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1. Introduction and statement of the theorem
The nonlinear random Schdinger equation

We seek time quasi-periodic solutions to the nonlinear randonb8eiger equation

3
i = (€A +Vyu+ Slul’’u  (p>0) (L1

onZ? x [0, c0), where O< €, § < 1, A is the discrete Laplacian:

1L li—jla=1

A —
Y 0, otherwise

1.2
andV = {v;};cz4, the potential, is a family ofime independerihdependent identically
distributed (i.i.d.) random variables with common distributipr= g(v;)dv;, g € L.
We also assume supgpis a bounded set. The probability space is taken t&Bewith
measure
[]swp=T]]&wpdv;. geL™. (1.3)
jezd jezd
V = {vj};eza serve as parameters for the nonlinear probler@ (1.2).
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Given an initial condition(0) in ¢2(Z%), one of the central questions is whethér)
remains localized for al, i.e., if u(0) € £2(Z%), for all k, can one findR such that

”u(t)”lz({Z\[—R,R]}d) <K, Vt’) (14)

(From now on, we writg | for | |,1, and]| || for || [|,2.) Whene = § = 0, the answer
to (L.4) is affirmative. Sinca(0) = ;.74 a;8; with @; — 0 as|j| — oo, u(t) =
Zjezd ajaje—ivﬂ is almost-periodic (infinite number of frequencies) and the upper bound
in (T.4) is trivially satisfied.

In this paper, for appropriate initial condition$0), we construct time quasi-periodic
solutions to[(1.]1). So the answer o (1.4) is affirmative for su@’s. This is the content
of the Theorem and its Corollary.

Before we enter into the heart of the matter, we first address questipn (1.4) for

The linear random Sclidinger equation

Whens = 0, (1.3) reduces to the linear random Sidinger equation:
d
igu = (A +V)u=: Hu (1.5)

onZ? x [0, 00). When 0< ¢ « 1, it is well known from the works in [AFHS, AM,
vDK| FMSS,[FS| GBI GKI_ GMP] etc. that the upper bound[in](1.4) is satisfied. This
is customarily calledAnderson localizatiorfA.L.) after the physicist P. Anderson [An].
Since the potential is time independemt(j, ) = V(j), properties of time evolution
can be deduced from the spectral propertief pfvhich we summarize below. For more
details, see the Appendix.

Leto (H) be the spectrum aff. For H defined in[(1.p),

o(H) = [—2ed, 2¢d] + suppg, a.s. (1.6)

(recall the probability space defined |n (1.3)) [CEKS] PF]. K0 « 1 and the proba-
bility measure satisfie§ (3.3), then almost surely the spectrukhisf(dense) pure point,
o (H) = opp(H), with exponentially localized eigenfunctiots, j € 74,
Givenu(0) € ¢*(Z), we decompose(0) asu(0) = ;74 a;$;. SO
u(t) = Z aj¢j€7iwjl, 1.7

jezd

wherew; are the eigenvalues for the eigenfunctignsThusu(¢) is almost-periodic and
satisfies the upper bound [n ([L.4). So equatfion| (1.5) has A.L.

Some motivations for studying equatipn [1.1)

Schibdinger equations describe physical systems which typically correspona tbaay
problem. The linear equation i.5) is 6rder approximation, where thebody inter-
action is lumped into the effective potentlal Quantum mechanically|? is interpreted



Nonlinear random Scbdinger equations 3

as particle density, so the nonlinear term{in|(1.1) can be interpreted as modeling particle-
particle interaction. (The nonlinear term jn ({1.1) can be more general and of convolution
type. It will not affect our construction below.) This is sometimes called the Hartree—Fock
approximation (cf.[[LL[ @, Sh]) and is a first order approximation to the originabdy
problem. This is our first motivation to study (]L.1). Other physical motivations along this
line appear in[[ESW].

In particular, our method permits us to construct quasi-periodic solutions for the
Landau-Lifschitz equations for nonlinear classical spin waves with a large random ex-
ternal magnetic field,

S; =8 x[(AS); +hj] (jezh

wheres; are unit vectors irR3 andh; = V;és say, withV = (V})jeza @large random
potential.

As explained in[[ESW], we may then seek for a solutfyn~ e3 and the perturba-
tion is subject to an equation of the form (1.1), but with a nearest neighbor convolution
nonlinearity instead of the local ome|2”u (see [FSW] for details). As mentioned before,
(L.7) was chosen as a model but the method described in the paper is sufficiently robust
to cover in particular any nonlinearity with finite range interactions.

Our second motivation originates from KAM type stability questions for infinite-
dimensional dynamical systems. (For results in the standard KAM context, seele.qg. [E].)
(L.7) is a Hamiltonian PDE. It can be recast as the equation of motion corresponding to
a Hamiltonian of a perturbed“-system of coupled harmonic oscillators with i.i.d. ran-
dom frequencies (see (2[2, R.3)). Whes: 0, the linear system has pure point spectrum:
o(H) = opp(H). This corresponds to the KAM tori scenario. A natural question is the
stability of such invariant tori under small (& § « 1) perturbations, which leads to
construction of quasi-periodic or almost-periodic solution$ tg (1.1).

Remark. Previously in[[AF[ AES], solutions to the nonlinear eigenvalue problem
(eA+V)p +8|9|?Pp = E¢p ont*(Z7)
were found, which give the time periodic solutions[to [1.1) of the particular form
u(j,0) = ¢(e"F.

A sketch of the construction

We expand in the Fourier basi€ 5, (j), and as an ansatz, seek solutions of the form
w0 = > a(j.n)e" s, (1.8

(j,n)eZd+V

with the initial condition
u(€,0) = ai(6) satisfying Y |ax| < 1, (1.9)
k=1 k=1

where we have identifieg with §;, (k =1,...,v), jik € 7. The unperturbed frequen-
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cies are therefore = w(V) =V € R, whereV = {v; };_; are the random potentials
at sitesj; € Z¢.
Substituting [(1.B) intd (1]1), we obtain the following equation for the Fourier coeffi-

cients:

(n-w+eAj+ Vpiu(j,n)+ 8[@@*0)*” «u](j,n) =0, (1.10
wherev(j, n) = ﬁ(j, —n), the convolutionx is in then variable onlyxp denotes the-
fold convolution and we added the subscrjpb operators that originated froff(Z4).
We also write the equation far.

(—n - @+ €Aj + V))D(j, n) + 8[(4  0)*P % 0](j, n) = 0. (1.12)

Combining (1.1, 1.11), we then have a closed system of equations=of ¢ ), which
we write as

F(y)=0. (112)
Equation[(1.1p) is &*+" system of equations. Leb = y(r = 0). Then
suppyo = {jk, —exlr=1 Y LK. exli1. (113

whereey are the unit vectors df”. We seek solutions t§ (1.].2) withfixed at the initial
condition on suppo, i.€e.,u(jx, —ex) = ak, V(jr, ex) = ax, k =1, ..., v (cf. )). We
make a Lyapunov—Schmidt decomposition as in [B1,3, CW1,2]ybet y(t = 0). The
equations

F(y) = Oz suppyy  ONE(ZH" \ suppyo)
are the so calle®-equations, the rest are thig-equations. TheP-equations are used to
determiney(j, n) on{suppyo}‘. On suppyo, y(j, n) are held fixed at the initial condition
from (1.9). Instead the Q-equations determine = w (V).

We use a Newton scheme to solve theequations (for more details, see Section 3).
This leads to investigate the invertibility of the linearized operafgig;), wherey; is
the i approximate solution, andél! is F’ restricted to M +1, Mi+114+v (i > 0) for
appropriateM.

The random potential® = {v; };_, € R” are the parameters in the problem. Invert-
ibility of F!(y;) is ensured by appropriate incisions in the probability spg&iteSimilar
to the linear case in [BW], this is done by using semi-algebraic set techniques to control
the complexity of the singular sets and a Cartan type theorem for analytic matrix-valued
functions to control the measure.

The main difference from the linear caselin [BW] is thigtare evaluated at differ-
enty;. But due to rapid convergence of the Newton scheme, made possible by estimates
on F/,(yy) fori’ < i, this is within the margin of estimates.

Solving theP-equations iteratively is the main part of the work. The solutions to the
P-equations are then substituted into theequations to determine = w (V) iteratively
by using the implicit function theorem. We obtain time quasi-periodic solutiofis tp (1.1) of
the form (1.8), which are exponentially localized (both in the spatial and Fourier space) to
the initial condition [(1.P), with modified frequencies= (), which are € + §)-close
to the unperturbed frequenci¥s= {vj, },_;.

We therefore have
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Statement of the Theorem

Theorem. Consider the nonlinear random Scéidinger equation
.9 2 +
lgu:(eA+V)u+8|u| Pu  (p e NT), (114

whereA is the discrete Laplacian defined @), andV = {vj};cz« is a family of i.i.d.

random variables with common distributigrsatisfying(1.3). Fix jx € Z%, k =1, ..., v.
LetR = {ji}j_1 C Z4 andV = {vg}eer € RY. Consider an unperturbed solution of

T IZ)withe, 5 = O,

v
uo(y,t) = Zake_wjklajk ),
k=1

with >~ |ax| sufficiently small. Let = {ax}}_;.

For 0 < € « 1, there existsX, C RZ* \ RY of positive probability such that for
0 < « 1, ifwe fixx € X, there exist a Cantor s€f s(x; a) C R" of positive measure
and a smooth functiod = w, s(V; a) defined org, s(x; a) such that ify € G, s(x; a),
then

ues (. )=y A4, me"s;(y) (1.15)
(j.m)eZaty
is a solution to(I.14)satisfying
a(je, —ex) =ar, k=1,...,v,
Z eC(lnH_ljl)W(j, n)| < Ve+s, (116
(J:me¢S

lo — V| < c(e +9),

for somec > O, where{e,};_, are the basis vectors fd£” and S = {ji, —ex}}_; C
7+V, The setsX, and G, s(x; a) satisfy

ProbX. - 1, mesR"\ G¢s(x;a) >0 ase+3§— 0.

Remark. The setX, C RZ \ R" only depends om; while G, 5(x; a) C R" depends on
€, 8, x € X (the random potentials iX.) anda (the initial amplitude).

Corollary. For0 < €, § <« 1, there existX s C RZ! of positive probability, satisfying
ProbX.s -1 ase+3— 0,

such that for initial amplitudea sufficiently small, there are quasi-periodic solutions to

€14

Comments on the family of paramet¢ug}; .74

In solving ), we use the basi¥“'s;, (j,n) € Z4 (cf. (1.8)). In theZ basiss;
(j € Z%), the linear operatoH = ¢A + V is not diagonalized. Hencev;}jczq is not
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a family of independent parameters. This is a slight variation from the “usual” scenario,
where the linear operator is diagonalized and the parameters are independent, which is
the case in, e.g/, [B3].

Here it is convenient to work with th&? basiss; instead of the basis provided by
the eigenfunctiong; of H, asy; depends ofvy}iczq«. More precisely, agvi}ieza\»
is held fixed on the appropriate probability subspaggedepends oy }rer, Which
serve as parameters for the construction and are therefore varying (see the statement of
the Theorem).

From the KAM perspective, the normal frequencies are provided by the eigenvalues
wj of H. Since{vi}eza\ Is fixed, the strong localization property (A8) (see Appendix)
of y; implies that the normal frequencigs for |j| > p, wherep only depends on the
radius ofR, can in fact be held fixed. This is close to the usual terrain, where the normal
frequencies are fixed, while the tangential frequencies vary to avoid small divisors, either
via the parameters or via amplitude-frequency modulation[(ci.[[B3, KP]).

Insertion into a larger picture

The Theorem presented above is proven for i.i.d. random potemtiais{v;};cz«. The
construction used to prove the theorem is, however, general. The essential ingredient is a
spectral separation propertyf the linearized operataf = n - w + H, wherew are the
tangential frequenciedy is the original linear operator (corresponding to the quadratic
part of the Hamiltonian, cf[ (2}2)). In the present calle= €A + V. AssumeH has
pure point spectrum and look at initial conditions localized about the origin. Below is a
tentative formulation of this spectral property.

