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1. Introduction

In a series of papers we develop a generalized Fredholm theory and demonstrate its appli-
cability to a variety of problems including Floer theory, Gromov—Witten theory, contact
homology, and symplectic field theory/ [2]. Here are some of the basic common features:

e The moduli spaces are solutions of elliptic PDE’s showing serious noncompactness
phenomena having well-known names like bubbling-off, stretching the neck, blow-
up, breaking of trajectories. These drastic names are a manifestation of the fact that
one is confronted with analytical limiting phenomena where the classical analytical
descriptions break down.

e When the moduli spaces are not compact, they admit nontrivial compactifications like
the Gromov compactification [4] of the space of pseudoholomorphic curves in Gro-
mov-Witten theory or the compactification of the moduli spaces in symplectic field
theory (SFT) as described inl [1].

e In many problems like in Floer theory, contact homology or symplectic field theory
the algebraic structures of interest are precisely those created by the “violent analytical
behavior” and its “taming” by suitable compactifications. In fact, the algebra is created
by the complicated interactions of many different moduli spaces.

In the abstract theory we shall introduce a new class of spaces called polyfolds which
in applications are the ambient spaces of the compactified moduli spaces. We introduce
bundlesp : Y — X over polyfolds which, as well as the underlying polyfolds, can have
varying dimensions. We define the notion of a Fredholm seetiofithe bundlep whose
zero sets;~1(0) C X are in our applications precisely the compactified moduli spaces
one is interested in. The normal “Fredholm package” will be constructed consisting of an
abstract perturbation and transversality theory. In the case of transversality the solution
spaces are smooth manifolds, smooth orbifolds, or smooth weighted branched manifolds
(in the sense of McDuff[[16]), depending on the generality of the situation.
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The usefulness of this theory will be illustrated by our ‘Application’ series. The ap-
plications include Gromov—-Witten theory, Floer theory and SFT (s€e [11, 12]). Itis, how-
ever, clear that the theory applies to many more nonlinear problems showing a lack of
compactness.

The current paper is the first in the ‘Theory’ series and deals with a generalization
of differential geometry which is based on new local models. These local models are
open sets in splicing cores. Splicing cores are smooth spaces with tangent spaces having
in general locally varying dimension. These spaces are associated to splicings, which is
the basic concept in this paper. The resulting local models for a new kind of smooth
spaces are needed to deal with the functional-analytic descriptions of situations in which
serious compactness problems arise. We would also like to note that the applications of
the concepts in this paper can be viewed as a generalizatioh of [3] to a situation where we
have varying domains and targets.

The second papel,l[8], develops the implicit function theorems in this general context
and extends the usual Fredholm theory.

The third paper,[[9], develops the Fredholm theory in polyfolds, which could be
viewed as a theory of Fredholm functors in a version of Lie groupoids with object and
morphism spaces build on the new local models (see [17], [18] for the groupoid concepts
in a manifold world). The Fredholm theory in this generalization is sufficient to deal with
the problems mentioned above.

On purpose we have not included any applications in this series since we did not want
to dilute the ideas. The conceptual framework should apply to many more situations. We
refer the reader t0 [6] 7, 11,112] for applications on different depth levels. An overview is
given in [B].

2. Sc-calculus in Banach spaces

In order to develop the generalized nonlinear Fredholm theory needed for the symplectic
field theory, we start with calculus issues. In a first step we equip Banach spaces with
the structure of a scale, called sc-structure. Scales are a well-known concept from in-
terpolation theory (see for example [19]). We give a new interpretation of a scale as a
generalization of a smooth structure. Then we introduce the appropriate class of smooth
maps. Having developed the notion of an sc-smooth structure on an open subset of a Ba-
nach space as well as that of a smooth map, the validity of the chain rule allows then,
in principle, to develop an “sc-differential geometry” by simply imitating the classical
constructions. However, new objects are possible, with the most important one being that
of a general splicing. The main purpose of this paper is to introduce them and to show
how they define local models for a new class of smooth spaces, which are crucial for the
aforementioned applications.

2.1. Sc-structures

We begin by introducing the notion of an sc-smooth structure on a Banach space and on
its open subsets.
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Definition 2.1. Let E be a Banach space. Asc-structureon E is given by a nested
sequence

of Banach spaceg,,, m € N =1{0, 1, 2, ...}, having the following properties.

e If m < n, the inclusionE,, — E,, is a compact operator.
e The vector spac& is dense ink,, for everym > 0.

In the following we shall sometimes talk about an sc-smooth structure on a Banach space
rather than an sc-structure to emphasize the smoothness aspect. From the definition of an
sc-structure it follows, in particular, th#t, C E,, is dense ifn < n and the embedding
is continuous. We note thd,, has the structure of a &chet space. In the case where
dim(E) < oo the only possible sc-structure is the constant structure &yjth= E.

If U C E is an open subset we define timeluced sc-smooth structumn U to be
the nested sequenég, = U N E,,. Given an sc-smooth structure éhwe observe that
U,, inherits the sc-smooth structure defined @%,); = U,+r. We will write E™ to
emphasize that we are dealing with the Banach spacequipped with the sc-structure
(E™)g := Ep4 forall k > 0. Similarly we will distinguish betweety,,, andU™.

Remark 2.2. The compactness requirement is crucial for applications. It is possible to
develop a theory without this requirement, but it is not applicable to the theories we are
interested in. This alternative theory would in the case of the constant seqtigneel
recover the standard smooth structurefhrHowever, the notion of a smooth map would

be more restrictive. Both theories, the one described in this paper and the one just alluded
to, intersect therefore only in the standard finite-dimensional theory. See Remark 2.17 for
further details.

If E andF are equipped with sc-structures, the Banach sgageF carries the sc-
structure defined byE @ F),, = E;;, @ F,.

Definition 2.3. LetU andV be open subsets of sc-smooth Banach spaces. A continuous
mapg : U — V is said to be otlass s€ or simplysd if ¢(U,,) C V,, and the induced
mapsy : U,, — V,, are all continuous.

Next we define the tangent bundle.

Definition 2.4. LetU be an open subset in an sc-smooth Banach saegquipped with
the induced sc-structure. Then ttasgent bundlg U of U is defined byf U = U @ E.
Hence the induced sc-smooth structure is defined by the nested sequence

(TU)m = Um+1 &) Em
together with the stprojection
p:TU — U

Note that the tangent bundle is not definedlrbut merely on the smaller, but dense,
subset/;. We shall refer to the points ifi,, sometimes as points iti on levelm.
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2.2. Linear sc-theory

We begin by developing some of the linear theory needed in the sc-calculus.
Definition 2.5. ConsiderE equipped with an sc-smooth structure.

e An sc-subspacé’ of E consists of a closed linear subspageC E so thatF,, =
F N E,, defines an sc-structure fdt.

e An sc-subspacé of E splitsif there exists another sc-subspaGeso that on every
level we have the topological direct sum

Ey = Fyu @ Gy

We shall use the notatioR = F ®sc G or E = F & G if there is no possibility of
confusion.
Next we introduce the relevant linear operators in the sc-context.

Definition 2.6. Let E and F be sc-smooth Banach spaces.

e Ansc-operatofl : E — F is a bounded linear operator which in addition i’ste. it
induces bounded linear operatofs: E,, — F,, on all levels.

e Ansc-isomorphisnis a bijective sc-operatol’ : E — F suchthatr 1 : F — Eis
also an sc-operator.

An interesting class of sc-operators is the classogprojectionsi.e. sc-operator® with
P2=P.

Proposition 2.7. Let E be an sc-smooth Banach space atd finite-dimensional sub-
space ofE .. Thenk splits the sc-space.

Note that a finite-dimensional subspakeof E which splits the sc-smooth spaékis
necessarily a subspace B, .

Proof. Take a basisgi, ..., ¢, for K and fix the associated dual basis. By Hahn—Banach
this dual basis can be extended to continuous linear functionals ., A,, on E. Now
P(h) = Y_! 1 Ai(h)e; defines a continuous projection dhwith image inK C Ex.
HenceP induces continuous mags,, — E,,. ThereforeP is an sc-projection. Define
Y, = (Id—P)(E,,). SettingY = Ygwe haveE = K®Y. By constructiony,, C E,,NYp.

An elementx € E,, N Yy has the fornk = ¢ — P(e) with e € Ep. SinceP(e) € Ex We

see thak € E,, implying Y,, = E,, N Yo. Finally, Yoo = (,,~0 Y is dense iny,, for
everym > 0. Indeed, ifx € Y,,, we can choosg; € E, satisfyingx; — x in E,,. Then

(Id = P)x; € Yoo and(ld — P)x; — (Id — P)x = xinY,,. o

We can introduce the notion of a linear Fredholm operator in the sc-setting.

Definition 2.8. Let E and F be sc-smooth Banach spaces. An sc-operatorE — F
is called Fredholmprovided there exist sc-splittings = K @sc X and F = Y ®sc C
having the following properties.

e K = ker(T) is finite-dimensional.
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o C is finite-dimensional.
e Y =T(X)andT : X — Y defines a linear sc-isomorphism.

The above definition implies th&t(X,,) = Y., the kernel ofT : E,, — F,, is equal
to K, andC spans its cokernel, so that

En=K®X, and F,=C®T(E,)

forallm > 0. Itis an easily established fact that the composition of two sc-Fredholm op-
eratorsT” ands is sc-Fredholm. From the index additivity of classical Fredholm operators
we obtain the same in our set-up,

i(TS) =i(T)+i(S).
The following observation, called thregularizing property should look familiar.

Proposition 2.9. Assumel’ : E — F is sc-Fredholm and(e) € F,, for somee € Ej.
Thene € E,,.

Proof. SinceF,, = T(E,,) ® C, the elemenyf = T (e) € F,, has the representation
f=Tkx)+c
for somex € X,, andc € C. Similarly, e has the representation
e=k+xo

with k € K = ker(T) andxg € X becauseEg = K @ Xg. FromT(e) = f =T (x) + ¢
andT (x) = T (xo) one concluded (xg—x) = c¢. Hencec = 0 becaus& (Eg) NC = {0}.
Consequentlyygp —x € K. Sincee —x =k + (xo —x) € K andx € E,, andK C E,,
one concludes € E,, as claimed. O

We end this subsection with the important definition of ah-sperator and a stability
result for Fredholm maps.

