νF with a−(n+1) twist rel∂ in its normal bundle (for sake of brevity we will
call these disks, with the usual abuse of language,−(n + 1)-disks), a(−1)-disk section
of E(1) \ νF and (for a suitable choice of the embedding inS1

× (S3
\ νH) = F × A)

the annulusA ⊂ S3
\ νH (which has boundary identified withλ(K0) ∪ −µ(K1)). The

two vanishing disks that kill the generators ofπ1(F ) can be located inE(n + 1) \ νF0,
asF is already contained in a nucleus inE(n + 1). The sphereSF is symplectic, being a
connected sum of symplectic spheres in each summand of (2.2). This proves (1).

The second nucleusNR contains, as regular fiber, the Lagrangian rim torusR. The
vanishing disks that kill the generators ofπ1(R) can be located inE(1) \ νF1 (using a
second disk section and a vanishing disk). The(−2)-sphereSR of the nucleus is obtained,
in the construction of (2.1), by gluing the annulusB (which has boundary identified with
−µ(K0) ∪ λ(K1)) embedded inS1

× (S3
\ νH) = F × A to two (−1)-vanishing disks in

E(n+1)\νF0 andE(1)\νF1. The annulusB is Lagrangian, as we can span at each point
its tangent space by a vectorv in kerα and a vectorw that satisfiesβ(w, ·) = 0, so that
the symplectic form onF ×A vanishes onB. Similarly, the vanishing disks in the elliptic
surfaces can be taken to be Lagrangian thimbles of a symplectic Lefschetz fibration (see
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[ADK, Section 4], and, for a general discussion, [D]): we start with a generic pencil of
cubics inP2, π : P2

\B → P1 (where the base locusB is composed of nine points) and we
endow it with a symplectic connection, given by the symplectic orthogonal complement
to the fiber. Then, given a pathγ (t) on P1 joining a critical valueπ(pc) = γ (0) to a
regular valueγ (1) (and otherwise disjoint from the set of critical values) we can define
a Lagrangian vanishing disk as the union of the vanishing cycles on the fibers lying over
the path, defined by the condition that symplectic parallel transportP sends them to the
critical point on the singular fiber, namely

pc ∪

⋃
t

Vt := pc ∪

⋃
t

{u ∈ π−1(γ (t))| lim
ε→0

Pγ |[ε,t ] u = pc}. (3.2)

When we symplectically blow upP2 along the base locus of the pencil to getE(1), we ob-
tain from the exceptional divisors nine symplectic sections, disjoint from the Lagrangian
disk. Further fiber summing, to get other elliptic surfaces, does not affect the vanishing
disk. When we recoverE(n + 2) through the fiber sum of (2.2), we choose the identifi-
cation map on the two boundary tori so as to identify the boundary of the annulusB with
the boundaries of the vanishing disks, obtaining this way the Lagrangian(−2)-sphereSR.
The essential Lagrangian submanifoldsR andSR can be made symplectic with a small
perturbation of the symplectic form, as in [FS4]. This yields (2).

For what concerns (3), note that the intersection ofA andB in S3
\ νH gets removed

in F ×A, due to the presence of the extraS1 factor. Moreover, thanks to the abundance of
singular fibers and sections, we can choose all the disks used in the previous construction
to be disjoint (see [GM]). As a result, the nucleiNF andNR are disjoint. Finally, the
torusT intersectsSF andSR only in the interior ofF ×A, and the intersection is a single
transverse point corresponding to the intersection ofK with the annuliA andB, as can
be seen from Figure 1. ut

Figure 3 schematizes the relation between the two nuclei and the torusT .

S

S

F

R

T

F

R

Fig. 3. Schematic representation of the relation between the two nuclei of fibersF andR and the
torusT .

The second group of spheres we are interested in is the configuration of symplecti-
cally embedded spheres0n. As discussed in [FS1] any elliptic surfaceE(n) contains a
configuration of 4n − 1 symplectic spheres as in the diagram of Figure 4.

