J. Eur. Math. Soc. 9, 8T[/—899 © European Mathematical Society 2007

Piero D’Ancona Damiano Foschi Sigmund Selberg JEMS

Null structure and almost optimal local regularity
for the Dirac—Klein—Gordon system

Received May 12, 2006 and in revised form August 7, 2006

Abstract. We prove almost optimal local well-posedness for the coupled Dirac—Klein—Gordon
(DKG) system of equations in + 3 dimensions. The proof relies on the null structure of the
system, combined with bilinear spacetime estimates of Klainerman—Machedon type. It has been
known for some time that the Klein—Gordon part of the system has a null structure; here we uncover
an additional null structure in the Dirac equation, which cannot be seen directly, but appears after a
duality argument.
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1. Introduction

In standard notation, the coupled Dirac—Klein—Gordon (DKG) system of equations on
R*3 reads

{ (=iy"u + M)y = ¢y (M = 0), (1.1)

—O0+mdp=y"O% @O=-2+Am=0),

where the unknowns are (i) a spinor figldz, x) € C*, regarded as a column vector

in C4, and (i) a real scalar fielg (¢, x). We use coordinates= x°, x = (x1, x2, x%)

on R*3, and writed, = 8/dx*. Greek indicest, v etc. range over @, 2, 3, Roman
indicesj, k etc. over 12, 3, and repeated indices are summed over these ranges. Thus,
yHo, = 22:0 yHou, Where{yl‘}i:0 are the 4x 4 Dirac matrices, given in 2 2 block

form by
0_ 1 O Jj_ 0 O'j
)/ _<O _I>a V _<_O_] 0 )
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1 (0 1 2 (0 —i 3 (1 0
“ —<1 o)’ “ _(i o)’ 7 —<o -1
are the Pauli matrices: denotes the adjoint, i.e., the conjugate transpose, hence
vy = [al® + 1al? — 193l — lyal?,

wherevr, ..., ¥4 are the components af. The following related matrices occur fre-
quently below:

; i 0 ol ; ™ 0
p=v" a’zy°V’=<' o)’ Sme"yl=<o )

where

o

where(k, I, m) is any cyclic permutation ofl, 2, 3). Denoting bys/* the Kronecker delta
and bys/¥ the completely antisymmetric tenﬁ)we have the identities

ol B = —Bal, (1.2)
al ok = —akal + 2877, (1.3)
alak =87k i/t sl (1.4)

Also, B2 = (@/)2 = I andg’ = 8, (/)T = a/.

Concerning the Cauchy problem, the most fundamental question is whether global
regularity holds, i.e., given smooth, compactly supported initial data, does DKG have a
smooth solution for all times > 0? For small data, the answer is yes (seé [2[ 2D, 11]),
but for large data it remains an open question, except in thel dimensional case (see
Chadaml[9]). In & 3 dimensions, global regularity is known only for a very special class
of (large) data: Chadam and Glassey|[10] proved it for data satisfying the constraints
¥1(0, x) = ¥ 4(0,x) and¥2(0, x) = —¥3(0, x), which imply thaty Ty% vanishes
initially, and in fact stays zero in the evolution; later, Bachelot [3] extended this result to
cover also small perturbations around such data. Another global result is proved in [12]
for data with special symmetry properties.

In order to make progress on the global regularity question, a natural strategy is to
study local (in time) well-posedness (LWP) for low regularity data, and then try to exploit
the conserved quantities of the system. This strategy was successfully implemented for
the Maxwell-Klein—Gordon (MKG) and Yang—Mills (YM) equations by Klainerman and
Machedon([28, 24], who proved LWP for data with finite energy and then used the conser-
vation of energy to push this to a global result, thus recovering, in particular, the classical
result of Eardley and Moncrief [13]. Compared to MKG and YM, however, DKG has the
unpleasant feature that the conserved engrgi, /) dx = const has a density which
is not positive definite (see [18]):

. 1
e(p, ¥) = Im@Tald;9) — (M — gy By — §<<a,¢>2 + Vo2 + m?p?).

1506123 =281 (312 _ 213 321 _ _.132_1 andall other/* = 0.
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On the other hand, one does have the conservation of charge:

/ |y (2, x)|? dx = const (1.5)

which was a key ingredient in Chadam'’s proof of global regularity in thé dimensional
case([9] (see also][IZ, 14]).
We are interested in LWP of the Cauchy problem with data

¥ (0, x) =vo(x), ¢(0,x) =¢ox), 890 x)=d¢1(x) (1.6)

with regularity(yo, o, ¢1) € H* x H" x H"~1 for minimals, r € R. HereH* = H*(R®)
is the Sobolev space with norm

I fllas = ||(§>Xf($)||L§,

Wheref(S) denotes the Fourier transform ¢tx) and(:) = 1+ | - |. We denote by ¢
the corresponding homogeneous space, with npfih;. = || |$|sf($)||L§-

To get an idea of the minimal regularity required for LWP, one can apply the usual
scaling heuristic. In the massless ca$e= m = 0, DKG is invariant under the rescaling

v gou( L 5) sene To( L2
’ * L1372 L'L) ’ X T 77 |
LYEALL AAVAN)
hence the scale invariant data space is (ind dimensions)

(Yo, ¢o, ¢1) € L% x HY? x H~Y/2,

and one does not expect well-posedness below this regularity. The scaling also suggests
thatr = 1/2 + s is the natural choice.

On the other hand, DKG is a system of nonlinear wave equations with quadratic non-
linearities (as can be seen by squaring the Dirac equation), and for such equations it is
well known (seel[28B]) that, due to nonlinear effects, one cannot hope to reach the regular-
ity predicted by scaling unless Klainerman'’s null condition is satisfied. The null condition
is a condition on the symbol of the quadratic nonlinearities, which cancels the most dan-
gerous interactions in a product of free waves.