Definition 2.10. Let E and F be sc-Banach spaces. An sc-operakor E — F is said to
be ansc™-operatolif R(E,,) C F,,.1 for everym > 0 and if R induces an stoperator
E — FL

Let us note that due to the (level-wise) compact embed#ithg> F an s¢ -operator in-
duces a compact operator on every level. This follows immediately from the factorization

R:E— Fl o F.

The stability result is the following statement.

Proposition 2.11. Let E and F be sc-Banach spaces.ff: E — F is an sc-Fredholm
operator andR : E — F an sc -operator, therl” + R is also an sc-Fredholm operator.
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Proof. SinceR : E,, — F,, is compact for every level, we see that- R : E,, — Fy,

is Fredholm for everyn. Let K,,, be the kernel off + R : E,, — F,,. We claim that
Kn = K41 for everym > 0. Clearly,K,,+1 © K. To see thak,, C K41, take
x € K;,. ThenTx = —Rx € F,41 and, in view of Proposition 2|% € E,,+1. Hence
x € K1, implying K,, € K,41. SetK = Ko. By Propositior] ZJ7 K splits the sc-
spaceE since it is a finite dimensional subset Bf,. Hence we have the sc-splitting
E = K @ X for a suitable sc-subspadé Next defineY,, = (T + R)(E,,). This defines
an sc-structure ofi = Y. Let us show thafF induces an sc-structure ahand that this
is the one given by,. For this it suffices to show that

YN Fy =Yy 1)
Clearly,
Y =(T+R)(Em)=Fmﬁ(T+R)(Em) C Fmﬁ(T+R)(EO)=YmFm~

Next assume that € Y N F,,. Then there exists € Eg with Tx + Rx = y. SinceRr is
an sc¢-section it follows thaty — Rx € Fy, implying thatx € E1. Inductively we find
thatx € E,,, implying thaty € Y,,, and[1) is proved. Observe that we also have

FOODY=<ﬂ F,,,)m/: N EnNY) = [ Yo = Yoo
meN

meN meN

In view of Lemmg 2.IP below, there exists a finite-dimensional subspace Fx
satisfyingFo = C @ Y. From this it follows thatF,,, = C & Y,,. Indeed, sinc€ NY,, C
cnY,wehaveCNY, ={0.If f € F,thenf = ¢+ y forsomec € C andy € Y
sinceF,, C Y andFp = C @ Y. Hencey = f — ¢ € F, and using Proposition 7.9
we concludey € F,. This implies, in view of[(1), that,, = C @ Y,,. We also have
Fo =C® (FooNY) =C @ Yoo It remains to show thal,, is dense iny,, for every
m > 0. Takey € Y,,. Theny = (T + R)(x) for somex € E,,. The spacet is dense
in E,, so that there exists a sequenigg) C Eo converging tox in E,,. The operator
T + R is s@-continuous and so the sequenge:= (T + R)(x,) € F,, converges to
y = (T + R)(x) in F,,. Now, in view of Propositiofi 2]9 and Definiti¢n 2]10, the points
v belong toY, and our claim is proved. Consequently, we have the sc-splitting

F =Y ®sC
and, up to Lemmp 2.]2 below, the proof of the proposition is complete. O

Lemma 2.12. AssumeF is a Banach space anel = D & Y with D of finite dimension
andY a closed subspace @f. Assume, in addition, thaf, is a dense subspace 6t
Then there exists a finite-dimensional subsp@ce F, suchthatF = C @Y.

Proof. The quotientF'/Y is a finite-dimensional Banach space and we have a continuous
projection operatop : F — F/Y. SinceF, is a dense linear subspacefofve find that
p(Fs) = F/Y. Take any basis foF /Y and pick representatives for these vectorsin

Their spanC has the desired property. O
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2.3. Sc-smooth maps

In this subsection we introduce the notion of ak-stap.

Definition 2.13. Let E and F be sc-smooth Banach spaces andlfet E be an open
subset. Anskmapf : U — F is said to besc! or of class st if the following conditions
hold true.

(1) Foreveryx € U there exists alinear mapf (x) € L(Eo, Fp) satisfying, forh € E1
with x + h € Us,

1
mllf(x +h) — f(x) = Df(x)hllo— 0 as|hllL — 0

(2) Thetangentmag@'f : TU — T F defined by

Tf(x,h) = (f(x), Df(x)h)
is an s@-map.

The linear mapDf (x) will often be called thdinearizationof f at the pointx. If the
sc-continuous mag : U C E — F is of class st, then its tangent map

Tf:TU - TF

is an s€-map. If nowT f is of class st, thenf : U — F is called ofclasssc.
Proceeding inductively, the map : U — F is called ofclass s€ if the s@-map
Tk=1f . 7%1y — T*1F is of class st. Its tangent mag (T*~1 f) is then denoted
by TX f. Itis an s€-mapT*U — T*F. A map which is of class §dor everyk is called
sc-smootlor of class s€° .
Here are two useful observations which are provedlin [6].

Proposition 2.14. If f : U c E — F is of class sk, then
i Ungk = Fn
is of classC* for everym > 0.

If we denote the usual derivative of a mgpby df then forx, h € U,,+1 we have the
equalitydf (x)(h) = Df (x)h. In fact, Df (x) can be viewed as the (unique) continuous
extension ofif (x) : E,,+1 — Fy, to an operatoE — F which satisfieDf (x)(E,;) C
F,, for everym > 0 and induces continuous operators on these levels. It exists for every
x € Uy due to the definition of the classlsc

The second result is the following.

Proposition 2.15. Let E and F be sc-Banach spaces and étc E be open. Assume
that the mapf : U — F is s and that the induced map : U,.x — F,, is Ckt1 for
everym,k > 0. Thenf : U — E is sc-smooth.
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Reflecting on the notion of classlsone could expect for the compositigno f of
two such maps, that the target level would have to drop by 2 in order to obe@lmaap.
In view of Propositiorf 2.14 one might think that therefore the composition needs not to
be of class st However, this is not the case, as the next result, the important chain rule
shows.

Theorem 2.16 (Chain rule). Assume thaf, F and G are sc-smooth Banach spaces
andU C E andV C F are open sets. Assumethat U — F,g:V — G are of class
sct and £(U) c V. Then the compositiogio f : U — G is of class stand the tangent
maps satisfy

T(go f)=TgoTf.

Proof. We shall verify the properties (1) and (2) in Definitjon 3.13 erf. The functions
g:V1i— Gandf : Ui — F are of clas<C. Moreover,Dg(f(x)) o Df(x) € L(E, G)
if x € U1. Fixx € Uy and choosé < E1 sufficiently small so thaf (x + k) € Vi. Then,
using the postulated properties pfandg, we have

g(f(x+h) —g(f(x)) — Dg(f(x)) o Df (x)h
1
= /o Dg(tf(x +h) + Q=0 f(x) [f(x+h) — f(x) = Df(x)h] dt

1
Divide the first integral by the norrifv:||1; then
1 1
m/(; Dg(tf(x +h)+ A -6 f)[f(x+h) — f(x) — Df(x)h] dt
' 1
= /o Dg(tf(x +h)+ (L —1)f(x)) - ——[f(x +h) — f(x) — Df(x)h]dt. (3)

711

If h € E1, the maps [01] — Fi defined byt +— tf(x + h) + (1 — ) f(x) are
continuous and converge @°([0, 1], F1) to the constant map+—> f(x) as||k|l1 — O.
Moreover, sincef is of class s&,

1
ah) = m[f(x +h) — f(x) — Df(x)h]
converges to 0 irFp as||z||1 — 0. Therefore, by the continuity assumption (2) in Defini-
tion[2.13, the map
(t,h) = Dg(tf(x +h) + (L —1)f(x)[ah)]

from [0, 1] x E1 into Go converges to 0 as — 0, uniformly inz. Therefore, the expres-
sion in [3) converges to 0 iGg ask — 0 in E1. Next consider the integral

1 h
/0 [Dgtf(x +h)+ A —1)f(x)) — Dg(f(x))] o Df(x)m dt. (4)
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In view of Definition[2.] the set of alt/||k||1 € E1 has a compact closure ify. There-
fore, sinceDf (x) € L(Eo, Fo) is a continuous map by Definitign 2]13, the closure of the
set of all
Df()—.
x —
A1l

is compact inFp. Consequently, again by Definitipn P.1, every sequenceonverging
to 0 in E1 has a subsequence such that the integrand of the integfal in (4) converges to 0
in Go uniformly in 7. Hence the integral [4) also converges to @inash — 0in Ej.
We have proved that

1
mllg(f(x +h)) — g(f(x)) — Dg(f(x)) o Df (x)hllo — O
ash — 0in E1. Consequently, condition (1) of Definitipn 2]13 is satisfied for the com-
positiong o f with the linear operator

D(g o f)(x) = Dg(f(x)) o Df (x) € L(Eo, Go),

wherex € U;. We conclude that the tangent m&pg o f) : TU — TG,

(x, h) = (g o f(x), D(g o f)(x)h),

is sc-continuous and, moreovét(g o f) = Tg o Tf. The proof of Theorern 2.16 is
complete. O

The reader should realize that in the above proof all conditions bmsgs have been
used, i.e. it just works. From Theor¢m 2.16 one concludes by induction that the composi-
tion of two s¢°-maps is also of class $cand, for every > 1,

TH(go f) =Trg o T*f.

An sc-diffeomorphisny : U — V, between open subsetsandV of sc-space€
andF equipped with the induced sc-structure, is by definition a homeomorgliiss V
so thatf and f~1 are sc-smooth.

The following remark is a continuation of Reméark]2.2.

Remark 2.17. There are other possibilities for defining new concepts of smoothness.
For example, we can drop the requirement of compactness of the embedding operator
E, — E, forn > m. Then it is necessary to change the definition of smoothness in
order to get the chain rule. One needs to replace the second condition in the definition of
being sé by the requirement thabf (x) induces a continuous linear operaidy (x) :

E,_1 — F,_1forx e U, and that the ma@f : U,, — L(E,_1, F,—1) form > 1

is continuous. For this theory the sc-smooth structuré&agiven by E,, = E recovers

the usualC*-theory. However, this modified theory is not applicable to Gromov-Witten
theory, Floer theory, and SFT.
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2.4. Sc-manifolds

Using the results so far, we can define sc-manifolds. This concept will not yet be sufficient
to describe the spaces arising in SFT.

