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Abstract. We consider systems of weakly coupled Sxlinger equations with nonconstant po-
tentials and investigate the existence of nontrivial nonnegative solutions which concentrate around
local minima of the potentials. We obtain sufficient and necessary conditions for a sequence of least
energy solutions to concentrate.
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1. Introduction

Starting from the celebrated works [8,1 12] 26], the recent years have been marked out
by an ever-growing interest in the study of standing wave solutions to the semilinear
Schiddinger equation (NLS)

ig + Ap+16°%0 =0 inR3x (0, 00),

wherei denotes the imaginary unit. As a related problem, a large amount of work (see
[1, 14,18,[13, 15[ 20, 27] and references therein) has been devoted to the study of the
semiclassical states for (NLS), namely the study of the singularly perturbed equation
—&2Au + V(x)u = u3in R3 for ¢ going to zero, wherd (x) is a potential modeling
the action of external forces. Under different hypotheses on the potéhttahas been
proved that there exists a family.} of solutions which exhibits a spike shape around the
nondegenerate critical points Bfand decays elsewhere.

From a physical point of view, the nonlinear Sgtlinger equation arises in the study
of nonlinear optics in isotropic materials, for instance the propagation of pulses in a
single-modenonlinear optical fiber. However, a single-mode optical fiber is actumily
modaldue to the presence of some birefringence effects which tend to split a pulse into
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two pulses in two different polarization directions. Menyuk|[19] showed that, under vari-
ous simplifications and variable scalings, the complex amplitudes of the two wave packets
¢ andyr in a birefringence optical fiber are governed by a system of two coupled nonlin-
ear Schodinger equations ((CNLS) for short). Looking for standing wave solutions leads
to study the following elliptic system:

—Au+u = u3+ bviu in R3,

2 _ 3.2 inR3 (1.1)
—Av+owv=v>+buv INR?

whereb is a real-valued cross phase coefficient depending upon the anisotropy of the

fiber, andw is the frequencies ratio of the two waves. Physically> 0 is known as

the attractive case, wherehas< 0 is the repulsive case. Apart from some special cases,

the study of[(T]) is pretty complicated. This is because of the presersesmiifivial or

scalarsolutions: indeed, there always exist the solution®), (0, v) with u, v solutions

of the single equations iff (3.1); then it becomes physically relevant to know whether or

not a solution found is really vectorial, i.e. with both components nontrivial. Recently, this

problem has been tackled in [2/ 3| 7] 17,[18, 25] by different methods. In particular] in [18]

it has been proved that fersufficiently small every ground state solution necessarily has

one trivial component, while fas sufficiently large the ground state solutions have both

components positive. As far as the semiclassical states are concerned, we are naturally

led to study the system

—2Au+ V(x)u =u® +bv2u  inR3,
2 3 2., inR3 (Se)
—e“Av+ Wx)v =v°+ bu“v InR°.
This is the goal of this paper. We will assume that the potentialy are Hlder contin-
uous functions ifR3, bounded from below away from zero, ands a small parameter
which will approach zero. Our intent is to show the existence, for smalf a nonneg-
ative (i.e. with nonnegative components) least energy solutigyw.) and then to prove
sufficient and necessary conditions concerned with the concentrati@n,af,) around
the local minimum (possibly degenerate) points of the potentials, which are supposed to
be in the same region. Aiming to use variational methods, we will consider the functional
J. associated td¥), which satisfies all the assumptions of the mountain pass theorem
([6]) except for the Palais—Smale condition since we do not assume any global condition
onV, W. Then we will use a vectorial adaptation of the argument in [13]; namely, we
will perform a penalization of/,, exploiting the homogeneity of the nonlinearities, out-
side the region containing the minimum points of the potentials, so that we will consider
a modified functional which satisfies all the hypotheses of the mountain pass theorem in-
cluding the Palais—Smale condition. To show the concentration, we will argue on the sum
ug(x) + ve(x) proving that it is uniformly, with respect to, bounded away from zero,
and by taking advantage of the known properties of the autonomous system we can show
thatu.(x) + ve(x) has exactly one global maximum point, which tends to a minimum
point of V or W. Here we cannot be more precise without assuming some conditions on
b, as one ofi, andv, may vanish as — 0. Namely, we can show that férsmaller than
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a positive constartip (defined in[[2.p)) eithen, or v, necessarily expires and the other
tends—up to scalings—to the least energy solution of the corresponding autonomous non-
linear Schodinger equation. Wheh is large (greater than a positive constantefined

in (2.3)) bothu, andv, survive and we recover a least energy vectorial solution of the
autonomous system (see Theofen) 2.1). As physically reasonable, for materials with low
anisotropy, one component of the system dominates the other, since the low birefringence
is not able to split a soliton-type solution in two distinct pulses. Recently, the repulsive
caseb < 0 (a model for the Bose—Einstein condensation) was studied in [21]. We stress
that the methods used therein are very different from ours, since the change of sign of the
constant produces a different behavior of the solutions (see also [14] for the case of a
single equation).

Concerning the necessary conditions for a sequence of solutions to concentrate, in
contrast to the scalar case with power nonlinearity[([1, 5]), we cannot in general derive
an explicit representation of the so called ground energy fun&i¢see formulaq(2]8)—
(2.9)). The underlying philosophy is that when the limit problém](1.1) lacks uniqueness,
the ground energy function, which will be shown to be at least locally Lipschitz continu-
ous, may lose its additional smoothness properties. Nevertheless, in this framework, along
the lines of[[24], we prove that a necessary condition for a family of solutiens.) to
concentrate around a given poinis thatz is a critical point, not necessarily a minimum
point, of ¥ in the sense of the Clarke subdifferentigl, that is, O d¢ X (z). Moreover,
due to the previously mentioned characterization of least energy solutions in terms of the
coupling parameter (see Propositiop 3.18), we partition the concentration pdiritgo
three classe§ = &y U Ew U Ex, where

Ey x Ew x Ex C Crit(V) x Crit(W) x Critc (2).

Here Cri( f) (resp. Crit(f)) denotes the set of classical critical points (resp. critical
points in the sense of the Clarke subdifferential) of a funcffomn this partition we can
see again that if a family of solutions concentrates around a given point then we derive as
a limit problem either a single equation or the entire system, depending on the value of
Namely, we will find some positive constaig’ < b7° < b3° such that for < bg° we
obtain a single equation as the limit problem, for 55° we show that if a family of least
energy solutions concentrates, then its scaling around a minimum point of the potentials
converges to a real vectorial least energy solution of the autonomous system.

