Joel W. Robbin · Dietmar A. Salamon

Corrigendum: A construction of the Deligne–Mumford orbifold

(J. Eur. Math. Soc. 8, 611-699 (2006))

Received June 18, 2007

Abstract. We correct an error in [3, Lemma 8.2]. As stated, the lemma only holds for surfaces of genus greater than 1 or in the case $\alpha=0$. When the genus is 0 or 1 and in addition $\alpha\neq0$, equation (8) in [3] (in the present corrigendum this is equation (2)) is only a necessary condition for the integrability of J but is not sufficient. In [3] Lemma 8.2 is only used twice. On page 637 it is used in the trivial case $\alpha=0$. On page 642 only the "only if" direction is used and the proof of that direction is correct in [3]. In this note we prove a corrected version of [3, Lemma 8.2].

Let $A \subset \mathbb{C}^m$ be an open set and Σ be a compact oriented 2-manifold without boundary. We denote the complex structure on A by i (instead of $\sqrt{-1}$ as in [3].) Let $\mathcal{J}(\Sigma)$ denote the space of (almost) complex structures on Σ that are compatible with the given orientation. An almost complex structure on $A \times \Sigma$ with respect to which the projection $A \times \Sigma \to A$ is holomorphic has the form

$$J = \begin{pmatrix} \mathfrak{i} & 0 \\ \alpha & j \end{pmatrix},$$

where $j: A \to \mathcal{J}(\Sigma)$ is a smooth map and $\alpha \in \Omega^1(A, \operatorname{Vect}(\Sigma))$ is a smooth 1-form on A with values in the space of vector fields on Σ that satisfies

$$\alpha(a, i\hat{a}) + j(a)\alpha(a, \hat{a}) = 0 \tag{1}$$

for $a \in A$ and $\hat{a} \in T_a A$. For $v, w \in \text{Vect}(\Sigma)$ we denote by \mathcal{L}_v the Lie derivative; we use the sign convention $\mathcal{L}_{[v,w]} = \mathcal{L}_w \mathcal{L}_v - \mathcal{L}_v \mathcal{L}_w$ for the Lie bracket.

Lemma A.

(i) J is integrable if and only if j and α satisfy

$$dj(a)\hat{a} + j(a)dj(a)i\hat{a} + j(a)\mathcal{L}_{\alpha(a,\hat{a})}j(a) = 0,$$
(2)

$$d\xi(a)i\hat{b} - j(a)d\xi(a)\hat{b} - d\eta(a)i\hat{a} + j(a)d\eta(a)\hat{a} + [\xi(a), \eta(a)] = 0$$
 (3)

for all $\hat{a}, \hat{b} \in \mathbb{C}^m$ where $\xi, \eta : A \to \text{Vect}(\Sigma)$ are defined by $\xi(a) := \alpha(a, \hat{a})$ and $\eta(a) := \alpha(a, \hat{b})$.

J. W. Robbin: Mathematics Department, University of Wisconsin, Madison, WI 53706, USA; e-mail: robbin@math.wisc.edu

D. Salamon: Department of Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland; e-mail: dietmar.salamon@math.ethz.ch

- (ii) If j and α satisfy (2) and Σ has genus greater than 1 then J is integrable.
- (iii) If $j: A \to \mathcal{J}(\Sigma)$ is holomorphic and $\alpha = 0$ then J is integrable.

Lemma B. Assume j and α satisfy equation (2). Let $\hat{a}, \hat{b} \in \mathbb{C}^m$ and define $\xi, \eta, \zeta : A \to \text{Vect}(\Sigma)$ by $\xi(a) := \alpha(a, \hat{a}), \eta(a) := \alpha(a, \hat{b}),$ and

$$\zeta(a) := d\xi(a)i\hat{b} - j(a)d\xi(a)\hat{b} - d\eta(a)i\hat{a} + j(a)d\eta(a)\hat{a} + [\xi(a), \eta(a)]. \tag{4}$$

Then

$$\mathcal{L}_{\zeta(a)}j(a) = 0. \tag{5}$$

Proof. Equation (2) reads

$$\mathcal{L}_{\xi(a)}j(a) = j(a)dj(a)\hat{a} - dj(a)\hat{i}\hat{a},$$

$$\mathcal{L}_{\eta(a)}j(a) = j(a)dj(a)\hat{b} - dj(a)\hat{b}.$$
(6)

