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Abstract. We define a measure of “complexity” of a braid which is natural with respect to both an
algebraic and a geometric point of view. Algebraically, we modify the standard notion of the length
of a braid by introducing generators1ij , which are Garside-like half-twists involving stringsi

throughj , and by counting powered generators1k
ij

as log(|k| + 1) instead of simply|k|. The geo-
metrical complexity is some natural measure of the amount of distortion of then times punctured
disk caused by a homeomorphism. Our main result is that the two notions of complexity are com-
parable. This gives rise to a new combinatorial model for the Teichmüller space of ann + 1 times
punctured sphere. We also show how to recover a braid from its curve diagram in polynomial time.
The key r̂ole in the proofs is played by a technique introduced by Agol, Hass, and Thurston.
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Introduction

Then-string braid groupBn can be defined in many different ways; we shall mainly be
interested in the following two:

Firstly, it has a finite presentation with generating set consisting of Artin’s half-twists
σ1, . . . , σn−1. (The relations areσiσj = σjσi for pairs(i, j) such that|i − j | > 1, and
σiσjσi = σjσiσj for |i − j | = 1.)

Secondly, let us denote byDn a closed disk in the complex plane, centred at the
origin, with n punctures lined up on the real line. Then we identify the braid groupBn
with the mapping class group ofDn in the standard way [4, 10]. The idea of interpreting
braids as isotopy classes of boundary-fixing homeomorphisms of ann times punctured
diskDn is as old as the braid groups themselves. Indeed, Artin [1, 2], who introduced the
braid groups, solved the word problem inBn by showing that a braidβ ∈ Bn is uniquely
characterized by the images of generators of the fundamental group ofDn under the
homeomorphism associated withβ.

The aim of this paper is to clarify some aspects of the relation between these two
points of view on the braid group. Specifically, we show that there is a notion ofcomplex-
ity of a braid which is natural in both frameworks, and which has an added advantage of
allowing algorithmically efficient transitions between the two perspectives.

The algebraic point of view is the following: as a generating set, we use the set of
all half-twists1ij (1 ≤ i < j ≤ n) involving strands numberi throughj . Now, the
1-length—our new algebraic notion of complexity—of a braid is simply the shortest
possible length of any word representing the braid, but with one modification: a power
1kij (k ∈ Z) shall not count as having1-length |k|, as would be usual, but as having
1-length log2(|k| + 1).

The geometric measure of the “complexity” of a braid is as follows. LetE be a set of
properly embedded disjoint simple arcs on the diskDn separating all the punctures (we
shall be using the set shown in Fig. 1, but other diagrams would work just as well). Then a
curve diagramof a braidβ is the imageβ ·E ofE under the homeomorphismβ. A simple
measure for the complexity of a braid would be the number of intersections ofβ ·E with
the real line (minimized over the isotopy class ofβ ·E). However, since in a random braid
word this quantity tends to grow exponentially with the length, it is actually more natural
not use this quantity itself, but rather its logarithm as a measure of the complexity ofβ.

The main result of this paper is that the two measures of complexity we have just
defined are comparable, in the sense that their ratio is bounded from below and from
above by positive constants depending only onn.

In fact, our proof of this result also yields a new, algorithmically very efficient way to
calculate acanonical representative wordfor any element of the braid groupBn.

Until recently the most algorithmically efficient treatments of the braid groups were
based on purely algebraic ideas that used a presentation ofBn by generators and relations.
The approach developed by Garside [15], Thurston [12, Chapter 9], and Birman–Ko–
Lee [5] yields an algorithm for finding a canonical form of a braidβ ∈ Bn given initially
by a word in standard generators. If the input word is of length`, the algorithm in [5]
requires at mostO(`2n) operations. Note that Artin’s original algorithm is actually very
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inefficient in comparison, since the images of the generators ofπ1(Dn) under the action
of the given braid may be of lengthO(exp(const· `)).

The new algorithm described here, by contrast, is geometrical in flavor and neverthe-
less efficient. The first crucial idea is that the curve diagram of a braid can be computed ef-
ficiently. Indeed, it was pointed out in [11], [10, Chapter 8] that a curve diagramD = β ·E

can be naturally encoded by a 2n-tuple of integersη(D) = (a1, b1, . . . , an, bn) ∈ Z2n.
Moreover, this vector can be computed efficiently: the algorithm constructed there com-
putes the vectorη(β ·E) associated to a braidβ ∈ Bn of length` in timeO(`2

+n) (thus
solving the braid recognition problem in timeO(`2), but without producing any kind of
a canonical word representing the given braid).

Having constructed the curve diagram ofβ, we then look for an algorithm that, given
the curve diagramβ ·E (or its associated vectorη(β ·E) ∈ Z2n) reconstructs a canonical
word representing the braidβ. Moreover, we want this algorithm to be efficient, and the
output braid word to be about as short as possible, in the sense that the1-length of the
output word surpasses the minimal possible1-length, among all representatives ofβ, by
only a linear factor. The centrepiece of this paper is an algorithm which achieves just that.

The idea underlying our algorithm is simply to successively “untangle” the curve
diagramβ · E. That is, given a curve diagramD, one can act on it by a generator1kij
of the braid group so as to simplify the diagram (or equivalently, such that the vector
η(1kij · D) is shorter than the vectorη(D), in an appropriate metric). This process can
then be repeated until the diagramE is reached. The braid word one has spelled out during
the untangling process is then a representative ofβ−1. Such untangling is always possible,
but it is usually not unique, and the difficulty is to do the untangling in an efficient manner.
Our main tool for doing so is a technique introduced by Agol, Hass, and Thurston [3].

A note on history: the term “curve diagram” was introduced in [14], but the basic idea
is much older: for instance, it is very explicit in Mosher [22], and indeed it is arguably
already present in Artin’s original work. The fact that curve diagrams are efficiently com-
putable was popularized by one of us (I.D.) at theBraidsColloquium in Toulouse, June
2000, and published later in [11], [10, Chapter 8]. It was also independently discovered
by Malyutin [18] in slightly different settings. We are not aware of any literature prior to
that. However, the fact that curve diagrams are determined by their intersection numbers
with a finite number of curves was well-known before: see e.g. [13, Exposé 6].

The paper is organized as follows. In Section 1 we introduce two measures of com-
plexity of a braid, one geometric and one algebraic, and formulate our main result, that
they are comparable. In Section 2.1 we introduce laminations—an important instrument
of our constructions. In Section 2.2 we explain a certain special case of Agol, Hass, and
Thurston’s algorithm for counting the orbits of a collection of isometries of subintervals
of Z. In Sections 2.3, 2.4 we show how this technique can be combined with the idea
of relaxing integral laminations in order to prove the main theorem. In Section 3.1 we
rephrase the main result in terms of quasi-isometries: we introduce two metrics on the
braid groupBn corresponding to the two measures of complexity, and prove that they are
quasi-isometric. In Section 3.2 we prove that the metric space constructed in the previous
section embeds quasi-isometrically in the Teichmüller space of then+ 1 times punctured
sphere, and is in fact quasi-isometric to its so-called thick part. In Section 3.3 we show
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that our untangling procedure provides an efficient algorithm for findingσ -consistent
braid word representatives. In Section 3.4 we discuss the complexity of our algorithms.
At the end of the paper, we discuss some perspectives for further research.

1. Motivating example and statement of the result

As we said in the Introduction, we shall regard braids fromBn as self-homeomorphisms of
the punctured diskDn, which are viewed up to homotopy. The boundary∂Dn is supposed
to be fixed under all homeomorphisms that we consider.

We denote byE the union ofn − 1 arcs inDn which are shown in Fig. 1 on the left.
If β is a braid, then we letβ · E be the union of arcs obtained fromE by the action ofβ,
and we call this thecurve diagramof β—this is only defined up to isotopies fixing the
boundary and the punctures. We recall, however, that by using such an isotopy the curve
diagram of any braid can be madetight with respect to the horizontal diameter ofDn,
meaning that each connected component ofβ · E and the real axisR are transverse to
each other, and there are no puncture-free bigons enclosed by them. Each braid has a
unique curve diagram which is tight with respect to the horizontal diameter in the sense
that any two such diagrams are related by an isotopy ofDn which preserves the real axis.
Details can be found e.g. in [14, 10].

Throughout the paper, all curve diagrams we mention will be assumed tight with
respect to the axis unless otherwise specified. We define thenormof a curve diagramD
to be the number of intersections ofD with the real axis:

‖D‖ = #(D ∩ R).

It is intuitively plausible that in order to create a very complicated curve diagram,
one needs a very long braid word. Equivalently, in order to obtain the diagramE by
untangling a complicated curve diagram, one needs to act on it by a long braid word.
However, there is no simple proportionality relation between length and complexity, as
the following example demonstrates.

Example 1.1. Consider the following two braids:α = σ−1
2 σ1 andβ = σ2σ1. The crucial

observation now is that the sequence‖αk · E‖ grows exponentially withk, whereas the
sequence‖βk · E‖ grows only linearly withk. Indeed, it is an exercise to prove that
‖αk · E‖ = 2(Fk+2 − 1), whereF0 = 1,F1 = 1,F2 = 2, . . . is the Fibonacci sequence.
By contrast, we have‖βk ·E‖ = 2[(4k− 1)/3] + 4, where [x] stands for the integral part
of x. Thus,

‖αk · E‖ ∼ constk, ‖βk · E‖ ∼ const· k.

Notice that both braids,αk andβk, have the same length 2k in Artin’s generatorsσi ,
meaning that the shortest word representing any of them has length 2k.

The reason why there is a principal difference in the growth of the complexity of
curve diagramsαk · E andβk · E is thatα is a so-called pseudo-Anosov braid, whereas
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E

σ2σ1 · E (σ2σ1)
2

· E

σ−1
2 σ1 · E (σ−1

2 σ1)
2

· E (σ−1
2 σ1)

3
· E

(σ2σ1)
3

· E

Fig. 1. The diagramE in Dn consists ofn − 1 arcs, each intersecting the real axis once (the case
n = 3 is shown here). The top row shows curve diagrams of the braidsαk , the bottom row of the
braidsβk .

β3
= 12, where1 is the Garside fundamental braid, i.e. the half-twist of all strands at

once.
Very roughly speaking, applying repeatedly the same twist1 entangles the curve

diagram much more slowly than applying first one twist, then another one, then again a
different one etc.

This example motivates the following modification of the notion of braid length. First,
for 1 ≤ i < j ≤ n let1ij denote the half-twist of strandsi throughj :

1ij = (σi . . . σj−1)(σi . . . σj−2) . . . σi . (1)

This is a generating set ofBn, which contains Artin’s standard generators:σi = 1i,i+1,
and the Garside fundamental braid:1 = 11n.