Definition 2.18. Let X be a second countable Hausdorff space.s&rchartof X con-
sists of a triple(U, ¢, E), whereU is an open subset of, E a Banach space with
an sc-smooth structure ang : U — E is a homeomorphism onto an open subget
of E. Two such charts arsc-smoothly compatiblprovided the transition maps are sc-
smooth. Arsc-smooth atlasonsists of a family of charts whose domains coveso that
any two charts are sc-smoothly compatible. A maximal sc-smooth atlas is calkd an
smooth structuren X. The spaceX equipped with a maximal sc-smooth atlas is called
an sc-manifold.

Let us observe that a second countable Hausdorff space which admits an sc-smooth atlas
is metrizable and paracompact since it is locally homeomorphic to open subsets of Banach
spaces.

Assume that the spacé has an sc-smooth structure. Then it possesses the filtration
X, for all m > 0 which is induced from the filtration of the charts. Moreover, ey
inherits the sc-smooth structut®,,)x = X,,+« for all k > 0, denoted byx™.

Next we shall define theangent bundle : TX — X! in a natural way so that the
tangent projectiop is sc-smooth. In order to do so, we use a modification of the definition
found, for example, in Lang’s book [14]. Namely, consider multiplgis ¢, E, x, h)
where(U, ¢, E) is an sc-smooth chatt,e U; andh € E. Call two such tuples equivalent
if x =x" andD(¢’ o ¢ Y (p(x))h = K’. An equivalence clasd], ¢, E, x, h] is called a
tangent vectoat the pointx € X;. The collection of all tangent vectors &f is denoted
by T X. The canonical projection is denoted py: 7X — X1 If U C X is open we
introduce the subsefU ¢ TX by TU = p~1(U n X1). For a chart(U, ¢, E) we
introduce the map

Te:TU - E'®E

defined by
To(U, ¢, E, x,h]) = (x, h).

One easily checks that the collection of all tripl@d/, T¢, E1® E) defines an sc-smooth
atlas forT X for which the projectiorp : TX — X1 is an sc-smooth map. Thangent
spacel, X atx € X1 is the set of equivalence classes

I.X ={[U,¢,E,x,h] | h € E}

which inherits fromE the structure of a Banach spacexle X,,11, thenT, X has the
partial filtration inherited fromE,, 0 < k < m. In particular, ifx € X, thenT, X
possesses an sc-smooth structure.

There is another class of bundles which can be defined in the present context. These
are the so-called strong (vector) bundles. They may be viewed as a special case of strong
M-polyfold bundles which will be introduced in Sectiph 4. For this reason we shall not
introduce them separately and refer the reader to Rgmgrk 4.3.
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3. Splicing-based differential geometry

In this section we introduce a ‘splicing-based differential geometry’. The fundamental
concepts are splicings and splicing cores. The splicing cores have locally varying di-
mensions but admit at the same time tangent spaces. Open subsets of the splicing cores
will serve as the local models of the new global spaces called M-polyfolds. The letter M
should remind us of a manifold type space obtained by gluing together the local models in
an sc-smooth way. The M-polyfolds are equipped with substitutes for tangent bundles, so
that one is able to linearize sc-smooth maps between M-polyfolds. In one of the follow-up
papers we go further and introduce the notion of a polyfold which is a generalization of
an orbifold and which is on the level of generalization needed for our applications.

3.1. Quadrants and splicings

Let us call a subset of an sc-Banach spadk a partial quadrantif there is an sc-Banach
spaceQ and a linear sc-isomorphisin: W — R” @& Q mappingC onto [0, c0)" & Q.

If O = {0}, thenC is called aguadrant Observe that ifC andC’ are partial quadrants,
soisC & C'.

Definition 3.1. Assumé/ is an open subset of a partial quadrafitc W. LetE be an sc-
Banach space and let, : E — E, withv € V, be a family of projections (i.ex, € L(E)
andm, o 7, = m,) So that the induced map

. VOE - E, D(v,e)=my(e),
is sc-smooth. Then the tripte = (r, E, V) is called ansc-smooth splicing

The extension of the sc-smoothness definition of a ghapy/ — F from an open subset

of an sc-Banach space to relatively open subBets C ¢ W of a partial quadrant in

an sc-Banach space, which is used in Definiioh 3.1, is straightforward. One first observes
that the sc-structure d¥ induces a filtration orv’. Now, the notion of the mag to be

an s€-map is well defined. Then one defines af-sap f : V — F to be of class sc

as in Definitior] 2.IB by replacingy by V1 there and requiring the existence of the limit
for x € vy and allh € Wy satisfyingx + h € Vq, with a linear mapDf (x) € L(Wy, Fp).
Moreover, the tangent bundBV of the setV is defined as usual byV = Vi@ W
together with the stprojection mag' v — V1.

We should point out that the sc-smoothness of the mapping — 7, (e) is a rather
weak requirement allowing the dimension of the images of the projectigrie vary
locally in the parameter € V. The reader can find illustrations and examplesin [6].

Sincer, is a projection,

D, P(v,e)) = D(v, e). (5)

The left hand side is the composition®fwith the sc-smooth ma, e¢) — (v, ® (v, e)).
For fixed(v, §v) € TV we introduce the map

Pusvy : TE — TE : (e,8¢) > (®(v, ), DD (v, €) (v, S¢)). (6)
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It has the property that the induced map
TV®TE — TE . (a,b) — P,(b)

is sc-smooth because, modulo the identificaion & TE = T(V @ E), it is equal to
the tangent map ob. From [$) one obtains by means of the chain rule (The¢renj 2.16),
at the pointgv, ¢) € (V @ E)1, the formula

DO (v, (v, e))( v, DD (v, e)(dv, §e)) = DD (v, e)(dv, de)
and, together with the definition @f, one computes
P,sv) © P svy(e, 8e¢) = P sv)(my(e), DP(v, ) (v, de))
= (nvz(e), D® (v, my(e))(6v, DD (v, e)(v, de)))
= (my(e), DP(v, e)(v, de)) = Py sv)(e, Se).

ConsequentlyP, sv) is a projection, which of course can be identified with the tangent
Tn ofthe mapr : V @ E — E, defined byt (v, ¢) = m,(e), via

P svy(e,de) = Tn((v, e), (v, de)).
In the following we shall writ7 ) (s instead ofP,, s5,y. Hence the triple
TS =({Tn,TE,TV)
is an sc-smooth splicing, called tlengent splicingf S.

Definition 3.2. If S = (=, E, V) is an sc-smooth splicing, then the associatpticing
coreis the image bundle of the projectianover V, i.e., it is the subsek® c V @ E
defined by

KS :={(v,e) e VB E | myle) = e). @)

If the dimension ofE is finite, the images of the projections all have the same rank
so that the splicing core is a smooth vector bundle &elf, however, the dimension of
E is infinite, then the ranks of the fibers can change with the paramdteanks to the
definition of sc-smoothness. This truly infinite-dimensional phenomenon is crucial for
our purposes.

Every splicingS = (m, E, V) is accompanied by theomplementary splicing¢ =
(1—n, E, V) where 1— & stands for the family of projectiond — m,)(e) = e — 7y (e)
for (v,e) € V @ E. This way the splicing decomposes the ¥et E naturally into a
fibered sum over the parameter $etindeed,(v, ¢) € V & E can be decomposed as

(v,e) = (v, ey +e)

wherern,(e) = e, and(1 — m,)(e) = €. The splicing corek® andKS* can be viewed
as bundles oveV (with linear Banach space fibers, which however change dimensions).
Their Whitney sum oveV,

KS @y K ={(v,a,b) e VO E®E | my(a) = a, m,(b) =0},
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is naturally diffeomorphic t&/ @ E. The name splicing comes from the fact that it defines
a decomposition oV @ E — V, by ‘splicing’ it alongV'.
Thesplicing core of the tangent spliciri§S is the set

KTS = {(v,8v,e,8e) € TV ® TE | (T7) .50 (e, 8¢) = (e, 8e)}. (8)

The mapping

KTS o (kS (v, 8v, e.8¢) > (v.¢) € V1 ® E1
is the canonical projection. The fiber over every peinte) € (K°)tisa subspacK(Tlfe)
of the Banach spac® @ E. If (v, e) ison levelm + 1, thenK(Tv"Se) has well defined levels
k < m. The tangent splicing(TS has well defined bi-levelén, k) with ¥ < m. Indeed,
assume for simplicity thal¥ = R” & Q;thenV c C ¢ W andTV = V1@ W and we
can define for < k < m,

(KTS)m,k ={(v,dv, e, de) € Vins1 ® Wi ® Epy1 @ Ex | (T”)(v,év)(ea de) = (e, de)}.

The projectionk 7S — (KS)1: (v, 8v, e, 8¢) — (v, ¢) maps levelm, k) points to level
m points. We may view as the fiber regularity and as the base regularity. Note that a
pointe of E/ of regularitym has regularityn + j as a point inE. The following is one
of our main definitions.

Definition 3.3. A local M-polyfold modelconsists of a paifO, ) whereO is an open
subset of the splicing corE® c V @ E associated with the sc-smooth spliciSg=
(w, E, V). Thetangent of the local M-polyfold modébD, S) is the object defined by

T(0,8) = (K"%10%, TS)

where K7¢|0* denotes the collection of all points ik” which project under the
canonical projectiork ¢ — (K°)! onto the points irD?.

There is the natural projection
KTS|O1 - ot (v, 8v, e, be) — (v, e).

In the following we shall simply writeD instead of(O, S), but keep in mind thaf is
part of the structure. With this notation the tang&m® = 7(0, S) of the open subse?
of the splicing corek ® is the set

T0 = K7S|0%. 9)

Note that on an open subs@tof a splicing core there is an induced filtration. Hence we
may talk about stmaps. We will see in the next section that there is also a well defined
notion of an s&-map in this setting. We shall see in the applications presentedii [6, 7, 11,
12] that analytical limiting phenomena, like bubbling-off, occurring in symplectic field
theory, Gromov—Witten theory and Floer theory are smooth within the splicing world.
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3.2. Smooth maps between splicing cores

The aim of this section is to introduce the concept of ahreap between local M-
polyfold models. We will construct the tangent functor and show the validity of the chain
rule. At that point we will have established all the ingredients for building the ‘splicing-
differential geometry’ mentioned in the introduction.

