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Abstract. We define a measure of “complexity” of a braid which is natural with respect to both an
algebraic and a geometric point of view. Algebraically, we modify the standard notion of the length
of a braid by introducing generators;;, which are Garside-like half-twists involving strings
throughj, and by counting powered generatm% as log|k| + 1) instead of simplyk|. The geo-
metrical complexity is some natural measure of the amount of distortion of tinees punctured

disk caused by a homeomorphism. Our main result is that the two notions of complexity are com-
parable. This gives rise to a new combinatorial model for the Teitlemspace of am + 1 times
punctured sphere. We also show how to recover a braid from its curve diagram in polynomial time.
The key ble in the proofs is played by a technique introduced by Agol, Hass, and Thurston.
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Introduction

Then-string braid groupB, can be defined in many different ways; we shall mainly be
interested in the following two:

Firstly, it has a finite presentation with generating set consisting of Artin’s half-twists
01, ...,0,—1. (The relations are;o; = ojo; for pairs(i, j) such thafi — j| > 1, and
0;0j0; = 0j0;0j forli — j|=1.)

Secondly, let us denote bl, a closed disk in the complex plane, centred at the
origin, with n punctures lined up on the real line. Then we identify the braid gup
with the mapping class group @i, in the standard way [4, 10]. The idea of interpreting
braids as isotopy classes of boundary-fixing homeomorphisms eftemes punctured
disk D, is as old as the braid groups themselves. Indeed, Artln [1, 2], who introduced the
braid groups, solved the word problem#y by showing that a braig € B, is uniquely
characterized by the images of generators of the fundamental groly ohder the
homeomorphism associated wigh

The aim of this paper is to clarify some aspects of the relation between these two
points of view on the braid group. Specifically, we show that there is a notiooraplex-
ity of a braid which is natural in both frameworks, and which has an added advantage of
allowing algorithmically efficient transitions between the two perspectives.

The algebraic point of view is the following: as a generating set, we use the set of
all half-twists A;; (1 < i < j < n) involving strands number through j. Now, the
A-length—our new algebraic notion of complexity—of a braid is simply the shortest
possible length of any word representing the braid, but with one modification: a power
Af?j (k € z) shall not count as having-length |k|, as would be usual, but as having
A-length log (|| 4+ 1).

The geometric measure of the “complexity” of a braid is as follows.A &k a set of
properly embedded disjoint simple arcs on the diskseparating all the punctures (we
shall be using the set shown in Hig. 1, but other diagrams would work just as well). Then a
curve diagranof a braidg is the images - E of E under the homeomorphisf A simple
measure for the complexity of a braid would be the number of intersectiofis Bfwith
the real line (minimized over the isotopy classBofE). However, since in a random braid
word this quantity tends to grow exponentially with the length, it is actually more natural
not use this quantity itself, but rather its logarithm as a measure of the compleyty of

The main result of this paper is that the two measures of complexity we have just
defined are comparable, in the sense that their ratio is bounded from below and from
above by positive constants depending only:on

In fact, our proof of this result also yields a new, algorithmically very efficient way to
calculate acanonical representative worfdr any element of the braid groug), .

Until recently the most algorithmically efficient treatments of the braid groups were
based on purely algebraic ideas that used a presentat@nlnf generators and relations.
The approach developed by Garsidel[15], Thurston [12, Chapter 9], and Birman—Ko—
Lee [8] yields an algorithm for finding a canonical form of a brgié B, given initially
by a word in standard generators. If the input word is of lengtthe algorithm in|[[5]
requires at mosO (¢£2n) operations. Note that Artin’s original algorithm is actually very
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inefficient in comparison, since the images of the generatorg @, ) under the action
of the given braid may be of lengii (exp(const: £)).

The new algorithm described here, by contrast, is geometrical in flavor and neverthe-
less efficient. The first crucial idea is that the curve diagram of a braid can be computed ef-
ficiently. Indeed, it was pointed out in [11], [10, Chapter 8] that a curve diagvamg - E
can be naturally encoded by a-fuple of integers)(D) = (a1, b1, ..., ay, by) € z2,
Moreover, this vector can be computed efficiently: the algorithm constructed there com-
putes the vecton (B - E) associated to a brajél € B, of length¢ in time O (¢2 +n) (thus
solving the braid recognition problem in tin@(¢2), but without producing any kind of
a canonical word representing the given braid).

Having constructed the curve diagram@fwe then look for an algorithm that, given
the curve diagrans - E (or its associated vectgrg - E) e Z?") reconstructs a canonical
word representing the brajgl Moreover, we want this algorithm to be efficient, and the
output braid word to be about as short as possible, in the sense thatlémgth of the
output word surpasses the minimal possiikength, among all representativesffby
only a linear factor. The centrepiece of this paper is an algorithm which achieves just that.

The idea underlying our algorithm is simply to successively “untangle” the curve
diagramp - E. That is, given a curve diagraim, one can act on it by a generam(.‘j
of the braid group so as to simplify the diagram (or equivalently, such that the vector
n(Afj - D) is shorter than the vector(D), in an appropriate metric). This process can
then be repeated until the diagrams reached. The braid word one has spelled out during
the untangling process is then a representatiy&éf Such untangling is always possible,
but it is usually not unique, and the difficulty is to do the untangling in an efficient manner.
Our main tool for doing so is a technique introduced by Agol, Hass, and Thurston [3].

A note on history: the term “curve diagram” was introduced.id [14], but the basic idea
is much older: for instance, it is very explicit in Mosher [22], and indeed it is arguably
already present in Artin’s original work. The fact that curve diagrams are efficiently com-
putable was popularized by one of us (I.D.) at Braids Colloquium in Toulouse, June
2000, and published later in [11], [10, Chapter 8]. It was also independently discovered
by Malyutin [18] in slightly different settings. We are not aware of any literature prior to
that. However, the fact that curve diagrams are determined by their intersection numbers
with a finite number of curves was well-known before: see e.d. [13, Expbs

The paper is organized as follows. In Secfign 1 we introduce two measures of com-
plexity of a braid, one geometric and one algebraic, and formulate our main result, that
they are comparable. In Sectipn]2.1 we introduce laminations—an important instrument
of our constructions. In Sectign 2.2 we explain a certain special case of Agol, Hass, and
Thurston’s algorithm for counting the orbits of a collection of isometries of subintervals
of Z. In Sectiong 213, 2|4 we show how this technique can be combined with the idea
of relaxing integral laminations in order to prove the main theorem. In Section 3.1 we
rephrase the main result in terms of quasi-isometries: we introduce two metrics on the
braid groupB,, corresponding to the two measures of complexity, and prove that they are
quasi-isometric. In Sectign 3.2 we prove that the metric space constructed in the previous
section embeds quasi-isometrically in the Teiciler space of tha + 1 times punctured
sphere, and is in fact quasi-isometric to its so-called thick part. In Sgctibn 3.3 we show
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that our untangling procedure provides an efficient algorithm for findirgpnsistent
braid word representatives. In Sect[on|3.4 we discuss the complexity of our algorithms.
At the end of the paper, we discuss some perspectives for further research.

1. Motivating example and statement of the result

As we said in the Introduction, we shall regard braids fi®as self-homeomorphisms of
the punctured disl,,, which are viewed up to homotopy. The boundary, is supposed
to be fixed under all homeomorphisms that we consider.

We denote byE the union ofn — 1 arcs inD,, which are shown in Fig.]1 on the left.
If 8 is a braid, then we leg - E be the union of arcs obtained fromby the action ofs,
and we call this theurve diagramof g—this is only defined up to isotopies fixing the
boundary and the punctures. We recall, however, that by using such an isotopy the curve
diagram of any braid can be matight with respect to the horizontal diameter bf,,
meaning that each connected componeng ofE and the real axi®R are transverse to
each other, and there are no puncture-free bigons enclosed by them. Each braid has a
unique curve diagram which is tight with respect to the horizontal diameter in the sense
that any two such diagrams are related by an isotopy,ofvhich preserves the real axis.
Details can be found e.g. in[14,]10].

Throughout the paper, all curve diagrams we mention will be assumed tight with
respect to the axis unless otherwise specified. We definedimof a curve diagranD
to be the number of intersections bfwith the real axis:

I DIl = #D NR).

It is intuitively plausible that in order to create a very complicated curve diagram,
one needs a very long braid word. Equivalently, in order to obtain the diadrdm
untangling a complicated curve diagram, one needs to act on it by a long braid word.
However, there is no simple proportionality relation between length and complexity, as
the following example demonstrates.

Example 1.1. Consider the following two braids: = 02_101 andp = o901. The crucial

observation now is that the sequenjed - E| grows exponentially withk, whereas the
sequenced|g* - E| grows only linearly withk. Indeed, it is an exercise to prove that
lak - E| = 2(Fr42 — 1), whereFp =1, F; = 1, F, = 2, ... is the Fibonacci sequence.
By contrast, we havgg® - E|| = 2[(4k — 1)/3] + 4, where k] stands for the integral part
of x. Thus,

le* - E| ~const, ||g*- E| ~ const .

Notice that both braidsy* and g*, have the same lengthk an Artin’s generatorss;,
meaning that the shortest word representing any of them has lehgth 2

The reason why there is a principal difference in the growth of the complexity of
curve diagramsg* - E andgX - E is thate is a so-called pseudo-Anosov braid, whereas
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Fig. 1. The diagramE in D,, consists of: — 1 arcs, each intersecting the real axis once (the case
n = 3 is shown here). The top row shows curve diagrams of the bedidthe bottom row of the
braidsg¥.

B3 = A2, whereA is the Garside fundamental braid, i.e. the half-twist of all strands at
once.

Very roughly speaking, applying repeatedly the same twistntangles the curve
diagram much more slowly than applying first one twist, then another one, then again a
different one etc.