Definition 1.1. By the1-lengthof a wordw of the form

w = 1
k1
i1j1

. . . 1
ks
isjs
, (2)

wherekt 6= 0 and1it ,jt 6= 1it+1,jt+1 for all t , we shall mean

`1(w) =

s∑
i=1

log2(|ki | + 1).

For a braidβ ∈ Bn we define

`1(β) = min{`1(w) | the wordw representsβ}.
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Obviously, for any braidβ, we have

`1(β) ≤ `(β),

where` denotes the ordinary braid length. Note that the1-length is in general not an
integer.

Definition 1.2. We define thecomplexityof a braidβ as

c(β) = log2 ‖β · E‖ − log2 ‖E‖.

One of the main results of this paper is the following.

Theorem 1.3. The complexity and the1-length of a braid are comparable. More pre-
cisely, there exist constantsC1, C2 such that

c(β) ≤ C1 · `1(β) and `1(β) ≤ C2 · n · c(β) (3)

for anyβ ∈ Bn.

The constantsC1, C2 will be given in (4), (5) below. We stress that they are independent
of the number of strandsn.

Sections 2.1 through 2.4 are devoted to the proof of Theorem 1.3.

2. Proof of the main result

2.1. Integral laminations

Curve diagrams that we consider belong to a wide and very natural class of objects called
laminations, which are defined without any reference to the braid groups.

Definition 2.1. An integral laminationin Dn is a non-empty unionL of finitely many
disjoint simple closed curves and properly embedded arcs inDn such that

1) there are no bigons enclosed by the arcs ofL and∂Dn with no puncture inside;
2) no closed component ofL bounds a disk with no or just one puncture inside;
3) the endpoints of arcs ofL are distinct fromR ∩ ∂Dn and there is an equal number of

them above and belowR.

In particular, conditions 1) and 2) of this definition imply that all curves that can appear
as connected components of a curve diagram have the property that they get tangled
under the action of some braids. There is only one exception to this rule: a closed curve
“parallel” to the boundary ofDn may be present in an integral lamination, even though it
does not get tangled under any self-homeomorphism ofDn.

Sometimes we may call integral laminations just laminations for simplicity. The gen-
eral notion of a lamination will not be needed here.
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Integral laminations are regarded modulo isotopy inDn fixing the boundary. As in the
case of curve diagrams, by such an isotopy any integral lamination can be made tight with
respect to the axisR.

In what follows, all integral laminations are assumed to be tight with respect toR
unless otherwise specified. In some cases, for technical reasons, we shall consider lam-
inations that are “almost tight” with respect toR. Namely, some laminationsL that we
consider have exactly one puncture-free bigon enclosed byL andR. However, lamina-
tions are always assumed to be transverse toR.

We do not distinguish between two laminationsL1 andL2 if L2 is obtained fromL1
by an isotopy ofDn preservingR. In this case we writeL1 = L2. If L1 andL2 are related
by an isotopy ofDn not necessarily preservingR, we writeL1

.
= L2. Thus, if bothL1

andL2 are tight with respect toR, thenL1
.
= L2 impliesL1 = L2.

The set of isotopy classes of laminations inDn will be denoted byLn. The groupBn
acts onLn in the natural way.

Definition 2.2. A connected component of an integral lamination is said to berelaxedif
it intersects the axisR at most twice. A laminationL is said to berelaxedif all connected
components ofL are relaxed.

A connected component of a lamination is calledeven(respectively,odd) if it inter-
sects the axis an even (respectively, odd) number of times.

If a laminationL has the formβ ·E, then each connected component ofL is odd. Notice
that if a laminationL is very complicated, then it may be quite difficult to decide if all its
components are odd, until we have untangled it.

We shall also make use of the following technical definition.

Definition 2.3. For an integral laminationL in Dn (not necessarily tight with respect
to R), by a closureof L we shall mean the unionL of pairwise disjoint simple closed
curves in the complex plane such thatL ∩ Dn coincides withL, andL \ Dn is either
empty or consists of arcs intersecting the axisR exactly once, on the left ofDn. We shall
viewL up to a homeomorphism of the plane preserving the horizontal axis. Clearly,L is
unique up to such homeomorphisms.

Curve diagrams as defined in Section 1 are particular cases of laminations. Our basic
curve diagramE is an example of a relaxed lamination.

The norm of a lamination (not necessarily tight with respect toR) is defined in the
same way as for curve diagrams:‖L‖ = #(L ∩ R). Notice thatL1

.
= L2 does not nec-

essarily imply‖L1‖ = ‖L2‖, if at least one of the laminationsL1 or L2 is not tight with
respect to the real axis. However, as we have mentioned all laminationsL are assumed to
be tight if not otherwise specified.

Lemma 2.4. For any laminationL in Dn, any1 ≤ i < j ≤ n, andk ∈ Z,

‖1kij · L‖ ≤ (2|k| + 1) · ‖L‖.
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The proof, which is easy, will be left as an exercise to the reader.

Proof of the easy part of Theorem 1.3.Let β ∈ Bn be represented by the word (2). For
t = 0, . . . , s, putβt = 1

kt+1
it+1jt+1

. . . 1
ks
isjs

, so thatβs = 1 andβ0 = β. Then Lemma 2.4
implies

c(β) = log2 ‖β · E‖ − log2 ‖E‖ =

s∑
t=1

(log2 ‖βt−1 · E‖ − log2 ‖βt · E‖)

=

s∑
t=1

(log2 ‖1
kt
it jt

· (βt · E)‖ − log2 ‖βt · E‖)

≤

s∑
t=1

log2(2|kt | + 1) ≤ log2 3 ·

s∑
t=1

log2(|kt | + 1) = log2 3 · `1(w),

which gives the first inequality in (3) with

C1 = log2 3. (4)
ut

The difficult part of Theorem 1.3, i.e. the second inequality in (3), will be a consequence
of the following claim.

Theorem 2.5. For any integral laminationL inDn, there exists a braidβ ∈ Bn such that
β · L is relaxed and

`1(β) ≤ 9n · log2 ‖L‖.

Remark 2.1. Note that if a lamination does not have the form of a curve diagram, then
there may be more than one braid untangling it.

Thus the constantC2 in (3) can be set to

C2 = 9. (5)

Before embarking on the proof of the theorem, we make a remark on hownot to prove
this result. A naive approach could be to try to proceed by analogy with the proof of the
easy part of Theorem 1.3, namely, to show that for a non-relaxed integral laminationL

there exists a braidβ of the form1kij such that

log2 ‖β · L‖ ≤ log2 ‖L‖ − c · `1(β)

with some positive constantc independent ofL, and then apply induction. Unfortunately,
this does not work, because no such constantc exists. In other words, the function

ψ(L) = inf
β=1kij ; ‖β·L‖<‖L‖

`1(β)/(log2 ‖L‖ − log2 ‖β · L‖)

is unbounded. For instance, forL = 1N121
N
34 · E, we find thatψ(L) is comparable to

logN/(log 2N− logN) = log2N , and thus grows without bound asN → ∞. Moreover,
changing the definition of the norm‖·‖ in any naive way does not help.

Instead of going this way, we shall apply a very powerful technique due to Agol, Hass,
and Thurston [3]: we use a certain complexity function which depends not only on the
lamination, but also on the history of the untangling process so far.
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2.2. The orbit-counting algorithm of Agol, Hass, and Thurston

In this section, we give a brief account of Agol, Hass and Thurston’s technique, adapted
to the special case which is relevant for our purposes, and rephrased in a language which
is more convenient for us.

By [i, j ] with i, j ∈ Z we denote the sequence

i, i + ε, i + 2ε, . . . , j,

whereε = ±1 = sign(j − i), and call such a sequence aninterval. By the lengthof the
interval [i, j ] we shall mean the number of elements in it, i.e.,|i − j | + 1.

For two intervals [i, j ] and [k, l] of equal length, we define theinterval identification
[i, j ] ↔ [k, l] as the following symmetric relation inZ:

i + pε1 ↔ k + pε2 for all p = 0, . . . , |i − j |,

whereε1 = sign(j − i) andε2 = sign(l − k). (The interval identification [i, j ] ↔ [k, l]
is not distinguished from [j, i] ↔ [l, k] and [k, l] ↔ [i, j ].)

Definition 2.6. An interval identification system(IIS for short)S is an interval[1, N ],
N > 0, endowed with a finite collection of interval identifications

[it , jt ] ↔ [kt , lt ], t = 1, . . . , r, (6)

within it: it , jt , kt , lt ∈ [1, N ]. The numberN is called thenormof S and denoted‖S‖.

For such an interval identification systemS we denote by∼S the equivalence relation in
[1, N ] generated by the aggregate of all identifications (6). The set [1, N ]/∼S of equiva-
lence classes will be denoted by�S .

The Agol–Hass–Thurston algorithm that we are going to adapt computes the size of
�S in time polynomial in(logN, r). Note that all naive algorithms one may think of
immediately consume time linear inN , which is much worse.

The Agol–Hass–Thurston machinery was originally developed for counting the num-
ber of connected components of a normal surface given by its Haken coordinates. We
shall apply it to simpler geometrical objects and for quite a different purpose.

Namely, we shall consider the IISs that are naturally associated with (the closure of) a
laminationL cut by a ray(−∞, a) ⊂ R. The connected components of the cut lamination
define an identification relation between the intersection pointsL∩ (−∞, a). The formal
definition is as follows.

Definition 2.7. Let L be the closure of a laminationL in Dn which is not necessarily
tight with respect to the real axis. LetP1, . . . , PM , M = ‖L‖ be the intersections ofL
with the axisR, numbered from left to right, and letS be an IIS withN = ‖S‖ ≤ M. We
say thatL carriesS if the following holds:

1) i ↔ j in S if and only if the pointsPi andPj are connected by a segment ofL not
passing through aPt with t ≤ N ;

2) for any interval identification[it , jt ] ↔ [kt , lt ] in S, there is a stripRt in the complex
plane bounded by the straight line segmentsPitPjt , PktPlt ⊂ R and two segments
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γt , γ
′
t ofL with ∂γt = {Pit , Pkt }, ∂γ

′
t = {Pjt , Plt }. (The arcsγt andγ ′

t are allowed to
coincide, in which caseRt is just an arc.) ThebasesPitPjt , PktPlt of the stripRt may
overlap and even coincide; besides that,Rt must be embedded;

3) the stripsRt are disjoint from each other except at the axisR.

Not every IIS is carried by a lamination. For example, being carried by a lamination
imposes the obvious restriction that every integral point in the interval [1, N ] is involved
in exactly two interval identifications, which is not true in general. Thus, what we consider
is a particular case of the Agol–Hass–Thurston algorithm.

