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Abstract. We consider linear elliptic equationsAu + g(x)u = Au + f in bounded Lipschitz
domainsD c RY with mixed boundary conditionsu/dn = o (x)Au 4+ g ond D. The main feature
of this boundary value problem is the appearance bbth in the equation and in the boundary
condition. In general we make no assumption on the sign of the coefficieintWe study positivity
principles and anti-maximum principles. One of our main results states thatsifsomewhere
negativeg > 0 and ), g(x)dx > 0 then there exist two eigenvalugs, A1 such the positivity
principle holds forh € (A_1, A1) and the anti-maximum principle holdsif € (A1, A1 + ) or

A € (A_1 — €, 2_1). A similar, but more complicated result holdsgif= 0. This is due to the
fact thatig = 0 becomes an eigenvalue in this case and thé&t) as a function ot connects
to A_1(o0) when the mean value of crosses the valueg = —|D|/|dD]|. In dimensionN = 1
we determine the optimalkinterval such that the anti-maximum principles holds uniformly for all
right-hand sidesf, g > 0. Finally, we apply our result to the problemAu + g(x)u = au + f

in D, du/dn = Bu + g on d D with constant coefficients, g € R.

Keywords. Positivity principle, anti-maximum principle, eigenvalues, Harnack inequality

1. Introduction

Let D ¢ R be a bounded domain with Lipschitz boundad, and let: denote its outer
unit normal. This paper deals with boundary value problems of the form

—Au+qgx)u=ru+f inD, u,=ocxAru+g onaD, (1.0

where f € L%(D), g € L%(dD). Hereq is a bounded, positive function defined 6n

o is a continuous function defined @D andA € R a real parameter. The main feature

of this boundary value problem is the appearance bbth in the differential equation

and in the boundary condition. Moreover, we make no assumption on the sign of the
coefficiento (x).
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According to the classical theory there exists a unique solution for ewahjich does
not coincide with an eigenvalue of

—Ap+qx)p=rp IND, ¢, =0(x)kp O0ONID. (1.2)

The first goal of this paper is to determine the rangg-gélues for which positivef and
g imply the positivity of the solutiom. If such a property holds we say thaf (1.1) satisfies
the positivity principle

The positivity principle depends on the eigenvalue problen (1.2), which was analyzed
in [4] for o € C(dD) with o (x) > 0. Later this was generalized in [2] to the case where
o € R is an arbitrary real constant and finally id [3] to the case wlaere C(d D) has
non-vanishing negative part. We briefly summarize the main results:,kore H1(D)
let

(v, w) =/(Vv-Vw+q(x)vw)dx, a(v,w):/ vwdx—i—?{ o(x)vwds.
D D aD

There always exist infinitely many positive eigenvalues

O<Ai<Ap<.--, lim A, = oo.

n—oo

If g(x) > 0and/}, gdx > 0then(., -) generates an equivalent norm B (D) and the
lowest positive eigenvalue is characterized by the variational principle

A1 = min{(v,v) : v € HY(D), a(v, v) = 1}. (1.3)

It is simple and the corresponding eigenfunctigris of constant sign imD. Let

_ 1 / |D|
ci=— oc(x)ds, oog=———. 1.4)
[0D] Jap [0D|
If ¢ = 0thenig = Ois an eigenvalue. & > og thenig = 0 plays the role of (cf.

Figure[1).
If o~ (x) := max0, —o (x)} # 0 then there also exists a sequence of negative eigen-
values
O>A1>A2>---.

For space dimensiong > 2, lim,_, _, A, = —o0, whereas in dimensiolV = 1 there
are at most two negative eigenvalues. In the ¢ase > 0, [}, g(x) dx > 0 the largest
negative eigenvalue is given by

A_1=—min{(v,v) : v e HY(D), a(v, v) = —1}. (1.5)

The eigenvalue _1 is also simple, the corresponding eigenfunctian has constant sign
and does not vanish iP. If ¢ = 0 ande < o then the eigenvaluky = 0 plays the role
of _1, whereas iF > og then it plays the role of; (cf. Figure]).

Once ther-region for which the positivity principle holds is understood, the question
arises:what happens near the boundary of the positivity regitin@rns out that there
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ananti-maximum principldnolds, i.e. positivef andg imply that the solution of (I]1) is
negative.

Our main results on the positivity and anti-maximum principle are stated and proved
in Section$ P anfd]3. Here we present them in the following table; see also Fjgure 1. First
we have to distinguish between two casest) > 0 ando~ # 0. Then the case™ # 0
has to be further subdivided according to the potential

o~ #0
>0
7= J/padx >0 g=0
p0_3|t|_V|ty A <A1 Al <A <Al i<"°: O<A<A
principle o >o0p: A1<A<O
_ . —€<A<0
ti-max rg—e<i<ig |77 a<r<r4s
ant-max |, o gs| Mt -1 1 1
principle AM<A<AL+8 _ L Al—€Ee<A<Ag
o > 0Q:
O<Ai<$

At the boundary. = 111 a solution to[(1.]L) for positiv¢ andg can only exist if both
vanish. In this case coincides with the eigenfunctiop.1. Since both are of constant
sign and can be taken either positive or negative it follows that neither the positivity nor
the anti-maximum principle holds.

An interesting observation is that the positivity region is connected or disconnected

according tof;, gdx > 0 org = 0 (cf. FigureD. for the case whete € R does not
depend orx € dD).

A+d A Ad

Fig. 1. Positivity, anti-max. principle. Leftf,, g dx > 0; right:¢ = 0.

The anti-maximum principle was first studied byé@lent and Peletier [5]. More re-
cent studies on the anti-maximum principle are foundin [1], [€]-[8]] [10] [11]} [14]. In
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[13] Hess and Kato studied the problemAu = Am(x)u in D, u = 0 ondD with a
sign-changing coefficient(x), which corresponds to our coefficiettx). They found
a similar phenomenon of both positive and negative spectrum but the existence of the
unbounded negative spectrum did not depend on the dimensiwithe space as in our
case. Positivity and anti-maximum principles for Dirichlet probleptsu = Am(x)u+ f
in D, u = 0 ona D with a sign-changing coefficient(x) are given in[[10],[11] and [13].

It is known already from the work of @ment and Peletief [5] that in dimension
N = 1 one can expect the anti-maximum principle to be uniform in the sensé,that
do not depend orf andg. This is indeed the case, and moreover one can determine ex-
actly the optimah-interval for the validity of the uniform anti-maximum principle. Such
optimal anti-maximum principles are stated and proved in Seftlion 4. The boundaries of
the optimali-intervals are determined through associated Dirichlet eigenvalugs pf (1.2),
where one boundary value is changed from mixed to Dirichlet. Our results extend and
complement those of [1], [10] and [i14].

Finally, in Sectiorj b we apply the previous results to boundary value problems of the
form

—Au+qgxX)u=au+f inD, u,=pu+g onaD, (1.6)

whereo andg are real parameters. By means of our results on the positivity principle for
(1.7) we determine the exact parameter region for which the positivity principle holds for
@8).

In the Appendix we state and prove a Harnack-type inequality which is central for our
results. For wealt/ 1( D)-solutions the Harnack-type inequality is the replacement for the
strong maximum principle.

2. Positivity principle

Recall from [2], [3] that the eigenvalue problem {1.2) has a sequence of positive eigen-
valuesi; — oo for k — oo. If 6~ # 0 and if the space dimensionAs > 2 then there

also exists a sequence of negative eigenvaluesayith- —oo ask — —oo whereas in
dimensionN = 1 there are at most two negative eigenvalues. Here we use the notation
thati;, > (<, =)0if k > (<, =)0.

Our conditions for the positivity principle will be formulated such that the solutions
of (L.1) are non-negative. Due to a strong maximum principle/Harnack-type inequality
(see Appendix) this result can be strengthened in the following way: eitke® or there
existss = §(u) > 0 such that; > § a.e. inD and trace: > § a.e. ond D.

In the statements of the following theorems we do not explicitly asseimez 0
because we want to include the case) > 0. Formally, this is achieved by setting
r_1 = —o0if o(x) > 0. The positivity property in the casg(x) > 0 may also be called
themaximum principlewhich we state next.