Differentiating the first equation with respect to a in the direction \hat{b} gives

$$\mathcal{L}_{d\xi(\hat{b})}j + \mathcal{L}_{\xi}(dj(\hat{b})) = dj(\hat{b})dj(\hat{a}) + jd^{2}j(\hat{a},\hat{b}) - d^{2}j(\hat{a},\hat{b}).$$

Here we omit the argument a and abbreviate $d\xi(\hat{b}) := d\xi(a)\hat{b}$, $dj(\hat{b}) := dj(a)\hat{b}$, $d^2j(\hat{a},\hat{b}) := d^2j(a)(\hat{a},\hat{b})$, etc. Multiplying the last equation by j, respectively replacing \hat{b} by $i\hat{b}$, we obtain

$$\begin{split} \mathcal{L}_{d\xi(\hat{b})}j + \mathcal{L}_{\xi}(dj(\hat{b})) - dj(\hat{b})dj(\hat{a}) &= jd^2j(\hat{a}, \hat{b}) - d^2j(\hat{a}, \hat{b}), \\ \mathcal{L}_{jd\xi(\hat{b})}j + j\mathcal{L}_{\xi}(dj(\hat{b})) - jdj(\hat{b})dj(\hat{a}) &= -d^2j(\hat{a}, \hat{b}) - jd^2j(\hat{a}, \hat{b}). \end{split}$$

Here we have used the identity $j\mathcal{L}_{\xi}j = \mathcal{L}_{j\xi}j$. Similarly, replacing ξ by η , and interchanging \hat{a} with \hat{b} we obtain

$$\begin{split} \mathcal{L}_{d\eta(\mathbf{i}\hat{a})}j + \mathcal{L}_{\eta}(dj(\mathbf{i}\hat{a})) - dj(\mathbf{i}\hat{a})dj(\hat{b}) &= jd^2j(\mathbf{i}\hat{a},\hat{b}) - d^2j(\mathbf{i}\hat{a},\mathbf{i}\hat{b}), \\ \mathcal{L}_{jd\eta(\hat{a})}j + j\mathcal{L}_{\eta}(dj(\hat{a})) - jdj(\hat{a})dj(\hat{b}) &= -d^2j(\hat{a},\hat{b}) - jd^2j(\hat{a},\mathbf{i}\hat{b}). \end{split}$$

Putting things together we obtain

$$\begin{split} 0 &= \mathcal{L}_{d\xi(\mathbf{i}\hat{b})} j + \mathcal{L}_{\xi}(dj(\mathbf{i}\hat{b})) - dj(\mathbf{i}\hat{b})dj(\hat{a}) \\ &- \mathcal{L}_{jd\xi(\hat{b})} j - j\mathcal{L}_{\xi}(dj(\hat{b})) + jdj(\hat{b})dj(\hat{a}) \\ &- \mathcal{L}_{d\eta(\mathbf{i}\hat{a})} j - \mathcal{L}_{\eta}(dj(\mathbf{i}\hat{a})) + dj(\mathbf{i}\hat{a})dj(\hat{b}) \\ &+ \mathcal{L}_{jd\eta(\hat{a})} j + j\mathcal{L}_{\eta}(dj(\hat{a})) - jdj(\hat{a})dj(\hat{b}) \\ &= \mathcal{L}_{d\xi(\mathbf{i}\hat{b})} j - \mathcal{L}_{jd\xi(\hat{b})} j - \mathcal{L}_{d\eta(\mathbf{i}\hat{a})} j + \mathcal{L}_{jd\eta(\hat{a})} j \\ &+ \mathcal{L}_{\xi}(dj(\mathbf{i}\hat{b})) - j\mathcal{L}_{\xi}(dj(\hat{b})) - \mathcal{L}_{\eta}(dj(\mathbf{i}\hat{a})) + j\mathcal{L}_{\eta}(dj(\hat{a})) \\ &+ (\mathcal{L}_{\eta}j)dj(\hat{a}) - (\mathcal{L}_{\xi}j)dj(\hat{b}) \end{split}$$

