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Abstract. We prove almost optimal local well-posedness for the coupled Dirac–Klein–Gordon
(DKG) system of equations in 1+ 3 dimensions. The proof relies on the null structure of the
system, combined with bilinear spacetime estimates of Klainerman–Machedon type. It has been
known for some time that the Klein–Gordon part of the system has a null structure; here we uncover
an additional null structure in the Dirac equation, which cannot be seen directly, but appears after a
duality argument.

Keywords. Dirac equation, Klein–Gordon equation, null structure, local well-posedness, null form
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1. Introduction

In standard notation, the coupled Dirac–Klein–Gordon (DKG) system of equations on
R1+3 reads {

(−iγ µ∂µ +M)ψ = φψ (M ≥ 0),
(−� +m2)φ = ψ†γ 0ψ (� = −∂2

t +1, m ≥ 0),
(1.1)

where the unknowns are (i) a spinor fieldψ(t, x) ∈ C4, regarded as a column vector
in C4, and (ii) a real scalar fieldφ(t, x). We use coordinatest = x0, x = (x1, x2, x3)

on R1+3, and write∂µ = ∂/∂xµ. Greek indicesµ, ν etc. range over 0,1,2,3, Roman
indicesj, k etc. over 1,2,3, and repeated indices are summed over these ranges. Thus,
γ µ∂µ =

∑3
µ=0 γ

µ∂µ, where{γ µ}
3
µ=0 are the 4× 4 Dirac matrices, given in 2× 2 block

form by

γ 0
=

(
I 0
0 −I

)
, γ j =

(
0 σ j

−σ j 0

)
,
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where

σ 1
=

(
0 1
1 0

)
, σ 2

=

(
0 −i

i 0

)
, σ 3

=

(
1 0
0 −1

)
are the Pauli matrices.ψ† denotes the adjoint, i.e., the conjugate transpose, hence

ψ†γ 0ψ ≡ |ψ1|
2
+ |ψ2|

2
− |ψ3|

2
− |ψ4|

2,

whereψ1, . . . , ψ4 are the components ofψ . The following related matrices occur fre-
quently below:

β ≡ γ 0, αj ≡ γ 0γ j =

(
0 σ j

σ j 0

)
, Sm ≡ iγ kγ l =

(
σm 0
0 σm

)
,

where(k, l,m) is any cyclic permutation of(1,2,3). Denoting byδjk the Kronecker delta
and byεjkl the completely antisymmetric tensor,1 we have the identities

αjβ = −βαj , (1.2)

αjαk = −αkαj + 2δjkI, (1.3)

αjαk = δjkI + iεjklSl . (1.4)

Also,β2
= (αj )2 = I andβ†

= β, (αj )† = αj .
Concerning the Cauchy problem, the most fundamental question is whether global

regularity holds, i.e., given smooth, compactly supported initial data, does DKG have a
smooth solution for all timest > 0? For small data, the answer is yes (see [2, 20, 11]),
but for large data it remains an open question, except in the 1+ 1 dimensional case (see
Chadam [9]). In 1+3 dimensions, global regularity is known only for a very special class
of (large) data: Chadam and Glassey [10] proved it for data satisfying the constraints
ψ1(0, x) = ψ4(0, x) andψ2(0, x) = −ψ3(0, x), which imply thatψ†γ 0ψ vanishes
initially, and in fact stays zero in the evolution; later, Bachelot [3] extended this result to
cover also small perturbations around such data. Another global result is proved in [12]
for data with special symmetry properties.

In order to make progress on the global regularity question, a natural strategy is to
study local (in time) well-posedness (LWP) for low regularity data, and then try to exploit
the conserved quantities of the system. This strategy was successfully implemented for
the Maxwell–Klein–Gordon (MKG) and Yang–Mills (YM) equations by Klainerman and
Machedon [23, 24], who proved LWP for data with finite energy and then used the conser-
vation of energy to push this to a global result, thus recovering, in particular, the classical
result of Eardley and Moncrief [13]. Compared to MKG and YM, however, DKG has the
unpleasant feature that the conserved energy

∫
e(φ,ψ) dx = const has a density which

is not positive definite (see [18]):

e(φ,ψ) = Im(ψ†αj∂jψ)− (M − gφ)ψ†βψ −
1

2
((∂tφ)

2
+ |∇φ|

2
+m2φ2).

1 Soε123
= ε231

= ε312
= −ε213

= −ε321
= −ε132

= 1, and all otherεjkl = 0.
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On the other hand, one does have the conservation of charge:∫
|ψ(t, x)|2 dx = const, (1.5)

which was a key ingredient in Chadam’s proof of global regularity in the 1+1 dimensional
case [9] (see also [7, 14]).

We are interested in LWP of the Cauchy problem with data

ψ(0, x) = ψ0(x), φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x) (1.6)

with regularity(ψ0, φ0, φ1) ∈ H s
×H r

×H r−1 for minimals, r ∈ R. HereH s
= H s(R3)

is the Sobolev space with norm

‖f ‖H s = ‖〈ξ〉s f̂ (ξ)‖L2
ξ
,

wheref̂ (ξ) denotes the Fourier transform off (x) and〈·〉 = 1 + | · |. We denote byḢ s

the corresponding homogeneous space, with norm‖f ‖Ḣ s = ‖ |ξ |s f̂ (ξ)‖L2
ξ
.

To get an idea of the minimal regularity required for LWP, one can apply the usual
scaling heuristic. In the massless caseM = m = 0, DKG is invariant under the rescaling

ψ(t, x) 7→
1

L3/2
ψ

(
t

L
,
x

L

)
, φ(t, x) 7→

1

L
φ

(
t

L
,
x

L

)
,

hence the scale invariant data space is (in 1+ 3 dimensions)

(ψ0, φ0, φ1) ∈ L2
× Ḣ 1/2

× Ḣ−1/2,

and one does not expect well-posedness below this regularity. The scaling also suggests
thatr = 1/2 + s is the natural choice.

On the other hand, DKG is a system of nonlinear wave equations with quadratic non-
linearities (as can be seen by squaring the Dirac equation), and for such equations it is
well known (see [28]) that, due to nonlinear effects, one cannot hope to reach the regular-
ity predicted by scaling unless Klainerman’s null condition is satisfied. The null condition
is a condition on the symbol of the quadratic nonlinearities, which cancels the most dan-
gerous interactions in a product of free waves.