Consider two open subsets c KS c V @ E and0’ c K¢ c V' @ E’ of splicing
cores belonging to the splicings= (r, E, V) andS’ = (n/, E’, V’). The open subsets
V andV’ of partial quadrants are contained in the sc-Banach spéaesp.W’. Consider
ans€-mapf: 0 — 0. R

If O is an open subset of the splicing cdt€ c V @ E we define the subse? of
V @ E by

O ={(v,e) e VB E | (v, m(e) € O).

Clearly, O is open inV & E and can be viewed as a bundle— O over 0. This bundle
will be important in Subsectidn 4.2, where the crucial notion of a filler is introduced.

Definition 3.4. The s€-continuous magf : O — O’ between open subsets of splicing
cores is called otlass st if the map

F:OCVOE—>W®E., [.e=/[(me),
is of class st.
According to the splitting of the image space we set
fw.e)=(fiv,e), fo(v,e)) e KS CW D E'.
Thetangent mafT" f associated with the anap f is defined as
T f(v, 8, e, 8¢) := (T fi(v, 8v, e, 8¢), T fo(v, v, e, Se)). (10)
The mapT f is of class s&

Lemma 3.5. The tangent mag f satisfiesT 7 (K7S|0%) ¢ k75|10t and hence in-
duces a map

which we denote by f. In the simplified notation of9), we have

Tf:TO —TO'.

Proof. Denote by, the family of projections associated with the splici§g Since
f 10 — 0, by definition of the splicing cor& S’ we have the formula

7 o Fo0,0) = falv, o).
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Differentiating this identity in the variabl@, ¢) we obtain

D f2(v, ©)(8v. 8¢) = Dy’ (f2(v.€)) 0 D fi(v, €)(dv, 8¢)

+7 0 ° D]"E(v,e)((Sv,Se). (12)

A
fi(v,
Set

V = fi(v, e), ¢ = fa(v,e), SV = D fi(v, e)(8v, 8e), 8¢’ = D fo(v, e)(Sv, Se).

Then [11) implies using the definitiop](6) of the projecti@’) (. 5,/) associated with
the splicingT S’ that
(T7") o 50y (€, 8¢) = (€, 8e€").

So indeed’ f (v, 8v, e, e) = (v, 8v/, €', 8¢') € KTS', as claimed. O

Note that the order of the terms in the tangent rﬂ?ﬁ)resp.Tf of an sé-map f :
O — O’ is different from the order of terms in the classical notation. Writifig=
(f1, f2) according to the splitting of the image space into the distinguished splicing pa-
rameter part and the standard part, the classical notation for the tangent map would be
Tf = ((f1, f2), (Df1, Df2)) whereas our convention Bf = ((f1, Df1), (f2, Df2)).
This rather unorthodox ordering of the data has been chosen so that the tangent of a splic-
ing is again a splicing.

The reader could work out as an example the situation where the splicings have the
constant projection Id.

Theorem 3.6 (Chain rule). Let O, O’, O” be open subsets of splicing cores and let the
mapsf : O — O’ andg : O’ — 0" be of class st Then the compositiogio f is also
of class sé and the tangent map satisfies

T(go f)=TgoTf.
Proof. This is a consequence of the sc-chain rule (Thedrenj 2.16), the definition of the
tangent map and the fact that our reordering of the terms in our definition (10) of the
tangent map is consistent. Indeed, from definitjorj (10) we deduce
T(go f)(v,8v,e,8¢) = (T(@10 F)(v, e, 8v,8¢), T (@20 (v, e, 8v, 8¢))

= ((T§1) o (T f)(v, e, 8v, 8e), (TG2) o (T f)(v, e, v, 8e))

= (T9)(T fa(v, e, 8v, 8¢), T fo(v, e, 8v, Se))

=(Tg) o (Tf)(v, v, e, de)

and the proof is complete. O

Given an sé-map f : O — O’ between open sets of splicing cores we obtain, in view
of Lemmg 3.5, an induced tangent mAp : 7O — T O'. SinceT O andT O’ are again
open sets in the splicing corés’ S andk 7S” we can iteratively define the notion ¢fto

be ofclass s€ and of f to be sc-smooth.
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Definition 3.7. Let O be an open subset of a splicing coke® and (v, ¢) € O1. The
tangent spac® O at the point(v, ¢) is the Banach space

T(v,e)0 = {(8v,8e) e W E | (v,8v,¢,8e) € TO}. (12)

We then have

TO = U Tw,e0.
(v,e)e01

If f:0 — O’is ahomeomorphism so thgtand f~* are sc-smooth, our tangent map
Tf defined in[(IP) induces the linear isomorphism

Tf(v,e): T(v,e)O - Tf(v,e)0/~

We recall from Sectiop 3]1 that the spate has a bi-filtration(7 O) g «) for 0 < k < m,
so that the natural projection
TO — Ot

maps levelm, k) points to leveln points and is sc-smooth. The projection nfap —
01 is sc-smooth.

3.3. M-polyfolds

Now we are able to introduce the notion of an M-polyfold. The “M” indicates the ‘mani-
fold flavor’ of the polyfold. A general polyfold will be a generalization of an orbifold.

Definition 3.8. Let X be a second countable Hausdorff space.Mupolyfold chartfor

X is atriple (U, ¢, S), in whichU is an open subset &, S = (r, E, V) an sc-smooth
splicing andy : U — K a homeomorphism onto an open sub8eif the splicing core
KS of S. Two charts are calledompatiblef the transition maps between open subsets of
splicing cores are sc-smooth in the sense of DefinfighA maximal atlas of sc-smoothly
compatible M-polyfold charts is called af-polyfold structureon X.

An M-polyfold is necessarily metrizable by an argument similar to the one used already
for sc-manifolds. Each splicing co® carries the structure of an M-polyfold with the
global chart being the identity.

The concept of amap : X — X’ between M-polyfolds being of class%or s& or
being sc-smooth is, as usual, defined by means of local charts.

Definition 3.9. The mappingf : X — X’ between two M-polyfolds is called ofass
s@ resp.sc* or called sc-smoottif for every pointx € X there exists a chartU, ¢, S)
aroundx and a chart(U’, ¢’, §") around f (x) so thatf(U) c U’ and

¢ ofoptipU)— U

is of class s@resp. s€ or sc-smooth.



A general Fredholm theory I: A splicing-based differential geometry 857

In order to define théangent spacd, X of the M-polyfold X at the pointx € X1, we
proceed as in the case of sc-manifolds in Sedtion 3.3. This time we consider equivalence
classes of multiplet&U, ¢, S, x, h) in which (U, ¢, S) is an M-polyfold charty is a point

in Uy andh € Ty O, whereO = ¢(U) C KS is the open set of the splicing core. The
above multiplet is equivalent ta’, ¢/, S', x’, h') if x = x" and if T (¢’ o ¢~ 1) (@(x))h

= h’, where the tangent map

T(@ 09 (@) : TyyO = Ty O’

is defined in Sectiofi 32. The tangent space is now defined as the set of equivalence
classes
T, X ={[U,¢,S,x,h] | h € Tyx)0}.

It inherits the structure of a Banach space from the tangent shag®. If x € X1,
thenT, X possesses a partial filtration fo0k < m induced from the partial filtration of
Tyx) 0. The tangent space at a smooth pairg X, possesses an sc-smooth structure.

Let now f : X — X’ be a map between M-polyfolds of clas or k > 1. In two
M-polyfold charts(U, ¢, S) and(U’, ¢’, §") around the points € Ui and f(x) € U;,
the mapyf is represented by the’senapy : ¢’ o f o™t : O — O’ between open
sets of splicing cores. The tangent nEp (x) : Ty O — Ty ) O’ defines a unique
continuous linear map

Txf T X — Tf(x)X/

between the tangent spaces, called tdregent mapof f at the pointx, mapping the
equivalence clasd], ¢, S, x, k] into the class¥{’, ¢’, §’, f(x), '] in which

=T ofop Hpx) - h.

If x is a smooth point ok and if f is an sc-smooth map, then the tangent migp is an
sc-operator as defined in Sectfon]|2.2.
Let us note the following useful result about sc-smooth partitions of unity.

Theorem 3.10. Let X be an M-polyfold with local models being splicing cores build on
separable sc-Hilbert spaces. (An sc-Hilbert space consists of a Hilbert space equipped
with an sc-structure. It is not required that the Banach spaEggor m > 1 are Hilbert
spaces.) Assume th@l, ), ca iS an open covering aX. Then there exists a subordinate
sc-smooth partition of unitys; )sca -

The statement follows along the lines of a proof for Hilbert manifolds in [14]. The product
X x Y of two M-polyfolds is in a natural way an M-polyfold. Indeed,(#, ¢, S) and

(W, ¥, T) are M-polyfold charts foiX andY respectively, one obtains the product chart
(Ux W,p x ¢, S xT)for X x Y, with theproduct splicing

SxT=(mEV)x(p, F,V)=0,E®F,Va®V)

whereo(, )y = 7y, @ py is the family of projections. There are several possible notions
of sub-polyfolds (we suppress thé in the notation). We shall describe one of them in
Sectior] 3.p below and refer the reader to [6] for a comprehensive treatment.
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3.4. Corners and boundary points

In this section we will prove the extremely important fact that sc-smooth maps are able to
recognize corners. This will be crucial for the SFT because most of its algebraic structure
is a consequence of the corner structure.

Let X be an M-polyfold. Around a point € X we take an M-polyfold charp :
U — KS wherek® is the splicing core associated with the splicifig= (7, E, V).
HereV is an open subset of a partial quadréhtontained in the sc-Banach spaée
By definition there exists a linear isomorphism fram to R” @& Q mappingC onto
[0, 00)" @ Q. ldentifying the partial quadrant with [0, c0)” & Q we shall use the
notationyp = (¢1, ¢2) € [0, 00)" & (Q @ E) according to the splitting of the target space
of ¢. We associate with the pointe U the integew (x) defined by

d(x) = t{coordinates of;(x) which are equal to)0 (13)

Theorem 3.11. The mapd : X — N is well defined and does not depend on the choice
of the M-polyfold charyp : U — K. Moreover, every point € X has an open neigh-
borhoodU’ satisfying

d(y) <d(x) forall yeU'.

