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Abstract. We consider a reaction-diffusion-convection equation on the halfline(0,∞) with the
zero Dirichlet boundary condition atx = 0. We find a positive selfsimilar solutionu which blows
up in a finite timeT atx = 0 whileu(x, T ) remains bounded forx > 0.

1. Introduction

We study the existence of positive backward selfsimilar solutions of the problem{
ut = uxx + k(um)x + u2m−1, x ∈ (0,∞), t ∈ (−∞, T ),

u(0, t) = 0, t ∈ (−∞, T ),
(1.1)

wherek > 0,m > 1 andT ∈ R. More precisely, we look for solutions of the form

u(x, t) = (T − t)−1/2(m−1)w(y), y = (T − t)−1/2x, (1.2)

wherew is a solution of the problemw′′
=
y

2
w′

− k(wm)′ +
1

2(m− 1)
w − w2m−1, y > 0,

w(0) = 0.
(1.3)

It follows from [9] that if k = 0 then there is no bounded nontrivial nonnegative solution
of (1.3).

Our main aim is to show the following:

Theorem 1.1. Let m > 1. Then there isk0 > 2/
√
m such that for anyk ≥ k0 the

problem(1.3) possesses a positive solution satisfyinglim supy→∞ y1/(m−1)w(y) < ∞.
Consequently, for anyT ∈ R the functionu defined by(1.2)is a positive classical solution
of (1.1) such thatlimt↗T ‖u(·, t)‖L∞((0,∞)) = ∞. Moreover, there is a constantC > 0
such thatu(x, t) ≤ Cx−1/(m−1) for x > 0 andt < T .
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This means that the solutionu blows up at the single pointx = 0 where the homogeneous
Dirichlet boundary condition is prescribed.

For the following problem without convection:ut = 1u+ f (u), x ∈ �, t > 0,
u(0, t) = 0, t > 0,
u(x,0) = u0(x) ≥ 0, x ∈ �,

(1.4)

wheref (u) = up, p > 1 and� ⊂ RN is bounded, the first examples of single point
blow-up were given in [18] (N = 1,� = (−L,L)) and [8, 13] (N ≥ 1,� = {|x| < L}).
In these examples, the solutions blow up atx = 0. It was also shown in [8] that if� is
convex then blow-up of solutions of (1.4) can only occur away from the boundary∂�.

There are examples of solutions of parabolic equations for which singularities occur
on the boundary where the homogeneous Dirichlet boundary condition is imposed (see
[5, 15], for instance) but in these examples some spatial derivatives become unbounded
while the solution itself stays bounded. This phenomenon is called gradient blow-up and
it occurs for equations of the form

ut = 1u+ f (u,∇u),

wheref (u,∇u) grows superquadratically in∇u.
It is also known that∂� may be contained in the blow-up setB(u) defined as

B(u) = {x0 ∈ � | there is a sequence{(xn, tn)} ⊂ �× (0, T ) with

(xn, tn) → (x0, T ) such thatu(xn, tn) → ∞},

if u is a solution of (1.4) withf (u) = (u + 2) logp(u + 2), 1 < p ≤ 2 (see [11]). But
hereB(u) = � and this phenomenon is called global blow-up.

Examples of single-point blow-up (inL∞) on the boundary are only known in the
case when blow-up is forced by boundary conditions: see [4] for the case of nonlinear
Neumann boundary conditions and [14] for the case when nonhomogeneous (blowing
up) Dirichlet boundary data are prescribed.

Blow-up of solutions of reaction-diffusion-convection equations of the form

ut = 1u+ k∇(um)+ up, m, p > 1, (1.5)

(or more general) was studied before in [1, 3, 6, 7, 12, 17], for instance, and it is known
to occur ifp > m. Backward selfsimilar subsolutions of (1.5) were found in [17].

The existence of radial backward selfsimilar positive solutions of the equation

ut = 1u− k|∇u|2p/(p+1)
+ up, k > 0, p > 1,

was established in [16] fork andp − 1 small enough.
Our method relies on some shooting arguments but it is not related to the methods

used in [16] or [2]. We study the initial value problemw′′
=
y

2
w′

− k(wm)′ +
1

2(m− 1)
w − w2m−1, y > 0, w > 0,

w(0) = 0, w′(0) = σ > 0.
(1.6)
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Our strategy is to show that forσ small enough the solution does not have any local
minimum (Section 4) while the set6 of σ such that the corresponding solution possesses
a local minimum is nonempty (Section 5). The solution corresponding toσ̄ := inf6 is
then the solution we are looking for (Section 6). Section 2 is devoted to some elementary
properties of solutions of (1.6) and Section 3 contains some comparison lemmas which
are used later.

2. Preliminaries

We first collect some basic properties of solutions of (1.6). Forσ >0, letwσ : (0, ymax(σ ))

→ (0,∞) denote the maximally extended positive solution of (1.6). Then it is easily
verified that anywσ is a priori bounded above in bounded subintervals of [0,∞), so that
wσ may cease to exist only by approaching the value zero at some finite value ofy. In
order to keep the notation and arguments as simple as possible, let us henceforth instead
of (1.6) consider the extended problem

w′′
=
y

2
w′

− k(wm+)
′
+

1

2(m− 1)
w − w2m−1

+ , y > 0, (2.1)

w(0) = 0, w′(0) = σ, (2.2)

wherew+ := max{w,0} denotes the positive part ofw. In fact, (2.1), (2.2) possesses a
solution on all of(0,∞) wheneverσ > 0, and on(0, ymax(σ )) this solution coincides
with that of (1.3), corresponding to the same initial data. Therefore throughout the fol-
lowing we may as well letwσ denote the globally defined solution of (2.1), (2.2) without
danger of confusion.

Although form < 2 the term(wm+)
′
= mwm−1

+ w′ is not locally Lipschitz continuous
with respect to the couple(w,w′) ∈ R2, the solutions of (2.1) enjoy the usual properties
of uniqueness and continuous dependence on the initial data; this can be seen by intro-
ducing the new variableW := w′

+ kwm+ −
y
2w, which transforms the ODE in (2.1) to

the system

w′
= W − kwm+ +

y

2
w, (2.3)

W ′
=

(
1

2(m− 1)
−

1

2

)
w − w2m−1

+ . (2.4)

Now the nonlinearity on the right-hand side is continuously differentiable with respect to
(w,W) ∈ R2.

We next observe that (2.1) has three explicit solutions. One of these is the constant
solution

w ≡ µ :=

(
1

2(m− 1)

)1/2(m−1)

,

which has the following evident property:
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Lemma 2.1. Letw be any solution of(2.1). If w attains a local minimum at somey1 > 0
then0 ≤ w(y1) ≤ µ, whereas ifw has a positive local maximum aty1 thenw(y1) ≥ µ.

Since we assumek > 2/
√
m throughout, we can moreover find two explicitsingular

solutionsw±
s of (2.1) given by

w±
s (y) = A±y−1/(m−1), y > 0,

whereA± are the two positive roots of the equation

A2m−2
−

km

m− 1
Am−1

+
m

(m− 1)2
= 0, (2.5)

that is, we have

(A±)m−1
=
km±

√
k2m2 − 4m

2(m− 1)
. (2.6)

Since the larger rootA+ will frequently appear in what follows, we will from now on
drop its superscript and simply writeA = A+.

Another elementary property of (2.1) concerns the possible limits of stabilizing solu-
tions.

Lemma 2.2. Letw be a solution of(2.1)and assume thatw(y) → w∞ asy → ∞ with
somew∞ ∈ R. Then eitherw∞ = 0 or w∞ = µ.

Proof. The hypothesis implies thatW ≡ w′
− kwm+ +

y
2w satisfies

W ′(y) →

(
1

2(m− 1)
−

1

2

)
w∞ − (w∞)

2m−1
+ =: c0

by (2.3). Hence for allν > 0 one can findyν > 0 such that|w(y)− w∞| < ν as well as
|W ′(y)− c0| < ν for all y > yν . In particular,

w(y) ≥ w∞ − ν, wm(y) ≤ (w∞ + ν)m+,

W(y) ≥ W(yν)+ (c0 − ν)(y − yν) for all y > yν,

so that (2.3) yields

w′(y) = W(y)− kwm+(y)+
y

2
w(y)

≥ W(yν)− (c0 − ν)yν − k(w∞ + ν)m+ +

(
c0 − ν +

w∞ − ν

2

)
y, y > yν .