The local well-posedness results for DKG are listed in Table 1. By classical methods
(energy estimates and Sobolev embeddings) one can prove LWP for data(ψ0, φ0, φ1) ∈

H 1+ε
×H 3/2+ε

×H 1/2+ε for anyε > 0. Bachelot [1] proved that theε can be removed.
By using Strichartz type estimates for the homogeneous wave equation one can prove
local well-posedness inH 1/2+ε

× H 1+ε
× H ε (see [32, 6]), but in order to lower the

regularity further one needs null structure. Klainerman and Machedon [21] demonstrated
a null structure, via an auxiliary variable, in the quadratic formψ†γ 0ψ appearing in the
Klein–Gordon equation. Later, Beals and Bezard [4] found a more direct expression of
this null structure by using the eigenspace projections of the Dirac operator (thus avoiding
the auxiliary variable), and applied it to gain some spacetime regularity (see Table 1).
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Table 1.Local well-posedness results for DKG

(ψ0, φ0) ∈ (ψ, φ) ∈

classical methods H1+ε
×H3/2+ε C([0, T ];H1+ε)× C([0, T ];H3/2+ε)

1984 Bachelot [1] H1
×H3/2 C([0, T ];H1)× C([0, T ];H3/2)

1993 Strichartz est. [32, 6] H1/2+ε
×H1+ε C([0, T ];H1/2+ε)× C([0, T ];H1+ε)

1996 Beals–Bezard [4] H1
×H2 H1([0, T ] × R3)×H2([0, T ] × R3)

1999 Bournaveas [6] H1/2
×H1 C([0, T ];H1/2)× C([0, T ];H1)

2004 Gibbeson [17] H4/9
×H8/9 C([0, T ];H4/9)× C([0, T ];H8/9)

2005 Fang–Grillakis [15] H1/4+ε
×H1 H1/4+ε,1/2+ε

×H1,1/2+ε

2006 D. - F. - S. H ε ×H1/2+ε Xε,1/2+ε
×H1/2+ε,1/2+ε

scaling L2
× Ḣ1/2

On the other hand, Bournaveas [6], following the idea of Klainerman and Machedon
[21], found a null structure in the Dirac part of the system, and used this to get rid of the
epsilon in theH 1/2+ε

× H 1+ε
× H ε result, i.e., he proved LWP in the “energy class”

H 1/2
× H 1

× L2; this was improved slightly in the PhD thesis of Gibbeson [17]. While
the null structure found by Bournaveas helps to a certain extent, it has the drawback
that it involves squaring the Dirac equation, which creates serious difficulties at very
low regularity. It should be noted, however, thatXs,b type spaces were not used in [6]
(although they are lurking in the background in Lemma 2 of the same paper), which
allow one to take maximum advantage of the null structure. Using the machinery of these
spaces together with the null structure proved in [4, 6] and bilinear spacetime estimates
of Klainerman–Machedon type, one can, not surprisingly, improve the result from [6]. In
fact, quite recently Fang and Grillakis [15] have proved LWP inH s

× H 1
× L2 for all

1/4< s ≤ 1/2.
The new idea which drives the present paper is that the null formψ†γ 0ψ occurs not

only in the Klein–Gordon part, but in fact also in the Dirac part of the system, as can be
seen via a duality argument. The resulting structure dramatically simplifies the analysis
of the system, and allows us, using some fairly standard bilinear spacetime estimates of
Klainerman–Machedon type, to set up a contraction inXs,b type spaces and prove local
well-posedness arbitrarily close to the scale invariant regularity:

Theorem 1. DKG in 1 + 3 dimensions is LWP for data

(ψ0, φ0, φ1) ∈ H ε
×H 1/2+ε

×H−1/2+ε

for all ε > 0.

The structure uncovered here for the DKG system can be seen as an analogue of that found
by Machedon and Sterbenz [29] for the Maxwell–Klein–Gordon system in Coulomb
gauge. The systems are somewhat related, in that both can be seen as simplifications of the
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Maxwell–Dirac system, but Maxwell–Klein–Gordon does not have the spinor structure
which is at the heart of our analysis of DKG.

Note that Theorem 1 leaves open the critical case (ε = 0). It is reasonable to expect
that DKG is globally well posed for small data in some Besov norm with the same scaling
asL2

× Ḣ 1/2
× Ḣ−1/2, but we do not consider this question here.

Since this work was completed, our method has been applied by Pecher [31] to treat
the one-dimensional DKG system, which has also been studied independently by Machi-
hara [30].

2. Preliminaries

For convenience we rewrite (1.1) in a slightly different form, multiplying the Dirac equa-
tion on the left byβ = γ 0 to get{

− i(∂t + α · ∇)ψ = −Mβψ + φβψ,

�φ = m2φ − 〈βψ,ψ〉C4.
(2.1)

Hereα denotes the vector(α1, α2, α3) whose components are the Dirac matricesαj =

γ 0γ j ; thus,α · ∇ = αj∂j . Further,〈·, ·〉C4 denotes the standard inner product onC4.
The operator−i(∂t+α ·∇) is rather complicated, since−iα ·∇ mixes the components

of the spinor it acts on. To simplify matters, it is natural to diagonalize by decomposing
the spinor field relative to an eigenbasis of the operator−iα · ∇. The symbol of the latter
is α · ξ (ξ ∈ R3). A quick calculation using (1.3) gives(α · ξ)2 = |ξ |2I , hence the
eigenvalues ofα · ξ are±|ξ |. By symmetry, each eigenspace is two-dimensional, and the
projections onto these eigenspaces are given by

5±(ξ) =
1

2
(I ± ξ̂ · α) where ξ̂ ≡

ξ

|ξ |
. (2.2)

Now write
ψ = ψ+ + ψ− where ψ± = 5±(D)ψ.

HereD = ∇/i, which has Fourier symbolξ . Throughout we use the notationh(D) for
the multiplier with symbolh(ξ), for a given functionh : R3

→ C.
Applying5±(D) to the Dirac equation in (2.1), and using the identities

−iα · ∇ = |D|5+(D)− |D|5−(D),

and
5±(ξ)β = β5∓(ξ) (2.3)

(the latter due to (1.2)), we obtain
(−i∂t + |D|)ψ+ = −Mβψ− +5+(D)(φβψ),

(−i∂t − |D|)ψ− = −Mβψ+ +5−(D)(φβψ),

�φ = m2φ − 〈βψ,ψ〉C4,

(2.4)

which is the system we shall work with.
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We iterateψ± andφ inXs,b type spaces associated to the operators−i∂t±|D| and�,
whose symbols areτ ± |ξ | andτ2

− |ξ |2, respectively. The notatioñu(τ, ξ) is used for
the spacetime Fourier transform of a functionu(t, x).

Definition 1. LetXs,b± (s, b ∈ R) be the completion of the Schwartz spaceS(R1+3) with
respect to the norm

‖u‖
X
s,b
±

= ‖〈ξ〉s〈τ ± |ξ |〉bũ(τ, ξ)‖L2
τ,ξ
,

where as before〈·〉 = 1 + | · |. Note that‖u‖
X
s,b
±

= ‖〈D〉
s
〈−i∂t ± |D|〉

bu‖L2
t,x

, by
Plancherel’s theorem.

Spaces of this type were first used by Bourgain [5] for periodic solutions of nonlinear
Schr̈odinger and KdV equations, and later by Kenig, Ponce and Vega [19] in the non-
periodic case. Similar spaces for the wave equation were first used by Klainerman and
Machedon [25], who used the notationH s,b. Here we rely on a slight variation of theH s,b

spaces of Klainerman and Machedon, introduced in [33] (alternatively, see [34]) and ap-
plied in [27], where they are referred to as wave-Sobolev spaces. To describe these spaces,
it is convenient to introduce mulipliersD± with symbols|τ | ± |ξ |. Thus,� = D+D−.