Let u; be the eigenvalues @f. Fori = (j, n), letd; = n-w + p; be the eigenvalues
of H. Let x be an appropriate function, which depends essentially only on the initial
condition, localized about the origihy| < 1. Let#;, ¢, be eigenfunctions off (i.e.,
products of eigenfunctions df and the exponentials). Define

K(@i,i") = /¢>ix¢i/-

H has thespectral separation propertf for each scald., there existd < L such that
[Ai — A > K (i, i) (1.17)

fort < |i—i'| < L (i #1i). Theu;, A;, ¢; can be replaced by their local versions
whenever appropriate.

In the present casd/ = €A + V, we use the local version. Assuraags small so
that # has A.L. [1.1I}) is provided by using (A5-7) and restricting to the appropriate
probability subspace, (2.]10) and a direct incision in the frequency space. Related spectral
separation properties seem to hold[in[B3, W]. (Compfare [1.17) with the nondegeneracy
condition in [KR, p. 164], where eigenfunctions do not seem to play an explicit role.)
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Remark. For the random Scbdinger operatoH = ¢A + V (¢ « 1), no Diophantine
property of the eigenvalues seems to be known at present. So a possible extension of
the standard KAM method, as outlined in, e.0., [ESW] is not feasible. It is known from
[Mi], however, that the eigenvalue statistics is Poisson and that in a box ofVsitiee
eigenvalue spacing i§ —” (p > d). From general considerations, the specte(#) is

simple [Si].

The construction of time quasi-periodic (or almost-periodic) solutions needs a param-
eter. This parameter can sometimes be extracted from amplitude-frequency modulation
(see, e.g.,[IKP]). The nonlinear random Sifinger equation is an equation endowed
with a family of parameters, where the separation propgrty[(1.17) can be obtained from
A.L. of the linear operator. So it is a natural candidate for the construction of KAM type
solutions.

The continuum Sclidinger equations (linear or nonlinear) are a more frequently
studied subject. The discrete nonlinear Sclimger equation presented here should be
seen as the analogue of the continuum nonlineardslihger equation in a compact do-
main, e.g., on atorus. TI% lattice can therefore be seen as the indices of the eigenvalues
or eigenfunctions for the underlying linear Sédmger operator.

Time quasi-periodic solutions have been constructed for the continuum nonlinear
Schibdinger or wave equation in 1-D, on a finite interval with either Dirichlet or peri-
odic boundary conditions. See for example the works of Bourgain, KukésgHel and
Wayne in [B1,[KP| Wy]. In[[B3], time quasi-periodic solutions are constructed for the
2-D nonlinear Sctirdinger equation off2. In arbitrary dimension, time quasi-periodic
solutions for nonlinear Schdinger and wave equations are treated in [B5], EK].

The construction presented here is related to those in [B1-5], which use a Newton
scheme directly on the equations. This direct approach is originated by Craig and Wayne
in [CW1,2]. It has the advantage of not relying on the underlying Hamiltonian structure.
The Hamiltonian structure does ensure, however, that the frequemcyeal during the
iteration (see Section 2 and [B3]).

We end this section by remarking that the present method, as it stands, does not yet
extend to a construction of almost-periodic solutions. This is because the linear equation
that serves as the starting point of our perturbation is

i—u=Vu,
ot

andnot
0
| —u = (e A + V)u.
l8tu (eA+Vu

In order to construct almost-periodic solutions, we will need more information on the
spectrum of the linear operatéf = ¢ A + V.

In [B2], the construction of almost-periodic solutions for 1-D nonlinear 8dimger
and wave equations under Dirichlet boundary conditions was made possible by the pre-
cise knowledge of the spectrum of the linear operator and the fact that the perturbation is
quartic (in the Hamiltonian). In the present case it is quadratic. Iih [B6], almost-periodic
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solutions for a 1-D nonlinear Sdbdinger equation under periodic boundary conditions
and realistic decay conditions were constructed. In particular this applies in the real ana-
Iytic category. Almost-periodic solutions have also been constructedbghiel [H2] in

the case of a nonlinear Sduinger equation, where the nonlinearity is “nonlocal”.

PDE’s (such as] (1}1)) typically correspond to the so called “short range” (but not
finite range) case. In the “finite range” case, which typically corresponds to perturbation
of integrable Hamiltonian systems, almost-periodic solutions have been constructed in
[CR,[ESW[®1] among others.

2. Hamiltonian representation and Lyapunov—Schmidt decomposition

Recall from Section 1 the nonlinear random Salinger equation
a
i§u=(6A+V)u+8|u|2pu (p e N1, (2.1

where 0< €, < 1, A is the discrete Laplacian as defined[in [1.2), ahek {v;};cz4
are i.i.d. random variables with common distributigas in [1.8). The solutions are=

{u(j, t)}jeZd,te 0,00)"
Equation ) can be recast as (infinite-dimensional) Hamiltonian equations of mo-
tion, with canonical variableg:, i) and the Hamiltonian

-1 - § 1-p+l

Hu,u) == Z (6A+V)jj/ujuj/+—2uf+ uf+

2l o p+1%
J,j €L XL J

=: Ho(u, i) + 8 Hy(u, it). (2.2)

Equation[(2.1) can then be written as

in=22". (2.3
u

Remark. The connection with the usual canonical variallesq) isu = p +iq,u =
p — iq. The equation of motion in the, ¢) coordinates is

_9H . 3H

T dg - p

which can be rewritten as a single equation](2.3). (This also explains the faetois2.)
Equations (2] 2|3) show th4t (P.1) can be viewed as a pertufBesystem of

coupled harmonic oscillators with i.i.d. random frequencies. The perturb&tiooan
be of a more general type, e.g.,

p

N o ptl-p+l
Hi(u,u) = Z ajjru; i, (2.4)
j.j'ezdx7d

with a;;; = a;; decaying exponentially or polynomially of sufficiently high degree as
|j — j'| = oo. The reason we mentioh (2.4) is to stress that the construction we present
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belowdoes notely on integrability of the system. It also carries through arof type
@), although we only present it faf;, = §;;.

The goal of the rest of the paper is to seek time quasi-periodic solutiops o (2.1) for
appropriately choselocalizedinitial conditions. We hence expamdn the basis

S (7), (2.5)

wheren € Z', w € RY, k, j € Z%, 8;(j) is the canonical basis f&“. §; () is a natural
basis here due to smallness:ofin [B1-3], the spatial basis is given by the eigenfunctions
of the linear operator. The-labeling there is the eigenvalue labeling.)

In the basis[(2]5)[ (2} 1) becomes

—

. oH1
(n-a)—l—eAj+Vj)u(],n)+88—ﬁl(j,n)=0, (2.6)

wheren € Z", j € Z¢, H is defined in[(2.2) and are the Fourier coefficients af

wlk, ) =Y (i, n)e™ " s; (k). 2.7

(.m)

We have also put the subscripton operators that operate in the spati@f) variable
only. (This is the same notation as in [BW].)
In view of the Theorem, we seek solutions[to {2.6) with the constraint

u(jr, —ex) =ar (k=1,...,v), (2.8)

wherej; € Z4, e, are unit vectors itZ.”, a; are fixed. Assumesn, ..., w, are rationally
independent, i.ew = {w;}}_; € R" is a Diophantine vector, which will be the case when
the Theorem applies. A time shift and a limiting argument (since the Kronecker flow is
dense) permit us to assume theare real. Hence fromnowan e R,k =1,..., v.

Due to the smallness ef we take our initial unperturbed linear equation to be

0
iEu =Vu. (2.9

The conditions in[(2]8) thus correspond to the initial unperturbed solution
vV
uo(k, t) = Z age™ Vel 5, (k). (2.10)
=1

Let
a={af_1€R", R={il_1CZ V=1{velaer €R".

We constructively show that far small enough, there exist C RZ* \ R" of positive
probability, satisfying ProlX. — 1 ase — 0, such that if we fixx € X, then for$, a
small enough, there exists a Cantor §et(x; a) C RV of positive measure, satisfying
mesR" \ G¢ s(x;a) — 0 ase + & — 0. We can find a smooth functian = «(V; a)
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defined orgc s (x; a) andi such that) holds» andi are determined simultaneously
in an iterative way.

Toward that end, we first perform a Lyapunov—-Schmidt type decomposition (see
[B1-3, CW1,2]) of [2.6). Let

S ={(r,—ex) | k=1,...,v} czé. (2.11)

From [2.10),S = suppuo, uo is a solution to[(1.14) whea = § = 0. We callS the
resonant seand consider the equations

e~

o 0H1 .
[(n- @+ €Aj + V)l Gk —e) +8= (ko —e) =0 (k=1,....v) (212

obtained by takingj, n) € S.
They form the finite system af-equations The remaining infinite system of equa-
tions are called th&-equations

—

H
(n~a)+6Aj+‘/j)ﬁ(j,n)+8%(j,n):0, (j.n) &8. (2.13)

The P-equations are used to determiiagj, n) for (j,n) ¢ S. (Recall from [2.8) that
{u(j, n), (j,n) € S} = a are given.)

Onceii(j, n) are determined, th@-equations in[(2.12) are used to determine=
o (V, a) via the implicit function theorem. Sineeis real, H1 is a polynomial inu, u with
real coefficients, the solutioi to (2.13) will be real and hence algpdetermined from
(2.12). (For more details, see the comment (2.3) of [B3].)

To solve [2.IB), we duplicate the equation foto form a closed system. Let

v=u,
0(j,n) = a(j, —n), (2.14)
~S =Gk, +ex) | k=1,...,v} Cc Z4.

(The flip in sign in the second equation pf (7.14) is solely in order that the convolution
coming from the nonlinearity obeys the usual sign convention.)
We then have the closed systemiequations

- oH: . .
(n-o+eAj+ V)i, +852(j,n) =0, (j,n) 8,
dv_ (2.15)

A 0Hy . .
For Hy as in [2.2),[(2.1p) takes the explicit form

[(n- @+ eAj + V)al(j. n) + 8[( % 0)*P % &](j,n) = O,

H d+v _
[(—n -+ €Aj + VD] (j, n) + 8[(f % 0)*P % D] (j, n) = O, (j,n) € ZTT\(SU=S),

(2.16)

where the convolutior is in then variable only. We solve[ (2.16) by using a Newton
iteration scheme to be amplified in the next section. We also idehtifith u, i with v

and writey for (ﬁ)
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3. Newton scheme

Let F denote the left hand side (LHS) ¢f (2]16). Our task is to restrict the get,df) in
R2" in order to findy such that
F(y)=0, (3.1

so that[(2.1B) is resolved. We use a Newton iteration. Recall first the formal scheme.
Starting from the initial approximant, a solution to[(1.14), and its conjugate when
€ = § = 0, the successive approximantsare defined by

Aiy1y = yis1—yi = —[F O] 7 F (). (3.2
Let T denote the linearized operatbf. From [2.16),
T = D + 35, (3.3)

whereD is diagonal (in the: € Z" variables)

D_< 0 —n-a)+eAj+Vj)_'(0 D_ (34)
and
_ _ (p+ D xv)*P puxv)* P Lxusu n
§=58wv)= (p(u x0)*P Lxvxo (p+D(uxv)*P (peNT) (39

evaluated along the previous approximant. We note $higt self-adjoint, although this
does not play a role in our construction.

Denote byj| || the ¢2 norm of a vector or an operator 6A(Z¢*"). By (3.2), the error
of the approximation at staget 1 can be estimated:

F(is1) = FOi) + F' ) i1 — i) + OUlyizs — yil12) = Olyit1 — yil®.  (3.6)

So by [3:2),

IFGivDll = OULE Gl P I F i) 117 (3.7
The crux of the matter is thus to contiflF’ (y;)] 1|l in order that
IF Qv << IF Q- (3.8)

(Note the squaring of the norm &f(y;) on the RHS of[(3]7), which makes this feasible.)
Since [3.1) represents an infinite system of equations and the initial confitioh (2.10)
is localized in a compact region &f'+", to control the norm of f(y;)] 1 we implement
the Newton scheme in a slightly modified way, gradually increasing the size of the system
that we consider.
Let M € N*, which can be assumed large in order thad{, M]¢*t" > 2p suppyo,

in view of (3.4[3.5) (see alsp (3]10) below). At stagéet N = M +1 and letTy (y;) be
the restriction off (y;) to [-N, N]¢tV. We define

Air1y = yigr — yi = —[Tn DI T (). (3.9
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So
F(yit1) = FOi) + F' ) Gis1 — i) + Olyies — yil1d

= (T — Tn)Yit1 — ¥i) + Olyis1 — il
= —[(T — TW)TYF (i) + OUT I E nll?), (3.10)

where we used (3.9). Compared[to {3.6) the first term on the RHS of (3.10) is new. More-
over it is onlylinear in F(y;). This necessitates the control of off-diagonal decay’ of
andT,* evaluated ay;, in addition to that of 7).

