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Abstract. We show that there exists a family of simply connected, symplectic 4-manifolds such
that the (Poincar dual of the) canonical class admits both connected and disconnected symplectic
representatives. This answers a question raised by Fintushel and Stern.
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1. Introduction and statement of the result

An important result of 4-dimensional symplectic topology, proven first by Taubés in [T]
using the relation between Seiberg—Witten and Gromov invariants and then (under minor
assumptions) by Donaldson and Smith(in [DS] via Lefschetz fibration techniques, is the
existence of a symplectic representative of the (Poindaial of the) canonical class of
a symplectic 4-manifold witlh, > 1. These proofs, in general, do not provide a suffi-
ciently explicit construction of such a representative, nor make any statement concerning
uniqueness, number of components, or their genus. It is therefore a non-obvious task,
given a symplectic 4-manifold, to provide explicitly such a representative.

An interesting case of this problem is described in [FS4]; Fintushel and Stern show
that, for any choice of positive integef&;, m;) : i = 1,...,n}, there exists a (mini-
mal) simply connected symplectic manifaldwhose canonical clagéyx € H>(X, Z) is
represented by an embedded symplectic surtaeeth ;" ; m; connected components:

n m;
=][L]=e.j € kx. (1.1)
i=1j=1
whereX,, ; is a connected surface of gergisThese manifolds are obtained through nat-
ural symplectic operations, i.e. symplectic fiber sum and symplectic rational blowdown,
on simply connected elliptic surfaces without multiple fib€rg). The representative
of (I.3) is, in some sense, the natural result of such operations when we start with the
algebraic representative of the canonical class of the elliptic surface, namely the disjoint
union of s — 2 copies of the fiber.
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Led by this construction, Fintushel and Stern ask whether, for a symplectic manifold
whose canonical class admits a symplectic representative fasjin (1.1), the set of integers
{(gi,m;) :i =1,...,n}is asymplectic invariant. This question is carefully asked under
the hypothesis of aly; > 2; without this constraint, plenty of counterexamples can be
found in [ES3], [$],[V], where itis shown (with different constructions) that the canonical
class ofE (s), fors > 4, can be symplectically represented by a connected (hon-algebraic)
torus.

In this paper, we will provide an answer, in the negative, to the aforementioned ques-
tion, by showing that it is possible to exhibit a connected symplectic representative for
K x for the family of manifolds constructed ih [FS4]. With obvious modifications, sym-
plectic representatives with any number of components between } dngm; can be
obtained.

Roughly speaking, the idea behind our construction consists in “sewing together”
some (or all) the components of the symplectic representatiye ¢f (1.1), while keeping the
resulting representative symplectic. For the manifafdsonsidered in this paper such
an internal surgery is explicitly exhibited, and similar cases can be treated analogously.
However, it is conceivable that a similar process exists in general, whenever a discon-
nected representative is available: we are not aware, at this point, of obstructions to the
existence of a connected symplectic representative of the canonical class.

We want to point out that, without contradiction, the result we obtain does not exclude
the use of a numerical symplectic invariant related to the number of components of sym-
plectic representatives of the canonical class (the set of intégere:;) :i =1, ..., n}
for amaximal numbeof component$_}_, m; could be such an example); it just stresses
the need of accounting for the various representatives. In particular it is possible that the
set of integerg(g;, m;),i = 1,...,n} determined in[[ES4] is a symplectic invariant of
the family of manifolds defined therein.

Organization of the paperSections 2 and 3 provide some preliminary material that will

be of use in Section 4 for our main construction. More precisely, in Section 2 we discuss
a presentation of the elliptic surfac€sn), n > 2, as symplectic link surgery manifolds,

as the first step in identifying some natural submanifolds. In Section 3 we exhibit various
symplectic spheres and tori ifi(rz) that will be the building blocks of our construction.
Section 4 contains an inductive presentation of the manikgldeviewing some of the
steps of [[ES4], which leads to the construction of the disconnected and connected sym-
plectic representatives &f .