The plan of the paper is the following. In Sectjgn 2 we introduce the functional setting
and the statements of the main results. In Sedtjon 3 we prove sufficient conditions for
concentration, and in Sectiph 4 necessary conditions.

2. The functional framework and main statements

Let V(x) andW (x) be Holder continuous functions iR® and suppose that there exists a
positive constank such that

V(x), Wx)>a forallx e R3. (2.1)
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In order to study(S,) we use variational methods, so that we introduce the Hilbert space
H = {(u, v)e H x H': / V(x)u? < oo, / W(? < oo},
R3 R3

where H! = H1(R®) is the usual first order Sobolev spaceRA. The norm inH is
1, OIE = llullZy + vIZ . where

lullZ v =82||Vu||§+/R3V<x)u2, 112 w =82||Vv||§+/Rs W)w?,

¢ being a small parameter afid ||, the standard norm ih” = LP(R3)forl< p < 0.
We will study the functional/; : H — R defined by

1 - 1 5
Je(u,v) = Ellulle,v + EIIUIIS,W ™ Jos F(u,v),
where we have set
1 .
F(u,v) = Z(u4 + 2bu?v? +v*)  withb > 0.

It is easily checked thal, is well defined and of class® onH. A nontrivial solution of
problem(sS;) is a couple(u,, ve) # (0, 0) in H which is a critical point of/,.

We denote byB(x, r) the open ball centered atwith radiusr, and byd B(x, r) its
boundary.

Concerning sufficient conditions for concentration to occur, we will prove two main
results; the first is the following.

Theorem 2.1. AssumeZ.7) and that there exist € R3 andr > 0 such that

Vo= min V < min V, (2.2)
B(z,r) dB(z,r)

Wo= min W < min W. (2.3)
B(z,r) dB(z,r)

Then there existsy > 0such that, for ever® < ¢ < &g, problem(S,) admits a nontrivial
solution(u,, v,) € H, withu,, v, > 0, such that the following facts hold:

(i) us + v has exactly one global maximum paigte B(z, r) with

lim V(x,) =Vo or lim W(x,) = Wp. (2.4)
e—0 e—0

Furthermore, there exisgi1, x> > 0 such that, for every € R3,

e (X) + ve(x) < pae M2,
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(i) Definebg < b1 by

bo = maxy/Wo/ Vo, v/ Vo/ Wo}, b1 = maxth(v/Wo/ Vo), h(v/Vo/ Wo)}, (2.5)
with

s 1\? 5243
h(s)=m|n{3—2<7+ 5—2) -1, 2 } (2.6)

Then the following facts hold:

—if b < bg, then there exists > 0 such that for all0 < ¢ < &q,
eitheru,(x;) — 0andv.(x;) > o, orv.(x,) — Oandu.(x;) > o.
—if b > b1, then there exist > 0 such that, for all0 < ¢ < ¢g,
ug(xg) > 0, ve(xp) > 0.

Remarks 2.2. 1. Actually, we can be more precise in conclusion (ii) of Theofer 2.1.
Indeed, if Vo < Wy thenu, converges to zero while; (x.) remains bounded away
from zero; otherwise iWp < Vg thenu, survives and, expires (see Remafk 3.4 for
more details).

2. Inthe case/ = W, we havebg = b1 = 1. Forb < 1, (ue, v,) converges (up to
scalings) to the least energy solution of one of the equations. i while forb > 1,

(ue, ve) CcONverges to a real vector solution of the systeh).

3. The constantsg andb; depend only on the minim&gp, Wo, so thatV and W may
have a degenerate minimum point or a closed, connected bounded set of nonnegative
measure of minimum points.

4. When considering the action of external forces in the propagation of pulses in optical
fibers, the potentials in the model problem &réc) andW(x) = V(x) + ¢ withc a
positive constant. In this case the result follows just by assuming that (2.2) holds.

We can also prove a more general result than Theprejm 2.1. In order to do this, let us
define the functional, : H! x H' — R with frozen potentials,

1 1
Lu,v) = 5||u||§+ Envuf — /RS F(u,v), (2.7)

whereul|? = |[Vull3 + V(2)||ul/3 for everyu € H?. The critical points off, are the
solutions of the system

—Au+V@Qu=u+bv2u inR3
(S2)

—Av+ W(v =v3+bu?v inRS.
TheNehari manifoldassociated td, is defined by

N, = {(u,v) € H* x H'\ {(0, 0)} : (I} (u, v), (u, v)) = O}, (2.8)
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and the infimum of/, on \V, is denoted by

X(2) = i/r\}zflz. (2.9)

Following the same argument of Lemma 3.1[inl[18], it is possible to prove that the moun-
tain pass level of, is equal toX(z). In the following we let(¢,, ¥.) # (0, 0) denote the
point wherel, achievess (z), that is,(¢;, ¥) will be a least energy solution d§{) (see
[9] or [18], for example).

Because of this property, the functi@his known as theround energy functioand
plays an important role when studying necessary and sufficient conditions for the concen-
tration to occur, as the following result shows.

Theorem 2.3. AssuméZ.1) and that there exist € R® andr > 0 such that

o= mMin X < min X. (2.10)
B(z,r) 3B(z,r)

Then there existsy > 0such that, for ever® < ¢ < gg, problem(S,) admits a nontrivial
solution(u,, ve) € H, withu,, v, > 0, such thatt, + v, has exactly one global maximum
pointx, € B(z, r) with

IimOE(xg) = o, (2.12)

e—

and conclusiongi) and(ii) of Theorenf2.J hold true.

Remark 2.4. Theoren{ 2.B is more general than Theofem 2.1. Indeed, condifiofs (2.2)—-
(2.3) imply the desired informatiofi (2]10) (see for the details the proof in Sgctipn 2.1).
However, Theorerfi 2|3 is an abstract result since we cannot write down explicitly the
function X, due to the possible lack of uniqueness of least energy solutioffi§)ofl{
would be interesting to see if, by assuming tlahas a ‘topologically nontrivial’ Clarke
critical point, the concentration still pops up.

Aiming to state a necessary condition for a family of solutigns v.) to concentrate
around a poing, we need a few preliminary definitions.

Definition 2.5. Letz € R3 and letb. > 1 be defined by

b, = max{ TACRAAC) } (2.12)
: Vo VW@ | '

Op=1{zeR3: b, > b)}.

