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Single-point blow-up on the boundary where
the zero Dirichlet boundary condition is imposed
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Abstract. We consider a reaction-diffusion-convection equation on the halfineo) with the
zero Dirichlet boundary condition at= 0. We find a positive selfsimilar solutianwhich blows
up in a finite timeT atx = 0 while u(x, T) remains bounded for > 0.

1. Introduction

We study the existence of positive backward selfsimilar solutions of the problem

{uz =ty + k@), +u?Y, x €(0,00), t € (—00, T), (L.1)

u(0,1) =0, te€(—o00,T),
wherek > 0,m > 1 andT € R. More precisely, we look for solutions of the form
u(x, 1) = (T — )" Y2 =Dyy(y),  y=(T — 1)V, (1.2)
wherew is a solution of the problem

w”:gw’—k(w’”)’+—w—w , y>0,

2(m — 1) (1.3)

w(0) = 0.

It follows from [9] that if k = O then there is no bounded nontrivial nonnegative solution

of (1.3).

Our main aim is to show the following:

Theorem 1.1. Letm > 1. Then there iskg > 2/./m such that for anyk > kg the
problem) possesses a positive solution satisfylingsup, , ., y/"Pw(y) < cc.
Consequently, for any € R the functior: defined byI.2)is a positive classical solution
of @) such thatlim; »7 |lu(-, )|l z=(@0,00)) = 00. Moreover, there is a constagt > 0
such thatu(x, 1) < Cx~ YD forx > 0andr < T.
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This means that the solutionblows up at the single point = 0 where the homogeneous
Dirichlet boundary condition is prescribed.
For the following problem without convection:

up=Au+ f(w), xe€,t>0,
u(0,1) =0, >0, (1.4)
u(x,0 =uop(x) >0, xeQ,

where f(u) = u?, p > 1 andQ c RV is bounded, the first examples of single point
blow-up were given in[18] = 1,2 = (=L, L)) and [8]13] (v = 1,2 = {|x| < L}).
In these examples, the solutions blow upcat 0. It was also shown iri [8] that &2 is
convex then blow-up of solutions ¢f (1.4) can only occur away from the bourtdary

There are examples of solutions of parabolic equations for which singularities occur
on the boundary where the homogeneous Dirichlet boundary condition is imposed (see
[5[158], for instance) but in these examples some spatial derivatives become unbounded
while the solution itself stays bounded. This phenomenon is called gradient blow-up and
it occurs for equations of the form

u; = Au + f(us Vu),

where f (u, Vu) grows superquadratically i¥u.
Itis also known thad 2 may be contained in the blow-up $8¢:) defined as

B(u) = {xo € Q | there is a sequendéx,, 1,)} C Q2 x (0, T) with
(Xn, ty) = (x0, T) such that(x,, t,) — oo},

if u is a solution of [(T.}4) withf (u) = (u + 2)log”(u + 2), 1 < p < 2 (seel[11]). But
hereB(u) = Q and this phenomenon is called global blow-up.

Examples of single-point blow-up (ih°°) on the boundary are only known in the
case when blow-up is forced by boundary conditions: see [4] for the case of nonlinear
Neumann boundary conditions and|[14] for the case when nonhomogeneous (blowing
up) Dirichlet boundary data are prescribed.

Blow-up of solutions of reaction-diffusion-convection equations of the form

ur = Au+kvwu™) +uf, m,p>1, (1.5)

(or more general) was studied beforelin[[L, 3,16, 7,12, 17], for instance, and it is known
to occur if p > m. Backward selfsimilar subsolutions ¢f (IL.5) were found.in [17].
The existence of radial backward selfsimilar positive solutions of the equation

up = Au— k|Vu|?P/PD 4P k>0, p> 1,

was established in [16] far and p — 1 small enough.
Our method relies on some shooting arguments but it is not related to the methods
used in[[16] or[[2]. We study the initial value problem

" Y my/ 1 2m—1
w' = =w —k(u 4+ —w —
2 ™) 2(m —1) v

w0 =0, w0 =0>0.

0 o,
’ y > ’ w > (1.6)
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Our strategy is to show that far small enough the solution does not have any local
minimum (Section 4) while the s& of o such that the corresponding solution possesses

a local minimum is nonempty (Section 5). The solution correspondirgg te inf X is

then the solution we are looking for (Section 6). Section 2 is devoted to some elementary
properties of solutions of (I.6) and Section 3 contains some comparison lemmas which
are used later.

2. Preliminaries

We first collect some basic properties of solutiong of|(1.6) d910, letw, : (0, ymax(c))
— (0, o0) denote the maximally extended positive solution[of](1.6). Then it is easily
verified that anyw, is a priori bounded above in bounded subintervals 080, so that
w, May cease to exist only by approaching the value zero at some finite valudrof
order to keep the notation and arguments as simple as possible, let us henceforth instead
of (1.§) consider the extended problem

w' = 2w — k(w™) + _r w—w?t  y>0 (2.1)

2 + 2(m — 1) o ’
w(0) =0, w'(0) =o, (2.2)

wherew := max{w, 0} denotes the positive part of. In fact, [2.]), [[2.R) possesses a
solution on all of(0, co) whenevers > 0, and on(0, ymax(c)) this solution coincides
with that of [1.3), corresponding to the same initial data. Therefore throughout the fol-
lowing we may as well letv, denote the globally defined solution pf (R.1), {2.2) without
danger of confusion.

Although form < 2 the term(w’?)’ = mw{’ﬁ‘lw’ is not locally Lipschitz continuous
with respect to the coupl@n, w’) € R?, the solutions ol) enjoy the usual properties
of uniqueness and continuous dependence on the initial data; this can be seen by intro-
ducing the new variablé/ := w’ + kw”’ — 3w, which transforms the ODE i (3.1) to
the system

w' =W —kwf + %w, (2.3)
1 1

W=(—" — Z)w—w2t 2.4

<2<m -1 2>w o @4

Now the nonlinearity on the right-hand side is continuously differentiable with respect to
(w, W) € R2,
We next observe thaft (2.1) has three explicit solutions. One of these is the constant

solution
1 1/2(m—-1)
v (mmn)

which has the following evident property:
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Lemma 2.1. Letw be any solution of2.1). If w attains a local minimum at someg > 0
thenO0 < w(y1) < u, whereas ifw has a positive local maximum & thenw(y1) > u.