Sincew remains bounded, we therefore havec0 − ν + (w∞ − ν)/2 ≤ 0 and thus, since
ν > 0 was arbitrary,c0 ≤ −w∞/2. Using a similar argument, one can see that also
c0 ≥ −w∞/2 and thereforec0 = −w∞/2, that is, 1

2(m−1)w∞ = (w∞)
2m−1
+ . This yields

the claim. ut
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3. Comparison results

In this section we state two useful comparison results for second-order ODEs which will
frequently be applied throughout this paper.

The first tool concerns linear equations with variable coefficients and is very much in
the spirit of [10, p. 123].

Lemma 3.1. Suppose that−∞ < ξ0 < ξ∞ ≤ ∞, a, b ∈ C0([ξ0, ξ∞)), and thatϕ =

ϕ(ξ) andψ = ψ(ξ) belong toW2,∞
loc ([ξ0, ξ∞)) and satisfy

ϕ′′
≥ a(ξ)ϕ′

+ b(ξ)ϕ a.e. in(ξ0, ξ∞),

ψ ′′
≤ a(ξ)ψ ′

+ b(ξ)ψ a.e. in(ξ0, ξ∞),

ψ > 0 in (ξ0, ξ∞),

ϕ(ξ0) = ψ(ξ0), ϕ′(ξ0) ≥ ψ ′(ξ0) > 0.

(3.1)

Then
ϕ ≥ ψ and ϕ′ψ ≥ ϕψ ′ in (ξ0, ξ∞). (3.2)

Proof. After a translation we may restrict ourselves to the caseξ0 = 0 and setξ1 :=
sup{ξ ∈ (0, ξ∞) | ϕ > 0 on(0, ξ)} ≤ ξ∞. Sinceϕ(0) ≥ 0 andϕ′(0) ≥ ψ ′(0) > 0, ξ1 is
well-defined and positive. By (3.1),ρ(ξ) := (ϕ′ψ − ϕψ ′)(ξ) satisfies

ρ′
= ϕ′′ψ − ϕψ ′′

≥ (aϕ′
+ bϕ)ψ − ϕ(aψ ′

+ bψ) = aρ a.e. in(0, ξ1)

and thus, sinceρ(0) ≥ 0, we haveρ ≥ 0 in (0, ξ1). This, however, means thatζ := ϕ/ψ

is nondecreasing on(0, ξ1). Since (3.1) impliesζ(0) = 1 if ψ(0) 6= 0 and, by l’Ĥospital’s
rule, ζ(0) = limξ→0 ϕ

′(ξ)/ψ ′(ξ) ≥ 1 in caseψ(0) = 0, we conclude that in any case
ζ(ξ) ≥ ζ(0) ≥ 1 for all ξ ∈ (0, ξ1). Thereforeξ1 = ξ∞ and (3.2) is valid. ut

Concerning differential inequalities withconstantcoefficients, we obtain a sharper result.

Lemma 3.2. Leta andb be real numbers satisfying

a2/4 + b > 0. (3.3)

Suppose that−∞ < ξ0 < ξ∞ ≤ ∞, and thatϕ ∈ W
2,∞
loc ([ξ0, ξ∞)) satisfies

ϕ′′
≥ aϕ′

+ bϕ a.e. in(ξ0, ξ∞). (3.4)

Then

ϕ(ξ) ≥
ϕ′(ξ0)− λ−ϕ(ξ0)

λ+ − λ−
eλ

+(ξ−ξ0)

+
λ+ϕ(ξ0)− ϕ′(ξ0)

λ+ − λ−
eλ

−(ξ−ξ0), ξ ∈ (ξ0, ξ∞), (3.5)

with

λ±
= a/2 ±

√
a2/4 + b. (3.6)
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Moreover,

if ϕ ≥ 0 on (ξ0, ξ∞) andϕ′(ξ0) ≥ λϕ(ξ0) for someλ ∈ [λ−, λ+]

thenϕ′
≥ λϕ for all ξ ∈ (ξ0, ξ∞). (3.7)

Proof. We may again assume thatξ0 = 0. We substituteϕ(ξ) = eλξρ(ξ) with λ ∈ R and
calculate

ϕ′
= eλξ (ρ′

+ λρ),

ϕ′′
= eλξ (ρ′′

+ 2λρ′
+ λ2ρ).

Therefore (3.4) transforms into

ρ′′
≥ −(2λρ′

+ λ2ρ)+ a(ρ′
+ λρ)+ bρ

= (a − 2λ)ρ′
− (λ2

− aλ− b)ρ a.e. in(0, ξ∞). (3.8)

Choosingλ = λ+ here, we see thatρ′′
≥ −(λ+

− λ−)ρ′ a.e. in(0, ξ∞). Integrating this
inequality we haveρ′(ξ) ≥ e−(λ

+
−λ−)ξρ′(0) for all ξ ∈ (0, ξ∞). One further integration

yields

ϕ(ξ) = eλ
+ξρ(ξ)

≥ eλ
+ξ

[
ρ(0)−

1

λ+ − λ−
(e−(λ

+
−λ−)ξ

− 1)ρ′(0)

]
= eλ

+ξϕ(0)−
1

λ+ − λ−
(eλ

−ξ
− eλ

+ξ )(ϕ′(0)− λ+ϕ(0))

and thereby proves (3.5).
To see the implication (3.7), we note thatλ ∈ [λ−, λ+] is equivalent toλ2

−aλ−b ≤ 0,
so that the hypothesisϕ ≥ 0 yieldsρ′′

≥ (a − 2λ)ρ′ in (0, ξ∞) by (3.8). Therefore
ρ′(ξ) = e−λξ (ϕ′(ξ)− λϕ(ξ)) preserves its initial nonnegativity for allξ ∈ (0, ξ∞). ut

4. Solutions without local minima

The goal of the present section is to prove that ifσ > 0 is sufficiently small then the
solutionwσ of (2.1), (2.2) will increase for smally, attain a local maximum and then
decrease to−∞, so that in particular it will not attain a local minimum in(0,∞). In
order to prepare the proof of this statement (Theorem 4.3), let us demonstrate two general
features of solutions of (2.1).

The first of them means, roughly speaking, that if a solutionw of (2.1) crossesµ
‘from above’ at somey1 large enough then it must decrease fory > y1 and eventually
become negative, regardless of the size ofw′(y1).

Lemma 4.1. Assume thatw is a solution of(2.1). If w(y1) = µ andw′(y1) < 0 occurs
for somey1 ≥ 6 + 2kmµm−1 thenw′(y) < 0 for all y ≥ y1 andw(y) → −∞ as
y → ∞.
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Proof. Let

y2 := sup{y > y1 | w > 0 andw′ < 0 in (y1, y)} ≤ ∞.

Then on(y1, y2) we havew < µ and thus

w′′
≤
y1

2
w′

− kmµm−1w′
+

1

2(m− 1)
w − w2m−1.

Letϕ(y) := µ−w(y). Then using the convexity inequality(1−ξ)2m−1
≥ 1− (2m−1)ξ

for 0 ≤ ξ < 1 as well as the properties ofy1 andµ, we can estimate

ϕ′′
≥

(
y1

2
− kmµm−1

)
ϕ′

−
1

2(m− 1)
(µ− ϕ)+ (µ− ϕ)2m−1

≥ 4ϕ′
−

1

2(m− 1)
(µ− ϕ)+ µ2m−1

+ (2m− 1)µ2m−2ϕ

= 4ϕ′
− ϕ in (y1, y2).

Since 42/4 − 1 = 3 > 0 andϕ > 0 in (y1, y2), Lemma 3.2 shows thatϕ′
≥ 2ϕ in

(y1, y2), becauseϕ′(y1) − 2ϕ(y1) > 0 and 2∈ [λ−, λ+] with λ±
= 2 ±

√
3 as in (3.6).