2. Elliptic surfaces as link surgery manifolds

The construction of the manifold in [ES4] starts by symplectic summing of elliptic
surfaces along the fibdt (obviously a symplectic submanifold) and along a second sym-
plectic torusR (arim torus) that arises, in the surfagdn + 2) = E(n + D#r,=r, E(1)

(n > 0), by identifying two tori, in the exterior of the fibefs, that become essential after
the sum. In order to study this construction, we will present an elliptic suffdget 2)

as a link surgery manifold (see [ES2] for the definition) obtained from the Hopf link. This
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presentation will help us identify some symplectic submanifolds (spheres and tori) in the
elliptic surfaceE (n + 2), for n > 0, that we will use in our construction.

Consider the Hopf linkH = Ko U K3 and, for future reference, denote Iy the
simple closed curve, i§® \ vH, which links onceKo andK; as in Figur{]l.

Ky

-
K
Fig. 1. The simple closed curv& and the Hopf linkH ; the spanning surface &g is dashed.

A more suggestive presentation of the resulting three-componentilliakk appears
by considering it as the closure, with the axis originatifg of the braid of Figurg]2.

XX

Ky Ko

K

A

Fig. 2. The closure of the braid gived U K.

The exterior of the links3 \ vH contains two annulid and B that are fibers of two
distinct fibrations having homology class (i (S3 \ vH, Z) = Z?) equal to(1, 0) and
(0, 1) respectively. Such annuli have boundaiKo) U —u (K1) and —u(Ko) U A(K1)
respectively. It is useful, for future reference, to thinkkfas the annulus swept by an
arc in the fiberA of the corresponding fibration. In what follows, we will consider all
the knots endowed with the framing defined by their spanning disk. Moreover, whenever
we will make reference to meridians and longitudes, we will implicitly assume a specific
choice of these curves is made.

Now observe that any elliptic surfad&(n + 2) can be presented as the link surgery
manifold obtained by gluing the manifold (with two boundary componesits)(S3\v H)
to the exterior of the elliptic fiber of (1) and E(n + 1): in fact ST x (S3\ vH) =
T2 x (82 \ v{po, p1}) = T? x A, whereA is the annulus defined above (removing an
open neighborhood of the Hopf link fro? gives a circle times the annulus with the
circle identified to the meridian ). The usual fiber sum definition of elliptic surfaces
can therefore be interpreted as follows:

En+2) =(E(n+1)\vFo) US* x (S3\ vH) U(E(1) \ vF1) (2.1)
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where the first gluing map identifies, in the boundary 3-tép,with ST x u(Kg) and
(remembering that we reverse orientations) the meridiafpofith —1(Kp), while the
second gluing map identified; with S x A(K1) and the meridian of; with 1 (K1).
After gluing, the fibersFp and F; get identified. Note moreover that the smooth structure
of the resulting manifold is unaffected by the choice of the diffeomorphism between the
fibers of the elliptic surfaces angt x 1(Ko) and ST x A(K1); we will later choose a
particular identification.

We need to keep track of the two tori 6f(n + 2) that are images of* x w(Kp) and
S1x A (Ko) respectively. The first one, identified with the fitileof the elliptic fibration of
E(n+ 2), is clearly essential, but also the second one, which we denake isyessential
in E(n + 2) (see e.gl[GS]). Due to its origin, we will call it thiem torus

To analyze the symplectic submanifolds, we consider how the construction above
leads to presert (n + 2) as a symplectic fiber sum: Perform Dehn surgery albing $°
with coefficient 0 alongko and coefficiento along K1 to getSt x $2. Denote byCq
and C; the cores of the solid tori: these are, up to isotopy, standard circles of the form
ST x {pi} in the resultings® x $2. The manifolds* x (S x $?) has a natural symplectic
structure (of the formalr A « + €f, wherea represents the fibration 6t x $2 andg is
a volume form on the sphere). The t6fi x C; are symplectic, framed, self-intersection
zero tori and, after scaling the symplectic forms on each summand if necessary, we can
write

En+2) =Emn+ 1) #p_s,c, St x (81 x $?) #aa, e, p E(D). (2.2)

The symplectic form, away from the gluing locus, restricts to the symplectic forms of the
summands.