This example motivates the following modification of the notion of braid length. First,
for1l<i < j < nletA;; denote the half-twist of strandghrough;:

Aijj = (0i...0j_1)(0;...0j_2)...0j. (1)

This is a generating set d,, which contains Artin’'s standard generatass:i= A, ; 11,
and the Garside fundamental braitl:= A1,.

Definition 1.1. By theA-lengthof a wordw of the form

— kl ks
w=A AT (2)

wherek; # OandA;, j, # A;

iri1.ji4a fOr all ¢, we shall mean

N
ta(w) = _logy(ki| + 1).
i=1
For a braid 8 € B, we define

LA (B) = min{l (w) | the wordw representss}.
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Obviously, for any braigs, we have

La(B) = £(B),

where¢ denotes the ordinary braid length. Note that thdength is in general not an
integer.

Definition 1.2. We define theomplexityof a braid 8 as

c(B)=10g, I8 - E| —log, | E.
One of the main results of this paper is the following.

Theorem 1.3. The complexity and tha-length of a braid are comparable. More pre-
cisely, there exist constantg, C2 such that

c(B) <C1-€a(B) and La(B) <C2-n-c(B) 3)
foranyg € B,.

The constant€’y, C2 will be given in [4), [$) below. We stress that they are independent
of the number of strands.
Section$ 2]1 throudh 2.4 are devoted to the proof of Theprem 1.3.

2. Proof of the main result
2.1. Integral laminations

Curve diagrams that we consider belong to a wide and very natural class of objects called
laminations, which are defined without any reference to the braid groups.

Definition 2.1. An integral laminationin D,, is a non-empty unior. of finitely many
disjoint simple closed curves and properly embedded aré,isuch that

1) there are no bigons enclosed by the arcd.aind d D,, with no puncture inside;

2) no closed component éfbounds a disk with no or just one puncture inside;

3) the endpoints of arcs df are distinct fromR N 8 D,, and there is an equal number of
them above and beloR.

In particular, conditions 1) and 2) of this definition imply that all curves that can appear
as connected components of a curve diagram have the property that they get tangled
under the action of some braids. There is only one exception to this rule: a closed curve
“parallel” to the boundary oD, may be present in an integral lamination, even though it
does not get tangled under any self-homeomorphisim,of

Sometimes we may call integral laminations just laminations for simplicity. The gen-
eral notion of a lamination will not be needed here.
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Integral laminations are regarded modulo isotopPjnfixing the boundary. As in the
case of curve diagrams, by such an isotopy any integral lamination can be made tight with
respect to the axiR.

In what follows, all integral laminations are assumed to be tight with respeRt to
unless otherwise specified. In some cases, for technical reasons, we shall consider lam-
inations that are “almost tight” with respect o Namely, some laminations that we
consider have exactly one puncture-free bigon encloset BgdR. However, lamina-
tions are always assumed to be transverdge. to

We do not distinguish between two laminatiabsand L, if Lo is obtained froml;
by an isotopy ofD,, preservingR. In this case we writé.1 = Lo. If L1 andL, are related
by an isotopy ofD, not necessarily preservirig, we write Ly = Ly. Thus, if bothL4
andL, are tight with respect t&, thenL1 = Ly impliesL1 = Lo.

The set of isotopy classes of laminationsp will be denoted byZ,,. The groupB,
acts onZ,, in the natural way.

Definition 2.2. A connected component of an integral lamination is said toeteexedif
it intersects the axi® at most twice. A laminatioh is said to berelaxedif all connected
components of. are relaxed.

A connected component of a lamination is calsgn(respectivelypdd) if it inter-
sects the axis an even (respectively, odd) number of times.

If a laminationL has the forng - E, then each connected componeni.dé odd. Notice
that if a laminationl. is very complicated, then it may be quite difficult to decide if all its
components are odd, until we have untangled it.

We shall also make use of the following technical definition.

Definition 2.3. For an integral laminationL in D,, (not necessarily tight with respect
to R), by aclosureof L we shall mean the unioh of pairwise disjoint simple closed
curves in the complex plane such thian D, coincides withL, and L \ D, is either
empty or consists of arcs intersecting the dRisxactly once, on the left dj,,. We shall
view L up to a homeomorphism of the plane preserving the horizontal axis. Cléaidy,
unique up to such homeomorphisms.

Curve diagrams as defined in Sect[dn 1 are particular cases of laminations. Our basic
curve diagrank is an example of a relaxed lamination.

The norm of a lamination (not necessarily tight with respectpis defined in the
same way as for curve diagramid:|| = #(L N R). Notice thatL; = L, does not nec-
essarily imply||L1|| = ||L2||, if at least one of the laminatiorls; or L5 is not tight with
respect to the real axis. However, as we have mentioned all lamindtiarsassumed to
be tight if not otherwise specified.

Lemma 2.4. For any laminationL in D,, anyl <i < j < n, andk € Z,

A - LIl < k| + D) - [IL].
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The proof, which is easy, will be left as an exercise to the reader.

Proof of the easy part of Theordm [L.Bet 8 € B, be represented by the woid (2). For
t=0,...,s puts; = Aft‘:llml . Af;js, so that, = 1 andBo = 8. Then Lemm4
implies

c(B) =log, I8 - E|l —log, | Ell = Z(logz IBi—1- Ell —logy lIB; - ENl)
=1

= (log, IAY; - (B - E)l| — 09, |I8: - Ell)
=1

S
logy(2lk,| + 1) < 10g, 3+ > "logy(1k;| + 1) = log, 3 £ (w).
t=1 =1

which gives the first inequality if [3) with
C1 =log, 3. 4)
O

s
=

The difficult part of Theorerp 1]3, i.e. the second inequality |n (3), will be a consequence
of the following claim.

Theorem 2.5. For any integral laminatiorn’. in D,,, there exists a braig € B, such that
B - L is relaxed and

Ca(B) =9n-logy [IL]|.

Remark 2.1. Note that if a lamination does not have the form of a curve diagram, then
there may be more than one braid untangling it.

Thus the constan®> in (3) can be set to
Cy=09. (5)

Before embarking on the proof of the theorem, we make a remark ombtiw prove
this result. A naive approach could be to try to proceed by analogy with the proof of the
easy part of Theorefn 1.3, namely, to show that for a non-relaxed integral lamidation
there exists a braid of the form Afj such that

logy 8- LIl < logy IL]l — ¢ - £A(B)
with some positive constantindependent of., and then apply induction. Unfortunately,
this does not work, because no such constaists. In other words, the function

v(L)y=  inf €a(B)/(logz [IL]| —logy I8 - LII)
B=A%: IB-LI<ILI

is unbounded. For instance, far = AY,AL, - E, we find thaty (L) is comparable to
logN/(log 2N —log N) = log, N, and thus grows without bound &5— co. Moreover,
changing the definition of the norin|| in any naive way does not help.

Instead of going this way, we shall apply a very powerful technique due to Agol, Hass,
and Thurston[[B3]: we use a certain complexity function which depends not only on the
lamination, but also on the history of the untangling process so far.
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2.2. The orbit-counting algorithm of Agol, Hass, and Thurston

In this section, we give a brief account of Agol, Hass and Thurston’s technique, adapted
to the special case which is relevant for our purposes, and rephrased in a language which
is more convenient for us.

By [i, j] with i, j € Z we denote the sequence

Li+ei+2e...,],

wheree = +1 = sign(j — i), and call such a sequence iaterval. By thelengthof the
interval [i, j] we shall mean the number of elements in it, ijle5 j| + 1.

For two intervals{, j] and [k, /] of equal length, we define theterval identification
[Z, j]1 < [k, 1] as the following symmetric relation if:

i+per<k+pe forallp=0,...,li —jl,

wheree; = sign(j — i) ande> = sign(! — k). (The interval identificationi[ j] < [k, []
is not distinguished fromj[, i] < [/, k] and [k, [] < [i, j].)

Definition 2.6. An interval identification syster{lIS for short) S is an interval[1l, N],
N > 0, endowed with a finite collection of interval identifications

[it’jt]e[ktvlt]a t=1,...,r, (6)
within it; i;, j;, k¢, I; € [1, N]. The numbewW is called thenormof S and denoted S||.

For such an interval identification systefiwe denote by~g the equivalence relation in
[1, N] generated by the aggregate of all identificatidrjs (6). The se¥]1~s of equiva-
lence classes will be denoted k.

The Agol-Hass—Thurston algorithm that we are going to adapt computes the size of
Qg in time polynomial in(log N, r). Note that all naive algorithms one may think of
immediately consume time linear i, which is much worse.

The Agol-Hass—Thurston machinery was originally developed for counting the num-
ber of connected components of a normal surface given by its Haken coordinates. We
shall apply it to simpler geometrical objects and for quite a different purpose.

Namely, we shall consider the 11Ss that are naturally associated with (the closure of) a
laminationL cut by aray(—oo, a) C R. The connected components of the cut lamination
define an identification relation between the intersection pdimig—oo, a). The formal
definition is as follows.

Definition 2.7. Let L be the closure of a laminatioh in D, which is not necessarily
tight with respect to the real axis. Lét, ..., Py, M = ||L| be the intersections af
with the axisR, numbered from left to right, and Istbe an IS withNV = ||S|| < M. We
say thatL carriesS if the following holds:

1) i < jin Sif and only if the points?; and P; are connected by a segmentiofot
passing through &; witht < N;

2) for any interval identificatioi,, j;] < [k, ;] in S, there is a stripR; in the complex
plane bounded by the straight line segmeRtsP;,, P, P, C R and two segments
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i, v, of Lwith dy, = {P;,, Py}, 3y, = {Pj,, P,}. (The arcsy, andy, are allowed to
coincide, in which cas®; is just an arc.) ThévasesP;, P;,, P, P, of the stripR; may
overlap and even coincide; besides th&t,must be embedded;

3) the stripsR; are disjoint from each other except at the aRis

Not every IIS is carried by a lamination. For example, being carried by a lamination
imposes the obvious restriction that every integral point in the interya¥T1s involved

in exactly two interval identifications, which is not true in general. Thus, what we consider
is a particular case of the Agol-Hass—Thurston algorithm.