Thereforey2 must be finite, sinceϕ grows exponentially in(y1, y2), and furthermore
w(y2) = 0 andw′(y2) < 0. But due to Lemma 2.1,w cannot have local minima as long
asw < 0, whencew actually decreases throughout(y1,∞). Now (2.1) shows thatw is
even concave on(y2,∞) and therefore approaches−∞ asy → ∞. ut

The second lemma asserts thatall solutions of (2.1) eventually decrease.

Lemma 4.2. Letw be a solution of(2.1). Then there existsy1 > 0 such thatw′(y) ≤ 0
for all y > y1.

Proof. Assume that the lemma is false. Then eitherw′(y) > 0 for all largey, or both
{y > 0 | w′(y) > 0} and {y > 0 | w′(y) < 0} are unbounded. In the latter case,w
must have unbounded sequences of local minima and maxima. Since, due to Lemma 2.1,
these minima have their ordinates in(0, µ) and the maxima lie aboveµ, this means that
there exists a sequence of numbersyj → ∞ such thatw(yj ) = µ andw′(yj ) < 0,
contradicting Lemma 4.1.

Therefore we are left with the case thatw′(y) > 0 for largey; thenw(y) ↗ w∞ as
y → ∞ for somew∞ ≤ ∞. In view of Lemma 2.2, we have eitherw∞ = 0 orw∞ = µ

orw∞ = ∞. In the first two cases,w(y) ≤ µ for largey, so that from (2.1) we obtain

w′′(y) ≥ (y/2 − kmµm−1)w′(y) for largey,

which is impossible for boundedw. We thus only need to exclude thatw(y) ↗ ∞ as
y → ∞.
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To do this, we first integrate (2.1) over(0, y) to obtain

w′(y)−w′(0) =

∫ y

0

ξ

2
w′(ξ) dξ−kwm+(y)+

1

2(m−1)

∫ y

0
w(ξ) dξ−

∫ y

0
w2m−1

+ (ξ) dξ

=
y

2
w(y)−kwm+(y)+

2−m

2(m−1)

∫ y

0
w(ξ) dξ

−

∫ y

0
w2m−1

+ (ξ) dξ for all y > 0. (4.1)

In order to show the dominance of the term involvingw2m−1
+ in (4.1) in the case under

consideration, we first claim that there existsy0 > 0 such that

2 −m

2(m− 1)

∫ y

0
w(ξ) dξ ≤

1

4

∫ y

0
w2m−1

+ (ξ) dξ, y ≥ y0. (4.2)

Indeed, this easily follows from the observation that sincew(y) → ∞, the function
ζ(y) := 1

4w
2m−1
+ (y) −

2−m
2(m−1)w(y) tends to∞ as y → ∞, which clearly implies∫ y

0 ζ(ξ) dξ → ∞ asy → ∞.
Next, we claim that there is a sequence of numbersȳj → ∞ such that

ȳj

2
w(ȳj ) ≤

1

4

∫ ȳj

0
w2m−1

+ (ξ) dξ, j ∈ N. (4.3)

In fact, suppose (4.3) is false. Then there existsȳ > 0 such that

yw(y) >
1

2

∫ y

0
w2m−1

+ (ξ) dξ, y ≥ ȳ. (4.4)

Since1
y

∫ y
0 w

2m−1
+ (ξ) dξ → ∞ asy → ∞, we may assumēy to be so large that

C :=
1

2

∫ ȳ

0
w2m−1

+ (ξ) dξ > 21/2(m−1)ȳ. (4.5)

Let v(y) := yw(y) for y ≥ ȳ. Then, by (4.4),

v(y) >
1

2

∫ y

0
w2m−1

+ (ξ) dξ =
1

2

∫ ȳ

0
w2m−1

+ (ξ) dξ +

∫ y

ȳ

(
v(ξ)

ξ

)2m−1

dξ

= C +
1

2

∫ y

ȳ

(
v(ξ)

ξ

)2m−1

dξ, y ≥ ȳ;

in particular,v(ȳ) > C. Letψ denote the solution ofψ ′(y) =
1
2(ψ(y)/y)

2m−1 for y > ȳ

with ψ(ȳ) = C, which is explicitly given by

ψ(y) =

(
C2−2m

−
1

2
ȳ2−2m

+
1

2
y2−2m

)−1/2(m−1)

.
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SinceC2−2m
−

1
2 ȳ

2−2m < 0 due to (4.5), we have

ψ(y) → ∞ asy → ŷ := (ȳ2−2m
− 2C2−2m)−1/2(m−1)

∈ (ȳ,∞).

Butψ(y) = C+
∫ y
ȳ
(ψ(ξ)/ξ)2m−1 dξ for all y ≥ ȳ, whencev > ψ in [ȳ, ŷ) by a standard

comparison argument. Consequently,w must blow up at some finitey. This contradiction
establishes (4.3).

Using (4.2) and (4.3) in (4.1), we finally obtain, for largej ∈ N,

−w′(0) ≤ w′(ȳj )− w′(0) ≤ −
1

2

∫ yj

0
w2m−1

+ (ξ) dξ

→ −∞ asj → ∞,

which is absurd and thereby proves the lemma. ut

Now the main result of this section is an easy consequence of the above preparations and
the continuous dependence of solutions of (2.1), (2.2) onσ .

Theorem 4.3. There is a positive numberσ0 such that for allσ ∈ (0, σ0), the function
wσ has precisely one local maximum and no local minima in(0,∞).

Proof. Let ȳ := 6 + 2kmµm−1 denote the number from Lemma 4.1. Since the mapping
σ 7→ wσ is continuous from [0,∞) toC0([0, ȳ]), there isσ0 > 0 such thatwσ (y) ≤

1
2µ

in [0, ȳ] for all σ < σ0. For any suchσ , w′
σ must have a minimal zeroy1 > 0 due to

Lemma 4.2, which necessarily corresponds to a local maximum. By (2.1),wσ (y1) > µ

and hencey1 > ȳ. Now if w′
σ had another zero in(y1,∞) thenwσ should have a positive

local minimum at somey2 > y1 with wσ (y2) < µ in virtue of Lemma 2.1. Thus, there
would bey3 ∈ (y1, y2) such thatwσ (y3) = µ andw′

σ (y3) < 0. But sincey3 > y1 > ȳ,
Lemma 4.1 then provides a contradiction and thereby proves the theorem. ut

5. Solutions attaining a local minimum

In this section we shall see that ifk is sufficiently large then for someσ > 0, the so-
lution of (2.1), (2.2) attains a positive local minimum somewhere in(0,∞). Our ap-
proach towards this crucial tool for the proof of Theorem 1.1 is by applying a two-
sided shooting method, with the origin of shooting located at a point(y0, w

+
s (y0)) with

some appropriatey0 > 0. Here the essential ingredient will be an instability property
of w+

s , according to which backward shooting from(y0, w
+
s (y0)) with any initial slope

w′(y0) > (w+
s )

′(y0) will forcew to have a zero in(0,∞), no matter how small the devia-
tionw′(y0)− (w

+
s )

′(y0) is. This freedom in the choice ofw′(y0) will be used in a second
step: Roughly speaking, shooting forward from(y0, w

+
s (y0)) with w′(y0) − (w+

s )
′(y0)

sufficiently small but positive will produce a solutionw which on one hand, by continu-
ous dependence, remains close tow+

s in a sufficiently large interval—so that, in particular,
it enters the regionw < µwhere local minima occur; on the other hand, however, the term
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(y/2)w′ on the right of (2.1) gives rise to a further instability feature ofw+
s , which entails

that any suchw exhibits a tendency to behave likeey
2/4 intermediately and therefore will

eventually be repelled fromw+
s until it leaves the regionw < µ. As a consequence,w

must have a local minimum. Finally, glueing together the backward and forward shooting
products and applying a further continuous dependence argument, we will end up with a
solution of (2.1), (2.2) that in fact has a local minimum (Theorem 5.6).

To carry out this plan it will be convenient to rescale solutionsw of (2.1) in the
following way:

w(y) = f (y)w+
s (y), y > 0.