The control of7\y*

Recall thatyo, the 0" approximant (initial condition) tol), has compact support,
suppyo = S U =S8, whereS and—S are defined in[(2.11, 2.14). Froin (B.343.5)y0)

is a diagonal dominated matrix with finite range off-diagonal elements. So off-diagonal
decay ofT (yo) is automatically satisfied.

Assume the successive approximaptgare uniformly (in i) exponentially localized
aboutS U —S (cf. (1.1§)). This assumption will be verified later from the construction
itself in view of (3.9[3.ID). Fronj (3]5) the successiie;) haveuniformlyexponentially
decaying off-diagonal elements in thedirection, and are diagonal in thedirection,
with a prefactor which decays exponentially;jin(The exponential decay of the prefactor
stems from the uniform exponential decay assumptiop, grHenceT (y;) are of the type
(although more complicated) of the matrix operator studied in [BW].

To study theTl'’s, we introduce, as in [BW], an auxiliary parametee R. We consider
instead

7% = DY + 58, (3.11)
where
pi _ (Mot fted;+V; 0
0 —(n-w+0)+eA;+V;
DY 0
_. ( < D@) (3.12)

ands is as before i (3]5). Similarly we defirfe{ (i), whereN = M+ as in [3.9).

In Section 4, we fixx in a good set of probability space, where there is Anderson
localization for the linear random Sdittinger operato; = €A; + V;, so that (A6)
holds. (For precise details see the Appendix.) AssunainDiophantine,y; uniformly
(in i) exponentially localized abod U —S, we bound the norm oﬂ[,@ (y;i)]~L, where
N = M,i > iasin ) (the precise relation betweeandi’ is dictated by the
construction in Section 5) and establish exponential decay properties of its off-diagonal
matrix elements on a set 6fof small complementary measure.

In Lemma 4.1, we fix anyy, and we bound 7 (yx)]~* for all N. We then use it
to obtain estimates or’Tf,(y,-/)]*l, whereN = M‘, i’ > i satisfying the restriction in
the third line of [4.9). This bound is abstract in the sense éhat, y;; are viewed as
independenparameters for the time being.
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As in [BW], this is an iteration process, using semi-algebraic set techniques and a
Cartan-type theorem. To start the iteration, we negiécand exclude a set af such
that D, = Df, has a small diagonal element. To continue the iteration, we also need
to exclude a set of» of small measure. It is important to remark that this setoaf

independendf V, yi. It only depends onx € RZ* \ R". We stress that for fixed in
the good probability set, Lemma 4.1 holds fomy fixed w in the good frequency set,
anyV e RY andany y; which satisfy (H1-3) in Section 4. The sB{N) of excludedd
depends, of course, on w, V, yx.

In Section 5, we iteratively transfer the estimates?t;?ﬂy,-/) in O into estimates on
Ty (y7) in (o, V), whereN = M+, N = M*+1,i > i’ > i to be made precise, using the
resolvent equation and taking into account theequations, which are implicit functions
relatingw, V, y;. (Recall that is an auxiliary variable. In the original problefm (B.8)is
fixed at 0.)x is fixed in the good set of probability space as in Section 4.

For the first iterations, we treatS as a perturbation and use a direct perturbation
series. Instead of excluding a setfoéis in Section 4, we exclude a set(af, V) € R%,
so that in the complemerify (y;) are invertible with exponentially decaying off-diagonal
elements.

This generates an initial set of “good” intervalB®?® > A1 O --- D A; in the
(w, V) space.The use of the Newton schemg in](3.9) also showsidhat, ..., y; are
exponentially localized abolt U —S. (Recall thatyg is the initial condition, suppg =
SU-=8)

Starting from thei + 1) iteration, aside from direé perturbation series, for certain
parts of the estimates (which concerns the regions far from the origin #ftdéection),
we need to keepsS. This is the heart of the matter. In technical terms, we need to deal with
more general semi-algebraic sets, which are not solely defined by products of monomials.
For such semi-algebraic sets, we yge=quations and a decomposition lemma (Lemma
9.9in [BE], restated as Lemma 5.3 in Section 5) to transfer the measure estimaias in
Lemma 4.1 into measure estimatesun= w (V) € R". Using perturbation, this in turn
generates a new set of intervals; 1 C A; C --- C R?, in the (w, V) space, on which
T,i+1(yi) is invertible and whose inverse has uniformly {(inexponentially decaying
off-diagonal elements.

In Section 6, using the Newton scherfie [3.9), we constyuat The (uniform ini)
exponential localization abodt U —S is preserved. Hence Lemma 4.1 is now available
at yy = y; 1 for future iterations. We generate 2, yit2, . ...

Section 7 summarizes the entire construction. It is merely meant as a recapitulation of
the sequence of events leading to the Theorem.

Two technical subtleties

e The estimates in Section 4 are obtained following the construction devised in [BW].
However, for the application t@.QT,ﬁ,(y,-/) need to be evaluated at different at
different scalesv. Due to theuniformexponential decay estimates gn Lemma 4.1
can be applied as explained after its statement.
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e From theP-equations, the;’s are constructed on goodset of (w, V) € R%. (This
set eventually becomes a Cantor set.) On the same &et ®) we also have estimates
on dy;, whered is with respect tav or V. Using this, we can construgt which is
smoothly defined on the whole, V) parameter space. (Note that outside the good set
of (w, V), y; is no longer close to a solution t6(y;) = 0.) Substituting fory;, the
Q-equations are therefore defined on the whale)) parameter space. We can then
use the standard implicit function theorem to determaine w (V).

4. P-equations and statement irg
Recall the system aP-equations in[(2.16):

n-w+eAj+ V)i +8@+0)"P i =0, @.1)
(—n-w+eAj+ V)i + 8 *0)*P x0 =0,
on(?(Z4+"\ (SU-S)), whereS, —S are as defined ifi (2.1]1, 2]14), which are collectively
written asF (y) = 0, withy = (Z) = (%).
We solve|[(4.]1) using a Newton scheme, with the family of linearized operaios3,
evaluated at thé" approximanty;,

T(yi) = D+ 8S(yi), (4.2
where
_(n-o+eA+ V] 0 _(Dy O
D‘( 0 —n-w+er;+V;) =\ 0 D “4.3)
and
N (p+D(u; *v;)*? pui xv)*P Ly xu;
Son = (P(Mi *0) Pl % v v (p+ D(u; *v;)*? 4
asin [3.4[3F).

In view of the Newton scheme ifi (3.9), we need to study the family of restricted
operatorsly (v;), N = M+, M assumed large depending pn

Ty (yi) = RNT (yi)Rn, (4.5

whereRy is the characteristic function of the setz[l,.N]‘””.. This will be achieved in
Section 5 by using the resolvent identity, coverirgf*+1, MiT114+V with the interval

[ =[—-M"', M'1%*" and smaller intervalg = [—Mo, Mo]?t" +k,

IM' < k| < MY Mg~ (logN)“/?

(4.6)

(see )), and restricting the set(af, V) € R?".
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Toward that end, as previously mentioned in Section 3, we introduce an additional

parameted € R and let
0 Dy +6 0
b= ( 0 D - 9) :

T%(yi) = D’ +8SGw),  Ty(i) = RvT ()R-
As mentioned there, we temporarily view )V € R” as independent parameters in this
section. In the same vein, we also dissociateEom w, V, assuming only that they satisfy
(H1-3) below. It is only in Section 5 that we restrictdéo= w()), determined from the
Q-equations and;, thei™ approximate solution t@.l), which dependsagn).

In the rest of the sectiom, V are heldfixed only 6 is varying. Note that"? is of the
form T := T(0) = T'(6 + n - w). Later in Section 5, we transfer the estimat® iimto
estimates inw, hence) by restrictingé to be of the formv = n - w, thereby resolving
(4.7) (which is at = 0) on the good set ab, V.

The Newton scheme is an iterative scheme. The estimat&;on []~* for I defined
in ) is easily obtained by perturbation arguments Br(y;_1)] ! known from the
previous step, which is the step to construc{see [(3.p)). The main task is to estimate
[T;(y)]~1 for J defined in ). We therefore stud?fLM0 Mg+ (y)]~* (and later in

Section 5, we restrict t6 = k - w, $M' < k| < M'*1). This is the subject of Lemma
4.1 and its application. Note thafy corresponds to the size of the interval at a stage
[log Mp/ log M], which precedeg, while the linearized operatdf is evaluated ay;:
T =T(®)-
Assumey; satisfies
(H1) suppy; € [-M', M]“F” (i = 1).
(This is by construction, seg (3.9).)
(H2) |Aiyl = llyi — yicall < Ve +8M™" (i = 1)
for some 1< b < 2 in view of (3.6,[3.9);> will be specified in[(6.20). (Recall
yo = (49). uo defined in[(2.1p)vo = ito.)
(H3) |yi (k)| < eI for somea > 0 (uniform ini).
(There is no constant in front of the exponential, as we assume small initial data:
lagl <1,£=1,...,v. See[(T.p).)

Remark. Using [3.6) in[(3.D) we gefA; yI|? < [ Ai+1y]l < [|A;y|l, assuming an appro-
priate condition orf’y ~. This is consistent with & b < 2 in (H2).

(4.7

(H1-3) will be verified along the iteration in Sections 5, 6 using Lemma 4.1 below.
Let Ay = [-N, N]¢, and letXy C R~ \ RY be a set, whereA; + V; has A.L.
at scaleN, in a sense to be made explicit in the process of the pr&gf;is asymp-
totically (¢ — 0) of full measure. (Recall also that = {v; };_; € R” with measure
[Ti—18j)dvj, is the parameter set.)

Definition. For A, ¢ > 0, DC (N) C R” is the set ofo such that
C
In- ol = e ne[=N,N]"\{0}. (4.8

DC, . C RV is the set ofv such thaif4.§)is satisfied for allv.
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Bg,, (N) C R is the complement of the setdbE R such that

TS Gl M <™ ©0<p<1),

[Ty i 2k, k)| < e 7K1 (y > 0), 4.9)
! i+1 . IOgM~ . ; /
for|k —k'| > N/1O, N =M ,z:m > i (b asin(H2)),

y;» satisfies(H1-3) i’ is chosen in view of a later construction in Lem®4. (see in
particular (5.14,[5.15). This means of course that at least the fitslog M/ logb) ap-
proximants are obtained by direct perturbation series,id. Soa = O(1)|log(e +8)|. In
general we writeB(N) for Bg ,, (N), unless the parametef y need to be emphasized.

Remark. At this stage of the construction, it is sufficient to have a lower bound.on
This can be easily obtained in the first few perturbation series by adjustigror later
purposes, we mention that the Diophantine condifion (4.8) will be used ferw;/, the
i’™ approximation.

The inequalities in[(4]9) are proven iteratively as[in [BW]. The rate of decall
deteriorate with iteration. Sp = yy. But the decrease will decrease with increasing
scales and we havey > y/2 for all N (cf. Lemma 4.1 and the paragraph following
it). This rate of decay determines the rate of decay;0fSo this is consistent with the
assumption (H3).

Inspecting the definition ab, in (4.7[4.3), we see thatis notequivalent to a spectral
parameter. Hence we need to resort to Cartan-type theorems as in the wave[case in [BW].
This necessitates that we obtain estimate (4.9) for more general regions than cubes at each
scaleN, the elementary regions to be defined below.

Remark. The various approximants are still evaluated using cubes¥, N4tV N =
M+l asin ). It is only at each scalé that we also look at restrictions @f(y;)

. logM . .
(i’ ~ |Oggb i) to these more general regions.