For the rest of the paper, we shall never consider IISs or integral laminations in iso-
lation, but always an IISS, carried by an integral laminationL. Thus in our situation, it
will be convenient to use the geometrical language instead of the combinatorial one. In
particular, we shall refer to the elements of�S as connected components ofL rather than
equivalence classes for∼S .

We shall assume that the whole picture of an integral lamination is rescaled so that
the pointsPt , t = 1, . . . , N , coincide with the integral points 1, . . . , N on the real axis.
Formally, byrescalingwe mean a homeomorphism of the plane of the form(x, y) 7→

(ϕ(x), y), whereϕ is an increasing function. Clearly, a rescaling preserves the combina-
torial structure of a lamination.

We shall also speak of astrip [i, j ] ↔ [k, l] instead of an interval identification
[i, j ] ↔ [k, l]. Notice that such a strip carries a little more information than the corre-
sponding interval identification because in the complex plane it can be attached “from
above” and “from below” to the intervals [i, j ] and [k, l]. We shall always assume that
this above-below information is included in the structure of the ISSS.

By thewidth of a stripR = ([i, j ] ↔ [k, l]) we shall mean the number of connected
components ofL∩ (R \ ∂0R), where∂0R stands for the union of the bases ofR. Thus the
width ofR is equal to the length of the bases [i, j ], [k, l] of R, i.e. |i − j | + 1. (Note that
a strip of width one geometrically looks like a strip of zero width.)

Example 2.1. Fig. 2 shows the closure of the laminationL = (σ−1
2 σ1)

2
· E endowed

with the following interval identification systems:

(a) N = 26, {[1,6] ↔ [12,7], [13,19] ↔ [26,20], [1,1] ↔ [26,26], [2,2] ↔ [3,3],
[4,14] ↔ [25,15]};

(b) N = 25, {[1,6] ↔ [12,7], [14,19] ↔ [25,20], [1,1] ↔ [13,13], [2,2] ↔ [3,3],
[4,14] ↔ [25,15]};

(c) N = 19, {[1,6] ↔ [12,7], [4,9] ↔ [14,19], [1,1] ↔ [13,13], [2,2] ↔ [3,3],
[10,14] ↔ [19,15]};

(d) N = 14, {[1,6] ↔ [12,7], [4,4] ↔ [14,14], [1,1] ↔ [13,13], [2,2] ↔ [3,3],
[5,9] ↔ [14,10]}.

In each picture, there are five strips in total, two of them of width one, except in (d), where
three strips are of width one.

In all these pictures, the strip [1,6] ↔ [12,7] is attached to both bases from above.
The strip [1,1] ↔ [13,13] in (b)–(c) is attached to{1} from below and to{13} from
above.
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(a) (b)

(c) (d)

Fig. 2. Four IISs carried by the lamination(σ−1
2 σ1)

2
· E. The sequence (a)→(b)→(c)→(d) is

obtained from (a) by successive transmissions.

As this example demonstrates, a lamination may carry many different interval identi-
fication systems. IfL carriesS with given‖S‖ = N , then the relation∼S is completely
defined byL. This might suggest thatS is uniquely defined byL andN , but this is not
necessarily so. Indeed, the structure ofS assumes fixing a collection of interval identifi-
cations, and therefore one can genuinely change an IIS by replacing an interval identifi-
cation [i, j ] ↔ [k, l] of width at least two by two interval identifications [i, p] ↔ [k, q],
[p + ε, j ] ↔ [q + ε′, l], wherep ∈ [i, j − ε], ε = sign(j − i), ε′ = sign(l − k).
Geometrically, this means that some stripRt has been cut into two parallel strips. This
transformation truly changes the IIS while leaving bothN and the underlying lamination
L invariant.

The idea of Agol–Hass–Thurston’s orbit counting algorithm is to successively sim-
plify an IIS by so-calledtransmissions. In a sense, this algorithm is a generalization of
the well-known Euclid algorithm for finding the greatest common divisor of integers.

In our specific situation it works as follows. The input is an interval identification
systemS which is carried by an integral laminationL. We define a connected component
counter, which we set initially to zero. At the “rightmost point”N = ‖S‖ of the interval
[1, N ] there are exactly two strips attached, one from below and the other from above.
SupposeRt = ([it , N ] ↔ [kt , lt ]) is the wider of the two (no matter which if they happen
to have the same width).

It may even happen that those two strips coincide, which means thatkt = it , lt = N .
In this case, we advance the connected component counter byN − it + 1 and remove the
stripRt from S. At the same time, we replaceN by it − 1. Intuitively, after this operation
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some components of the laminationL are no longer “covered” by any strip ofS. This
operation is calledremoving an annulus. It is illustrated in Fig. 3(a).

Let us assume now thatlt 6= N . In this case we perform atransmission—a certain
transformation which we are going to explain next. Consider the setX of all subintervals
of [it , N ] that are bases of strips different fromRt . These strips will be referred so as
thedenominatorsof the transmission, whereas the stripRt will be called thenumerator.
Letm ∈ [it , N ] be the left endpoint of the leftmost interval fromX. We cut the stripRt
into a collection of parallel strips so that the base [it , N ] is cut precisely into subintervals
from X, and one more interval [it , m − 1] provided thatm > it . Then all pairs of strips
whose bases have just become matched are stuck together into longer strips, andN is
set tom − 1. This operation, which is called transmission, is illustrated in Fig. 3(b), and
examples are given in Fig. 2.

Thus, as a result of a transmission, the numerator and all the denominators are re-
placed with strips that are all, except at most one, obtained from the denominators by

w

(a)

(c)

width w̃

width v

width w̃

(b)

m

Ri , widthw

ktlt it N

w̃′ w̃

Fig. 3. (a) Removing an annulus; (b) a non-spiralling transmission; (c) a twice-spiralling transmis-
sion.
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attaching connected components of the cut numeratorRt . If m > it , then there is one
more strip of widthm− it + 1, which we call theremainderof the transmission.

There is one exception to the above rule: if the two bases ofRt overlap, i.e. we
havem − 1 = lt > it , then we can perform the previously explained transmission
d =

[
N−it+1
N−m+1

]
times at once. This is called ad-times spiralling transmission, and it is

illustrated in Fig. 3(c). The denominators and the remainder of such a transmission are
defined similarly to those in the non-spiralling case. In particular, the width of the remain-
der equals(N − it + 1)− d(N −m+ 1).

It is obvious that under a transmission, the number of elements in�S does not change,
the normN = ‖S‖ decreases, and the numberr of interval identifications inS does not
increase. Under an annulus removal operation, bothN andr decrease, and|�S | decreases
by the value added to the counter. So, after finitely many operations described above,
we end up with an empty IIS, and then the connected component counter indicates the
number of connected components of the initial IIS.

It is not at all obvious, however, that this procedure is efficient—in particular, that
only a relatively small number of transmissions is performed in the process.

Definition 2.8. TheAHT-complexitycAHT(S) of a non-trivial IIS

S = {[it , jt ] ↔ [kt , lt ] | t = 1, . . . , r}

is

cAHT(S) = r +

r∑
t=1

log2(|it − jt | + 1)−
1

2
log2 w̃,

wherew̃ is the width of the narrower strip attached toN = ‖S‖. If S is the trivial ISS, we
put cAHT(S) = 0.

Remark 2.2. In this definition, the summand−1
2 log2 w̃ looks quite artificial, and it was

not present in the original definition by Agol, Hass, and Thurston. Introducing it allows
us to prove a better estimate for the simplification effect of a transmission in our specific
case of laminations. Note that what we subtract is just one half of one of the summands
in the preceding sum, so we count the logarithm of the width of one selected strip with
weight one half, whereas all the logarithms of other widths are counted with weight one.

Lemma 2.9. (a) Performing a non-spiralling transmission onS reducescAHT(S) by at
least one.

(b) Performing a d-times spiralling transmission onS reducescAHT(S) by at least
log2(d + 1).

Proof. (a) The valuẽw in Definition 2.8 is the width of the “rightmost” denominator of
the transmission to be applied toS. Let w̃′ be the width of the rightmost denominator
in the next transmission step. In addition, letw be the width of the numerator of the
transmission.
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Suppose that the remainder of the transmission is not trivial. Then its width is exactly
w̃′, and we havew ≥ w̃ + w̃′. The transmission causes the following change of the
AHT-complexity:

cold
AHT − cnew

AHT = log2w −
1

2
log2 w̃ −

1

2
log2 w̃

′
=

1

2
log2

w2

w̃w̃′
≥ 1,

which follows from the fact that(a + b)2 ≥ 4ab for all a, b > 0.
If the remainder is trivial, then the new IIS has a smaller number of interval identifi-

cations, so we have

cold
AHT − cnew

AHT ≥ 1 + log2w −
1

2
log2 w̃ +

1

2
log2 w̃

′
≥ 1.

(b) Letw, w̃, w̃′ be as before. Suppose that the remainder is non-trivial and letv be
its width. Then the two strips attached to the rightmost point of the IIS obtained after the
transmission have widths̃w andv.

If w̃ ≤ v, thenw̃′
= w̃, and we have

cold
AHT − cnew

AHT = log2w − log2 v ≥ log2(d + 1),

becausew/v ≥ d + 1.
If w̃ ≥ v, thenw̃′

= v, and we have

cold
AHT − cnew

AHT = log2w −
1

2
log2 w̃ −

1

2
log2 v ≥

1

2
log2

(dw̃ + v)2

w̃v
≥ log2(d + 1),

sincew ≥ dw̃ + v and(na + b)2/ab > (n+ 1)2 for all a ≥ b, n ≥ 1.
Finally, if there is no remainder, then we have

cold
AHT − cnew

AHT = 1 + log2w −
1

2
log2 w̃ +

1

2
log2 w̃

′
≥ log2 d + 1 ≥ log2(d + 1),

sincew ≥ dw̃. ut

2.3. Relaxing integral laminations

In this section we prove the following claim, which is a “weaker version” of Theorem 2.5.

Theorem 2.10. For any integral laminationL in Dn, there exists a braidβ ∈ Bn such
thatβ · L is either relaxed or contains a relaxed even component, and

`1(β) ≤ 8n2
· (log2 ‖L‖ + 1).

Remark 2.3. For a laminationL that is not a curve diagram, Theorem 2.10 asserts that by
a braid of1-lengthO(log2 ‖L‖)we can “partially” untangleL so that an even component
is revealed. It is actually possible to untangle such anL completely by a braid of the
indicated1-length. The proof of this fact requires more technical details, which we prefer
to postpone until the next section.

The proofs of Theorems 2.5 and 2.10 follow essentially the same scheme, but the
argument for Theorem 2.10 is more “straightforward”. So, in this section, we explain
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the main principle that allows us to prove an inequality of the form`1(β) ≤ const(n) ·

log2 ‖L‖, whereas the next section contains details that allow making the const(n) grow
as slowly asO(n).

