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Abstract. We consider random walk on a discrete tofi®f side-lengthn, in sufficiently high
dimensiond. We investigate the percolative properties of the vacant set corresponding to the col-
lection of sites which have not been visited by the walk up to tim&. We show that whem

is chosen small, a& tends to infinity, there is with overwhelming probability a unique connected
component in the vacant set which contains segments of length comét Mgreover, this con-
nected component occupies a non-degenerate fraction of the total number afsie«, and any

point of E lies within distanceV? of this component, with$ an arbitrary positive number.

0. Introduction

We investigate random walk on&dimensional torus of large side-length, and we
are interested in the set of points that have not been visited by the walk up to times of
orderN“. This time scale is much shorter than the typical time it takes the walk to cover
the discrete torus. Indeed, the cover time of the discrete torus is known to be of order
N?logN whend > 3, andN?(log N)2 whend = 2 (cf. [1], [2], [4], [5], [6], and the
references therein, for this and much more). In fact, wiien 3, andu is an arbitrary
positive number, the probability that the walk visits a given point of the discrete torus up
to timeu N¢ remains bounded away from 0 and 1Mgends to infinity. This makes the
time scaleN? an appropriate choice to discuss the percolative properties of the vacant
set left by the walk. Incidentally these questions are closely related to the analysis of the
disconnection time of a discrete cylinder by a random walk, recently investigated in [7],
[15]. The main object of this work is to discuss the typical presence of a well-defined giant
connected component in the vacant set left by the walk by &, for large N, when
the dimensiond is large enough, and suitably small. We expect a different behavior
whenu is large, but this work does not present results in this direction. We believe some
of our methods and results are pertinent to improved bounds of the disconnection time of
a discrete cylinder by a random walk recently derivedin [7] (see also [15]).

Before discussing our results any further, we describe the model in more detail. We
considerd > 3, N > 1, and denote by the d-dimensional discrete torus of side-
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lengthN:

E = (Z/NZ). (0.1)
We write P, resp.P, whenx € E, for the law onEN endowed with the produet-
algebraF, of simple random walk o started with uniform distribution, resp. at We
let X, stand for the canonical process BN, andX[g , for the set of sites visited by the
walk up to time []:

X, ={ze€ E:forsomeO<n <t, X, =z} forz>0. (0.2)

Our main focus is on the percolative properties of the vacant seX|q ,, 4] left by the
walk up to timex N4, whenN is large and: > 0 is some fixed positive number. We show
that whend > 4 andu is suitably small, the vacant set by timé&/¢ typically contains a
profusion of segments of logarithmic size M for large N. More precisely, fork > 0,

0 < B < 1,r = 0, we define the event which specifies that for every poirf tfiere is in
each coordinate direction, withiN#? steps, a segment of lengtk Jog N] in the vacant
set left by the walk at time:

Vi, = {forallx € E, 1< j <d, forsome 0<m < N¥,
X, N{x+ (m+ [0, [K log N]])ej} =0}, (0.3)

where(e;)1<i<q Stands for the canonical basis&f. We show in Theore@.z that for
d, K, B as above,
Ii/r\p P[Vg gunel =1  forsmallu > 0. (0.4)

We also show in Propositign 1.1 that whén- 3, foru > 0,

e~ < liminf P[0 ¢ Xjo,ya)] =< limSUPPIO ¢ Xjo ,na] = et (05)
N

with ¢, ¢’ suitable positive dimension dependent constants (more is known, see [2, Chap-
ter 3, Proposition 20 and Chapter 13, Proposition 8]). This feature motivates the interest
of the time scaleV? in the investigation of the vacant set left by the walk. We sharpen
this result by showing in Corollafy 4.5 that

lim Ple™" < |E\ Xpounagl/NY <e"1 =1 foru >0, (0.6)

where forA C E, |A| denotes the cardinality of.