$$\begin{split} &= \mathcal{L}_{d\xi(\hat{\mathbf{i}}\hat{b})} j - \mathcal{L}_{jd\xi(\hat{b})} j - \mathcal{L}_{d\eta(\hat{\mathbf{i}}\hat{a})} j + \mathcal{L}_{jd\eta(\hat{a})} j \\ &+ \mathcal{L}_{\xi}(dj(\hat{\mathbf{i}}\hat{b})) - \mathcal{L}_{\xi}(jdj(\hat{b})) - \mathcal{L}_{\eta}(dj(\hat{\mathbf{i}}\hat{a})) + \mathcal{L}_{\eta}(jdj(\hat{a})) \\ &= \mathcal{L}_{d\xi(\hat{\mathbf{i}}\hat{b})} j - \mathcal{L}_{jd\xi(\hat{b})} j - \mathcal{L}_{d\eta(\hat{\mathbf{i}}\hat{a})} j + \mathcal{L}_{jd\eta(\hat{a})} j - \mathcal{L}_{\xi} \mathcal{L}_{\eta} j + \mathcal{L}_{\eta} \mathcal{L}_{\xi} j \\ &= \mathcal{L}_{d\xi(\hat{\mathbf{i}}\hat{b})} j - \mathcal{L}_{jd\xi(\hat{b})} j - \mathcal{L}_{d\eta(\hat{\mathbf{i}}\hat{a})} j + \mathcal{L}_{jd\eta(\hat{a})} j + \mathcal{L}_{[\xi,\eta]} j \\ &= \mathcal{L}_{\zeta} j. \end{split}$$

Here the second and fourth equations follow from (6).

Proof of Lemma A. The proof has three steps.

Step 1. Fix a vector $\hat{a} \in \mathbb{C}^m$ and let $\xi : A \to \text{Vect}(\Sigma)$ be as in Lemma B. Fix a vector field $v \in \text{Vect}(\Sigma)$. Then the Nijenhuis tensor on the pair

$$X(a, z) := (\hat{a}, 0), \quad Y(a, z) := (0, v(z))$$

is

$$N_J(X,Y) = (0, j(dj(\hat{a}) + jdj(i\hat{a}) + j\mathcal{L}_{\xi}j)v).$$

We have

$$JX(a, z) = (i\hat{a}, \xi(a)(z)), \quad JY(a, z) = (0, (j(a)v)(z))$$

and hence

$$N_{J}(X, Y) = [JX, JY] - J[X, JY] - J[JX, Y] - [X, Y]$$

= $(0, -dj(\hat{i}a)v + [\xi, jv] + jdj(\hat{a})v - j[\xi, v])$
= $(0, -dj(\hat{i}a)v + jdj(\hat{a})v - (\mathcal{L}_{\xi}j)v).$

Step 2. Fix two vectors $\hat{a}, \hat{b} \in \mathbb{C}^m$ and let $\zeta : A \to \text{Vect}(\Sigma)$ be as in Lemma B. Then the Nijenhuis tensor on the pair

$$X(a, z) := (\hat{a}, 0), \quad Y(a, z) := (\hat{b}, 0)$$

is

$$N_I(X, Y) = (0, \zeta).$$

Let $\xi, \eta: A \to \text{Vect}(\Sigma)$ be as in Lemma B. Then

$$JX(a,z) = (i\hat{a}, \xi(a)(z)), \quad JY(a,z) = (i\hat{b}, \eta(a)(z))$$

and hence

$$\begin{split} N_J(X,Y) &= [JX,JY] - J[X,JY] - J[JX,Y] - [X,Y] \\ &= (0,d\xi(\hat{\imath}b) - d\eta(\hat{\imath}a) + [\xi,\eta] + jd\eta(\hat{a}) - jd\xi(\hat{b})) \\ &= (0,\zeta). \end{split}$$

Step 3. We prove the lemma.

If J is integrable then equation (2) follows from Step 1 and equation (3) follows from Step 2. Conversely, suppose j and α satisfy (2) and (3). Then, by Step 2, the Nijenhuis

tensor vanishes on every pair of horizontal vector fields. That it vanishes on every pair consisting of a horizontal and a vertical vector field follows from (2) and Step 1. That it vanishes on every pair of vertical vector fields follows from the integrability of every almost complex structure on Σ . Hence J is integrable whenever j and α satisfy (2) and (3). This proves (i).