The basic idea is this: we think of our IIS as being made of a rigid horizontal line
and a number of rubber-rectangles attached to it, and after each transmission we allow the
picture to “relax”.

More rigorously, byrelaxinga laminationL we mean applying a braidβ so that the
lamination gets simpler, i.e., so as to have‖β ·L‖ < ‖L‖. For any curve diagram distinct
fromE, there may be many braids of the form1kij that relax it, and it is very easy to find

at least one of them. However, recursively applying relaxing braids of the form1kij in a
naive way until a relaxed lamination is reached may result in an untangling braid word of
lengthO(‖L‖), because it can be only guaranteed that each relaxation reduces the norm
of L by at least some additive constant. The use of the AHT algorithm allows one to make
a choice of a relaxation at each step of the untangling process so that the1-length of the
untangling braid word is of orderO(log‖L‖).

Our algorithm then works as follows: for a given integral laminationL, we construct
an IISS0 such thatL carriesS0 and‖S0‖ = ‖L‖. Then the construction of the previous
section yields a sequence

S0
d1

7−→ S1
d2

7−→ S2
d3

7−→ · · ·
dp

7−→ Sp = ∅, (7)

where by
d

7−→ with d ≥ 2 we denote ad-times spiralling transmission, by
1

7−→ a once-

spiralling transmission or a non-spiralling transmission, and by
0

7−→ the removal of an
annulus. Lemma 2.9 implies

p∑
i=1

log2(di + 1) ≤ cAHT(S). (8)

Moreover, for anyi = 1, . . . , p the IISSi is still carried by the laminationL.
We putL0 = L, and subsequently find laminationsL1, . . . , Lp such that, for any

i = 1, . . . , p, the following holds:

1) Li carriesSi ;
2) eitherLi = Li−1 orLi is obtained fromLi−1 by a relaxation,Li

.
= βi · Li−1;

3) Li is the simplest lamination satisfying 1) and 2) (in the sense that it has the minimal
norm).

It is not required here that all the laminationsLi are tight with respect toR. We remark,
however, that they will be not far from being tight, and most of them will actually be
tight. Indeed, the reader who just wishes to understand the principle of the algorithm may
safely forget about non-tight laminations.

If L has only odd components, then we end up with

Lp = β · L = E,

whereβ = βpβp−1 . . . β1. The desired relation between`1(β) and‖L‖ is then obtained
by estimatingcAHT(L) and`1(βi) for all i.
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Example 2.2. Consider again the closureL of the curve diagramL = (σ−1
2 σ1)

2
· E.

Fig. 2(a) shows the corresponding IISS0, and from the picture, one can guess the general
rule for choosingS0.

The systems of strips shown in Fig. 2(b), (c), (d) correspond to the lamination-IIS
pairs(L, S1), (L, S2), (L, S3), respectively. One can easily see that no braid will simplify
L if we require that the lamination obtained still carryS1 or S2. This is because the strips
in Fig. 2(b), (c) are relaxed, i.e. embedded in the plane “in the optimal way” with respect
to the number of intersections with the real axis.

(σ1σ
−1
2 σ1) · E

(σ−1
2 σ1)

2
· E

(a)

relax

σ2-action

(b)

Fig. 4. Part (a) is a continuation of Fig. 2 (the left hand side is the same as Fig. 2(d)). It gives
an example of a “relaxation”. Part (b) shows the corresponding relaxation of the curve diagram of
(σ1σ

−1
2 )2.

In Fig. 2(d), by contrast, one of the strips has two “unnecessary” intersections withR,
which can be cancelled if we apply the half-twistσ2. This is illustrated in Fig. 4. Thus, in
this example, we haveL1 = L2 = L, L3 = σ2 · L.

Now we give a formal description of the construction. Recall that we assume the
whole picture of the lamination to be rescaled so that the closureL intersects the real axis
in the points 1, . . . , N = ‖L‖.

First of all, we need to defineS0. In order to do so, we cut the laminationL along the
whole real axis, thus obtaining an identification relation↔ on the interval [1, N ], where
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N = ‖L‖. Then we collect each maximal family of parallel arcs of the cut lamination
into a single strip ofS0. In other words, we chooseS0 carried byL so that‖S0‖ = ‖L‖

andS0 has the minimal possible number of interval identifications (strips).

Lemma 2.11. We have

cAHT(S0) ≤ (2n− 1)(log2 ‖L‖ + 1).

Proof. The width of any strip of any IIS carried byL is obviously no larger than the norm
of L (unlessL is already relaxed). Therefore, it suffices to show that there are at most
2n− 1 strips inS0. This can be done in numerous ways, e.g., as follows.

OnS2
= C ∪ ∞, take a foliationF with singularities such that:

1) all connected components ofL are leaves ofF ;
2) F is transverse to the segmentI = (1, N) ⊂ R except at the punctures;
3) all the singularities ofF are simple (see Fig. 5) and the number of them is minimal

provided that there is a singularity of type 1 at∞.

Type 1 Type 2

Fig. 5.Singularities ofF .

We denote byk1 andk2 the number of singularities of type 1 and 2 shown in Fig. 5.
Then the singularities of type 1 may occur only at punctures, at the leftmost point ofDn,
and at infinity, so we havek1 ≤ n + 2. Moreover, we havek2 = k1 − 4, which follows
from the Poincaŕe–Hopf formulaχ(S2) =

1
2k1 −

1
2k2.

If a region complementary toI∪L, and not containing∞, containss ≥ 1 singularities
of type 2 then it is adjacent tos + 2 ≤ 3s strips of(L, S) lying on the same side ofR.
If the outermost region, in which∞ lies, containss ≥ 0 singularities of type 2, then it is
adjacent tos + 3 ≤ 3s + 3 strips. The sides of strips that are not part of the boundaries of
the just mentioned regions are in one-to-one correspondence with singularities of type 1
lying in I . Thus, for the numberr of strips, we have

2r ≤ 3(k1 − 4)+ 3 + (k1 − 1) ≤ 4n− 2,

which completes the proof of the lemma. ut

Now we proceed with describing the untangling process. Each pair(L, S), whereL is a
lamination carrying the IISS, defines a collection of strips. This motivates the following
notation:
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Definition 2.12. (a) A strip systemis a pair (L, S), whereL is a lamination andS is an
IIS carried byL. (In a strip system(L, S) the laminationL is not necessarily assumed
to be tight with respect toR.)

(b) For a stripRt of a strip system, we call the number of connected components inRt \R
the lengthofRt .

(c) A strip system(L, S) is said to berelaxedif all strips in it are of length≤ 2 and all
the connected components ofL that are not covered by strips are relaxed.

Clearly, a strip system is not relaxed if and only if there is a deformation of the complex
plane that preserves the bases of the strips and makes at least one of them shorter. The
idea of such a deformation is to make the strips tight with respect to the axisR. However,
it may be impossible to find such a deformation if we require punctures to be fixed during
the deformation. So, in a sense, some punctures provide an obstruction to the relaxation.
All the obstructing punctures are located on the right of the right base of the remainder.

Definition 2.13. Letα be a semicircular arc in the complex plane such that∂α = {P,Q}

⊂ R, whereP is a puncture andQ is not. Bysliding the punctureP alongα we mean a
homeomorphismϕ of the complex plane such that:

1) ϕ is identical outside a small neighbourhoodU of α;
2) U does not contain any other puncture exceptP ;
3) ϕ takesP toQ.

Viewed up to rescaling, each sliding-a-puncture operation gives rise to a braid. The crucial
observation now is that the corresponding braid can be decomposed into two or fewer1s:

1εij1
−ε
i,j±1,

whereε = ±1 and, by definition,1ii = 1. Such a braid is called semicircular in [26].
It is also important to note that in some cases, we can slide a few punctures simulta-

neously by applying a braid of1-length≤ 2. This occurs if we slide the punctures along

Fig. 6.The sliding of these three punctures is represented by1261
−1
23 and by1−1

56126.
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“parallel” arcs, and there are no other punctures between the moving ones and between
their destinations (see Fig. 6). The corresponding braid can be represented in the form
1εij1

−ε
ij ′ and in the form1εij1

−ε
i′j

.
We are now ready to describe the untangling process completely. For a given lamina-

tionL, we start by finding the initial IISS0. We setL0 = L.
Then, for eachi = 1,2, . . . we do the following. First, we examine the strip sys-

tem(Li−1, Si−1), which is relaxed by construction. One of the following situations must
occur:

1) Si−1 = ∅, which means thatLi−1 is relaxed. In this case, we terminate the procedure.
2) An annulus removal operation applies toSi−1. The strip to be removed contains only

relaxed components ofLi−1. If at least one of them is even, we terminate the pro-
cedure. If all of them are odd, we remove the annulus, setLi = Li−1, βi = 1, and
proceed as before. One can actually see that at this point the lamination is already
untangled, so, after removing a few annuli the process will be terminated.

Fig. 7.Punctures should not be slid out ofDn.

3) A transmissionSi−1
di

7−→ Si applies toSi−1. If the strip system(Li−1, Si) is still
relaxed, we setLi = Li−1, βi = 1 and proceed as before. If not, we slide the punc-
tures that obstruct the relaxation, along arcs parallel to the arcs ofL until they reach
the bases of some strips. After that we deformLi−1, keeping the new positions of
punctures fixed, so as to reduce the number of intersections withR on the right of
Ni = ‖Si‖ as much as possible. (In most cases this just means to make the lamina-
tion tight with respect toR for the new positions of punctures. However, an example
of a situation where this isnot the case is given in Fig. 12.) This replacesLi−1 by
Li

.
= βi · Li−1, where the braidβi is obtained by combining all the slidings. The

strip system(Li, Si) is now relaxed, and we proceed as before. However, there is an
exception: ifLi−1 contains an even non-closed component, then we may not be able
to slide some obstructing puncture so as to let the strip system get relaxed (see Fig. 7).



820 Ivan Dynnikov, Bert Wiest

In this case, we apply the slidings until the even component ofL gets relaxed in the
sense of Definition 2.2 (although the strip system is not yet relaxed in the sense of
Definition 2.12) and terminate the procedure. One last note: sometimes there may be
more than one way to slide an obstructing puncture. If so, we choose the way that
allows moving the puncture farther to the right.

The key ingredient of the proof of Theorem 2.10 is the following bound on the lengths of
the braidsβi .

Lemma 2.14. For all i = 1, . . . , p we have

`1(βi) ≤ 4n · log2(di + 1). (9)

Proof. The assertion is non-trivial only in the transmission case,di ≥ 1. We consider the
non-spiralling case (di = 1) first. In Fig. 8 all possible types of obstructing punctures are
indicated. In each case, we need to slide such a puncture at most twice. Since the number
of punctures to be slid is not larger thann, we have in this case:

`1(βi) ≤ 2 · 2 · n = 4n · log2(di + 1).