The local well-posedness results for DKG are listed in Taple 1. By classical methods
(energy estimates and Sobolev embeddings) one can prove LWP fandatey, ¢1) €
Hte x H3/2+e « g2+ for anye > 0. Bachelot[[1] proved that thecan be removed.

By using Strichartz type estimates for the homogeneous wave equation one can prove
local well-posedness il /2+¢ x H1t¢ x H® (see [32[B]), but in order to lower the
regularity further one needs null structure. Klainerman and Machédon [21] demonstrated
a null structure, via an auxiliary variable, in the quadratic fafty %y appearing in the
Klein—Gordon equation. Later, Beals and Bezard [4] found a more direct expression of
this null structure by using the eigenspace projections of the Dirac operator (thus avoiding
the auxiliary variable), and applied it to gain some spacetime regularity (seq Jable 1).
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Table 1. Local well-posedness results for DKG

(Yo, ¢0) € W, ) €

classical methods | Hte x 32+ | c([0, T]; H1t®) x C([0, T]; H3/%t¢)
1984 Bachelof]n] Hl x H3/? c(0,T]; HY x ¢ ([0, T); H%/?)
1993  Strichartz est_[32] 6] HY/2te x H1te | c([0, T]; HY%+¢) x ¢ ([0, T]; H1T®)
1996 Beals—Bezard][4] HY x H? HL([0, T] x R3) x H2([0, T] x R3)
1999 Bournavea$s[6] HY2 x g1 c(o, 1]; HY2) x c((0, T); HY)
2004 Gibbesori[17] HY9 x H®/® c ([0, T]; H*®) x c([0, T]; H%/9)
2005 Fang—Grillakig[15] | HY/4te x g1 HYArel/2te o gl1/2+4e
2006 D.-F.-S. HE x Hl/2+s Xe,l/2+s x Hl/2+s,l/2+e

scaling L2 x HY/2

On the other hand, Bournaveas [6], following the idea of Klainerman and Machedon
[21], found a null structure in the Dirac part of the system, and used this to get rid of the
epsilon in theHY?te x H1t¢ x He result, i.e., he proved LWP in the “energy class”
HY2 x H' x L?; this was improved slightly in the PhD thesis of Gibbesor [17]. While
the null structure found by Bournaveas helps to a certain extent, it has the drawback
that it involves squaring the Dirac equation, which creates serious difficulties at very
low regularity. It should be noted, however, that? type spaces were not used fin [6]
(although they are lurking in the background in Lemma 2 of the same paper), which
allow one to take maximum advantage of the null structure. Using the machinery of these
spaces together with the null structure proved.in_[4, 6] and bilinear spacetime estimates
of Klainerman—Machedon type, one can, not surprisingly, improve the result(fiom [6]. In
fact, quite recently Fang and Grillakis [15] have proved LWRHih x H x L2 for all
1/4 <s <1/2.

The new idea which drives the present paper is that the null fofy occurs not
only in the Klein—Gordon part, but in fact also in the Dirac part of the system, as can be
seen via a duality argument. The resulting structure dramatically simplifies the analysis
of the system, and allows us, using some fairly standard bilinear spacetime estimates of
Klainerman—Machedon type, to set up a contractioXirf type spaces and prove local
well-posedness arbitrarily close to the scale invariant regularity:

Theorem 1. DKG in 1+ 3 dimensions is LWP for data
(Yo, do, ¢1) € H® x HY?+e x g=Y2+e
forall ¢ > 0.

The structure uncovered here for the DKG system can be seen as an analogue of that found
by Machedon and Sterbenz [29] for the Maxwell-Klein—Gordon system in Coulomb
gauge. The systems are somewhat related, in that both can be seen as simplifications of the
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Maxwell-Dirac system, but Maxwell-Klein—Gordon does not have the spinor structure
which is at the heart of our analysis of DKG.

Note that Theorer|1 leaves open the critical case: (0). It is reasonable to expect
that DKG is globally well posed for small data in some Besov norm with the same scaling
asL? x HY2 x H=1/2, but we do not consider this question here.

Since this work was completed, our method has been applied by Pecher [31] to treat
the one-dimensional DKG system, which has also been studied independently by Machi-
hara [30].

2. Preliminaries

For convenience we rewritg (1.1) in a slightly different form, multiplying the Dirac equa-
tion on the left byg = y° to get

—i(0 +o - V)Y =—-MBY + ¢pY,
O¢ = m?p — (BY, ¥)ca.

Herea denotes the vectdir!, o2, «®) whose components are the Dirac matriagés=
yOy7;thus,a - V = o/ ;. Further,(-, -)c4 denotes the standard inner product@h

The operator-i (9; +« - V) is rather complicated, sincei« - V mixes the components
of the spinor it acts on. To simplify matters, it is natural to diagonalize by decomposing
the spinor field relative to an eigenbasis of the operatir - V. The symbol of the latter
isa-£ (¢ e R%). A quick calculation using[(T]3) give&r - £)2 = |£]°I, hence the
eigenvalues o& - & areX|&|. By symmetry, each eigenspace is two-dimensional, and the
projections onto these eigenspaces are given by

(2.1)

My (§) = %(1 +&.0) where &= é—| (2.2)
Now write
V=94 +¢- where Yy =Tl (D)y.
Here D = V/i, which has Fourier symbdl. Throughout we use the notati@iD) for
the multiplier with symbok (€), for a given functior : R® — C.
Applying I (D) to the Dirac equation irf (21 1), and using the identities

—ia -V = |D|I1(D) — |D|T1_(D),
and

[ (5)B = pIIx(§) (2.3)
(the latter due td (1]2)), we obtain

(—id + |DDY4 = —MBY_ + T1(D)(¢BY),
(—idy — |DDY— = —MBY + T1_(D)(¢pBY), (2.4)
O¢ = m2p — (BY, ¥) e,

which is the system we shall work with.
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We iteratey. andg in X*? type spaces associated to the operatais + | D| and],
whose symbols are + |£| andt? — |£|?, respectively. The notatiofi(z, £) is used for
the spacetime Fourier transform of a functio, x).