Definition 3.12. The mapd : X — N is called thedegeneracy indeaf X.

The mapd will play an important role in our Fredholm theory with operations presented
in [10]. A pointx € X satisfyingd(x) = O is called arinterior point A point satisfying
d(x) = 1is called agood boundary pointA point with d(x) > 2 is called acorner. In
general, the integef(x) is the order of the corner.

Proof of TheorelCons[Qeero M-polyfold charts : UcXx— Igs ande’ :
U c X - KS suchthat € UNU’. Introducing the open subsédts= (U N U’) and
U = ¢ (UNUT) of KS andK® resp., and setting(x) = (r,a) andg’(x) = (', a’)
we define the sc-diffeomorphisi : U — U’ by ® = ¢’ o ¢~ L. Obviously,®(r, a) =
(r', a’). Now the proof of Theorel reduces to the following proposition.

Proposition 3.13. LetS = (7, E, V) and S’ = (z/, E’, V') be two splicings having
the parameter set¥ = [0, co)* @ Q and V' = [0, c0)¥ @ Q’. Assume that/ and
U’ are open subsets of the splicing co&s and K" containing the pointsr, ) and
(', a") with r € [0, c0)f and+’ € [0, c0)*" and assume thatthe map : U — U’ is
an sc-diffeomorphism mappir(g, «) to (', a’). Thenr andr’ have the same number of
vanishing coordinates.

Proof. We first prove the assertion under the additional assumption that the jgpiat
(r, a) belongs tdJ.. Then the image poinfy = (+', a’) = ®(po) belongs td//,. Denote
by J the subset of1, ..., k} consisting of those indices for whichr; = 0. Similarly,
jeJ c{1,... K}if r]f = 0. Denoting bytir andfir’ the cardinalities off andJ’ we
claim thatgr = r’. Since® is an sc-diffeomorphism it suffices to prove the inequality
#r > ' since this inequality also has to hold true for the sc-diffeomorphisth. Write
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a =(q,e). If w4 (e) = e, then differentiatingr, 4y o 7(-4)(e) = () (e) in (r, g) ONE
findsm(.q) o Drq)(7(r,q)(€)) = 0 so thatD, 4 (7, (e))(8r, 8¢) is contained in the range
of Id — m(, ). Therefore, giver(r, a) € Uy satisfyingr,. 4)(e) = e and givensr e R¥
anddg € O, there existse € E, solving

de = TT(r,q) (5@) + D(r,q) (n(r,q) (e))[((Sr, SQ)] (14)

In particular, takingsr € R* with (6r); = O for j € J, and a smootldq, there exists
Je € E solving the equatior] (14). This is equivalent(i@r, 3¢), §¢) € (T(r.a)U)oo-
Introduce the path

T > pr = (r +1ér,q + 718G, T(r416r,g+189) (€ + TE))

for || < p andp small. From(r,a) € Uy andde € E one conclude®, € Ux.
Moreover, if we considet — p, as a map intd/,, form > 0, its derivative at = 0 is
equal to(ér, 8¢, Se). Fix a levelm > 1 and consider fop > 0 sufficiently small the map

(—p,p) > R¥ @ Q) ® El, : T > D(po).

Themapd : U — U'isCasamap front,, ;1 C R¥® Q11 1® Ep i1 intoR¥ @ Q) @
E! . Its derivatived ®(r, g, ¢) : R*® Q1@ Enr1 — RF @ Q) @ E!, has an extension
to a continuous linear operat®rd (r, ¢, ¢) : RE® 0, ® E,, — R¥ @ Q! @ E/, . Sinced
is an sc-diffeomorphism the extensiBnb (r, ¢, ¢) : R @ Q,, ® E,, — R @ 0/, & E/,
is a bijection. Thus, sinc&; € QO andde € E,

®(pr) = ©(po) + T - dP(po)[dr, 8q, Se] + 0y (T)
=qo+ 1 - DO(po)[dr, 8q, 8e] + 0 (T) (15)

whereo,, (t) is a function taking values R @ 0, ®E, and satisfying ~o,,(r) — 0
ast — 0. Introduce the sc-continuous linear functiongjs: RK'e Q' @ E — Rby

ri(s',q' h') = s]/-/
wherej’ € {1,...,k’}. Then
Ajro®(pr) >0

for|z| < pandj’ € {1,...,k'}. Applying for j* € J' the functionals;s to both sides of
(I5) and using the fact that/ (P (po)) = Aj/(q0) = 0 for ;' € J" we conclude that for
T > 0,

0<1
T

Al

A [P(p)] = = - Ay [P(po) + T - DP(po)[dr, 8q, Se] + om(T)]

= Aj[DP(po)[ér, g, be]] + kj/<0mr(f)>'

Passing to the limit — 0t we find

0 < A/ (D®(po)[dr, 8q, de])
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and replacingsér, 8q, Se) by (—dr, —8a, —8e) we obtain the equality sign. Consequently,
L (D®(po)[dr, 8q,8¢])) =0, j elJ', (16)
for all [67, 8q, 8¢] € R* @ Qo @ Eo satisfying
T(r.q)(8€) + Dir.q) (T (r.q) ()81, 8)] = de

and(ér); = Ofor all j € J. Introduce the codimensiofr subspace. of the tangent
spacel(, 4, )U C K TS which we may view as a subsetB®f @ Q. ® Eo by

L={(r,8g.8¢) e R* ® Qoo @ Ews | T(r.q)(8€) + Dq) (T (rq) () (87, 8q) = de
and (8r); =0 forall j € J}.

Then, in view of [16),

D®(r,q,e)L C {(6r', 8¢, 8¢") | 7(y 4 (8€) + Dy g1 (7 41 (D) (1, 8q") = 8¢’
and(sr');; = Oforall j" € J'}.

Because the subspace on the right hand side has codimenSiorT,- ./ .U’ and since
D®(r, q, e), being a bijection, mapk onto a codimensiotr subspace of(,» ./ U’ it
follows thatitr’ < ir, as claimed.

Next we shall prove the general case. For this we take= (r, g, e) in Up, So that
the image pointr’, ¢', ¢’) = ®(r, q, e) belongs taJ,. Arguing by contradiction we may
assume thatr > fr/, otherwise we replacé by ®~1. SinceU,, is dense inUy we
find a sequence, g,, e,) € U satistyingm, 4,y(e,) = e, and(r, g, e,) — (1, q, e)
in Up. By the previous discussiofr = tir, where(r,, g, e,) = ®(r, qn, e,). Sinced
is sc-smooth, we have,, g,.¢,) — (', q’,¢') in U} andn(/r/’q,)(e/) = ¢'. From this
convergence we deduge’ > tr, so thatfr’ > fr, contradicting our assumption. The
proof of Propositiof 3.73 is complete. O

To finish the proof of Theorerp 3.]L1 it remains to show that the funciida lower
semicontinuous. Assume for the moment that there exists a sequence ofpaiots-
verging tox so thatd(xy) > d(x). Sinceg is continuous, we have the convergence
1) = (rf, ... 1k g*) — e1(x) = (r1, ..., . ). If for a given coordinate indey
the coordinate* vanishes for all but finitely man, thenr; = 0, and ifr¥ > 0 for all
but finitely manyk, thenr; > 0. Henced (xx) < d(x), contradicting our assumption. The
proof of Theorenp 3.711 is complete. o

Definition 3.14. The closure of a connected component of theds@dl) = {x € X |
d(x) = 1} is called afaceof the M-polyfoldX.

Around every poinkg € X there exists an open neighborhadd= U (xp) so that every
x € U belongs to precisely(x) faces ofU. This is easily verified. Globally it is always
true thatr € X belongs to at mosi(x) faces and the strict inequality is possible.
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Definition 3.15. The M-polyfoldX is calledface structured every pointx € X belongs
to preciselyd (x) faces.

This concept is related to some notion occurring id [15].
If X x Y is a product of two M-polyfolds, then one deduces from the definition of the
product structure the following relation between the degeneracy indices:

dyxy(x,y) =dx(x) +dy(y).

3.5. Submanifolds

There are many different types of distinguished subsets of an M-polyfold which qualify
as some kind of sub-polyfold. We refer the reader(to [6] for a comprehensive discus-
sion, where we introduced three different notions of a sub-polyfold. Among those one
can find sub-polyfolds of locally constant finite dimensions. These occur as solution sets
of nonlinear Fredholm operators. In this paper we only consider the latter and introduce
the notion of a strong submanifold of an M-polyfold. The more general notion of a sub-
manifold requires some more work and is givenlih [8]. We just note that both types of
submanifolds inherit from the ambient M-polyfold the structure of a smooth manifold.
The strong submanifolds however lie in a better way in the M-polyfold.
We consider two sc-smooth splicings

S=(m,E,V) and T =(p,F,V)

having projectionsr, andp, parametrized by the same open subiéeif a partial quad-
rant. We define theiVhitney sunto be the sc-smooth splicing

SOT =@ ®p, EQF,V)
defined by the family of projections
(T @ p)o(h @ k) = (my(h), py(k)), vEV. 17)

One verifies readily that the splicing cake®®7 is the fibered sum over of the splicing
coresk® andk 7,

KT = kS @y KT ={(v.h, k) e VO E® F | my(h) = h andp, (k) = k}. (18)

Definition 3.16. The sc-smooth map : X — Y between two M-polyfolds is called
a fred-submersiorf at every pointxo € X resp. f(xo) € Y there exists a chartU, ¢,
T e 7T)resp.(W,y, T) satisfyingf(U) c W and

Yvofoptu e e)=(ve)

and, moreover, the splicin@? = (p, E, V) has the special property that the projections
P do not depend on and project onto a finite-dimensional subspaceof
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Instead of7’ = (p, E, V) we may just take the splicingd, R”, V) wheren is the dimen-
sion of the image of the projectionand Id stands for the constant family— I1d. Hence
we may assume that in the Whitney sdi® 7 the latter summand has the special form
and we will indicate that by writing

T o R".
The following result will be used quite often.