For the rest of the paper, we shall never consider 1ISs or integral laminations in iso-
lation, but always an 11, carried by an integral laminatioh. Thus in our situation, it
will be convenient to use the geometrical language instead of the combinatorial one. In
particular, we shall refer to the elements§ as connected componentsiofather than
equivalence classes fofs.

We shall assume that the whole picture of an integral lamination is rescaled so that
the pointsP;, t = 1, ..., N, coincide with the integral points, 1.., N on the real axis.
Formally, byrescalingwe mean a homeomorphism of the plane of the fexmy) —

(p(x), y), whereg is an increasing function. Clearly, a rescaling preserves the combina-
torial structure of a lamination.

We shall also speak of strip [i, j] < [k,![] instead of an interval identification
[, j]1 < [k, !]. Notice that such a strip carries a little more information than the corre-
sponding interval identification because in the complex plane it can be attached “from
above” and “from below” to the intervalg,[j] and [k, /]. We shall always assume that
this above-below information is included in the structure of the §SS

By thewidth of a stripR = ([i, j] < [k, []) we shall mean the number of connected
components of. N (R \ dgR), wheredgR stands for the union of the basesrfThus the
width of R is equal to the length of the baseés{], [k, /] of R, i.e.|i — j| + 1. (Note that
a strip of width one geometrically looks like a strip of zero width.)

Example 2.1. Fig.@ shows the closure of the laminatién= (02_101)2 - E endowed
with the following interval identification systems:

(@) N = 26,{[1, 6] < [12, 7], [13, 19] <> [26, 20], [1, 1] <> [26, 26], [2, 2] <> [3, 3],
[4, 14] <> [25, 15]);

(b) N = 25,{[1,6] < [12,7], [14, 19] < [25, 20], [1, 1] < [13,13], [2 2] < [3, 3],
[4, 14] < [25, 15]);

) N = 19, {[1,6] < [12,7], [4, 9] < [14,19], [1 1] < [13,13], [2 2] < [3,3],
[10, 14] <> [19, 15]};

(d) N = 14,([1,6] < [12,7], [4, 4] < [14,14], [L 1] < [13,13], [2 2] < [3, 3],
5, 9] <> [14, 10]).

In each picture, there are five strips in total, two of them of width one, exceptin (d), where
three strips are of width one.

In all these pictures, the strip [6] < [12, 7] is attached to both bases from above.
The strip [1 1] < [13,13] in (b)—(c) is attached t§l} from below and to{13} from
above.
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Fig. 2. Four IISs carried by the Iaminatiofarz_lal)2 - E. The sequence (& (b)—(c)—(d) is
obtained from (a) by successive transmissions.

As this example demonstrates, a lamination may carry many different interval identi-
fication systems. If. carriesS with given ||S|| = N, then the relation-g is completely
defined byL. This might suggest that is uniquely defined by. and N, but this is not
necessarily so. Indeed, the structureSaissumes fixing a collection of interval identifi-
cations, and therefore one can genuinely change an IIS by replacing an interval identifi-
cation [, j] < [k, [] of width at least two by two interval identifications |p] < [k, g],
[p+ejl < [qg+€,1], wherep € [i,j — €], € = signj — i), € = signl — k).
Geometrically, this means that some stliphas been cut into two parallel strips. This
transformation truly changes the IIS while leaving batland the underlying lamination
L invariant.

The idea of Agol-Hass—Thurston’s orbit counting algorithm is to successively sim-
plify an 1IS by so-calledransmissionsin a sense, this algorithm is a generalization of
the well-known Euclid algorithm for finding the greatest common divisor of integers.

In our specific situation it works as follows. The input is an interval identification
systemS which is carried by an integral laminatidn We define a connected component
counter, which we set initially to zero. At the “rightmost poi¥’ = || S| of the interval
[1, N] there are exactly two strips attached, one from below and the other from above.
SupposeRr; = ([i;, N] < [k, ;]) is the wider of the two (no matter which if they happen
to have the same width).

It may even happen that those two strips coincide, which means;thai,, [, = N.

In this case, we advance the connected component counfér-by + 1 and remove the
strip R, from S. At the same time, we replaéé by i, — 1. Intuitively, after this operation
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some components of the laminatidnare no longer “covered” by any strip ¢f This
operation is calledemoving an annulust is illustrated in Fig[ B(a).

Let us assume now that # N. In this case we perform tsansmissior—a certain
transformation which we are going to explain next. Consider thé& satall subintervals
of [i;, N] that are bases of strips different froR). These strips will be referred so as
the denominator®of the transmission, whereas the stRpwill be called thenumerator
Letm € [i;, N] be the left endpoint of the leftmost interval frokh We cut the stripR,
into a collection of parallel strips so that the base}] is cut precisely into subintervals
from X, and one more interval,[, m — 1] provided thatn > i;. Then all pairs of strips
whose bases have just become matched are stuck together into longer stripsjsand
set tom — 1. This operation, which is called transmission, is illustrated in[Hig. 3(b), and
examples are given in Fig] 2.

Thus, as a result of a transmission, the numerator and all the denominators are re-
placed with strips that are all, except at most one, obtained from the denominators by

R;, width w

width v

width w

Fig. 3. (a) Removing an annulus; (b) a non-spiralling transmission; (c) a twice-spiralling transmis-
sion.
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attaching connected components of the cut numertotf m > i,, then there is one
more strip of widthm — i, + 1, which we call theemainderof the transmission.

There is one exception to the above rule: if the two baseg,obverlap, i.e. we
havem — 1 = I, > i;, then we can perform the previously explained transmission
d = [%:L’lﬁ] times at once. This is called&times spiralling transmissigrand it is
illustrated in Fig[ B(c). The denominators and the remainder of such a transmission are
defined similarly to those in the non-spiralling case. In particular, the width of the remain-
derequalg§N —i; + 1) —d(N —m + 1).

Itis obvious that under a transmission, the number of elemeifts thoes not change,
the normN = || S| decreases, and the numbeof interval identifications ir§ does not
increase. Under an annulus removal operation, boémdr decrease, and2| decreases
by the value added to the counter. So, after finitely many operations described above,
we end up with an empty IIS, and then the connected component counter indicates the
number of connected components of the initial IIS.

It is not at all obvious, however, that this procedure is efficient—in particular, that
only a relatively small number of transmissions is performed in the process.

Definition 2.8. TheAHT-complexity canr(S) of a non-trivial 11S

S={lir, jl o ke, L] |t =1,...,r}

,
. . 1 ~
carr(S) =1+ ;'092011 — i1+ 1 = 5log, @,
wherew is the width of the narrower strip attached 2= ||S|. If S is the trivial ISS, we
putcanr(S) = 0.

Remark 2.2. In this definition, the summand% log, w looks quite artificial, and it was

not present in the original definition by Agol, Hass, and Thurston. Introducing it allows
us to prove a better estimate for the simplification effect of a transmission in our specific
case of laminations. Note that what we subtract is just one half of one of the summands
in the preceding sum, so we count the logarithm of the width of one selected strip with
weight one half, whereas all the logarithms of other widths are counted with weight one.

Lemma 2.9. (a) Performing a non-spiralling transmission dhreducescayr(S) by at
least one.

(b) Performing ad-times spiralling transmission ol reducescayr(S) by at least
logy(d + 1).

Proof. (a) The valuew in Definition[2.§ is the width of the “rightmost” denominator of
the transmission to be applied 8 Let w’ be the width of the rightmost denominator
in the next transmission step. In addition, letbe the width of the numerator of the
transmission.
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Suppose that the remainder of the transmission is not trivial. Then its width is exactly
w’, and we havav > w + w'. The transmission causes the following change of the
AHT-complexity:

1 1 1 w?
old new ~ ~/
Cant — Capr = l0gr w — > log, w — > log, w' = > log, ==z

which follows from the fact thata + »)2 > 4ab for all a, b > 0.
If the remainder is trivial, then the new IIS has a smaller number of interval identifi-
cations, so we have

1 1
QA — W > 1+ log, w — 5100, i + S log, > 1

(b) Letw, w, w’ be as before. Suppose that the remainder is non-trivial andbet
its width. Then the two strips attached to the rightmost point of the IIS obtained after the
transmission have widths andv.

If w < v, thenw’ = w, and we have

iy — chaw = logy w — logy v > logy(d + 1),

becausev/v > d + 1.
If w > v, thenw’ = v, and we have

1, 1 (d® + v)?
cir — ' =logy w — > log, w — |092 v |092 B > logy(d + 1),

sincew > d + v and(na + b)2/ab > (n + 1)%foralla > b,n > 1.
Finally, if there is no remainder, then we have

- 2$—1+b%w——b%w+ b% > log, d + 1 = log,(d + 1),
sincew > dw. O

2.3. Relaxing integral laminations

In this section we prove the following claim, which is a “weaker version” of Thegrem 2.5.

Theorem 2.10. For any integral laminationZ in D,, there exists a brai@g € B, such
that8 - L is either relaxed or contains a relaxed even component, and

€a(B) < 8n?- (log, ||IL|| + 1).

Remark 2.3. For alaminatiorL that is not a curve diagram, Theorem 2.10 asserts that by
a braid ofA-lengthO (log, || L||) we can “partially” untangld so that an even component

is revealed. It is actually possible to untangle suchLacompletely by a braid of the
indicatedA-length. The proof of this fact requires more technical details, which we prefer
to postpone until the next section.

The proofs of Theoren|s 2.5 apd 2.10 follow essentially the same scheme, but the
argument for Theorern Z.]10 is more “straightforward”. So, in this section, we explain
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the main principle that allows us to prove an inequality of the féii8) < constn) -
log, || L||, whereas the next section contains details that allow making the(spgsow
as slowly asO (n).