Definition 1. Let X%’ (s, b € R) be the completion of the Schwartz spa&1+3) with
respect to the norm

il = 166)" (¢ £ 16750z )2

where as beford:) = 1+ |- |. Note that|ull,s» = [(D)*(—id, £ |D|>bu||L2 , by
Plancherel’s theorem. * "

Spaces of this type were first used by Bourgain [5] for periodic solutions of nonlinear
Schibdinger and KdV equations, and later by Kenig, Ponce and Veda [19] in the non-
periodic case. Similar spaces for the wave equation were first used by Klainerman and
Machedon[[25], who used the notatiéfi-*. Here we rely on a slight variation of thig*-?

spaces of Klainerman and Machedon, introduced in [33] (alternatively, see [34]) and ap-
plied in [27], where they are referred to as wave-Sobolev spaces. To describe these spaces,
it is convenient to introduce muliplie®.. with symbols|z| + |&|. Thus,0d0 = D, D_.

Definition 2. Let H*? andH*? (s, b € R) be the completions & (R1*3) with respect
to the norms

el = DY (D) ullyz, = 1) (171 = 1§D ) 2.

ullpgse = llull gso + 110l gs—15,
respectively. Observe that the last norm is equivaleml(m)f—l(DJr)(D_)bu||L’2 .

In Sectior] 4 we recall the basic facts concerning these spaces, for the convenience of the
reader. For more details and applications, the reader may want to look at[27, 36].
We shall also need the restrictions of the above spaces to a time slab

St =(0,T) x RS,

since we study local in time solutions. The restrictibmb(ST) is a Banach space with
respect to the norm

: . s,b .
||L£||Xi.b(ST) = |nf{||v||Xib tve Xy andv =uonSr}.
In fact, the completeness follows from a basic result of abstract functional analysis, since
X‘Yi'”(ST) is nothing else than the quotient spaka”/Mi, where M is the closed
subspacdv € X%’ : v = 0onSr}. The restriction spaces**(Sy) andH*?(Sy) are
defined analogously.
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3. Null structure

In this section we discuss the null structure in DKG. First, however, let us recall the
null condition of Klainerman and give a heuristic argument showing its significance for
regularity of nonlinear waves. To this end, consider a nonlinear wave equation with a
qguadratic nonlinearity,Ju = B(u, u), whereB is a bilinear operator given by a Fourier
symbolb. Specifically, if X = (z,&),Y = (A, n) andZ = (u, ¢) are vectors in Fourier
spaceR x R3, B is of the form

[B(v, v)]”(X) = // b(Y, Z)T(Y)T(Z)dY dZ
Y+Z=X
= / b(Y, X — V)T(Y)T(X — Y)dY. (3.1)

We sayX = (z, &) is null if it lies on the null condz| = |&|; this is equivalent to saying
that the symbolJ(X) = r2 — || of the wave operator vanishes &n Let us suppose

is a free wave[Jv = 0, so thaty' is a measure supported on the null cone, and let us look
at the regularity of; solvinglu = B(v, v). (This problem arises naturally when solving
the nonlinear problem by iteration.) In Fourier space,

DOu(X) =[Bv, v)] " (X),

so one gains a lot of regularity whehis away from the null cong/[l(X)| 2 1). Near
the cone, things are not so favorable, but if it happens that,[v)] ™ (X) vanishes (to
some order) whefX is null, this should improve the regularity in this difficult region. But
X =Y + Z, whereY, Z are null (since now in (3:) is a free wave), hencé is null

if and only if Y, Z are parallel. One concludes th&(p, v)] ™ (X) vanishes for nullX if
Klainerman'’s null condition is satisfied, i.e., if

b(Y,Z)=0 forY, Z null parallel. 3.2)

Remark 1. Note that if two null vectory = (A, n) andZ = (u, ¢) are on the same
component of the cone, i.e.,ifandu have the same sign, then they are parallel if and
only if Z(n, ¢£) = 0, whereas if they are on opposite components of the cone, the condition
is Z(n, —¢) = 0. Here and throughout we use the notatit(w, ¢) for the angle between

two vectors inR3,

Let us now turn to the null structure in DKG, starting with the Klein—Gordon part of
the system:
Up = —(BY, ¥)ca- (3.3)

For simplicity we set = m = 0 in this section.
Since we deal with spinors, the formulation of the null condition differs somewhat
from the above. First observe that

[(BY. ¥)ee] ~(X) = / / (BT, T (= D)) dY dZ, (3.4)
Y+Z=X



884 Piero D’Ancona et al.

where the minus sign in front of stems from the complex conjugation in the inner
product. Second[(3.2) was derived from the action[of] (3.1) on a free {Mave= 0,
whereas in our case there are two separate species of free waves, ganssltisfying
(—id; £ |D)y+ = 0 (cf. (2.4)). Taking data (0, x) = yo(x) we have

Yi(t) = eT'IPlyE where yF = ML (D)o (3.5)
The spacetime Fourier transforms
YY) =80+ IhPgn) (¥ = () (36)

are supported on opposite componenis= =+|n| of the null congi| = |n|. Using this
information we can state theull conditionfor (8, )4 with v replaced by, for all
possible combinations of signs (as befdfes= (A, n) andZ = (u, ¢)):

(N1) In the++ and—— cases, i.e., taking8y+, Y1 )c4 OF (BY—, ¥_)ca in (3:4), we
see that, Z are on opposite components of the cone (becaiyseZ evidently
are on the same component), hence the null condition (cf. Rgrhark 1) says that the
(matrix-valued) symbol should vanish whefiin, —¢) = 0.