Now we turn to the case of a spiralling transmissionSi−1
di

7−→ Si . Fig. 9 shows
how the obstructing punctures should be slid. There are necessarily some punctures that
must be slid 2d times. If there are no more obstructing punctures and no punctures at
the left base of the numerator, the whole spiral can be untwisted by a braid of the form

(b)

(a)

Fig. 8.How to relax after a transmission, in the non-spiralling case.
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Fig. 9.How to relax after a transmission, in thed-times spiralling case.

1±2d
ij . There is, however, a complication, if some obstructing punctures are at a smaller

distance than 2d from their final destination: during the untwisting process, more and
more punctures need to be “picked up”. For instance, in Fig. 9 we have a twice-spiralling
relaxation, but after the first two half-turns of three punctures, a fourth puncture gets
picked up.

Let there be obstructing punctures at distancesk1, . . . , kq from their final destination,
2d = k1 > · · · > kq ≥ 0, where we regard all punctures within the left base of the
numerator also as obstructing (even though they may be at distance zero from their des-
tination). Without loss of generality we may assume that there is exactly one puncture at
the centre of the spiral.

In order to deliver all obstructing punctures to their destinations, we first apply the
(k1 − k2 − 1)st power of the half-twist involving the “farthermost” punctures and the
central puncture. Now we have to pick up the punctures that are at distancek2 from their
destination. We do this by sliding them back one step. Now they are in a row with the
punctures from the first group and all of them are at distancek2+1 from their destination.
We apply the(k2 − k3)th power of the half-twist involving all these punctures and the
central puncture, then pick up the next portion of punctures, and so forth.

The total number of punctures picked up during the untwisting is at mostn − 2, and
we haveq ≤ n − 1. Picking up each puncture “costs” us two1s. Thus in this case the
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1-length ofβi is bounded from above by

2(n− 2)+

q∑
i=1

log2(ki − ki+1) ≤ 2(n− 2)+ (n− 1) log2(2d) < 4n · log2(d + 1),

where we setkq+1 = −1. We leave it to the reader to treat the case when some even
component ofL gets relaxed during the untwisting of the spiral. ut

Proof of Theorem 2.10.This is now an easy corollary to Lemmas 2.11, 2.9, and 2.14: we
start with an IISS0, carried by the laminationL, of AHT-complexity at most(2n − 1)
· (log2 ‖L‖ + 1). Then we apply alternately transmission moves and relaxation moves.
During theith transmission, the AHT-complexity gets reduced byat leastlog2(di + 1),
whereas in the subsequent relaxation move a braid of1-lengthat most4n · log2(di + 1)
is applied. Since the AHT-complexity cannot take negative values, the cycle must stop
before a braid word of1-length 4n · (2n− 1) · (log2 ‖L‖ + 1) has been spelt out. ut

Remark 2.4. The untangling process described in this section has been implemented
as amaple -worksheet by Michel Bonnefont and Erwan Hillion. Their program, which
draws pictures of both the curve diagrams and the interval identification systems, is freely
available [6].

2.4. Optimizing the untangling procedure

In this section we modify the arguments of the previous section so as to obtain a proof of
Theorem 2.5. We use a very similar construction, but modify the definitions ofS0, βi , and
Li . In order to distinguish from the previous constructions, we add a prime in the notation:
S′

0, β ′

i , L
′

i . Instead of Lemmas 2.11 and 2.14, we shall get the following estimates:

cAHT(S
′

0) < 3n · log2 ‖L‖ − 3n, (10)

`1(β
′

i) ≤ 3 · log2(d
′

i + 1), i = 1, . . . , p′, (11)

`1(β
′

p′+1) ≤ 2n. (12)

which together with Lemma 2.9 imply Theorem 2.5. Thus the achievement is to get rid
of the factorn in the estimate (11), which is the counterpart of (9), at the expense of
enlarging the constant in (10) and getting a more involved construction.

The reason for the factorn appearing in (9) is that we do not know how many punc-
tures we need to slide at each relaxation step, and we estimate the number very roughly
by n. The idea is now to move almost all those punctures at once, using the trick indi-
cated in Fig. 6. To this end, we must make sure that there are no punctures in between the
destination points, so that the moved punctures do not get shuffled with the others.

Once the new untangling process is described, it is easy, though tiresome, to verify
that it works and relations (10), (11), (12) hold. We skip some details of this checking,
which contains not much new compared with the previous section. What we do in detail
is describing the new rules for relaxing.
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First we recall that laminations and their closures that we consider are forbidden to
pass through the leftmost point of the diskDn. The reader might have noticed that the
role of this point in our figures is similar to those of punctures. Now it will become even
more similar. We call this point thefalse punctureand mark it by∗ in the figures.

During the untangling process, we shall treat the false puncture almost in the same as
a “true” one. Namely, we consider the closureL of the initial laminationL as an ordinary
lamination in an(n + 1)-punctured diskDn+1 whose punctures are the same as before
plus the false puncture.

Denote byι the inclusionBn → Bn+1 given byι(σi) = σi+1. At the ith step of the
untangling process, the relaxing braidβ ′

i will be, in general, a braid fromBn+1. However,
the resulting braidβ ′

p′+1 . . . β
′

1 will lie in ι(Bn): β ′

p′+1 . . . β
′

1 = ι(β). This is achieved by
organizing the untangling process so that:

(i) a true puncture is never slid below the false one;
(ii) the false puncture is never slid; the transmission-relaxation procedure is terminated

as soon as both bases of the numerator of the transmission to be applied are on the
left of ∗, or we getS′

p′ = ∅;
(iii) once a true puncture has been moved to the left of∗, it stays untouched until the final

step, when all true punctures that have been slid to the left of∗ are slid towards the
right of ∗ along arcs in the upper half-plane; the additional braidβ ′

p′+1 does this job.

It is not hard to show (using Lemma 3.10 below) that

`1(β) ≤

p′
+1∑
i=1

`1(β
′

i). (13)

A base of a strip will be called anA-baseif the strip approaches it from above, and a
B-baseotherwise (‘A’ stands for ‘above’ and ‘B’ for ‘below’). To each strip, we associate
its typethat can be either AA, AB, BA, or BB depending on the types of the bases: the
first letter indicates the type of the left base, and the second of the right one. If the bases
of the strip coincide, it can be thought of as an AB- or BA-strip, this does not matter.

A strip system(L, S) is said to bealmost relaxedif the length of all its BB-strips is
not larger than three, and for all the other strips not larger than two. As before,L is not
assumed to be tight with respect to the axis, but all puncture-free bigons enclosed byL

andR must be on the right of‖S‖.
We define the new untangling procedureL = L′

0 7→ L′

1 7→ · · · so as to comply with
the following rules:

(iv) S′

0

d ′

1
7−→ S′

1

d ′

2
7−→ S′

2

d ′

3
7−→ · · ·

d ′

p′

7−→ S′

p′ is a sequence of transmissions and annulus
removal operations;

(v) for anyi = 0, . . . , p′, the strip system(L′

i, S
′

i) is almost relaxed;
(vi) for anyi = 1, . . . , p′ we haveL′

i

.
= β ′

i · L′

i−1 with someβ ′

i ∈ Bn+1;
(vii) for anyi = 0, . . . , p′, the interiors of all strips of(L′

i, S
′

i) and their A-bases are free
of punctures; the false puncture∗ is not contained in any (A- or B-) base of a strip.
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The IIS S0 from the previous section (which, we recall, has at most 2n − 1 strips)
does not in general satisfy condition (vii). This is because some punctures may sit on the
A-bases of strips, and a base of a strip may contain∗. We resolve this by cutting those
strips into a few parallel ones. This results in enlarging the number of strips by at most
n+ 2, and one can show that the number of strips will be enlarged exactly byn+ 2 only
if it was strictly smaller than 2n− 1 before cutting. So, the numberr of strips inS′

0 is at
most 3n.

One now obtains (10) as follows. Letw1, . . . , wr be the widths of the strips ofS′

0. If
L is not relaxed, thenr ≥ 4. We also have

‖L‖ ≥
r

2
,

r∑
i=1

wi ≤ ‖L‖.

This implies

cAHT(S
′

0) ≤ r +

r∑
i=1

log2wi = r + log2

( r∏
i=1

wi

)
≤ r + log2

(∑r
i=1wi

r

)r
≤ r + r(log2 ‖L‖ − log2 r)

= 3n · log2 ‖L‖ − (3n− r) log2 ‖L‖ − r log2
r

2

≤ 3n · log2 ‖L‖ − 3n · log2
r

2
≤ 3n · log2 ‖L‖ − 3n.

Provided that conditions (v), (vii) above are satisfied up toi = k−1, we shall explain
how to defineβ ′

k. For simplicity, we will assume that, during the untangling process, no
two punctures become immediate neighbours so that the lamination does not traverse the
interval between them. One can easily show that this is not a loss of generality, since such
two punctures can be treated as a single one.

The notion of obstructing puncture was defined somewhat loosely in the previous
section. Now we make it more precise. To this end, consider the strip system(L′

k−1, S
′

k−1)

and the transmissionS′

k−1

d ′
k

7−→ S′

k.

Definition 2.15. An arcα ⊂ L′

k−1 will be said to beessentialif it satisfies the following
conditions:α lies in the lower half-plane, and we have∂α ⊂ R; the left endpoint ofα is

located in the right base of the numerator of the transmissionS′

k−1

d ′
k

7−→ S′

k, but not in the
right base of the remainder.

By definition, an essential arc is contained in the numerator or in a denominator of the

transmissionS′

k−1

d ′
k

7−→ S′

k. We also remark that it has both its endpoints to the right of∗.
Our untangling process will be organized as follows: at each step, the essential arcs form
a family of parallel, concentric semicircles; in particular, it makes sense to talk about an
outermost essential arc. The strips of(L′

k−1, S
′

k) that require relaxation after the transmis-
sion will be exactly those that contain an essential arc of(L′

k−1, S
′

k−1). The relaxation is
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achieved by “pushing all essential arcs across the real line”. So, byobstructing punctures
we shall mean those punctures that are located between the endpoints of the outermost
essential arc.

Depending on the type of the numerator of the transmission, the following cases are
possible:

Case AA.In this case BB-denominators of length one with both bases participating in the
transmission cannot occur. Indeed, between those bases there must be a puncture, which
contradicts the requirement that all A-bases are free of punctures. Thus, any length one
BB-denominator has one of its bases further to the left. Such a denominator gives rise to
a length two AB- or BA-strip, which does not need to be simplified.

Fig. 10.Case where the numerator is of type AA.