Note that the presentation ¢f (.2) can be interpreted, from a certain viewpoint, as a
glorified form of Weinstein’s Tubular Neighborhood Theorem, in the sense that it provides
information on the restriction of the symplectic form®fn +2) to the submanifold” x A
which separateg (n+1)\vF andE (1)\v F; application of Weinstein’'s Theorem to a fiber
of E(1), and then fiber sum witl' (n + 1), tells us thatF" x A, up to symplectomorphism,
has product symplectic structure (where on the anndluge take the restriction of the
symplectic form on the sphere). This is the same as the symplectic structure arising on
the image ofs? x (S x §2\ v(Co LI C1)) = F x A in the fiber sum of( 2]2).

3. Some symplectic spheres and tori i€ (n + 2)

In this section we will exploit the presentation of the elliptic surfae + 2) of Sectiorj 2
to identify some symplectically embedded spheres and tori that will be the building blocks
for our (and Fintushel-Stern’s) construction.
We start with the tori. Three symplectic, framed, self-intersection zero tori arise from
the presentations of (2.1) ar{d (2.2). The first is the fibeiThe second oneg, is one
of the two “marked” rim tori that become nontrivial in the fiber summf: + 1) and
E(1) (see Section 3.1 of [GS]), the other one being identified with the image Kf) x
A(K1). This essential torus is naturally Lagrangian and becomes symplectic by a small
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perturbation of the symplectic structure, as discussedlin [G]. The third one is the image
of §1 x K. Their properties are summarized in the following proposition.

Proposition 1. Consider the inclusion map
St x (S3\vH) < E(n +2).

The following holds:

(1) The imageF of the torusS? x u(Kp) under the inclusion above is a symplectic,
framed, connected submanifold ®t» + 2).

(2) Theimager of the torusS! x A(Ko) is a Lagrangian, framed, connected submanifold
of E(n + 2).

(3) The imager of the torusS! x K is a symplectic, framed, connected submanifold of
E(n + 2) satisfying[T] = [F] + [R] € H2(E(n + 2)).

Moreover, the three tori above can be assumed to be disjoint.

Proof. The first part of the statement clearly holds true. The nonobvious part is to prove
that R andT are respectively Lagrangian and symplectic with respect to the symplectic
structure onE(n + 2) induced by the symplectic fiber sum ¢f (2.2). Up to isotopy, we
can assume that(Ko) lies on a spanning disk oo (see Figur¢]l); it is therefore con-
tained in a fiber of the fibration o$* x $2 obtained by capping off the disk fibration

of $3\ vKo induced by the spanning disks. As a consequence, the symplectic structure
on St x (ST x §?) restricts trivially toS? x A(Ko) (its tangent space is spanneddpr

and a vector tangent to the sphere) so that the tBr(feomologically nontrivial) is a La-
grangian submanifold of (n + 2). This proves (2) above. For what concerns (3) we note
that, up to isotopyK is transversal to the fibration 6t x $2 (see Figur{]Z), so that the
symplectic form onst x (S x $2) never vanishes on the torgd x K. As this torus

is symplectic in one summand, it will be symplectic in the fiber sunj of| (2.2). For what
concerns the homology class, observe that, in the homology oi H,

[K] = k(K ,Ko)[t(Ko)] + Ik(K,K1)[1£(K1)]
= [u(Ko)] + [u(K1)] € Hi(S3\ vH). (3.1)

The meridiant (K1) is homologous (actually, isotopic) 14K o), so the relation follows at
this point from the identification o™ x 1. (Kg) andS™ x A(Ko) with F andR respectively.
The fact that these tori are disjoint follows directly from the construction. O