Elementary regions

An elementary regiolis a setA of the form
A:=R\(R+k), keZ™ isarbitrary (4.10)
andR is a hyper-rectangle
R={'eZ™ ||t —t;|<N;,i=1....d,d+1,...,d+v,
=y ezt 0= (0 e 7y (41D

Let N = max N; =: Nj,,,. Assumel ¢ 74t is fixed. We call¢ the centerof R.
Then&ER(N) (at a fixed center) is defined to be the set of all regions obtained by varying
k € Z4t and N; (i # imay, keepingN; < N. We say & is the diameterof the
elementary regions.
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To be economical, we extend the notatinto meanT's vy = Rav)T Raw) for any
A(N) € ER(N), whereR v is the characteristic function of the s&{N); B(N) is then
the corresponding bad set, on whi¢h {4.9) are violated. For the purpose of constructing
approximate solutions, we only need to specializ&vte= M+ (i > 0). However, to
state the various intermediate technical lemmas, it is more convenient &6 et any
integer.

Fix any y; satisfying (H1-3). Letly be the linearized operator evaluatedygtfor
all N, i.e., Ty = Tn(yx). With a slight abuse of notation, we also I8t , (N) be the
corresponding bad set. The main goal of this section is to prove

Lemma4.1. Fix0 < o < 1/6(d + v), 0 < B < 1, Ny sufficiently large, ananax(1/o,
6(d +v)) < C < ]\_Ig/z. There existo, o > 0 such that for all0 < € < €g, 0 < § < 8o,
there existst ¢ RZ* \ R” with

mesX > 1— O(1)N, ", (4.12)

wherex = «(C, p’,d) > 0and p’ is as in(A2). Fix x € X. Then there exist® c R"
(independent of € RY andyy), with

_
K
mesQ < e Mo |

wherex’ = «'(C, B) > 0, such that if
we€ DCpc\RQ 4.13
then for anyA(N) € ER(N) with N > Ny,
mesBg,, (N) < eV, (4.14)

whereyy > o — NO"S/ (8’ > Q) for all N, witha as in(H3), « = O(1)|log(e + 8)|.

Remark. Bg,, (N) depends only oy, w, V asx is fixed. In the proof of Lemma 4.1,
only (H3) onyy is needed.
In order to obtain[(4]9) at all scales, we apply Lemma 4.1 as follows. From the third

line of ), for any fixedy;, we only need the lemma at scale= M’ with i = I':g[{’lk.
log M

To go to scaleV’ = N¢ = M€ with the correspondingy, k¥’ = 1og—biC, we first use
(H2'), which gives

1TH %) = TEON < O Wiy — yirll < Oupn(HM ™ (4.15)

(4.15) shows that we have essentially the same estimat@]%bfyk/) || as f0r||Tf,(yk)||.
We useN as the initial scale instead dfy; the proof of the inductive step in Lemma
4.1 then gives instead

yw k) =ywr) =N~ (>0, N =NC. (4.16)

From ), the decay rate.. 1 of y; 1 is governed by the decay rate @f[(y;)] 1, where
N = M'*1, (Note that is fixed at 0.) This operator is treated in Section 5 using several
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considerations including Lemma 4.1, (4.9), the resolvent equation and semi-algebraic
sets. The decay ratg 1 depends oryy,, whereMg < N = Mi+1is determined in

(5.3) (cf. also[(6.]1)£(6]8)). S6 (4.]16) prevents the deterioratian @fsi — oo and we
will have «; > «/2 for alli in Section 6.

We prove Lemma 4.1 using iteration. The two pillars of this iteration are semi-alge-
braic set techniques and a Cartan-type theorem for analytic matrix-valued functions (see
[B5,IBGS]). The general construction of the iteration is the same as in our previous paper
[BW].

The initial estimatg0’ step)

In view of (4.4) and the Newton schenje (3.9), chosse- 2p such that
SU-8c[-M, M}, (4.17)

Lemma 4.2. Fix0 < o < 8 < 1. Then there exist&ly = Mo(d + v, o, 8) such that for
all M > My, there exiskg, 8o such that

7o N <e™  ©0<p<D),
70172, €)) < e (@ asin(H3)),
€ —¢| > M/10, M > Mo,

for0 < € < €0, 0 <8 < 80,0 € R\ Bpo(M), mesBg (M) < e~M all x € RZ \ R,
and allw € [0, 1)*. (Recall from{#.34.5)thex andw dependence dff (y)).)

Proof. We use Neumann seriesdns to estimatel;,*. We require

0 . ; 2maxeM" 8)1/2),
it h sy YUom) €=M M\ (SU-5)
|_9_n.w+vj|>2ma)(€_ ,(€+8)/)7
(4.18)
Clearly, [4.18) holds away from a set@fc R of measure at most

42M + 1) maxe ™M’ | (e + 5)V/?). (4.19)

Choosee, § such that(e + 8)2/2 < =M’ which can be satisfied if &< ¢ < e,
0 <8 < 8pwitheg = 8p = %e*zMﬂ. From ), we need@M + 1)@ +ve=MP < o—M°
(0<o < B <1). Thisleadsta > Mo(d + v, 0, B).

On the complement of the set defined@.lB), using Neumann sekes for Tlgl
and (H3), we verify that

NTo1 N <e™  ©0<p <),

T2, )] < e (a asin (H3),
€ —¢|> M/10, M > Mo,
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for 0 < € < €9, 0 < § < 8o. The probability set at this scal&,,, and the frequency set
at this scale2,7, on which and on the complement of whi¢h (4.14) holds, satisfy

mesXy =1 mesQy =0. (4.20)
O

This direct perturbation argument is the same a$in[BW]. Note fhat](4.20) entails that
) holds for allv, v;, as in the th step, the invertibility is entirely provided by shifting
in 6. There isno bad site. We will only use the above lemma for the initial set of scales.

The iteration

We now prove Lemma 4.1 using iteration from scAlgto NOC = N (C assumed large).
We call an elementary regiafi(No) badif the first two inequalities if(4]9) are violated.
As in [BW], we need to perform an incision in the frequency space, in order that inside
any A(N) € ER(N), there are at mosy1~ pairwise disjoint bad elementary regions at
scaleNg, whereN1~ meansV® (0 < a < 1). For technical reasons (cf_[BES, BW]), this
requirement pertains to all elementary regigngV’), No < N’ < 2Ny, and not simply
at N’ = Np. For later constructions in Section 5, it is important to note once again that
this set is independent of = {vj, };_;.

Let A(N) € ER(N), and letA (N) be its projection ont@?; define

T(N) = {[—No. No]* x [N, N]"} N A(N), (4.21)

and let7 (N) be its projection ont¢. Denote byER(N) the projection ofER(N)
ontoZ?. Note thatA (N) € ER(N) can be of much smaller diameter thah 2

Number of bad elementary regions at scalgdisjoint from7 (N)

By using (H3) in [4.2F4}4), the region(N) \ 7 (N) can be treated perturbatively. We
make separate incisions in the probability space and the frequency space. We first make
incisions in the probability space. Toward that end, we look at

AN e ER(N), AWN)CANN), AN)HYNTN)=@ (Ng<N'<2Np).
(4.22)
Let
Xy C RIZA=No.Nol) (4.23)
be the probability set such that there is at mus (pairwise disjoint)A (N') (No < N’ <
2Np) satisfying
AN') € ER(N),
A(N') C [-N, N]¢, (4.24)
A(N")N[~No, No]* =4,
where (A1) is violated for someg € I, I = o (H), the set defined irf (1.6).
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Theorem A withim = y yields
1 >0(1)(Ndx1vg“)2
2p’
No
01

1-— ">d(C+1)+1), 4.2
e P FACTDED (4.25)

mesX), > (1 -

whereO(1) is a universal geometric constant; is to be determined at the conclusion
of the proof of Lemma 4.1. We useéd = NOC; the second factoNgJrl comes from the
estimate on the number of elementary regions of sizes Ngoe®sociated to each lattice
site:O(1) ZZZVA,’(’zl N(’)d (cf. (4.11)); the exponent is an upper bound on the number of pairs
of elementar)(/J regions of sizes up t&/@in A(N).

Given two elementary regions;(N’), A2(N’), we say that they areonvex-disjoint
if their convex envelopes are disjoint. (This is in order that we have|(#.23-4.25) at our
disposal.) To control the number of bad elementary regions at 3¢aleve now make
additional incisions in the frequency space. Recall that {4.23] 4.24) pertain only to the
projected elementary regionsZif.

We are now ready to prove

Lemma 4.3. Fix x € X}, N Xy,, whereX, is the set defined i)andf(No is
defined as i) but WithNé'/C replacing No. There exists a s&?), with

—_NB/2C
e N

mesQy < (4.26)

such that ifw ¢ @', then for anyA (N) € ER(N) anyfixedd, there are at mostwo
convex-disjoint bad\ (N") € ER(N’), A(N)YNT(N) =@, Np < N < 2Ngin A(N)
(N = NOC )- MoreoverQ', is semi-algebraic with degree bounded above’lit) N 6d+v
and it is contained in the union of at ma8(1) NV connected components.

Remark. @), isindependent o, y;. Observe also that we need localization information

on the random Schidinger operators at two scaleg; anng/C.

Proof. In view of (4.3[4.4[ 4.J7, H3), for\ (No) such thatA(Ng) N 7(N) = ¥, 8S can
be treated as a small perturbation. We only need to ensure the invertibilﬂg?\mo).

AssumeA (Ng), A’(No), and A” (Np) are three convex-disjoiriiad elementary regions.
So there existn, j) € A(Np), (n', j') € A'(Ng), and(n”, j”) € A”(Np) such that

B B
|9+n~a)+u~|<2€_N0 or |—9—n-a)+p;|<26_N0,
j j 4.27)

B B !
0 +n"-w+uy| <2 N or |- —n"w+uy| <2 No,

and

B B
0 +n" o+ up| <2 or |[-0—n"-w+pj| <2 N,

whereu;, uj, w; are eigenvalues ok (No), A’'(No), A”(No) respectively.
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(4.27) implies that there exist, A such that

p
Im-w+ il <4de Mo, (4.28)
wherem = +(n —n')or = (' —n")or £ (n —n"),

A= j — pjr O pjr — pujr OF fLjm — (L;. (4.29)

We use the same argument as in the proof of Lemma 2.3 of [BW], which we summarize
below.
There are two possibilitiezz = 0, m # 0. Whenm = 0, from pairwise disjointness

(@24]4.2%), (A6) implies

/

M >e ™  ©<p <p) (4.30)

which contradicts[(4.28).
Whenm # 0, (4.28) corresponds to at most

OMNY - (N? - NZ™H2 < O(1)NBIHY 4.3

equations. Since each equation[in (4.28) involves a monomial of degree,lilie ex-
cluded sef2), is of degree less thaB(1) N%+V. Since|w| may be assumed to be bounded

for each such equation, we exclude a sebaif measure(?(l)e*Ng. It is simple to see
that for each equation i (4.28), the excluded seb bias a single component.

So in conclusion, for fixed € X, w € QF, there are at most two convex-disjoint
A(N’) € ER(N’) with A(N')NT (N) = ¥ such that the first inequality i.9) is violated
by using (H3) and a simple perturbative argument.

AssumeA (N') is such that the first inequality df (4.9) is satisfied.|$0 +n - » +

mil > 2e‘Ng forn, j € A(N’) from the above considerations. To obtain the second
inequality we proceed as follows. LA N’) be the projection oA (N’) ontoZ. In view

of the restriction in the third expression .9), we may assume diawi) > Np/10.

We coverA (N') with elementary regioné(Né/C) of diameter Wé/c.

Sincex € Xj, N )?NO and onf(No for all E there is at most one (pairwise disjoint)

[\(Ng/c) in A(N’) where (A1) (withm = y) is violated, using the resolvent equation,

(A1) and the estimateptd £ n - w + u;| > 2e_N(§s for n, j € A(N’) for the bad
[\(Né/c), we obtain exponential decay in thiairection for A (N’) for all E (of the form
E =460 +n- o).