A functionu € H1(D) is called aveak supersolutionf

—Au+Q0X)u>iu inD, u,>X(x)Au onoD (2.2)
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provided
/ (VuVv + Q(x)uv) dx > / Auvdx +.¢ AZ()uvds Vv e HYD)withv > 0.
D D aD

If ¥ (x) > 0then the principle (first) eigenvalueyinc is given by

Aprine = min{/ (Vv2+ Q) dx v e Hl(D),/ v2dx +?§ Y (x)vds = 1}.
D D oD

Note thatAprinc = 0 if @ = 0, which is the reason why we call this eigenvaliginc
(and notA1).

Lemma l (Maximum principle). Let ¥(x) > 0Oand0 < Q € L®(D). If A €
(—00, Aprinc) then every weak supersolution)satisfiem > 0, and moreover, either
u = 0 or there exist$ = §(u) > O0such thatx > § in D andtracex > § ondD.

The proof ofu > 0is standard and consists in using the test funatienu— together with

the variational characterization @fyrinc. The refined statement= 0 oru > §(u) > 0
follows from Lemmd_IJ(ii) in the Appendix. It might be interesting to note that the (al-
most) reverse conclusion also holds: if a weak supersolutign tp (2.1) saisfigsthen
necessarily. € (—oo, Aprinc]. The proof of this reverse statement is included in Theo-
rem2 below.

2.1. Thecasg(x) >0, [,qdx >0

Recall the variational characterizatign (1.3), [1.5) from the previous section. The case
o(x) > 0is consistently covered since in this case the set of admissible functions in the
definition ofA_1 is empty and hence the infimum-sco.

Theorem 2. Let0 < g € L*°(D) with [, gdx > Oand assum@ < f € L?(D) and
0<geL%D).

(@) If & € (A—1, A1) then the solution of (I.1))satisfies: > 0.
(b) If u > 0, # Ois a supersolution off.T)thenx € [A_1, A1].

Proof. (a) The case (x) > 0 follows from the maximum principle of Lemnj& 1. There-
fore we assume ~ # 0 in the following. The casg = 0 is covered by the classical max-
imum principle for the Neumann problem. Hence we consider the two ¢ase®, A1)
andi € (A_1, 0) separately.

Case 1: Letx € (0, 7). Let S = maxX|lo |, 1}. Note that[(1.]l) is equivalent to

—Au+(@qx)+ S —DNu =S+ f inD,

(2.2)
Uy + (S —o(x)Au = SAu+g onabD.

Let K, be the operator given by
K, : L2(D) x L?(D) — HY(D), (h,k) — v,
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whereuv is the unigue solution of
A+ (@) +S—-DNVNv=h inD, v, +S—oc@x)rv=k o0ndD.

By a straightforward application of the maximum principle (cf. Lenjrha 1), the operator
K, is positive, and possesses a first eigenvalue 0 with a first eigenfunction G ¢ €
H(D) which satisfies

—Ap+(@x)+(S-DrMe=ap iNnD, ¢+ S—oc@x)rp=ap ondD. (2.3

After testing [(2.B) withy we obtain

/(|V¢|2+q(x)¢2)dx:(ot+(1—S)A)/ ¢2dx+?§ (a+(0(xX)=S)V?ds. (2.4
D D aD

Let us show thaf. < «. Assume for contradiction that < Si. Then [2.4) implies

/ (IVel? + q(x)p?) dx < A(/ @2 dx +7§ G(X)gozdx). (2.5)
D D aD

The variational characterizatidn (1.3)xof impliesi; < 4, which contradicts the hypoth-
esis om.. Hence we have proved théit < o. Now we rewrite[(2.R) as

u = SAK; (u,u) + K (f, g).

If we introducek, : HY(D) — HY(D) by K;u = K, (u, u), then the previous equation
is equivalent to 5
(Id — SAK )u = Ky (f, 8)-

Since 0< S < « the inverse of the operator td SAK; is given by the Neumann series
> o(SAK;)K and is therefore a positive operator. This implies the claim of the theorem
in Case 1.

Case 2: Leta € (A_1, 0). Now we rewrite[(L.]l) as

—Au+(@x)—(S+DVu=—-S\u+ f inD, 2.6)
Uy — (S+ox)Au =—-Su+g onaD.
Let L, be the operator given by
L, 1 L3(D) x L3(D) — HYX(D), (h, k) — v,
whereuv is the unique solution of
A+ (@)= (S +DVVv=h inD, v,—(S+ox)Hrv=k ondD.

Due to the maximum principle of Lemna 1 the operatgris positive with first eigen-
valuep > 0 and first eigenfunction & v € H(D) satisfying

—AY+(q@)—(S+DMN)Yy =By inD, Y,—(S+ox)Ay =By ondD. (2.7)
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After testing [(2.J) withys and rearranging terms we obtain

/ (VY PHq(0)y?) dx = / (ﬂ+<s+1>x>)w2dx+7§ (B+(SHo ()M Y2ds. (2.8)
D D oD

This implies thatSA > — g, since otherwisg (2]8) leads to

/ (VYR +qy? dx < x(/ W2 dx +7§ a(x)tpzds) 2.9)
D D oD

The variational characterizatiop (1.5) &f ; implies»_; > A, which contradicts the
hypothesis on.. Hence we have proved théit > —A. Note that[(Z.6) amounts to

u=—SAL;(u,u)+ Ly(f, g).
With the abbreviatiorL, («) := L, (u, u) the previous equation is equivalent to
(Id + SALy)u = L (f. g).

SinceSx > —B the inverse of the operator Kl SiL, is given by the Neumann series
Z,‘:‘;O(—Ski,\)" and thus it is positive. This finishes the proof of part (a) of the theorem.

(b) The following proof is inspired by Godoy et dl. [10], where the idea is attributed
to Hess[[12]. Supposg (1.1) has a supersolutien0, # 0. Since there exis > 0 such
thatu > 8 in D and trace: > § ond D we may writeu = ¢° with a functionz € H(D).
Forv e C*®(D) let us usev?e™* as a test function fo.l). Thus we obtain

/ (=|vVz — Vo2 4 |Vv]? + g (x)v?) dx
D
> / (2 + fvzefz)dx + ‘(ﬁ (o (X)Av? + gvzefz) ds,
D aD
which implies
/ (IVv]? + g(x)v?) dx > A(/ v2dx +7§ cr(x)vzds) Yv € C®(D).
D D 3

D

The variational characterization af 1 andi; implies that necessarily_1 < A < A1.
This completes the proof of the theorem. O

2.2. Thecasg(x) =0

Now we turn to the casg = 0, whereig = 0 is an eigenvalue. Therefore the variational
characterization of the principal eigenvalues is different:

A= min{/ [Vvl?dx :v e HY(D), a(v,1) =0, a(v, v) = 1},
D

Aol =— min{/ |Vv|2dx ‘v e HY(D), a(v,1) =0, a(v, v) = —1}.
D

As beforeo (x) > 0 impliesi_; = —oco.
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The positivity principle of this section relies on the following result, which was proved
in [3]. Recall the definition[(1]4) o#, oo from the introduction.

Proposition 3. If o € (—o0, ap) then the eigenvalug; is simple and the eigenfunction
corresponding tov; has constant sign. b~ # 0 anda € (op, o) theni_1 is simple
and the eigenfunction correspondingito; has constant sign.

Theorem 4. Letg = 0and assumé@ < f € L%(D),0 < g € L%(D).

(i) o € (—o0, 0p):

(@) If & € (0, A1) then the solutiom of (1.]]) satisfies: > 0.
(b) If u > 0, # 0is a supersolution ofL.T) thenx € [0, A1].

(i) o € (00, ):
(@) If 2 € (A_1, 0) then the solutiom of (I.1)satisfies: > 0.
(b) If u >0, # 0is a supersolution ofL.T) thenx € [A_1, O].

(iiy @ =o0:
(a) There is no value of. such that{I.1) has the positivity property.
(b) If u > 0, # 0is a supersolution ofI.J) thenir = 0.

Proof. The case (x) > 0 falls within case (ii) and is covered by the maximum principle
of Lemmeﬂ.. Hence we may assume = 0.