The output of the previous proposition, namely that the (primitive) cl&$sH[ R] can be
represented by two symplectic submanifolds, one given by the disjoint uhidrR and
the second by, will be, in fact, the main tool for our construction. Note that the cukve
can be interpreted as the resultotle summingf the meridian«(Ko) and the longitude
A(Kp). The resulting operation on the tariand R, which produces the symplectic torus
T from the symplectic torug and the Lagrangian torug, represents at local level the
“sewing” referred to in the Introduction.
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Having dealt with tori, we will now consider spheres. Specifically, we are interested
in two groups of spheres. The first group is the “sections” of elliptic nuclei, where an
elliptic nucleusis the regular neighborhood of the union of a cusp fiber and a section of
an elliptic fibration. The second group of spheres is those contained in a configuration that
we can use forational blowdown Remember that this surgery consists in replacing, in a
4-manifold, a regular neighborhood of a configuratignof » — 1 spheres as in Figufé 4,
the first with self-intersectior-(n + 2) and the remaining of self-intersecties2, with
a certain rational homology baB,. This rational homology ball naturally embeds in
the Hirzebruch surfack,_1, as the exterior of the configuration of sphe(ds + f)

U S_, whereS, (resp.S_) is the positive (negative) section aridhe fiber of the sphere
fibration of F,_1; seel[ESL] for the details of this construction.

We will start with the first group. It is well known that an elliptic surfaEén + 2)
contains several disjoint elliptic nuclei (seée [GS] for example). We will be interested in
two of them. We have the following proposition:

Proposition 2. Let E(n + 2), n > 0, be an elliptic surface, with the symplectic structure
inherited from the construction of Sectj@nThe following holds true:

(1) E(n + 2) contains an elliptic nucleus/r, with symplectic fibe# and symplectic
sphereSy of self-intersection-(n + 2), given by a section of the elliptic fibration.

(2) E(n + 2) contains an elliptic nucleu#’g, with Lagrangian fiberR and Lagrangian
sphereSy of self-intersection-2; with a small perturbation of the symplectic struc-
ture of E(n + 2) we can make® and Sg symplectic.

(3) The nucleiNg and Ny are disjoint, and the torug” intersects their spheres in a
single, transverse point.

Proof. The first nucleusVr arises, in the picture of (3.2), as a regular neighborhood of
a cusp fiber of the elliptic fibration and its(n + 2)-sphere sectio§r; the symplectic
fiber of this nucleus ig, and the sectior arises by gluing together a disk section of
E(m+ 1)\ vF witha—(n+1) twistrel 9 in its normal bundle (for sake of brevity we will
call these disks, with the usual abuse of language, + 1)-disks), a(—1)-disk section

of E(1) \ vF and (for a suitable choice of the embeddingsinx (S3\ vH) = F x A)

the annulusA c $3\ vH (which has boundary identified with(Ko) U —u(K1)). The

two vanishing disks that kill the generators:of(F) can be located ik (n + 1) \ v Fo,

asF is already contained in a nucleusii(n + 1). The spherer is symplectic, being a
connected sum of symplectic spheres in each summand pf (2.2). This proves (1).

The second nucleu§y contains, as regular fiber, the Lagrangian rim toRusThe
vanishing disks that kill the generatorsof(R) can be located irE (1) \ vF; (using a
second disk section and a vanishing disk). Th&)-sphereSy of the nucleus is obtained,
in the construction of (2]1), by gluing the annulBgwhich has boundary identified with
—u(Ko) UA(K1)) embedded i x (S3\ vH) = F x A to two (—1)-vanishing disks in
Em+1)\vFyandE(1)\vFi. The annulusB is Lagrangian, as we can span at each point
its tangent space by a vectoiin kero and a vectomw that satisfieg(w, -) = 0, so that
the symplectic form orF x A vanishes orB. Similarly, the vanishing disks in the elliptic
surfaces can be taken to be Lagrangian thimbles of a symplectic Lefschetz fibration (see
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[ADK] Section 4], and, for a general discussian] [D]): we start with a generic pencil of
cubics inP?, 7 : P2\ B — P! (where the base locuis composed of nine points) and we
endow it with a symplectic connection, given by the symplectic orthogonal complement
to the fiber. Then, given a path() on P! joining a critical valuer(p.) = y(0) to a
regular valuey (1) (and otherwise disjoint from the set of critical values) we can define
a Lagrangian vanishing disk as the union of the vanishing cycles on the fibers lying over
the path, defined by the condition that symplectic parallel transpaends them to the
critical point on the singular fiber, namely