Definition 2. LetH s,b andHs,b (s, b ∈ R) be the completions ofS(R1+3) with respect
to the norms

‖u‖H s,b = ‖〈D〉
s
〈D−〉

bu‖L2
t,x

= ‖〈ξ〉s〈|τ | − |ξ |〉bũ(τ, ξ)‖L2
(τ,ξ)
,

‖u‖Hs,b = ‖u‖H s,b + ‖∂tu‖H s−1,b ,

respectively. Observe that the last norm is equivalent to‖〈D〉
s−1

〈D+〉〈D−〉
bu‖L2

t,x
.

In Section 4 we recall the basic facts concerning these spaces, for the convenience of the
reader. For more details and applications, the reader may want to look at [27, 36].

We shall also need the restrictions of the above spaces to a time slab

ST = (0, T )× R3,

since we study local in time solutions. The restrictionXs,b± (ST ) is a Banach space with
respect to the norm

‖u‖
X
s,b
± (ST )

= inf{‖v‖
X
s,b
±

: v ∈ X
s,b
± andv = u onST }.

In fact, the completeness follows from a basic result of abstract functional analysis, since
X
s,b
± (ST ) is nothing else than the quotient spaceXs,b± /M±, whereM± is the closed

subspace{v ∈ X
s,b
± : v = 0 onST }. The restriction spacesH s,b(ST ) andHs,b(ST ) are

defined analogously.
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3. Null structure

In this section we discuss the null structure in DKG. First, however, let us recall the
null condition of Klainerman and give a heuristic argument showing its significance for
regularity of nonlinear waves. To this end, consider a nonlinear wave equation with a
quadratic nonlinearity,�u = B(u, u), whereB is a bilinear operator given by a Fourier
symbolb. Specifically, ifX = (τ, ξ), Y = (λ, η) andZ = (µ, ζ ) are vectors in Fourier
spaceR × R3, B is of the form

[B(v, v)]˜(X) =

∫∫
Y+Z=X

b(Y, Z)̃v(Y )̃v(Z) dY dZ

=

∫
b(Y,X − Y )̃v(Y )̃v(X − Y ) dY. (3.1)

We sayX = (τ, ξ) is null if it lies on the null cone|τ | = |ξ |; this is equivalent to saying
that the symbol�(X) ≡ τ2

− |ξ |2 of the wave operator vanishes onX. Let us supposev
is a free wave,�v = 0, so that̃v is a measure supported on the null cone, and let us look
at the regularity ofu solving�u = B(v, v). (This problem arises naturally when solving
the nonlinear problem by iteration.) In Fourier space,

�(X)̃u(X) = [B(v, v)]˜(X),
so one gains a lot of regularity whenX is away from the null cone (|�(X)| & 1). Near
the cone, things are not so favorable, but if it happens that [B(v, v)]˜(X) vanishes (to
some order) whenX is null, this should improve the regularity in this difficult region. But
X = Y + Z, whereY,Z are null (since nowv in (3.1) is a free wave), henceX is null
if and only if Y,Z are parallel. One concludes that [B(v, v)]˜(X) vanishes for nullX if
Klainerman’s null condition is satisfied, i.e., if

b(Y, Z) = 0 for Y,Z null parallel. (3.2)

Remark 1. Note that if two null vectorsY = (λ, η) andZ = (µ, ζ ) are on the same
component of the cone, i.e., ifλ andµ have the same sign, then they are parallel if and
only if ∠(η, ζ ) = 0, whereas if they are on opposite components of the cone, the condition
is ∠(η,−ζ ) = 0. Here and throughout we use the notation∠(η, ζ ) for the angle between
two vectors inR3.

Let us now turn to the null structure in DKG, starting with the Klein–Gordon part of
the system:

�φ = −〈βψ,ψ〉C4. (3.3)

For simplicity we setM = m = 0 in this section.
Since we deal with spinors, the formulation of the null condition differs somewhat

from the above. First observe that

[〈βψ,ψ〉C4]˜(X) =

∫∫
Y+Z=X

〈βψ̃(Y ), ψ̃(−Z)〉C4 dY dZ, (3.4)
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where the minus sign in front ofZ stems from the complex conjugation in the inner
product. Second, (3.2) was derived from the action of (3.1) on a free wave�v = 0,
whereas in our case there are two separate species of free waves, namelyψ± satisfying
(−i∂t ± |D|)ψ± = 0 (cf. (2.4)). Taking dataψ(0, x) = ψ0(x) we have

ψ±(t) = e∓it |D|ψ±

0 where ψ±

0 = 5±(D)ψ0. (3.5)

The spacetime Fourier transforms

ψ̃±(Y ) = δ(λ± |η|)ψ̂±

0 (η) (Y = (λ, η)) (3.6)

are supported on opposite components−λ = ±|η| of the null cone|λ| = |η|. Using this
information we can state thenull conditionfor 〈βψ,ψ〉C4 with ψ replaced byψ±, for all
possible combinations of signs (as before,Y = (λ, η) andZ = (µ, ζ )):

(N1) In the++ and−− cases, i.e., taking〈βψ+, ψ+〉C4 or 〈βψ−, ψ−〉C4 in (3.4), we
see thatY,Z are on opposite components of the cone (becauseY,−Z evidently
are on the same component), hence the null condition (cf. Remark 1) says that the
(matrix-valued) symbol should vanish when∠(η,−ζ ) = 0.

(N2) In the+− and−+ cases,Y,Z are on the same component of the cone, hence the
null condition says that the symbol should vanish when∠(η, ζ ) = 0.

This null condition is indeed satisfied by the symbol of

(ψ,ψ ′) 7→ 〈β5+(D)ψ,5±(D)ψ
′
〉C4. (3.7)

This was proved already in [21, 4], but we give a considerably simpler proof below. The
main new contribution in the present paper, however, is the fact that the null bilinear forms
(3.7) occur not only in the Klein–Gordon part of the system, but also in the Dirac part. To
see this requires a duality argument which we now outline. To show the main idea unob-
scured by technical issues, we prefer to present first a heuristic argument corresponding
to the critical regularityψ± ∈ X

0,1/2
± ; the rigorous proof of Theorem 1 is then given in

the following sections.
In the following heuristic we take zero initial data forφ, so thatφ = −�−1

〈βψ,ψ〉,
where�−1F denotes the solution of�u = F with vanishing initial data. The Dirac part
of the system (2.4) then reads (from now on we drop the indexC4 on the inner product)

(−i∂t ± |D|)ψ± = 5±(D)F where F = (−�−1
〈βψ,ψ〉)βψ,

and estimatingψ± in X0,1/2
± reduces, heuristically, to estimating‖5±(D)F‖

X
0,−1/2
±

(cf.

Lemma 5 in the next section). Estimating the latter by duality, we are led to consider
integrals, for spinor-valuedψ ′

∈ X
0,1/2
± ,∫∫

〈5±(D)F,ψ
′
〉 dt dx =

∫∫
〈F,5±(D)ψ

′
〉 dt dx

= −

∫∫
(�−1

〈βψ,ψ〉)〈βψ,5±(D)ψ
′
〉 dt dx,

so indeed, (3.7) crops up one more time.
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In fact, the complete null structure of DKG can be elegantly summed up in a single
line: Splitting the fields in the last integral using5±(D), we end up with∫∫

(�−1
〈β5±(D)ψ,5±(D)ψ〉) · 〈β5±(D)ψ,5±(D)ψ

′
〉 dt dx,

for all possible combinations of signs. Replacing�−1 by |�|
−1 and distributing it equally

over the two factors (this particular heuristic is based on Plancherel’s theorem) yields∫∫
(|�|

−1/2
〈β5±(D)ψ,5±(D)ψ〉) · (|�|

−1/2
〈β5±(D)ψ,5±(D)ψ

′
〉) dt dx.