Case (i), part (a): Since the proof is very similar to Case 1 in Theofgm 2 let us indicate
the differences. One rewritgs (IL.1) ps [2.2) and introduces the same positive ofgrator
with the first eigenvalue satisfying [2.B). One needs to show tlat < «. This is where
a different argument is needed. Assuming for contradiction as beforexthatSa we
obtain [2.5). Howevery does not satisfy (¢, 1) = 0 and hence cannot be inserted into
the variational characterization . Instead, we define

Jpedx+ ¢, 0(x)pds

5= — Py, Pop= o . 2.10
¢=9¢— Py % D +513D] (2.10)

Clearlya(¢, 1) = 0. Rewriting [2.5) we obtain

f|v¢|2dx§,\(/ ¢2dx+y§ U(x)g?)zdx)
D D oD

+AM(P@)°(|D| +5|0D|) + 2/\Pgo<f Gdx +%
D d

o(x)@ ds),

D

=0

and sinces < og this implies by the variational characterizationiafthe contradiction
A1 < A. The proof continues exactly as in Case 1 of Thedrem 2.

Case (i), part (a): The proof resembles the one of Case 2 in Thedrem 2 using the op-
eratorL;. One only needs to prov&, > —pB. Assume the contrary. With the help of
the projectiony = ¥ — Py one can rewrit9) as above, use the variational charac-
terization ofA_1 and get a contradiction. The proof is then completed as in Case 2 of
Theoreni D.
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Cases (i) and (ii), part (b):As in the proof of Theorein|2 the existence of a non-negative
solutionu of (I.7)) leads to

f |Vol?dx > x(/ v dx +f a(x)vzds) vu € C®(D), (2.11)
D D oD
in particular for those with a(v, 1) = 0. This implies that

Aol <A< Ag. (2.12)

However, more precise information on the locatiom.aé needed. Note that in the case
o < ogone has

O=Xx= min{/ [Vu[2dx @ a(v, v) = —1}
D

with v = const as a minimizer. Hende (2]11) implies that besides](2.12).ais6 has to
hold. In the caseg < o notice that

0=xp= min{/ |Vul2dx @ a(v, v) = 1}.
D

Thus together with (2.12) also < 0 has to hold.

Case (iii): Part (a) follows once part (b) is shown, since then the only valug foir

which the positivity property could hold i5 = 0. But even forA = 0 the positivity
property cannot hold as we may subtract arbitrary constants from solutions. So it remains
to show part (b): as before we obtain inequality (2.11). We will show that in this case the
following two characterizations dfp = 0 hold simultaneously:

0= inf{/ IVo2dx :a(v, v) = —1} (2.13)
D

= inf{/ IVol?dx :a(v, v) = 1}, (2.14)
D

where neither of the two minimization problems has a minimizer. Together (2.11)
this implies that necessarily= 0. So let us show (2.13) and (2]14). Letbe a solution
of

—Aw=1 inD, w,=0(x) 0nod,

which exists only in the caseé = og. Next definev;, = 1+ rw fort € R. Then
[p Vv ?dx = [, ?]Vw|?dx and

a(v,v) =a(l,1) + 2ta(w, 1) + tza(w, w) = ZI/ |Vu)|2dx + tza(w, w).
D

Let 61 = U[/«/ |a(U,, U[)l. Then
Vo, |?dx
lim / |V, 2dx = lim JplVuldx
t—0Jp =0 la(ve, vy)|

anda(v;, o) = +1or—1if ¢+ > 0 orr < 0. Hence ift — 0 theny, is a minimizing
family for (2.13) ifr > 0 and for [(2.1}) it < 0. This finishes the proof of the claim.o
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3. Anti-maximum principles

In this section we considdr (1.1) with ¢ > 0 andx lying outside the region where the
positivity principle holds. One expects by the results[of [5] a so called “anti-maximum
principle™ if ¢ > 0, [,gdx > 0 anda is a little larger thani, or a little smaller
thanx_1 then the solution of (I]1) is negative. The situation Joe 0O is again more
complicated. As before we treat the cage) > 0 by settingh_1 = —oc.

3.1. Thecasg(x) >0, [,gdx >0

Theorem 5. Let0 < g € L*°(D) with [, gdx > 0. Suppose thad < f € LP*(D)
with p1 > N/2, p1 > 2and0 < g € LP2(dD) with pp > N — 1, p» > 2, and
assume additionally that % 0 or g # 0. Then there exists = §(f, g,0) > 0, ¢ =
€(f.g,0) > 0suchthatifi € (A_1 — €, A_1) U (A1, A1 + 8) then the solutiom of (L.1)
satisfiess < 0in D.

Proof. Case 1l:Leti1 < A and assume moreover thiat< Ao — y for some fixed small

y > 0. Then ) has a unique solutiane H1(D). Recall from the Hilbert space
theory of [2], [3] thatH1(D) = spanpi] @ V, where spanji] and V are orthogonal
both with respect to the bilinear foret-, -) and the inner produgt, -). We assume the
normalizationa(¢1, ¢1) = 1. From [2], [3] we also know thap; has constant sign and
thatthereisa > 0 such thai; > « in D. By using the splitting of the space the solution
u of (I.7)) is decomposed as= a¢1 + v. A direct computation yields

o = fD f§01dx+f31)8¢1d5
N A — A

and
—Av+qgx)w=r+f" inD, v, =oc@xrv+g" onaiD, (3.1)

ff=r- (/D fordx +7€D gwlds)wl,

g 2=g—a(x)</ f¢1dx+§1§ gsolds)cpl.
D oD

Note thatf", g" lie in the samel.”-spaces ag, g sinceg; € L>®(D) and trace; €
L>®(3D). Let us introduce the compact operafor. L2(D) x L%(d D) — HY(D) defined
by K (h, k) = z with —Az + g(x)z = hin D andz, = k ondD. One finds easily that
K(f", g™) e V = spanp]*. Moreover the operatak v = K (v, ov) mappingV — V
is well-defined. Therefor¢ (3.1) amounts to

wherd

(ad—rK)v =K(f", gM (3.2)

1 The definition of f©, ¢ implies thatb(f", g%, ¢1) = 0 with b(f, g, v) = [p fvdx +
$5p gvds (see also the proof of Theor@p 6).
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and the solutior of ) can be found by inverting ¢ »K on the spacé . Since the
values ofa satisfyir € (11, A2 — y) there exists a constagtindependent of. such that

lvllgrpy < CULf L2y + 181 2@ p))-
Lemmd 17 in the Appendix applied fo (B.1) implies that
lvllzeo(py < C_‘(||v||L2(D) + 1 fllieripy + lIgllLr2ap))

uniformly in A € (A1, A2 — y). With p1 = max2, p1}, p2 = max2, p»} we can combine
the two estimates into

Wllzoey < CUF Nl Loy + 181 o2 gopy)-
With the help of the decomposition= a¢; + v and the estimate, > « we obtain

u < l(fD f‘ﬂldx‘i‘fg[)g@lds
- A —A

+ C(”f”yﬁ(p) + ”g”Lﬁz(aD)) inD,

which can be made uniformly negative in providedA € (A1, A1 + 8(f, g)) with a
positive but sufficiently small value &f f, g).

Case 2: Let A < A_j3 and assume further that> A_» + y for some fixed smaly > 0.
The unique solution € H'(D) of (1.1) has the orthogonal decompositioe: ag_1+v.
If we use the normalization(¢—_1, ¢—1) = —1 thena is given by

" [p fo—1dx + ¢, gp_1ds
h A—A_1 '

The functiong_1 has constant sign and is bounded below by a positive constan®.
As in Case 1, one shows thais bounded in.°°(D) uniformly for» € (A_2 + y, A_1).
Hence, ifA is sufficiently close to._1 the functionag¢_1 in the decomposition of is
sufficiently negative to make uniformly negative inD. O

3.2. Thecasg(x) =0

Theorem 6. Letg = 0 and defines = |aD| ™1 faDa(x)ds. Suppose thad < f €
LPY(D) with p; > N/2, p1 > 2and0 < g € LP2(D) with p, > N — 1, p» > 2, and
assume additionally that # 0 or g # 0. Then there exist8§ = §(f,g,0) > 0and
€ = e(f, g.0) > 0 such that the solution of (L.1)satisfies: < 0in D provided

(i) o € (—o0,00) andi € (—¢,0) U (A1, A1+ 6),
(i) o € (0p,00)andr € (A_1 — €, A_1) U (0, 3),
(i) @ =opandi € (—¢,0) U (0, §).