When the dimensiod is suitably large, i.ed > do (cf. (2.:41)), we introduce a di-
mension dependent constagt and eventgjg; V., g+, increasing with < (0, 1),
such that for any such:

0) Iil(]n P[Gg ,na] = 1 for smallu > 0,
(i) onGg ; there is a unique connected componénin E \ Xg s (0.7)
which contains segments of lengtly = [cglog V]

(see[(2.5B) for a more general claim). The connected comp@hithus well-defined on
the nested eveng ;. In view of @) and sincég; < Ve, .1, the connected component
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O is ubiquitous onE. We refer to it as thgiant componentWe also show in Corollary
[4.9 that when is small, O typically has a non-degenerate volumeiinMore precisely,
we prove that fod > do, 8,y € (0, 1),

|i]5n P[Ggna N{1O] = yN‘}] =1 whenu > 0is small. (0.8)

However, our results do not rule out the possible existence of other components of the
vacant set with non-degenerate volume as well (cf. Refatk 4.7). In fact, the present work
raises many questions. How do percolative properties of the vacant set compare to the pic-
ture stemming from Bernoulli bond-percolation? Is there a smedigime with typically

one single giant component and all other components of small volume and size, a large
u regime with only small connected components, and in between a critical regime (see
for instance([10] and references therein)? Simulations performed whers, 4, 5, 6, 7

seem to support this picture, with a critical threshold located mear3. If such a critical
regime can be extracted, do components in the vacant set in this regime inherit some of
the invariance properties of Brownian motion viewed as a scaling limit of simple random
walk? What are the relevant values of the dimensi@rit is maybe instructive to con-

sider these problems also on other graphs, such as expanders (where a sgatie

with some giant component and a laigeegime with only small components can easily

be established), randodiregular graphs, hypercubes etc. (see [3] for a study of percola-
tion on such graphs). These are just a few examples of the many questions raised by the
present article.

We now try to describe some of the ideas and methods involved in the prgofjof (0.4),
©.2). [0.9).

Behind [0.4) lies a type of coupon-collector heuristics. We show in Propo§itipn 1.1
that up to time: N about consit N¢~2 excursions take place in and out of two concentric
balls centered at the origin with radius some suitable fractioN oAt most const: N#
of these excursions hit a given segment of lenyth starting at the origin. Chopping
this segment inta = N’ /[K log N] segments of lengthK log N], and neglecting
the possible hits of more than one segment by one such excursion, a coupon-collector
heuristics (cf. Durrett [8, Chapter 2, Example 6.6]) makes it plausible that it takes about
MlogM ~ (B/K)NP such excursions to hit each of these segments. However, wisen
chosen small, constN? « (8/K)N#, and not all segments can be hit by the walk up to
time N“. The above lines describe the intuition behind the prodf of (0.4) in Thelorém 1.2.

The key to the uniqueness statement[in](0.7) is an exponential estimate proved in
Theorenj 211. It shows in particular that whérx 5, andix > 0 is such that

e%(s + (1 - S)q(d - 2)) <1, (0.9)

where for any integer > 1,
q(v) = the return probability to the origin of simple random walkBh (0.10)
then forN > N(d, ) andu < u(d, 1),
P[Xjo,una) 2 A] < exp{—A[A[} (0.11)
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for any subset of E contained in the canonical projectiédhon E of a two-dimensional
affine plane generated by two coordinate directior&4nWhene* > 7 can be achieved
(this is the requirement which specifiég cf. (2.41)), the exponential bour{d (0}11) com-
bined with a Peierl-type argument yields in Corollary] 2.5 the key uniqueness statement
behind [0.7). The clainj (0.7) is then proved in Corollary] 2.6. We also explain in Remark
[2.4 why a restriction on the class of setshat appear in (0.11) is needed. There is an
independent interest to the above exponential bound: a variation of it and]of (0.4) should
lead to a sharpening of the lower bounds on the disconnection time of discrete cylinders
(Z/NZ) x 7 derived in [7], at least whet is large enough.