The sphere of self-intersection−n is the section of the elliptic fibration, and the con-
figuration intersects the fiberF only in SF , with a single transverse intersection point.
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SF S1

SF SF −2

Sn−2

−2 −2

n−1 4n−1

Fig. 4.The firstn − 1 spheres give the configuration0n in the elliptic surfaceE(n + 2).

When we fiber sumE(2) to E(n) we have therefore (Lemma 2.1 of [FS4]), in the result-
ing E(n + 2), a configuration of 4n − 1 embedded symplectic spheres as in the diagram
of Figure 4 (where the sphereSF of self-intersection−(n + 2), obtained by gluing two
sections, is again a section of the elliptic fibration). In particular, if we keep track only
of the firstn − 1 spheres of the configuration, we deduce thatE(n + 2), for n ≥ 1, con-
tains the configuration0n, whose spheres will be denoted asSF , S1, . . . , Sn−2. Note that
in E(n + 2) = E(2) #F E(n), as the nucleus determined by the rim torusR is disjoint
from the section ofE(2), it is also disjoint from the configuration; moreover the torusT

(entirely contained inE(2) \ νF ) intersects the configuration in a single transverse point
on the first sphereSF .

4. Fintushel–Stern construction and connected representatives

For sake of clarity, we summarize some of the results discussed in the previous two sec-
tions. In the elliptic surfaceE(n + 2), for n ≥ 1, we can identify two disjoint sym-
plectically embedded surfaces. The first is the linear plumbing of then − 1 spheres
SF , S1, . . . , Sn−2 described in the diagram of Figure 4. The second is the nucleusNR.
The fiberF intersectsSF in a single positive point, orthogonal with respect to the sym-
plectic structure, while it does not intersect the other spheres of0n nor the nucleusNR.
The symplectic torusT , instead, intersects bothSF andSR in a single transverse point,
and is otherwise disjoint from the remaining spheres and tori considered above.

In the situation above (except for the torusT , which has no role in their construc-
tion) Fintushel and Stern have inductively defined a family of minimal symplectic simply
connected 4-manifolds whose canonical class admits a symplectic representative satisfy-
ing the condition of (1.1). We will sketch their construction and show how, by a suitable
modification, we can obtain a connected representative for the canonical class. (In what
follows we will reserve the symbol̂· to denote connected surfaces.)

First, for g ≥ 2, let Xg be the manifold obtained by symplectic rational blowdown
of the configuration0g in E(g + 2), i.e. replacingν0g with the rational homology ball
Bg ⊂ Fg−1 (see Section 3). The resulting manifold is simply connected and symplectic,
where the symplectic structure is obtained by grafting toE(g + 2) \ ν0g the symplectic
structure induced by the embedding ofBg in the Hirzebruch surfaceFg−1 endowed with
a suitable symplectic structure (see [Sy]). A symplectic representative of the canonical
classKXg (image ofKE(g+2) = g[F ] under the blowdown map) is then given by gluing
(F1q· · ·qFg)\ν0g (a collection ofg copies of the fiber with a hole) toS+∩Bg (a sphere
with g holes, asS+ and(S+ + f ) ∪ S− intersect ing points). The result of this surgery
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is therefore a connected, embedded, symplectic surface of genusg that we will denote by
6̂g, and which representsKXg .

There is a homology class we want to keep track of, and which represents the image,
under the blowdown, of the classg[F ] + [R]. The nucleusNR is disjoint from0g, so that
it survives the blowdown process; we index with anRX its image. (A more correct, but
notationally heavier, index would beRXg .) The image of the classg[F ] + [R] is therefore

well defined and is given by [̂6g] + [RX] = KXg + [RX]. The disjoint union6̂g q RX

is a symplectic representative, with two connected components of genusg and 1, but
(as [T ] = [F ] + [R]) we can represent it as well by the connected, symplectic, genusg

surface6̂RX
g obtained by gluing, much as above,(F1q· · ·qFg−1qT )\ν0g (a collection

of g disjoint tori with a hole) toS+ ∩ Bg. The surface6̂RX
g intersects the(−2)-sphere

SRX
in a single positive transverse point, which is the image of the intersection point of

T andSRX
under the blowdown.