The last integral embodies the complete null structure in DKG, and shows the striking
symmetry of the system. It suggests that the key problem is to prove the bilinear “esti-
mate”

‖|�|
−1/2

〈β5+(D)ψ,5±(D)ψ
′
〉‖L2

t,x
. ‖ψ‖

X
0,1/2
+

‖ψ ′
‖
X

0,1/2
±

, (3.8)

which fails, but not by much. In fact, we shall reduce Theorem 1 to certain perturbations
around this estimate (see (5.5) and (5.6)), which in turn reduce, on account of the null
structure, to some well-known bilinear spacetime estimates of the type first studied by
Klainerman and Machedon [22]. For the free wave case, see (3.10) below.

Let us now verify that that the null condition (N1), (N2) is satisfied by (3.7). In fact,
since5±(D) does not involve time at all, it suffices to consider spinor fieldsψ(x), ψ ′(x).
ReplacingX, Y,Z in (3.4) byξ, η, ζ ∈ R3, we then have

[〈β5+(D)ψ,5±(D)ψ
′
〉]̂(ξ) =

∫∫
η+ζ=ξ

〈β5+(η)ψ̂(η),5±(−ζ )ψ̂
′(−ζ )〉 dη dζ,

and since5±(ξ)
†

= 5±(ξ), we obtain

〈β5+(η)ψ̂(η),5±(−ζ )ψ̂
′(−ζ )〉 = 〈5±(−ζ )β5+(η)ψ̂(η), ψ̂

′(−ζ )〉

= 〈β5∓(−ζ )5+(η)ψ̂(η), ψ̂
′(−ζ )〉, (3.9)

where in the last step we used the commutation identity (2.3), which inverts the sign.
Thus, we have:

Lemma 1. The symbol of(3.7) is the matrixβ5∓(−ζ )5+(η).

The symbolβ5∓(−ζ )5+(η) does indeed satisfy the null condition (N1), (N2), by or-
thogonality of the eigenspaces. In fact, the symbol vanishes to first order in the angle
(note that the following lemma can be applied in all cases, i.e., for all combinations of
signs, because5+(−ξ) = 5−(ξ)).

Lemma 2. 5+(ξ)5−(η) = O(θ), whereθ = ∠(ξ, η).
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Proof.

45+(ξ)5−(η) = (I + ξ̂jα
j )(I − η̂kα

k)

= I − ξ̂j η̂kα
jαk + (ξ̂ − η̂) · α

= (1 − ξ̂ · η̂)I − iεjkl ξ̂j η̂kS
l
+ (ξ̂ − η̂) · α (by (1.4))

= (1 − ξ̂ · η̂)︸ ︷︷ ︸
O(θ2)

I − i (ξ̂ × η̂)︸ ︷︷ ︸
O(θ)

·S + (ξ̂ − η̂)︸ ︷︷ ︸
O(θ)

·α

whereξ̂ ≡ ξ/|ξ | andS = (S1, S2, S3). ut

Remark 2. For readers familiar with the standard null formsQ0,Qij andQ0j , we point
out that the factors 1− ξ̂ · η̂, ξ̂ × η̂ andξ̂ − η̂ are the symbols ofQ0(|D|

−1u, |D|
−1v),

Qij (|D|
−1u, |D|

−1v) andQ0j (|D|
−1u, |D|

−1v), respectively, in the case of free waves
�u = �v = 0.

This concludes the discussion of the null structure in DKG. To illustrate how it is
used, let us estimate the left hand side of (3.8) in the important case of free wavesψ±

given by (3.5), (3.6). Taking the++ case for the sake of definiteness, we shall prove

‖|�|
−1/2

〈βψ+, ψ+〉‖L2
t,x

≤ C‖ψ0‖
2
L2. (3.10)

Applying Lemmas 1 and 2, we see that

|[|�|
−1/2

〈βψ+, ψ+〉]˜(τ, ξ)|
=

1√
|ξ |2 − τ2

∣∣∣∣∫R3
δ(τ + |η| − |η − ξ |)〈β5−(η − ξ)5+(η)ψ̂0(η), ψ̂0(η − ξ)〉 dη

∣∣∣∣
≤

C√
|ξ |2 − τ2

∫
R3
θδ(τ + |η| − |η − ξ |)|ψ̂0(η)| |ψ̂0(η − ξ)| dη

≤ C

∫
R3
δ(τ + |η| − |η − ξ |)

|ψ̂0(η)| |ψ̂0(η − ξ)|

|η|1/2|η − ξ |1/2
dη,

whereθ = ∠(η, η − ξ) and we used

|ξ |2 − τ2
= |ξ |2 − (|η| − |η − ξ |)2 = 2|η| |η − ξ |(1 − cosθ) ≈ |η| |η − ξ |θ2.

Here and below, the notationX ≈ Y stands forC−1X ≤ Y ≤ CX whereC > 0 is some
absolute constant.

We conclude (going back to physical space and applying Hölder’s inequality) that
(3.10) reduces to the classical estimate

‖e±it |D|f ‖L4(R1+3) ≤ C‖f ‖Ḣ1/2 (3.11)

due to Strichartz [35].
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4. Some properties ofXs,b andH s,b

Here we recall some basic, well-known properties ofXs,b andH s,b spaces, needed in the
proof of our main result, Theorem 1. For the convenience of the reader we include short
sketches of the proofs in some cases. For more details and further references, see e.g.
[27, 36].

We start withXs,b, commenting on the more complicatedH s,b at the end. The dis-
cussion applies toXs,b in general form: Starting from a PDE onR1+n, with anyn ≥ 1,
of the form

−i∂tu = h(D)u (4.1)

whereh : Rn → R and h(D) is the multiplier with symbolh(ξ), one definesXs,b

(s, b ∈ R) via the norm

‖u‖Xs,b = ‖〈ξ〉s〈τ − h(ξ)〉bũ(τ, ξ)‖L2
τ,ξ
.

The cases of interest for us here areh(ξ) = −|ξ |, which givesXs,b+ , andh(ξ) = |ξ |,

which givesXs,b− , but we prefer to keep the general notation (and general dimension) in
this section.

Note thateith(D) is the free propagator of (4.1). The first important observation is that
the elements ofXs,b are superpositions of free solutions withH s data, suitably modu-
lated:

Lemma 3. u ∈ Xs,b if and only if there existsf ∈ L2(〈λ〉2b dλ;H s(Rn)) such that

u(t) =

∫
R
eitλeith(D)f (λ) dλ (H s-valued). (4.2)

Moreover,‖u‖2
Xs,b

=
∫
R ‖f (λ)‖2

H s 〈λ〉
2b dλ.