If Σ has genus greater than 1 then there are no nonzero holomorphic vector fields on Σ for any almost complex structure. Hence it follows from Lemma B and (2) that ζ vanishes for all $\hat{a}, \hat{b} \in \mathbb{C}^m$. This proves (ii). If $\alpha = 0$ then ζ vanishes by definition for all $\hat{a}, \hat{b} \in \mathbb{C}^m$. This proves (iii) and the lemma.

Remark. Let $\omega \in \Omega^2(\Sigma)$ be a symplectic form and

$$TA \to C^{\infty}(\Sigma) : (a, \hat{a}) \mapsto H_{a,\hat{a}}$$

be a smooth 1-form. We think of H as a connection on the principal bundle $A \times \mathrm{Diff}(\Sigma, \omega)$ and there is an induced connection on the associated bundle $A \times \mathcal{J}(\Sigma)$. The *covariant derivative* of a smooth map $j: A \to \mathcal{J}(\Sigma)$ is the 1-form $\nabla^H j \in \Omega^1(A, j^*T\mathcal{J}(\Sigma))$ with values in the pullback tangent bundle of $\mathcal{J}(\Sigma)$ given by

$$\nabla_{\hat{a}}^{H} j(a) := dj(a)\hat{a} - \mathcal{L}_{v_{a,\hat{a}}} j(a), \quad \iota(v_{a,\hat{a}})\omega := H_{a,\hat{a}}.$$

Thus $v_{a,\hat{a}}$ is the Hamiltonian vector field of $H_{a,\hat{a}}$. The complex structure on $\mathcal{J}(\Sigma)$ induces a nonlinear Cauchy–Riemann operator $j\mapsto \bar{\partial}^H j$ which assigns to every section $j:A\to \mathcal{J}(\Sigma)$ the (0,1)-form $\bar{\partial}^H j\in \Omega^{0,1}(A,j^*T\mathcal{J}(\Sigma))$ with values in the pullback tangent bundle of $\mathcal{J}(\Sigma)$ given by

$$\bar{\partial}^H j(a, \hat{a}) := \frac{1}{2} (\nabla^H_{\hat{a}} j(a) + j(a) \nabla^H_{\hat{i}\hat{a}} j(a)).$$

Now suppose

$$\alpha(a, \hat{a}) = j(a)(v_{a,\hat{a}} + j(a)v_{a,i\hat{a}}).$$

(In the case $\Sigma = S^2$ every 1-form $\alpha : TA \to \mathrm{Vect}(\Sigma)$ that satisfies (1) can be written in this form.) Then the formula (2) asserts that $\bar{\partial}^H j = 0$ and the function $\zeta : A \to \mathrm{Vect}(\Sigma)$ in (4) corresponds to the (0, 2)-part of the curvature of the induced connection on $A \times \mathcal{J}(\Sigma)$. This point of view is motivated by the observation, due to Donaldson and Fujiki, that the action of $\mathrm{Diff}(\Sigma,\omega)$ on $\mathcal{J}(\Sigma)$ can be viewed as a Hamiltonian group action with the moment map given by the Gauss curvature [2]. Thus, in the case $\dim^{\mathbb{C}} A = 1$, the integrability equation $\bar{\partial}^H j = 0$ can be viewed as part of the symplectic vortex equations (see [1]) in an infinite-dimensional setting, where the second equation combines the Gauss curvature in the fiber with the curvature of the connection form H.

References

[1] Cieliebak, K., Gaio, A. R., Salamon, D. A.: J-holomorphic curves, moment maps, and invariants of Hamiltonian group actions. Int. Math. Res. Not. 2000, no. 10, 831–882 Zbl 1083.53084 MR 1777853

- [2] Donaldson, S. K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 13–33 (1999) Zbl 0972.53025 MR 1736211
- [3] Robbin, J. W., Salamon, D. A.: A construction of the Deligne–Mumford orbifold, J. Eur. Math. Soc. **8**, 611–699 (2006) Zbl 1105.32011 MR 2262197