For everyb > 0, we put

Next we define the concentration sets.
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Definition 2.6. Theconcentration sebr systen{S;) is defined by

& = {z € R® : there exists a sequence of solutians, v,) € H of with
ug(z + ex) + v (z + ex) — 0as|x| — oo uniformly with respect

toe ande 3/, (u, v.) — =(z) ase — O}.
We also introduce the following subsetsof

Ey i={z€ENOy:us(z) > 8 forsomes > 0and anys > 0},
Ew i ={z€&N0Op:v.(z) >4 for somes > 0and anys > 0},

52 IZE\Ob.

In general the functiort is not known to be differentiable, but it is always locally Lip-
schitz, as we will see. On the other hand, we need to consider the critical poin{sof
that we will use the Clarke subdifferential (s€el[11]), which is well defined for a locally
Lipschitz function. We will need the following definition.

Definition 2.7. For V, W e CY(R®) and T e Lip,.(R®) we denote byCrit(V) and
Crit(W) the sets of critical points i@, of V and W respectively, and b@ritc (X) the set
of critical pointsz ¢ O, of X in the sense of Clarke subdifferential, that is,

Crit(V) ={z € Op : VV(2) = 0},

Crit(W) = {z € Op : VW(z) = 0},

Critc(2) ={z € Op : 3cX(2) 2 0},
where
IcS(z) = {n e R®: 2%z w) > n - w for everyw € R3},
»9(z; w) being the generalized derivative Bfat z alongw € R3, defined by
h)) rw) — X
2%z w) = lim sup & +Aw) (S).

=z A
r—0F

We can now state the following necessary condition.
Theorem 2.8. Assumd2.1) and thatV, W e C1(R3) with
IVV(x)| < B’ and |[VW(x)| < Be’™!, (2.13)

for all x € R3 and for some constan$ > 0 andy > 0. ThenX is locally Lipschitz
continuous and the following facts hold:

(@ & NEwN{zeR3:V(z) # W)} =0and
E=EyUEw UEy,

where
Ey x Ew x Ex C Crit(V) x Crit(W) x Critc(2).
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(b) If V,W e L™, letbg® < by® < b3° be defined by

bg® = max{y/a/[[V oo, vt/ [Wlloo}. (2.14)
2 =max{y/IVllco/a, VIWloo/a}, (2.15)
b5° = max(h(y/[[Vlloo/@), h(/[Wlloo/@)}, (2.16)
wherer is defined in(2.6).

Then

P EyU&y forall b < by,
~és forall b > b5°.

In addition, for every> > b5° both the components of the solution remain bounded away
from zero from below.

Remark 2.9. As &y C Critc(X), in particular, forz € £x, we have
0eCof lim VE(&): & ¢ Dandg; — 2},
j—o0

where Co denotes the convex hull abdis any null set containing the set of points at
which X fails to be differentiable. This follows by a well known property of the Clarke
subdifferential (see e.d. [11]).

Remark 2.10. Assume for a moment that syste§i) admits a unique ground state solu-
tion, up to translations. Then, in light of formul@s (4.15) it follows tRais differentiable

atz, dcX(z) = {VZ(2)}, and henceyVX(z) = 0 provided that; € £x. On the other
hand, we point out that, in generdB} lacks uniqueness of ground state solutions. For
instance, ifb = V(z) = W(z) = 1 andU is the unique solution te-AU + U = U3

in R3, then the pairgcog6)U, sin(@)U) with 0 < 6 < /2 are all ground states solu-
tions. In the cas® < 1, by the results of [18] the system has at least the scalar least
energy solutiong0, U) and (U, 0). In the caseé > 1, we suspect that the system has a
unique ground state solution. However, up to now, a proof seems out of reach.

3. Proof of Theorem[Z2.1

We will follow the arguments used in [1L3] for a single equation. et 0 be such that

o

3v/maxl, b} 3-1)

Yy <
For anys, tr € R, set
1 .
—(s4 + 2bs?t? + t4) if s4+ 2bs%t2 + 14 < y2,

2
54 1 2bs22 4 14 — VT if 54+ 2bs22 4+ 14 > 2,

Fy(s, 1) =

NI D
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it follows that
((s2 + br2)s, (12 + bs)1) if 5%+ 2bs2t2 + 14 < 2,
VFi(s,t) =1 ((s*+ bt?)s, (12 + bs?)1)
N4 + 2bs2t2 + 14
It is easy to see thak; € CL(R?). Let B(z, r) be a ball withz satisfying conditions

(2:2)-[2.3); we define

G(x,s,t) = x()F(s,t) + (1 — x(x)) Fu(s, 1)

if 5%+ 2bs%t2 + 14 > yz.

for a.e.x € R% and anys, 1 € R, wherey is the characteristic function @(z, r). In the
light of the above definition, it follows that for evety, r) in R?,

0<3G(x,s,t) <VG(x,s,t)-(s,t) Vx e B(z,r), (3.2)

and, for everye ¢ B(z, 1),
1 5 o
0<2G(x,s,t) <VG(x,s,t)-(s,1) < E[V(x)s + W)l withk >3, (3.3)

We study the functional
Je(u, v) = Ellullg,v + EIIUIIS,W " s G(x,u, v).

Note that/, is of classC! onH and its critical points solve the system

—2Au+V@u =G,(x,u,v) inR3, (3.4)
—&2Av+ W(x)v = Gy(x,u,v) inR3. '
For eache > 0 fixed, we will find a critical point of/, by applying the mountain pass
theorem ([6]), so that we define

ce = inf sup J(y (1)), (3.5)
Y€l tef0,1]

wherel’ = {y € C([0, 1], H) : y(0) = (0, 0), J.(y(1)) < 0}. Arguing as in Lemma 2.1
of [13] and as in Lemma 3.2 of [18] one can prove that

Ce = inf supJ. (tu, tv). 3.6
© T e\ (0.0) ag ¢ (3.6)

Moreover, we will compare, with the level = (z) (defined in [[2.P)) of a ground state
solution (¢;, ¥) of the limit system[§). It is well known (see e.g[ [10]18]) that the
functionsg,, ¥, are radially symmetric, nonnegative, and decay exponentially to zero at
infinity.