Proof. The idea is to foliate Fourier space(τ, ξ) ∈ R × Rn by the surfacesτ − h(ξ) =

const. Definef (λ) (a.e.) by [f (λ)]̂(ξ) = ũ(λ+ h(ξ), ξ). Then

ũ(τ, ξ) =

∫
δ(λ− τ + h(ξ))f̂ (λ)(ξ) dλ,

which agrees with the spacetime Fourier transform of (4.2). ut

From this lemma and the dominated convergence theorem forH s-valued integrals, one
easily obtains

Xs,b ↪→ Cb(R;H s) for b > 1/2, (4.3)

where↪→ means continuous inclusion. This in turn impliesXs,b(ST ) ↪→ C([0, T ];H s)

for b > 1/2.
Another easy but exceedingly useful consequence of Lemma 3 is that Strichartz type

estimates (linear or multilinear) for (4.1) imply corresponding estimates forXs,b:
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Lemma 4. Let T be a multilinear operator(f1(x), . . . , fk(x)) 7→ T (f1, . . . , fk)(x)

acting inx-space. IfT satisfies an estimate of the form

‖T (eith1(D)f1, . . . , e
ithk(D)fk)‖Lqt Lrx

≤ C‖f1‖H s1 · · · ‖fk‖H sk ,

then
‖T (u1, . . . , uk)‖Lqt Lrx

≤ Cb‖u1‖
X
s1,b
1

· · · ‖uk‖
X
sk ,b

k

for all uj ∈ X
sj ,b

j , 1 ≤ j ≤ k, providedb > 1/2. HereXs,bj is defined using the symbol
hj (ξ).

Proof. SinceT acts only inx, not in t , the multilinearity gives, using the representation
from Lemma 3,

T (u1, . . . , uk) =

∫
R

· · ·

∫
R
eit (λ1+···+λk)T (eith1(D)f1, . . . , e

ithk(D)fk) dλ1 · · · dλk.

Minkowski’s integral inequality followed by Cauchy–Schwarz indλj easily leads to the
desired estimate. ut

For example, the classical Strichartz estimate (3.11) impliesX
1/2,b
± ↪→ L4(R1+3) for

b > 1/2.
Finally, we consider the LWP of the linear Cauchy problem associated to (4.1),

−(i∂t + h(D))u = F(t, x), u(0, x) = f (x), (4.4)

in the restricted spaceXs,b(ST ), b > 1/2. In the rest of the paper we impose the condition
T ≤ 1 to avoid having to keep track of the growth of certain constants asT becomes large.

Lemma 5. Let 1/2 < b ≤ 1, s ∈ R, 0 < T ≤ 1. Also, let0 ≤ δ ≤ 1 − b. Then for
all data F ∈ Xs,b−1+δ(ST ), f ∈ H s , the Cauchy problem(4.4) has a unique solution
u ∈ Xs,b(ST ), satisfying the first equation of(4.4) in the sense ofD′(ST ). Moreover,

‖u‖Xs,b(ST ) ≤ C(‖f ‖H s + T δ‖F‖Xs,b−1+δ(ST )
), (4.5)

whereC only depends onb.

Note that in Fourier space, [τ − h(ξ)]ũ(τ, ξ) = F̃ (τ, ξ), so heuristically, (4.5) says that
in the time localized case, we can replace the singular symbolτ − h(ξ) by 〈τ − h(ξ)〉,
and simply divide out.

In the following proof sketch, we follow closely the argument given in [19], but with
a slight modification to get the factorT δ on the right hand side of (4.5), which of course
is useful in a contraction argument.

Proof of Lemma 5.Start by picking any extension ofF , which we still denoteF . Then
the problem is to prove (4.5) without the time restriction on the right hand side. Split
u = u0 + u1, whereu0 is the homogeneous part,u1 the inhomogeneous part. Further
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split u1 = u1,near+ u1,far corresponding to the Fourier domains|τ − h(ξ)| ≤ T −1 and
|τ − h(ξ)| > T −1.

First, ũ0(τ, ξ) = δ(τ − h(ξ))f̂ (ξ), hence ifχ(t) is a smooth cut-off function such
thatχ(t) = 1 for |t | ≤ 1 andχ(t) = 0 for |t | ≥ 2, then‖u0‖Xs,b(ST ) is bounded by

‖χ(t)u0(t, ·)‖Xs,b = ‖〈ξ〉s〈τ − h(ξ)〉bχ̂(τ − h(ξ))f̂ (ξ)‖L2
τ,ξ

= ‖χ‖H b‖f ‖H s .

Next, since (here we use1 to denote the indicator function of the set determined by
the condition in the subscript)

[u1,far]˜(τ, ξ) =
1|τ−h(ξ)|>T −1

τ − h(ξ)
F̃ (τ, ξ),

it follows that‖u1,far‖Xs,b ≤ CT δ‖F‖Xs,b−1+δ .
Finally, Duhamel’s principle givesu1,near(t) =

∑
∞

k=1(t
k/k!)eith(D)gk, where

ĝk(ξ) =

∫
[i(λ− h(ξ))]k−1

1|λ−h(ξ)|≤T −1F̃ (λ, ξ) dλ.

Using Cauchy–Schwarz indλ one easily obtains‖gk‖H s ≤ CT b−1/2+δ−k
‖F‖Xs,b−1+δ ,

so finally,

‖u1,near‖Xs,b(ST ) ≤

∥∥∥∥χ(
t

T

)
u1,near(t, ·)

∥∥∥∥
Xs,b

≤ C

∞∑
k=1

T k

k!

∥∥∥∥(
t

T

)k
χ

(
t

T

)∥∥∥∥
H b
t

‖gk‖H s

≤ C

∞∑
k=1

T k

k!
(T 1/2−b

‖tkχ(t)‖H b
t
)(T b−1/2+δ−k

‖F‖Xs,b−1+δ )

≤ CT δ
( ∞∑
k=1

k2k−1

k!

)
‖F‖Xs,b−1+δ ,

since‖tkχ(t)‖H b
t

≤ ‖tkχ(t)‖H1
t

≤ Cχ (2k + k2k−1) by the support assumption. ut

To end this section, let us state the analogues of Lemmas 3–5 forH s,b. Foru ∈ H s,b we
split u = u+ +u− corresponding to the Fourier domains−τ > 0 and−τ < 0, i.e., we set
ũ±(τ, ξ) = 1±(−τ)>0ũ(τ, ξ). (Letting−τ determine the sign is consistent with the choice
of signs in the projections (2.2), since−τ corresponds to the energy.) Thenu ∈ H s,b is
equivalent to saying thatu± ∈ X

s,b
± , so Lemma 3 applies to give a characterization of

H s,b in terms of superimposed free waves. Moreover,‖u‖2
H s,b = ‖u+‖

2
X
s,b
+

+ ‖u−‖
2
X
s,b
−

,

so Lemma 4 also applies: IfT is as in Lemma 4 and the estimate

‖T (e±it |D|f1, . . . , e
±it |D|fk)‖Lqt Lrx

≤ C‖f1‖H s1 · · · ‖fk‖H sk

holds, then
‖T (u1, . . . , uk)‖Lqt Lrx

≤ Cb‖u1‖H s1,b · · · ‖uk‖H sk ,b

for all uj ∈ H sj ,b, 1 ≤ j ≤ k, providedb > 1/2.
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Next, consider the Cauchy problem

�u = F(t, x), u(0, x) = f (x), ∂tu(0, x) = g(x). (4.6)

One may think that by rewriting (4.6) as a first order system, Lemma 5 could be applied
directly, but if one works with data in inhomogeneous Sobolev spaces, there is a problem
with low frequencies. Thus, the following lemma requires a separate proof, which can be
found in [33, 34]; see [25] for an earlier version of this estimate (in a slightly different
norm, and withT = 1).