We obtain the second inequality in (#.9) for thisN’) by another application of
resolvent series ifiS and using (H3). This holds for all (N”) such that the firstinequality
of ) is satisfied, in view of the definition df y,. UsingNo = N¥/€, we obtain the
lemma. O
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Number of bad elementary regions at sclgintersectingZ (N)

We now estimate the number of badN’) € ER(N’) such thatA(N') C A(N),
AN'YNT(N) £, T(N) asin[421)No < N’ < 2Ny, using semi-algebraic set tech-
niques. Here it is important to emphasize #fecoordinate of the center of elementary
regions, as the linearized operator is not a Toeplitz operator iBthvariable. We look at
elementary regions with centers{ip} x Z<. We write€R(N’, j) for the set of elementary
regions centered gte Z¢. For anyA(N’, j) € ER(N', j), let B(N', j) := Bg,, (N, j)
be a set such that aB(N’, j)¢, (4.9) hold. (Later for more general elementary regions
centered at € Z4*", we will use the same notations.)

Assume that there ar€y ;, Q5 ; such that forx € Xy j andw € DCa (2N) \
QN j,

mesB(N', j) <e ™ (No<N <2Ny, 0 <o < 1. (4.32)

Xho= ) . xw.

j€[—3No,3Ngl¢ No<N'<2Ng

o= U U  av; (4.33)
j€[—3Ng,3Ng]¢ No<N'<2Np

A= U U U Bw.j.
j€[—3Np,3Ng]d No<N’'<2Ng ER(N’,j)

Let

We have mest < O(L)NZ T e~Ns from ).
Lemma 4.4. LetN = N§. For any fixed € R, let
I=ne[-N,N]"|n-0o+06¢cA. (4.34)

Fix x € X;’VO. Then forw € DC4 (2N) \ Q;/VO,

1] = Oa (NG = Og o (HNOEHV/C 1= N1Po, (4.35)
0 < bg < 1 and assuming(d +v) < C < Ng/z. Hence there are at mo§2(1)N1—*o
(O(1) a universal geometric constant) pairwise disjoint badN’) € £R(N’) with
ANYNT(N) #9,No < N' < 2Ngin A(N) (N = N§).

Proof. Since the Green’s function is the ratio of two determinants and the norm of the
Green’s function can be replaced by its Hilbert—-Schmidt ndrm| (4.9) can be reexpressed
as polynomial inequalities i&. ThereforeA is asemi-algebraiset. (Seel[Ba, Section 7
of BGS].)

A is defined by

OWNE - Ng+ . N2 = o) NG+ (4.36)
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polynomials:Ng for the number of centerwg” the number of elementary regions per

center, ancNg(d*”) the number of matrix elements. Each polynomial is of degré(é”)
in 6 (as one squares the matrix elements).
Basu’s theoreni [Ba], restated as Theorem 7.3 in [BGS], then shows that the number
of connected components j# does not exceedfg(d+”). If there aren, n’, n # n’, such
thatn, n’ belong to the same connected component pthen from the last inequality in
@33),
|(n —n') - w| < OQ)NG e No. (4.37)

Sincen,n’ € [-N,N]", n —n’ € [-2N,2N]", N = N§, the membership €

DC4 (2N) is in contradiction with (4.37) folC < Ng/z < N§/2Alog No (assum-

ing No > 1), so there can be at most one integral point in a connected compondnt of

We therefore obtairj (4.35).
Leti = (j,n) € Z4tV. SinceA(N’, i) = A(N’, j) + n andT is a Toeplitz operator
in theZ" variable, we obtain the second conclusion of the lemma. ]

Remark. C will be afixedexpansion factor. So the upper bound®@will be satisfied
for all N > Ng as soon as it is satisfied for an initislb.

A large deviation estimate it

Lemmas 4.3 and 4.4 combined imply that the number of bad elementary regions at scale
Noin A(N) is at mostN1—%0 where

N=N§, bo=1-6(d+1v)/C (6(d+v)<C <N?

from (4.35). This enables us to use a Cartan-type theorem for analytic matrix-valued
functions (see [B5]) to prove a large deviation estimate}|Eﬂ|"ﬁ(yi/)]*l||, necessary for

the proof of Lemma 4.1. The proof of the lemma is very similar to the one in [BW] (see
also [BGS]), after using (4.15) to appropriately adjysticcording to the scall¥. So we

state (without details of the proof)

Lemma 4.5. Letbg, 8, o, y be fixed positive numbers so that
O<bo,B,0 <1l and B+byg> 1+ 30. (4.38)
Let No < N1 be positive integers satisfying
No(B, 0, y) < 100Ny < Ny (4.39)

with some large constaiy depending only o, o, y. Assume that for any¥p < L <
N1, and anyA(L) € ER(L, i),i € 74+,

mesBg,, (L, i) < e X, (4.40)
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Let Xy, Qy be the sets such that akiy and DCy (2N) \ Qy, (4.4Q) holds for all
i € [-N.N]"*", L € [No, N1]. Let X}y, X yyc be the sets defined {#.23,[4.2land
Lemmad.3, andQ), the corresponding frequency set as in LenhgaIf

xeXyNXyycNXy, @eDCy(2N)\(Q)yUQn}, (4.41)

then 5 .
meg0 | I[T9] 7 > V') < eV, (4.42)

whereTy is the restriction off to anyA € ER(N), the elementary regions centeredat
providedNOC1 <N< Nfcl, with C1 > max(1/o, 6(d + v)) depending only o, .

Remark. We note that fro 8, 4.24), the dependence of the probability set(on
which {4.40) holds) ori € Z7+" is only through thezZ? coordinate. For simplicity, we
keep the notatiok; ;. The set2; ; (on the complement of which (4.40) holds), on the
other hand, does have full dependence.on

A summary of the proof

We use analytic and harmonic function theory together with a 2-scale (in the range
[No, N1]) analysis to control the measure of the set[in (#.42) at stalg> No. (See

the proofs of Lemma 4.4 in [BGS] and Lemma 6.2[in [BW].) For a givéret these two
scalesl1, Lo € [Ng, N1], L1 < Lo, satisfy

1 1 1
logLy ~ C—llogN, logLy ~ ;Iong ~ alogN,

with C1 as in the lemma(’; > 1/0. We reiterate the main line of arguments below.
e Fix 9. Let

AL ={m e A(N) | 3A1 € ER(L1), No < L1 < 2Ny,
A1 Cm+[—Lq, L)%Y, Arisbad.  (4.43)

Forx, w satisfying [(4.4]L),
IAS] < NY20 (bg > 0), (4.44)

by Lemmas 4.3 and 4.4. Sincg, > Xy, we haveQ} C Qy, whereX} , Qf are
as defined by the first two equations|of (4.33).

e Let A, be, roughly speaking, the complement of the sef in (4.43). For a more precise
definition, which requires a partition of, see the beginning of the proof of Lemma
4.4 in [BGS)]. Using an elementary resolvent expansion (Lemma B in the appendix,
which is Lemma 2.2 of [BGS] reiterated), we obtain an upper bounn{ﬁﬁ*]*ln at
fixed 6 by using the decay estimate on the’s, elementary regions at scalg, in A.

By definition they are aljood By standard Neumann series arguments, this bound is
preserved inside the digk(@®, e~No) ¢ C.
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Remark. We have control over the size af, via (4.43,[4.444), but not its geometry.
Typically A, isnonconvexhence the need for elementary regions which are more general
than cubes, in particular L-shaped regions, in view of Lemma B.

¢ Define a matrix-valued analytic functioh(9’) on B(9, e~0) as
A6') = RpcTYy Rac — Rpc Tl Ra [T 17 R, T Rac, (4.45)

whereAS = A\ A, andRy,, Ry: are projections. From (4.44),(6") is anO(N1~t0)
x O(N1~b0)y matrix. The raison dtre of introducingd (9') is the following inequality:

ITA@T ™ S ITET7H < MoaEn] |

(see Lemma 4.8 of [[BGS]). So to bound7¢ ]2, it is sufficient to bound
I[A©)~1]|l, which is of smaller dimension.

e Toward that end, we introduce an intermediate séalevith logL> ~ (logL1)/o >
log L1. We work in an interva = {6’ | 1§’ — 6| < e~"°}. Using [4.49) for ther's
at scaleL, and inA (Lemma B), we obtain an upper bound ﬂiﬂﬁrlH except for
a set of9’ of measure smaller than ©2), So there exists € © such that we have
bothan upper bound ofifA(6")] 1| até’ = y, hence a lower bound on the smallest
eigenvalue ofA(9), and an a priori upper bound dm (6|, which comes from the
boundedness dff and the bound ori[{.]~* (see|(4.45)).

e Transferring the estimates dm (9|, I[A(©)] 71| into estimates on logletA(8’)|,
which is subharmonic, and using either a Cartan-type theorem (see Sect. 11.2 in [Le])
or proceeding as in the proof of Lemma 4.4[of [BGS] or Chap. XIV ofi[B5], we obtain
the lemma by covering the interval= (—O(Nfcl), O(Nfcl)) with intervals of size

e~ No_ (Recall ) and that for all ¢ 1, Tf,’ is automatically invertible.) O

Iteration lemma

To obtain exponential decay 05;71, we need

Lemma 4.6. SupposéM, N € N* are such that for some < 7 < 1,
N' <M < 2N°. (4.46)

Let Ag € ER(N) be an elementary region with the property that for AllC Ag such
thatA e ER(L)withM <L <N,

{1 < e < p <), (4.47)
We say that\ € ER(L) with A C Ao is good if in addition ta4.47)

LTk, k)| < e VK] (4.48)
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for all k, k' € A with |k — k’'| > L/10. OtherwiseA is called bad. Assume that for any
family F of pairwise disjoint bad’-regions inAg with M + 1 < M’ < 2M + 1,

sF <NP (0<p<1. (4.49)

Then
ITH1 2k, k)| < e kK (4.50)

forall k, k' € Agwith [k — k'| > N/10,andy’ = y — N~ (8’ > 0), providedN >
No(ﬂa T, V)-

The proof of the above lemma is written out in detail in [BGS]. The only difference is
that instead of being tridiagonar,f has exponentially decaying off-diagonal elements
by (H3). Soy = y(«). The proof goes through. So we do not repeat it here. (See also
[BW].) The gist is as follows.

The exponential decay estimate at scsllén (4.50) is obtained from the exponential
decay estimate if (4.48) at smaller scalsby using [(4.1p), the norm estimate .47)
and the resolvent identity. To implement this, we use a sequence of 3¢ales= M,
with Mp = M andC’ such thatC’8 < 1 andC’t < 1. For each elementary region
A(Mj,) atscaleM; 1 and for eaclt € A(M; 1), we exhaush (M, 1) by anincreasing
sequence of annuli centeredkadf width 2M;, or more precisely the intersections of this
sequence withh (M;41). Roughly speaking, an annulus is good if it does not intersect a
bad cube of the previous scalé;.

In each of the connected components of the complement of the bad annuli, we apply
the resolvent identity using the estimate[in (4.48) for elementary regions oMgizin
the bad annuli, we use (4.47). From (4.49), the number of bad annuli is at most sublinear
in M;,1. Using a multiscale induction argument to reach the s@alave obtain the
exponential decay i} (4.50) wheh — k'| > N/10; 4 is determined from[ (4.47, 4.49),

8 ~t(l— BC). O

LetBg, (N, i),i € Z4*, be a set such that on the complemdnt,|(4.9) hold. Whe,
we write Bg ,, (N, 0) = Bg,,,(N). As before let

Xn,; andQy ; be the probability frequency subsets on which and

o (4.51)

on the complement of which mé& , (N, i) < e™
Combining Lemmas 4.5, 4.6 with (4]43—4].25) and Lemmas 4.3 and 4.4, we obtain

Lemma 4.7. Assume that for anfWp < No < N§, max(1/o, 6(d + v)) < C < 1\73/2
(No(e, 8) > 1), and anyA (No) € ER(No, i), i € 74+,
mesBg , (No,i) <e M (0<o <1). (4.52)

Let[N, NOCZ"] be the next interval of scales. For ay e [NS, NOCZ"], write N = N§
with No € [No, N§]. Let X}y, X yuc be the sets defined ,)and Lemmat.3
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and), the set defined in Lemmda3, satisfying

o
N 2 (P —d(C+D-1)
oM
5 (p'—d(C?+D-1)

mesXy, > 1— (p) >d(C?+1)+1),

mesX yyc > 1— (p' >d(C?+1)+1, (4.53)

N

_N#/2C
mesQ)y, <eV

in view of(4.25]4.26)

Let X, Qu be the sets such that ofiy and DC4 (2N) \ Qu, (4.52)holds for all
i € [-NE®, NE*14+ and all No € [No, NS 1. If

)

X € X;V ﬂ)le/c ﬂ)_(N = Xpn,
mesXy > 1— 1/N?" with p” = p”(p/, C,d +v) > 1,
p’ large enough

® € DCx (2N) \ {Q)y U Qy} =: DC4(2N) \ Q, (4.54)
mesQy < e‘N’S/SCZ,
Qy is semi-algebraic of degree less tharf “@+?) |
then
mesBs ,/(N) <e ™  (0<o <1, (4.55)

wherey’ =y — N9 (8§ > 0).