Since we assumk > 2/./m throughout, we can moreover find two explisingular
solutionsw; of (2.1) given by

wE(y) = ATy V=D y 50,

whereA®* are the two positive roots of the equation

km m
2m—2 -1 _
A ——7 1A”‘ + DT 0, (2.5)
that is, we have
+ Vk%2m?2 — 4
(A1 — km kem m' (2.6)

2m — 1)

Since the larger roof™ will frequently appear in what follows, we will from now on
drop its superscript and simply writt = A™.

Another elementary property df (2.1) concerns the possible limits of stabilizing solu-
tions.

Lemma 2.2. Letw be a solution of2.1) and assume that (y) — wo asy — oo with
SOMews, € R. Then eithelws = 00r wye = u.

Proof. The hypothesis implies tha¥ = w’ — kw’! + %w satisfies

/ 1 1 2m—-1 __.
Wi(y) — (m - é)woo —(wee)y ~=lco

by (2.3). Hence for alb > 0 one can find, > 0 such thatw(y) — ws| < v as well as
[W/(y) — col < vforally > y,.In particular,

w(y) > Weo — v,  W"(Y) < (Weo + )Y,

W) =z W) + (co—v)(y —y) forally >y,
so that[(2.B) yields

w'(y) = W(y) — kw(y) + %w(y)

v

Woo — V
W(YV)_(CO_V)YV_k(woo‘FV)ﬁ"'(CO_V+ - )y» Y= Yv.

2
Sincew remains bounded, we therefore haye- v + (w — v)/2 < 0 and thus, since

v > 0 was arbitraryco < —ws/2. Using a similar argument, one can see that also
€0 > —wso/2 and thereforeg = —wso/2, that iS,z(m—l_l)woo = (weo)?" . This yields

the claim. O
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3. Comparison results

In this section we state two useful comparison results for second-order ODEs which will
frequently be applied throughout this paper.

The first tool concerns linear equations with variable coefficients and is very much in
the spirit of [10, p. 123].

Lemma 3.1. Suppose that-co < & < &x < 00, a,b € CO([&0, £x)), and thaty =
¢(&) andy = y(£) belong toW,as® ([0, £x)) and satisfy

¢ >aE)p +bE)g ae.in(, &),
V' <a@y' +bE)Y ae.ino, éx),

. (3.1)
Y >0 in (&, &),
o) = v (), ¢'(k0) = ¥'(0) > 0.
Then
o>y and ¢y >y in (&, éx). (3.2)

Proof. After a translation we may restrict ourselves to the case= 0 and set; =
sup€ € (0,£x0) | ¢ > 00n(0, £)} < &x. Sincep(0) > 0 andy’(0) > ¥'(0) > 0,81 is
well-defined and positive. BY (3.1,(¢) := (¢'¢ — ¢y')(§) satisfies

p'=¢" Y —oy" = (ap' + b)Y — (ay’ +by) =ap a.e.in(0, &)

and thus, since (0) > 0, we haveo > 0in (0, &1). This, however, means that.= ¢/y
is nondecreasing o), £1). Since[(3.]1) implies (0) = 1if ¥/ (0) # 0 and, by I'Hbspital’'s
rule, ¢(0) = limg_0¢/(§)/¥' (&) > 1in casey (0) = 0, we conclude that in any case
£(§) > ¢(0) > 1forall& € (0, §1). Thereforet, = & and [3:2) is valid. O

Concerning differential inequalities wittonstantcoefficients, we obtain a sharper result.
Lemma 3.2. Leta andb be real numbers satisfying
a?/4+b > 0. (3.3)

Suppose that-oo < &y < £, < 00, and thaty e Wli’coo([go, £00)) Satisfies

¢" = ag +bp a.e.in(éo, &) (3.4)
Then
/ _ )\17
At —¢ -
Rl A A T CY ) (3.5)
with

At =a/24+/a?/4+b. (3.6)
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Moreover,

if @ > 00N (£, £x) andg’ (&0) > Ae(&o) for somer € [A~, A 7]
theny’ > rp for all & € (&g, £oo). (3.7)

Proof. We may again assume thiat= 0. We substitute (£) = ¢*¢ p(£) with A € R and
calculate

¢ =M (' + 1p),
¢ = e (p" + 200" + A2p).

Therefore[(3}) transforms into

p" = —(2rp' 4+ 2%p) +a(p’ + Ap) + bp
=(@—20)p —(A%2—ar—b)p ae.in(,&xy). (3.8)

Choosingh. = AT here, we see that” > —(AT — A7) p’ a.e. in(0, £). Integrating this
inequality we have' (&) > e=* =275 p/(0) for all £ € (0, £). One further integration
yields

() = p(e)
> o't [p<0> - ﬁ(e—“*—“‘f - 1)p’<0>]

= "6p(0) - ﬁ@”f — )9 (0) — 1t p(0))

and thereby proveg (3.5).

To see the impIicatio.?), we note that [A~, A*]is equivalent to.2—ar—b < 0,
so that the hypothesig > 0 yields p” > (a — 21)p’ in (0, éx) by (3.8). Therefore
0/ (&) = e M (¢ (§) — Lp(&)) preserves its initial nonnegativity for dle (0, £y,). O

4. Solutions without local minima

The goal of the present section is to prove that it 0 is sufficiently small then the
solutionw, of (2.7)), [2:2) will increase for smal, attain a local maximum and then
decrease te-oco, so that in particular it will not attain a local minimum i, co). In
order to prepare the proof of this statement (Thedrein 4.3), let us demonstrate two general
features of solutions of (2.1).

The first of them means, roughly speaking, that if a solutioof (2.1) crosses:
‘from above’ at somey; large enough then it must decrease for y1 and eventually
become negative, regardless of the size/Gfy;).

Lemma 4.1. Assume thatv is a solution of(2.1). If w(y1) = x andw’(y1) < 0 occurs
for somey; > 6 + 2kmu™ 1 thenw’(y) < Oforall y > y; andw(y) - —oc as
y — oo.
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Proof. Let
y2 :=supy > y1 | w > 0andw’ < 0in (y1, y)} < oo.
Then on(ys, y2) we havew < u and thus

1 2m—1

i
2m—p" "

/

< y—zlw — kmp™ ' +

Leto(y) := u—w(y). Then using the convexity inequalit¢ — £)2" 1 > 1— (2m — 1)&
for 0 < £ < 1 as well as the properties of andu, we can estimate

1
"o ﬂ —k m—1) /1 _ _ \2m—1
¢ = < 5~ kmu Y m—1) (n—=9)+ -9

’_; _ 2m—1 _ 2m—2
= 4¢ 2(m—1)(“ @)+ T+ @2m =D e

=49 —¢ in(y1,y2).