All the other denominators are of AB type and length two, or BB type and length
three. The obstructing punctures should be slid along arcs parallel to the denominators
toward the right base of the numerator (by one1), and then along the numerator toward
the left base (two more1s); see Fig. 10. We make just one exception to this rule: if all
denominators are of type BB, then an obstructing puncture positioned on the immediate
right of the right base of the numerator (if there is one) does not participate in the second
sliding. This is not important for the moment but will be in the proof of Lemma 3.9 below.
In this case, we havè1(β ′

k) ≤ 3.

Case BB, length one.No relaxation is needed at this point, since every strip that is created
during the transmission is of AB type and length two, or of BB type and length three.

Case BB, length three.The obstructing punctures may be inside the right base of the nu-
merator and on the immediate right of that base. They are slid twice along the numerator
to the right (see Fig. 11). We have`1(β ′

k) ≤ 3.

Case AB, non-spiralling.The obstructing punctures, which are inside and on the immedi-
ate right of the B-base of the numerator, are slid twice along the numerator (see Fig. 12).
Again, we havè 1(β

′

k) ≤ 3.
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Fig. 11.Case where the numerator is of type BB, length three.

Fig. 12.Case where the numerator is of type AB, non-spiralling.
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Fig. 13.Case where the numerator is of type BA, non-spiralling.

Case BA, non-spiralling.All the denominators are of BB type. Those of length one must
have the other base further to the left. After the transmission, they give rise to BB-strips of
length three, which do not need to be relaxed for the moment. The denominators of length
three give rise to strips of length five or seven (see Fig. 13). The obstructing punctures
are first slid along arcs parallel to essential ones, and then once along the numerator. As
always, we havè1(β ′

k) ≤ 3.
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Spiralling case.The difficulty with punctures that need to be picked up (see the previ-
ous section) now disappears, because there are no punctures in the interior of any strips.

Thus we can simply apply1
2d ′
k

ij in the BA case and1
−2d ′

k

ij in the AB case, where the
half-twist1ij involves the punctures inside the spiral. We have`1(β

′

k) = log2(2d
′

k) <

2 log2(d
′

k+1). Note that in the BA spiralling case all the denominators are of type BB and
of length three. After the relaxation, the strips they give rise to are also of length three.

The transmission-relaxation process is terminated once the transmission “cutting
edge” has arrived at∗. Thus, during the process, whenever an obstructing puncture is
slid along an arc in the lower half-plane, the arc will be above the outermost essential arc,
and, therefore, on the right of∗. This guarantees that condition (i) holds.

As a result of the process, some true punctures have moved to the left of∗. At the very
end of the relaxation process, we slide them back along arcs in the upper half-plane so as
to get the simplest possible lamination. This yields a braidβ ′

p′+1 of 1-length at most 2n,
because at mostn punctures need to be slid (actually, it has1-length at mostn, but even
8n would be good enough for our purposes).

*

Fig. 14.The braidβ ′
i

returns true punctures into the disk. In the situation shown here, there are two
possibilities for the leftmost puncture, and just one possibility for the next one.

We remark that if the original laminationL contains even components, then there may
be no canonical choice forβ ′

p′+1 (see Fig. 14).
This completes our description of the optimized untangling procedure, and thus the

proof of Theorem 2.5.

Remark 2.5. In each braidβi ∈ Bn+1 just described, there is one strand that corresponds
to the false puncture∗. By removing this strand, we obtain a braidβ ′′

i ∈ Bn, and we have

β = β ′′

p′+1 . . . β
′′

2β
′′

1 .

Consequently, applying braidsβ ′′

1 , β
′′

2 , . . . to L may, in principle, eventually result in a
more complicated lamination than the original one. This may occur whenβ ′′

i corresponds
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to sliding a puncture to the left of∗. So, though the braidβ untangles the initial lamina-
tionL, the sequence

‖L‖, ‖β ′′

1 · L‖, ‖β ′′

2β
′′

1 · L‖, . . .

may not be decreasing.

3. Applications

3.1. Two equivalent metrics onBn

The1-length of a braid defined in Section 1 possesses the following obvious properties:

`1(β) = `1(β
−1) and `1(β1β2) ≤ `1(β1)+ `1(β2).

This means that the function

ρ1 : Bn × Bn → R, ρ1(β1, β2) = `1(β
−1
1 β2), (14)

is a distance onBn.
The analogous statement for the complexity function is not true: in general,c(β) 6=

c(β−1). However, it is true for the following modified complexity function. Put

c̃(β) = sup
L∈Ln

∣∣log2 ‖β · L‖ − log2 ‖L‖
∣∣. (15)

By definition, for allβ ∈ Bn, we havec(β) ≤ c̃(β) and

c̃(β) = sup
L∈Ln

∣∣log2 ‖β · (β−1
· L)‖ − log2 ‖β−1

· L‖
∣∣

= sup
L∈Ln

∣∣log2 ‖L‖ − log2 ‖β−1
· L‖

∣∣ = c̃(β−1).

For anyβ1, β2 ∈ Bn we have

c̃(β1β2) = sup
L∈Ln

∣∣log2 ‖β1β2 · L‖ − log2 ‖L‖
∣∣

= sup
L∈Ln

∣∣log2 ‖β1 · (β2 · L)‖ − log2 ‖β2 · L‖ + log2 ‖β2 · L‖ − log2 ‖L‖
∣∣

≤ sup
L∈Ln

∣∣log2 ‖β1 · L‖ − log2 ‖L‖
∣∣ + sup

L∈Ln

∣∣log2 ‖β2 · L‖ − log2 ‖L‖
∣∣

= c̃(β1)+ c̃(β2).

Thus the formula

ρL(β1, β2) = c̃(β−1
1 β2) = sup

L∈Ln

∣∣log2 ‖β−1
1 · L‖ − log2 ‖β−1

2 · L‖
∣∣

defines another metricρL onBn. The proof of the following claim is easy.
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Proposition 3.1. For either of the metricsρL andρ1, the standard injectionBn → Bn+1
is distance-preserving.

The main result of this section is

Theorem 3.2. The metricsρL andρ1 onBn are quasi-isometric, namely, for anyβ1, β2
∈ Bn with β1 6= β2,

log3 2 ≤
ρ1(β1, β2)

ρL(β1, β2)
≤ 9n.

Proof. The first inequality is deduced from Lemma 2.4 by analogy with the proof of the
easy part of Theorem 1.3. The second inequality follows from Theorem 2.5. ut

One can immediately deduce an analogous result for the groupBn/〈1
2
〉, i.e., the quotient

of then string braid group by its centre. This is the finite index subgroup of the mapping
class group of then+ 1 times punctured sphereS2

n+1 consisting of those elements which
fix the (n+ 1)st puncture.

The metricρ1 onBn induces a metric onBn/〈12
〉, which we shall still denoteρ1.

So by definition theρ1-distance of an elementβ of Bn/〈12
〉 from the trivial element

is mink∈Z ρ1(β12k,1Bn). Similarly, we can define an analogue of the metricρL for
Bn/〈1

2
〉. Geometrically, this means that two laminations onDn are regarded as equiv-

alent if one can be deformed into the other, where the deformation must preserve∂Dn
setwise, but not necessarily pointwise: all then − 1 endpoints of arcs can be slid simul-
taneously through an angle of 2πz (z ∈ Z) along the boundary. This modified notion
of equivalence yields a modified notion of complexity of a lamination, and thus an ana-
logue of the metricρL onBn/〈12

〉. Again, this metric shall still be denotedρL. As an
immediate consequence of Theorem 3.2 we have

Corollary 3.3. The metricsρL andρ1 onBn/〈12
〉 are quasi-isometric.

3.2. Teichm̈uller spaces

Among the metrics which are habitually imposed upon the Teichmüller spaceT (S) of a
surfaceS, there are notably theTeichm̈uller metric (which can be interpreted in terms of
stretch factors of extremal lengths of curves on the surface, see [17]), and W. Thurston’s
Lipschitz metric[25]. The latter metric can be interpreted in terms of stretch factors of
hyperbolic lengths of curves on the surface. This interpretation, which is due to Thurston,
will be recalled below. A theorem of Choi and Rafi [7] states that the distancesd(σ, τ )

between two pointsσ, τ in Teichm̈uller space according to the two metrics are the same up
to an additive constant, provided the two points lie in thethick partof Teichm̈uller space,
meaning that they possess no hyperbolic geodesics shorter than the Margulis constant.
In particular, the thick parts of Teichm̈uller space, equipped with these two metrics, are
quasi-isometric.

It should be mentioned that the Lipschitz “metric” is not actually symmetric, but could
easily be turned into a metric by symmetrizing. Moreover, the Lipschitz metric and its
symmetrized version are quasi-isometric on the thick part of Teichmüller space.
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We recall that there is a natural action of the mapping class group ofS2
n+1, and hence

of Bn/〈12
〉, on the Teichm̈uller spaceT (S2

n+1), and this restricts to a cocompact ac-
tion on the thick partTthick(S

2
n+1) of Teichm̈uller space. Thus for any fixed pointσ∗ in

the thick part, the orbit ofσ∗ under the action provides an embedding8 : Bn/〈12
〉 →

Tthick(S
2
n+1), β 7→ β · σ∗. Let us now equipTthick(S

2
n+1) with the restriction of the Teich-

müller, or equivalently, the Lipschitz metric on the full Teichmüller space (see [7]). The
aim of this section is to prove that the pullback metric on the braid group is, up to quasi-
isometry, either one of the metrics defined in the previous section. Thus the metric spaces
constructed in Section 3.1 turn out to be combinatorial models for the thick part of Te-
ichmüller space.

Proposition 3.4. The embedding8 : (Bn/〈12
〉, ρL) → (T (S2

n+1), dLipschitz) is quasi-
isometric.

It should be stressed that this result is quite easy to prove, and certainly not original. What
is more surprising is that, using Corollary 3.3 and Choi and Rafi’s comparison between
Teichm̈uller and Lipschitz metric on Teichm̈uller space [7], we obtain

Corollary 3.5. The following four spaces are mutually quasi-isometric:

(1) (Bn/〈12
〉, ρ1), (2) (Bn/〈12

〉, ρL),
(3) (Tthick(S

2
n+1), dLipschitz), (4) (Tthick(S

2
n+1), dTeichm.).

We understand that very similar results were independently obtained by K. Rafi [24] for
more general surfaces, using deep theorems like those of Masur and Minsky [19, 20] and
Minsky [21].

Proof of Proposition 3.4.We shall use the following notation. Iff, g : X → R are two
functions, whereX is any set, then we sayf andg arecomparable, and writef � g, if
there exist constantsC ≥ 1 andd ≥ 0 such that(1/C) ·g(x)−d ≤ f (x) ≤ C ·g(x)+d.