Proposition 3.17. If f : X — Y andg : Y — Z are fred-submersions, then the compo-
sitiong o f : X — Z is again a fred-submersion.

Proof. Let yo = f(x0) andzo = g(yo). We find special charig andy, aroundxg andyo,
respectively, so that

Yo fop tu, e €)= (v e).
Similarly, we find special chartg andg so that
aogoB Y (w, h k)= (w,h).
Define the inverse of a chaptaroundxg by
y tw, b, b e) = ¢ o Bw, kB, €).
Then we compute
ao(go oy Yw, bW, é)y=aogo fodp t(op Y (w, h h), e)
—aogoy to(ofod H(W o Hw, h )¢
=aogoy to(yop (w, h k)
=aogoB Y (w, h h) = (w,h).

The splicings used for the charts involved are of the fé&trandS & (R* & RF). This
completes the proof. O

The preimages of smooth points under a fred-submersion carry in a natural way the struc-
ture of smooth manifolds.

Proposition 3.18. If f : X — Y is a fred-submersion between two M-polyfolds, then the
preimage of a smooth poigte Y,

ffocx,
carries in a natural way the structure of a finite-dimensional smooth manifold.

Proof. We can define local charts induced from the chartX ¢exhibiting f as a fred-
submersion). They are defined on open subsel¥ iHeren is locally constant, i.e. only
depends on the connected component® of he transition maps are sc-smooth and con-
sequently smooth in the classical sense. In other words, there is a natural system of charts
which define the structure of a smooth manifold ot (y). O
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The above discussion prompts the following useful concept.

Definition 3.19. A subsetV C X of an M-polyfoldX is called astrong finite-dimension-
al submanifoldf X if the following statements hold true.

(i) N C Xeo.
(i) For every pointm € N there exists an open neighborhoéd ¢ X of m, an M-
polyfold Y, and a surjective fred-submersigh: U — Y satisfying

Y fm)y=NnU.

The definition of a finite-dimensional submanifold of an M-polyfold will be giveriin [8].

4. M-polyfold bundles

In this section we continue with the conceptual framework. First we describe the local
models for strong M-polyfold bundles and smooth maps between them. Then we intro-
duce the notion of a strong M-polyfold bundle.

4.1. Local strong M-polyfold bundles

In this subsection we shall introduce the local models for strong bundles over M-poly-
folds. For this we need a generalization of the notion of splicing where the splicing pro-
jection is parameterized by an open subset of a splicing core. We begin by introducing
these more general splicing definitions.

Definition 4.1. A general sc-smooth splicirig a triple
R =(p, F,(0,95)),

where (0, S) is a local M-polyfold model associated with the sc-smooth splicing
S = (n, E, V) and O is an open subset of the splicing cake® = {(v,e) € VB E |
my(e) = e}. The spacd is an sc-smooth Banach space and the mapping

P OBF — F:.((v,e),u)— p(v,e,u)
is sc-smooth. Finally, for fixeth, ¢) € O, the mapping
Pe) =p,e,) F—> F
is a projection inL(F). Sc-smoothness pf of course, means that the map
(v, e,u) =~ p(v, my(e), u),

which is defined on an open subgetof a partial quadrant in an sc-Banach space, is
sc-smooth.
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The novelty of this definition consists in the requirement that the family of projections is
parameterized by elements of an open subset of a splicing core. Iterating this procedure
we obtain splicings parameterized by open sets in splicing cores of generalized splicings.
Continuing this way we arrive at a hierarchy of splicings of the following types:

(Uv e) = (U1 ”v(e))a
(U, e, M) = ('U, T[U(e)v IO(U,T[U(E))(M))’
(U, e, u, w) = (Ua JT'U(e)ﬂ p(v,nv(e)) (M), O'(v,nv(e),p(v,nv(e))(u))(w)),
and so on. Hence there aplicings of typeéd, which are the original ones, then there are
splicings oftype 1, which are the generalized splicings introduced above, and so on. A
type+ splicing can also be viewed as a tyfeplicing for everyt > k. The notion of st
smoothness generalizes to these more general splicings. Using open sets of splicing core
of splicings of typet as local models we can constridipolyfolds of typé the same way
we did in Definitior{ 3.8 for the original M-polyfolds, which now become M-polyfolds of
type 0. In this paper we shall only meet M-polyfolds of type 0 and of type 1.

The tangent of a general sc-smooth splicify = (p, F, (0, S)) is defined, quite
similarly to the case of a splicing, by

TR=({Tp, TF,(TO,TS)),

which is again a general sc-smooth splicing. The iap 7O & TF — T F is a family
of projections acting off F and parameterized by the tang@t® of O. It is defined by

To(w, sw,u,du) = (p(w, u), Do(w, u)(Sw, du)).

Herew = (v,e) € O1 C V1 ® E; anddw € W & E so that(w,sw) € TO and
(u,8u) € F1 @ F = TF. Keeping(w, sw) € T O fixed, the map

Tp(w,(gw) TF—>TF

is a projection inC(F1 ® F).
Next we introduce the notion of a strong bundle splicing.

Definition 4.2. A strong bundle splicings a general sc-smooth splicing
R=(p,F,(0,95)

having the following additional property. (b, ¢) € O,, andu € F,, 11, thenp((v, e), u)
€ Fy41 and the newly defined triple

RY = (p, F1,(0,8))

is also a general sc-smooth splicing. If we view the strong bundle splRingly as a
general smooth splicing we denote it BY.
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Let us note that the complementary spliciR§ is a strong bundle splicing as well. From
the above definition we conclude, in particular, that a strong bundle spliigiyes rise
to two general sc-smooth splicings, nam@&§ andR 1.

There is a nonsymmetric produét <« F of two sc-Banach space and F. This
product is the Banach spaéed F equipped, however, with the bi-filtration defined by

(E<xF)pix=Ey ® F

for pairs(m, k) satisfyingm > 0 and 0< k < m + 1. For a subsel/ C E we can define
U < F in the obvious way.
Thesplicing corek ® of the strong bundle splicin® = (p, F, (0, S)) is the set

KR ={(w,u) e 0O®F | p(w, u) = u}.

SinceR gives us two general splicingg® andR* we have a well defined bi-filtration on
K™ by pairs(m, k) satisfying 0< k < m + 1 so thatk™® can be viewed as a subset of
(V @ E) <« F equipped with the induced bi-filtration. More precisely,

KX ={w.u) e K® | we Oy, u e Fi}
wherem > 0 and O< k <m + 1. The bundle
)

defined by means of the strong bundle splicidgs called alocal strong bundlelt will
serve as our local model of the strong M-polyfold bundles introduced in the next subsec-
tion.

Remark 4.3. There is a special case which we already briefly mentioned before. Assume
the strong bundle splicin@ has the special form

R=(d, F,(0,38)),

whereS = (Id, E, V) andO is a relatively open subset &f@ E. In this case the splicing
core is the product

KR=0«F
and we can view0 as a local model for an sc-manifold and the prodet F as a model
for a local strong sc-bundle with bagke

Associated with the strong bundle splici®ywe have the splicing core& R’ and
kR, which we denote bk ®(0) and K R (1), respectively. They are equipped with the
filtrations

KR, = KF, and KR, =KkE, ...

The natural projectiok® — O : (w,u) — u is sc-smooth in the sense that the two
projectionsk (i) — O are sc-smooth for= 0, 1.
We can define the tangefitR of the strong bundle splicing

R=(p,F,(0,5))
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as follows. First we consider the underlying strong bundle spli@fgnd take the asso-
ciated tangent splicing R°,

TRO = (Tp, TF,(TO,TS)).
Since we also have the splicifi®!, we can take its tangefitR* given by
TR = (Tp, T(FY),(TO,TS)).
FromT(F1) = (T F)! we conclude that
TR = (Tp,TF,(TO,TS))

is again a strong bundle splicing in the sense of Definftioh 4.zpllising corek 7% is,
as usual, defined by

KTR = {(w, 8w, u,8u) e TO®TF | Tp(w, dw, u, du) = (u, Su)).

More explicitly, the elements ok 7 are restricted by the following equations for=
(v,e) € 01 ® E1 andéw = (8v, 8e) € W @ E so that(w, Sw) € TO and for (u, Su)
eTF:

w(v,e) =e, de =m (v, de) + Dy (v, e)dv,

p(w,u) =u, du=p(w,du)+ Dyp(w, u)dw.
Let us observe that far= 0, 1 the following relationships hold for the underlying general
sc-smooth splicings:

(TKR) (i) = KTR(i) = kTR = (kR (i)).

Next we shall define the concept of a strong bundle map of cldssetween splic-
ing cores of strong bundle splicings. Recall Defini 3.4 for tHecdass of mappings
between open subsets of splicing cores.

Definition 4.4. If R = (p, F, (0, 8))andR’' = (o, F’, (0’, §")) are two strong bundle
splicings we denote the associated splicing corekby K™ ¢ O®F andK’ = K*
O’ @ F'. Consider a magy : K — K’ of the form

fw,u) = (p(w), @(w, u)),
wherep : O — O'and® : O @ F — F'.

e The mapf is a strong bundle map of class%awr simply an s&-map, if it induces
s@-mapsK (i) — K'(i) fori = 0andi = 1.

e The mapy is a strong bundle map of classsf it is of class s€ and if it induces
sct-mapsK (i) — K'(i) fori = 0andi = 1.

Observe thak (i) and K’ (i) are typel M-polyfolds.



A general Fredholm theory I: A splicing-based differential geometry 867

In many cases we requirk to be linear inu. In particular, this is the case whénoccurs
as an isomorphism between local strong M-polyfold bundles.

Next we consider mapg : K — K’ between splicing cores of strong bundle splic-
ings of the form as in Definitio@A. In order to define mgps K — K’ of class sg
we proceed as in the sc-case. Assuming tha of class st we consider it first as an
sct-map

f: K@) — K'(0)

between splicing cores. Its tangent ni&p is described by the formula
Tf(w,déw,u,déu) = (pw), De(w)dw, ®(w, u), DO, w)(Sw, su)).