First of all, we show thafl, possesses suitably estimated critical values.
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Lemma 3.1. Assumd2.7)). ThenJ, has a nontrivial critical point(u, v,) € H such that

Te(ue, ve) < €3(2(2) + o)), (3.7)
whereo(1) — 0ase — 0. Moreover, there exists a positive constagsuch that
luellZy + lvell2 y < coe. (3.8)

Proof. Note that(0, 0) is a local minimum of/;, sinceJ; (u, v) > cl|(u, v)||%, provided

that|| (u, v)||i is sufficiently small. Moreover, ldip, ¥) € H with supd¢) U supgy) C

B(z,r) and observe thal, (t(¢, ¥)) — —oo ast — ~+oo. Then we can construct a
Palais—Smale sequence at laye(defined in[(3.F)). Condition§ (3.2) ar{d (B.3) imply that
hypothesigg3) in [13] is satisfied in our context, so that the compactness of Palais—Smale
sequences can be recovered following the proof of Lemma 1[1n [13]. By applying the
mountain pass theorem {[6]), we get a nontrivial critical pgift v.) at levelc,. In order

to show estimaté (3/7), we need to consider a suitable pair of functions which models the
concentration phenomenon. Define the functions

N xX—z . X—z
u(x) = 7700‘&(7)» v (x) = U(X)Wz< )

&

wheren is a smooth function compactly supportedBiiz, r) and such that = 1in a
small neighborhood of and(¢;, v) is a ground state solution of proble@i). From the
definitions ofG (x, s, t) andn(x) we deduce thal, (tu*, rv*) = J, (ru*, tv*), so that it is
easy to compute the supremumJfru*, tv*) for r > 0, and by usind (3]6) we derive

Je (e, ve) = ¢ < supJe(tu®, tv*) = e3[2(z) + o (1],
>0

that is, [3.7) holds. Finally, usin§ (3.7), the weak form[of|3.4) tested withv.) and
(3-2). [3:3), it is possible to get aldo (B.8). 0

In the next proposition the asymptotic behavior outsilg, ») of the critical point
(ug, ve) found in Lemma 311 is studied.

Proposition 3.2. Assume(Z.1) and thatz € R® andr > O satisfy conditiong2.2) and
(2:3). Then for every > 0 there existgs > 0 such that

sup sup  (ug(x) + ve(x)) < 8. (3.9)

O<e<es xeR3\B(z,r)
Proof. Let us first prove that

lim  sup (ug(x) 4+ ve(x)) =0. (3.10)

>0 ye3B(zr)

We proceed by contradiction, assuming that there exist a seqigrjoceonverging to 0
and a sequende,} C dB(z, r) such that, for some positive constght

ug, (Xy) + Vg, (xy) = B foralln > 1. (3.112)
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Sinced B(z, r) is a compact set, we can assume that there exists a subsequéngk of
still denoted by{x, }, which converges to a point € d B(z, r). Consider the scalings of
ug, andv,, centered at,,, that is,

Pn(x) = Ug, (xn + &nx), Yn(x) = Vg, (xn + €nx),

which are critical points of the functiond), defined inH by

In(u, v) = §||u||1,v(xn+5nx) + §||v||l,W(xn+8nx) - /R3 G (xn +enx, u, v),
so that the couplép,, ¥,,) solves the system

=A@y +V(xp +epx)Pp = Gu(x + X, G, VY),

(3.12)
=AYy + Wy + 60X)¥n = Gy(xn + &nX, P, Yn).
Notice that, by a simple change of scale, one can check that
jn(¢n, Yn) = 5;3jen (M&‘ns Us,,)~ (313)

From [3.8) we know that the sequenegsand, are bounded ir%; this, (3.12) and
elliptic regularity estimates imply thg, andy,, convergeC? on compact sets to a couple
(¢, ¥) € H, which by [3:11) must be nontrivial. In addition, there exists a function
& € L*® with 0 < & < 1 such thaty (x,, + e,x) converges t§ weakly* in L. Then the
pair (¢, ¥) is a solution of

~A¢ +V@0)p = Gulx. ¢, ).
—AY + W)Y = Gulx. 6. ).

Wherea(x, s,1) =EWX)F (s, 1) + (1 — £(x)) Fu(s, t). The preceding system is the Euler
equation of the functional

1 1 ~
ot 0) = 5113y + 5100 wrg /Rg Glx.u.v).

On the other hand, conditiors (B.2) afd [3.3) allow us to follow the same arguments of
Lemma 2.2 in[[1B] to deduce that

lminf J, @, ¥n) > Jio(@, ¥)- (3.14)

Indeed, consider the function

_1' 2 2 2 2
hy = 2[|V¢n| + VY| + Vg 4 £,0) ||+ W(xy + £0) 90|
— G(xp + &nX, Pn, Yn).
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ChoosingR > 0 sufficiently large, from thec! convergence ob,, v, over compact
sets, and sincg andy belong toH1, we have, for every > 0 fixed,

n—oo

lim / T = Jxo (@, ) — 6,
Br

where By stands forB(0, R). Moreover, taking;g a smooth cut-off function such that
ng = 0 onBg_1 andng = 1 onR3\ Bg, and using as test function ih (3]112) =
nR(én, ¥n), We obtain

liminf h, > =6,
n—oo ]R3\BR

yielding (3.14). Sincé¢, v) is a critical point ofJ,, we have

o (@, ¥) = MaX Ty (1 (. Y1) (3.15)

Moreover,F (s, 1) > Fu(s, 1), SO thatG(x, s, 1) < F(s, t), which, together with[(3:15),
implies that

Jio (P, V) > ( iansupIxo(t(u, v)) = X(xp). (3.16)

u,v)e >0

From assumption$ (3.2], (2.3) it follows thE{xg) > Vo and W (xp) > Wo; this means
that = (xg) > =(z), whereX(z) is defined in[(2.9). This[(3:13], (314) afd (3.16) yield

2(z) < Jxo((p’ Y) < “nrilorlf Jn(Pn, ¥n) < Z(2), (3-17)

which is a contradiction, proving (3.]10).

We are now ready to conclude the proof of the result.sFix 0; from (3.10) it follows
that there existss > 0 such that < u.(x) < § and 0< v, (x) < 8 foranyx € dB(z,r)
ande e (0, g). It follows that(u, — §)™ = 0 and(v, — 8§)™ = 0 ondB(z, r) and hence
we can choose

Pe = (g — 5)+X{|x—z|>r} € Hlv Ve = (Ve — 5)JFX{l)c—z\>r} € Hl

as test functions for systein (B.4). By multiplying and integrating @/ewe obtain

/ %V (e — 8) 12+ VOue e — 8)T — Gulx, e, ve) e — 8)™)
R3\B(z,r)
+ / %IV (e — )12+ W) ve (e — 8)T — Gy(x, e, ve) (v, — 8)T) = 0.
Rg\B(z‘r)

Note that, since we can write

Gu(x,ug, vg)