Since 4/4—1 =3 > 0 andg > 0in (y1, y2), Lemma 3.2 shows that’ > 2¢ in
(y1, y2), because’(y1) — 2¢(y1) > 0 and 2€ [»~, A*] with A= = 24+ /3 as in|(3.6).
Thereforey, must be finite, since grows exponentially in(y1, y2), and furthermore
w(y2) = 0 andw’(y2) < 0. But due to Lemm]w cannot have local minima as long
asw < 0, whencew actually decreases throughawt, o). Now (2.3) shows thaw is
even concave oftyz, co) and therefore approacheso asy — oo. O

The second lemma asserts tafitsolutions of [(2.]L) eventually decrease.

Lemma 4.2. Letw be a solution of2.1). Then there existg; > 0 such thatw’(y) < 0
forall y > y1.

Proof. Assume that the lemma is false. Then eithéty) > 0 for all largey, or both
{y > 0| w(y) > 0 and{y > 0| w'(y) < 0} are unbounded. In the latter case,
must have unbounded sequences of local minima and maxima. Since, due to Lefnma 2.1,
these minima have their ordinates(ih ) and the maxima lie above, this means that
there exists a sequence of numbgrs— oo such thatw(y;) = n andw’(y;) < 0,
contradicting Lemmp 4] 1.
Therefore we are left with the case thalt(y) > 0 for largey; thenw(y)  we as
y — oo for somews, < co. In view of Lemmd Z.R, we have either,, = 0 orwe = i
Or wee = 00. In the first two casesy(y) < u for largey, so that from[(2.]1) we obtain

w’(y) = (v/2 — kmp™Hw'(y)  for largey,

which is impossible for bounded. We thus only need to exclude tha(y) oo as
y — 00.
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To do this, we first integrat¢ (4.1) ovéd, y) to obtain
’ ’ y;’_- / m 1 Y Y 2m—1
W -wo = [ —w(§>ds—kw+(y)+2—/ w)ds— [ u? i) de
(m—1) 0
= Ju -kt o)+ oo [ as
- f w2 Ye)ds  forally > 0. (4.1)
0

In order to show the dominance of the term involvimg”~* in ) in the case under
consideration, we first claim that there exiggs> 0 such that

2—m Y
2(m—1) 0

Indeed, this easily follows from the observation that singg) — oo, the function

¢y = 1 2’” Yy - Z(mel)w(y) tends toco asy — oo, which clearly implies

fO {(E)d’g‘ — ooaSy — 00.
Next, we claim that there is a sequence of numers- oo such that

1 y
wE)dt < fo w2 NE) dE, v > yo. .2)

=, 1 }_v
%Jw(yj) < Z/ w2 LE)de,  jeN. (4.3)

In fact, suppos¢g (4]3) is false. Then there exjsts 0 such that

i = 5 [(ur e vz (4.4)
Sincel fo L&) dt > oo asy — oo, we may assume to be so large that
I 1/2(m—1) -
=3/ vt (€)dg > 2 y. (4.5)

Letv(y) := yw(y) for y > j. Then, by[(4.}),

y m-1

() > 2 / &) d = / 21 gg 4 / (%) d
v(®) )
=C — —_— d y =V,
+2/; ( : ) & y=)y

in particular,u(5) > C. Lety denote the solution of’(y) = 2 (v (y)/y)?" L fory > §
with ¥ (y) = C, which is explicitly given by

—-1/2(m-1
1 2_2m) /2(m—1)

1
— C2—2m T 52-2m -
Y (y) ( >V +5y
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SinceC2-2" — 132-2m ~ 0 due to), we have
Y(y) > o0 asy — § = (372" — 207272 ¢ (5, 00).

Buty (y) = C+ [ (¥ (§)/€)?"tdg forally > 3, whencev > y in[3, §) by a standard
comparison argument. Consequeniynust blow up at some finite. This contradiction
established (4]3).

Using [4.2) and (4]3) i (4}1), we finally obtain, for large= N,

1 [V
0O = W) - wO = -3 /0 w2 L) di

— —o0 asj — oo,

which is absurd and thereby proves the lemma. O

Now the main result of this section is an easy consequence of the above preparations and
the continuous dependence of solutiong of|(2[1)] (2.2) on

Theorem 4.3. There is a positive numbery such that for allo € (0, o9), the function
wy has precisely one local maximum and no local minimédino).

Proof. Let y := 6 + 2kmu" ! denote the number from Lem@.l. Since the mapping
o — w, is continuous from [0oo) to CO([0, 7]), there isog > 0 such thaiv, (y) < %u

in [0, y] for all o < op. For any suchy, w/, must have a minimal zerg; > 0 due to
Lemma 4.2, which necessarily corresponds to a local maximuni. By (2.X)1) > u

and hences > y. Now if w/, had another zero ify1, o) thenw, should have a positive
local minimum at somey > y1 with ws (y2) < w in virtue of Lemmd 2.JL. Thus, there
would beys € (y1, y2) such thatw, (y3) = n andw, (y3) < 0. But sinceyz > y1 > ¥,
Lemmg 4.1 then provides a contradiction and thereby proves the theorem. O

5. Solutions attaining a local minimum

In this section we shall see thatkifis sufficiently large then for some > 0, the so-
lution of (2.3), [2.2) attains a positive local minimum somewherg0o). Our ap-
proach towards this crucial tool for the proof of Theorpm]| 1.1 is by applying a two-
sided shooting method, with the origin of shooting located at a peHntw;" (yo)) with
some appropriatgg > 0. Here the essential ingredient will be an instability property
of w;, according to which backward shooting fraiy, w; (yo)) with any initial slope
w’(y0) > (wi) (yo) will force w to have a zero if0, co), no matter how small the devia-
tion w’(yo) — (w;")’(yo) is. This freedom in the choice af (yo) will be used in a second
step: Roughly speaking, shooting forward fram, w; (y0)) with w’(yo) — (w;) (yo)
sufficiently small but positive will produce a solutiamwhich on one hand, by continu-
ous dependence, remains closetoin a sufficiently large interval—so that, in particular,

it enters the regiom < p where local minima occur; on the other hand, however, the term
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(y/2)w’ on the right of) gives rise to a further instability featureugf, which entails
that any suchw exhibits a tendency to behave liks"/4 intermediately and therefore will
eventually be repelled frorw;" until it leaves the regiom < u. As a consequencey
must have a local minimum. Finally, glueing together the backward and forward shooting
products and applying a further continuous dependence argument, we will end up with a
solution of [2.1),[(Z.R) that in fact has a local minimum (Theoferm 5.6).

To carry out this plan it will be convenient to rescale solutiensf (2.7) in the
following way:

wy) = fOHw ), y>0.