Proof. Cases (i) and (ii): The proofs are similar to the proof of Theorfin 5. We illustrate
only case (i). FOob < og we know from [2], [3] thatr1 is simple with an eigenfunction
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@1 >k > 0in D. Assume the normalizatian(¢1, ¢1) = 1. We use the splitting
HY(D) = spanj] @ span[i]® V

into three orthogonal parts, i.e. the unique solutioa H(D) of ) is decomposed
intou = a1 + B + v. The values of andg are given by

a:fogoldx+553Dg(p1ds _ [p fdx+ ¢, 8ds
AL —A ’ A(D|+ [;p0(x)ds)

(3.3)

andv solves
—Av=M+rB+f" inD, v,=oc@r+ox)AB+g" ondD  (3.4)

with -, ¢" asin the proof of Theorefr} 5. On the spate= {(h, k) € L2(D)x L(D) :
[phdx+ ¢, kds =0= [, hoidx + §, , kg1 ds} we define the operatdf : W — V
by K (h, k) = zwith —Az =hin D, z, =kondD. MoreoverK : V — V is defined by
Kv = K (v, ov). If we note (by a standard computation) tiigg + /=, oA +¢") e W
then [3.4) is equivalent to

(Id = 2Ky =KXB+ f~.org+g".
As long as\ is bounded away frorh_1 andi, we get the estimates

||U||H1(D) =< C(”f”LZ(D) + ||g||L2(3D))
and
lvlizeepy = Clullpzpy + 1 f Loy + 118l Lr2o D))

uniformly for A € [A_1+ v, A2 — y]. Recalling that D| +faD o(x)ds <0ifo < ogwe
see from|(3.B) that will be negative if eithei is in a small right neighborhood af; or
if A is in a small left neighborhood of 0.

Case (iii): In this case (cf[[2],8]) the spadg’(D) has the decomposition
HY(D) = span[1]® span] & Vy,

wherew solves—Aw = 1in D, w, = o(x) ondD andV,, = {v € HY(D) : a(v,1) =
a(v, w) = 0}. Note however that span[1] and spai[are not orthogonal. To facilitate
notation let

b:L?(D) x L?°(D) x HY(D) > R, (f, g, v) — f fvdx +% gvds.
D oD

The solution of[(T.]1) can accordingly be split into three parts,i.es,« + gw +v, where

b(f,8.1) b(f,g,w)  b(f g Dalw,w) D18 D)
_ L B=—T
a(w, 1)

a _Aza(u), 1 ra(w, 1) ra(w, 1)2
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Note thata(w, 1) = [}, [Vw|2dx > 0. The remaining equation faris

_ b(figw) | b(f g Da(w, w) _b(fg. D .
—Av = 2. D) + 2w 12 +Av+ f D) w inD, (3.5)
__ b(f.gw) b(f, g, Da(w, w) _ b(fig D
v, = —0 aw. D +o a(w. 1?2 +oAiv+g U—a(w, D w onabD.

(3.6)

Define the spac®V,, = {(h,k) € L% (D) x L*@D) : [phdx + §,,kds = 0 =
fD hw dx+9§aD kwds}. OnW,, letthe operatok : W,, — V,, be givenbyK (4, k) := z,
wherez € V,, is the unique solution of Az = hin D, z, = kona D (cf. [2], [3]). Like-
wise, letk : V,, — V,, be defined byk v = K (v, ov). Thus [3.5)4(3)6) is equivalent to

S _b(f.g.w)  b(f. g Da(w,w) _b(f.8. 1
(d —2K)v = K( a(w, 1) cw 12 T mn @
_Ub(f,éﬂ w) +Gb(f,g, Da(w, w) _Gb(f’g’ 1)w
a(w, 1) a(w, 1)2 8wy V)

if one verifies by a standard computation that the argumeikt oh the right-hand side
belongs toV,,. Now theL? and L>-bounds orv follow as before provided is bounded
away from)._1 and 1. Likewise | fw|loe < cOnstA™(([l £l 2(p) + 18]l 2 p))- Thus,

negativity ofu is a consequence of thg-term ina provideda is sufficiently small but
non-zero. |

4. Uniform anti-maximum principles
If the dimensionW is 1 andD = (0, L) then [1.1) becomes

—u” +qgxX)u = Au + f in 0, L), (41)
—u'(0) = o12u(0) + g1, /(L) = o2hu(L) + g2. (4.2)

It is known already from the work of @ment and Peletier [5] that in dimensidh= 1
one can expect the anti-maximum principle to be uniform in the sensé,that Theo-
remg$ and|6 do not depend gnandg. This is indeed the case, and moreover one can
determine exactly the optimakinterval for the validity of the uniform anti-maximum
principle.

Previously, such optimal-intervals were determined variationally by Arias etfal. [1]
and Godoy et al[[10] through the valuesh (cf. Lemm@). Another approach was given
by Reichel [14] through the associated eigenvalue probl@ms, (Do) below. Thanks
to new observations we can now bring together these two approaches (cf. [¢mma 9), and
thus get explicit formulas for the optimatinterval.
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To formulate our results we need the following associated boundary value problems
introduced in[[14]. Note that one boundary value is changed from mixed to Dirichlet.

—u" 4+ q(x)u=2u in(0,L), —u" 4+ q(x)u=2ru in(0,L),
(Dp) { —u'(0) = 01Au(0), (Do) y u(0) =0,
u(L) =0, u' (L) = ooAu(L).

Both problems have a sequence of positive eigenvalbesg tending to4-oo ask — oo.
Negative eigenvalues may not always exist. This is explained at the beginning of the
following two sections.

4.1. The casg(x) > 0, fOqux >0

We recall from Bandle and Reichél [3] that negative eigenvalues exist:

Conditions onr Negative eigenvalues
for 44_1])—@) for (D) for (Do)
01,02 <0 Ao < A_1 )\I;l kgl
o1 <0<o7 A1 ALy no neg. ev
0<o1,02 no neg. ev | no neg. ev| no neg. ev

We define the missing negative eigenvalues-as. For simplicity we do not consider the
casesy < 0 < o7 since it is essentially the samea@s< 0 < o».

Theorem 7. Let0 < g € L*°(0, L) with fOL g dx > 0and let
e [max(aty, 2%}, A1) U (g, min{af, A9)].

Suppose thad < f € L0, L) and g1, g» > 0 and assume additionally = 0 or
g1, 82 > 0. Then the solution of (4.1)(4.7) satisfiesu < 0in [0, L]. Moreover, the
abovei-interval is optimal for the uniform anti-maximum principle.

The proof will be done with the help of the following two lemmas.

Lemma 8. Let0 < g € L*°(0, L) with fOL g dx > 0and define
L
= inf{/ W2+ g(x)vd) dx v e HY0, L) has a zero and (v, v) = 1},
0
Lo
A=— inf{/ s +q(x)v2) dx :v e HY0, L) has a zero and (v, v) = —1},
0

wherea (v, w) = fOL vw dx + o1v(0)w(0) + oov(L)w(L). Thenx is attained andvy <

X < Ap. If eitheroy or o7 is negative then is attained andv_» < A < A_1. The extremal
functions for both extremal values have exactly one zef0,if].
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Proof. The valuex is always finite. The valugis finite if at least one of1, o is negative.
Otherwise. = —oo. Provided the extremal valugs are finite the existence of extremal
functions is standard sindé'(0, L) embeds compactly int6'([0, L]). Letx, u be such
extremal functions. Then(xo) = u(yg) = 0 for somexg, yo € [0, L]. For a given point
z0 € [0, L] define the spac¥,, = {v € H1(0, L) : v(z0) = 0}, i.e.,u € Vi, andu € V.
Moreoveru, u are extremal functions for

L
= inf{/ (v/2 +q(x)v2) dx v e Vyanda(v, v) = 1},
0
L 2
A= —inf{/ ¢4 +q(x)v2) dx v e Vy anda(v, v) = —l}.
0

Clearlyx = %5, A = A*. Hence the following Euler equations hold:
(@, ¢) = ra@,¢) forallgp e Vi, (u,¥)=rau, ) forally €V,
and standard regularity implies thasatisfies

—u" +g(x)u=xu in (0, xp) U (xo, L),
—u'(0) = o12u(0), u(x0) =0, (L) = oo u(L),

andu satisfies

—u" +q@)u=ru in (0, yo) U (yo, L),
—u'(0) = 012u(0), u(yo) =0, u'(L)=o2Au(L).