Gu(x,ug, vg) = Ug
0 |f ug(x) = 07

[(ue —8) + 6] if us(x) >0,
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and G
Guliltes¥ed o, 5y 48] it u@) >0,
Gy(x,ug, veg) = Ve
0 if ve(x) =0,

the preceding identity turns into
/ 2|V (e — 8) 12+ Te ()| (e — &) T2+ Ye(x)8(ue — 8)™)
]R?’\B(z)

+ _/ V(e = TP+ A0 (v — TP+ A (0)8(ve —8)T) =0,
R3\B(z)

where we have set

u2(x) + bv?(x)
Vud(x) + 2bu2(x)v2(x) + vﬁ'(x)’
vsz(x) + bug(x)
Vud(x) + 2bu2(x)v2(x) + vf(x)'
By (3.7), itis easy to show thaf, (x) > 2«/3 andA. (x) > 2a/3 for all x with u:(x) > 0

or ve(x) > 0, which implies thai(u.(x) — §) = 0 and(u.(x) — 8)* = 0 for every
x & B(z,r) and every O< ¢ < g, yielding the assertion. O

Te(x) =V(x) -y

Ae(x) =W(x) —y

When proving Theorem 2.1 we will use Theorem 2.9[of [18] which gives a necessary
condition for the existence of a vector ground state (that is, a ground(atate with

u > 0 andv > 0) for an autonomous system. Here, for the reader’s convenience, we
briefly sketch the proof in the presence of two different constant potentials.

Proposition 3.3. Letky, k2 > 0and (u, v) € H! x H! be aleast energy solution of the
system

—Au + k1w = ud + bv2u  inR3,

3.18
—Av + kv = v3+ bu?v  inRS. ( )

Define

bo = max{y/i1/i2, Vica/ka}, by = maxth(y/k1/k2). h(y/k2/k1)}, (3.19)
wherefi (s) is defined in(2.6). Then the following facts hold:

(@) if b < bgthen eithemt = 0andv £ 0, 0oru # 0andv =0,
(b) if b > b1 thenu # 0andv # 0.

Proof. Suppose thatu, v) is a vector ground state 4f (3]18) and assume, without loss of
generality, that O< x> < k1. Consider the functions
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Then the above system becomes

—AU+u=u+bv%u  InR3,
—AT 4 0?0 = T3 + bii’v  in RS,

where we have set? = k»/k1 < 1. Then conclusion (a) follows by applying 18, The-
orem 2.9], whereas conclusion (b) can be obtained by arguing as in the probfs of [18,
Theorems 2.3, 2.8] (see Remark 2.11 therein). O

Proof of Theorem 2]1By Propositior] 3.2, taking into account the definition®f the
pair (us, ve) # (0, 0) is a solution of[z). From elliptic regularity theory it follows that
ug, ve are nonnegative'? functions. Lets, be a local maximum point of the function
ug(x) + ve(x). Then

0 < —Aue +ve)(&) == V(Eue (&) — W()ve (&)
+ (Mg(és) + bvgz(gs))ue(ga) + (ng(ga) + blft?(fe))vs(‘ga)~

Using [2.]), there exists a positive radisindependent of, such that
(e +ve) (&) = 0. (3.20)

Let us first prove[(Z]4) of conclusion (i) in Theorém]2.1 arguing by contradiction. More
precisely, consides, — 0 andx, € B(z, r) a local maximum point ofi,, + v,,. Let

X, — x* € B(z, r), and assume that both(x*) > Vo andW (x*) > Wp. Then we can
consider the sequenceég(x) = ue, (X, + €nx), Yu(x) = vg, (x4 + €4x) and the limit

(¢, ¥), acritical point of the limit functional .. First, note thate, v) # (0, 0) thanks

to (3.:20); moreover, by virtue of the inequaliti®(x*) > Vo and W(x*) > Wy, the
critical level I« (¢, ) can be compared with (z), yielding again a contradiction. Then,

in order to prove conclusion (i) of Theorgm .1, it is only left to show the uniqueness of
the maximum point of the function, + v.. Assume by contradiction that there exist a
sequencde,} converging to zero and two local maximé, xf € B(z,r), which both
satisfy [3.2D). We consider the sequences

Gn(xX) = e, (x} 4+ £,x)  and P, (x) = ve, (x1 + £,%).

Arguing as before, we show that the cous,, v,) converges in theC? sense over
compact sets to a solutio@, ) of with z = x; andV(x1) = VoandwW (1) =
Wo. From [3.2D) we see thap, v) # (0, 0) and from [10] we deduce thd, v) are
nonnegative, radially symmetric functions. Then the sty has a local nondegenerate
maximum point, which, up to translations, is located at the origin. This fact andthe
convergence op, + ¥, imply thatx, = (x> — x1)/e, — oo. Then we can argue as in

the proof of [3.1}4) to get a contradiction. Indeed, we consider the function

1
hy = §[|V¢n|2 VY2 + Vxt 4 e0x)p2 + Wk + e,)02] — F(@n, ¥n).
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For everys we can choos& > 0 andng sufficiently large such thaBz N Bg(x,) = @
for everyn > ng and

Iim/ hy > La(p, ¥) — 8. (3.21)
Br(0)

n—00

Moreover,

. 1. _ i )
lim / h, = = lim {/ (V|2 + IVUn|? + V(X2 + £,x0) P>
Bgr(xp) Br

n— 00 2 n—o00

+ W2+ euxn) 2] — /

Bgr

Fén, um}

where we have pup, (y) = ¢n (Y + x0), ¥ (¥) = ¥ (v +x,). AsV(xh) = V(x?) = Vo
andW (x1) = W(x?) = Wp, we get

lim / hy > La(p, ) — 8 = La(g, ) — 8. (3.22)
n—00 Bg(xn)
Then, arguing as in the proof ¢f (3]14), we get
iminf J, (@u, ¥n) > 25 (1) = 2%(2),
n—o0
which contradicts(3]7).

In order to prove the exponential decay, notice that, by Propositigru3.and v,
decay to zero at infinity, uniformly with respect4oHence we fingp > 0, ® € (0, /o)
andeg > 0 such thau? + bv? < o — ©? andv? 4 bu? < « — @?for all |x — x| > &p
and O< ¢ < gg. Set

g:p(x) — Mpe—@)(‘x—xsl/é‘—l))’ Mp = sup max(ug + vs)’
(0,e0) 1XI=p

and introduce the set = .., Dg, Where, for anyR > p,

Dr ={p < |x| < R :us(x) 4+ ve(x) > £,(x) for somee € (0, eg)}.
Assume by contradiction that # @. Then there exisR, > p ands, € (0, gg) with
2c©

|x — x|

EZA(“;‘_p —Ug, — Vg,) < |:®2 — i|§',o — @2145* — ®2Us*
< ®2(§p —ug, —V;,) <0 inDgforall R > R,.