The basic idea is this: we think of our IS as being made of a rigid horizontal line
and a number of rubber-rectangles attached to it, and after each transmission we allow the
picture to “relax”.

More rigorously, byrelaxing a laminationZ we mean applying a braif so that the
lamination gets simpler, i.e., so as to hdye L|| < ||L||. For any curve diagram distinct
from E, there may be many braids of the fomﬁj that relax it, and it is very easy to find

at least one of them. However, recursively applying relaxing braids of the tcfm'n a
naive way until a relaxed lamination is reached may result in an untangling braid word of
lengthO(||L])), because it can be only guaranteed that each relaxation reduces the norm
of L by at least some additive constant. The use of the AHT algorithm allows one to make
a choice of a relaxation at each step of the untangling process so thistlémgth of the
untangling braid word is of orde® (log || L])).

Our algorithm then works as follows: for a given integral laminatigrwe construct
an IS S such thatl carriesSg and||So|| = ||L||. Then the construction of the previous
section yields a sequence

dy
So - 51+ 5 58 D s, =, @)

. . I . 1
where byri> with 4 > 2 we denote @-times spiralling transmission, by— a once-

spiralling transmission or a non-spiralling transmission, and—%y the removal of an
annulus. Lemma 29 implies

p
> "10gy(d; + 1) < canr(S). 8)
i=1
Moreover, forany = 1,..., p the lISS; is still carried by the laminatio.
We putLo = L, and subsequently find laminatiods, ..., L, such that, for any
i=1,...,p,the following holds:
1) L; carriesS;;
2) eitherL; = L;_1 or L; is obtained fronl_;_; by a relaxation; = ; - L;_1;
3) L, is the simplest lamination satisfying 1) and 2) (in the sense that it has the minimal
norm).

It is not required here that all the laminatiohgs are tight with respect t&. We remark,
however, that they will be not far from being tight, and most of them will actually be
tight. Indeed, the reader who just wishes to understand the principle of the algorithm may
safely forget about non-tight laminations.

If L has only odd components, then we end up with

L,=p-L=E,

whereg = B,8,-1...B1. The desired relation betweén (8) and| L|| is then obtained
by estimatinganr (L) and£a (8;) for all i.
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Example 2.2. Consider again the closute of the curve diagranl. = (o{lol)z - E.
Fig.[4(a) shows the corresponding I8, and from the picture, one can guess the general
rule for choosingSo.

The systems of strips shown in F[d. 2(b), (c), (d) correspond to the lamination-IIS
pairs(L, S1), (L, S2), (L, S3), respectively. One can easily see that no braid will simplify
L if we require that the lamination obtained still caifyor S». This is because the strips
in Fig.[4(b), (c) are relaxed, i.e. embedded in the plane “in the optimal way” with respect
to the number of intersections with the real axis.

(b)

(0105 Yo1) - E

op-action
—

Fig. 4. Part (a) is a continuation of Fifj| 2 (the left hand side is the same a$|Fig. 2(d)). It gives
an example of a “relaxation”. Part (b) shows the corresponding relaxation of the curve diagram of

-1
(o105 )2.

In Fig.[2(d), by contrast, one of the strips has two “unnecessary” intersection®with
which can be cancelled if we apply the half-twsst This is illustrated in Fid.}4. Thus, in
this example,we have; = Lo =L,L3 =072 L.

Now we give a formal description of the construction. Recall that we assume the
whole picture of the lamination to be rescaled so that the clasimeersects the real axis
inthe points 1..., N = ||L|.

First of all, we need to defingy. In order to do so, we cut the laminati@nalong the
whole real axis, thus obtaining an identification relationon the interval [1 N], where
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N = ||L|. Then we collect each maximal family of parallel arcs of the cut lamination
into a single strip ofSy. In other words, we choos® carried byL so that||So| = || L||
andSp has the minimal possible number of interval identifications (strips).

Lemma 2.11. We have
cant(So) < (2n —1)(logy IL|| + D).

Proof. The width of any strip of any 1IS carried by is obviously no larger than the norm
of L (unlessL is already relaxed). Therefore, it suffices to show that there are at most
2n — 1 strips inSp. This can be done in numerous ways, e.g., as follows.

On §2 = C U oo, take a foliationF with singularities such that:

1) all connected components bfare leaves of;

2) Fistransverse to the segmdnt (1, N) C R except at the punctures;

3) all the singularities ofF are simple (see Fifj] 5) and the number of them is minimal
provided that there is a singularity of type loat

<

Type 1 Type 2

Fig. 5. Singularities ofF.

We denote by, andk, the number of singularities of type 1 and 2 shown in Flg. 5.
Then the singularities of type 1 may occur only at punctures, at the leftmost pdint, of
and at infinity, so we havi; < n + 2. Moreover, we havé, = k1 — 4, which follows
from the Poinca@—Hopf formulay (S?) = k1 — k2.

If a region complementary thJ L, and not containingo, containg > 1 singularities
of type 2 then it is adjacent to+ 2 < 3s strips of (L, S) lying on the same side d&.
If the outermost region, in whicko lies, containg > 0 singularities of type 2, then it is
adjacent to + 3 < 3s + 3 strips. The sides of strips that are not part of the boundaries of
the just mentioned regions are in one-to-one correspondence with singularities of type 1
lying in 1. Thus, for the number of strips, we have

2r <3k1—H+3+(k1—1) <dn-2,
which completes the proof of the lemma. O

Now we proceed with describing the untangling process. Each(pai§), whereL is a
lamination carrying the IIS, defines a collection of strips. This motivates the following
notation:
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Definition 2.12. (a) A strip systenis a pair (L, S), whereL is a lamination ands is an
IIS carried byL. (In a strip systendL, S) the laminationL is not necessarily assumed
to be tight with respect t&.)

(b) For a strip R; of a strip system, we call the number of connected componeRi$ iR
thelengthof R,.

(c) A strip system(L, S) is said to berelaxedif all strips in it are of length< 2 and all
the connected componentsiothat are not covered by strips are relaxed.

Clearly, a strip system is not relaxed if and only if there is a deformation of the complex
plane that preserves the bases of the strips and makes at least one of them shorter. The
idea of such a deformation is to make the strips tight with respect to th&®akiswever,

it may be impossible to find such a deformation if we require punctures to be fixed during
the deformation. So, in a sense, some punctures provide an obstruction to the relaxation.
All the obstructing punctures are located on the right of the right base of the remainder.

Definition 2.13. Leta be a semicircular arc in the complex plane such that= {P, O}
C R, whereP is a puncture and is not. Bysliding the puncture? alonga we mean a
homeomorphism of the complex plane such that:

1) ¢ is identical outside a small neighbourhoétof «;
2) U does not contain any other puncture excépt
3) ¢ takesP to Q.

Viewed up to rescaling, each sliding-a-puncture operation gives rise to a braid. The crucial
observation now is that the corresponding braid can be decomposed into two onfewer
Al A e
wheree = +1 and, by definitionA;; = 1. Such a braid is called semicircular in [26].
It is also important to note that in some cases, we can slide a few punctures simulta-
neously by applying a braid af-length< 2. This occurs if we slide the punctures along

Fig. 6. The sliding of these three punctures is represented;mAggl and byAgelAZ@
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“parallel” arcs, and there are no other punctures between the moving ones and between
their destinations (see Fig} 6). The corresponding braid can be represented in the form
Af; A7 and in the formAf, A~

We are now ready to describe the untangling process completely. For a given lamina-
tion L, we start by finding the initial [1Sy. We setLg = L.

Then, for each = 1,2,... we do the following. First, we examine the strip sys-
tem(L;_1, S;—1), which is relaxed by construction. One of the following situations must
occur:

1) S;_1 = ¥, which means thak;_; is relaxed. In this case, we terminate the procedure.

2) An annulus removal operation appliesSa 1. The strip to be removed contains only
relaxed components df;_;. If at least one of them is even, we terminate the pro-
cedure. If all of them are odd, we remove the annulus/set L;_1, 8; = 1, and
proceed as before. One can actually see that at this point the lamination is already
untangled, so, after removing a few annuli the process will be terminated.

Fig. 7. Punctures should not be slid out bf,.

3) A transmissionS;_1 ,i) S; applies toS;_1. If the strip system(L;_1, S;) is still
relaxed, we seL; = L;_1, B; = 1 and proceed as before. If not, we slide the punc-
tures that obstruct the relaxation, along arcs parallel to the artsuotil they reach
the bases of some strips. After that we defatm 1, keeping the new positions of
punctures fixed, so as to reduce the number of intersectionsRvih the right of
N; = ||S;] as much as possible. (In most cases this just means to make the lamina-
tion tight with respect tdR for the new positions of punctures. However, an example
of a situation where this isot the case is given in Fif. 12.) This replaces , by
L; = B; - L;_1, where the brai; is obtained by combining all the slidings. The
strip system(L;, S;) is how relaxed, and we proceed as before. However, there is an
exception: ifL; _1 contains an even non-closed component, then we may not be able
to slide some obstructing puncture so as to let the strip system get relaxed ($ée Fig. 7).
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In this case, we apply the slidings until the even componetit géts relaxed in the
sense of Definitiof 2]2 (although the strip system is not yet relaxed in the sense of
Definition[2.12) and terminate the procedure. One last note: sometimes there may be
more than one way to slide an obstructing puncture. If so, we choose the way that
allows moving the puncture farther to the right.

The key ingredient of the proof of Theor¢m 2.10 is the following bound on the lengths of
the braidss;.

Lemma2.14. Foralli =1,..., p we have

La(Bi) < 4n-logy(d; +1). )

Proof. The assertion is non-trivial only in the transmission cdsez 1. We consider the
non-spiralling cased; = 1) first. In Fig[$ all possible types of obstructing punctures are
indicated. In each case, we need to slide such a puncture at most twice. Since the number
of punctures to be slid is not larger thanwe have in this case:

IA(Bi) <2-2-n=4n-logy(d; +1).