Now, for α an isotopy class of simple closed curves inDn, andσ a hyperbolic struc-
ture onDn (i.e., a point inT ) we shall denote bylσ (α) the hyperbolic length of the
shortest representative ofα, measured in the metricσ . According to Thurston [25], there
are two equivalent definitions of the Lipschitz metric, among them the following: ifσ, τ

are two hyperbolic structures, then

dLipschitz(σ, τ ) = sup
α
(log(lσ (α))− log(lτ (α)))

where the supremum is taken over all simple closed curves inDn. In particular, if we
try to measure the distance betweenσ and its translate under the action of a braidβ, we
obtain

dLipschitz(σ, β · σ) = sup
α
(log(lσ (α))− log(lσ (β · α)))

Now we recall the well-known fact that for any fixed pointσ∗ ∈ T , there exist constants
c, C > 0 such that

c · lσ∗
(α) ≤ ‖α‖ ≤ C · lσ∗

(α)
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for all α. That is,lσ∗
(α) and‖α‖ are in bilipschitz correspondence, and in particular, we

havelσ∗
(α) � ‖α‖. (The reason why this is true is that forsimpleclosed geodesic curves

α in S2
n+1, equipped with the metricσ∗, there are lower and upper bounds for the lengths

of the components of intersection ofα with the lower and upper half-planes.)
Moreover, there are global lower bounds onlσ∗

(α) (namely the Margulis constant)
and on‖α‖ (namely 2). Thus we can deduce that the logarithms of these quantities are
also comparable:

log(lσ∗
(α)) � log(‖α‖).

Now let α1, . . . , αk denote any finite family of simple closed curves with the property
that every simple closed curve inS2

n−1, except those enclosing a single puncture, can be
obtained from one of theαis by the action of some braid. We calculate

dLipschitz(σ∗, β · σ∗) � sup
α
(log(‖α‖)− log(‖β · α‖))

= sup
ζ∈Bn

sup
i=1,...,k

(log(‖ζ · αi‖)− log(‖βζ · αi‖))

� sup
ζ∈Bn

( k∑
i=1

(log(‖ζ · αi‖)− log(‖βζ · αi‖))
)

� sup
ζ∈Bn

(
log

( k∑
i=1

‖ζ · αi‖
)

− log
( k∑
i=1

‖βζ · αi‖
))
.

We shall fix one very particular choice for the familyα1, . . . , αk, namely the one
indicated in Figure 15—in particular, in our choice we havek = n−1. With this particular

α5

α1 α3 α4α2

Fig. 15.The curvesα1, . . . , αn−1.

choice for the familyα1, . . . , αk we have the following comparison with the complexity
of the curve diagramζ · E:

‖ζ · E‖ − n+ 1 ≤

n−1∑
i=1

‖ζ · αi‖ ≤ ‖ζ · E‖ + n− 1.
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In particular, we obtain

dLipschitz(σ∗, β · σ∗) � sup
ζ∈Bn

(
log

(n−1∑
i=1

‖ζ · αi‖
)

− log
(n−1∑
i=1

‖βζ · αi‖
))

� sup
ζ∈Bn

(log(‖ζ · E‖)− log(‖βζ · E‖)) � ρL(1Bn , β),

which is what we wanted to prove. ut

3.3. Dehornoy braid ordering

In 1991 Patrick Dehornoy discovered that the braid groupBn admits a left-invariant order-
ing [8]. His purely algebraic construction was based on the following notion ofσ -positive
braid word.

Definition 3.6. A braid wordw is said to beσk-positive(respectively,σk-negative) if it
containsσk, but does not containσ−1

k andσ±1
i with i < k (respectively, containsσ−1

k ,

but notσk andσ±1
i with i < k). If w contains noσ±1

i with i ≤ k, it is calledσk-neutral.
A braid wordw is said to beσ -positive(respectively,σ -negative) if it is σk-positive

(respectively,σk-negative) for somek ≤ n− 1. A braid wordw is said to beσ -consistent
if it is either trivial, σ -positive, orσ -negative.

Theorem 3.7 (Dehornoy [8]). For any braidβ ∈ Bn, exactly one of the following is
true:

1) β is trivial;
2) β can be represented by aσk-positive braid word for somek;
3) β can be represented by aσk-negative braid word for somek.

In the latter two casesk is unique.

Thus, it makes sense to speak aboutσ -positive andσk-positive (orσ -, σk-negative) braids.
It is then an immediate consequence that the relation< onBn defined by the rule:β1 < β2
if and only if β−1

1 β2 is σ -positive, is a left-invariant linear ordering onBn (see [8]).
It was noticed in [14] that this notion ofσ -positivity has a nice geometric interpreta-

tion in terms of curve diagrams. We refer the reader to the monograph [10] for a survey of
this and many other explanations of the phenomenon and different proofs of Dehornoy’s
theorem.

Although many approaches toσ -ordering have been developed since Dehornoy’s dis-
covery, the following question remains unsettled: is there a polynomial in` which is an
upper bound on the length of the shortestσ -consistent braid word representing a braid of
length`? Dehornoy’s original algorithms (in [8], and handle reduction [9]) and the algo-
rithm from [14] give only an exponential bound on the length of the shortestσ -consistent
representative.

At the end of the paper we shall present some further reasons for believing that a linear
bound exists. The aim of the current section is to solve a closely related problem, namely,
to give a positive answer to the question above with the ordinary braid length replaced
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by the1-length. This assumes the following extension of the notion ofσ -positive braid
word: a word in the alphabet{1ij }0<i<j<n is said to beσ -positive if, for somek < l, it
contains1kl , and contains neither1−1

kj nor1±1
ij with i < k and anyj . In other words, a

wordw in letters1ij is σ -positive (negative, neutral) if the word in standard generators
σi obtained fromw by expansion (1) is.

Theorem 3.8. Any braidβ ∈ Bn can be represented by aσ -consistent wordw in the
alphabet{1ij } such that

`1(w) ≤ 30n · `1(β). (16)

The following lemma plays a key rôle in the proof. Denote byE2 the lamination inDn
whose closure is a circle in the complex plane surrounding the leftmost puncture and the
leftmost point∗ of Dn. (The notation is motivated by the fact that this circle coincides
with the trivial curve diagramE in the casen = 2.)

Lemma 3.9. Letβ ∈ Bn be aσ1-positive braid, and letu be the braid word spelt out by
the untangling procedure of Section2.4applied to the laminationβ · E2. Then the braid
wordu is σ1-negative, the braidu · β is σ1-neutral, and

`1(u) ≤ log2 3 · 9n · `1(β). (17)

Proof. First of all, we remark that the algorithm of Section 2.4 constructs a sequence
of puncture slidings rather than a concrete braid word. In some cases such a sliding can
be written in two different ways; an example is shown in Fig. 6. More precisely then,
what we are going to prove is that,under an appropriate choiceof the decomposition
of the slidings into a product of1s at each step of the untangling procedure, we get a
σ1-negative wordu.

A sliding of a group of punctures, like the one shown in Fig. 6, is notσ1-neutral if
and only if one of the following occurs: the leftmost puncture is slid; or punctures are
slid over or under the leftmost (true) one. If none of these takes place, it does not matter
which decomposition,1εij1

−ε
ij ′ or1εij1

−ε
i′j

, we choose—both areσ1-neutral.
If a sliding of a group of punctures is notσ1-neutral, then its decomposition of the

form1εij1
−ε
i′j

is σ1-definite, and it isσ1-positive (respectively, negative) if and only if the
punctures are slid clockwise (respectively, counterclockwise).

Thus, in order to prove thatu is σ1-negative it suffices to show that all the clockwise
slidings that occur during untangling the laminationβ · E2 areσ1-neutral, but the whole
wordu is notσ1-neutral.

By construction, the braidu · β preservesE2, which implies that this braid isσ1-
neutral. Sinceβ is notσ1-neutral, the braid represented byu cannot beσ1-neutral, either.
Let us check thatσ1-positive slidings do not appear inu.

To this end, we must examine all the clockwise slidings and make sure that they do
not involve the leftmost puncture, i.e. the arcs of all clockwise sliding are always on the
right of the leftmost puncture.

Similarly to [14] one can show thatσ1-positivity of the braidβ is equivalent to the
following property of the laminationL = β ·E2, which is assumed to be tight with respect
to R:
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there is an arcγ ⊂ L lying in the lower half-plane with endpoints atR
such that the segment ofR bounded by the endpoints ofγ contains∗
and does not contain a true puncture. (?)

See also [10] for an explanation of the relation betweenσ -positivity and a (?)-like prop-
erty of curve diagrams.

The laminationL intersects the ray(−∞, ∗) ⊂ R exactly once, at the left endpoint
of γ . (This means, in particular, that there is only one arcγ satisfying (?).) This implies
that no puncture is slid out of the diskDn during untanglingL. Indeed, in the general
case, punctures can be slid out of the disk at the relaxation step that follows an AA- or
AB-transmission. One can see that, in both situations, any arc in the upper half-plane
along which a puncture is slid counterclockwise must lie in between two parallel arcs of
the lamination. Thus, sliding a puncture out of the disk may be forced only if the closure
of the laminationL intersects the ray(−∞, ∗) at least twice, which is not the case for
L = β · E2.

Thus, the braidβ ′

p′+1 that is composed of clockwise slidings and is a potential source
of aσ1-positive contribution tou is trivial.

Further, we claim that property (?) holds during the whole untangling process. Indeed,
the arcγ cannot be essential, so it always remains untouched. Thus property (?) is violated
only when a true puncture is slid to a point in between the endpoints ofγ , which is the
moment when the lamination gets untangled completely.

Now we can show that property (?) guarantees that no clockwise sliding involves the
leftmost puncture. That is, we have to exhibit a true puncture to the left of all arcs along
which clockwise slidings occur. This is done by revising, case by case, the relaxations
following different types of transmissions. The AB spiralling and non-spiralling cases are
trivial because the corresponding slidings are counterclockwise. In all the other cases, just
before the transmission, there must be an AA-strip whose left base is further to the left
than the right base of the numerator. LetR be the innermost such strip (R may be the
numerator in the AA case).

According to our transmission-relaxation rules, there must be a puncture (true or false)
P , say, between the bases ofR. In each individual case it is easy to show thatP is not
obstructing and that it lies to the left of the arcs along which clockwise slidings occur.
Thus ifP is a true puncture, then the clockwise slidings areσ1-neutral. We conclude by
noticing thatP cannot be the false puncture because otherwise property (?) would imply
the presence of a circle surrounding just∗, which is absurd.