Note that in the casey € {0, L} or yg € {0, L} the Dirichlet boundary condition replaces
the mixed boundary condition. Let us show thatas exactly one zero. The proof fer
is the same. So assummes V, N V,, for xg, x1 € [0, L] with xg # x1. Then

(W, ¢) = ra(u, ¢) forallg € Vi @ Vy,.

ButVy, @ Vy, = HL(0, L), i.e.,u is a classical solution on the entire interval Jq of
the eigenvalue problem

—u" +q(x)u=aru in(0, L),
' (0) = o12u(0), u'(L) = o2ru(L).

The same is true foiz|, which is also a minimizer fok. Henceu (xg) = u’(xg) = 0 and
the same holds at;. Thusu = 0, which is impossible. Hence we have shown that every
extremal function for has exactly one zero in [@]. The same holds for minimizers
of A.

It remains to show the estimatés < A < A andi_» < A < A_1, provideda is
finite. Let us show the inequalities far The inequalities fop follow similarly. First, it
is clear thatv; < A. Since every minimizer fox has a zero, whereas the minimizers for
11 have no zero, it follows that; < A. Likewise, since the second eigenfunctignhas
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a zero we see immediately that< A,. Let us suppose for contradiction that= A».
Testing the equation fap, with (p;' we obtain

L
fo (032 + q(x) (@)% dx = ralps, 93)

and since. = X, andg, has at least one zero (in fact infinitely many) in [g we find
tha’[<p2+ is a minimizer forx, so it has a unique zero. This contradiction finishes the proof.
]

Lemma?9. Let0 < ¢ € L*(0, L) with foqux > 0. Thenx = min{a}, A9} and
L =maxrl 20},

Proof. The claim follows if we show that minimizeis u for x, A have no zero irf0, L).
Let us show this for. Suppose for contradiction thatyg) = O for someyg € (0, L).
Thenu is a piecewise¥ %>-solution of

—u"+q(x)u=ru in (0, yo) U (yo, L),
—u'(0) = 012u(0), u(yo) =0, u'(L)=o2ru(L).

By rescalingu on [0, yg] appropriately we can achieve that the rescaled funatigna
Cl-function on the entire interval [@.]. The differential equation then implies that in
factu is a W2°-function on [Q L] solving the above equation pointwise a.e.(0nL).
Hencex must be an eigenfunction, but this is impossible sincg < A < A_1. O

Proof of Theoren [7. Case 1:et u be a solution of[(4]1)F(4l2) with e (11, 2] and
0 < f e LY0, L) andgy, g2 > 0. By Theorenj P(b) the solutiam cannot be> 0, i.e.,

u~ # 0. Testing[(4.]1)1(4]2) wita — one obtains
L L
/0 (W) +qx) @) dx = ra™,u~) — /O u” fdx —u (0)g1 —u(L)go.

By the assumptions ofi g1, g» this impliesfoL((u‘/)2 +g(xX)W)?) dx < ra(u™,u").

Assume for contradiction that™ has a zero in [OL]. Thenu~ would be admissible
in the variational characterization afandx < A would follow. By the assumption oh
this is only possible fok = A. Thenu~ is a minimizer forx and thus:~ has exactly one
zero. Moreover,

L
0= / u- fdx+u (0)g1+u (L)go.
0

However, since eithef # 0 or g1, g2 > 0 the last relation is impossible for a function
with only one zero. This contradiction shows thak 0 in [0, L].

It remains to prove that the uniform anti-maximum principle does not hold for any
A > A. Assume that it does for such)a Letz > 0 be a minimizer for. and define
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we = (@ —e)t fore > 0. Thenw, — uin HX(0, L) ase — 0. We may choose so
small that Lo )

T Jo W=+ g(x)wg) dx s

a(we, we)

anda(we, we) — 1 ase — 0. Next we define 0< f € L1(0, L) andg1, g» > 0 in the
following way: let suppf N suppw,. = @. If 0 € suppw, then letg; = 0 andg, > 0. If
L € suppw, then letgo = 0 andg; > 0. Note that sinc@ has a unique zero at either 0 or
L the support ofw. cannot contain both 0 anb. Assume now that for the given choice
of f andg there is a solutiom of (4.1)—-{4.2) such that < 0in [0, L]. In this case: can
be written ast = —e ™" with a functionv € H(0, L). Takinge'w? as a test function for

(4.1)-[4.2) we obtain

L L
/ W'we + w))? dx —f (W2 + g(x)w?) dx
0 0

(4.3)

L
= —Xa(we, we) +f fw?e! dx + gre’w?|—o + g2¢"w?|y=r.
—_— 0
>0

By the assumption orf, g1, g2 andw, the expression involving the product ¢f g1, g2
with w2 vanish. Thus

o = Jo ()? +a@wd) dx
B a(wév wé)

bl

which contradicts[(4]3).

Case 2: Forx € [A, A_1) the argument is analogous. Sinceannot be> 0, testing with
u~ leads tofOL((u‘/)2 +qx) @ )2 dx < ra(u~,u"). The assumption that~ has a
zero leads to. > A, which is only possible if. = A. This is excluded as above. The
optimality proof for the interval], »_1) follows the same lines as in Case 1. O

4.2. Thecasg(x) =0

Again we recall from Bandle and Reichél [3] the picture of the existence of negative
eigenvalues:

Conditions ony Negative eigenvalues
for (14.]{)—k4.12) for (D) for (Do)
o oA < A
, 0 0 > 00 2 1 )\.L )\'0
o102 = T <00 A1 -1 -1
o1<0<agp |2 =00 At Ak, no neg. ev
o <o0p. honeg.ev
0<o1,02 no neg. ev no neg. ev| no neg. ev

As before, the missing negative eigenvalues are definecbas
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Theorem 10. Letg = 0. For 1 assume the following:

(i) if & € (—o00, 0p) thena € [max{rL, 2°,}, 0) U (A1, min{rL, 29)],
(i) if 7 € (00, 00) theni € [max{rL, 29}, A_1) U (0, min{rk, 29}],

(iii) if @ = oo then e [max{rL, 22}, 0) U (0, min{ak, A9}].

If0 < f e LY0,L) and g1, g2 > 0 and additionally f = 0 or g1, g» > O then the
solutionu of (4.J)#4.2) satisfiesu < 0in [0, L]. Moreover, the above-intervals are
optimal for the uniform anti-maximum principle.

Proof. The proof is similar to the proof of Theorgr 7. Let us sketch where the differences
occur. First, the values and are defined exactly as in Lem@a 8. The valuis always
finite, andA is finite if at least one of the two values, o7 is negative. Both values are
attained if they are finite, since in the spaceMt-functions with at least one zero in

[0, L] the expressiomfoL v'2 dx)Y/? is an equivalent norm. Next, one needs to show the
following estimates foi., A:

Case ()7 € (—00,00) = A1 <A <0, A1 <A <Ay,
Case (ii):o € (00,00) = A2 <A <xi_1,0<X <Aq,
Case (iii):z = o9 = A_1<A<0, O0<x<AirL

With theses estimates at hand the proofs of the remaining statements of [¢mma 8, Lem-
ma[9 and Theorein 10 are exactly the same as before. The variational characterization
of A1, A_1 (cf. beginning of Subsecti.Z) is valid in the space{df(0, L) functions

with a(v, 1) = 0, whereas the characterizatiomof is valid in H1(0, L) only. Thus, for

v e HY(0, L) let us define

fOL vdx + o1v(0) + oov(L)

w=v—Pv=v-—
L+ 20

Thusa(w, 1) = 0 and cIearnyOL v dx = fOL w'? dx. Moreover
L
a(w, w) = / w?dx + o1w(0)? + oow(L)?
0

L
= / v2dx + 01v(0)% + o2v(L)? — (Pv)?(L + 25)
0

=a(v,v) — (Pv)’(L + 25).

A < A_1. The estimate. > A_» follows from the fact thafp_» changes sign and can be
inserted into the variational characterizatiorhoMoreover it follows as in Lemng 8 that
A cannot be equal to either of the two endpoints. The estimate\O< 11 is immediate
(¢1 is sign-changing and can be inserted into the variational characterizatiah for

In case (i) we find tha&(w, w) < a(v, v). This is the basis for the estimate< A;.
The rest of the estimates in this case is similar to case (i).