Now we turn to the case of a spiralling transmissi§ni ,i> S;. Fig.@ shows
how the obstructing punctures should be slid. There are necessarily some punctures that
must be slid Z times. If there are no more obstructing punctures and no punctures at
the left base of the numerator, the whole spiral can be untwisted by a braid of the form

@)

(b)

Fig. 8. How to relax after a transmission, in the non-spiralling case.
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— @
o9

Fig. 9. How to relax after a transmission, in thetimes spiralling case.

A% There is, however, a complication, if some obstructing punctures are at a smaller
distance than 2 from their final destination: during the untwisting process, more and
more punctures need to be “picked up”. For instance, in[ffig. 9 we have a twice-spiralling
relaxation, but after the first two half-turns of three punctures, a fourth puncture gets
picked up.

Let there be obstructing punctures at distariges. . , k, from their final destination,
2d = k1 > --- > k; = 0, where we regard all punctures within the left base of the
numerator also as obstructing (even though they may be at distance zero from their des-
tination). Without loss of generality we may assume that there is exactly one puncture at
the centre of the spiral.

In order to deliver all obstructing punctures to their destinations, we first apply the
(k1 — k2 — 1)st power of the half-twist involving the “farthermost” punctures and the
central puncture. Now we have to pick up the punctures that are at digiafroen their
destination. We do this by sliding them back one step. Now they are in a row with the
punctures from the first group and all of them are at dist@peel from their destination.
We apply the(k, — k3)th power of the half-twist involving all these punctures and the
central puncture, then pick up the next portion of punctures, and so forth.

The total number of punctures picked up during the untwisting is at mesg, and
we haveg < n — 1. Picking up each puncture “costs” us tws. Thus in this case the
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A-length of8; is bounded from above by

q
200 —2) + Y _logy(ki — ki41) < 2(n — 2) + (n — 1) 10gy(2d) < 4n - logy(d + 1),
i=1

where we sek, 1 = —1. We leave it to the reader to treat the case when some even
component of. gets relaxed during the untwisting of the spiral. O

Proof of Theorerp 2.10This is now an easy corollary to Lemnijas 3[11] 2.9,[and 2.14: we
start with an 1ISSp, carried by the laminatioid, of AHT-complexity at mosi{2n — 1)

- (log, |IL|| + 1). Then we apply alternately transmission moves and relaxation moves.
During theith transmission, the AHT-complexity gets reducedabyeastlog,(d; + 1),
whereas in the subsequent relaxation move a brai-t#ngthat mostdn - log,(d; + 1)

is applied. Since the AHT-complexity cannot take negative values, the cycle must stop
before a braid word oA-length 4 - (2n — 1) - (log, | L|| + 1) has been speltout. O

Remark 2.4. The untangling process described in this section has been implemented
as amaple -worksheet by Michel Bonnefont and Erwan Hillion. Their program, which
draws pictures of both the curve diagrams and the interval identification systems, is freely
available [6].

2.4. Optimizing the untangling procedure

In this section we modify the arguments of the previous section so as to obtain a proof of
Theorenj 2.6. We use a very similar construction, but modify the definitioSg, ¢, and
L;. In order to distinguish from the previous constructions, we add a prime in the notation:
Se» B} L. Instead of Lemmds 2.1L1 ahd 214, we shall get the following estimates:

€a(B) <3-logy(d/ +1), i=1...,p, (11)
ea(Bly) = 2n. (12)

which together with Lemmia 2.9 imply Theorém|2.5. Thus the achievement is to get rid
of the factorn in the estimate[(J1), which is the counterpart[df (9), at the expense of
enlarging the constant ia (fL0) and getting a more involved construction.

The reason for the facter appearing in[(9) is that we do not know how many punc-
tures we need to slide at each relaxation step, and we estimate the number very roughly
by n. The idea is now to move almost all those punctures at once, using the trick indi-
cated in Fig[ B. To this end, we must make sure that there are no punctures in between the
destination points, so that the moved punctures do not get shuffled with the others.

Once the new untangling process is described, it is easy, though tiresome, to verify
that it works and relation$ (10), ([11), {12) hold. We skip some details of this checking,
which contains not much new compared with the previous section. What we do in detail
is describing the new rules for relaxing.
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First we recall that laminations and their closures that we consider are forbidden to
pass through the leftmost point of the disl. The reader might have noticed that the
role of this point in our figures is similar to those of punctures. Now it will become even
more similar. We call this point thialse punctureand mark it by« in the figures.

During the untangling process, we shall treat the false puncture almost in the same as
a “true” one. Namely, we consider the closuref the initial laminationZ as an ordinary
lamination in an(n 4+ 1)-punctured diskD, 11 whose punctures are the same as before
plus the false puncture.

Denote byt the inclusionB, — B,+1 given by:(o;) = o;11. At the ith step of the
untangling process, the relaxing braigwill be, in general, a braid frons, 1. However,
the resulting braid&i;url ...y willlie in «(By): ﬂ; .. 1 = «(B). This is achieved by
organizing the untangling process so that:

41

(i) atrue puncture is never slid below the false one;

(ii) the false puncture is never slid; the transmission-relaxation procedure is terminated
as soon as both bases of the numerator of the transmission to be applied are on the
left of *, or we getS;, =0;

(iii) once a true puncture has been moved to the left tfstays untouched until the final
step, when all true punctures that have been slid to the leftavé slid towards the
right of x along arcs in the upper half-plane; the additional bt%iql does this job.

It is not hard to show (using Lemria 3]10 below) that

p+1

€a(B) < D La(B). (13)
i=1

A base of a strip will be called ai-baseif the strip approaches it from above, and a
B-baseotherwise (‘A stands for ‘above’ and ‘B’ for ‘below’). To each strip, we associate
its typethat can be either AA, AB, BA, or BB depending on the types of the bases: the
first letter indicates the type of the left base, and the second of the right one. If the bases
of the strip coincide, it can be thought of as an AB- or BA-strip, this does not matter.

A strip system(L, S) is said to bealmost relaxedf the length of all its BB-strips is
not larger than three, and for all the other strips not larger than two. As bdfasenot
assumed to be tight with respect to the axis, but all puncture-free bigons encloged by
andR must be on the right of S||.

We define the new untangling procedure= Lo+ L}~ --- soasto comply with
the following rules:

, ’

d, d} d d, . o
iv) Si—> S0 > S, —> ... > 8, is a sequence of transmissions and annulus
0 1 2 P q
removal operations;
(v) foranyi =0,..., p/, the strip systeniL;, S!) is almost relaxed,;
(\(j) foranyi =1,..., p’ we have;; =Bl - L;_'l with somep; € Byy1;
(vii) foranyi =0,..., p’, the interiors of all strips ofL;, S}) and their A-bases are free
of punctures; the false punctués not contained in any (A- or B-) base of a strip.
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The 1IS Sp from the previous section (which, we recall, has at mest-21 strips)
does not in general satisfy condition (Vii). This is because some punctures may sit on the
A-bases of strips, and a base of a strip may contaie resolve this by cutting those
strips into a few parallel ones. This results in enlarging the number of strips by at most
n 4+ 2, and one can show that the number of strips will be enlarged exactybg only
if it was strictly smaller than2 — 1 before cutting. So, the numbeof strips inSj is at
most 3.

One now obtainO) as follows. Let, ..., w, be the widths of the strips cﬂ{). If
L is not relaxed, then > 4. We also have

LI = 5, w; < [IL]l.
i=1

NI

This implies

r

-
CAHT(SE)) <r+ Z log, w; =r + |092<H wi)
i=1 i=1

Yicawi)
<r+log, ==—) = +r(log, [L]| —log, )
r
=3n-log, L]l — (3n —r)log, |[L|| —rlog, >
<3n-log, ||L|| —3n- Iogzg <3n-log, ||L| — 3n.

Provided that conditiorjs (M), (vji) above are satisfied uptok — 1, we shall explain
how to defines;.. For simplicity, we will assume that, during the untangling process, no
two punctures become immediate neighbours so that the lamination does not traverse the
interval between them. One can easily show that this is not a loss of generality, since such
two punctures can be treated as a single one.

The notion of obstructing puncture was defined somewhat loosely in the previous
section. Now we make it more precise. To this end, consider the strip sysfem S, _,)

d/
and the transmissios},_, — Sj.

Definition 2.15. An arca C L;_; will be said to beessentialf it satisfies the following
conditions:« lies in the lower half-plane, and we have c R; the left endpoint of: is

d
located in the right base of the numerator of the transmissjon —> Sy, but not in the
right base of the remainder.

By definition, an essential arc is contained in the numerator or in a denominator of the

/

transmissiors; _; ,i> S;. We also remark that it has both its endpoints to the right of

Our untangling process will be organized as follows: at each step, the essential arcs form
a family of parallel, concentric semicircles; in particular, it makes sense to talk about an
outermost essential arc. The stripgbf_,, S;) that require relaxation after the transmis-
sion will be exactly those that contain an essential ardf ;, S, _,). The relaxation is



On the complexity of braids 825

achieved by “pushing all essential arcs across the real line”. Seb$tyucting punctures
we shall mean those punctures that are located between the endpoints of the outermost
essential arc.

Depending on the type of the numerator of the transmission, the following cases are
possible:

Case AAln this case BB-denominators of length one with both bases participating in the
transmission cannot occur. Indeed, between those bases there must be a puncture, which
contradicts the requirement that all A-bases are free of punctures. Thus, any length one
BB-denominator has one of its bases further to the left. Such a denominator gives rise to
a length two AB- or BA-strip, which does not need to be simplified.

u@@

Fig. 10.Case where the numerator is of type AA.