Summing up, we have a symplectic manifoldXg which has a canonical classKXg

represented bŷ6g, a connected symplectic surface of genusg. This manifold contains
an embedded symplectic nucleusNRX

(with fiber RX) disjoint from 6̂g; moreover the
classKXg + [RX] can be represented by the disjoint union6̂g q RX or by a connected

symplectic surfacê6RX
g of genusg.

The manifoldXg is the initial step in the inductive construction of the family of mani-
folds of [FS4], and now we will proceed to the inductive step. In practical terms, we need
to go over the proof of Lemma 2.2 of [FS4] and ensure that there is room to use, at each
inductive step, a torus of the typeT to “sew” the components of the disconnected rep-
resentative identified by Fintushel and Stern. The argument is quite straightforward but
rather long to present.

Lemma 3. Let {gi : i = 1, . . . , m} be a collection of integers≥ 2. LetX be a symplectic
simply connected4-manifold satisfying the following conditions:

(1) The canonical classKX of X can be represented by the union6g1,...,gm of m disjoint
connected symplectic surfaces of genusg1, . . . , gm or by a connected symplectic sur-
face6̂g1,...,gm of genus

∑m
i=1 gi − m + 1.

(2) X contains a symplectic nucleusNRX
with fiber RX and sectionSRX

disjoint from
both6g1,...,gm and 6̂g1,...,gm . The classKX + [RX] can be represented by the union
of m + 1 disjoint connected symplectic surfaces6g1,...,gm q RX or by a connected

symplectic surfacê6RX
g1,...,gm

of genus
∑m

i=1 gi − m + 1 intersecting the(−2)-sphere
SRX

in a single positive transverse point.

Then for anyg ≥ 2, there is a symplectic simply connected manifoldY satisfying the
following conditions:

(1) The canonical classKY of Y can be represented by the union6g1,...,gm,g of m + 1
disjoint connected symplectic surface of genusg1, . . . , gm, g or by a connected sym-
plectic surface6̂g1,...,gm,g of genus

∑m
i=1 gi + g − m.

(2) Y contains a symplectic nucleusNRY
with fiber RY and sectionSRY

disjoint from
both6g1,...,gm,g and6̂g1,...,gm,g. The classKY +[RY ] can be represented by the union



798 Stefano Vidussi

of m + 2 disjoint connected symplectic surfaces6g1,...,gm,g q RY or by a connected

symplectic surfacê6RY
g1,...,gm,g of genus

∑m
i=1 gi +g−m intersecting the(−2)-sphere

SRY
in a single positive transverse point.

Proof. Following [FS4], we observe that along the symplectic torusRX ⊂ X we can
define the symplectic fiber sum

X #RX=F E(g) (4.1)

whereF is the standard fiber inE(g). The resulting manifold is simply connected and
symplectic, with canonical classKX#RX=F E(g) = KX + KE(g) + 2[F ] = KX + g[F ].
We have two symplectic representatives for that class. The first is the disjoint union
6g1,...,gm q F1 q · · · q Fg, where theFj ’s are parallel copies ofF ; this surface hasm + g

connected components. For the second one, observing that the sum of (4.1) identifiesRX

andF , we can choose the disjoint union̂6RX
g1,...,gm

q F2 q · · · q Fg; this surface hasg
components. Figure 5 schematizes the situation forX #RX=F E(4).

F
FF

2

X FR

m2
g ,g ,...,g

1

RX 1=F
S #S

4
3

RX

1
g ,g ,...,g

2 m

Fig. 5. Schematic presentation of the components of the two representatives ofKX + g[F ] (for

g = 4); the first one is6g1,...,gm q
∐4

i=1 Fi and the second one iŝ6RX
g1,...,gm

q
∐4

i=2 Fi .