Recalling the explicit representatiart (y) = Ay~Y~1 we compute thaf satisfies

T Tl kA" e g1 y—lzcb(f), y=0 (51

with
D(s) = — = Tl)zs + szinllsg'f — AZ=22m=1 g e R (5.2)
Now givenyg > 0O, we rescale the intervaD, yo) by settingz := —In(y/yp) for y €

(0, yo), so that the backward function

8vr(2) = gp(z: yo) = f(yoe ), z € (0,00),

is a solution of
m-+1 2 _ _ _
g = —(— + 29, 2Z>g,; +hmA" gl + ®(g),  z€(0,00). (5.3)

Similarly, the forward transformation= In(y/yo), y € (yo0, o), and

gr(2) = gr(z: yo) i= f(yoe®), z € (0,00),

lead to the equation
" m+ y(2) 2z / m—1_m—1_/
gr =\ ——=+ 5% )gy —kmA" gy gy + P(gr),  z€(0,00). (5.4)
Lemma 5.1. The functiond® is concave oifl, co) and

D(s) < (kmA’"l - ﬂj_)(l —s) foralls € (0, 00). (5.5)
m—
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Proof. From
/ m km?Am—t g 2m—2 2m—2
dD(s):—(m_l)z—i— 1 s —(@2m—-DA s , s§>0,
and the fact that> (1) = — -2 + 4% — 4272 = 0 by (2.8), it follows that
2m
P'(1) = —— —kmA™ L, (5.6)
m—1

and thatd” has precisely one zesgin (0, co). SincekmA™ 1 > 2m/(m — 1) whenever
k > 2//m, we thus find thatt’(1) < 0; as also®’(0) < 0, we conclude tha®’ has
two zeros in(0, 1), say at O< s1 < s2 < 1. Therefore we necessarily hasge (s1, s2)
and in particulard”(s) < 0 for all s > s». This proves the concavity @b on [1, co)
and, moreover, thad’(s) > ®’(1) for all s € (s1, 1) andd’(s) < &'(1) for eachs > 1,
whenced(s) = ®(1) + [} @'(§) d& < ®'(1)(s—1) foralls > s1. Therefore[(5.5) yields
(5-9), because@(s) < 0fors € (0, s1]. O

5.1. Shooting backwards

The following auxiliary lemma is an application of Lemfna]3.1 to a particular differential
inequality that will arise in the backward shooting procedure in Lefnnja 5.3 below.

Lemma 5.2. There exists/p > 0 such that ifzo, > 0ande € C2([0, zo)) is a function
satisfying

" 27N, i
{w > M1 ¢ )¢' = Ng in (0, ze0), (5.7)
90 =0, ¢ =1,
with someM > Mg andN e [0, M], then
{z if 0<z<.3/M,
o(z) > V3 JMBz (5.8)
— - if J3/M < 005
T M=z=z
and
1
- if 0 V3/M,
¢'(2) > zw(Z) T0<z<v3 (5.9)
NM/3p(z) if /3/M <z < Zeo.

Proof. Since & (—~In(1 —s)) = £~ — 1 ass — 0, it is possible to choosey €
(0, (2In2)/3) small such that-In(1 — v) < 3v/2 for all v € [0, vg]. We setMy =
16/3v3 and, givenM > Mo, let

B=BM):=M/3, v=v(M):=4/v3M, z0=z0M):=1/8(M).
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Thenv(M) < vg and

_In(@ - v(a))

In2
. < 20(M) < ”7 for all M > Mo, (5.10)

because < vg < (2In2)/3 implieszo(m) ++/3/M < /3/Mo = 3vp/4 < (In2)/2 and,
on the other hand; In(1 —v)/2 < 3v/4 = /3/M = zo(M).
We now define
zZ, 0 <z <z0(M),

Y(z) = 1 sonc—zommy — 1 pon:
—,B(M)e = e,B(M)e . 2> z0(M).

Then bothyr andv/’ are continuous at = zo(M), so thaty € ng’cw([o, o0)). Moreover,
¥(0) = 0 andy’(0) = 1, and since it can easily be checked that 2% > z for all
z € [0, (In2)/2], we have

W —MA—e X)W + Ny = —M1—e %)+ Nz < —Mz+ Nz
<0 in(0,zo(M)) (5.11)

due to the second inequality jn (5]10) and the assumption M.
Whenever: > zo(M), however, the first inequality iff (5.]L0) ensures that

1o > 1 %0 5 1 _ ,=2(=InA-v(M))/2 _ (M),
so that in this case we obtain
1
Y =M —eE)W + Ny = Eeﬂ(Z_ZO)[,BZ —~ M1 —e )B4 N]

1
< ZePE0[B2 _yMB + M)

B
1 M v
Z Bz I~ _
< Zebeo [3 ﬁMW+M}
< %eﬂ(Z_ZO)%M— vV/3M)
=0 in(zo(M), c0)

in view of our choice ofv = v(M). Combined with[(5.11), this allows us to conclude
with the aid of the comparison in Lemrha B.1 that> ¢ andg'yy > ¢y’ in [0, zoo).
Sincey’/y = B(M) = /M /3 for z > zo, this yields[(5.8) and (5]9). o

With this preparation at hand, we can now prove that shooting backwards in fact produces

solutions with zeros, provided that the shooting origin is chosen appropriately and, which
might not be surprising, if the convection term|in (2.1) is strong enough.
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Lemma5.3. Letm > 1. Then there existgy > 2/./m with the property that for any
k > ko one can findeg such that for alle € (0, gg), the solutiong, = g5(-; yo) of the
backward shooting problem

m—1 2
0 =1 g0 =—¢,

has a zero in0, co) if we choose

m+1  y3 _ ~1m—
g =—( 2=+ 20 2Z>g§,+kmA’" e+ ) >0 (59

2
yo i= /2, [kmAm—1 — o
m—1
Remark. As already mentioned in Lemma 54mA™ 1 > 2m/(m — 1) for anyk >
2//m, so thatyg is well defined.

Proof. Fork > 2/./m we abbreviate
k?m? + kmNk2m2 — 4m
2(m — 1)

and observe that restrictiig> kg is equivalent to sayin@ > B (ko).
Writing g instead ofg;, throughout and setting := 1 — g, we see from Lemmia 5.1
that

B = B(k) = kmA" =

1 2
G// _ _(m + : + y_zoe_zz)G/ + Bgm—lc/ _ <I>(g)
m —

2
> m+l+y_oe_zz G/+Bgm—lG/
m—1 2

—<B — 2—’"1)G in (0, zoo), (5.13)

m —

wherezy :=supz > 0] g > 0in (0, z)} < oco. Sincez,, < oo would mean thag has a
zero, in order to prove the lemma it is sufficient to assume henceforth that co and
show that this is impossible B is appropriately large andsuitably small.