Hence, by the maximum principle, we get

Ep —Ug, — Vg, > min{ min (&, — ue, — vg,), Min (&, — ug, — vg*)}
[x|=p [x|=R
in Dg for all R > R,. Letting R — oo and recalling the definition df, yields

) — e, — Ve, = min{ min (£, — ue, — ve,), 0} >0 in U Dg.
[x|=p R>R,
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In turn, ue, (x) + ve, (x) < &,(x) for all x in UR>R* Dg, which yields a contradiction.
HenceA = ¢, and the desired exponential decay follows.

Now we prove conclusion (ii) of Theorem 2.1. Once again, let us(ggty,) =
(ug(xs + £x), ve(xs + £x)). Note that[(3.B) give§(de., ¥)llm < C and the paikee, V)
solves

—Age + V(xe + ex)pe = ¢ + byy2p.  inR3,
—AYe + W(xe + ex)Pe = Y2+ bp?ye  InR3.

From the conclusion (i) we deduce thatconverges tp, with V(p) = Vg andW(p) =
Wo, and(¢., ¥.) converges td¢, ¥), a least energy solution df (3]18) with = Vp and
k2 = Wo. Then, ifb < bo, in the light of Propositiofi 3|3, either = 0 ory = 0. Since
¢. andy. converge uniformly over compact sets, we see that either,) = ¢.(0) — 0
or v (xg) = ¥.(0) — 0. Similarly, if » > by, in the light of Propositiof 3]3 # 0 and
¥ # 0, and the assertion follows. O

Remark 3.4. In the previous theorem we have proved that the least energy solution
(ue, ve) converges (up to scalings) to a least energy[(by (3.7)) solggior) of

—A¢ + Vop = ¢° + byr?p,
—AY + Woy = ¥ + b2y

Moreover, forb < bg, one of¢, ¥ is necessarily zero; so thép, ) is actually either
(¢, 0) or (0, ¥r), with ¢ (respectivelyy) the unique least energy solution-efA¢ + Voo

= ¢° (respectively— Ay + Woyr = ¥3). Thus, if Vo < Wo, the least scalar energy
solution of [3.2B) iS¢, 0), yieldingv. (x.) — 0. Otherwise, ifWp < Vo, ue(x;) — 0.

(3.23)

Proof of Theorerp 2|3It suffices to run through the various steps of the proof of Theorem
[2.3 up to formula[(3.36). Now, in order to obta[n (3.17) we can use hypotHesig (2.10)
instead of[(Z.R)[(2]3) to get directly

2(2) < E(x0) = Jxo(@, ¥) = Iminf Jy (@, ¥n) < T(2),

asxgp € dB(z,r) andz € B(z, r), yielding the desired contradiction and thus eventually
proving Propositiofi 3]2. I, is the sequence of maximum points, thefx,) — Xo, as
otherwise one would get a contradiction similar to the one above. The dichotomy and the
exponential decay can be proved exactly as in the proof of Thegorém 2.1. O

4. Proof of Theorem2.8
To prove Theorer 28, the following preliminary lemma will be useful.
Lemma 4.1. Assume thav, W € C1(R®) satisfy(Z.13) If z € £, then
1@ VV(2) +r2()VW(2) =0 (4.1)

for somey1(z) > 0, y2(z) > 0, one of them being nontrivial.
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Proof. Letz € &, e, a Sequence converging to zero gnd,, v.,) a solution of problem
that satisfies the properties in Definitjon|2.6. Definéx) = u,, (z + e,x), Yu(x) =
ve, (z + £,x) and consider the lagrangiah: R® x R x R x R3 x R3 — R defined as

|£1]2 + |£2/2
2

By the Pucci—Serrin identity for systems [22, see §5], we have

3 3
Z / 8iheail/fn 3451/fn + Z f aiheai(pn 3&%
R3 R3

i,0=1 i,0=1

_ fRa divh L, @ns Y, Veou, Vi)

2 4 2.2 4
57 + 2bsis; + 55

2
S S
L(x,s1,52,81,82) = +V(z+8nx)El+W(z+enx)§2— 2

1
+ > /3 enh - [VV(z+ enX)cp,% +VW(z+ 8nX)1ﬁ,§],
R

for all h e C(R3, R3). Choose, for any. > 0,

TOx) ifj=¢,

. =123,
0 if j #£¢,

h;: R3 — RS, hf(x) = !

T e CL(R3), whereY (x) = 1if [x| < 1andY(x) = 0if [x| > 2. Then, forj = 1,2, 3,

3 3

> [ st + 3 [ 3axG0me. o,

i—1 /R? i—1 /R®

= /és AajT(kx)E(x, ©Ons Y, Vor, V)
1
45 [ TONVE +eg? + W+ a0yl
R
By the arbitrariness of > 0, lettingl — 0 and keeping fixed, we obtain
/S[aj V(z+eax)p2 + W +ex)¥] =0, j=123
R

By assumption[(2.13), there exists a positive consgarguch that, for allk € R3 and
j =1, we get|VV(z + e,x)| < Bre’™l and |VW (z + g,x)| < Bre?®™*!, so that,

invoking the uniform exponential decay ¢f, and v, lettingn — oo in the above
identity, we obtain

/R3(8jV(z)<pZ2 +yW@YH =0, j=123, (4.2)

where(g;, V) # (0, 0) is a least energy solution ¢§Y).
Therefore[(Z1L) holds withr (z) = ll¢. [l andy2(z) = [y I3. u]
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Proof of Theorer 2]8First, we will show thatE is a continuous function. Recall from
[18, Lemma 3.1] that, for every € R® andw € H! x H! with w # (0, 0), there
exists a uniqué (w, §) > 0 such that (w, &)w € N (defined in[(2.B)); the map —
O(w, &) is continuous andv — 0 (w, &)w is a homeomorphism of the unit sphere of
H' x H' on . In order to prove thak defined in[[2.p) is continuous, first assume that
the potentiald/ (x), W (x) are positive constantis, W € R*. Following the lines of[[23],
we show the continuity of the ma@y, W) +— ¢(V, W), wherec(V, W) is the mountain
pass level of the functiondl,  : H! x H! — R defined by