Lemma 6. Let 1/2 < b ≤ 1, s ∈ R, 0 < T ≤ 1 and 0 ≤ δ ≤ 1 − b. Then for all
dataF ∈ H s−1,b−1+δ(ST ), f ∈ H s andg ∈ H s−1, there exists a uniqueu ∈ Hs,b(ST )
solving(4.6)onST . Moreover,

‖u‖Hs,b(ST )
≤ C(‖f ‖H s + ‖g‖H s−1 + σ(T )‖F‖H s−1,b−1+δ(ST )

),

whereσ > 0 depends continuously onT > 0 and satisfieslimT→0+ σ(T ) = 0 if δ > 0.

5. Proof of Theorem 1

We use the iteration scheme,2 for k ≥ −1,
(−i∂t + |D|)ψk+1

+ = −Mβψk− +5+(D)(φ
kβψk),

(−i∂t − |D|)ψk+1
− = −Mβψk+ +5−(D)(φ

kβψk),

�φk+1
= m2φk − 〈βψk, ψk〉,

whereψk = ψk+ + ψk− andψ−1
± , φ−1

≡ 0. The initial data are

ψk±(0, x) = 5±(D)ψ0(x), φk(0, x) = φ0(x), ∂tφ
k(0, x) = φ1(x)

whereψ0 ∈ H ε, (φ0, φ1) ∈ H 1/2+ε
×H−1/2+ε for some 0< ε ≤ 1/2. Considerε fixed,

and letε′ > 0 denote a sufficiently small number, depending onε. We iterate in the spaces

ψk± ∈ X
ε,1/2+ε′

± (ST ), φk ∈ H1/2+ε,1/2+ε′(ST ),

whereST = (0, T )× R3 for some 0< T ≤ 1 to be chosen sufficiently small depending
on the size of

I0 = ‖ψ0‖H ε + ‖φ0‖H1/2+ε + ‖φ1‖H−1/2+ε .

2 It may be more natural to include the mass terms in the operators on the left hand sides, but
this would require generalizing the Klainerman–Machedon type estimates to the massive operators;
while this can certainly be done (and in some cases has been done), it is not something we wish to
undertake in the present paper. In any event, putting the linear mass terms on the right hand sides is
harmless as far as the local in time contraction is concerned.
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In the estimates that follow,. stands for≤ up to a multiplicative constantC which may
depend onε but is independent ofT , andσ(T ) denotes a positive, continuous function of
0< T ≤ 1 such that limT→0+ σ(T ) = 0.

By induction,5±(D)ψ
k
± = ψk± for all k, hence

ψk = 5+(D)ψ
k
+ +5−(D)ψ

k
−. (5.1)

By Lemmas 5 and 6,

‖ψk+1
± ‖

X
ε,1/2+ε′

± (ST )
. I0 +M‖ψk∓‖L2([0,T ];H ε)

+ σ(T )‖5±(D)(φ
kβψk)‖

X
ε,−1/2+2ε′
± (ST )

, (5.2)

‖φk+1
‖H1/2+ε,1/2+ε′ (ST )

. I0 +m2
‖φk‖L2([0,T ];H−1/2+ε)

+ σ(T )‖〈βψk, ψk〉‖
H−1/2+ε,−1/2+2ε′ (ST )

, (5.3)

so in view of (5.1), the key is to establish the general estimates

‖5±(D)(φβ5[±](D)ψ)‖
X
ε,−1/2+2ε′
±

. ‖φ‖
H1/2+ε,1/2+ε′ ‖ψ‖

X
ε,1/2+ε′

[±]
, (5.4)

‖〈β5[±](D)ψ,5±(D)ψ
′
〉‖
H−1/2+ε,−1/2+2ε′ . ‖ψ‖

X
ε,1/2+ε′

[±]
‖ψ ′

‖
X
ε,1/2+ε′

±

(5.5)

for ε′ > 0 sufficiently small depending onε. Here± and [±] denote independent signs.
Also, in (5.4) and (5.5) the norms are not restricted toST , but they are applied to ex-
tensions of the iteratesφk, ψk. Taking infima over all extensions, one then obtains, from
(5.2)–(5.5),

Ak+1(T ) . I0 + σ(T )P (Ak(T )),

where
Ak(T ) = ‖φk‖H1/2+ε,1/2+ε′ (ST )

+

∑
±

‖ψk±‖
X
ε,1/2+ε′

± (ST )

andP is a polynomial such thatP(0) = 0. Here we have also used the fact that

‖ψ‖L2([0,T ];H ε) ≤ T 1/2
‖ψ‖L∞([0,T ];H ε) . T 1/2

‖ψ‖
X
ε,1/2+ε′

± (ST )
,

and similarly for the term‖φk‖L2([0,T ];H−1/2+ε) in (5.3).
In view of the multilinearity of the nonlinear terms in the system, one obtains similar

estimates for the difference of subsequent iterates, and the standard contraction argument
then gives local existence and uniqueness (in the iteration space) for 0< T ≤ 1 suffi-
ciently small depending onI0.

Thus, we have reduced to proving (5.4) and (5.5). But by duality, (5.4) is equivalent
to∫∫

〈5±(D)(φβ5[±](D)ψ), ψ
′
〉 dt dx . ‖φ‖

H1/2+ε,1/2+ε′ ‖ψ‖
X
ε,1/2+ε′

[±]
‖ψ ′

‖
X

−ε,1/2−2ε′
±

,
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and since∫∫
〈5±(D)(φβ5[±](D)ψ), ψ

′
〉 dt dx

=

∫∫
〈φβ5[±](D)ψ,5±(D)ψ

′
〉 dt dx

=

∫∫
φ〈β5[±](D)ψ,5±(D)ψ

′
〉 dt dx

≤ ‖φ‖
H1/2+ε,1/2+ε′ ‖〈β5[±](D)ψ,5±(D)ψ

′
〉‖
H−1/2−ε,−1/2−ε′ ,

we conclude that (5.4) reduces to an estimate similar to (5.5):

‖〈β5[±](D)ψ,5±(D)ψ
′
〉‖
H−1/2−ε,−1/2−2ε′ . ‖ψ‖

X
ε,1/2+ε′

[±]
‖ψ ′

‖
X

−ε,1/2−2ε′
±

. (5.6)

Note that both (5.5) and (5.6) are perturbations around the false estimate (3.8). In fact, us-
ing the null structure we shall reduce (5.5) and (5.6) to some well-known bilinear space-
time estimates of Klainerman–Machedon type for products of free waves. Specifically,
we need the following generalization of the classicalL4 estimate (3.11) of Strichartz.