(N2) In the+— and—+ casesy, Z are on the same component of the cone, hence the
null condition says that the symbol should vanish wh&n, ¢) = 0.

This null condition is indeed satisfied by the symbol of

W, ¥) = (BTLL(D)Y, T (D)Y ) e 3.7)

This was proved already in [21] 4], but we give a considerably simpler proof below. The
main new contribution in the present paper, however, is the fact that the null bilinear forms
(3-1) occur not only in the Klein—-Gordon part of the system, but also in the Dirac part. To
see this requires a duality argument which we now outline. To show the main idea unob-
scured by technical issues, we prefer to present first a heuristic argument corresponding
to the critical regularityyy. € Xil/z; the rigorous proof of TheoreB 1 is then given in
the following sections.

In the following heuristic we take zero initial data for so thaty = —O-1(8v, ¥),
whered~1F denotes the solution &flz = F with vanishing initial data. The Dirac part
of the system(2]4) then reads (from now on we drop the iritfesn the inner product)

(—id; = |D))¢+ = Mo (D)F where F = (=07 X8y, v)BY,

and estimating/+. in Xi’l/z reduces, heuristically, to estimatimgTIi(D)FHXo,_l/z (cf.
+

Lemma[$ in the next section). Estimating the latter by duality, we are led to consider

integrals, for spinor-valued’ € ngl/z,

//(Hi(D)F, W'ydt dx = //(F M. (D)y') dt dx

= —/ @B, Y)Y, (D)) dt dx,

so indeed,[(3]7) crops up one more time.
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In fact, the complete null structure of DKG can be elegantly summed up in a single
line: Splitting the fields in the last integral usifif. (D), we end up with

/ (O HBTL(D)Y, (D)) - (BTL(D) Y, (D)) di dx,

for all possible combinations of signs. Replacifg! by |J|~1 and distributing it equally
over the two factors (this particular heuristic is based on Plancherel’s theorem) yields

/fumrl/zwniw)w, [ (D)) - (101" Y2(BTLL (D). T (D)) di dx.

The last integral embodies the complete null structure in DKG, and shows the striking
symmetry of the system. It suggests that the key problem is to prove the bilinear “esti-
mate”

B2 (D), T (DWW )2, S 1Vl yoarzll¥ Il o2, (3.8)

which fails, but not by much. In fact, we shall reduce Theofém 1 to certain perturbations
around this estimate (se€e (b.5) apd(5.6)), which in turn reduce, on account of the null
structure, to some well-known bilinear spacetime estimates of the type first studied by
Klainerman and Machedohn [22]. For the free wave case[se€q (3.10) below.

Let us now verify that that the null condition (N1), (N2) is satisfied[by](3.7). In fact,
sincell. (D) does not involve time at all, it suffices to consider spinor figlds), v/ (x).
ReplacingX, ¥, Z in 3.4) by&, n, ¢ € RR3, we then have

[(BTL, (D), [T (DY)~ (&) = / / BT, M) ) dnds
n =

and sincdl. (£)T = M4 (&), we obtain

(B (MY (1), M (=) P (—2)) = <Hi<—;>ﬁn+<n>§(n>, x}’(—;))
= (B£(—OT DY), ¥'(—=¢)),  (3.9)

where in the last step we used the commutation ideffity (2.3), which inverts the sign.
Thus, we have:

Lemma 1. The symbol of3.7)is the matrixg T (—¢) 14 (n).

The symbolBIT(—¢)I1 () does indeed satisfy the null condition (N1), (N2), by or-
thogonality of the eigenspaces. In fact, the symbol vanishes to first order in the angle
(note that the following lemma can be applied in all cases, i.e., for all combinations of
signs, becausH  (—&) = I1_(§)).

Lemma 2. 1L (&)IT_(n) = 0(¥), whered = Z(&, n).
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Proof.
AT (E)T-(n) = (I + ol )T — fra®)
=1 — el o + ¢ — ) o
=1—&- NI —ieMens' +E—f-a (by (T3E)
=(1—E-NI—iExH-S+E—n-a
D N e’ N’
0(62) 0(9) 0()
whereé = &/|g] andS = (51, 52, 53). O

Remark 2. For readers familiar with the standard null for@s, Q;; andQg;, we point
out that the factors * & - 7}, & x 7 andé — 7 are the symbols 00 (| D| 1u, |D|~1v),
Qi;(ID|"Yu, |D|~tv) and Qo; (|D|~tu, |D|~1v), respectively, in the case of free waves
Ou =0v =0.

This concludes the discussion of the null structure in DKG. To illustrate how it is
used, let us estimate the left hand side[of](3.8) in the important case of free waves
given by [3.5),[(3.p). Taking the+ case for the sake of definiteness, we shall prove

OI~2(89+, ¥)l 12, < Cllvol 7. (3.10)
Applying Lemmag [l and|2, we see that
028y, )]~ (1. )

1 -~ -~
—\/Iélz——fz /R33(T + Il —In = EDBI_(n — E)ILL (M Yo(n), Yo(n — &) dn

C
<
N
§C/ 5(c + Inl — In — )

R3

/Rs“(’ + 0l =11 = EDlYo()] [0l — &)l dn

1Yo 1¥o(n — £)
2 — gz T

wheref = Z(n, n — &) and we used
E12 — 12 = £ — (Inl — In — €% = 20l In — £|(L — cosd) ~ |n] |n — £]62.