1
Iy.wu, v) = é/}R3[|W|2+ IVu|? + Vu? + Wo? —/RSF(u,v).

The following equalities hold (see Lemma 3.1[in][18]):

c(V, W) = inf maxly w(tu, tv) = inf Iy w, 4.3)
HlxH\(0,0) >0 Ny.w

whereNy w is the Nehari manifold associated g y . Note that[(4.B) implies that prov-
ing the continuity of the map(V, W) is equivalent to showing the continuity of the map
(V, W) — X(V, W). Let us first show that

lim c(V +n, W+n) =c(V,W). (4.4)
n—0

It is readily seen that the following monotonicity property holds:
Vi> Vo, W1> W = c(Vi, W1) = c(Vo, Wo). (4.5)
By virtue of (4.5), we get
Iirra cV+nW4Hn =c <c(V,W). (4.6)
n—-u-
Letn, — 0~ andé, — 0" ash — oo. By the definition ofc(V + n, W + ) and

(@3), and since the mapinduces a homeomorphism of the unit spheréidfx H* on
NV 4y Wy, there existsuy, vy) € HY x H' such that

IVunlls + 1Vorll3 + lunlls + vl = 1, 4.7)
rtn>%X1v+nh,W+nh (tup, tvp) < c(V 4+ nn, W+ np) + 8. (4.8)

We will first show tha® (u;,, vy,), given by

(4.9)

D /nwhn% IVorll3+ Viiual3 + Wilvall3
’ lunllg + Nvallf + 2bllunvall3

remains bounded. Arguing by contradiction, suppose, in viey of (4.7), that

lunllg + lvnll + 2bllupvsll3 — O. (4.10)
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From the Ekeland variational principle we find that there exists a sequéncg,) such
that

lun = &nll ga + lon — znll g1 < Vo,
c(V+nn, WHnp) =8 < Ivyy, wan, Enyzn) < c(V +np, W4np) + 685, (4.11)
Ly g wny Gns 21) — 0.

From [4.11) and (4.30) it follows that
IEn 117 + Nzalld + 2b11Eznll5 — O.

Then
. 1,
O<c = h“_)moo Ly W e 2n) = S Uy g, weny, e 2)- B 2))
1 .
=7 im {lwnllg + llza I3 + 2bllwnzs I3} = O,
h—00

which is an obvious contradiction, proving théfu,, v;) remains bounded. Setting
0(u, v) = 6(u, v, V, W) and using the definition we have

Iv.w (@, v)u, 0, v)v) = m%xIV,W(tu, tv).
1>

In view of (4.3), [4.),[(4.6) and (4.8),
c(V, W) < Iy, w@up, vi)up, 0(up, vp)vp)

= Iy Wy (O G, vi)up, O (up, vp)vp) — %ez(uh, va) (lunll3 + llvnl13)
< (V4 W) + 85 = 202, vn) (g 13 + 1vn13)

< ¢+ 8 = 0% un, o) (lun 3 + vn 1)

< (V. W) + 85 — 0% un. i) (lunll3 + oa 13).

From [4.T) and a8 is a homeomorphism on the unit sphere, it follows,for> oo, that
c(V, W) = ¢™. In a similar fashion one can prove that

c(V, W)= Iim ¢(V+n, W+n). (4.12)
n—0t
Therefore[(4]4) is proved. Let nof;,} be a sequence iR such that;, — z ash — oo.
Observe that, given > 0, for largeh, we have

Vi)+n=>=V(@)+|V(zn) — V()|
>Vizp) 2 V(@) —|V(z) = V(@) = V(z) — 1,
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and similar relations hold foW. From [4.4) and[(4.12) we deduce tha¥ (z) + 7,
W(z) +n) andc(V(z) — n, W(z) — n) both converge ta(V (z), W(z)), yielding the
desired continuity of — X (z).

Let us show that the function defined in[(2.p) is locally Lipschitz continuous. We de-
note byS(z) the set of nonnegative radial critical pointsiobf least energy. Let, £ € R®

and (¢, ¥;) € S(z), where we writéd(z, §) = 6(¢;, Y7, &) = 0(¢, ¥z, V(E), W(§)).
Then

2(6) - 2(@) = 0z, 6) (@, ¥2)) — (¢, ¥2).
Defining
h(€) = I:(0(z, §) (&2, ¥2)) (4.13)
and noting thab (z, z) = 1 we obtain

X(€) — X(2) = h(§) — h(2). (4.14)

In order to prove thak is locally Lipschitz, we will use the mean value theorem applied
to the functioni (&), so that we will show thav# is bounded. First observe that since
0(z,&)(pz, V) € N, it follows thatf(z, §) is given by [4.9) withu;, = ¢, v = ¥
andV = V (&), W = W(&). From the continuity of the critical level in dependence on
V (&), W(&) and from the continuity ok we deduce that the functions

(2,8) > VoI5 + VY15 + VE 15+ WE) 113,

2> N 17+ 113 + 25l 115

remain bounded and away from zero from belowzaand & remain bounded, so that
0(z, &) remains bounded faiz, £) bounded. Moreover(z, ) is differentiable with re-
spect to the variablé so that also the functioh defined in[(4.1B) is differentiable and its
gradient is given by

02
Vh(§) = Vel (0(z,8) (¢, ¥2)) = s S)[VV(é)Ilfﬁzllz + VW E 1 1I3]

+0(z, E)VeO (2, OIVPI3 + IVYII5 + VE) 15+ WE) 1. 117]
— 632, ) Vel (2, Ol 15 + 1115+ 26l b, ¥ 113],

so that

92
Vh(§) = & S)[VV(S)H@H + VW E) Iy 113]

Vs (z,8) ,
02(z, §)

Hence, sinced (z, £)¢., 0(z, §)Y;) € Ne, we get

+ 51 (0(2,§)¢2, 0(z, Y02, §)¢, 0(z, E) Y]

9(z§)

Vh(§) = [VVE 112+ VW E) Y- 113]
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This formula, [(4.14), the mean value theorem applied to the fundtiand the local
boundedness éfimply thatX is locally Lipschitz (in order to get the opposite inequality,
it suffices to switchy with &).

Now, let us prove conclusion (a) of Theor2.8. ket £ and(u,,,v,,) C Ha
sequence of solutions tf§{) that satisfy the properties in Definitipn 2.6. For al> 1
considere,, — 0 and the sequences(x) = u,, (z+ &,x), ¥n(x) = v, (z + €,x), SO that
@n(x) + ¥, (x) - 0 as|x| — oo, uniformly with respect ta, andJ, (¢n, ¥n) - Z(z)
asn — oo. The sequenceéy,, ¥,) C? converges over compact sets to a least energy
solution (¢, ;) of (57), ande., v are radially and exponentially decaying (seel [10]),
that is,(¢,, V) belongs tdS(z).