Sincef is also an skmap
fiKQ) = K'Q

the tangent formula above defines two maps
Tf:TKR@) = K™ > TkR (i) = kTR
fori = 0, 1 which are s&-continuous. Therefore they define a map
Tf:TK® - Tk®

between splicing cores of strong bundle splicings which is of claslsis called the
tangent mapf the sc},—mapf.

If this tangent mag¥ 1 is of class st as defined above, then the mgp K — K’
is called ofclass sé. Proceeding inductively as in the sc-case one defines the mappings
f: K — K’ofclass sk for k > 1 and also the sesmooth mappings. Let us finally note
that the chain rule also holds for strong bundle maps.

Theorem 4.5 (Chain rule for strong bundle maps).Let f : K|O — K’ andg : K’|O’

— K" be two strong bundle maps of clasg, setween local strong bundles so that the
image off is contained in the domain @f. Then the compositiogio f is also a strong
bundle map of class $@nd the tangent maps satisfy

T(gof)=TgoTf.

A note of caution: as before the order of terms in the tangent fiyapf an s¢-map is
different from their order in the classical theory.

Associated with the strong bundle splicifiy we have the local strong bund}e :
K — 0. An sc-smooth section of the bunddds just an sc-smooth section of the under-
lying bundleK (0) — O. The vector space of sc-smooth sections is denotdd(py. In
addition, there is a different class of sections callettsections. An sc-smooth sectign
is called ansct-sectionif it defines an sc-smooth section of the bundlél) — 0. We
denote the collection of desections byl (p).



868 H. Hofer et al.

4.2. Fillability and fillers

Considering the local strong bundle : K® — 0 associated with a strong bundle
splicingR, we investigate the coherence in the jumps of the space dimensions in the base
and the fibers.

We start with a strong bundle splicif@ = (p, F, (0, S)). The splicings is the
triple (s, E, V) in which V is an open subset of a partial quadrahtontained in the
sc-Banach spac® . The setO is an open neighborhood of the origin in the splicing core
KS ={(v,e) e VB E | my(e) = e}. I

s:0—>YV
is the sc-smooth map defined &y, ¢) = v, we shall abbreviate y*7 : O x E — E the
compositions*z (v, e, u) = 7 (s(v, e), u) = (v, u) and introduce the general sc-smooth
splicings*S¢, having the splicing parameter s@t by
s*S =1 —-s*n, E, O).

Its splicing core is the set

K = {(v,e,u) c ODE | Ts(v,e) () = 0}
={(v,e,u) e VOEBE | (v,e) € 0, my(e) = eand( — m,) () = u}.

In view of the splittingE = 7, (E)®(1—,)(E), the splicing cor&*"S* can be naturally
identified with the following open subsét of V @ E:

0={(v,e) e VBE| (v me) € O}.
We have the natural projection
a K5 5 0 (v, w) = (v, Ty (w))

and we can view: : K**°° — 0 as a bundle (of course, not as a strong bundle). The
fibera—1(v, ¢) over the poiniv, ¢) € O is the Banach space

alw,e) = {(v,e+w) | w e E, my(w) = 0} = {(v, &)} x ker(m,).
The strong bundle splicinB comes together with its complementary strong bundle splic-
ing R¢ = (1 — p, F, (0,8)) giving rise to the local strong bundle: K — 0. We
are interested only in the underlying bundle

b: KR — 0

associated with the general sc-smooth spliciRg)°.
The following concept of a filler turns out to be very useful in the applications.
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Definition 4.6. Let’R be a strong bundle splicing ard¢ the associated complementary
strong bundle splicing. Consider the two bundles o®er

a: K% >0 and b: kR0 — 0.
Then dfiller for R is an sc-diffeomorphism
FARD G ()
between the complementary bundle pairs, which is linear in the fibers and covers the
identity mapO — O. (ltis, in particular, a bundle isomorphism.)
Definition 4.7. The strong bundle splicin® is fillable if there exists a filler fofR.

Being fillable is a property of the strong bundle spliciRg
Afiller f¢: K5"S° — KR°(0) has the the form
fCr, e u) = (v,e, (v, e, u)
where(v, ¢) € O and where: € E satisfiesr, (u) = 0. The principal part®(v, e, u) € F

satisfiesow,¢) (f°(v, e, u)) = 0. In view of the identitye = 7, (e) + (1 — 7,)(e) in E, the
principal partf® can be viewed as an sc-smooth map

O— F: (v,e) — (v, e)
satisfyingpw,z, ) (¢ (v, €)) = 0.

4.3. Strong M-polyfold bundles

In order to introduce strong M-polyfold bundles we consider a surjective sc-smooth map
p . Y — X between two M-polyfolds. The M-polyfold is of type-1 andX of type-0.

We assume in addition that for everye X, the preimage —1(x) = Y., called the fiber
overx, carries the structure of a Banach space.

Definition 4.8. Letp : Y — X be as just described. strong M-polyfold bundle chart
for the bundlep : ¥ — X is a triple (U, ®, (K™, R)). HereU C X is an open set
andR = (p, F, (0,S)) a strong bundle splicing with the local mod@), S) of the
polyfold X. The mapd is an sc-diffeomorphism

o ptU) > KR
which is linear on the fibers and covers the sc-diffeomorphism
o:U— O

so thatpr; o @ = ¢ o p. Moreover, the map$ resp.¢ are smoothly compatible with the
M-polyfold structures oy and X, respectively.

p iy —2— kR

/| [

U LN 0]
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Recall thatS = (, E, V) is an sc-smooth splicing whekéis an open subset of a partial
guadrant in an sc-smooth Banach sp#ceThe setO is an open subset of the splicing
coreKS = {w = (v,e) € VB E | 7(v, e) = ¢} while the splicing core&k ® over the
baseO is defined byk™® = {(w,u) € O & F | p(w, u) = u} whereF is an sc-smooth
Banach space.

Definition 4.9. Two M-polybundle chart$®, ¢) and (¥, ) are calledsc,-compatible
if the transition map

Vod L kRipUNU) - k¥ |y U NU)

between their splicing cores® and K *' is an sc-smooth strong bundle map.

An M-polybundle atlagonsists of a family of M-polybundle chat&, ®, (K™, R))
so that the underlying open sefscoverX and the transition maps are ssmooth strong
bundle maps. A maximal smooth atlas of M-polybundle charts is calléd-palybundle
structureand the bundle : Y — X is called astrong M-polyfold bundle.

Definition 4.10. A strong M-polyfold bundlg : ¥ — X is calledfillable if around every
pointg € X, there exists a compatible strong M-polyfold bundle chiart®, (K™, R))
whose strong bundle splicirg is fillable.

It turns out that all strong bundles occurring in the applications we have in mind have this
property.

Note that in general the tangent bund@l& — X1 is not a strong M-polyfold bundle.
Given the strong polyfold bundlg : Z — X having the bas& and the sc-smooth
map f : Y — X between M-polyfolds one defines the (algebraic) pullback (or induced)

bundle

piffZ—Y
having the bas#& as follows. One takesthe sgtZ = {(y,z) € Y x Z | p(2) = f ()}
and the two projection maps(y, z) = y and f/(y, z) = z, so that the diagram

rz sz

v |7

f

Yy — X
commutes.

Proposition 4.11. If p : Z — X is a strong M-polyfold bundle and : ¥ — X is an
sc-smooth map between M-polyfolds, then the pullback byridlef*Z — Y carries a
natural induced structure of a strong M-polyfold bundle whose base is the M-polyfold

Proof. Choose a pointyg, zo) € f*Z so thatf(yo) = p(zo) = xo € X. Take a strong
M-polyfold bundle chart fop : Z — X denoted by U, ®, (KR, R)),

ptw) —2— kR

’| Jo

v —*5 o
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so that the open sdf C X contains the poinkg. The strong bundle splicin® =
(p, F, (0,S8)) is associated with the local modéd, S) of the polyfold X, where O

is an open subset of the splicing cake® of the splicingS = (, E, V). Take now an
M-polyfold chartys : U’ — O’ around the given poingg € U’ € Y, associated with
the local mode(0’, §’) of the M-polyfold Y, whereO’ c K" is an open subset of the
splicing core of the sc-smooth splici®j = (z’, E’, V’). ChooselUl’ C Y so small that
f(U") c U. Define the strong bundle splicilg’ = (o’, F, (0’, S")) by means of the
sc-smooth map’ : O’ @ F — F given as

P (v, u)i=plpo foy V), u).

The strong M-polyfold bundle chart for the bundé : f*Z — Y is now the triple
(U', v, (KR, R")) with the homeomorphism

v FEZIU - KRN0

defined as
V(o) =2 )
forall y e U’ C Y. We have the diagram

p/—l(U/) v KR/

/| [

v —5 0
One can verify that the transition maps between two such strong M-polyfold bundle charts
are s¢-smooth. This finishes the proof of Propositjon 4.11. o

4.4. Sections and linearizations

Assumethap : Y — X is a strong M-polyfold bundle over the M-polyfoki. We denote
the space of sc-smooth sectionsibgp). In addition there is the distinguished space of
sch-sections which we denote By" (p).

The sectionf is an sct-section if its local representations in the strong M-
polyfold bundle charts are Sesections as defined at the end of Sec 4.1 above. If
(U, ®, (KR, R)) is such a strong M-polyfold bundle chart, the local representation of
the sectionf of the bundlep : Y — X is the sectiong of the strong local bundle
K™ — 0 defined as the push-forward gfby

gw) =do fop t(w),

wherew € 0. By definition, the mapd : p~1(U) — K7 is an sc-diffeomorphism
which is linear in the fibers and which covers the sc-diffeomorphisnV — O where
O is an open subset of the splicing cake® = {(v,e) | my(e) = e} belonging to the
splicingS = (r, E, V). Associated with the strong bundle spliciRg= (p, F, (O, S))
we have the splicing COrER = {(w,u) e O® F | p(w, u) = u).
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Next we choose a smooth poigt € X. Generalizing a trivial classical fact for
vector bundles we can identify naturally the tangent sphgé at the zero element
0, = ® 1(¢(¢), OF) with the sc-Banach spacg X & Y, whereY, = p~1(q) is the
fiber. Sinceyg is a smooth point we may assume in the following théf) € O is equal
to 0, so thatb(0,) = (0,0) € K* C O & F. The identificationTo, ¥ < T,X & ¥,
corresponds in the local coordinates to the identification

(0, 8w, 0, 5u) < ((0, sw), (0, Su))

of the elements in the tangent spago K * C ToO @ ToF. We shall denote by, :
To,Y ~ T,X ® Y, — Y, the projection.