Let us start with the estimates in case (i). In this cace, w) > a(v, v). Hence
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In the remaining case (iii) we find(w, w) = a(v, v). Sincep_1 andg; are sign-
changing we obtain immediately_; < A andi < i1, where equality is excluded as
before. It remains to show that A # 0, which follows from the fact that = 0 orx = 0
would imply that minimizers are constants, but this is incompatible with having a zero.
This completes the proof of the theorem. O

4.3. Examples for constagt

In the case where; = o2 = o andgq > 0 is a constant one can determine the regions of
the positivity principle and the anti-maximum principle (almost) explicitly. The solution
to the differential equatior-¢” + gp = Ap in (0, L) is

AcoS\/A —qx)+ Bsin(y/A —qgx) if A >gq,
¢(x) ={ Acosh(y/g — A x) + Bsinh(\/g —Ax) if 1 <gq,

Caseq > 0: The eigenvalues._1, 11 are given as the intersection of transcendental
functions as follows (cf[]2]). Lex* be the negative root @212 + » — g = 0. Then

A1t tanh/g—AL/2) =oAr/Jq—h, ie(A*,0),
tany/A —qL/2) = —oAr//)—q, o <0,

A q, o=0,
tanhy/g —AL/2) =o)r//g—X, o >0.

Likewise the eigenvaluest; = A%, andal = 19 are given by

A0, =akr cothVg —AL) =or/Jqg— A,
cotl,/A—qgl)=xro//A—q, o <1/(Lg),
M= 14 o =1/(Lg),
coth(y/g —AL) =Xro//qg—X, o >1/(Lg).

The results produced by MAPLE are plotted in Figure 2.

Caseq = 0: Although the complete eigenvalue picture is more complicated, the deter-
mination is much simpler because according to The¢grgm 10 we only need o firfdr
o > op andiq for o < op.

Aqitanh(/—AL/2) = —o/—A, A€ (A*,0), ifo > oy,
A tan(v/A L/2) = —o /A if o < o0.
Likewise the eigenvalues” | = A%, andrl = 19 are given by
A0 =aL tcothvV=AL) = —a /=2,
A=l cot(v/A L) = o /2.
The results are plotted in Figrg 3.
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5. Positivity regions for parameter dependent inhomogeneous boundary value
problems

In this section we consider the boundary value problem
—Au+qgxX)u=au+f inD, u,=pu+g ondD, «a,BeR. (5.1)

We shall use the previous results on thelependent boundary value problgm]1.1) to
determine the parameter region fot, 8) € R? for which the positivity principle holds.
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For this purpose we start with some auxiliary results concerning tiependence of the
smallest positive eigenvalug (o) and the largest negative eigenvalue (o) of (1.2).

Without loss of generality (by shifting if necessary) we may assume thyak) >

go > 0. Then
1/2
vl = (/D<|W|2+q<x)v2)dx>

generates a norm iff1(D) which is equivalent to the standard norm. Denotekﬁythe
smallest Dirichlet eigenvalue of

—Ap+q(x)p=Ap InD, ¢=0 oniD (5.2)
and by)»ft the smallest Steklov eigenvalue of the problem
—Ap+4q(x)p=0 iInD, ¢, =21p o0NID. (5.3)

Lemma 11. (i) The functiono — X1(o) is continuous and strictly decreasing for
o € R. Moreover

lim a1(0) =22,  lim x(0)=0.
0——00 0—>00
(i) Similarly the functione + A_1(0) is continuous and strictly decreasing for
o € (—o0, 0) and
lim A_1(c) =0, lim A_1(c) = —o0.
o—>—00 0'—)0—

Proof. Let J,[v] = [, v?dx + o f,,v?ds for v € HY(D). We have the variational
characterizations

1 .
—— =supJs[v] : vl =1}, =inf{Jo[v] : vl = 1}. (5.4)

r1(o) A_1(o0)
Let ¢, be the eigenfunction correspondingitg(c). We shall assume thdy, || = 1.
Moreover, there exists a positive constatmdependent of such that
2 2 _
0< f psds < cllgs|l” = c, (5.5)
aD

where the second inequality follows from the trace inequality and the first is a property
of eigenfunctions of constant sign (cf! [2]] [3]). The variational characterizatian (@f)
implies

+(a—r)?§ 02 ds > Jr[%]+(a—r)f 9o ds =
aD aD A1(0)

> Jylgel = Jeloe] + (@ — ) 55 o2 ds
oD

A1(7)

_ _ 2
=50 + (o — 1) %D psds. (5.6)

Lettingo — 7 in (5.6) and using the boundedness of the traces ffon (5.5) we obtain
lims—: 21(6) = r1(7). Foro > 7 the strict monotonicity also follows fronp (3.6) and
from the strict positivity of the boundary integrals as statedlin (5.5).
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By introducing the eigenfunction correspondingi@ as a test function irf (514) we
obtainii(o) < Af and consequently

lim a1(0) =a < AP,
og—>—00

Foro < 0 one gets

1:)\1(0)(/ (pgdx—f-tr% w&ds)g)»lD/ gogdx. (5.7)
D aD D

Since||g, || = 1 there exists a subsequer(gg, };2 ;, ox — —oo, which converges t¢
weakly in H1(D), strongly inL2(D) and inL2(3 D). Due to [5.J) we have # 0. In the
weak form of the eigenvalue problefn ([L.2),

/ (Vos, - Vh 4+ q(x)@g h) dx = X1(o%) (/ @Yo hdx + ka o h ds) (5.8)
D D aD

forall h € H1(D), we can letk tend toco. Since the left-hand side and the first term on
the right-hand side are bounded we get

f ¢hds = lim 75 9o hds =0 forallh € L?(3D).
aD aD

k—o00

Hence tracé = 0. By takingh € Hc}(D) in (5.8) we see that is a non-trivial Dirichlet
eigenfunction with constant sign and with eigenvatuélencex = 1. The last assertion
of (i) follows immediately from[(5.B).

The continuity and monotonicity proof of the second part (ii) is very similar and
will therefore be omitted. To find the limit of _1(c) asoc — —oo take the function

v=1/,/[pq(x)dx as atest function i.4). This shows that

Js[v] = (|D| +0|8D|)// g(x)dx - —oco aso — —oo.
D

Therefore limy_, _oo A_1(c’) = 0. For the limitoc — 0— one assumes for contradiction
lims_0- A_1(c) = B for some finitef < 0. Taking convergent subsequenggs — ¢
of eigenfunctions corresponding 10.1(o%) one finds 0> 1/8 = liMi_ o0 Jo,[¢0,] =
fD @2dx > 0. This contradiction shows that lym,o_ A_1(0) = —oo. ]

Lemma 12. The functionss +— oi1(0), 0 € R, ando +— oi_1(0), 0 € R™, are
continuous and strictly increasing. In addition we have

lim oi(0) = —0o, lim oA1(0) = AT (5.9)
0—>—00 g—>00
and

im oi_1(0) =23, lim oAr_1(0) = co. (5.10)
o——00 o—0—
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Proof. Leto1 < o2 and lety andy be the corresponding positive eigenfunctions. Then

)»1(01)</ ¢wdx+alf ¢1/fds>=xl<oz)<f ¢1ﬂdX+02?§ st).
D oD D oD

Rearranging terms and using the monotonicity of Lerpnja 11 one finds

(A1(02) — 1(02)) / ¢>wdx=<A1<oz)az—xl(ol>ol>?§ v ds.
D Jon "

>0 >0

The monotonicity obA1(0) now follows. The same argument appliesto_1(o). The
first statement of (5]9) is obvious. Because of the monotonicity the limitlim o11(o)

exists and equalg € (0, oc]. The test functiorv = 1/,/ [, ¢ (x) dx yields the estimate

r1(0) < [ q(x)dx/(ID| + o|dD]). Hencey = limy_, o or1(0) < [q(x)dx/|dD],

i.e., y is finite. As usual we can consider convergent subsequences of eigenfunctions
¢o, — ¢ With o — oo ask — oo. If we letk tend toco in (5.8) and keep in mind that
limg_ 0 A1(0x) = 0 we see that the limit functio@ solves

/ (Vo - Vi +q()¢gh)dx = yyg ghds forallh e H'(D), 1= y7§ ¢ ds.
D aD aD
(5.11)

Henceg is non-trivial and [(5.1]1) is the weak form ¢f (5.3). Singés of constant sign,
y is the lowest Steklov eigenvalue, i.g¢.~ Af‘.