All the other denominators are of AB type and length two, or BB type and length
three. The obstructing punctures should be slid along arcs parallel to the denominators
toward the right base of the numerator (by akg and then along the numerator toward
the left base (two mores); see Figl 7j0. We make just one exception to this rule: if all
denominators are of type BB, then an obstructing puncture positioned on the immediate
right of the right base of the numerator (if there is one) does not participate in the second
sliding. This is not important for the moment but will be in the proof of Lemimé 3.9 below.

In this case, we haves (8;) < 3.

Case BB, length on&lo relaxation is needed at this point, since every strip that is created
during the transmission is of AB type and length two, or of BB type and length three.

Case BB, length thre@he obstructing punctures may be inside the right base of the nu-
merator and on the immediate right of that base. They are slid twice along the numerator
to the right (see Fig. 11). We ha¥g (8;) < 3.

Case AB, non-spirallingThe obstructing punctures, which are inside and on the immedi-
ate right of the B-base of the numerator, are slid twice along the numerator (sge|Fig. 12).
Again, we have/s (8;) < 3.



826 Ivan Dynnikov, Bert Wiest

~a

Fig. 11.Case where the numerator is of type BB, length three.

Fig. 12.Case where the numerator is of type AB, non-spiralling.
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Fig. 13.Case where the numerator is of type BA, non-spiralling.

Case BA, non-spirallingAll the denominators are of BB type. Those of length one must
have the other base further to the left. After the transmission, they give rise to BB-strips of
length three, which do not need to be relaxed for the moment. The denominators of length
three give rise to strips of length five or seven (see [Fig. 13). The obstructing punctures
are first slid along arcs parallel to essential ones, and then once along the numerator. As
always, we havé, (8;) < 3.
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Spiralling case.The difficulty with punctures that need to be picked up (see the previ-
ous section) now d|sappears because there are no punctures in the interior of any strips.

24’

Thus we can simply appIyA 2 in the BA case and& 2 in the AB case, where the
half-twist A;; involves the punctures inside the sp|ral We héwes,) = logy(2d;) <
2log,(d; +1). Note that in the BA spiralling case all the denominators are of type BB and
of length three. After the relaxation, the strips they give rise to are also of length three.

The transmission-relaxation process is terminated once the transmission “cutting
edge” has arrived at. Thus, during the process, whenever an obstructing puncture is
slid along an arc in the lower half-plane, the arc will be above the outermost essential arc,
and, therefore, on the right ef This guarantees that conditipn (i) holds.

As a result of the process, some true punctures have moved to thesdeftthe very
end of the relaxation process, we slide them back along arcs in the upper half-plane so as
to get the simplest possible lamination. This yields a bfgdid , of A-length at most 2,
because at mostpunctures need to be slid (actually, it hadength at most, but even
8n would be good enough for our purposes).

Fig. 14.The braldﬂ’ returns true punctures into the disk. In the situation shown here, there are two
possibilities for the leftmost puncture, and just one possibility for the next one.

We remark that if the original laminatiah contains even components, then there may
be no canonical choice fqﬂ’/ 41 (see F|g)

This completes our descrlptlon of the optimized untangling procedure, and thus the
proof of Theoren 2]5.

Remark 2.5. In each brai@; € B, 1 just described, there is one strand that corresponds
to the false puncture. By removing this strand, we obtain a brgifl € B,, and we have

" Q!
ﬂ Zﬂp/_,’_l...ﬂzﬂl.

Consequently, applying braig’, 85, ... to L may, in principle, eventually result in a
more complicated lamination than the original one. This may occur Wfeorresponds
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to sliding a puncture to the left af So, though the brai@ untangles the initial lamina-
tion L, the sequence

ILIL By - LI, 18287 - L, -
may not be decreasing.

3. Applications
3.1. Two equivalent metrics aB),

The A-length of a braid defined in Sectiph 1 possesses the following obvious properties:

€a(B)=La(B™h) and €a(B1B2) < La(B) +La(Bo).

This means that the function

pa: By X By — R, pa(B1, B2) = La(BL B2), (14)

is a distance omB,,.
The analogous statement for the complexity function is not true: in geréal, =
c(B8~1). However, it is true for the following modified complexity function. Put

¢(B) = sup|logy |8 - LIl —logy |ILIl|- (15)
LeLl,

By definition, for allg € B,,, we havec(8) < ¢(8) and

e(B) = supllog, 18- (B~ L) —log, 1871 - LII|

Lel,

= supllog, L]l —log, 871 LII| =(8™h.
LeLl,

For anyp1, B2 € B, we have

C(B1B2) = sup|log, ||B1B2 - LI —logy |||

LeLl,

= SULpﬂogz IB1- (B2 L)|| —logy [|B2 - LIl +log, |82 - LIl — log, I L]l|
LeLl,

< sup|log, [|B1- LIl —log, | L|I| + supl|log, |82 - LIl — logy || LIl|
Lel, Lel,

= ¢(B1) + (B2).

Thus the formula

pr(Br, B2) = C(Br B2) = Lsu£p|I092 BT LI —logy 185 - LII|
€Ly

defines another metrie; on B,. The proof of the following claim is easy.
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Proposition 3.1. For either of the metricg, and p,, the standard injectio®,, — B,41
is distance-preserving.

The main result of this section is

Theorem 3.2. The metricso, and pa on B, are quasi-isometric, namely, for arfy, 82

€ B, with ,Bl # ﬂZ,
paBLBo) _

pc(B1, B2) —

Proof. The first inequality is deduced from Lemina]2.4 by analogy with the proof of the
easy part of Theorem 1.3. The second inequality follows from Theprgm 2.5. O

logz2 < On.

One can immediately deduce an analogous result for the @i 2), i.e., the quotient
of then string braid group by its centre. This is the finite index subgroup of the mapping
class group of the + 1 times punctured s:phe@Jrl consisting of those elements which
fix the (n + 1)st puncture.

The metricoa on B, induces a metric onB,,/(Az), which we shall still denotex .
So by definition thep,-distance of an elemertt of B, /(A?) from the trivial element
is Minez pa (BAZ, 1p,). Similarly, we can define an analogue of the mejje for
B,/(A?). Geometrically, this means that two laminations By are regarded as equiv-
alent if one can be deformed into the other, where the deformation must prédgsve
setwise, but not necessarily pointwise: all the- 1 endpoints of arcs can be slid simul-
taneously through an angle off2 (z € Z) along the boundary. This modified notion
of equivalence yields a modified notion of complexity of a lamination, and thus an ana-
logue of the metrigos on B, /(A2). Again, this metric shall still be denoteg-. As an
immediate consequence of Theorjer 3.2 we have

Corollary 3.3. The metricsoz andpa on B, /(A?) are quasi-isometric.

3.2. Teichriller spaces

Among the metrics which are habitually imposed upon the Teidlemspace7 (S) of a
surfaces, there are notably th&eichnilller metric (which can be interpreted in terms of
stretch factors of extremal lengths of curves on the surfacel see [17]), and W. Thurston’s
Lipschitz metrid25]. The latter metric can be interpreted in terms of stretch factors of
hyperbolic lengths of curves on the surface. This interpretation, which is due to Thurston,
will be recalled below. A theorem of Choi and Rafi [7] states that the distahees)
between two points, t in Teichnilller space according to the two metrics are the same up
to an additive constant, provided the two points lie intthiek partof Teichnilller space,
meaning that they possess no hyperbolic geodesics shorter than the Margulis constant.
In particular, the thick parts of Teichitier space, equipped with these two metrics, are
guasi-isometric.

It should be mentioned that the Lipschitz “metric” is not actually symmetric, but could
easily be turned into a metric by symmetrizing. Moreover, the Lipschitz metric and its
symmetrized version are quasi-isometric on the thick part of Teidlemspace.
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We recall that there is a natural action of the mapping class groﬂﬁgt and hence
of B,/(A2), on the Teichriller space’T(S,fH), and this restricts to a cocompact ac-
tion on the thick parﬂ{hick(S3+1) of Teichmiller space. Thus for any fixed poiat. in
the thick part, the orbit of, under the action provides an embeddibg B, /(A2) —
7fhick(S,f+1), B+ B -0y Letus now equimhick(SSH) with the restriction of the Teich-
miller, or equivalently, the Lipschitz metric on the full Teichhier space (se€[7]). The
aim of this section is to prove that the pullback metric on the braid group is, up to quasi-
isometry, either one of the metrics defined in the previous section. Thus the metric spaces
constructed in Sectidn 3.1 turn out to be combinatorial models for the thick part of Te-
ichmuller space.

Proposition 3.4. The embedding: (B,/(A?%), pr) — (T(S,fﬂ), dyipschity) 1S quasi-
isometric.

It should be stressed that this result is quite easy to prove, and certainly not original. What
is more surprising is that, using Corolldry 3.3 and Choi and Rafi's comparison between
Teichmilller and Lipschitz metric on Teichiaier spacel[l7], we obtain

Corollary 3.5. The following four spaces are mutually quasi-isometric:

(1) (Ba/(A2), pa), (2) (Bu/(A?), pp),
(3) (Tthick(SZ,1)- duipschitd,  (4) (Tthick(SZ, 1), dreichm)-

We understand that very similar results were independently obtained by K[ _Rafi [24] for
more general surfaces, using deep theorems like those of Masur and Minsky/[19, 20] and
Minsky [21].

Proof of Proposition 3J4.We shall use the following notation. |f, ¢: X — R are two
functions, whereX is any set, then we saf andg arecomparableand write f =< g, if
there exist constants > 1 andd > O suchthatl/C)-g(x) —d < f(x) < C-g(x)+d.