peUJVii=pe Ut € 71 )1 im Py g = pel. (3.2)
t t

When we symplectically blow up? along the base locus of the pencil to g&tl), we ob-
tain from the exceptional divisors nine symplectic sections, disjoint from the Lagrangian
disk. Further fiber summing, to get other elliptic surfaces, does not affect the vanishing
disk. When we recovek (n + 2) through the fiber sum of (2.2), we choose the identifi-
cation map on the two boundary tori so as to identify the boundary of the anBuith
the boundaries of the vanishing disks, obtaining this way the LagraKgiansphereSy.
The essential Lagrangian submanifol@isand Sz can be made symplectic with a small
perturbation of the symplectic form, as in [ES4]. This yields (2).

For what concerns (3), note that the intersectiod @nd B in $°\ vH gets removed
in F x A, due to the presence of the exsrafactor. Moreover, thanks to the abundance of
singular fibers and sections, we can choose all the disks used in the previous construction
to be disjoint (see_[GM]). As a result, the nucl¥ir and Ng are disjoint. Finally, the
torusT intersectsSr andSg only in the interior of F x A, and the intersection is a single
transverse point corresponding to the intersectiok afith the annuliA and B, as can
be seen from Figuig 1. o

Figurg 3 schematizes the relation between the two nuclei and theTtorus

T K
R

3

[~

Fig. 3. Schematic representation of the relation between the two nuclei of ffbarsl R and the
torusT.

The second group of spheres we are interested in is the configuration of symplecti-
cally embedded spheréy,. As discussed i [FS1] any elliptic surfaégn) contains a
configuration of 4 — 1 symplectic spheres as in the diagram of Figure 4.

The sphere of self-intersectiem is the section of the elliptic fibration, and the con-
figuration intersects the fibar only in S, with a single transverse intersection point.
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$ 3 S-
._._ ...... _._ _.

n-1 4n-1

Fig. 4. The firstn — 1 spheres give the configuratidy in the elliptic surfaceE (n + 2).

When we fiber sunk (2) to E (n) we have therefore (Lemma 2.1 0f [ES4]), in the result-
ing E(n + 2), a configuration of 4 — 1 embedded symplectic spheres as in the diagram
of Figure[4 (where the sphet®- of self-intersection-(n + 2), obtained by gluing two
sections, is again a section of the elliptic fibration). In particular, if we keep track only
of the firstn — 1 spheres of the configuration, we deduce thét + 2), forn > 1, con-
tains the configuratioi,,, whose spheres will be denoted$s Si, ..., S,—2. Note that

in E(n + 2) = E(2) #r E(n), as the nucleus determined by the rim toriss disjoint
from the section of£ (2), it is also disjoint from the configuration; moreover the tofus
(entirely contained irE (2) \ vF) intersects the configuration in a single transverse point
on the first spherér.

4. Fintushel-Stern construction and connected representatives

For sake of clarity, we summarize some of the results discussed in the previous two sec-
tions. In the elliptic surface&E(n + 2), for n > 1, we can identify two disjoint sym-
plectically embedded surfaces. The first is the linear plumbing ofuithe 1 spheres

SF. 81, ..., Sy—2 described in the diagram of Figurg 4. The second is the nudlgus

The fiber F intersectsSy in a single positive point, orthogonal with respect to the sym-
plectic structure, while it does not intersect the other spher& ofor the nucleugvg.

The symplectic torug’, instead, intersects botfy and Sy in a single transverse point,

and is otherwise disjoint from the remaining spheres and tori considered above.