Here and below, the notatio¥i ~ Y stands foC~1X < ¥ < CX whereC > 0 is some
absolute constant.

We conclude (going back to physical space and applyidifét’s inequality) that
(3:10) reduces to the classical estimate

IeF 1P f |l agarsy < Cllf Nl e (3.11)

due to StrichartzZ [35].
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4. Some properties ofx*? and H*?

Here we recall some basic, well-known propertiexéf and H*-* spaces, needed in the
proof of our main result, Theorepj 1. For the convenience of the reader we include short
sketches of the proofs in some cases. For more details and further references, see e.g.
[27,/36)].
We start withX*-?, commenting on the more complicatétt-* at the end. The dis-

cussion applies t&*? in general form: Starting from a PDE d&&t*”, with anyn > 1,
of the form

—id;u = h(D)u (4.2)

whereh : R* — R andh(D) is the multiplier with symboli(£), one definesx*”
(s, b € R) via the norm

luell o = [14€)* (v — R(EN"ii(x, 2, -

The cases of interest for us here ai&) = —|&|, which givest;b, andh() = |&],
which giveinb, but we prefer to keep the general notation (and general dimension) in
this section.

Note thate!""(?) is the free propagator df (4.1). The first important observation is that
the elements ok*-? are superpositions of free solutions wilh' data, suitably modu-
lated:

Lemma 3. u € X*? if and only if there existy € L2((1)% di; H*(R")) such that
u(t) = f ™D r0ydi (H*-valued. (4.2)
R
2

20 = Jr 1S O (W) di.

Proof. The idea is to foliate Fourier space, £) € R x R” by the surfaces — h(§) =
const. Definef (1) (a.e.) by [f(M)]7(€) = u (A + h(§), ). Then

Moreover,||u]|

i(r, &) = /m — T+ h(E) FR)E)dA,
which agrees with the spacetime Fourier transfornj of (4.2). O

From this lemma and the dominated convergence theorerfl feralued integrals, one
easily obtains
Xt < Cp(R; H*) forb > 1/2, (4.3)

where— means continuous inclusion. This in turn impli&&”(S7) < C([0, T]; H*)
forb > 1/2.

Another easy but exceedingly useful consequence of Lemima 3 is that Strichartz type
estimates (linear or multilinear) fdr (4.1) imply corresponding estimatex .
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Lemma 4. Let T be a multilinear operator( f1(x), ..., fx(x)) — T(f1,..., fi)(x)
acting inx-space. IfT satisfies an estimate of the form

1T (") f1, o D) il ey, < ClLfalgen - ficll s

then
< . e .
17, w0l < Colluallgsss - il

forall u; € X;f’b, 1< j <k, providedh > 1/2. Herer‘f’b is defined using the symbol
hj(&).

Proof. SinceT acts only inx, not in¢, the multilinearity gives, using the representation
from Lemmd3,

Ty, ...,ur) = / e / eit(kl+”'+)‘k)T(eithl(D)fl, R e”hk(D)fk) dly---dAi.
R R

Minkowski’s integral inequality followed by Cauchy—Schwarzih; easily leads to the
desired estimate. O

For example, the classical Strichartz estimafte (3.11) impti#é? < LA®R+3) for
b>1/2.
Finally, we consider the LWP of the linear Cauchy problem associatéd {o (4.1),

—(@i0; +h(D))u = F(t,x), u(0,x)= f(x), (4.4)

in the restricted spack*-?(S7), b > 1/2. In the rest of the paper we impose the condition
T < 1toavoid having to keep track of the growth of certain constantstascomes large.

Lemmab. Letl/2 < b <1, 5s e R,0< T < 1 Also, let0 < § < 1— b. Then for
all data F e x*/=1+3(Sy), f € H*, the Cauchy problenf4.4) has a unigue solution
u € X*b(Sr), satisfying the first equation @)in the sense oD’ (S7). Moreover,

lullxsbsyy < CULNas + TPIF [l gsb-1rs5p9)- (4.5)
whereC only depends oh.

Note that in Fourier spacer [~ i (§)]u(z, &) = F(z, &), so heuristically,[(4]5) says that
in the time localized case, we can replace the singular symboh (&) by (t — h(§)),
and simply divide out.

In the following proof sketch, we follow closely the argument giveriin [19], but with
a slight modification to get the fact@® on the right hand side of (4.5), which of course
is useful in a contraction argument.

Proof of Lemma]5.Start by picking any extension d@f, which we still denoteF. Then
the problem is to provd (4.5) without the time restriction on the right hand side. Split
u = ug + u1, whereug is the homogeneous part; the inhomogeneous part. Further
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split u1 = u1 near+ u1.far cOrresponding to the Fourier domaifis— h(§)| < 71 and
T —h(&)| > T L

First, p(t, &) = 8(r — h(g))f(g), hence ify (¢) is a smooth cut-off function such
thatx (1) = 1 for |¢| < Landy (r) = O for |¢| > 2, then||ug| xs.» (s, IS bounded by

Lx Duo(, Hixse = 11€)* (r = h(§))" X (x - h(é))f(&)lngs = Ixlge 1S s

Next, since (here we useto denote the indicator function of the set determined by
the condition in the subscript)

li-h@©|>T"1 ~

1
s ™(7.6) = =EEEF (@ 6),

it follows that ||u1 farll xs.06 < CT|| F | ys.b-14s. _
Finally, Duhamel’s principle givesi nealt) = 3 oo (t%/ kel P) g, where
Y p pleg , k=1 8

%) = / [~ hE 1y yeyer 1 F O E) d.