It remains to prove estimate (17). This is done by applying the first inequality in
Theorem 1.3 and Theorem 2.5, and using the fact thatu is precisely the braid word for
which the estimate from Theorem 2.5 has been obtained:

`1(u) ≤ 9n · log2 ‖L‖ ≤ 9n · (log2 3 · `1(β)+ log2 ‖E2‖) = 9n · log2 3 · `1(β),

since‖E2‖ = 1. ut

Lemma 3.10. If a braid β is σ1-neutral then the shortest braid word representingβ
(where either the ordinary braid length or the1-length is used) isσ1-neutral.
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Proof. If β is σ1-neutral, then the string that starts in the leftmost position also ends in the
leftmost position. Now ifw is any braid word representingβ, then we can obtain another
braid wordw̃ representingβ which isσ1-neutral and at most as long asw in the following
way: we delete the string starting and ending in the leftmost position, and replace it by
a string that lies entirely to the left of all the other (true) strings. The wordw̃ is then
obtained fromw by removing some lettersσ±1

i , shifting indices of others:σ±1
i 7→ σ±1

i−1,
1
p
ij 7→ 1

p

i−1,j−1, and replacing some1pij with 1pi,j−1. If w was notσ1-neutral, theñw
is strictly shorter thanw. ut

Proof of Theorem 3.8.Without loss of generality we may assume thatβ is σk-positive
with somek < n. The proof is by induction onk. We skip the details of the induction
step, which is an easy consequence of Lemma 3.10, and show that the assertion of the
theorem holds for aσ1-positive braid.

Indeed, takeu from Lemma 3.9. Since the braidβ ′
= u ·β is σ1-neutral, Lemma 3.10

implies thatβ ′ can be represented by aσ1-neutral braid wordv of 1-length

`1(v) ≤ `1(u · β) ≤ `1(u)+ `1(β) ≤ (log2 3 · 9n+ 1) · `1(β).

The braid wordw = u−1v is thenσ1-positive, it representsβ and has1-length

`1(w) ≤ `1(u)+ `1(v) ≤ (2 log2 3 · 9n+ 1) · `1(β) ≤ 30n · `1(β). ut

3.4. Algorithmical issues

The proof of Theorem 2.5 presented above consists in an explicit description of an al-
gorithm that, given an integral laminationL, finds a word-representative of a braid that
untanglesL. In this section we discuss the efficiency of the algorithm and, more generally,
of the algorithmical treatment of the braid groups based on it.

First of all, we remark that our estimations for the running time of algorithms will
be made for the computational model calledRandom Access Memory Machine. Roughly
speaking, this means that we assume the input to be in a reasonable range, and estimate
the number of elementary operations of a realistic computer needed to implement the
algorithm. More precisely, we assume that the number of strandsn is “small enough”,
so that its record fits one standard unit of memory, and that any arithmetic operation on
integers between 0 andn takes constant time. This is a reasonable assumption because
actually it allowsn to be very large: if, say, four bytes are used to store an integer (which
is quite usual), thenn can be as large as 231. For other integers (which are not indices) we
will assume that their logarithm is “small” (i.e. smaller than 231).

Since even for reasonably long braid words the implementation of our algorithms may
need to operate with “large” integers, we will pay attention to the number of elementary
machine operations that are needed to perform an arithmetic operation on those integers.
The most frequently used operations will be addition, subtraction, and comparison. They
consume logarithmic time in the value of the larger operand, and we call themsimple.
Sometimes we will also need to perform divisions and multiplications. We use the fact
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that dividingk by l takesO(log l · log(k/ l)) elementary operations, whereas multiplying
k by l consumesO(logk · log l) operations.

The next important question is how the input/output data and the objects used in the
algorithm are presented. Our main objects are: braid words, laminations, and strip sys-
tems, so we briefly discuss their numerical presentations.

We will assume that words of the form (2) are presented by the corresponding se-
quences of integers:

s; i1, j1, k1, i2, j2, k2, . . . , is, js, ks .

Heres andit , jt with t = 1, . . . , s are “small” integers, whereaskt , t = 1, . . . , s, can be
“large”. This implies that the length of such a presentation ofw is of orderO(`1(w)).

The setLn of laminations inDn can be naturally identified withZ2n−2
\ {0} so that

the norm‖L‖ will become a norm inZ2n−2, and the action of each generatorσ±1
i ∈ Bn

will be given by a finite number of simple arithmetic operations on the coordinates of the
lamination. See [10, Chapter 8] and [11] for details, where a slightly different definition of
laminations is used, which results in two additional coordinates appearing in the “code”
of a lamination. (In order for the formulas in [11, 10] to work in our current settings,
one should set the two additional coordinates toan = 0, bn = +∞.) This implies the
following

Proposition 3.11. There exists an algorithmA1 that, given a wordw in the generators
1ij representing a braidβ, computes the curve diagramβ · E ∈ Ln = Z2n−2

\ {0} in
timeO(`(w) · `1(w)+ n).

The algorithmA1 expands the given wordw by using (1), thus obtaining a wordw′ in
σ±1
i -generators recorded in the usual way. Then it generates the initial laminationE and

applies, one after another, the letters ofw′ (from right to left) to the lamination.
This may be very inefficient ifw contains a subword1Nij with a very largeN . How-

ever, the action of the braid1Nij on a laminationL can be computed without expanding
the braid into a product ofσis.

Lemma 3.12. The action of1Nij on L can be computed inO((n + logN) · log‖L‖)

operations.

Proof. Let us look at the sequence of laminations1kij · L, wherek = . . . ,−2,−1,0,

1,2, . . . . For large|k| the laminations1kij · L have a big “spiral” surrounding punctures
i throughj , and the “thickness” of this spiral grows linearly withk. More formally, this
means the following.

Let k0 be an integer for which‖1k0
ij ·L‖ is as small as possible. Let us cutL along the

real axis and count the number of the resulting arcs having one endpoint between theith
andj th punctures, and the other endpoint outside this segment. In a sense, this is twice
the number of strings involved in the spirals of1Nij · L. Let this number bem and letL0
be the lamination consisting ofm circles surrounding puncturesi throughj . Let us think
of laminations as points inZ2n−2. Then for anyp ≥ 1,

1
k0+2p
ij · L = 1

k0+2
ij · L+ (p − 1) · L0, 1

k0−2p
ij · L = 1

k0−2
ij · L− (p − 1) · L0.
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So, we start by establishing the structure of a spiral inL surrounding puncturesi
throughj , if there is one. Even if there is no spiral, we computem, i.e. the laminationL0.
If there is a spiral, we also need to find its “thickness”θ and its direction (clockwise or
counterclockwise).

By using flips of triangulations in a similar way as described in [10], we can do all
this job inO(j − i) ≤ O(n) simple operations on integers of order‖L‖. So, the structure
of the spiral can be discovered forO(n · log‖L‖) elementary operations.

Depending on the direction of the spiral and the sign ofN different cases are possible.
It may happen that1Nij twists the spiral further, in which case we are lucky, because we

have1Nij · L = L + N/2 · L0, provided thatN is even. IfN is odd, we shall also need
to apply one1ij “explicitly”, which, by the same “flip argument”, takesO(n) simple
operations on integers of order‖L‖. So, the total work in this case isO(n · log‖L‖) +

O(logN · log‖L‖), where the second summand appears because we need to multiplyL0
byN/2. (Note thatL0 has only two non-zero coordinates.)

The same estimate works if1Nij untwists the spiral partially. The most involved case

is when1Nij untwists the spiral completely and then twists in the opposite direction. In
addition to the previous cases, we shall need to apply a few more1ijs explicitly, and
compute the number of twists in the original spiral. The latter is done by computing
[θ/m], which consumesO(logN · log‖L‖) elementary operations (becauseθ/m < N ).

ut

By using induction we deduce the following from Lemma 3.12.

Proposition 3.13. There exists an algorithmA2 that computes the curve diagramβ · E

of a braidβ given by a braid wordw in timeO(n · `1(w)
2).

In order to implement the algorithm of Section 2.4 one needs to choose a presentation
method for strip systems. The most straightforward way to present a strip system(L, S)

is to provide coordinates ofL, list all interval identifications ofS, and specify the positions
of the punctures. However, in order to make the algorithm more efficient it is useful to
include even more information in the object. For example, one may keep a bi-directed
list of “significant” points of the axis, which are positions of punctures and the endpoints
of the bases of strips, and a collection of cross-references between those points and the
related objects (punctures, bases of strips), so as to be able, say, for any base of a strip
to find the “next” one in a bounded number of simple operations. We skip the boring
details.

One can show that for an appropriate encoding of strip systems, each non-spiralling
transmission and the subsequent relaxation described in Sections 2.2–2.4 can be performed
inO(n) simple arithmetic operations whose operands are of orderO(‖L‖). For performing
a d-times spiralling transmission on a strip system(L, S) we additionally need to
implement one division (the width of the numerator is divided by the sum of the
widths of the bases of the denominators participating in the transmission), which
consumesO(logd · log‖L‖) operations. Together with Theorem 2.5 this implies the
following.
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Proposition 3.14. There exist algorithmsA3, A4 such that

1) given a laminationL, A3 computes a braid untanglingL in timeO(n2
· (log‖L‖)2),

thus detecting whetherL is the curve diagram of some braid;
2) given the curve diagramsL1, L2 of braidsβ1, β2, A4 computes the curve diagram of
β1 ◦ β2 in timeO(n2

· (`1(β1)+ `1(β2)) · `1(β1)).

We shall finish this paper with some remarks concerning open problems and possible
further developments of our results.

First, all our results concern punctured disks and spheres and their mapping class
groups. Rafi’s work notwithstanding, it would be useful to find generalizations of our
methods to all surfaces.

Secondly, we conjecture that the untangling procedures defined in Sections 2.3 and
3.3 describe paths in the Cayley graph ofBn which are uniform quasi-geodesics with
respect to the standard metric (not our1-metric) onBn. Indeed, these paths look very
much like train track splitting sequences, which are known to be quasigeodesics by a the-
orem of Hamenstädt ([16, Proposition 3.1]). However, the exact technical conditions of
Hamensẗadt’s theorem, and in particular the genericity condition, are not easy to satisfy.
Our conjecture would in particular imply that every braid has aσ1-consistent representa-
tive whose length is bounded linearly by the length of the braid—the existence of such a
representative is still an open problem [9, 10]. If the conjecture were true, then our un-
tangling paths would have the interesting property that they are short with respect to both
the usual and the1-metric onBn.

Thirdly, it might be useful to give substance to the intuition that every “spiral” that
appears during our untangling algorithm is somehow “visible” in every reasonably short
representative of the braid, and in particular in the Garside normal form. The idea here is
that spirals correspond to passages of the Teichmüller geodesic through the thin part of
Teichm̈uller space. The work of Masur–Minsky and Rafi is probably relevant here.

Finally, there might be applications of our results to the conjugacy problem inBn, and
more precisely to the study of sets of “short” elements in the conjugacy class of a braid
(e.g., the super summit set). The reason for this hope is that conjugacy classes of braids
correspond to free homotopy classes of closed curves in moduli space.
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