To this end, let us set

z1=7z1(B, &) :=supffz>0|1-1/B < ¢g" ' <1andG’' > 00n(0,z)} < 0o

for B > B1 := max1, B(2/./m)} ande > 0. Theng(0) = 1 andg’(0) < 0 guarantee
thatz; > 0, and [(5.1B) says that

m-+1 y2_ 1 2m
s (22T~ 70,22 '2pgl1-= r_(po 2
G" > <m_1+2€ >G+ < B G 1 G

2m 2 2m
(B——+be_22)G'—(B——1>G

m—1 2 m—

— (B _ i)(1— e~2)G — (B - ﬂ)G in (0, z1).
m-—1 m-—1
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sincey3/2 = B — 2m/(m — 1). We now apply Lemmp 5|2 tp := G /e to obtain

3
if0 <z<
G(z) > (5o
I11 <Z<Z1’
e B—— VB——
and
1 3
—G(z) if0<z< —,

G'(z) = (5.14)
|B— =1 m_l 3
— 6@ - S <2.
-1

In particular, this implies that; = z1(B, ¢) is finite for all B > By ande > 0, and that
G'(z1) > 0 and hencg” 1(z1) = 1 — 1/B. Since the solution of (5.12) depends con-
tinuously one in C9([0, Zoo]) for all Zs € (0, 00), we therefore can, given ary > By,
pick somesg = £9(B) > 0 in such a way that

z1(B, &) > & < go(B), (5.15)

B— 2’

m—1
and, for later purpose, that
2 1 2m
z1(B, &) > —= In =-In (B — —) & < &o(B). (5.16)
2 yo 2 m — 1

From [5.13) and (5.15) we thus infer that if

8m
B > B> .= max{ B1,
m—1

ande < go(B) thenG(z1) > 0 and

B — 2n_
G'(z) > \V TmflG(Zl) > @G(Zl)- (5.17)

Next, we assume that
B > B3z :=maxXBy, (4+ «/1—7)2},
so that §v/B < 1 — 1/B and hence
z2=1z2(B, &) :=suplz > z1|8/vVB <g" t<1—1/BandG’ >0o0n(z1,2)} < o0

is well-defined and larger than, becausg” 1(z1) = 1 — 1/B andG’(z1) > 0 due to

G.ID.



Single-point blow-up on the boundary 119

2
Beyondz = z1, we have'$e~% < 1 by (5.16), so that

1 2
G’ = — &_’_y_OE—ZZ G/+Bgm_1G/—d>(g)
m—1 2
2m 8 2m 2m
———G +B—G -(B-——|G>|8/B—-—— )G -BG
g m—1 + B ( m—l) _< m—l)

> 4/BG' — BG forz € (z1, 22),

provided that

m2
B Bz ;= max B,— .
- e { 8 4(m—1)2}

Now Lemrn ensures that witl™ := 2vB £ ,/(2VB)2 — B = 2+ V/3)VB we
have
G'(z1) — 2~ G(z1) 1t (z—z1)
e
At — -
2TG(z1) — G'(z1) A (z—21)
e b
At — A

G(2) =

z € (21, 22)- (5.18)

Sincer™ < +/B/2 < o™, we deduce fr07) that Leml@.z furthermore guarantees

G'(z) > @G(z) for all z € (z1, z2), (5.19)

and thatG’(z1) — A~ G(z1) > 0. The latter inequality shows that the right-hand side of
(5-18) tends tao asz — oo, whencezz(B, ¢) must be finite wheneveB > B4 and

¢ < go(B). Moreover,G’(z2) > 0 by (5.19) and thug” 1(z2) = 8/+/B. Hence, if
additionally

B > Bs = max By, 220"},

then [5.19) implies
VB VB g \Mm=D\ /B
/ _ N ) N vy
G'2) = Y5 1 g = (1 ( ﬁ> ) > Y7 (5.20)
To initiate the final step, foB > Bs ande < go(B) we set

z3=2z3(B, &) :=supiz > z2 | 0 < g" 1 <8/v/B andg’ <0o0n(zz 2)} < oo,

which is again meaningful singg”1(z2) = 8/+/B andg'(z2) < 0 by (5.19). For: ¢
(z2, z3) we estimateb (g), rather than using Lemnja .1, according to

8VB
g g <

B
m A2m72 2m—1 _ m—1
& & “m-1 m—1

®(g) = —

m n B
m—128 " W1 d
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2
and thereby deduce frovE (5{12), recalling tl%&‘zz <1forz >z > z1,
g,/§_<m+l 3 _2Z>g N 8VB 2n , 8B

- < — on , .
m—1+2 m—lg_ m—lg+m—1g (22, z3)

Since trivially 3 (-22.)2 + 8/ - o, Lemm states that

g'(z2) — 07 g(z2) 0+(z 22)
0+t —06-
6% g(z2) — g'(22) =22
0t —6- ’

gt M L m 2+ 8VB
m—1 m-—1 m—1

We claim that ifB is sufficiently large and < &o(B) then furthermore

¢ (z2) < 07 g(z2). (5.22)

In view of the eventual dominance of the first term on the righf of (5.21), this will on the
one hand prove thag is finite, so that by definition aofs, eitherg(z3) = 0 org’(z3) = 0.
But on the other hand, Lemma B.2 also asserts fhat|(5.22) egft@jls< 6~ g(z) for all
z € [z2, z3]. Evaluating this at = z3 and noting thab~ < 0, we infer thatg(z3) cannot
be positive and hencg reaches zero as(B, ¢) for suchB ande, which is the desired
contradiction to our hypothesis, = oo.

In order to prove[(5.32) for

g(d) <

7 € (22, 23)s (5.21)

with

b

4(4 + /8)8Y/(m=1) T(ml)/(mﬂ) }

m4
B > Bg .= maxj Bs, ,
- { > B4m — 1)2 [ o

let us first observe that i > 4(—2 then(.= 1)2 8@ and thus

- \/sf 16VE _ (44 1

m—1 m—1 m—1

Therefore[(5.20) yields

1/(m—1)
"(z2) — 6~ =-G'(z2)-0[—=
g'(z2) g(z2) (z2) ( _B)

_£+ (4—}—\/_)81/(’" Y 1/4 1/2(m—1)

<
- 4 m—1
1/(m—1
_ VB [1 44+ /B)8Y D B_m+1/4<m_1>} -0

4

wheneverB > Bg. O

m—1
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5.2. Shooting forwards

In demonstrating our forward shooting procedure, we again attempt to avoid an accu-
mulation of difficulties and therefore begin by providing an explicit supersolution of a

differential equation that will occur below.