Now, for « an isotopy class of simple closed curvedip, ando a hyperbolic struc-
ture onD, (i.e., a point in7) we shall denote by, («) the hyperbolic length of the
shortest representative @f measured in the metrie. According to Thurstor [25], there
are two equivalent definitions of the Lipschitz metric, among them the following: f
are two hyperbolic structures, then

duipschitz(0, T) = sup(log(s () — log(lc (@)

where the supremum is taken over all simple closed curvd3,inin particular, if we
try to measure the distance betwee@nd its translate under the action of a brgidve
obtain

duipschitz(o, B - o) = sup(log(ls (@) — log(ls (B - @)))

Now we recall the well-known fact that for any fixed point € 7, there exist constants
¢, C > 0 such that
¢ lg (o) < lafl = C-lo, ()
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for all «. That is,/,, (¢) and ||« || are in bilipschitz correspondence, and in particular, we
havel,, («) < |l«||. (The reason why this is true is that fsimpleclosed geodesic curves
ain S,fH, equipped with the metrie,, there are lower and upper bounds for the lengths
of the components of intersection @fwith the lower and upper half-planes.)

Moreover, there are global lower bounds ign(«) (namely the Margulis constant)
and on|j«|| (namely 2). Thus we can deduce that the logarithms of these quantities are
also comparable:

log(l, (@) = log([lecl])-
Now let as, ..., ax denote any finite family of simple closed curves with the property

that every simple closed curve Ef_l, except those enclosing a single puncture, can be
obtained from one of the;s by the action of some braid. We calculate

dyipschitz(0«, B - 0%) =< sup(log(|la)) —log(l|B - «|)))
= sup sunk(log(llz ;) —1og(I B¢ - i)

teByi=1,...,
k
= sup(()"(log(l¢ - o) — logllls - e 1))
1

C€By =
k k
= sup|log ¢ - eaill) —log 1B - aill) ).
sup(og(3 1 -at) ~ og(3 15 )
We shall fix one very particular choice for the family, ..., ax, namely the one

indicated in Figurg J5—in particular, in our choice we have n—1. With this particular

oD

Fig. 15.The curvesyy, ..., Opy_q-

choice for the familyy, . .., ax we have the following comparison with the complexity
of the curve diagrarg - E:

n—1
lg-Efl=n+1<) l¢-aill <llg-Ell+n—1
i=1
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In particular, we obtain

dLipschitz(0x, B - 0%) =< Sup<log<r§ i 'ai”) - |Og(nX_::L 8¢ 'ai”))
i=1 i=1

{€By

= sup(log (lI¢ - E|l) —log(lIB¢ - EN)) < pc(1s,. B).

{eBy,

which is what we wanted to prove. O

3.3. Dehornoy braid ordering

In 1991 Patrick Dehornoy discovered that the braid grBypdmits a left-invariant order-
ing [8]. His purely algebraic construction was based on the following notienpdsitive
braid word.

Definition 3.6. A braid wordw is said to beoy-positive (respectivelypy-negative if it
containsoy, but does not contain, ! and o™ with i < k (respectively, contains; %,
but notoy ando ™! withi < k). If w contains nas*! withi < k, itis calledoy-neutral

A braid wordw is said to bes-positive (respectivelyg-negative if it is oy -positive
(respectivelygy-negative) for somé < n — 1. A braid wordw is said to ber-consistent
if it is either trivial, o -positive, oro -negative.

Theorem 3.7 (Dehornoy [8]) For any braid8 € B,, exactly one of the following is
true:

1) Bis trivial;
2) B can be represented byaa-positive braid word for somg;
3) B can be represented bya-negative braid word for sonmie

In the latter two cases is unique.

Thus, it makes sense to speak alboytositive and-positive (oro -, o -negative) braids.
Itis then an immediate consequence that the relatiom B, defined by the rule8; < B2
if and only if /61*1/82 is o-positive, is a left-invariant linear ordering @&, (see[8]).

It was noticed in[[14] that this notion @f-positivity has a nice geometric interpreta-
tion in terms of curve diagrams. We refer the reader to the monogdraph [10] for a survey of
this and many other explanations of the phenomenon and different proofs of Dehornoy’s
theorem.

Although many approaches écordering have been developed since Dehornoy’s dis-
covery, the following question remains unsettled: is there a polynomialnhich is an
upper bound on the length of the shortestonsistent braid word representing a braid of
length¢? Dehornoy'’s original algorithms (in][8], and handle reductidn [9]) and the algo-
rithm from [14] give only an exponential bound on the length of the shostesinsistent
representative.

Atthe end of the paper we shall present some further reasons for believing that a linear
bound exists. The aim of the current section is to solve a closely related problem, namely,
to give a positive answer to the question above with the ordinary braid length replaced
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by the A-length. This assumes the following extension of the notioa-gositive braid
word: a word in the alphabgi\;;}o; <, is said to ber-positive if, for somek < [, it
containsA;, and contains neitheﬂ&,jj1 nor Ax! with i < k and anyj. In other words, a
word w in lettersA;; is o-positive (negative, neutral) if the word in standard generators
o; obtained fromw by expansion[(1) is.

Theorem 3.8. Any braid 8 € B, can be represented by @& consistent wordw in the
alphabet{A;;} such that
a(w) <301 - LA(B). (16)

The following lemma plays a keyote in the proof. Denote b¥>, the lamination inD,,

whose closure is a circle in the complex plane surrounding the leftmost puncture and the
leftmost pointx of D,. (The notation is motivated by the fact that this circle coincides
with the trivial curve diagrank in the case: = 2.)

Lemma 3.9. Let 8 € B, be aoj-positive braid, and let: be the braid word spelt out by
the untangling procedure of Secti@applied to the laminatiors - E>. Then the braid
word u is o1-negative, the braid - 8 is o1-neutral, and

Ca(u) <109,3-9n - LA (B). a7)

Proof. First of all, we remark that the algorithm of Section]2.4 constructs a sequence
of puncture slidings rather than a concrete braid word. In some cases such a sliding can
be written in two different ways; an example is shown in Fig. 6. More precisely then,
what we are going to prove is thatnder an appropriate choicef the decomposition

of the slidings into a product ohs at each step of the untangling procedure, we get a
o1-negative words.

A sliding of a group of punctures, like the one shown in Fig. 6, isaeheutral if
and only if one of the following occurs: the leftmost puncture is slid; or punctures are
slid over or under the leftmost (true) one. If none of these takes place, it does not matter
which decompositionA{; A;7 or A7 A%, we choose—both are-neutral.

If a sliding of a group of punctures is net-neutral, then its decomposition of the
form A, A< is o1-definite, and it isr; -positive (respectively, negative) if and only if the
punctures are slid clockwise (respectively, counterclockwise).

Thus, in order to prove that is o1-negative it suffices to show that all the clockwise
slidings that occur during untangling the laminati@n E> areos-neutral, but the whole
word u is notop-neutral.

By construction, the braid - 8 preservesEy, which implies that this braid is1-
neutral. Sinces is notoi-neutral, the braid represented dogannot ber;-neutral, either.

Let us check that-positive slidings do not appear in

To this end, we must examine all the clockwise slidings and make sure that they do
not involve the leftmost puncture, i.e. the arcs of all clockwise sliding are always on the
right of the leftmost puncture.

Similarly to [14] one can show that;-positivity of the braidg is equivalent to the
following property of the laminatiol. = 8- E2, which is assumed to be tight with respect
toR:
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there is an arg C L lying in the lower half-plane with endpoints &t
such that the segment & bounded by the endpoints gf containsx
and does not contain a true puncture. (%)

See also [10] for an explanation of the relation betweegpositivity and a £)-like prop-
erty of curve diagrams.

The laminationL intersects the ray—oo, %) C R exactly once, at the left endpoint
of y. (This means, in particular, that there is only onejagatisfying &).) This implies
that no puncture is slid out of the digk, during untanglingL. Indeed, in the general
case, punctures can be slid out of the disk at the relaxation step that follows an AA- or
AB-transmission. One can see that, in both situations, any arc in the upper half-plane
along which a puncture is slid counterclockwise must lie in between two parallel arcs of
the lamination. Thus, sliding a puncture out of the disk may be forced only if the closure
of the laminationL intersects the ray—oo, *) at least twice, which is not the case for
L=§-E>.

Thus, the brai(;B;,H that is composed of clockwise slidings and is a potential source
of aog1-positive contribution tax is trivial.

Further, we claim that property)holds during the whole untangling process. Indeed,
the arcy cannot be essential, so it always remains untouched. Thus propgagyiplated
only when a true puncture is slid to a point in between the endpoints which is the
moment when the lamination gets untangled completely.

Now we can show that property)(guarantees that no clockwise sliding involves the
leftmost puncture. That is, we have to exhibit a true puncture to the left of all arcs along
which clockwise slidings occur. This is done by revising, case by case, the relaxations
following different types of transmissions. The AB spiralling and non-spiralling cases are
trivial because the corresponding slidings are counterclockwise. In all the other cases, just
before the transmission, there must be an AA-strip whose left base is further to the left
than the right base of the numerator. LRte the innermost such striR (may be the
numerator in the AA case).

According to our transmission-relaxation rules, there must be a puncture (true or false)
P, say, between the bases Bf In each individual case it is easy to show tifats not
obstructing and that it lies to the left of the arcs along which clockwise slidings occur.
Thus if P is a true puncture, then the clockwise slidings @aeutral. We conclude by
noticing thatP cannot be the false puncture because otherwise propgnyold imply
the presence of a circle surrounding justvhich is absurd.

It remains to prove estimatg (17). This is done by applying the first inequality in
Theoren] 1.3 and Theorgm P.5, and using the fact:thatprecisely the braid word for
which the estimate from Theordm P.5 has been obtained:

Ca(u) <9n-logy [[L]| <9n-(logy3- £a(B) +10g; | E2[) = 9n - 10g, 3 - £A(B),
since|| Ez|| = 1. O

Lemma 3.10. If a braid 8 is o1-neutral then the shortest braid word representifig
(where either the ordinary braid length or the-length is used) ig1-neutral.
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Proof. If g iso1-neutral, then the string that starts in the leftmost position also ends in the
leftmost position. Now ifw is any braid word representirgy then we can obtain another
braid wordw representingd which iso;-neutral and at most as long asn the following

way: we delete the string starting and ending in the leftmost position, and replace it by
a string that lies entirely to the left of all the other (true) strings. The wibri$ then
obtained fromw by removing some letters™, shifting indices of otherss™ - %1,
A= Al 4, and replacing soma;; with A7, ;. If w was notoi-neutral, theris

is strictly shorter tham. O

Proof of Theorem 3]8Without loss of generality we may assume tifais o, -positive
with somek < n. The proof is by induction ok. We skip the details of the induction
step, which is an easy consequence of Lerima] 3.10, and show that the assertion of the
theorem holds for &1-positive braid.