Proof. Applying Lemma 4.5 using[ (4.52), we obtain the large deviation estimate on
7172l Choosing 0< 7 < 1/Co, for x, w in the sets defined in (4.54], (4]49) is
satisfied. (Here we need the definition thatMhregion is bad if it intersects a bad-
region. Otherwise it is good. On the goad -region, [4.4B) is obtained by using the
resolvent expansion (Lemma B) afd {4.9) fy-regions.) Hence Lemma 4.6 is available
and we obtain[(4.85). The estimates ¥, 25 follow from (4.53,[4.5B) and the con-
structions in Lemmas 4.3-4.5. O

Proof of Lemma 4.1AssumeNy (to be determined below) is such that Lemma 4.7 is
available. For the scale$y < N < N§, we use Neumann seriesdrands a la Lemma
4.2 and its proof. For the scal@s> N{, we use Lemma 4.7.

From Lemma 4.2, we need

No > Mo(d + v, o, B) (4.56)

and .
s
€0 =208 = Ee—ZNO . (4.57)
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From Lemma 4.7 and the choice ®f the expansion factar needs to satisfy
max(1/a, 6(d + 1)) < C < NJ/%. (4.58)
From Theorem A an9)?(o needs further to satisfy
No > max(Q, Mo), (4.59)

whereMy = Mo(d +v, B, o) as in Lemma 4.2. Fi¥ satisfying (4.59), and’ satisfying

(4.58). Then[(4.57) determineg, s0.
For the scaled/p < N < Ng, with Ng satisfying ), the estimates

TGt <™ ©0<p <),
T2, )] < e 4T (@ asin (H3),
It — €| > N/10,

for0 < € < €g, 0 < § < §p are obtained using Neumann series by shifting anly. So
mesXy,; =1, mesQy; =0 (No<N <N§),

whereXy ;, Qy,; are as defined if (4.51), ar{d (4.52) holds.

Let
X = ﬂ ﬂ Xn,i= m ﬂ Xn.j (4.60)

N ie[—3NC,3NC]d+v N je[-3NC 3NC]d

where the second equality follows from the remark after Lemma #Being theZz?
coordinate of ; and
Q= U U QN (4.61)
N je[-3NC 3NC]d+v

whereXy ;, Qy; are as defined i@l).

OnX andDCy . \ @, Lemma 4.7 is available with the initid = « from Lemma
4.2 for iteration to all scales. Estimating the measur& @ind<2 using [4.58} 4.54, 4.60,
[4.67), using the measure estimates on the bad setfiom Lemmas 4.2 and 4.7, we
obtain the assertion of Lemma 4.1 by takipig~ O, (1)C3. O

5. Invertibility of T (y;), Q-equations and determination ofw

Fixx € X c RZ \ R, defined in ), which generates a corresponding2sas in
Lemma 4.1. The main work of this section is to convert the measure estimatdeiin
fixedw € RV \ @ and fixedV € R” in Lemma 4.1 into measure estimatesin= w (V) €
R and extend them téw, V) € R? in the neighborhood ab = w(V), while keeping
0 fixed: 6 = 0 and addressing the original family of linearized operaforsy;) defined
in (4.214.5), wherey; is thei'" approximant for theP-equations|(4]1). This is possible
becausd} is only a function oft - w + 6, T§ = T'(n - o + 0) (cf. (4.314.4[ 4]7)).
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Sinced is now fixed at 0, before making the conversion, we need to make a further
restriction inX in order that the spectrum of the various restricted randomdsiahger
operators stay away from 0. This is needed whes 0 and we cannot vary to have
invertibility of the linearized operators (cf. (4.3)).

So we modify the definition ok’ in (4.23[4.2}) to include the condition

/

dist(c (A(N")), 0) > e No O<pB <B) (5.0)

forall A(N')N[—N, N]¢ # @ (No < N’ < 2Np), i.e., we requirg (4.30) to hold also when

L = pj, eigenvalues of restricted random Satlinger operators and not just differences

of pairs of eigenvalues. In view of the Wegner estimate (A7), this leaves the measure of
the setX)y in (4.25) essentially unchanged.

This generates the restricted probability ¥etz X C RZ! \ R”, on which Lemma
4.1 holds. Renam¥ asX and let$2 be its corresponding frequency set.

To make the conversion, we need to supplement the measure estimates|in (4.14) by
the fact that the bad s8t(~N) defined from[(4.P) has a semi-algebraic description in terms
of (w, V, 6), enabling us to use the decomposition Lemma 9.9 of [B5]. Once we have the
necessary estimates ofi(y;)] ! after removing a small set of; = w; (V) (we put the
suffix i here to stress that it is th& approximation), we construct the next approximant
vi+1 according to[(3J9), which in turn is used to construgt; = w;i+1(V).

In this section, we primarily address the invertibility®§ (y;), N = M1, Since the
estimate orfy (y;) and the construction of, 1 are interconnected, it is good at this point
to lay down the complete induction hypothesis. (In Section 4, we used the first part of the
induction hypothesis (H1, 3) and the first inequality of (H2) to derive Lemma 4.1.) The
first few approximations are obtained by using direct perturbation serigs ifsee[(4.p),
together with the text and the remark afterwards). S0 < ¢g « 1,0< 8§ <o K 1,
and we haver = O(1)|log(e + §)|.

On theentire (w, V) parameter space, we assume:

(H1) suppy; C [-M', M']9% (i = 1),
(H2) Ayl < &y 104y < &,

where || || stands for supy || [l,2z«+v) (recall that we identifyy with y; d refers to
derivation inw or V). §;, §; will be shown to satisfy

5 < et oM A 5 < Jerom 42
(H3) |y; (k)| < e~ for somex > 0

(the constant in front of the exponential in (H3) is 1, becdugex 1, =1, ..., v, see

(1.9)).
From (H2),y is aC? function of (w, V). Application of the implicit function theorem
to the 0-equations in[(2.72) with

(-6
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yields
w; =V +(+8pi(V) with [dg;]| <C, (5.2)

whose graph we denote by. Recall that a prioriy; are only defined on certain intervals
in (w, V) space. Itis in order to use the implicit function theorem that we exgetalthe
entire(w, V) space, using the estimates @y in (H2). (H2) and[(2.IR) imply, moreover,
that

loi — @i-1ll = ODllyi — yi-1ll < ODé;, (5.3)

which in turn implies that
I'; is an(e + 8)8;-approximation of™; _1. (5.4)

At each stage, define
Mo = O(1)(i + 1)“/*(log M)“/? (55)

for someC > 0, andQ2y, « as in [4.51). Unlike (H1-3), the following hypothesis is only
assumed to hold ocertainintervals inR?”, the (w, V) parameter space.

(H4) There is a collectiort; of intervals! in R2” of sizeM*"C, with the sameC as in
(5-9), such that

©O) INTI; C DCX")C \ @;, where

DCY, :=DCs(2N), N =M,

Q= U Quok, i>ip>0
keZAN[—2Moq,2M]4

(see the remark after (iv) concerning.

(i) OnI € %, yi(w, V) is a rational function of, V) of degree at mosy4°
(g € NT).

(i) For (w,V) € U,ezi I,

IFOOl < &i,  10F)I < &i. (5.6)
In (6.20),«;, k; will be shown to satisfy
ki <Nt sM @I g < exsm W2 (57
(i) For (o, V) € Ujes, I
Ty =TnGi-1), N =M,
satisfies

T2 < M, 1T 0k K| < e @K1 for (k — K| > i€.
N N
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(iv) EachI € 3; is contained in an intervdl’ € ¥;_1 and

mes, (ri m( Uy 1’)) < M5,
le¥i_q [e%;

Remark. (H4.0) is only needed for > ip to ensure the availability of Lemma 4.1. Up
to stagep, we use direct, § perturbation series, where the Diophantine property o
not required (cf. Lemma 4.2).

Unlike the related estimates axyy, dA;y in (H2), (5.6]5.F)cannotbe extended to
the entire(w, V) space. This is because, as mentioned earlier, outside the inter¥als in
yi are no longer close to solutions to tReequations[(2.16).

Invertibility of Ty (y;), N = Mi+1
Assume (H1-4) hold at stageTo constructy; 1, we need to control
[Tyl N =M

with a further restriction on théw, V) parameter set. This will give us (H4.iii) at stage
i+1.

We accomplish this by covering-i+t, M4+ with [-M*, M]?+" and inter-
vals [-Mo, Mol + k, Mg as in [5.5) k € Z4V, M?/2 < |k| < M+, and using the
resolvent identity. We first estimat@y (y;)] L. Fix (w, V) € Ule):,» 1. (H4.iii) at stage
i gives

-1 i€
[Ty Qi) 7l = M*,

/ (5.8)
[Ty iDLk, K] < %K1 (k — k| > i©).
We write
Tyi (vi) = Tpgi Vi—1) + [Tpgi (i) — Tyyi (yi-1)] =1 A+ B. (5.9
From the first inequality i (5]8),
1A~ < M. (5.10)
The first inequality of (H2) at stagegives
1Bl < O)M~“/3", (5.11)
So .
Ty D] 7L < 2M' fori > C2. (5.12)

To obtain a pointwise estimate ofi}: (y;)] %, we use) and resolvent serigds:!
has off-diagonal decay from (5.8), aftihas off-diagonal decay from (H3) at stage
Iterating the resolvent series and using (5.12), we obtain

[ Thi )] 2k, k)| < e @ KK (jk — K| > i€) (5.13

witho' =a — M™% > /2 (5§ > 0), uniformly ini.
We now studyi[7 (y;)] ™| on the Mo intervals, Mo as in ). We distinguish two
types of Mg intervalsJ in [— M+, pitl]d+v:
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(@) J N[~Mo, Mol’ x [-M'*1, M+ =,

(b) J N[—Mo, Mol¢ x [-M'+L, Mi+1]Y £ .

For type (a), we use direct perturbation in view of (H3). For type (b), we use a more
delicate construction. We writelg = M. (Mg is chosen in order that the total degree of
the semi-algebraic set describing the bad set,it?, 6 is not too large.)

The My intervals are at theig]™ scale. OnMy intervals of type (b), we use Lemma
4.1, which is forTy, (yi), io = '{%fo < i similar to ). Using a decomposition
lemma ([B%, Lemma 9.9] restated here as Lemma 5.3) to make appropriate incisions
in the (w, V) parameter space, applying (H2) betwegnandy; and combining with
estimates on type (a) intervals, we obtain

IRy T ()R I < Mo 0O<B <), (5.14)
(RyTODR) Lk, k)| < e *HK1 kK e, |k—K|> Mo/10,
wherea” = o — M~" (8" > 0), for all
J =[-Mo, Mo} +k, M < k| <ML (5.15)

This is the content of Lemma 5.2. We delay its precise statement and proof momentarily.
We first prove

Lemma 5.1. Assumé5.12+5.75hold andMp is as in(5.5). Then
I Ty2 0] M < O@MHDE, (5.16)
[ Tapics ()] 2k, k)| < e~ ¥*F1 for |k — K| > (i + 1)C, (5.17)
withad = o — M_(H'l)g, §>0.