Using Cauchy—Schwarz i#x one easily obtaingg ||gs < CT?~Y2H=K | F|| ysp-11s,
so finally,

t
||”1,neaﬂ|x&h(sr) < HX (?)ul,neat(f» 2

OOTk

SCZH

k=1

xs:b
A\ (1
(7) (%)
o Tk
<C kzl 7 TN KON ) (T goas)

X, k2k=1
< CT5<Z 5 >||F||X:,b1+6,

k=1

| gk Il s
HP

SinCE”l‘kX(l)”H’b < ”th(t)”Htl < Cy (2F + k2t=1) by the support assumption. O

To end this section, let us state the analogues of Lerifids 3-#'fbrForu € H*" we
splitu = uy +u_ corresponding to the Fourier domairg > 0 and—t < 0, i.e., we set
Ut (1, &) = Ly(—p)=0u(t, §). (Letting—7 determine the sign is consistent with the choice
of signs in the projection§ (3.2), sineer corresponds to the energy.) There H*? is
equivalent to saying thaty € ch’b, SO Lemme[b applies to give a characterization of

H*" in terms of superimposed free waves. Moreoyiet|?,, , = ||u+||§y,b + ||u_||§sy,,,
s s

so Lemma} also applies: It is as in Lemm@}4 and the estimate
7@ P 1 POl < Cllfallaen - D fill

holds, then
IT s oo wdllpa g < Colluallgsro - - Nkl s

forallu; € H*,1 < j <k, provideds > 1/2.
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Next, consider the Cauchy problem
Ou=F(t,x), u@x)=f(x), 9u0 x)=gx). (4.6)

One may think that by rewriting (4.6) as a first order system, Lefima 5 could be applied
directly, but if one works with data in inhomogeneous Sobolev spaces, there is a problem
with low frequencies. Thus, the following lemma requires a separate proof, which can be
found in [33,34]; se€e [25] for an earlier version of this estimate (in a slightly different
norm, and with? = 1).

Lemma6. Letl/2 < b <1, 5s e R,O< T <l1land0 < 4§ < 1— b. Then for all
dataF € HS~L0=143(5:), f € H andg € H*~1, there exists a unique € H*?(St)
solving(@.g) on S7. Moreover,

lullpgsoisyy = CUS s + 8l gs—1 + o (TN F Il gs-1o-1+5(s5))

wheres > 0 depends continuously dh > 0 and satisfiedimy_,g+ o(T) =0if § > 0.

5. Proof of Theorem[1
We use the iteration schefRdor k > —1,

(—id + DY = —MByk + T1L(D)(@* By,
(—id — DY = —MByk + TI_(D)(@* By,
D"t = m?pk — (By*, %),

wherey* = y* 4 y* andy;?!, ¢~1 = 0. The initial data are
Yi(0,x) = Me(D)Yox),  ¢*(0,x) = gox), 390, x) = $1(x)

whereyg € H, (¢o, 1) € HY?t¢ x H=Y2+¢ for some O< ¢ < 1/2. Considek fixed,
and lets’ > 0 denote a sufficiently small number, depending 0wk iterate in the spaces

Ip:]lg: c Xi’l/z—i_sl(ST), ¢k c H1/2+8,1/2+8/(ST)’

whereSy = (0, T) x R3 for some O< T < 1 to be chosen sufficiently small depending
on the size of

Zo = lIYollae + lldoll grrzee + ol g-r/2+e.

2 |t may be more natural to include the mass terms in the operators on the left hand sides, but
this would require generalizing the Klainerman—Machedon type estimates to the massive operators;
while this can certainly be done (and in some cases has been done), it is not something we wish to
undertake in the present paper. In any event, putting the linear mass terms on the right hand sides is
harmless as far as the local in time contraction is concerned.



Null structure and almost optimal local regularity for DKG 891

In the estimates that followg stands for< up to a multiplicative constar@ which may
depend or but is independent df, ando (T') denotes a positive, continuous function of
0< T <1suchthatlim_ g+ o(T) =0.

By induction, T4 (D)yk = X for all k, hence

Yt =T (DY + TI_(D)yE. (5.1)
By Lemmag b anf]6,

k+1 k
I ||Xil/2+s/(ST) STo+ M||1/f¢||L2([0,T];H8)

+o(DIML(D)S YOl e apiar g - (5:2)
1 T)
||¢k+l||Hl/2+s.l/2+s’(ST) s Z-0 + m2”¢k ||L2([0’T];H*1/2+8)
+o (DIBYS V) yroee 12020 (5, (5.3)
so in view of [5.1), the key is to establish the general estimates
IT1+ (D) (pBI1[+) (D)) ||Xi—1/2+2s’ Sl yjzreore |V ||X[s.i1]/2+s’7 (5.4)
BT (DY, TLe (DY) | yy-vj2ee.—vj2e2 S W ”xf’il]/zﬂ’ Iy’ llxilms/ (5.5)

for ¢’ > 0 sufficiently small depending an Here+ and [t] denote independent signs.
Also, in (5.4) and[(5}5) the norms are not restricteds{g but they are applied to ex-
tensions of the iterates’, ¥*. Taking infima over all extensions, one then obtains, from
G253,

Ap1(T) STo+o(T)P(AK(T)),

where

— Ik , k ,
A(T) = 19" llpgr/2rearore 5y + Xi: ||1//i||Xi1/z+s )

and P is a polynomial such thak (0) = 0. Here we have also used the fact that

1 lzgoryimey < T2V lqorine S TV yerover g
and similarly for the termio* || ;210 7). r-1/2+) in B-3).

In view of the multilinearity of the nonlinear terms in the system, one obtains similar
estimates for the difference of subsequent iterates, and the standard contraction argument
then gives local existence and uniqueness (in the iteration space)<of0< 1 suffi-
ciently small depending ofy.