The same argument yields lm _ o, oA_1(0) = Aft. In order to establish the limit
o — 0—in (5.10) consider a sequen¢e; ;2 ; such thato; — 0— with eigenfunc-
tions ¢, corresponding ta._1(o%). This time let us assume the different normalization
$yp 92 ds = 1. We have either

im oA 1(c)=B8B<o00 or lim oi_1(0) = 0. (5.12)
o—0— o—0—

Suppose for contradiction that the first case holds. Singéo;) — —oo we find from
the weak form of the eigenvalue equatipn [5.8) that

/D IV |2 dx < /D (Vo ? + (q(x) — A—1(00))9Z,) dx
= h_1(ox) 0% f o2 ds < B. (5.13)
oD

Note that|[|v]|| := ([}, |Vv[?dx + §,,, v ds)Y/? is an equivalent norm i#*(D) and
l¢s 1l < (14 B)Y2. Hence there exists a subsequence {gay2° ;, such that,, — ¢

in HY(D), 95, — ¢ in L%(D) and inL2(3D) ask — oo. In particularg # 0 since
$yp 92 ds = iMoo f ) 02, ds = 1. Sincer_1(ox) — —oo ask — oo we see that
im0 [, 92 dx = [, $*dx = 0 since otherwise we get a contradiction in (5.13).
However, we have already seen tigat= 0. This contradiction shows that the second
alternative in[(5.12) must hold. This completes the proof. O
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10 £

Fig.4. q=1,L=1

For the one-dimensional case with= 1, D = (0, 1) the functionsi1(c), A_1(c) as
well as the functions A1(0), cA_1(c) are plotted in Figu@4. Note that in this cas_‘Lé =
n2+1~ 10.8696 and.$'is given as the smaller of the two rootsidt-21 /tanh 11 = 0,
Aft ~ 0.4621. Both values are depicted as horizontal lines.

Lemma 13. The functionB : (—oo, 12) — R defined by

akIl(oz) if0<a< Xf,
B(a) = { A3 if 0 =0,
oz)\j(oz) if @ <0,
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is continuous, strictly decreasing and satisfies

lim B(x) = oo, lim B(a) = —o0.
a—>—00 a—)kf

Proof. Fora > 0 we expresB(«) in terms ofo, uniquely determined by = 11(o).
ThenB(a) = oA1(0). By Lemmg IRy A1(0) increases as increases and is decreas-
ing in o. ThereforeB decreases as a function ef By Lemm,a — Af implies
o — —oo and consequently

lim B(x) = lim oli(c) = —o0.
o—>—00

a—Ay

5 T
O—-

Mc\‘—m“\

o

Fig. 5. The functionB(a) forg =1,L =1

The relationB(0+) = Aft follows from the fact that — oo asa — 0 together with
(5.9). Similarly if« is negative we set = A_1(c). The assertions then follow as before
from Lemma an@.Z. In particular we haké—) = A3, which shows thaB(«) is
continuous on the entire intervél-oo, Af). O

Theorem 14. Let0 < f € L%(D) and0 < g € L?(dD) not both identically zero. Then
a solution of (5.1)is positive if and only ife, B) satisfiesx < A andB < B(e).

Proof. Suppose[(5]1) has a solutian> 0 in D. Then necessarily < A, which can be
seen as follows. LeplD be a positive copy of the first Dirichlet eigenfunction. We claim
that

/ (VoP . vy + q(x)pPy) dx < / AWoPydx vy e HY(D)withy > 0in D.
D D
(5.14)
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This inequality amounts to the weak form axleD/an < 0 onaD. The proof may be
folklore or not—we give a short proof in Lemma]18 of the Appendix. Taking= u in
(5-13) and using? as a test function in the weak form f (p.1) we find

/(auwf—i—f(pl[))dx:/(Vu-wa—i—q(x)ugaf)dx5/ kf’(plDudx.
D D D

Hencea < AP and if f > 0, # 0 then we obtairr < AD. It remains to show that it is
impossible to have = Af, f =0andg > 0, # 0. In this case we take the test function
¥ = (u — ¢P)~ € H}(D) both in [5-1#) and in the weak form ¢f ($.1) and subtract:

/Duwu — D) TP+ g0 — P) )P dx < 2P /D«u —oP))2dx.

By the variational characterization af we get(u — o)~ =t for somer > 0, i.e.,
u = spP for somes > 0. But this is impossible since > 0 in D. Thus we know that
a < AP. Next we consider the cases0x < AP, « < 0 ande = 0 separately.

()0 <o < AP: Leta = 11(0) for somes € R andp = ra for somer € R. Note
that

B < B(a) & ta < B(x) = XIl(a)ot =oa
& T<0
& (7)) > a.
From Theoreni |2 and the assumption that eitfiesr g is non-trivial we know that the
latter condition is a sharp condition for the existence of positive solutiarfs(5.7)) with
B =r1a.
(i) « < 0: We setw = A_1(0) andB = ra. The argument of (i) can be repeated:
B < B(a) & ta < B(x) = Xj(a)ot =oa
S T>0
& Aoa(t) <a,
and the latter condition is again sharp by Theofém 2.
(i) « = 0: In this case the necessity/sufficiency of the condifior 13! = B(«)

for the existence of positive solutions is well known from the theory of Steklov problems.
|

Appendix

Lemma 15. SupposeD C RY is a bounded Lipschitz domain. There exists a constant
C = C(D) such that for every < (0, 1) we have

C .
f 2ds < —/ szx+C€/ |Vz|?dx for everyz € HY(D).
aD € Jp D
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Proof. Let & be a smooth vector field in a neighbourhoodibsuch that -n > ¢p > 0
a.e. ond D. For the existence df, cf. Lemma 30 in[[2]. The inequality

1
% cozlds < / ((diVé.E)z2 4+ 2zE - V2)dx < / C<z2 + 22+ 6|Vz|2) dx
oD D D €

is equivalent to the claim. O

Lemma 16. SupposeD c RY is a bounded Lipschitz domain. Let< A e LP1(D),
0 < B € LP2(3D) with p1 > N/2andp, > N — 1. Forz € HY(D) andr > 0 the
following inequalities hold:

/A(x)zzdx t1*2Pl/N||A||i’;1/(Z)f |Vz|2dx+t/ 2 dx,
D D xeD:A(x)<t

f B(x)z2 ds
aD

Proof. We give the proof of the first inequality and write= p1 for simplicity. The proof
of the second is analogous. LBt = {x € D : A(x) > t}. The inequality

IA

IA

_ N-1
tl P2/(N+l)||B”€%/2((aD))/ |Vz|2dx + l‘% Z2dS.
D x€dD: B(x)<t

t"/2meagD;) < / AN dx < A j(p, measDyt N/
Dy

implies
measDy) < ALy " / AN dx < ANyt 2P
Dy

Hence

/ A(x)zzdx 5/ A(x)zzdx—i-t/ 2 dx
D D, D\D;

2/N
< A(x)N/zdx) [ . —l—t/ 22 dx
(/Dt L2N/(N 2)(D) D\D,

2p/N . 1—
< NAIZY AN V22, / 2dx,
D\D;

which implies the claim. O

Lemma 17. SupposeD c R is a bounded Lipschitz domain and lete L>°(D),
b e L*®(3D).

() Let f € LPr(D)andg € LP2(dD) with p1 > N/2and p, > N — 1. There
exists a constant = C(||a]loo, 1Plloo, D, N, p1, p2) Such that every weak solution
v e HY(D) of

—Av=ax)v+ f(x) InD, v,=bx)v+gx) ondD (5.15)

satisfies|v||Lp) < CvllL2py + I fllLrepy + l18llLr2(D))-
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(i) Foranyp € [1,n/(n — 2)) there exists a constarit = C(||a|co, ||1bllco, D, N, p)
such that every weak solutién< v € H1(D) of

—Av>a(x)v inD, wv,>b(x)v ondD (5.16)

satisfiesinfp v(x) > C|lv|lLr(p). In particular, eitherv = 0 or there existss > 0
such thatv > § > Oa.e. inD andtracev > § > Oa.e. ondD.

Proof. The proof is based on Moser’s iteration method (cf. Gilbarg and Trudihger [9]).
(i) Letk = | fliLrr(py + lIgllLr2apy @nd defined = vt + k. For fixedL > 0,5 > 0
let
¢ = omin{o®, L%} — k1, w = omin{z®, L*}.