Consider the scalar problems

—Au+V@u=u® inRS,
u>0, uecH?, (SZV)
u(0) = maxu,

RS

—Av+W(@v =13 inR3
v>0, ve HL, (S;V)
v(0) = maxv.

R3

Itis known (seel[8],[16]) thafg") and have a unique ground state solution. Notice
that Proposition 3|3 implies that, if € O, then(¢;, ;) has necessarily one trivial
component. So that, the following possibilities may occur:

l. z € O andg. = 0 andy. is a nontrivial solution t;

Il. z € Op andyr, = 0 andg, is a nontrivial solution tgg );
M. ze&\O, =¢&5.

It is readily seen by a simple scaling thatyif # 0 oryr, # 0,

P:(x) = vV (@QUo(vV(2)x), V:(x) =y W(@Uo(y W(2)x),

whereUy is the unique solution te-Au + u = u2. Sincey,, converges uniformly ta.,
which has its global maximum point at the origin, case | correspongds:ztéy . In such
a case, in light of[(4]1), we hawe(z) = 0, y2(z) # O, that is,z € Crit(W). Arguing
as above it is possible to show that the situation of case Il implieszthat€y and
z € Crit(V). Of courseEy N Ew N{V # W} = @. Indeed, ifz* € Ey NEW N{V #
W} there would exist two sequenceusjl, vjl) and(u]?, v]?) of solutions to[fz) such that
the corresponding scaled solutio(r¢§1, wjl) and(gojz, wjz) converge in thee2 sense over
compact sets t@pl., ¥1) € S(z*) and(¢?, ¥2) € S(z*) respectively, andal.l(O) >8>

0 (sincez* € &y) andl/sz(O) > § > 0 (sincez* € &y), for everyj. As a consequence,

letting j — oo, we getpl, # 0 andy2 # 0. Now, in light of PropositioS, since
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z* € Op and (gL, ¥1) and(p2, ¥2) have least energy, we haye: = 0 andgp?2. = 0.
Therefore,

V(z*) = Lx(pk, 0) = £(z*) = [0, ¥ %) = Ty/W(z"),
contrary toV (z*) # W(z*). The previous facts show that
ENO, CTEYUEY and Ey x Ew C Crit(V) x Crit(W).
Hence, we conclude that
E=(ENOHUEN\Op) =EyUEW U,

with &y x Ew C Crit(V) x Crit(W). To prove conclusion (a) of Theordm P.8 it is only
left to show tha€y C Critc (2). In order to do this we will first prove that the directional
derivatives from the left and right & at every point € R along anyy e R3 exist, and

(82)_() sup ( vy), <82>+( ) = inf ( V),
— ) G —(¢:. —) G — (¢,
an (0:0)E5(2) 377 Per V2 an (oIS @ an bz Vi

that is, explicitly,

ox\ 1(0V Iw
(—) @)=  sup 5{ @llel2+ (z>||wz||§}, (4.15)
an (e 2)ES() an
(§>+(>— inf 3{—0” 2+ Y o ||2}

) T nese 2 DNellz 5 Vel [

for everyz, n € R3.

Let {u;} C RR3 be a sequence converging g and let(u;, v;) be a corresponding
sequence of solutions of least enedyy. ;). We want to prove that, up to a subsequence,
uj — ug andv; — vg strongly inH, with (1o, vo) € S(uo). It is straightforward to see
that(u;, v;) is bounded i x H! so that, up to a subsequence, it converges weakly to
a pair (1o, vo), andu; — wug andv; — vg locally in the C2 sense, so thdig, vo) is a
solution to the limiting problem withh = no. Moreover, as previously observed, there
existss > 0 such that:3(0) + v3(0) > &, which entailsug # 0 orvg # 0. Observe that,
by the continuity ofE and by Fatou’s lemma, we get

Z(pno) = lim X(wj) = lim 1, (uj, vj) = I,4(uo, vo) > E(Ko)-
Jj— 00 j—oo -
Hence, in particularluj (uj, vj) = I(uo, vo) = L(up) asj — oo, thatis,
“m / [|V“]| + |Vv]| + V(M])’/l + W(Mj)vz]

= [Ra[IVuol + Vol + V (uoyufy + W (o) vg]-
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Thus(u;, v;) — (uo, vo) strongly inH x H™. For any(¢, ¥) € S(z), we get
Tz +1n) — 2(2) < Ly @z z+ e, 3z, 2+ my) — L (g, ¥)
= th IE W E, Do, V(E, Z)l/f)|56[z,z+tn]‘
Hence, by the arbitrariness @f, ¥) € S(z),

limsupE(z+tn)—2(z)< inf 1

su ; _@wm&wgvv&»nmm§+vwc>wmwﬁk
t— ’

To get the opposite inequality, take, ¥) € S(z + tn). Then
E(Z + “7) - E(Z) = IZ+I77((p’ w) - 12(9(Z + “77 Z)(p1 H(Z + tnv Z)lﬂ)
=1tVele (05, 2+ 1o, 0, 2+ 1m¥)leefz, 24
Using the continuity 0® and the convergence @p, ) to an element ob(z), we obtain

b)) tm) — X 1
liminf 2 M -2@ 1
1—0F t (9. ¥)eS(z) 2

(V@) - nllel3+ VW) - nllvli3,

proving the opposite inequality, so that the desired formula for the right derivati¥e of
follows. A similar argument provides the corresponding formula for the left derivative.
Assume now that € £ \ O, = £x. Notice that, by[(4]2), for aly € R3,

/ [ﬂ(z)wﬁrﬂ(z)wﬁ] —0.
R3 | 0N an

Hence, sincég,, ¥;) € S(z), by formula [4.15) we have

+
<§> (z) <O0.
an

Then, by the definition of—x)%(z; ), we get

I(=X)
an

I
(—2)%z; ) > < ) (z) =0 foreveryn e R3.

Inturn 0 € dc(—X)(z) and, sincedc(—X)(z) = —dcX(z) (see[11]), we obtain €
Crit¢ (X), which concludes the proof of (a).

If V.andW are also bounded from above, by choosiffgandb{® as in [2.1#){(2.15)
we getO, = R3forall b < bg° (asby” < b, for everyz), andO, = @ for all b > b7° (as
bg° > b, for everyz), thus immediately proving assertion (b). Finallybit- b5° the last
assertion of the theorem follows immediately from Propositioh 3.3. O
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