Thus, we have reduced to provirig (5.4) and]|(5.5). But by dudlity} (5.4) is equivalent
to

[ D) @BTI D10 ) di dx SNz I e 9]
14 n
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and since
//(Hi(D)(fﬁﬂH[i](DWL V') dtdx
= //(tﬁﬂﬂ[i](D)x/f, N+ (D)y')dt dx

= //¢(/3H[i](0)¢, ML (D)y') dt dx

< 101l grzseszre (BT (D)W, T (DY) y-1/2-c.-1/2-e'»
we conclude thaf (5]4) reduces to an estimate simildr ¢ (5.5):

(BT (D)W, e (DYY )| y—rjo—e—1j2—2er S NN eajore 11| —c/o—20 (5.6)
b X3

Note that both[(5]5) an@l (3.6) are perturbations around the false estimate (3.8). In fact, us-
ing the null structure we shall redude (5.5) and](5.6) to some well-known bilinear space-
time estimates of Klainerman—Machedon type for products of free waves. Specifically,
we need the following generalization of the classicllestimate[(3.111) of Strichartz.

Theorem 2 ([22,126)16]). Lets1, s2, s3 € R. The estimate
D172 @)l L2w1+3) < Cy,sp,53luoll st lvoll g2
holds for free waves (1) = e 1Plug, v(r) = e*!1Plyq if and only if
s1+s2+s3=1 51,50, 53 <1, s1+s20>1/2 (5.7)
From this and Lemmia 4 we obtain
HYP 2P 5 =30 for b > 1/2 andsy, 52, s3 > 0 satisfying[[5.7). (5.8)

Here we use the following notation: ¥, Y, Z are normed spaces of functions, the state-
mentX - Y — Z means that the bilinear estimatev||z < C|lu| x|lv|ly holds for some
constantC.

By interpolation betweerj (5.8) and the estimate

L2 - H% — HNO forp > 1/2, N > 3/2, (5.9)

which by duality is equivalent té/¥-° . H%? — L2 and therefore follows from Blder’s
inequalityL>®L2 - L2L% — L? and Sobolev embedding, it is easy to prove (see the next
section) the estimates

HOY2-8  gl/2ted _, g=1/20 (5.10)
HOY2=5  gl/2b _ p=1/2-e0 (5.11)
HY2-81/2-5  gl/2+eb _ p—e0 (5.12)
HY?2-e1/2=8  geb _ pg=1/2-e0 (5.13)
HeY2=8  pglj2teb _ p=1/2-e.0 (5.14)

forall b > 1/2,¢ > 0 and sulfficiently smal# > 0, depending oa.
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We now turn to the proofs of (5.5) ar{d (b.6). It suffices to consider the case where the
sign [&] is a+. Throughout the rest of this section, we Bet 1/2+ ¢’; recall thate’ > 0
denotes a sufficiently small number, depending on

5.1. Proof of [(5.b)

Using Lemma§]1 ar{d 2, we see tHat[5.5) reduces to proving

//eiuﬁ(x,nn 1Y/ —7,n — )| drdy

1
H ()2 (|t — |52

LZ,
SV eore 191l yerjzver,  (5.15)
+ +

where
O+ = Z(n, £(n — §)).
We claim that
9—% ~ 1€1r4 RRVTEN (|77I+|77—El)r—’
[l 1n — &l [l 1n — &l
where
re =8l =1Inl—In—=5§ll, r—=nl+In—-5§—I5l
To prove the estimate fa&%, one writes
Elre Q&L+ Tl =0 —&Dre _ B =l —ln—&1° _ 5 o0y )

Inlln — &l Inl1n — & [l 1n — &l

and the estimate fa#? is proved in a similar way.

Assuming as we may that, 1/7’ > 0, and suppressing the arguments of these func-
tions to keep the notation manageable, we thus refluce (5.15) to

1/2

T/
(Ir] — [g)1/2=2 In|Y/2n — &|1/2 L2,

SV e 19 sz (5.16)
+ +

and

1/2

1 r ~ ~
; - — Yy’ didn
H (EYY2=e (|7 — g2 /./ min(|nl, [n — &)1/2 12,
N ”w”Xil/z“’”1///”Xi1/2+5" (5.17)

Now we apply the following:

Lemma7. re STl =1+ A+ nl[+ 2 —7£[n—&l
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Proof. If t > 0, we estimate
re <1+ Inl—In—=§l =l —Itl+A+Inl+7—2—|n—§l
while if T < 0 we use
re <El—Inl+In—=§l=fl—ltl—A—Inl—T+A1+In—§
To handler_ we write
r-=i+hl+r—-A+In—-§—-1-I5

If t < O, thisequals. + |n|+17 — A+ |n—&| + |7] — |&], while if T > Oitis <
At+nl+T—A+In—E| O

We also need
r+ < 2min(|n|, [n — &), (5.18)

which follows from the triangle inequality. Combining this with Lemfja 7 we get
1/2 _ 2o/ . /
2 S el = 181 M2 minnl, Iy — €02+ 1+ 1l Y2+ — 7 £ 1 — £[1Y2

Moreover, by symmetry we may assu¢ > |n — &| in (5.18) and[(5.17). HencE (5]16)
reduces to proving

I S Wl geazee 19 geine

for j =1, 2, 3, where

T v
1= // |n|1/2—€|n—5|1/2-25/ e L2

I = // 2+ nl 2
2 7 (el - |s|1/2 2" J ] |n|t2-e|y — g|1/2

s

LZ,
= / VI —t+n— &Y% dhdn
el - |s|>1/2*28 n|Y/2=¢|n — £|42 2,
and [5.1}) reduces to proving
Ij_ S ||W||Xi,1/2+s’ ||W/||X51/2+s/
for j =1, 2, 3, where
_ vy
b 1/2 // gz 2,
A 1/27
Iy = — 122‘€,//| +I77||1/Ié/1//dkd)7 ’
(&Y s(lfl 15N In — &l L2,
_ VIr—T—In—&1Y3y
Iy = 12— T/2—2¢ 172 dxrdn
& 5<If| &)Y In — &l L2,
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The estimates fofj*, j =1,2, 3, reduce to, respectively,