Proof. (5.16]5.1F) are exercises in the resolvent identity or equivalently using Lemma B
in the appendix. We first provg (5/16). Thén (5.17) follows by using {5.16) and another
application of the resolvent identity. Let

For anyk, ¢ € B;;1, we have (as:surrﬂé‘B‘il is defined)

-1 -1 -1 -1 .
Tpl k0 =Ty, O+ Y Tk K)Tgt (K, 0); (5.18)
K €d, W (k)
\k”—k/\=l
K"€Bj 11\ W (k)
here forlk| < 3M', W(k) = B;, while for |k| > 3M, W (k) is a sizeMo interval. It is
easy to see that for eveky, there existdV (k) such that dist’, 9, W (k)) > Mo, where
9. W (k) is the interior boundary o (k), relative toB; 1. Summing ove¥ € B, yields
-1 -1
sup Y Tt (k01 < sup Y [Tyl

keBi+1¢eB; keBi+1 ¢ew (k)

+sup Y Ty, & KD sup Y (T (K70l (519
keBit1 preg, W (k) K’€Bit1¢eB;
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Using [5.12(5.75), we have

sup Y ITph (k.0 < 2M™ - @M 4 1y
kEBH,l ZEB,‘+1

+Oe Mopmgt sup ITgil(k”,Z)l, (5.20)

kK"€Bit1 (B

sinceM’ > Mpy. So

-1 (i+D°
1750 < M7,

which is [5.16).

To obtain [5.1]7), we retrace our steps back[fo (5.18) and restrict&esuch that
lk — €] > (i + 1€ > Mo, in view of (5.5). Iterati8) along the path frdto ¢
using B;, J and using[(5.7l6) for the last factor, we obtdin (5.17). O

(5.16)5.1F) will be the conclusion of (H4.iii) at stage 1 once we specify the new set of
intervalsX; 1, on which they hold. As alluded to earliet, 1 will be determined from
¥; and the new restriction ofw, V) in order that[(5.14, 5.15) hold.

Determination of%; ;1

Lemma 5.2. AssumgH1-4) at stagei. There existd’; c I'; with mes I'; < M~i/4

such that(5.14[5.Ibhold on
Janit). (5.20)

IeA;

The proof of [5.2]11) relies on the measure estimates in Lemma 4.1 and semi-algebraic
description of the bad set. We need the following decomposition lemma, which is proven
in [B5, Lemma 9.9].

Lemma 5.3. LetS c [0, 1]*" be a semi-algebraic set of degréand mes, S < 7,
log B « log(1/n). Denote by(x, y) € [0, 1]" x [0, 1]" the product variable. Fi>xx >
nY/2". Then there is a decompositidh= S; U S» with Sy satisfying

IProj, S1| < BXe (K > 0) (5.22)
andS; satisfying the transversality property
mes(S2 N L) < BXe Y2 (kK > 0), (5.23)

for anyn-dimensional hyperplang such that

. 1
1r£nja£>§l [Proj; (ej)| < 1—00e, (5.24)

wheree; are the basis vectors for thecoordinates.
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Proof of Lemma 5.2 Assume [(5.14] 5.15) hold witii (y;,) replacing (y;), where as
before

log M - log Mg

io ~ 005 ° ™ Togh i, (5.25)
IR TGi) R <™ (0<p <), (5.26)
IR T i) Ri1 e, k)| < ™K1k K e J, k=K' > Mo/10,
for all
J=[-Mo, M) +k, M < k| <ML (5.27)
Recall that we are at stageso (H2) is satisfied. Hence
IT (i) = T i)l < OD)8j, < e~ Mo (5.28

by (5.25). This in turn implies thaf (5.[1ff, 5]15) hold. So we only need to pfove](5.26).
((5:28) is in fact a reason for the choiceM} in (5.5).)

Fix I € %;,. For type (a) intervals, using (H3) for,, the off-diagonal elements in
then direction of S have exponential decay afid| < O(se~*Mo). We use A.L. for the
random Schidinger operato¢ A; + V; to obtain [5.2p) as follows.

To obtain the first estimate if (5]26), we make direct incisions in the frequency space.
Let J be a type (a) interval. We require

B
|£n -0+ €eAj + Vil = |£n - o+ u;| > 2 Mo

for all (n, j) € J, wherep; are the eigenvalues efA; 4+ V; restricted to the projection
of J ontoZ4.

Whenn # 0, this amounts to taking away a setof measure< O(l)e‘Mg ~Mg+”.
Whenn = 0, this is satisfied fox € X in view of (5.0). So

_ B
I[R;T (vig) R;] 2 < eMo,

by using the exponential estimates $iiThis gives the first estimate ip (5]26).

To obtain the second estimate [n (5.26), we use Anderson localization, i.e., on the
probability setX defined in (4.12), for alE (hereE = n - w) there exists at most one
pairwise disjoint bad elementary regiorf of sizeMé/C in the projection of/ ontoZ.
Aresolvent series in thgdirection coupled with a resolvent series in thdirection using
the above two estimates and the decay property gifies the second estimate jn (5.26)
(cf. proof of Lemma 4.3).

Hence there is a sét C T;, N I with

mes [ < O(l)e*MégM("*l)(d*”)Mg” 0<B <1
i (5.29)
<

such that outsidd™, (5.26) hold for allJ < [—Mi+t, MI+14+Y satisfying J N
[—Mo, Mo]? x [-M+H, MIH1)” =g
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To prove [5.2B) for type (b) intervalg, we use Lemma 4.1 at scaig =
[log Mp/log M] and the decomposition Lemma 5.3. We illustrate this on the interval
J = [—Mo, Mg]¢t". We consider the set

S={,V,0) el xR | (4.9) falil forT[e_MO,MO]M (Vio)»
i.e., with N replaced byMo, andy; replaced by;,},  (5.30)

where! € %, is the same fixed interval as earlier. (Recall that X C RZ \ RY

is fixed.) LetTflo(yio) denoteT["_MO,Mo]M (3i,)- Each matrix element on’Mo(y,-O) is a

rational function ofw, V of degree at most(® + 1)Mqig (¢ € NT) and linear ing
(see (H4.i),[(4.2-414,4.7)). As before, the conditionin (p.30) can be expressed in terms
of determinants and hence polynomials in the matrix eIemerﬂﬁgﬁyio). This implies

thatS is semi-algebraic of total degree at mMgu*”)M‘I"S in R2v+1,
We now localize tqw, V) € I';,. We consider the set

S =8N {(INTiyN{DCa(2Mo) \ Qu,)) x R} € RV, (5.30)

where Qy, is as in [4.54) of Lemma 4.7 wittN replaced byMo, and T, is deter-
mined by theQ-equations[(2.72), which are polynomial {m, V) of degree at most
2(p+ 1)M‘1ig (g € NT). From Lemma 4.74DCA,C(2M0) \ Q4, is determined by

2 .
M§ @ ~ MC*@+)io monomials of degree 1. S§ is semi-algebraic of total degree

at mostM @+Dig jn Rv+L,
By Lemma 4.1, each sectid (w, V) = S'(w(V), V) is of measure at most ™5 in
0 0<o <1/2).So

mes 1S <e ™M (0<o <1/2). (5.32)
Our aim is to estimate, for € Z°, 1M < |k| < MI+2,
mes{V | (V,V + (€ + 8)pigWV), k- (V + (e + 8)pip(V))) € S'}. (5.33

Sincer;, is a C* function, (I N T;,) x R may be identified with an interval iR+,
say [Q1]" x R, " defined in[(5.3]L) is a subset 6f N T';) x R, and therefore can be
identified with a subset in [A]" x R. For the purpose of application of Lemma 5.3,
we identify [0, 1] x R with [0, 1] x {0} x R [0, 1]" x [0, 1]""! x R and S’ with

S’ x {0} ¢ & x [0,1]"~L. SinceT is restricted to the interva-{Mo, Mo]¢*", we may
further restrict the interval in [QL]" x R to be

[0, 1]" x [-OK/d + v)Mo, O(vd + v) M)
~ 10,1171 x [-OWd + V)Mo, OVd + v)Mg].  (5.34)

We decomposefO(v/d + v) Mo, O(V/d + v) Mg] into intervals of length 1 and iden-
tify each of them with [01]. Applying the decomposition Lemma 5.3 to each of these
intervals and taking the union, we obtain a suli¥et I';, N 7 with

mes I < (MUY =i . OJd +v)Mg < M~i/2 (5.35)
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(recallS" is of degreeB < M (¢ € N*) and we take = 200V~ in )) such that
forallk € Z, |k| > $M',

mes{V | (V,V + (€ + 8)piy(V), k- (V + (¢ + 8)¢iy(V))
€ SN{(Ti\[YNIN{DCac @M\ ) xR} < ™ (0<o <1/2)., (536

whereMy is as in [5.5).
The same estimates as i@.@.%) hold when, yje+» is replaced by
Tt pg mold+v1er £ € Z9 N [—2Mo, 2Mo)“. Therefore, there is a sBt’ C I, N I with

. . o/2 .
mes I < O)M /2 + OQ)yMIADE@H) =M™ _ pp=i/3 (5.37)

(in view of the choice oM in (5.5) andCo > 1 from (4.58)) such that outsid#’, (4.9)
hold for all intervals/ of the form [~ Mo, Mo]*+" +¢, ¢ € Z¢ N[—2Mo, 2Mo)?, yi' = yi,
andd =k -w, k € Z', 1M' < |k| < M. (The conditiom{DCa (2Mo) \ 2} i
(5.38) does not require additional incisions in the frequency space, as (H4.0) holds starting
at stagep + 1.)
Combined with[(5.29) and the previous perturbation argument of replagibyg y;,
in (5.28), this implies that there exist¥’ with mes I’ < M /3 such that outsid&””,
(5.14)5.15) hold for alk with 3" < k| < M'*1, and a fixed € =,

Letting I range overX;, (there can be at moér(l)M"g such intervals, as thev, V)
parameter space can be restricted to, sag]f0), the total measure removed frdry, is

at mostMi6 . M—i/3 < M~i/4, Sincerl;, andT; are at distance: §;, < e~*Mo from

(5.3), we obtain a subsé; c T'; with mes I'; < M~i/4 such that[(5.14, 5.]5) hold for
all k with M /2 < |k| < M**1and on

J an@it) (5.38)
IGE,‘O
and hence on y
Jan@i\r) (5.39)
1€X;
by (H4.iv). This proves the lemma. O

Lemma 5.1 then gives that on the sef/in (5.39), (§.16,]5.17) hold. Clearly by perturbation,
(5.16,[5.1F) remain valid on amw—¢+D neighborhood of| (5.39) (sincr—(+D «
e=aMo ~ (=@ +D? py the choice ofYg in )), which in turn generates a collection
A;41 Of intervals inR2” of sizeM—+D° such that fow, V) € I € A1, ,)

hold. So (H4.iii) holds at stage+ 1 with@ = o — M—@+D% (§ > 0) replacinga.
Moreover we have

mes, ( YJanroy | a@'n r,-)) <mes T < M~i/4, (5.40)
TeA; I'eAjt1

which will imply (H4.iv) at stagei + 1, once we construct; 1 and hencd; 1 using
(H4.iii) at stagel + 1.
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6. Construction of y; ;1 and completion of the assemblage
Construction ofy; 1

" .
Let N = M'*Tt, and for(w, V) € U,EAZ,+1 1, define

Air1y = yis1 — yi = —[Tn D] LF () (6.1)

(previously [3.9)). In view of[(3]1, 2.16, H4.i), this implies that, .y is a rational func-
tion of (w, V) of degree at most

OWN MI° 4 2p + M < MIH+D® (4 e N1, (6.2)
(Recallp < M.) So (H4.i) holds at stage+ 1. (5.16, H4.ii) give
; C
Ayl < MY G =841 (6.3)

and
18CAanIl < 10T M HTF I+ 1T I8 F (i)l
< T3 2 Myi | carei + 1Ty I
< M2 R = 5, (6.4)

where we also used (H2). Next we obtain a pointwise estimatg;eay. From [6.1),

|Aipay ()] < Y 1Ty ke, KD F () (K] (6.5)
[K'|<N

(2.16) gives

|F(y) (k)] < OQ) Z lyi (k)| - - - [yi (k2p+1)1
ka4 +kap 1=k’

S (CM)CMlk/|(d+V)Mg—a|k/| (66)
(sincep < M). Substituting[(5.1/7, 6]6) intd (8.5), we then obtain

iC _ ’
Ayl < €M N M ek

lk—k'|<i€

" Z |k/|<d+u)Me—&(\k’|+|k—k’|>}

lk—k'|=i€

< C' M€ || @M ek 6.7)
Using [6.3) fork such that logk| < i and [6.7) otherwise, we obtain

i1 (k)] < (09K —GIK < =ik (68)
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with @ = « — M~(+D3 for somes > 0 independent of, where we used the estimate on
& just above[(5.40). This shows that (H3) is essentially preserved atistageHere we
used the fact that = O(1)|log(e + §)| and O< ¢, 6 < 1.