In the situation above (except for the torfis which has no role in their construc-
tion) Fintushel and Stern have inductively defined a family of minimal symplectic simply
connected 4-manifolds whose canonical class admits a symplectic representative satisfy-
ing the condition of[(T]1). We will sketch their construction and show how, by a suitable
modification, we can obtain a connected representative for the canonical class. (In what
follows we will reserve the symbdl to denote connected surfaces.)

First, forg > 2, let X, be the manifold obtained by symplectic rational blowdown
of the configuratior, in E(g + 2), i.e. replacingvT", with the rational homology ball
B, C F¢_1 (see Sectiofi]3). The resulting manifold is simply connected and symplectic,
where the symplectic structure is obtained by graftingtg + 2) \ vI", the symplectic
structure induced by the embeddingR¥f in the Hirzebruch surfacg,_; endowed with
a suitable symplectic structure (se€e|[Sy]). A symplectic representative of the canonical
classKx, (image ofKg(;+2) = g[F] under the blowdown map) is then given by gluing
(FLLI- - -1 Fg)\vI', (a collection ofg copies of the fiber with a hole) th, N B, (a sphere
with g holes, asS; and (S + f) U S_ intersect ing points). The result of this surgery
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is therefore a connected, embedded, symplectic surface of geghaswe will denote by
3¢, and which representsy, .

There is a homology class we want to keep track of, and which represents the image,
under the blowdown, of the clag§F] + [R]. The nucleusVr is disjoint fromI’,, so that
it survives the blowdown process; we index with &g its image. (A more correct, but
notationally heavier, index would bRy, .) The image of the clasg 7] +[R] is therefore
well defined and is given byﬁ[g] + [Rx] = Kx, + [Rx]. The disjoint unionig I Ry
is a symplectic representative, with two connected components of geand 1, but
(as ['] = [F] + [R]) we can represent it as well by the connected, symplectic, ggnus
surfaceﬁgx obtained by gluing, much as abové&y LI- - - LI F,_111T)\vT, (a collection

of g disjoint tori with a hole) toS; N B,. The surfaceﬁ:g" intersects th&—2)-sphere
Sry in a single positive transverse point, which is the image of the intersection point of
T andSg, under the blowdown.

Summing up, we have a symplectic manifdfd which has a canonical clagsy,

represented b)‘ig, a connected symplectic surface of gegudhis manifold contains
an embedded symplectic nucle¥s, (with fiber Rx) disjoint from ﬁg; moreover the
classKx, + [Rx] can be represented by the disjoint uniﬁg LI Ry or by a connected

symplectic surfacéiéfx of genusg.

The manifoldX, is the initial step in the inductive construction of the family of mani-
folds of [ES4], and now we will proceed to the inductive step. In practical terms, we need
to go over the proof of Lemma 2.2 of [FS4] and ensure that there is room to use, at each
inductive step, a torus of the tyfeto “sew” the components of the disconnected rep-
resentative identified by Fintushel and Stern. The argument is quite straightforward but
rather long to present.

Lemma 3. Let{g; :i = 1, ..., m} be acollection of integers 2. LetX be a symplectic
simply connected-manifold satisfying the following conditions:

(1) The canonical clasK x of X can be represented by the uni®@, . ., ofm disjoint
connected symplectic surfaces of gepils . ., g or by a connected symplectic sur-
gn OfgeNUSy it gi —m + 1.

.....
.....

.....

Sry in a single positive transverse point.

Then for anyg > 2, there is a symplectic simply connected manifBldatisfying the
following conditions:

(1) The canonical clasky of Y can be represented by the uni@, g, 0fm+1
disjoint connected symplectic surface of gepus . ., g., g or by a connected sym-

,,,,,

(2) Y contains a symplectic nucleugg, with fiber Ry and sectionSg, disjoint from
emg@NdSg o .. The clasky +[Ry] can be represented by the union

.....
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.....

,,,,,

Sgry in a single positive transverse point.

Proof. Following [ES4], we observe that along the symplectic toRys C X we can
define the symplectic fiber sum

X#Rx=F E(g) (41)

whereF is the standard fiber i (g). The resulting manifold is simply connected and
symplectic, with canonical clasSx#, _r£) = Kx + Kk + 2[F] = Kx + g[F].