Theorem 2 ([22, 26, 16]). Let s1, s2, s3 ∈ R. The estimate

‖|D|
−s3(uv)‖L2(R1+3) ≤ Cs1,s2,s3‖u0‖Ḣ s1‖v0‖Ḣ s2

holds for free wavesu(t) = e±it |D|u0, v(t) = e±it |D|v0 if and only if

s1 + s2 + s3 = 1, s1, s2, s3 < 1, s1 + s2 > 1/2. (5.7)

From this and Lemma 4 we obtain

H s1,b ·H s2,b → H−s3,0 for b > 1/2 ands1, s2, s3 ≥ 0 satisfying (5.7). (5.8)

Here we use the following notation: IfX, Y,Z are normed spaces of functions, the state-
mentX · Y → Z means that the bilinear estimate‖uv‖Z ≤ C‖u‖X‖v‖Y holds for some
constantC.

By interpolation between (5.8) and the estimate

L2
·H 0,b

→ H−N,0 for b > 1/2, N > 3/2, (5.9)

which by duality is equivalent toHN,0
·H 0,b

→ L2 and therefore follows from Ḧolder’s
inequalityL∞

t L
2
x ·L2

t L
∞
x → L2 and Sobolev embedding, it is easy to prove (see the next

section) the estimates

H 0,1/2−δ
·H 1/2+ε,b

→ H−1/2,0, (5.10)

H 0,1/2−δ
·H 1/2,b

→ H−1/2−ε,0, (5.11)

H 1/2−ε,1/2−δ
·H 1/2+ε,b

→ H−ε,0, (5.12)

H 1/2−ε,1/2−δ
·H ε,b

→ H−1/2−ε,0, (5.13)

H−ε,1/2−δ
·H 1/2+ε,b

→ H−1/2−ε,0, (5.14)

for all b > 1/2, ε > 0 and sufficiently smallδ > 0, depending onε.
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We now turn to the proofs of (5.5) and (5.6). It suffices to consider the case where the
sign [±] is a+. Throughout the rest of this section, we setb = 1/2+ε′; recall thatε′ > 0
denotes a sufficiently small number, depending onε.

5.1. Proof of (5.5)

Using Lemmas 1 and 2, we see that (5.5) reduces to proving∥∥∥∥ 1

〈ξ〉1/2−ε〈|τ | − |ξ |〉1/2−2ε′

∫∫
θ±|ψ̃(λ, η)| |ψ̃ ′(λ− τ, η − ξ)| dλ dη

∥∥∥∥
L2
τ,ξ

. ‖ψ‖
X
ε,1/2+ε′

+

‖ψ ′
‖
X
ε,1/2+ε′

±

, (5.15)

where
θ± ≡ ∠(η,±(η − ξ)).

We claim that

θ2
+ ≈

|ξ |r+

|η| |η − ξ |
, θ2

− ≈
(|η| + |η − ξ |)r−

|η| |η − ξ |
,

where
r+ ≡ |ξ | − | |η| − |η − ξ | |, r− ≡ |η| + |η − ξ | − |ξ |.

To prove the estimate forθ2
+, one writes

|ξ |r+

|η| |η − ξ |
≈
(|ξ | + | |η| − |η − ξ | |)r+

|η| |η − ξ |
=

|ξ |2 − | |η| − |η − ξ | |2

|η| |η − ξ |
= 2(1 − cosθ+),

and the estimate forθ2
− is proved in a similar way.

Assuming as we may that̃ψ, ψ̃ ′ ≥ 0, and suppressing the arguments of these func-
tions to keep the notation manageable, we thus reduce (5.15) to∥∥∥∥ |ξ |ε

〈|τ | − |ξ |〉1/2−2ε′

∫∫
r

1/2
+

|η|1/2|η − ξ |1/2
ψ̃ψ̃ ′ dλ dη

∥∥∥∥
L2
τ,ξ

. ‖ψ‖
X
ε,1/2+ε′

+

‖ψ ′
‖
X
ε,1/2+ε′

+

(5.16)

and∥∥∥∥ 1

〈ξ〉1/2−ε〈|τ | − |ξ |〉1/2−2ε′

∫∫
r

1/2
−

min(|η|, |η − ξ |)1/2
ψ̃ψ̃ ′ dλ dη

∥∥∥∥
L2
τ,ξ

. ‖ψ‖
X
ε,1/2+ε′

+

‖ψ ′
‖
X
ε,1/2+ε′

−

. (5.17)

Now we apply the following:

Lemma 7. r± . | |τ | − |ξ | | + |λ+ |η| | + |λ− τ ± |η − ξ | |.
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Proof. If τ ≥ 0, we estimate

r+ ≤ |ξ | + |η| − |η − ξ | = |ξ | − |τ | + λ+ |η| + τ − λ− |η − ξ |,

while if τ < 0 we use

r+ ≤ |ξ | − |η| + |η − ξ | = |ξ | − |τ | − λ− |η| − τ + λ+ |η − ξ |.

To handler− we write

r− = λ+ |η| + τ − λ+ |η − ξ | − τ − |ξ |.

If τ < 0, this equalsλ + |η| + τ − λ + |η − ξ | + |τ | − |ξ |, while if τ ≥ 0 it is ≤

λ+ |η| + τ − λ+ |η − ξ |. ut

We also need
r± ≤ 2 min(|η|, |η − ξ |), (5.18)

which follows from the triangle inequality. Combining this with Lemma 7 we get

r
1/2
± . | |τ | − |ξ | |1/2−2ε′ min(|η|, |η − ξ |)2ε

′

+ |λ+ |η| |1/2 + |λ− τ ± |η − ξ | |1/2.

Moreover, by symmetry we may assume|η| ≥ |η − ξ | in (5.16) and (5.17). Hence (5.16)
reduces to proving

I+

j . ‖ψ‖
X
ε,1/2+ε′

+

‖ψ ′
‖
X
ε,1/2+ε′

+

for j = 1,2,3, where

I+

1 =

∥∥∥∥∫∫
ψ̃ψ̃ ′

|η|1/2−ε|η − ξ |1/2−2ε′
dλ dη

∥∥∥∥
L2
τ,ξ

,

I+

2 =

∥∥∥∥ 1

〈|τ | − |ξ |〉1/2−2ε′

∫∫
|λ+ |η| |1/2ψ̃ψ̃ ′

|η|1/2−ε|η − ξ |1/2
dλ dη

∥∥∥∥
L2
τ,ξ

,

I+

3 =

∥∥∥∥ 1

〈|τ | − |ξ |〉1/2−2ε′

∫∫
ψ̃ |λ− τ + |η − ξ | |1/2ψ̃ ′

|η|1/2−ε|η − ξ |1/2
dλ dη

∥∥∥∥
L2
τ,ξ

,

and (5.17) reduces to proving

I−

j . ‖ψ‖
X
ε,1/2+ε′

+

‖ψ ′
‖
X
ε,1/2+ε′

−

for j = 1,2,3, where

I−

1 =

∥∥∥∥ 1

〈ξ〉1/2−ε

∫∫
ψ̃ψ̃ ′

|η − ξ |1/2−2ε′
dλ dη

∥∥∥∥
L2
τ,ξ

,

I−

2 =

∥∥∥∥ 1

〈ξ〉1/2−ε〈|τ | − |ξ |〉1/2−2ε′

∫∫
|λ+ |η| |1/2ψ̃ψ̃ ′

|η − ξ |1/2
dλ dη

∥∥∥∥
L2
τ,ξ

,

I−

3 =

∥∥∥∥ 1

〈ξ〉1/2−ε〈|τ | − |ξ |〉1/2−2ε′

∫∫
ψ̃ |λ− τ − |η − ξ | |1/2ψ̃ ′

|η − ξ |1/2
dλ dη

∥∥∥∥
L2
τ,ξ

.
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The estimates forI+

j , j = 1,2,3, reduce to, respectively,

X
1/2,b
+ ·X

1/2+ε−2ε′,b
+ → L2, (5.19)