Lemmab5.4. Let M,K1,K2 > 0,8 € (1,2 andy € (28 — 2,2). Then there exist
positive constantsy, §, c1, c2 andng such that the function

e %, 0<z<z,

1—
Y(z) == {cle‘s"ﬂ (5.23)

—C2, 21 =27 <090,
belongs tong’coo([O, o0)) and satisfies

Ly =" —[M@E® —1) —1— KineP |y + [M + Kone?P 1y <0 (5.24)
forall n € (0, no] and allz € (0, 00), z # z1.

Proof. We pick anys € (0, 2/y) satisfying

@N/4 / pp\ /4
= (37 529
8
and
2 (y+2)/2
< 5.26
<8(M +y+ 1)) ( )
and set
1 2
= —1In—. 5.27
71 2", (5.27)

Thenzy > 0, and requiring thair and+’ be continuous at; is equivalent to saying
1— 672Z1 — cleBeVll — and %*221 — Cleyzleéeyzl,
so that we define

—Je¥*l

c1i=e and ¢y = e %1,

To make the list of our definitions complete, we chogge- 0 small enough such that

2
o = 2K1ef71 + Kpe(28+2)21 (5.28)
and
MS$
a (5.29)

<—"
0= 4Ky + K2)
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With these choices, far < z; we havey (z) = 1 — ™%, y/(z) = 2¢~% andy”(z) =
—4¢=% and hence, using (5.28),
Ly = —4e %= —2[M(e* — 1) — 1— K1pe<le %
+M + Kane? (1~ e7%)

= -—M1- e—ZZ) —2e % 4 r](ZKle(’S_Z)Z + Kpe?P? — ng(zﬂ_z)z)

= -M(1—e %) — [2 - n2K1eP* + Kpe®P12%)]e™% — yKope @27

< —[2 — no(@K1eP* + Kpe®PH2m)|em%
<0 forallz <z

whenevemn < no.
In the regiorz > z1, however, we compute

I/I(Z) = 01686VZ —C2,
V() = c1dye’ie?”,
V' (2) = c1(82y % + 8y2e’?)

and thereby obtain

LY = c1{8%y2e?* +8y%e"  —[M (e —1) — 1— K1neP |8y e?* +[M + Kone?P?]}e”
—cz[M—i—Kgnezﬂz] forall z > z1.

Dropping the last term, we obtain

Ly < c1{8?y%e T~ My + (M +y + Dye % + Me™ 125
+ Kipdye @Bz 4 Kope= (¥ T2-28)2) (r+2)z joe’

= ci{li — b+ I3+ Is + Is + Ig}e" 225" forz > z1. (5.30)
Here,
Iy Me 2z 2
L oy w
512 5Moy 14
2
< 8—e—<y+2>21 =1 forallz>z; (5.31)
Y
due to[[5.2]7). Moreover,
2.,2 ,—(2—
B _ e CE By oy
3b IMsy M
3 88y ([ 8y @2-y)/(v+2) B 8y [y (277)/(V+2)84/(V+2)
oM\ 2 M\ 2

8 (v @-0/(+2) o\ @1/ +2) 3y
2 Y

— =1 forallz>z1 (5.32)
8y
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by (5.25), while according t¢ (5.26) we have

il IMsy - M

_B(M 4y +1) 8y \TT
B M 2

- 8M+y+1) (Z>2/(y+2)(z>2/(y+2) M
- M 2 v 8M+y+1)

=1 forallz> z1. (5.33)

Is _ (M+y+Dsye™ 8M+y+1) 5,

Finally, sincey < 28 — 2, from [5.29) we obtain

Is+1g Kindye @ P 4 Kope=(r+2-28)z

02 M3y
4(K16 K
< UKLy + Ko)n <1 forallz > z1 (5.34)
Méy
wheneven < ng. Now (5.24) follows from[(5.30)£(5.34). O

We are ready to formulate the outcome of our forward shooting approach in a way appro-
priate for the proof of Theorem §.6 below.

Lemma5.5. Fixm > 1,k > 2//m, B € (1,2) and let

Yo = V2 [kmAm-1 — ﬂ

m—1

be as in Lemm&.3 Then there i3 > 0 with the property that for alt; > O there exists
¢1 > 0such that for any < ¢1, the solution of the forward shooting problem

m+1 2 1 om—
" ( +y_0622>g}_kmAm 1g}n+lg}+q)(gf)’ Z>0,

=\ 2 (5.35)
GO=1 gO=¢
satisfies
1< g}?fl(z) <2 forall z € (0,z1), (5.36)
but
gl Hz2) = 1+ nef (5.37)

with somezy = z2(¢) > z1.
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Proof. We again writeB := km A" ! andg instead ofg;. We set

3m — 2|B 2m — 1)(B —
>0, K1 .= B, K> = |3m | + ( )( m—l).

m—1 m—1 m—1

M =B —

We fix somey € (28 — 2, 2) and then pick any; € (0, min{ng, 1}), wherenq is as in
Lemma[5.4. Making use of the continuous dependenge @i ¢, we can choose some
g1 > 0 such that whenever < g1, we have

¢"t<14n/2 in(,z). (5.38)

Fore < ¢1, we now define

22=z2(e) '=SUPZ > 0| 1 < g"(z) < 1+ ne* and
g'(z) = 0forallz € (0,2)} < oo,

noting that this is meaningful becaugé) = 1 andg’(0) > 0. If z € (0, z2) then from
the concavity ofd on [1, 00), as asserted by Lemrpap.1, we have the estimate

D(g) = O (L + nefHyYm=Dy(g — 1)
. { m km2Am—1
C(m—1)2 A—

(14 nef?) — (2m — 1) A" 2(1 4 neﬂz)z}(g ~ 1.