Recalling the explicit representationw+
s (y) = Ay−1/(m−1), we compute thatf satisfies

f ′′
=
y

2
f ′

+
2

(m− 1)y
f ′

−
kmAm−1

y
fm−1

+ f ′
+

1

y2
8(f ), y > 0, (5.1)

with

8(s) = −
m

(m− 1)2
s +

kmAm−1

m− 1
sm+ − A2m−2s2m−1

+ , s ∈ R. (5.2)

Now giveny0 > 0, we rescale the interval(0, y0) by settingz := − ln(y/y0) for y ∈

(0, y0), so that the backward function

gb(z) ≡ gb(z; y0) := f (y0e
−z), z ∈ (0,∞),

is a solution of

g′′

b = −

(
m+ 1

m− 1
+
y2

0

2
e−2z

)
g′

b + kmAm−1gm−1
b+ g′

b +8(gb), z ∈ (0,∞). (5.3)

Similarly, the forward transformationz = ln(y/y0), y ∈ (y0,∞), and

gf (z) ≡ gf (z; y0) := f (y0e
z), z ∈ (0,∞),

lead to the equation

g′′

f =

(
m+ 1

m− 1
+
y2

0

2
e2z

)
g′

f − kmAm−1gm−1
f+

g′

f +8(gf ), z ∈ (0,∞). (5.4)

Lemma 5.1. The function8 is concave on[1,∞) and

8(s) ≤

(
kmAm−1

−
2m

m− 1

)
(1 − s) for all s ∈ (0,∞). (5.5)
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Proof. From

8′(s) = −
m

(m− 1)2
+
km2Am−1

m− 1
sm−1

− (2m− 1)A2m−2s2m−2, s > 0,

and the fact that8(1) = −
m

(m−1)2
+

kmAm−1

m−1 − A2m−2
= 0 by (2.5), it follows that

8′(1) =
2m

m− 1
− kmAm−1, (5.6)

and that8′′ has precisely one zeros0 in (0,∞). SincekmAm−1 > 2m/(m− 1)whenever
k > 2/

√
m, we thus find that8′(1) < 0; as also8′(0) < 0, we conclude that8′ has

two zeros in(0,1), say at 0< s1 < s2 < 1. Therefore we necessarily haves0 ∈ (s1, s2)

and in particular8′′(s) < 0 for all s ≥ s2. This proves the concavity of8 on [1,∞)

and, moreover, that8′(s) ≥ 8′(1) for all s ∈ (s1,1) and8′(s) ≤ 8′(1) for eachs ≥ 1,
whence8(s) = 8(1)+

∫ s
1 8

′(ξ) dξ ≤ 8′(1)(s−1) for all s > s1. Therefore (5.6) yields
(5.5), because8(s) ≤ 0 for s ∈ (0, s1]. ut

5.1. Shooting backwards

The following auxiliary lemma is an application of Lemma 3.1 to a particular differential
inequality that will arise in the backward shooting procedure in Lemma 5.3 below.

Lemma 5.2. There existsM0 > 0 such that ifz∞ > 0 andϕ ∈ C2([0, z∞)) is a function
satisfying {

ϕ′′
≥ M(1 − e−2z)ϕ′

−Nϕ in (0, z∞),

ϕ(0) = 0, ϕ′(0) = 1,
(5.7)

with someM ≥ M0 andN ∈ [0,M], then

ϕ(z) ≥


z if 0 ≤ z <

√
3/M,

√
3

e
√
M
e
√
M/3z if

√
3/M ≤ z < z∞,

(5.8)

and

ϕ′(z) ≥


1

z
ϕ(z) if 0< z <

√
3/M,

√
M/3ϕ(z) if

√
3/M ≤ z < z∞.

(5.9)

Proof. Since d
ds
(− ln(1 − s)) =

1
1−s

→ 1 ass → 0, it is possible to chooseν0 ∈

(0, (2 ln 2)/3) small such that− ln(1 − ν) ≤ 3ν/2 for all ν ∈ [0, ν0]. We setM0 :=
16/3ν2

0 and, givenM ≥ M0, let

β = β(M) :=
√
M/3, ν = ν(M) := 4/

√
3M, z0 = z0(M) := 1/β(M).
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Thenν(M) ≤ ν0 and

−
ln(1 − ν(M))

2
≤ z0(M) ≤

ln 2

2
for all M ≥ M0, (5.10)

becauseν ≤ ν0 < (2 ln 2)/3 impliesz0(m)+
√

3/M ≤
√

3/M0 = 3ν0/4< (ln 2)/2 and,
on the other hand,− ln(1 − ν)/2 ≤ 3ν/4 =

√
3/M = z0(M).

We now define

ψ(z) :=


z, 0 ≤ z < z0(M),

1

β(M)
eβ(M)·(z−z0(M)) ≡

1

eβ(M)
eβ(M)z, z ≥ z0(M).

Then bothψ andψ ′ are continuous atz = z0(M), so thatψ ∈ W
2,∞
loc ([0,∞)). Moreover,

ψ(0) = 0 andψ ′(0) = 1, and since it can easily be checked that 1− e−2z
≥ z for all

z ∈ [0, (ln 2)/2], we have

ψ ′′
−M(1 − e−2z)ψ ′

+Nψ = −M(1 − e−2z)+Nz ≤ −Mz+Nz

≤ 0 in (0, z0(M)) (5.11)

due to the second inequality in (5.10) and the assumptionN ≤ M.
Wheneverz ≥ z0(M), however, the first inequality in (5.10) ensures that

1 − e−2z
≥ 1 − e−2z0(M) ≥ 1 − e−2·(− ln(1−ν(M)))/2

= ν(M),

so that in this case we obtain

ψ ′′
−M(1 − e−2z)ψ ′

+Nψ =
1

β
eβ(z−z0)[β2

−M(1 − e−2z)β +N ]

≤
1

β
eβ(z−z0)[β2

− νMβ +M]

≤
1

β
eβ(z−z0)

[
M

3
−

ν
√

3
M

√
M +M

]
≤

1

β
eβ(z−z0)

M

3
(4 − ν

√
3M)

= 0 in (z0(M),∞)

in view of our choice ofν = ν(M). Combined with (5.11), this allows us to conclude
with the aid of the comparison in Lemma 3.1 thatϕ ≥ ψ andϕ′ψ ≥ ϕψ ′ in [0, z∞).
Sinceψ ′/ψ ≡ β(M) =

√
M/3 for z > z0, this yields (5.8) and (5.9). ut

With this preparation at hand, we can now prove that shooting backwards in fact produces
solutions with zeros, provided that the shooting origin is chosen appropriately and, which
might not be surprising, if the convection term in (2.1) is strong enough.
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Lemma 5.3. Letm > 1. Then there existsk0 > 2/
√
m with the property that for any

k ≥ k0 one can findε0 such that for allε ∈ (0, ε0), the solutiongb = gb(·; y0) of the
backward shooting problemg′′

b = −

(
m+ 1

m− 1
+
y2

0

2
e−2z

)
g′

b + kmAm−1gm−1
b+ g′

b +8(gb), z > 0,

gb(0) = 1, g′

b(0) = −ε,

(5.12)

has a zero in(0,∞) if we choose

y0 :=
√

2

√
kmAm−1 −

2m

m− 1
.

Remark. As already mentioned in Lemma 5.1,kmAm−1 > 2m/(m− 1) for any k >
2/

√
m, so thaty0 is well defined.

Proof. Fork ≥ 2/
√
m we abbreviate

B ≡ B(k) := kmAm−1
≡
k2m2

+ km
√
k2m2 − 4m

2(m− 1)

and observe that restrictingk ≥ k0 is equivalent to sayingB ≥ B(k0).
Writing g instead ofgb throughout and settingG := 1 − g, we see from Lemma 5.1

that

G′′
= −

(
m+ 1

m− 1
+
y2

0

2
e−2z

)
G′

+ Bgm−1G′
−8(g)

≥ −

(
m+ 1

m− 1
+
y2

0

2
e−2z

)
G′

+ Bgm−1G′

−

(
B −

2m

m− 1

)
G in (0, z∞), (5.13)

wherez∞ := sup{z > 0 | g > 0 in (0, z)} ≤ ∞. Sincez∞ < ∞ would mean thatg has a
zero, in order to prove the lemma it is sufficient to assume henceforth thatz∞ = ∞ and
show that this is impossible ifB is appropriately large andε suitably small.