Given a sectionf € I'(p) which vanishes at the smooth poipte X we define,
following the classical recipe, tHmearization f’(q) by

@) TyX = Y, :h P, oTf(q)h.

As in the case of vector bundles there is generally no intrinsic notion of a linearization of
a section at an arbitrary poigtat which f (¢) does not vanish. In our case with— X

being a strong bundle we have, however, some additional structure. This will allow us
to define a linearization at an arbitrary smooth point which is unique up to a lin€ar sc
operator.

In order to do this, we consider the sc-smooth sectfor I'(p) and look at the
smooth poiny € X. Its imagey = f(g) is a smooth point ir¥ and we claim that there
exists an st-sections defined neay and satisfying (¢) = f(q).

Indeed, if the coordinate representation of the secfitgiven byg(w) = (w, g(w))
and if ¢ corresponds tavg, theng(wp) is a smooth point in the sc-Banach spdtsat-
isfying p(wo, g(wo)) = g(wo). Now define in the local coordinates the sectioby
s(w) = (w, p(w, g(wo))). It satisfiess(wg) = g(wo) and is indeed an Sesection be-
cause the projections belong to a strong bundle splicing as defined in Definifioh 4.2.

Now take any st-sections of the bundleY — X defined neagy and satisfying
s(q) = f(g). Then the sectiorf — s is defined neag and vanishes at. We define the
linearizationf; (q) by

fi@) TyX = Yy h> PpoT(f —s)(g)h.

Next we investigate to what exterff(¢) depends on the choice sf Assume therefore
thats andr are sc¢ -sections defined nearand satisfying (q) = t(¢) = f(q). Then, by
definition,

[@=PyoT(f =95)q)=PgoT(f —t+(—5)(q)
=P, oT(f=0(q)+ Py oTt—35)q) = f{(q)+ Py oT(t—5)(q).

It remains to understand the perturbation tetyw T (r — s)(g). For this we observe that it
suffices to understang, o T's(q) for an s¢-sections defined in a neighborhood c X
of ¢ and vanishing a. Sinces is an s¢ -section of the bundle : Y|U — U, its tangent
Ts is an s¢-section ofT'p : T(Y|U) — TU. Hence the composition

PyoTs(q) . T;X — Yy,
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which in local coordinates is given by
0, 5w) — (0, éw, 0, Ds(0)dw) — (0, Ds(0)6w),
is an s¢ -operator.

Definition 4.12. Let[ f, ¢] be the germ of a sectiofi of the strong bundle : ¥ — X
around the smooth poigt. Let[s] be the germ of an desection around; which satisfies
s(q) = f(g). Then thdinearizationof [ f, g] with respect tds] is defined by

T9@ = Py o T(f = 9)(Q).
The above discussion is now summarized in the following proposition.

Proposition 4.13. Let][ f, ¢] be an sc-smooth section germ of the bundley — X near
a smooth poing. Then two Iinearizationgf[/s] (¢) and f[/t] (¢) differ by an s¢-operator.
In particular, if one linearization is sc-Fredholm so are all others.

The last statement follows from Propositjon 2.11. This allows us to introduce the follow-
ing definition.

Definition 4.14. An sc-smooth section of the strong M-polyfold bundle Y — X is
linearized Fredholm at the smooth poinprovided a linearization at the point is sc-
Fredholm. We say is linearized Fredholnif this holds at all smooth pointsg.

If f is linearized Fredholm angla smooth point, we define the index [iftlg) € Z by

Ind(f, q) :=i(f{y(@))-

In view of Propositiorj 4.7]3 this is well defined. Herdenotes the Fredholm index.
Another consequence of the previous discussion is the following.

Proposition 4.15. Assume thap : Y — X is a strong M-polyfold bundle an¢l € I'(p)
an sc-smooth section which is linearized Fredholm. Then the seftipr for any sc¢ -
section in["*(p) is linearized Fredholm.

If a strong M-polyfold bundlep : ¥ — X is fillable one can construct for every sc-
smooth sectiory’ near a smooth point € X a filled section. This will be important for
the Fredholm theory developed If [8]. To carry out this construction we assumg ihat
an sc-smooth section of the bungle Y — X andg € X.. We pick a fillable strong
bundle coordinate
d:YIU—> KR

defined on an open neighborhobf ¢ and covering the sc-diffeomorphisp: U — O.
Let

FAlD G (1)
be a filler for the strong bundle splicirf@ = (p, F, (O, (x, E, V))). The principal part
of f¢ gives us an sc-smooth map

10 = F:(v,e) >, e)

satisfying o, x, ¢)) (v, €)) = 0. Recall thatO stands for the open subset Bf® E
defined byO = {(v,e) € V @ E | (v, my(e)) € O}. The push-forwardb, f is a section
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of the local strong bundli&® — 0. Its principal part has a natural extension to the open
setO which we denote by. It satisfies

P,y f(v, €)) =f(v, e).
Finally, we introduce the sc-smoth mépO — F by
fw,e) =f(,e) + (v, @),

which can be viewed as the principal part of an sc-smooth segtioithe bundleO < F
— 0.
Definition 4.16. The sectionf is called afilled versionof f nearq andf is called its
principal parti.e. . ~
fv,e) = ((v,e),f(v, e)).

Let us observe thaf (v, ¢) = 0 if and only iff(v, ¢) = 0 andf‘(v, ¢) = 0. Sincef¢ is
a filler we deduce froni‘(v, ¢) = 0 that(1 — m,)(e) = 0, implying 7, (¢) = e so that
(v, e) € 0 andd, f (v, e) = 0. Hencep~—L(v, e) is a zero of the sectiofi. Consequently,
a filled version still describes in local coordinates precisely the solution sebwér the
setU.

Assume again thap : ¥ — X is a fillable strong M-polyfold bundle ang an
sc-smooth section. Suppose thyats a filled version representing the sectigfi/ as a
section of the bundl® <« F — O. We will prove the following result.

Proposition 4.17. For a smooth poing € U corresponding to the poinw, ¢) € O the
linearization f{;(¢) : 74X — Y, is sc-Fredholm if and only if the linearization of the

filled versionf[’t](v, e) . T(v,e)ﬁ — F is sc-Fredholm. In this case the Fredholm indices
are the same.

Proof. Without loss of generality we may assume thigaf) = 0 ands = 0. Using fillable
strong bundle coordinatds: Y|U — K™ coveringy : U — O we may assume without
loss of generality thaf is an sc-smooth section of the bundle

p KR >0

satisfying Oc O and f(0) = 0. Thenf has the form
0 — KR :(v,e) > ((v,e), fv,e)).
Using its principal pargf we can define an sc-smooth map
f:0— F:(v.e) fv,m(e),

which satisfiep, 7, ) (f(v, €)) = f(v, e). The open subse? of V @ E can be naturally
identified with the splicing cor&*">‘, as we have seen in Sect4.2. Since the strong
bundle splicingR is fillable, we have the existence of a bundle isomorphism (linear in the
fibers)

K = kR0
over the seD which gives us the sc-smooth filler

f:0—>F
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satisfying pw,x, ¢)) € (v, €)) = 0. In addition, for fixed(v,e) € O the mapr +—
f¢(v, e + r) is a linear isomorphism between the Banach space&s Keand ketp(y,e,)).
Finally, the principal part of the locally filled section is the sc-smooth map

f:0—> F: (v, e) = f(v, e) +f(v, e).

Since f(0, 0) = 0, the linearization of the sectiofiof the bundlek® — 0O at the point
(0,0) € 0,

£'(0,0)) : T,00 — ker(1 - po,0) = p~*(0,0),
is equal toDf(0, 0)|T0,000. We have to compare it to the linearizati®f(0,0) : W @
E — F.HereW is the sc-Banach space containing the relatively open neighbo¥iood
of 0 in a partial quadrant ¢ W. According to the splittingE = no(E) @ (1 — mo)(E)
we shall splitSe € E into e = (8a, 8b) so that the tangent space at the pdinte) =
(0,0) € O becomesl(p0)0 = {(w,8e) € W @ E | mo(8e) = e} = {(dw, a) €
W @ mo(E)} and compute

Df(0, 0)(sw, Se)
= Df(0, 0)(w, 8¢) + DF(0, 0)(Sw, 8e)
= Df(0, 0)(w, 8a) + Df(0, 0)(0, 8b) + Df(0, 0)(Sw, 8a) + DF°(0, 0)(0, §b)
= Df(0, 0)(Sw, 8a) + Df(0, 0)(Sw, 8a) + DF°(0, 0)(0, 8b)
=: (0, 0) (8w, 8a) + B(Sw, 8a) + C(8b).

We have concluded from the identitf, ¢) = f(v, ,(e)) that
Df(0, 0)(0, §b) = 0.

In addition, since for fixed the mapf© (v, 7, (e) + (1L — my)(e)) is linear in(1 — ;) (e),
we conclude thaDf¢(0, 0)(0, §b) = (0, 8b). Since(0, 0) € O is a smooth point, the
map

C : ker(mg) — ker(p(,0)) : 8b — (0, 8b)

is a linear sc-isomorphism, by the definition of a filler. The sc-operdtap ker(zp) —
ker(p(o,0)) defined by(sw, 8a) — Df¢(0, 0)(8w, a) vanishes.
Hence our total linear sc-operatbif(0, 0) has the matrix form

(Bw, 8a) o 10,0 0] [(Bw,éa)
3b 0 C 3b ’
whereC is an sc-isomorphism. An sc-operator of this form is sc-Fredholm if and only if

the linearizationf’(0, 0) is sc-Fredholm. In that case the Fredholm indices are the same.
This completes the proof. O

What we discussed in this paper is a minimal set of concepts needed to develop a Fred-
holm theory. The next paper will contain a treatment of implicit function theorems in the
splicing context.

We refer the reader to the upcoming volume [6] for a more exhaustive list of splicing
constructions and constructs.
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