Then
Vo = Vot (min{o®, L%} 4+ 250% x5<1)),  Vw = Vo (min{#*, L} + s7° x5<1)),

and hencgVw|? < (s + 1)Vuv - V. Takinge as a test function i5) and noting that
¢ = 0 wheneven < 0 we obtain

1 2
[Vw|“dx
S+1 D

< /D(|a|v+ F1fDedx + 7€)<|b|v+ + 1gheds

5/(|a|v++|f|)5min{52Y,L2‘}dx+7§ (1blv™ + |g))o min{v®, L%} ds.
D oD

By the inequalities|ajv™ + | 1) < (lal +1f1/0)v, (Iblv* + [g]) < (Ib] + Igl/k)v we

obtain 1
/ |Vw|2dx§/ A(x)wzdx+y§ B(x)w?ds, (5.17)
s+1/p D aD

whereA(x) = |a(x)| + | f(x)|/k and B(x) = |b(x)| + |g(x)|/k. This choice ofA, B
implies in particular||AllLri(py, | BllLr2capy < C(llalloo, 1Pllso). Here and in the fol-
lowing the same symbdal' denotes different constants depending onlyj|ofise, |16 co,
D, N, p1, p2. Next we apply Lemma 16 tq (5.17) for the volume integral with=
(25 + 2)1/(21’1/"’—1)||A||lel(D), y1 = p1/(p1 — N/2) and for the surface integral with

t = (25 + 2P/ NED=D BT, L ve = p2/(p2 — N +1). Thus we obtain

/ |Vw|?dx < C(2s + 2)P1/(P1=N/2) / w?dx + C(2s + 2)P2/(P2=(NFD) )2 g5,

D D oD (5 ]_8)
Next we use Lemma 15 with = %(Zs + 2)~r2/(p2=(N+1) gnd deduce fro8)
that

f IVw|2dx < 2(C(2s + 2)PV/Pr=N/2) 4 20 C? (25 4 2)P2/ (P2~ (NFD)) f w2 dx
D D
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and by adding the square of tii&-norm of w to both sides and using the Sobolev in-
equality we find

P1 D2
p1—N/2" p2—(N+1)

If we L26+D (D) we can let. tend to infinity in {5.19) and obtaifie L¢+1D2V/(N=2)(p)
and

lwlon/v—2) < C(s + DV |lwll2, y = max{ } (5.19)

19l s+n2n/(v—2) < (C(s + D)/ S D515 40y, (5.20)
Hence, ifso = 0 andsi11 + 1 = (sx + 1) 5~ then
Il 26s0s141) < (C sk + 1)/ D15 55,41
Sinces + 1 = (725)*, k € No, it follows that

&
1llo0 = Jim W3lla,00) < [ [(C s+ D)7/ o)
k=0

InC 1
_exp<2y A (Sk+ )>||17||2

N —2\F\
< CeXp<Z Vk(T) >||v||z,
k=0

where the last sum converges. Recalling the definitianeb*+ | || Lr1py+ gl Lr2a D)
we have obtained the upper estimate in statement (i) of the lemma fofhe estimate
for v~ follows fromv™ = (—v)*.

(ii) Now we turn to the lower estimate of the lemma. let= v° with s < 0 where
v = v+ L with L > 0. ThenVv - Vg = st*~1|V#|? and takingy as a test function in

(5-18), we find
s/ Vo2 dx z/ a—(x)ﬁs+ldx+7§ b~ (x)v°Ttds
D D aD

> —C( / 7 Hlax + f i+l ds>. (5.21)
D oD

If s # —1 we setV = 3¢+D/2 and obtainVV |? = (551)2|Vo|25* L If s = —1 then
we setV = log and obtain VvV |2 = 5-2|V#|2. Together with[(5.21) this implies

Cls+1 V24 f V2d> if -1,
/|VV|2dx§ Is + |</D kg vias) s # (5.22)
b C if s = —1,

with C =C(||a|lse, ||b]lse). By Lemma 15 withe =1/(2CC|s + 1|) this implies

/ IVV|?dx < C|s+l|2/ V2dx,
D D
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provided|s + 1| > |so + 1| > 0. Adding the square of the2-norm of V to both sides
and using the Sobolev inequality we get

IVllen/iv—2) < Cls + 1| |V ||2. (5.23)

1/p
d(p) = </ ﬁpdx) .
D

Then ) impliesp ((s + 1) x%) Y/ < Cls + 1d (s + DOV je,,

d><(s + 1)NL—2>

This estimate will be iterated. Sgt,1+1 = (st +1) 32. Thensg+1 = (s1+1) (5255) 1
and ifs; < —1 then

For anyp € R let

< -1

. S
Cls+ 1) o +1) if { -0 (5.24)

IN IV

D(sps1+ 1) > (Clsg + 1)~ H U D (5 + 1).

Solving this difference inequality we find that

o0

info > lim @(sie1+1) = [ J(Clse + 1)~ D (51 + 1)
D k— 00 =1
> —2InC|sk+1|)
= ex — | P(s1+ 1
Y )
c

o 1
> exp(Y_p2y (k — D(XF2)k-1) (s1+1),

and since the last sum converges we have obtained

il’ll)f 1>Co(s1+ 1) (5.25)

for some initial numbes; < —1, which we can still choose. Similarly, if we choose
s1 € (=1, 0) we can iterat4) as long @se (—1, 0) and obtaind (X5 (sx + 1)) <
CO(spy +1) < CP(s1+ 1). In other words, we have

®d(p) < Cd(po) whenever O< pg<p < (5.26)

N-2

It remains to give a lower bound fdr(s) for somes < 0. For this purpose recall the John—
Nirenberg inequality (cf. Gilbarg and Trudingéi [99upposeV € W1(D) is such that
there exist > 0 with fB, [VV|dx < CrN~1for every ballB, ¢ D. Then there exists

a numberpg > 0 such that/}, ePlV=Vlgx < C whereV = |D|1 [p V dx. We apply

this for V. = logu. Then the second inequality of (5/22) shows tiiat W12(D) and
hencef, |VV|dx < CrN/2(f, |VV|2dx)l/2 < CrV¥~1. The last inequality is obtained
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similarly to (5.22) by testing (5.16) with = 512 wherey is a suitable cutoff function
in a ball By, Thus, the John—Nirenberg inequality applies and together with the trivial
estimate:(V — V) < |V — V| we obtain

/ e’V dx < CePoV, / e PV dx < Ce™ PV, e,
D D

/ epovdx/ e PV gy < C2
D D

Recalling the definition o/ = log s this shows thayf,, 970 dx [, 5~ "°dx < C2 and

hence
1/po =1/po
( / f;I’de) §C2/1’°< / r!’m) )
D D

Together with[(5.25) this shows that
igfﬁ > CP(—po) = C'®(po) = C"®(p),

wherep € [1, %). The last part of this inequality follows either frondlder’s inequal-

ity if po > 72 or from ) if po € (0, 5%5). Letting L — O we obtain the claim of

statement (i) of the lemma. O
Lemma 18. Let D be a bounded Lipschitz domaid,< g € L>°(D),0 < h € L%(D)
and0 < v € H}(D) a weak solution of

—Av+qgx)v=h inD, v=0 onaD. (5.27)
Then

/ (Vv - V¢ +qgx)vy)dx < / hydx Yy € HY(D) withy > 0. (5.28)
D D

Proof. Let us first prove the result far e C*°(D) andg € C*°(D). Thenv € C*(D)
and [5.2F) holds pointwise ip. By Sard’s lemma for almost every 9 s < ||v]l« the
super-level seD; = {x € D : v(x) > s} has a smooth boundary. Thus we obtain for
almost every € (0, |[v]ls) and everyy € H1(D) with ¢ > 0,

(Vv~Vw+q(x)v1ﬂ)dx=/ hiyrds + Y opv dsf/ hiyr ds.
Dy Dy oDy T s
<0

Choosing an appropriate sequence> 0 we obtain[(5.28). For the general case we can
approximater € L2(D), g € L®(D) by sequencesy, gr € C®(D) with iy — h and

qr — q in L4(D). Lety, € H}(D) N C*(D) be the corresponding solution. Th.28)
holds foruvg, gk, hx and every test functiofr € C*°(D) with v > 0. Lettingk — oo we
retrieve the result foo, ¢, h. O
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