To this end, let us set

z1 ≡ z1(B, ε) := sup{z > 0 | 1 − 1/B ≤ gm−1
≤ 1 andG′

≥ 0 on(0, z)} ≤ ∞

for B > B1 := max{1, B(2/
√
m)} andε > 0. Theng(0) = 1 andg′(0) < 0 guarantee

thatz1 > 0, and (5.13) says that

G′′
≥ −

(
m+ 1

m− 1
+
y2

0

2
e−2z

)
G′

+ B

(
1 −

1

B

)
G′

−

(
B −

2m

m− 1

)
G

=

(
B −

2m

m− 1
+
y2

0

2
e−2z

)
G′

−

(
B −

2m

m− 1

)
G

=

(
B −

2m

m− 1

)
(1 − e−2z)G′

−

(
B −

2m

m− 1

)
G in (0, z1),
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sincey2
0/2 = B − 2m/(m− 1). We now apply Lemma 5.2 toϕ := G/ε to obtain

G(z) ≥


εz if 0 ≤ z <

√
3

B −
2m
m−1

,

√
3ε

e

√
B −

2m
m−1

e

√
B−

2m
m−1
3 z if

√
3

B −
2m
m−1

≤ z < z1,

and

G′(z) ≥


1

z
G(z) if 0 ≤ z <

√
3

B −
2m
m−1

,√
B −

2m
m−1

3
G(z) if

√
3

B −
2m
m−1

≤ z < z1.

(5.14)

In particular, this implies thatz1 = z1(B, ε) is finite for allB > B1 andε > 0, and that
G′(z1) > 0 and hencegm−1(z1) = 1 − 1/B. Since the solution of (5.12) depends con-
tinuously onε in C0([0, z̄∞]) for all z̄∞ ∈ (0,∞), we therefore can, given anyB > B1,
pick someε0 = ε0(B) > 0 in such a way that

z1(B, ε) >

√
3

B −
2m
m−1

, ε < ε0(B), (5.15)

and, for later purpose, that

z1(B, ε) ≥ −
1

2
ln

2

y2
0

≡
1

2
ln

(
B −

2m

m− 1

)
, ε < ε0(B). (5.16)

From (5.14) and (5.15) we thus infer that if

B > B2 := max

{
B1,

8m

m− 1

}
andε < ε0(B) thenG(z1) > 0 and

G′(z1) ≥

√
B −

2m
m−1

3
G(z1) ≥

√
B

2
G(z1). (5.17)

Next, we assume that

B > B3 := max{B2, (4 +
√

17)2},

so that 8/
√
B < 1 − 1/B and hence

z2 ≡ z2(B, ε) := sup{z > z1 | 8/
√
B ≤ gm−1

≤ 1 − 1/B andG′
≥ 0 on(z1, z)} ≤ ∞

is well-defined and larger thanz1, becausegm−1(z1) = 1 − 1/B andG′(z1) > 0 due to
(5.17).
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Beyondz = z1, we have
y2

0
2 e

−2z < 1 by (5.16), so that

G′′
= −

(
m+ 1

m− 1
+
y2

0

2
e−2z

)
G′

+ Bgm−1G′
−8(g)

> −
2m

m− 1
G′

+ B
8

√
B
G′

−

(
B −

2m

m− 1

)
G ≥

(
8
√
B −

2m

m− 1

)
G′

− BG

≥ 4
√
BG′

− BG for z ∈ (z1, z2),

provided that

B > B4 := max

{
B3,

m2

4(m− 1)2

}
.

Now Lemma 3.2 ensures that withλ± := 2
√
B ±

√
(2

√
B)2 − B = (2 ±

√
3)

√
B we

have

G(z) ≥
G′(z1)− λ−G(z1)

λ+ − λ−
eλ

+(z−z1)

+
λ+G(z1)−G′(z1)

λ+ − λ−
eλ

−(z−z1), z ∈ (z1, z2). (5.18)

Sinceλ− <
√
B/2< λ+, we deduce from (5.17) that Lemma 3.2 furthermore guarantees

G′(z) ≥

√
B

2
G(z) for all z ∈ (z1, z2), (5.19)

and thatG′(z1) − λ−G(z1) > 0. The latter inequality shows that the right-hand side of
(5.18) tends to∞ asz → ∞, whencez2(B, ε) must be finite wheneverB > B4 and
ε < ε0(B). Moreover,G′(z2) > 0 by (5.19) and thusgm−1(z2) = 8/

√
B. Hence, if

additionally

B > B5 := max{B4,2
2(m+2)

},

then (5.19) implies

G′(z2) ≥

√
B

2
(1 − g(z2)) =

√
B

2

(
1 −

(
8

√
B

)1/(m−1))
≥

√
B

4
. (5.20)

To initiate the final step, forB > B5 andε < ε0(B) we set

z3 ≡ z3(B, ε) := sup{z > z2 | 0< gm−1
≤ 8/

√
B andg′

≤ 0 on(z2, z)} ≤ ∞,

which is again meaningful sincegm−1(z2) = 8/
√
B andg′(z2) < 0 by (5.19). Forz ∈

(z2, z3) we estimate8(g), rather than using Lemma 5.1, according to

8(g) = −
m

(m− 1)2
g +

B

m− 1
gm − A2m−2g2m−1

≤
B

m− 1
gm−1g ≤

8
√
B

m− 1
g
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and thereby deduce from (5.12), recalling that
y2

0
2 e

−2z
≤ 1 for z > z2 > z1,

g′′
≤ −

(
m+ 1

m− 1
+
y2

0

2
e−2z

)
g′

+
8
√
B

m− 1
g ≤ −

2m

m− 1
g′

+
8
√
B

m− 1
g on (z2, z3).

Since trivially 1
4(

2m
m−1)

2
+

8
√
B

m−1 > 0, Lemma 3.2 states that

g(z) ≤
g′(z2)− θ−g(z2)

θ+ − θ−
eθ

+(z−z2)

+
θ+g(z2)− g′(z2)

θ+ − θ−
eθ

−(z−z2), z ∈ (z2, z3), (5.21)

with

θ±
= −

m

m− 1
±

√(
m

m− 1

)2

+
8
√
B

m− 1
.

We claim that ifB is sufficiently large andε < ε0(B) then furthermore

g′(z2) < θ−g(z2). (5.22)

In view of the eventual dominance of the first term on the right of (5.21), this will on the
one hand prove thatz3 is finite, so that by definition ofz3, eitherg(z3) = 0 org′(z3) = 0.
But on the other hand, Lemma 3.2 also asserts that (5.22) entailsg′(z) ≤ θ−g(z) for all
z ∈ [z2, z3]. Evaluating this atz = z3 and noting thatθ− < 0, we infer thatg(z3) cannot
be positive and henceg reaches zero atz3(B, ε) for suchB andε, which is the desired
contradiction to our hypothesisz∞ = ∞.

In order to prove (5.22) for

B > B6 := max

{
B5,

m4

64(m− 1)2
,

[
4(4 +

√
8)81/(m−1)

√
m− 1

]4(m−1)/(m+1)}
,

let us first observe that ifB > m4

64(m−1)2
then( m

m−1)
2

≤
8
√
B

m−1 and thus

θ−
≥ −

√
8
√
B

m− 1
−

√
16

√
B

m− 1
= −

(4 +
√

8)
√
m− 1

B1/4.

Therefore (5.20) yields

g′(z2)− θ−g(z2) = −G′(z2)− θ−

(
8

√
B

)1/(m−1)

≤ −

√
B

4
+
(4 +

√
8)81/(m−1)

√
m− 1

B1/4−1/2(m−1)

=

√
B

4

[
1 −

4(4 +
√

8)81/(m−1)

√
m− 1

B−m+1/4(m−1)
]
< 0

wheneverB > B6. ut
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5.2. Shooting forwards

In demonstrating our forward shooting procedure, we again attempt to avoid an accu-
mulation of difficulties and therefore begin by providing an explicit supersolution of a
differential equation that will occur below.