Since the intervals im ;1 are of sizeM~(+1 we may extendA; 1y to the en-
tire (w, V) parameter space as follows. For ahye A;1, let I C I be such that
dist(AS, ;. 1) ~ EM~GD SetAy ., = Ayisionl, Ay, = 0onA¢,,. Define
aC1 function

1 onl,
Bii1= . (6.9
0 onAj 1
Set
AYit1 = Biy1Ay/ 1. (6.10
ThenAy; 1 is defined on the wholév, V) parameter space and satisfies
19Tl < 3MTHV 5, 4q 4+ M2 = 5y, 6.11)

where the second contribution comes frfm|(6.4). RenamifigasAy; and lettingy; 1 =
yi + Ay;, we have thus shown that (H1-3) remain valid at stagd with & replacinge.

Fromy;+1, the Q-equationsZ) defing; ;1 at most at a distancg ;1 ~ M
&« M~!/*fromT;. Clearly [5.40) implies

mes, (r,-H m( Un U 1)) < M4 < /5 (6.12)
IeA; I'eAjt1

which is (H4.iv) at stage + 1.
It remains to verify the properties df(y;+1) in (H4.ii), stagei + 1. From the Taylor
series in (3.10),

F(yiy1) = =[(T = TOITv D] TTF ) + O Aiayl?, N =M™ (6.13)
By construction and (H1), we have suppc [—-M!, M]¢+Y; therefore) gives
SUPPF (i) C [—p + HM', 2p + M1+
c [-M*Y/10, MITL/101 Y = [-N/10, N/10) Y. (6.14)
So
F(yi41) = [Rzar pony T Ty Re.n/10] F i) + O || A1y,
IFGig)ll < 1 Rzarn sy T Ty "Reo.n10 I IF DI+ O Ayl (619

whereB(0, N) = [-N, N]4*V, andRpo,n), Rp(o,n/10 are the characteristic functions.
Thus
IFQirDll < e N3 + O824 = Kit1, (6.16)

where we used (H2,3,4.ii).
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Similarly,

OWIIF il < ITHHIBTIIF D + 10T M HIF Gl IT |
+ [ Rz sony T Ty " Reo.n /10l 119 F ()l
+ 1Ayl 10 A1y

< M2V oM B s 05, (6.17)
and we may take
R = O MXH g e, 4 5,405,4), (6.18)
Summarizing[(6.d, 6]4, 6.16-6]18), we have
Sip1 =MD g,
Siaq = M2+ 6.19
i+1 .
Kit1 = e—aM i /3Kl' + 0(1)812+1,

Rir1 = O M2EFD g 4 emeM ™ B 45 1540).
We start fromko, kg = O(1)(e + §). Fore + § small enough[(6.19) is satisfied for 1

if | .
5[ < JeE+$ M*(4/3)l . K < mM7(4/3)1+2’ 20
Si < A€+ 8 M_(4/3)i/2’ Izi < mM_(4/3)i+2/2. ( . )

(H4.0) and initial input for the induction

To ensure (H4.0) at stadet 1, we make further incisions. (This is in order that Lemma
4.1 remains at our disposal at a later stage.Y@n, we need to eliminate such that
n-wjy1+ A < e_Mg/ (n ~ OQ)Mop)
i+1 Ji'l = 0 d (6.21)
In - witallT < ¢/Inl? (0 < |n| < 2M'+Y),

where My is as in [5.5, H4.0)8' = B/O(1), O(1) is the same expansion factor as in
Lemma 4.6 (denoted there)A;;» = u; — ujr, uj, ujr are the eigenvalues of the random
Schidinger operatos A ;4 V; restricted to the myriad elementary regions of sbiz#o(l)
(the same expansion fact@/(1)) in [—3Mo, 3Mg]¢ (see Lemmas 4.1, 4.2, 4.6, proof
of Lemma 4.2,[(4]8, 4]9), the remark aftpr {4.9, #[26, |4.54) and the definitién of

(H4.0)). There are at moéI(l)Moc/" (C’ > 0) such differences of eigenvalues.

In view of (5.2) at stage + 1, the first equation irf (6.21) removes aBet1 C T'iy1
with

- B
mesipa<e ™  (0<p’ <p)

- e—[(i+1)c/2(logM)C/2]ﬂ” &« M~U+D/5 (6.22)
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on using[(5.p) and choosing

C> OQ)logM ’
B
which is always possible.
Since _
lwisr — will < 8 = M~ < 1/mM™4 (6.23)

from (5.2[5.3[ 6.20), we only need to remavg 1 such that
lIn - wisallr < ¢/Inf"
for M’ < |n| < M1, which removes a sét; 11 C I';;1 with
mes [iy1 < O/ M4 « M~0FD/5, (6.24)

Renamex asa;, anda asa; 1. From ),0(,'.,.1 =a; — M~UHDS 5 /2 uniformly

in i. Combining [(6.2p, 6.34), we have (H4.0) at stage 1 and [(6.1P) is preserved. We
have thus made a complete induction step from stage + 1.

7. Proof of the Theorem

The “proof of the Theorem” is now just a matter of juxtaposing Sections 4, 5, 6 and
recalling the sequence of events. We recount the spine of the argument.
We use the modified Newton scherfie [3.9) to construct approximate solutions:

Air1y = yiy1 —yi = —[InG)] 2F (), N =M+, (7.2)

whereTy is T restricted on N, N1V, andT and F are as in[(3[d-3]%, 3.1). Assume
we have obtained the firsiapproximationss, . . ., y; on a set of interval®% > A1 >
.-~ D A;. To obtainy; 1, we need to controlly (y;)]~* with a further restriction on the
new set of intervalg\; ;1 in (w, V) space. This is accomplished as follows.

To estimately (y;), we cover M+, Mi+1]4+v with the interval M, M9+ =
I and smaller intervalg = [—Mo, Mo]?™’ +k, M'/2 < |k| < M1, Mg ~ (log N)€/?
asin ).Tf1 is “good” on A; by using perturbation theory. Theintervals are divided
into two types as in Section 5, according to their distances t@thaxis (see equations
(a) and (b) between (5.1 14)),‘1 of type (@) is easily obtained by using the manifest
exponential decay properties gfand a direct incision in the frequency space. The main
task is to controITJ‘l of type (b), which leads to further incisions in the frequency space,
hence to the new set of intervais ;1.

Since|J| « |I|, we may considef; (y;,) instead of7,(y;) for someip « i as
in (5.28). We add a parametérto 7,(y;,) and estimate the measure of the setof
on the complement of Whiclﬂ]f”]*l is “good”. This is Lemma 4.1. We then use the
decomposition Lemma 5.3 to transfer the estimatiimo estimates i, giving rise to
the new set of intervala ; ;1.
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On A;41 we constructy; 41 according to (7.1). Using th@-equations[(2.72), we
obtainT; ;1. The firstip approximations are constructed by using direcs series, in
order that Lemma 4.7 and hence Lemma 4.1 are avail&bte:% log |log(e + 8)| from

) and the third expression .9) after setthg= 1\70C and determining, hence.
(6.20) gives the rate of convergence of this Newton scheme and hence the Theanem.

Appendix: Localization results for random Schrddinger operators

A random Schiddinger operator is the operator
H=e¢A+V ont*Z%),

wheree > 0 is a parameterA(i, j) = 1if |i — j| = 1 and zero otherwise, arid =
{vi};eza is a family of independent identically distributed (i.i.d.) random variables with
common probability distributiog. The spectrum of{ is given by

o(H) =0(cA)+ 0o (V) =[—2ed, 2¢d] + suppg, a.s.

We summarize below the known results on Anderson localization, which are relevant
for the present construction (cf. [DJLS1,2, vDK, GB, GK, Mi, Si]). This is an expanded
and more complete version of the appendiX_in [BW].

ForanyL € N, let A; (i) denote any elementary regionZf with diameter Z, center
i € 74 as defined in[(4.19, 4.]11) with? replacingZ¢*". Let Hy, ;) be H restricted
to Ap(i). Letm > 0 andE € R. The setA (i) is (m, E)-regular (for a fixed V) if
E & U(HAI(i)) and

1Ga,)(E; j, )| < e ™=/ (A1)

forall j, j € Ap(i) with |j — j'| > L/4. The following theorem is an immediate corol-
lary of the corresponding theorem [n [vDK] pertaining to cubes, by covering elementary
regions with cubes and then applying the resolvent equation (cf. Lemma B).

Theorem A. Let/ C R be a bounded interval. Suppose that for sabge- 0,
Prol forany E e I either Az, (i) or Ar,(j) is (mo, E)-regular} > 1 — 1/L§”/ (A2)
for somep’ > d andmg > 0, and anyi, j € Z with |i — j| > 2Lg, and
Prob{dist(E, o (Hx, o) < e~} < 1/L7 (A3)
for somes with 0 < 8 < 1 andg with
q > 4p' +6d (Ad)

and all E with
dist(E, I) < 31",
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and allL > Lo. Then there exists, 1 < a < 2, such that if we seL;;1 = [L{] + 1,
k=0,1,..., and pickm, 0 < m < mo, there isQ < oo such thatifLg > Q, then for
anyk=0,1,...,

Prolf for any E € I either Ay, gy or Ay, is (m, E)-regular} > 1 — 1/L,f"’, (A5)

foranyi, j € Z4 with |i — j| > 2Ly.

Remark. On the same probability subspace,

. BT
dist(o (Ha,, ()), o (Ha, () > ¢ ", B >0, (AB)
if |i — j| > 2Lg. This is part of the proof of Theorem A.

Let S ¢ Z4 be an (arbitrary) finite set. Léis be H restricted taS. If the probability
distribution is absolutely continuous with a bounded dengijtyve have the following
Wegner lemma:

Prob{dist(E, o (Hs)) < k} < Ck|S| |I€lleo, C,k > 0. (A7)

(A2) is satisfied ife is sufficiently small. (A3, 5) are provided by (A7) € lco < oo.
More precisely, if we fix O< 8 < 1, and choosg’ and hencd.q sufficiently large, then
there exist sufficiently small such that (A2, 3) are satisfied. We note from (A4) that the
larger theg’, the larger thep’ could be. In view of (A5)g4’ can be chosen large Ifg is
large. Sop’ can always be large enough by choosirgmall enough for the construction
in this paper (cf. proof of Lemma 4.1).

Theorem A implies that for O< ¢ « 1 and||gllcc < 00, 0 (H) has pure point
spectrum almost surely. The pure point spectrum is dense. However, it is simiple [Si]. Let
v (n € Z%) be then™ eigenfunction ofH. Then

V(D < Crwe™™ V0 <m' < m).
Further improvements of technology (see [A, DIJLS1,2, GB, GK]) give in fact

[¥n ()| < CooPoy(jn,o)e ™™ 1 nol, (A8)

where the centerg, ., satisfy|j, .| > n*/“, andP,, is a polynomial which only depends
onw.

A resolvent estimate

Lemma B. Suppose\ C Z4*" is an arbitrary set with the following property: for every
x € A, there is a subseW (x) Cc A withx € W(x), diamW(x) < N and such that
Green’s functiorG y (. (E) satisfies, for certaim, N, A > 0,
1Gwe (BNl < A, (B1)
IGwe)(E; x, )| <e™™  forall y € 8, W(x). (B2)
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Hered, W (x) is the interior boundary of¥ (x) relative toA given by
(WX ={y eWx) |FTze A\ W), |z—y|=1}. (B3)

Then
IGA(E)| < 2N2A

provided4N2e—N < 1/2.

See[[BGS], where it is stated as Lemma 2.2, for a proof using the resolvent equation. See
also the proof of Lemma 5.1 in Section 5 of the present paper for an essentially identical
exercise in the resolvent equation. O
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