Indeed, takex from Lemmd 3.P. Since the bragl = u - 8 is o1-neutral, Lemmf 3.0
implies thatg’ can be represented bya-neutral braid word of A-length

Ca(v) < la(u-B) < La(u) +Ea(B) < (100,3-9n + 1) - La(B).
The braid wordw = u~1v is theno1-positive, it representg and hasA-length

a(w) < la(u) +€a(v) < (210639 + 1) - €A (B) < 30n - LA(B). o

3.4. Algorithmical issues

The proof of Theorer 2|5 presented above consists in an explicit description of an al-
gorithm that, given an integral laminatidn finds a word-representative of a braid that
untangled.. In this section we discuss the efficiency of the algorithm and, more generally,
of the algorithmical treatment of the braid groups based on it.

First of all, we remark that our estimations for the running time of algorithms will
be made for the computational model calRandom Access Memory Machioughly
speaking, this means that we assume the input to be in a reasonable range, and estimate
the number of elementary operations of a realistic computer needed to implement the
algorithm. More precisely, we assume that the number of stranids'small enough”,
so that its record fits one standard unit of memory, and that any arithmetic operation on
integers between 0 andtakes constant time. This is a reasonable assumption because
actually it allowsn to be very large: if, say, four bytes are used to store an integer (which
is quite usual), then can be as large as® For other integers (which are not indices) we
will assume that their logarithm is “small” (i.e. smaller that)2

Since even for reasonably long braid words the implementation of our algorithms may
need to operate with “large” integers, we will pay attention to the number of elementary
machine operations that are needed to perform an arithmetic operation on those integers.
The most frequently used operations will be addition, subtraction, and comparison. They
consume logarithmic time in the value of the larger operand, and we call shapie
Sometimes we will also need to perform divisions and multiplications. We use the fact
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that dividingk by [ takesO (log! - log(k/1)) elementary operations, whereas multiplying
k byl consumeg) (logk - log/) operations.

The next important question is how the input/output data and the objects used in the
algorithm are presented. Our main objects are: braid words, laminations, and strip sys-
tems, so we briefly discuss their numerical presentations.

We will assume that words of the forrfi] (2) are presented by the corresponding se-
guences of integers:

sy i1, 1.k, 02, j2, ko, oL 0, s ks

Heres andi;, j, witht = 1, ..., s are “small” integers, whereas, r = 1, ..., s, can be
“large”. This implies that the length of such a presentationa$ of orderO (¢4 (w)).

The set’,, of laminations inD,, can be naturally identified witd?*~2 \ {0} so that
the norm||L|| will become a norm ifZ%*—2, and the action of each generatxffl € B,
will be given by a finite number of simple arithmetic operations on the coordinates of the
lamination. See [10, Chapter 8] and [11] for details, where a slightly different definition of
laminations is used, which results in two additional coordinates appearing in the “code”
of a lamination. (In order for the formulas in [11,110] to work in our current settings,
one should set the two additional coordinategto= 0, b, = +00.) This implies the
following

Proposition 3.11. There exists an algorithm ; that, given a wordw in the generators
A;; representing a braig8, computes the curve diagrafh- E € £, = Z?'~2\ {0} in
time O (L(w) - £a(w) + n).

The algorithmA; expands the given word by using I(:jr), thus obtaining a word’ in
aiil—generators recorded in the usual way. Then it generates the initial lamiatod
applies, one after another, the letteradf(from right to left) to the lamination.

This may be very inefficient ifv contains a subwordf\; with a very largeN. How-

ever, the action of the braidf*j’. on a laminationZ can be computed without expanding
the braid into a product aof;s.

Lemma 3.12. The action ofAf}f on L can be computed i ((n + logN) - log||L|)
operations.

Proof. Let us look at the sequence of Iaminaticmg. - L, wherek = ...,-2,-1,0,

1,2, .... For largelk| the IaminationsAf.‘. - L have a big “spiral” surrounding punctures
i throughj, and the “thickness” of this spiral grows linearly withMore formally, this
means the following.

Let ko be an integer for WhiclﬁAf.‘]‘.J -L| is as small as possible. Let us duglong the
real axis and count the number of the resulting arcs having one endpoint betwe#n the
and jth punctures, and the other endpoint outside this segment. In a sense, this is twice
the number of strings involved in the spirals@fj’. - L. Let this number be: and letLg
be the lamination consisting ef circles surrounding punctureéghrough;. Let us think
of laminations as points ii%*~2. Then for anyp > 1,

ko
ij

ko+2 ko+2 -2 ko—2
AT L=APT L+ (p=D-Lo, AYT-L=AY"-L—(p-1- Lo
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So, we start by establishing the structure of a spiral isurrounding punctures
throughj, if there is one. Even if there is no spiral, we computé.e. the laminatiori.g.
If there is a spiral, we also need to find its “thicknes8sind its direction (clockwise or
counterclockwise).

By using flips of triangulations in a similar way as described_in [10], we can do all
thisjobinO(j —i) < O(n) simple operations on integers of ordgr|. So, the structure
of the spiral can be discovered fox(n - log||L|) elementary operations.

Depending on the direction of the spiral and the sigivafifferent cases are possible.
It may happen thaAf} twists the spiral further, in which case we are lucky, because we

haveAf.‘; -L =L+ N/2- Lg, provided thatV is even. IfN is odd, we shall also need
to apply oneA;; “explicitly”, which, by the same “flip argument”, takeS (n) simple
operations on integers of ordgL ||. So, the total work in this case 8(n - log||L|) +
O(logN -log | L])), where the second summand appears because we need to migtiply
by N /2. (Note thatLy has only two non-zero coordinates.)

The same estimate Worksm‘f\j{ untwists the spiral partially. The most involved case

is whenAlN untwists the spiral completely and then twists in the opposite direction. In
addition to the previous cases, we shall need to apply a few mg explicitly, and
compute the number of twists in the original spiral. The latter is done by computing
[6/m], which consume®) (log N - log ||L||) elementary operations (becausen < N).

O

By using induction we deduce the following from Lemma 3.12.

Proposition 3.13. There exists an algorithrd, that computes the curve diagrgn E
of a braid 8 given by a braid wordv in time O (n - £ (w)?).

In order to implement the algorithm of Sectipn]2.4 one needs to choose a presentation
method for strip systems. The most straightforward way to present a strip sgbten

is to provide coordinates df, list all interval identifications of, and specify the positions

of the punctures. However, in order to make the algorithm more efficient it is useful to
include even more information in the object. For example, one may keep a bi-directed
list of “significant” points of the axis, which are positions of punctures and the endpoints

of the bases of strips, and a collection of cross-references between those points and the
related objects (punctures, bases of strips), so as to be able, say, for any base of a strip
to find the “next” one in a bounded number of simple operations. We skip the boring
details.

One can show that for an appropriate encoding of strip systems, each non-spiralling
transmission and the subsequent relaxation described in S¢ctipns P.2—2.4 can be performed
in O (n) simple arithmetic operations whose operands are of @dgt. ||). For performing
a d-times spiralling transmission on a strip systdi, S) we additionally need to
implement one division (the width of the numerator is divided by the sum of the
widths of the bases of the denominators participating in the transmission), which
consumesO (logd - log||L||) operations. Together with Theordm [2.5 this implies the
following.
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Proposition 3.14. There exist algorithmgd 3, A4 such that

1) given a lamination., A3 computes a braid untangling in time O (n2 - (log||L|)?),
thus detecting whethdr is the curve diagram of some braid;
2) given the curve diagramss, Lo of braidsgi, B2, A4 computes the curve diagram of

1o Bzintime O (n? - (La(B1) + €a(B2)) - La(B1)).

We shall finish this paper with some remarks concerning open problems and possible
further developments of our results.

First, all our results concern punctured disks and spheres and their mapping class
groups. Rafi’'s work notwithstanding, it would be useful to find generalizations of our
methods to all surfaces.

Secondly, we conjecture that the untangling procedures defined in S¢ctipns 2.3 and
[3.3 describe paths in the Cayley graphRf which are uniform quasi-geodesics with
respect to the standard metric (not a\wmetric) onB,. Indeed, these paths look very
much like train track splitting sequences, which are known to be quasigeodesics by a the-
orem of Hamengidt ([16, Proposition 3.1]). However, the exact technical conditions of
Hamensadt’s theorem, and in particular the genericity condition, are not easy to satisfy.
Our conjecture would in particular imply that every braid hag &@onsistent representa-
tive whose length is bounded linearly by the length of the braid—the existence of such a
representative is still an open problem|[[9] 10]. If the conjecture were true, then our un-
tangling paths would have the interesting property that they are short with respect to both
the usual and th&a-metric onB,,.

Thirdly, it might be useful to give substance to the intuition that every “spiral” that
appears during our untangling algorithm is somehow “visible” in every reasonably short
representative of the braid, and in particular in the Garside normal form. The idea here is
that spirals correspond to passages of the Teitlemgeodesic through the thin part of
Teichnilller space. The work of Masur—Minsky and Rafi is probably relevant here.

Finally, there might be applications of our results to the conjugacy problep,iand
more precisely to the study of sets of “short” elements in the conjugacy class of a braid
(e.g., the super summit set). The reason for this hope is that conjugacy classes of braids
correspond to free homotopy classes of closed curves in moduli space.
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