Xi/z’b ' X}L/2+8—26’,h L2 (5.19)
Xi/z,o ) Xi/2+s,b N H0,71/2+25” (5.20)
Xi/z,b ] Xi/2+€’o — HO-L/2+2 (5.21)

and the estimates fd;‘, j =1 2,3, reduce to

Xe,b ) X1/2+8—28/,b s g Y2+e0 (5.22)
+ A= ’ :

Xj_’o . Xl/2+8,b N H—1/2+8,—1/2+28’ (523)

Xib . X£/2+6,0 N H—1/2+s,—1/2+28/_ (5.24)

Recall that we assunie= 1/2 + ¢’ throughout this section.
Since in generallu|| gs» < ||u||th for b > 0, we may in fact replace all thEjE on

the left hand sides bi*”. (The information encoded in the signs has already been made
use of through the null structure.) Using also duality, we thus reduce to

H1/2,b . H1/2+8728/,b — L2,
gOL/2-28'  gl/2+eb _ p—1/2,0

Hl/2,b . H0’1/2728/ N H*l/Z*é‘,O

and

He,b . H1/2+€728/,b N H*l/2+€,07
H1/2—8,1/2—2£’ . Hl/2+e,b — H—S,O’

Hs,b . Hl/2—5,1/2—28’ N H—1/2—8,0

All these estimates are true for > 0 sufficiently small, by[(5]8) andl (5..0)—(5]14).

5.2. Proof of [(5.5)

Proceeding as in the proof ¢f (5.5), we reduce to

£1° A2
"dad
H(Ifl |E])1/2+e! // |;7|1/2|,7 |1/2W” n 2,

SN eroee 19 e1p2r (5.25)
+ +
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and
| ! [
(EYY2He (7] — |g|)1/2He min(|n|, [n — §)1/? L 12,
< & &/ ! —e.1/2—2¢ + 5.26
S ||¢||X¥1/2+ Iy ||X7 1/2-2 (5.26)
By Lemmd T and(5.18),

P2 S el = 612 4 1+ 112 4 & — o £ 1p — £11Y27% min(g, In — €)%,
hence[(5.25) reduces to (recall thhat 1/2 + ¢')

HY2teb | gl/2-elj2—¢ _ p-e0

HY2+e0 | glj2-e1/2— _ pr-e.b

H1/2+6‘—28/,b . Hl/2—e—2s/,0 N H—s,—b
which follow from, respectively[(5.12)[ (5.1.3) (via duality) and {5.8) (also via duality).
Now consider[(5.26). Assuming firgf| < |n — &| we reduce to

gl2+eb | pp-e1/2-2 _ p—1/2-0

gY2+e0 | pp-e1/2-2¢' _ pr-1/2—e,—b

Hl/2+5—26’,b . H—E,O N H—1/2—8,—b

while in the casén| > |n — &| we get
HEP . gY2-el/2-2 | pp-1/2-¢0
Hs,O . H1/2+—s,1/2—2£’ N H—l/2—£,—b’

Hé‘,b . Hl/27872£/,0 > H*l/zfﬁ‘,*b.

All these reduce (possibly via duality) fo (5.8) pr (3.10)—(5.14).

6. Proof of (5.10)-{(5.14)

All these follow by interpolation betweefi (5.9) and various special casds 9f (5.8). Fix
e>0,b>1/2,N > 3/2. The numbes > O will be chosen sufficiently small, depending
one.

For (5.10) we interpolate between

HOY/2+8 | ppl/2teb _ pr=1/2+.0

L2 . H1/2+8,b N H—N,O

This gives
HOA=0(1/2+8) | gy1/2+eb _ py(1-0)(=1/2+)—~6N.0
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for0 < 6 < 1. First choos® > 0 so small thatl — 6)(—1/2+¢) —ON > —1/2. Then
choose’ > 0 so small thatl — 6)(1/2+§) < 1/2—3.
For (5.17) we interpolate between

/
0126 | ppl/2+eh _ p=1/2.0
HOY2-5  [O0b _ p=N.O

the first of which is just[(5.70), fot’, § > 0 to be chosen sufficiently small, depending
one. This gives

HO,l/Z—S . H(1—9)(1/2+s’),b N H(l—@)(—l/Z)—GN,O.

First choos#® > 0 so small thatl — 6)(—1/2) — 6N > —1/2 — ¢. Then choose’ > 0
so small thatl — 0)(1/2+ &) < 1/2.
For (5.12) interpolate between

HY2-e /246 gl/2eb 12

H1/2—£,O . H1/2+8,b N H—N,O'

Thus,
H1/2-e.(1-0)(1/2+8) | g1/2+eb _, p—6N.0

for0 < 6 < 1. First choos® > 0 so small tha# N < ¢. Then choosé > 0 so small that
(1—6)(1/2+8) <1/2 8.
To prove [5.1B) we interpolate between

Y2212+ geb _, pp1/20

Hl/2—8,0 . Hé‘,b N H_N’O,

yielding
HY2-e.(1-6)(1/2+8) | geb _, p(1-6)(=1/2)-6N.0

First choos® > 0 so small thatl — 0)(1/2) + 6N < 1/2+ ¢. Then choosé > 0 so
small that(1 — 6)(1/2+68) < 1/2 - 3.

Finally, (5.13) reduces t¢ (5.1.1) ¢r (5]12), depending on whether the frequency inter-
actions are of type high-high or high-low/low-high in the product on the left hand side.
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