Lemma 5.4. Let M,K1,K2 > 0, β ∈ (1,2) and γ ∈ (2β − 2,2). Then there exist
positive constantsz1, δ, c1, c2 andη0 such that the function

ψ(z) :=

{
1 − e−2z, 0 ≤ z < z1,

c1e
δeγ z

− c2, z1 ≤ z < ∞,
(5.23)

belongs toW2,∞
loc ([0,∞)) and satisfies

Lψ ≡ ψ ′′
− [M(e2z

− 1)− 1 −K1ηe
βz]ψ ′

+ [M +K2ηe
2βz]ψ ≤ 0 (5.24)

for all η ∈ (0, η0] and all z ∈ (0,∞), z 6= z1.

Proof. We pick anyδ ∈ (0,2/γ ) satisfying

δ ≤

(
2

γ

)(2−γ )/4(
M

8γ

)(γ+2)/4

(5.25)

and

δ ≤
2

γ

(
M

8(M + γ + 1)

)(γ+2)/2

(5.26)

and set

z1 :=
1

γ + 2
ln

2

δγ
. (5.27)

Thenz1 > 0, and requiring thatψ andψ ′ be continuous atz1 is equivalent to saying

1 − e−2z1 = c1e
δeγ z1

− c2 and 2e−2z1 = c1e
γ z1eδe

γ z1
,

so that we define

c1 := e−δe
γ z1 and c2 := e−2z1.

To make the list of our definitions complete, we chooseη0 > 0 small enough such that

η0 ≤
2

2K1eβz1 +K2e(2β+2)z1
(5.28)

and

η0 ≤
Mδγ

4(K1δγ +K2)
. (5.29)
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With these choices, forz < z1 we haveψ(z) = 1 − e−2z, ψ ′(z) = 2e−2z andψ ′′(z) =

−4e−2z and hence, using (5.28),

Lψ = −4e−2z
− 2[M(e2z

− 1)− 1 −K1ηe
βz]e−2z

+ [M +K2ηe
2βz](1 − e−2z)

= −M(1 − e−2z)− 2e−2z
+ η(2K1e

(β−2)z
+K2e

2βz
−K2e

(2β−2)z)

= −M(1 − e−2z)− [2 − η(2K1e
βz

+K2e
(2β+2)z)]e−2z

− ηK2e
(2β−2)z

≤ − [2 − η0(2K1e
βz1 +K2e

(2β+2)z1)]e−2z

≤ 0 for all z < z1

wheneverη ≤ η0.
In the regionz > z1, however, we compute

ψ(z) = c1e
δeγ z

− c2,

ψ ′(z) = c1δγ e
γ zeδe

γ z

,

ψ ′′(z) = c1(δ
2γ 2e2γ z

+ δγ 2eγ z) eδe
γ z

and thereby obtain

Lψ = c1{δ
2γ 2e2γ z

+δγ 2eγ z− [M(e2z
−1)−1−K1ηe

βz]δγ eγ z+ [M+K2ηe
2βz]}eδe

γ z

−c2[M+K2ηe
2βz] for all z > z1.

Dropping the last term, we obtain

Lψ ≤ c1{δ
2γ 2e−(2−γ )z

−Mδγ + (M + γ + 1)δγ e−2z
+Me−(γ+2)z

+K1ηδγ e
−(2−β)z

+K2ηe
−(γ+2−2β)z

}e(γ+2)zeδe
γ z

=: c1{I1 − I2 + I3 + I4 + I5 + I6}e
(γ+2)zeδe

γ z

for z > z1. (5.30)

Here,

I4
1
2I2

=
Me−(γ+2)z

1
2Mδγ

=
2

δγ
e−(γ+2)z

≤
2

δγ
e−(γ+2)z1 = 1 for all z > z1 (5.31)

due to (5.27). Moreover,

I1
1
8I2

=
δ2γ 2e−(2−γ )z

1
8Mδγ

≤
8δγ

M
e−(2−γ )z1

=
8δγ

M

(
δγ

2

)(2−γ )/(γ+2)

=
8γ

M

(
γ

2

)(2−γ )/(γ+2)

δ4/(γ+2)

≤
8γ

M

(
γ

2

)(2−γ )/(γ+2)( 2

γ

)(2−γ )/(γ+2)
M

8γ
= 1 for all z > z1 (5.32)
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by (5.25), while according to (5.26) we have

I3
1
8I2

=
(M + γ + 1)δγ e−2z

1
8Mδγ

≤
8(M + γ + 1)

M
e−2z1

=
8(M + γ + 1)

M

(
δγ

2

)2/(γ+2)

≤
8(M + γ + 1)

M

(
γ

2

)2/(γ+2)( 2

γ

)2/(γ+2)
M

8(M + γ + 1)
= 1 for all z > z1. (5.33)

Finally, sinceγ < 2β − 2, from (5.29) we obtain

I5 + I6
1
4I2

=
K1ηδγ e

−(2−β)z
+K2ηe

−(γ+2−2β)z

1
4Mδγ

≤
4(K1δγ +K2)η

Mδγ
≤ 1 for all z > z1 (5.34)

wheneverη ≤ η0. Now (5.24) follows from (5.30)–(5.34). ut

We are ready to formulate the outcome of our forward shooting approach in a way appro-
priate for the proof of Theorem 5.6 below.

Lemma 5.5. Fix m > 1, k > 2/
√
m, β ∈ (1,2) and let

y0 :=
√

2

√
kmAm−1 −

2m

m− 1

be as in Lemma5.3. Then there isη > 0 with the property that for allz1 > 0 there exists
ε1 > 0 such that for anyε < ε1, the solution of the forward shooting problemg

′′

f =

(
m+ 1

m− 1
+
y2

0

2
e2z

)
g′

f − kmAm−1gm−1
f+

g′

f +8(gf ), z > 0,

gf (0) = 1, g′

f (0) = ε,

(5.35)

satisfies

1 ≤ gm−1
f (z) ≤ 2 for all z ∈ (0, z1), (5.36)

but

gm−1
f (z2) ≥ 1 + ηeβz2 (5.37)

with somez2 = z2(ε) > z1.
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Proof. We again writeB := kmAm−1 andg instead ofgf . We set

M := B −
2m

m− 1
> 0, K1 := B, K2 :=

|3m− 2|B

m− 1
+
(2m− 1)(B −

m
m−1)

m− 1
.

We fix someγ ∈ (2β − 2,2) and then pick anyη ∈ (0,min{η0,1}), whereη0 is as in
Lemma 5.4. Making use of the continuous dependence ofg on ε, we can choose some
ε1 > 0 such that wheneverε < ε1, we have

gm−1
≤ 1 + η/2 in (0, z1). (5.38)

For ε < ε1, we now define

z2 ≡ z2(ε) := sup{z̃ > 0 | 1 ≤ gm−1(z) ≤ 1 + ηeβz and

g′(z) ≥ 0 for all z ∈ (0, z̃)} ≤ ∞,

noting that this is meaningful becauseg(0) = 1 andg′(0) > 0. If z ∈ (0, z2) then from
the concavity of8 on [1,∞), as asserted by Lemma 5.1, we have the estimate

8(g) ≥ 8′((1 + ηeβz)1/(m−1))(g − 1)

=

{
−

m

(m− 1)2
+
km2Am−1

m− 1
(1 + ηeβz)− (2m− 1)A2m−2(1 + ηeβz)2

}
(g − 1).