i 2n-2_ B _ _m - ;
SinceA = -1 12 due to ), for such we obtain

|:(3m—2)B 2m(2m—l):| Bz
_ ne
m—1 (m — 1)2
2m —1)(B —

m—1

{ 2m
P =1—-—-B—
m—1

1)
=t nzezﬁz}(g )
2m
> {— - B —Kznezﬁz}(g -1,
m—1

because) < 1 ande?? > 1. Therefore the functiot := g — 1 satisfies

1 2
G = <_’” T . %Oe&)G/ — Bg"7'G' + @(g)
p—

~\m— 2

1 2m
= <_m+ +<B— )EZZ—B—Br;eﬁZ)G’
m—1 m—1
2m
— (B -—F+ KznezﬂZ)G
m—1

= [M(e2Z —1) —1— K1nef )G — [M + KgnezﬁZ]G, z € (0, z2),

1y 2m
> <m—+1 + y—OeZZ)G/ — B(1+ nefHG' — <B ——+ Kzne2ﬁ2>G
m—
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according to our definitions ofg, M, K1 and K». Applying Lemmg 3.]L tap := G/¢
and the positive functiony provided by Lemma 5|4, we conclude that > &y and
G'/G = ¥/ on (0, z2). Sincee P/ =Dy (7) — oo asz — oo, we infer that for any
e < 1 the numbets = z»(e) is finite andG’(z2) > 0, so thatg” 1(z2) = 1 + nef<2. In
particular,z2 > zz in view of (5.38) and thereby (5.B6) ar{d (5.37) are proved. O

5.3. Existence of solutions with local minima

The following theorem combines the results of the preceding two subsections and thereby
proves that if the shooting parameter 0 above is chosen small and equal in both shoot-
ing directions then we can glue together the resulting forward and backward functions and
thereby, adding one further continuous dependence argument, obtain a solufiof of (2.1),
(2.9) with a positive local minimum.

Theorem 5.6. Letm > 1. Then there existéy > 2/./m such that for allk > ko there
is o1 > 0 such that the solutiom,, of (2.1)), (2.2) attains a positive local minimum
somewhere if0, co).

Proof. Planning to apply Lemmas 5.3 and]5.5, we set again

2m \/k2m2—4m+vk2m2—4m

yo := V2, [kmAn—1 — =

m—1_

m—1

We takeko as generated by Lemrfa .3 and then, givenkaryko, leteg be as provided
by the same lemma. Fixing an arbitrgdye (1, 2), we taken > 0 from Lemm4 5.5, then
choosez; > 0 large enough such that

2Am—1
et > o (5.39)
and L
e
(-t YO (5.40)
n

and lete; andzo > z1 denote the numbers furnished by Lemimg 5.5. We now pick any
& € (0, min{eo, £1}) and letg, andgy be the corresponding solutions pf (5.3) and|(5.4),
respectively, withg;, (0) = gr(0) = 1, ¢,(0) = —¢ andg}(O) =¢. Then

B gb(_ In %)5 y € (O’ )70),
fy = y
gr ('n %), y € [yo, 00),

defines a continuously differentiable functignthat, according to the considerations at
the beginning of the present section, sol (5.1). Herigs actually smooth and =
fw is a solution of|(2.11).
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According to Lemma@ 5]3,
w has a zero if0, yop). (5.41)
Due to Lemm5, we furthermore hag/,é‘l(z) < 2forall z < z1, and in particular
B o) g @At pqmt
e

because 09). On the other hand, Le 5.5 also say§’;tﬁé(z2) > 1+ pefe2 >

nef?2, so that

1

" Yyoet) _ g7 T@AME pan i b ganledba
T - m_1_ m_1 m—1
um e2you Yo Yo

in view of (5.40). Finally, from the definitions gf and yo and the fact thag;(0) =
gr(0) = 1 we have

>1

A2(m—l)(l—i}—2(m—1)(yo) _ M—2(m—1)) — AZ(m—l)((w;—(yo))—Z(m—l) _ M—Z(m—l))

2(m—1
:y2_<é> (m—1)
0 M

k2m? — 4m + Vk2m? — 4m

m—1
k2m? + kmNk2m2 — 4m — 2m
m-—1
2 1
< ks 2,
m-—1 m

whence altogether we conclude, writing := yge*t andy, := yge®?, thatyg < y1 < y2
and

w(yo) > pu, wly) <u, w2 > u.

Thereforew attains a—necessarily positive—Ilocal minimum at sofe (yo, y2). In
order to derive from this result the existence of a solutiof of (4.1)} (2.2) having a minimum
aty, we introduce the value attainedjahs a parameter and apply one further continuous
dependence argument. More precisely,doe (0, 1] we let w, denote the solution of
) with, (3) = a andw/, (3) = 0, so that the functiorb constructed above coincides
with @, whena = ag := w(J). Therefore, due tq (5.41) the set

A:={a € (0, u] | w, has a zero ir0, y)}

is not empty and heneg := supA is well-defined. Sincev = 1 solves|(2.]L), the number
u does not belong tel and thus, by continuous dependenceégfona in CO([0, 7]), we
havea; < u. We claim that

By, >0 in(0,5) and i, (0) = 0. (5.42)
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In fact, if w,, had a zero K0, ¥) then, by);b,,l should change sign i0, ¥), so that,
again due to continuous dependence:pthe same is true for somg, with a € (a1, 1),
contradicting the definition af;. On the other hand, it is impossible thag, is positive
throughout [0 ], because then algb, would be positive wheneveris sufficiently close

to a1, whence supd would be smaller than;.

Having shown2), we set ;= w,, (0). Then, due to the uniqueness properties of

),01 is positive andwy, = wg,. Thus,we, satisfieauj,l (y) = 0 andwy, (3) € (0, )

and therefore, bl)l,)gl(y) > 0, so that indeed,, attains a local minimum at. O

6. Proof of Theorem[1.1

Reviewing Theoren(s 4.3 apd 5.6, one can expect that there is an intermediate value of
for which the functionw, solving [2.1),[(2.R) remains positive {0, o). In fact, starting
from the solutionw,, with a local minimum, one can continuously deform this solution
by diminishingo, and ask what might happen to the local minimum pointvgf say
y(0), wheno decreases from to og, whereoyg is as in Theorerp 4]3. Loosely speaking,
this minimum must disappear at somebetweensy andoi, and the only conceivable
possibility for this to occur is thag(c) — oo wheno approaches this critical value.
These considerations form the core of the proof of our main result.

Proof of Theorem I]1We first make sure that ¥ is large then, for some appropriate
& > 0, the solutiorw; of (2.1), [2.2) remains positive througha@ o).
For this purpose, we observe that according to Theprem 5.6, the set

Y :={o > 0| ws has alocal minimum ir0, co)}
is not empty ifk > ko for some sufficiently largég > 2/./m. Foro € %, let
y(o) = inf{y € (0, 00) | w, has alocal minimum at},
and define the number
o =infX,

which is positive due to the result of Theorfm|4.3. To prove éhhas the desired prop-
erty, we fix a sequence of numbers € ¥ such thato; — & asj — oo, and claim
that

y(oj) > 00 asj — oo; (6.1)

once this has been shown, the assertion immediately follows from the continuous de-
pendence o of the solutions of[(2]1),[(2]2): Namely, (6.1) implies thag(y) =
lim;— o we; (¥) is nonnegative for aly > 0 and hence even positive for eagh> 0,
becausev; # 0.