As g ≥ 2, the elliptic surfaceE(g) of fiber F contains a rim torusR and a torusT
satisfying the conditions of Proposition 1. The homology classKX#RX=F E(g) + [R] =

KX + g[F ] + [R] is well defined and can be symplectically represented by the disjoint
union 6g1,...,gm q F1 q · · · q Fg q R, with m + g + 1 components, as well as by the

disjoint union6̂
RX
g1,...,gm

q F2 q · · · q Fg−1 q T , with g components. As in homology we
have [T ] = [F ] + [R], these two surfaces are homologous.

Next, we observe that the manifoldX #RX=F E(g) ⊃ NRX
#RX=F E(g) contains a

symplectically embedded configuration0g, inherited from a configuration inE(g), that
intersectsF in a single point (its−(g + 2)-sphere is the connected sum ofSRX

andSF ).
This configuration is disjoint from6g1,...,gm (as the(−2)-sphereSRX

is disjoint from
it) and from the symplectic nucleus with fiberR. Instead it does intersect the surface
6̂

RX
g1,...,gm

in a single positive transverse point in the−(g + 2)-sphere. We blow down the
configuration0g. Denote byY the resulting simply connected, symplectic manifold. We
point out that the nucleusNR survives the blowdown.
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The canonical class ofY is given by the image ofKX#RX=F E(g) under the blowdown,
and we will use the previous constructions to exhibit two symplectic representatives, one
havingm+1 connected components of genusg1, . . . , gm, g, the other one connected and
of genus

∑m
i=1 gi + g − m.

First the disconnected representative6g1,...,gm,g (presented in [FS4]) is obtained by
the disjoint union of6g1,...,gm (unaffected by the blowdown) and a genusg connected
surface6̂g obtained, as in the initial step of our construction, by gluing theg tori with
hole,(F1 q · · · q Fg) \ ν0g, to the sphere withg holes,S+ ∩ Bg. The connected repre-

sentative6̂g1,...,gm,g, instead, is obtained by gluing toS+ ∩ Bg the surface(6̂RX
g1,...,gm

q

F2 q · · · q Fg) \ ν0g. The resulting surface is clearly homologous to the previous one,

and is connected, as bothF and 6̂
RX
g1,...,gm

intersect, in a positive transverse point, the
−(g + 2)-sphere of0g. The genus of this surface is then easily computed. In reference to
the scheme of Figure 5, the two representatives above are obtained by blowing down0g,
of which SRX

#SF is the first sphere, and connecting the surfaces hit by that sphere. This
completes the proof of (1).

Next, we observe that the manifoldY contains a symplectic nucleus, inherited from
the one ofE(g), whose image we index byRY . This nucleus is disjoint, by construction,
from both6g1,...,gm,g and6̂g1,...,gm,g. To finish our argument, we must proceed to identify
a disconnected and a connected symplectic representative of the classKY +[RY ], as stated
in (2). For what concerns the disconnected representative, this is simply provided by the
disjoint union of the disconnected symplectic surface6g1,...,gm,g and a copy ofRY . In
order to obtain the connected representative, we consider, inX #RX=F E(g), the surface
6̂

RX
g1,...,gm

q F2 q · · · q Fg−1 q T , with g components. By blowing down, aŝ6RX
g1,...,gm

, Fi

andT intersect the configuration0g only in one point (on the sphereSRX
#SF ), the class

KY + [RY ] has a symplectic connected representative6̂
RY
g1,...,gm,g obtained by gluing,

much as above, the genus
∑m

i=1 gi −m+1 surface6̂RX
g1,...,gm

with one hole, and theg −1
tori with hole,F2 q · · · q Fg−1 q T , to the sphere withg holes,S+ ∩ Bg. A check, using
the genus formula for connected sum, or the adjunction formula, shows that the genus of
the surface is the one stated. This surface intersectsSRY

in a single positive transverse
point, which is the image of the intersection point ofT andSR under the blowdown. ut

Lemma 3 provides the inductive step required, and completes the construction of a sym-
plectic connected surface, homologous to the disconnected symplectic representative of
(1.1).
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