X
1/2,0
+ ·X

1/2+ε,b
+ → H 0,−1/2+2ε′ , (5.20)

X
1/2,b
+ ·X

1/2+ε,0
+ → H 0,−1/2+2ε′ , (5.21)

and the estimates forI−

j , j = 1,2,3, reduce to

X
ε,b
+ ·X

1/2+ε−2ε′,b
− → H−1/2+ε,0, (5.22)

X
ε,0
+ ·X

1/2+ε,b
− → H−1/2+ε,−1/2+2ε′ , (5.23)

X
ε,b
+ ·X

1/2+ε,0
− → H−1/2+ε,−1/2+2ε′ . (5.24)

Recall that we assumeb = 1/2 + ε′ throughout this section.
Since in general‖u‖H s,b ≤ ‖u‖

X
s,b
±

for b ≥ 0, we may in fact replace all theXs,b± on

the left hand sides byH s,b. (The information encoded in the signs has already been made
use of through the null structure.) Using also duality, we thus reduce to

H 1/2,b
·H 1/2+ε−2ε′,b

→ L2,

H 0,1/2−2ε′
·H 1/2+ε,b

→ H−1/2,0,

H 1/2,b
·H 0,1/2−2ε′

→ H−1/2−ε,0,

and

H ε,b
·H 1/2+ε−2ε′,b

→ H−1/2+ε,0,

H 1/2−ε,1/2−2ε′
·H 1/2+ε,b

→ H−ε,0,

H ε,b
·H 1/2−ε,1/2−2ε′

→ H−1/2−ε,0.

All these estimates are true forε′ > 0 sufficiently small, by (5.8) and (5.10)–(5.14).

5.2. Proof of (5.6)

Proceeding as in the proof of (5.5), we reduce to

∥∥∥∥ |ξ |ε

〈|τ | − |ξ |〉1/2+ε′

∫∫
r

1/2
+

|η|1/2|η − ξ |1/2
ψ̃ψ̃ ′ dλ dη

∥∥∥∥
L2
τ,ξ

. ‖ψ‖
X
ε,1/2+ε′

+

‖ψ ′
‖
X

−ε,1/2−2ε′
+

(5.25)
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and∥∥∥∥ 1

〈ξ〉1/2+ε〈|τ | − |ξ |〉1/2+ε′

∫∫
r

1/2
−

min(|η|, |η − ξ |)1/2
ψ̃ψ̃ ′ dλ dη

∥∥∥∥
L2
τ,ξ

. ‖ψ‖
X
ε,1/2+ε′

+

‖ψ ′
‖
X

−ε,1/2−2ε′
−

. (5.26)

By Lemma 7 and (5.18),

r
1/2
± . | |τ | − |ξ | |1/2 + |λ+ |η| |1/2 + |λ− τ ± |η − ξ | |1/2−2ε′ min(|η|, |η − ξ |)2ε

′

,

hence (5.25) reduces to (recall thatb = 1/2 + ε′)

H 1/2+ε,b
·H 1/2−ε,1/2−ε′

→ H−ε,0,

H 1/2+ε,0
·H 1/2−ε,1/2−ε′

→ H−ε,−b,

H 1/2+ε−2ε′,b
·H 1/2−ε−2ε′,0

→ H−ε,−b,

which follow from, respectively, (5.12), (5.13) (via duality) and (5.8) (also via duality).
Now consider (5.26). Assuming first|η| ≤ |η − ξ | we reduce to

H 1/2+ε,b
·H−ε,1/2−2ε′

→ H−1/2−ε,0,

H 1/2+ε,0
·H−ε,1/2−2ε′

→ H−1/2−ε,−b,

H 1/2+ε−2ε′,b
·H−ε,0

→ H−1/2−ε,−b,

while in the case|η| ≥ |η − ξ | we get

H ε,b
·H 1/2−ε,1/2−2ε′

→ H−1/2−ε,0,

H ε,0
·H 1/2+−ε,1/2−2ε′

→ H−1/2−ε,−b,

H ε,b
·H 1/2−ε−2ε′,0

→ H−1/2−ε,−b.

All these reduce (possibly via duality) to (5.8) or (5.10)–(5.14).

6. Proof of (5.10)–(5.14)

All these follow by interpolation between (5.9) and various special cases of (5.8). Fix
ε > 0,b > 1/2,N > 3/2. The numberδ > 0 will be chosen sufficiently small, depending
on ε.

For (5.10) we interpolate between

H 0,1/2+δ
·H 1/2+ε,b

→ H−1/2+ε,0,

L2
·H 1/2+ε,b

→ H−N,0.

This gives
H 0,(1−θ)(1/2+δ)

·H 1/2+ε,b
→ H (1−θ)(−1/2+ε)−θN,0
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for 0 ≤ θ ≤ 1. First chooseθ > 0 so small that(1 − θ)(−1/2 + ε)− θN ≥ −1/2. Then
chooseδ > 0 so small that(1 − θ)(1/2 + δ) ≤ 1/2 − δ.

For (5.11) we interpolate between

H 0,1/2−δ
·H 1/2+ε′,b

→ H−1/2,0,

H 0,1/2−δ
·H 0,b

→ H−N,0,

the first of which is just (5.10), forε′, δ > 0 to be chosen sufficiently small, depending
on ε. This gives

H 0,1/2−δ
·H (1−θ)(1/2+ε′),b

→ H (1−θ)(−1/2)−θN,0.

First chooseθ > 0 so small that(1 − θ)(−1/2)− θN ≥ −1/2 − ε. Then chooseε′ > 0
so small that(1 − θ)(1/2 + ε′) ≤ 1/2.

For (5.12) interpolate between

H 1/2−ε,1/2+δ
·H 1/2+ε,b

→ L2,

H 1/2−ε,0
·H 1/2+ε,b

→ H−N,0.

Thus,

H 1/2−ε,(1−θ)(1/2+δ)
·H 1/2+ε,b

→ H−θN,0

for 0 ≤ θ ≤ 1. First chooseθ > 0 so small thatθN ≤ ε. Then chooseδ > 0 so small that
(1 − θ)(1/2 + δ) ≤ 1/2 − δ.

To prove (5.13) we interpolate between

H 1/2−ε,1/2+δ
·H ε,b

→ H−1/2,0,

H 1/2−ε,0
·H ε,b

→ H−N,0,

yielding

H 1/2−ε,(1−θ)(1/2+δ)
·H ε,b

→ H (1−θ)(−1/2)−θN,0.

First chooseθ > 0 so small that(1 − θ)(1/2) + θN ≤ 1/2 + ε. Then chooseδ > 0 so
small that(1 − θ)(1/2 + δ) ≤ 1/2 − δ.

Finally, (5.14) reduces to (5.11) or (5.12), depending on whether the frequency inter-
actions are of type high-high or high-low/low-high in the product on the left hand side.
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