To show @L), let us proceed by contradiction. Supposejttgh) — yo € [0, c0)
for a subsequence. Then, sineg, — wj in C([0, 3o + 1]), we infer thatw’. (o) =
lim; - oo w;j (¥(05)) = 0 andws (yo) = lim;_ o0 wy; (y(0y)) € [0, u]. But ws # 0 and
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ws # 1, whence actually; (yo) € (0, u). Thus, again by continuous dependence, we
can find positive numbeng andv; such that wheneveés — 6| < vy and|y — yo| < va,
we havew, () € (0, u) andw.. (Jo—v2) > 0 > w. (Jo+v2). This implies that each such
w, attains a local minimum idyo — v2, o + v2), evidently contradicting the definition
ofo.

Next we show thatv := w; satisfies

w(y) \y0 asy — oo. (6.2)

Indeed, from Lemmp 4|2 we already know th&ty) < O for all sufficiently largey, so
thatw(y) \ wa @sy — oo, with somew, > 0. In view of Lemma 2.2, eithep,, = 0
or wee = i, Whence it remains to exclude the possibility thaty) \, « asy — oo.
If this were true theny := w — u would be eventually positive and decrease to zero as
y — oo. Using [2.1) and the convexity of> s2"~1 on (0, 00), we see that

V' =2y —kmw™ W + ﬁ(u +v) = (u+v)?t

1 1

2m D" T 2m =1’

(% — kmwm_l)v’ —v<0

for all sufficiently largey, becauseaw is bounded and, eventually, < 0 andv > 0.
Thus,v should be concave for large which is incompatible with the assumption that
v(y) \ 0. Consequentlyy,, = 0 and[(6.2) has been established.

Now we claim that for ale < 1/(m — 1) there existy, > 0 andC, > 0 such that

_ kmelflv/ + Mszl _ (2”1 _ 1)M2n172v

IA
|
<

w(y) < Coy™® forally > yg. (6.3)

To prove this, we lex be given and choosg, > 0 large enough such that

4
Yoz 4———(@—D(a-2), (6.4)
m-1_ ¢
v > 41— ), (6.5)
w'(y) <0 forally > y,, (6.6)
1 g\ Y2m-
w(y) < (%) forally > ya, (6.7)

where we note thaf (6.6) and (p.7) are possible dug t¢ (6.2). We now mulftiply (2.1) by
y*~1 and integrate ovefy,, y), ¥ > ya, to obtain

: ysa &y dE+ ysa—l (§)dg
2/, " " 2m—-1 ), > "

Ya
y y y
= / el (E) de +k | g7 w™) (€) dE + / gty L) de.  (6.8)

Yo
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After integration by parts, the left-hand side becomes

= T )d P N ys‘“ &)d
éfvasw@ T 5 w(E) d&

1 1 1/ 1 y
= Ey“w(y) - Ey,‘i‘w(ya) + E(m——l - oc) /y g twE)de.  (6.9)

On the right-hand side of (§.8), the second term is nonpositive dje fo (6.6), whereas in
the first term we integrate by parts twice and (6.4)}-(6.6) to see that

Y 1 J 2 1.7 1.7
£l (€)dE = —(@ — 1) / £X720/(£) dE 4+ y* T w' (y) — y2 7w (ve)
Ya Ya . .
— (= Dia— 2)/ 03y (&) d
Ya
— (@ — Dy 2wy) + (@ — Dy* 2w(yg)

a—1_ 7

+y* 7' () — ¢ (ve)
< 3<i _ a) T gL (e) d
Ya

1
+ Zy“w(y) + (@ = Dy2 2w (ye) — y& 1w (va). (6.10)

By (6.7), the last term irf (6]8) can be estimated in the following way:

y 1 1 y
/ g e dt < —(— —a) £ w (&) ds. (6.11)
Ya 4 m — 1 Ya
In view of (6.9){(6.11),[(6]8) becomes
1 1
27 w0) = 53w + @ = Dyg P wlu) — 38w ),
and thus[(63) follows.
Let us now show that
w(y) < CyY™=b  forally > 0 (6.12)

with someC > 0. To see this, we fig < 1/(m — 1) close to ¥(m — 1) such that

1
m—1_2 and o > (;n—l)(—Zm—l)’ (613)

o >

where the latter is possible sinee > 1 implies ¥(2m — 1) < 1. Moreover, we let
y > y, be such that
1
52> 4<1 —~ —) (6.14)

m—1
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We now multiply [2.1) byy™—D—1 and integrate ove(y, y) with y > § to achieve

1 1 16— N
Eyl/(m_l)w(y) - Eyl/(m Duw)
_ }/ygl/(mmw/(g)dé + ;/ygl/(m,l),lw(g)dé
2 J5 2(m —1) J;

= [t as a6 as
y y

+ﬁy U/m=D=1,2m-1 &y e
y

Again integrating by parts and dropping nonpositive terms as above, we arrive at

}yl/(mfl)

1
~1/(m—1)
2

wy) — 5 w(y)

1 _ 1 _ Y 1/(m—1)—3
s(—m_l 1)<—m_1 2)/95 w(E) d

1 _1— 1 A1/ m—1)—2. o~
— (== =P u) + (s 1)V Ru ()
m—1 m—1

X
R (U NSl e P (6.15)
y

Here, from [[6.8) and (6.13) we obtain
y 00
/ El/(M7l)73w(€:) dg S C(M/ gl/(M71)7370[ dé: < 00
y y
and

/y él/(mfl)flwszl(é) df;: S Csmfl/ooél/(m*l)*l*(Mfl)a dé < 00,
b h]

while (6.14) guarantees that
1 1
—( =5 1Y P Pw) < YO Pu)  forally = 5.
m—1 4
By these observationg, (6]15) turns into

1 .1
Eyl/(’"_l)w(y) <C+ Zyl/(’”_l)w(y) forally > 3

with someC > 0. This immediately results ifi (6.1.2), becausés bounded in0, 3).
Having thus found a positive solutian of (2.1) satisfying[(6.1]2), we define by

(Z.2). By [6.12),
u(x,t) = (T — )" Y2m=Dy, (T — 1)~Y2y)
< Cx YD forallx > 0and any < T.
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On the other hand,

u((T — Y2, 1) = (T —1)~Y2m=Dy (1)
—o00 ast\ T,

whereby the proof is complete. O
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