We have two symplectic representatives for that class. The first is the disjoint union
Ye1,..em W F1 10 - - 11 F,, where theF;'s are parallel copies af; this surface has: + g
connected components. For the second one, observing that the of (4.1) idBntifies

.....

F
. o
X
9,949,
29,9,-8,

,,,,,

As g > 2, the elliptic surfaceE(g) of fiber F contains a rim torug and a torusl’
satisfying the conditions of Propositiph 1. The homology cIKs@RX:FE(g) + [R] =
Kx + g[F] + [R] is well defined and can be symplectically represented by the disjoint
unionXg, . e, I F1 11 ---1I F, II R, with m + g 4+ 1 components, as well as by the

disjoint unionﬁg’f”_,gm O FI--- 1 F,_1 IIT, with g components. As in homology we
have [I'] = [F] + [R], these two surfaces are homologous.

Next, we observe that the manifold #z,—r E(g) D Ng, #ry=r E(g) contains a
symplectically embedded configuratidy, inherited from a configuration i& (g), that
intersectsF in a single point (its-(g + 2)-sphere is the connected sum$%, andSr).
This configuration is disjoint fronk,, .. (as the(—2)-sphereSg, is disjoint from
it) and from the symplectic nucleus with fib&. Instead it does intersect the surface
f:fl’f___,gm in a single positive transverse point in thég + 2)-sphere. We blow down the
configurationl’,. Denote byY the resulting simply connected, symplectic manifold. We
point out that the nucleu§z survives the blowdown.
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The canonical class df is given by the image oK x#, _.£(,) under the blowdown,
and we will use the previous constructions to exhibit two symplectic representatives, one
havingm + 1 connected components of gerys. . ., g, &, the other one connected and
of genusy_;" ; gi + g — m.

First the disconnected representatig, ... . (presented in [FS4]) is obtained by
the disjoint union of%,, . .. (unaffected by the blowdown) and a gengigonnected
surfaceig obtained, as in the initial step of our construction, by gluing gheri with
hole,(F1 11 - - - II Fy) \ vIg, to the sphere witly holes,S N B,. The connected repre-
sentativeﬁgl,___ygm’g, instead, is obtained by gluing % N B, the surface(ﬁfff...,gm A
Fo10--- 1 F,) \ vI'g. The resulting surface is clearly homologous to the previous one,
—(g + 2)-sphere of",. The genus of this surface is then easily computed. In reference to
the scheme of Figufg 5, the two representatives above are obtained by blowing down
of which Sk, #SF is the first sphere, and connecting the surfaces hit by that sphere. This
completes the proof of (1).

Next, we observe that the manifold contains a symplectic nucleus, inherited from
the one ofE (g), whose image we index bRy . This nucleus is disjoint, by construction,
frombothS,, .. . andSe, . .. Tofinish our argument, we must proceed to identify
a disconnected and a connected symplectic representative of th& glag®y], as stated
in (2). For what concerns the disconnected representative, this is simply provided by the
disjoint union of the disconnected symplectic surfatg ., . and a copy ofRy. In
order to obtain the connected representative, we consid&r#ig,—r E(g), the surface
f:fl’f_._,gm HFO---UF,_ 1T, with g components. By blowing down, zi%’?f_,_,gm, F;
andT intersect the configuratioRi, only in one point (on the sphetg, #5r), the class
Ky + [Ry] has a symplectic connected representai/fy em.¢ Obtained by gluing,
much as above, the genps” ; gi —m +1 surfaceigl{_,gm with one hole, and the — 1
tori with hole, F> 11 - - - 11 F,_; L1 T, to the sphere witly holes,S N B,. A check, using
the genus formula for connected sum, or the adjunction formula, shows that the genus of
the surface is the one stated. This surface intersggtdn a single positive transverse
point, which is the image of the intersection pointTohnd Sk under the blowdown. O

Lemmg 3B provides the inductive step required, and completes the construction of a sym-
plectic connected surface, homologous to the disconnected symplectic representative of
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