SinceA2m−2
=

B
m−1 −

m

(m−1)2
due to (2.5), for suchz we obtain

8(g) ≥

{
2m

m− 1
− B −

[
(3m− 2)B

m− 1
−

2m(2m− 1)

(m− 1)2

]
ηeβz

−
(2m− 1)(B −

m
m−1)

m− 1
η2e2βz

}
(g − 1)

≥

{
2m

m− 1
− B −K2ηe

2βz
}
(g − 1),

becauseη < 1 andeβz ≥ 1. Therefore the functionG := g − 1 satisfies

G′′
=

(
m+ 1

m− 1
+
y2

0

2
e2z

)
G′

− Bgm−1G′
+8(g)

≥

(
m+ 1

m− 1
+
y2

0

2
e2z

)
G′

− B(1 + ηeβz)G′
−

(
B −

2m

m− 1
+K2ηe

2βz
)
G

=

(
m+ 1

m− 1
+

(
B −

2m

m− 1

)
e2z

− B − Bηeβz
)
G′

−

(
B −

2m

m− 1
+K2ηe

2βz
)
G

= [M(e2z
− 1)− 1 −K1ηe

βz]G′
− [M +K2ηe

2βz]G, z ∈ (0, z2),



Single-point blow-up on the boundary 125

according to our definitions ofy0, M, K1 andK2. Applying Lemma 3.1 toϕ := G/ε

and the positive functionψ provided by Lemma 5.4, we conclude thatG ≥ εψ and
G′/G ≥ ψ ′/ψ on (0, z2). Sincee−βz/(m−1)ψ(z) → ∞ asz → ∞, we infer that for any
ε < ε1 the numberz2 = z2(ε) is finite andG′(z2) > 0, so thatgm−1(z2) = 1 + ηeβz2. In
particular,z2 > z1 in view of (5.38) and thereby (5.36) and (5.37) are proved. ut

5.3. Existence of solutions with local minima

The following theorem combines the results of the preceding two subsections and thereby
proves that if the shooting parameterε > 0 above is chosen small and equal in both shoot-
ing directions then we can glue together the resulting forward and backward functions and
thereby, adding one further continuous dependence argument, obtain a solution of (2.1),
(2.2) with a positive local minimum.

Theorem 5.6. Letm > 1. Then there existsk0 > 2/
√
m such that for allk ≥ k0 there

is σ1 > 0 such that the solutionwσ1 of (2.1), (2.2) attains a positive local minimum
somewhere in(0,∞).

Proof. Planning to apply Lemmas 5.3 and 5.5, we set again

y0 :=
√

2

√
kmAm−1 −

2m

m− 1
≡

√
k2m2 − 4m+

√
k2m2 − 4m

m− 1
.

We takek0 as generated by Lemma 5.3 and then, given anyk ≥ k0, let ε0 be as provided
by the same lemma. Fixing an arbitraryβ ∈ (1,2), we takeη > 0 from Lemma 5.5, then
choosez1 > 0 large enough such that

ez1 >
2Am−1

y0µm−1
(5.39)

and

e(β−1)z1 >
y0µ

m−1

ηAm−1
, (5.40)

and letε1 andz2 > z1 denote the numbers furnished by Lemma 5.5. We now pick any
ε ∈ (0,min{ε0, ε1}) and letgb andgf be the corresponding solutions of (5.3) and (5.4),
respectively, withgb(0) = gf (0) = 1, g′

b(0) = −ε andg′

f (0) = ε. Then

f̃ (y) :=


gb

(
− ln

y

y0

)
, y ∈ (0, y0),

gf

(
ln
y

y0

)
, y ∈ [y0,∞),

defines a continuously differentiable functioñf that, according to the considerations at
the beginning of the present section, solves (5.1). Hence,f̃ is actually smooth and̃w :=
f̃ w+

s is a solution of (2.1).
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According to Lemma 5.3,

w̃ has a zero in(0, y0). (5.41)

Due to Lemma 5.5, we furthermore havegm−1
f (z) ≤ 2 for all z ≤ z1, and in particular

w̃m−1(y0e
z1)

µm−1
=
gm−1
f (z1)A

m−1

ez1y0µm−1
≤

2Am−1

ez1y0µm−1
< 1

because of (5.39). On the other hand, Lemma 5.5 also says thatgm−1
f (z2) ≥ 1+ ηeβz2 >

ηeβz2, so that

w̃m−1(y0e
z2)

µm−1
=
gm−1
f (z2)A

m−1

ez2y0µm−1
>
ηAm−1e(β−1)z2

y0µm−1
>
ηAm−1e(β−1)z1

y0µm−1
> 1

in view of (5.40). Finally, from the definitions ofµ andy0 and the fact thatgb(0) =

gf (0) = 1 we have

A2(m−1)(w̃−2(m−1)(y0)− µ−2(m−1)) = A2(m−1)((w+
s (y0))

−2(m−1)
− µ−2(m−1))

= y2
0 −

(
A

µ

)2(m−1)

=
k2m2

− 4m+
√
k2m2 − 4m

m− 1

−
k2m2

+ km
√
k2m2 − 4m− 2m

m− 1

< −
2m

m− 1
if k >

1

m
,

whence altogether we conclude, writingy1 := y0e
z1 andy2 := y0e

z2, thaty0 < y1 < y2
and

w̃(y0) > µ, w̃(y1) < µ, w̃(y2) > µ.

Thereforew̃ attains a—necessarily positive—local minimum at someỹ ∈ (y0, y2). In
order to derive from this result the existence of a solution of (2.1), (2.2) having a minimum
at ỹ, we introduce the value attained atỹ as a parameter and apply one further continuous
dependence argument. More precisely, fora ∈ (0, µ] we let w̃a denote the solution of
(2.1) withw̃a(ỹ) = a andw̃′

a(ỹ) = 0, so that the functioñw constructed above coincides
with w̃a whena = a0 := w̃(ỹ). Therefore, due to (5.41) the set

A := {a ∈ (0, µ] | w̃a has a zero in(0, ỹ)}

is not empty and hencea1 := supA is well-defined. Sincew ≡ µ solves (2.1), the number
µ does not belong toA and thus, by continuous dependence ofw̃a ona in C0([0, ỹ]), we
havea1 < µ. We claim that

w̃a1 > 0 in (0, ỹ) and w̃a1(0) = 0. (5.42)
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In fact, if w̃a1 had a zero in(0, ỹ) then, by (2.1),w̃a1 should change sign in(0, ỹ), so that,
again due to continuous dependence ona, the same is true for somẽwa with a ∈ (a1, µ),
contradicting the definition ofa1. On the other hand, it is impossible thatw̃a1 is positive
throughout [0, ỹ], because then alsõwa would be positive whenevera is sufficiently close
to a1, whence supA would be smaller thana1.

Having shown (5.42), we setσ1 := w̃′
a1
(0). Then, due to the uniqueness properties of

(2.1),σ1 is positive andwσ1 ≡ w̃a1. Thus,wσ1 satisfiesw′
σ1
(ỹ) = 0 andwσ1(ỹ) ∈ (0, µ)

and therefore, by (2.1),w′′
σ1
(ỹ) > 0, so that indeedwσ1 attains a local minimum at̃y. ut

6. Proof of Theorem 1.1

Reviewing Theorems 4.3 and 5.6, one can expect that there is an intermediate value ofσ

for which the functionwσ solving (2.1), (2.2) remains positive in(0,∞). In fact, starting
from the solutionwσ1 with a local minimum, one can continuously deform this solution
by diminishingσ , and ask what might happen to the local minimum point ofwσ , say
y(σ ), whenσ decreases fromσ1 to σ0, whereσ0 is as in Theorem 4.3. Loosely speaking,
this minimum must disappear at someσ betweenσ0 andσ1, and the only conceivable
possibility for this to occur is thaty(σ ) → ∞ whenσ approaches this critical value.
These considerations form the core of the proof of our main result.

Proof of Theorem 1.1.We first make sure that ifk is large then, for some appropriate
σ̄ > 0, the solutionwσ̄ of (2.1), (2.2) remains positive throughout(0,∞).

For this purpose, we observe that according to Theorem 5.6, the set

6 := {σ > 0 | wσ has a local minimum in(0,∞)}

is not empty ifk ≥ k0 for some sufficiently largek0 > 2/
√
m. Forσ ∈ 6, let

y(σ ) := inf{y ∈ (0,∞) | wσ has a local minimum aty},

and define the number

σ̄ := inf6,

which is positive due to the result of Theorem 4.3. To prove thatσ̄ has the desired prop-
erty, we fix a sequence of numbersσj ∈ 6 such thatσj → σ̄ asj → ∞, and claim
that

y(σj ) → ∞ asj → ∞; (6.1)

once this has been shown, the assertion immediately follows from the continuous de-
pendence onσ of the solutions of (2.1), (2.2): Namely, (6.1) implies thatwσ̄ (y) =

limj→∞wσj (y) is nonnegative for ally > 0 and hence even positive for eachy > 0,
becausewσ̄ 6≡ 0.

To show (6.1), let us proceed by contradiction. Suppose thaty(σj ) → ȳ0 ∈ [0,∞)

for a subsequence. Then, sincewσj → wσ̄ in C1([0, ȳ0 + 1]), we infer thatw′

σ̄ (ȳ0) =

limj→∞w′
σj
(y(σj )) = 0 andwσ̄ (ȳ0) = limj→∞wσj (y(σj )) ∈ [0, µ]. But wσ̄ 6≡ 0 and
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wσ̄ 6≡ µ, whence actuallywσ̄ (ȳ0) ∈ (0, µ). Thus, again by continuous dependence, we
can find positive numbersν1 andν2 such that whenever|σ − σ̄ | < ν1 and|y − ȳ0| < ν2,
we havewσ (y) ∈ (0, µ) andw′

σ (ȳ0−ν2) > 0> w′
σ (ȳ0+ν2). This implies that each such

wσ attains a local minimum in(ȳ0 − ν2, ȳ0 + ν2), evidently contradicting the definition
of σ̄ .

Next we show thatw := wσ̄ satisfies

w(y) ↘ 0 asy → ∞. (6.2)

Indeed, from Lemma 4.2 we already know thatw′(y) < 0 for all sufficiently largey, so
thatw(y) ↘ w∞ asy → ∞, with somew∞ ≥ 0. In view of Lemma 2.2, eitherw∞ = 0
or w∞ = µ, whence it remains to exclude the possibility thatw(y) ↘ µ asy → ∞.
If this were true thenv := w − µ would be eventually positive and decrease to zero as
y → ∞. Using (2.1) and the convexity ofs 7→ s2m−1 on (0,∞), we see that

v′′
=
y

2
v′

− kmwm−1v′
+

1

2(m− 1)
(µ+ v)− (µ+ v)2m−1

≤
y

2
v′

− kmwm−1v′
+

1

2(m− 1)
µ+

1

2(m− 1)
v − µ2m−1

− (2m− 1)µ2m−2v

=

(
y

2
− kmwm−1

)
v′

− v < 0

for all sufficiently largey, becausew is bounded and, eventually,v′ < 0 andv > 0.
Thus,v should be concave for largey, which is incompatible with the assumption that
v(y) ↘ 0. Consequently,w∞ = 0 and (6.2) has been established.

Now we claim that for allα < 1/(m− 1) there existyα > 0 andCα > 0 such that

w(y) ≤ Cαy
−α for all y ≥ yα. (6.3)

To prove this, we letα be given and chooseyα > 0 large enough such that

y2
α ≥

4
1

m−1 − α
(α − 1)(α − 2), (6.4)

y2
α ≥ 4(1 − α), (6.5)

w′(y) ≤ 0 for all y ≥ yα, (6.6)

w(y) ≤

( 1
m−1 − α

4

)1/2(m−1)

for all y ≥ yα, (6.7)

where we note that (6.6) and (6.7) are possible due to (6.2). We now multiply (2.1) by
yα−1 and integrate over(yα, y), y > yα, to obtain

1

2

∫ y

yα

ξαw′(ξ) dξ +
1

2(m− 1)

∫ y

yα

ξα−1w(ξ) dξ

=

∫ y

yα

ξα−1w′′(ξ) dξ + k

∫ y

yα

ξα−1(wm)′(ξ) dξ +

∫ y

yα

ξα−1w2m−1(ξ) dξ. (6.8)
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After integration by parts, the left-hand side becomes

1

2

∫ y

yα

ξαw′(ξ) dξ +
1

2(m− 1)

∫ y

yα

ξα−1w(ξ) dξ

=
1

2
yαw(y)−

1

2
yααw(yα)+

1

2

(
1

m− 1
− α

) ∫ y

yα

ξα−1w(ξ) dξ. (6.9)

On the right-hand side of (6.8), the second term is nonpositive due to (6.6), whereas in
the first term we integrate by parts twice and use (6.4)–(6.6) to see that∫ y

yα

ξα−1w′′(ξ) dξ = −(α − 1)
∫ y

yα

ξα−2w′(ξ) dξ + yα−1w′(y)− yα−1
α w′(yα)

= (α − 1)(α − 2)
∫ y

yα

ξα−3w(ξ) dξ

− (α − 1)yα−2w(y)+ (α − 1)yα−2
α w(yα)

+ yα−1w′(y)− yα−1
α w′(yα)

≤
1

4

(
1

m− 1
− α

) ∫ y

yα

ξα−1w(ξ) dξ

+
1

4
yαw(y)+ (α − 1)yα−2

α w(yα)− yα−1
α w′(yα). (6.10)

By (6.7), the last term in (6.8) can be estimated in the following way:∫ y

yα

ξα−1w2m−1(ξ) dξ ≤
1

4

(
1

m− 1
− α

) ∫ y

yα

ξα−1w(ξ) dξ. (6.11)

In view of (6.9)–(6.11), (6.8) becomes

1

4
yαw(y) ≤

1

2
yααw(yα)+ (α − 1)yα−2

α w(yα)− yα−1
α w′(yα),

and thus (6.3) follows.
Let us now show that

w(y) ≤ Cy1/(m−1) for all y > 0 (6.12)

with someC > 0. To see this, we fixα < 1/(m− 1) close to 1/(m− 1) such that

α >
1

m− 1
− 2 and α >

1

(m− 1)(2m− 1)
, (6.13)

where the latter is possible sincem > 1 implies 1/(2m− 1) < 1. Moreover, we let
ŷ ≥ yα be such that

ŷ2
≥ 4

(
1 −

1

m− 1

)
. (6.14)
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We now multiply (2.1) byy1/(m−1)−1 and integrate over(ŷ, y) with y > ŷ to achieve

1

2
y1/(m−1)w(y) −

1

2
ŷ1/(m−1)w(ŷ)

=
1

2

∫ y

ŷ

ξ1/(m−1)w′(ξ) dξ +
1

2(m− 1)

∫ y

ŷ

ξ1/(m−1)−1w(ξ) dξ

=

∫ y

ŷ

ξ1/(m−1)−1w′′(ξ) dξ + k

∫ y

ŷ

ξ1/(m−1)−1(wm)′(ξ) dξ

+

∫ y

ŷ

ξ1/(m−1)−1w2m−1(ξ) dξ.

Again integrating by parts and dropping nonpositive terms as above, we arrive at

1

2
y1/(m−1)w(y)−

1

2
ŷ1/(m−1)w(ŷ)

≤

(
1

m− 1
− 1

)(
1

m− 1
− 2

) ∫ y

ŷ

ξ1/(m−1)−3w(ξ) dξ

−

(
1

m− 1
− 1

)
y1/(m−1)−2w(y)+

(
1

m− 1
− 1

)
ŷ1/(m−1)−2w(ŷ)

− ŷ1/(m−1)−1w′(ŷ)+

∫ y

ŷ

ξ1/(m−1)−1w2m−1(ξ) dξ. (6.15)

Here, from (6.3) and (6.13) we obtain∫ y

ŷ

ξ1/(m−1)−3w(ξ) dξ ≤ Cα

∫
∞

ŷ

ξ1/(m−1)−3−α dξ < ∞

and ∫ y

ŷ

ξ1/(m−1)−1w2m−1(ξ) dξ ≤ C2m−1
α

∫
∞

ŷ

ξ1/(m−1)−1−(2m−1)α dξ < ∞,

while (6.14) guarantees that

−

(
1

m− 1
− 1

)
y1/(m−1)−2w(y) ≤

1

4
y1/(m−1)w(y) for all y ≥ ŷ.

By these observations, (6.15) turns into

1

2
y1/(m−1)w(y) ≤ C̄ +

1

4
y1/(m−1)w(y) for all y ≥ ŷ

with someC̄ > 0. This immediately results in (6.12), becausew is bounded in(0, ŷ).
Having thus found a positive solutionw of (2.1) satisfying (6.12), we defineu by

(1.2). By (6.12),

u(x, t) = (T − t)−1/2(m−1)w((T − t)−1/2x)

≤ Cx−1/(m−1) for all x > 0 and anyt < T .
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On the other hand,

u((T − t)1/2, t) = (T − t)−1/2(m−1)w(1)

→ ∞ ast ↘ T ,

whereby the proof is complete. ut
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