To prove[(0.8), in essence we control fluctuations of the proportion of sit®suhich
attimeuN? are connected by a vacant path in some two-dimensiBnas belowl),
to sites at distance:glog N]. Such sites belong to the giant componéntvhengg , ya
occurs (cf.[(2.56)). This leads us to develop estimates on the covariance of “local func-
tions” of the vacant sites left by the walk up to time of orae¥? in the neighborhood
of two sufficiently distant point on the torus (see Proposifion 4.2). Qualitatively similar
issues appear for instance lin [6]. To this end we develop in Theorgm 3.1 a bound on the
total variation norm between the law of a suitable “limit model” and the @yv, of a
recentered excursion of the walk. This excursion runs from the time of the first up to the
last visit toC(x1) U C(x2), where theC (x;) are boxes of side-length/2centered ak;,
i =1, 2,in E, with mutual distance at least 2 3, wherer > 10L, and the walk is condi-
tioned to start at a point at distance at leastfrom {x1, x2} and exit the--neighborhood
of {x1, x2} at the pointw, and stop there. The “limit model” with laW corresponds to
excursions of the simple random walk @f starting with the normalized harmonic mea-
sure viewed from infinity of the bo& centered at the origin with side-length 2stopped
at its last visit ofC. In Theoreni. 311 we show that

L2
1Quw — Qllrv < CT7 (0.12)

wherec is a dimension dependent constant dnd|ry the total variation norm. This
estimate is of independent interest and can be straightforwardly extended to the case of
finitely many pointsy; (cf. Remark 3.R). Our main control on fluctuations of spatial aver-
ages orE of local functions is then stated in Theorgm|4.3, and enables us to Ehgw (0.6)
in Corollary[4.5, and[(0]8) in Corollafy 4.6. In Corollgry }.8 we also show that when
d > 3, the largest cube contained in the vacant set at titNé typically has size of
order (log N)Y@=2 for large N. This should be contrasted with the case of Bernoulli
bond-percolation on the torus, where for lafgethe largest cube contained in a cluster
typically has much smaller size of ordgog N)%/<.

Let us now describe the organization of this article.

In Section 1, we introduce some further notation, and mainly provide the proof of
(0.4) in Theorer 1]2. On the way we shdw {0.5) in Propositioh 1.1.

In Section 2 we prove a more general version[of (0.11) in Thefrem 2.1, and use it
in Corollaried 2.5} 216 to prové (0.7), and thereby construct the giant component in the
vacant set, which is shown to be typical whép dp andu is small enough.
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In Section 3, we obtain the total variation estimate (0.12) in Theprem 3.1. This comes
as a preparation for the control of fluctuations of certain spatial averages of local functions
in the next section.

In Section 4, we show (0.8) in Corollary 4.6, the simp|er0.6) in Coroffary 4.5, and
the controls on the largest cube contained in the vacant set in Corollary 4.8. The vari-
ance bounds of Propositipn #.2 make strong use of Thejorgm 3.1. Our general control on
fluctuations of averages of local functions appears in Theprem 4.3.

Finally, throughout the text; or ¢’ denote positive constants which solely depend
ond, with values that change from place to place. The numbered consggants. .. are
fixed and refer to the value at their first place of appearance in the text. Dependence of
constants on additional parameters appears in the notation. For instékicg) denotes
a positive constant depending ank, 8.

1. Ubiquity of vacant segments of logarithmic size

The main object of this section is to show that wilen 4, for largeN, up to times that are
small multiples ofN¢ the vacant set left by the walk on the discrete tafusontains with
overwhelming probability segments of size of order Min the vicinity of each point of
E (cf. Theorenj 1R and (0.4)). We also prove the estinjaté (0.5) on the probability that a
point belongs to the vacant set up to tim&?, with d > 3 (cf. Propositiol). We first
need some additional notation.

We denote by-| and|- |« the Euclidean and™-distances of?, or the corresponding
distances orE. We write B(x, r) for the closed ball relative tp- |, with radiusr > 0
and center in Z¢ or E. We denote by (x, r) the corresponding- |..-sphere. We say
thatx, y in Z¢ or E areneighbors resp.x-neighborsif |x — y| = 1, respjx — y|eo = 1.
The notions of connected erconnected subsets @f or E are then defined accordingly,
and so are the notions of nearest neighbor patkmearest neighbor path ¢&f or E.
For A, B subsets of¢ or E, we denote by + B the subset of points of the form+ y
with x € A, y € B. WhenU is a subset oZ¢ or E, we let|U| stand for the cardinality
of U, andaU for the boundary ot/:

oU={xeU:3yeU, |x —y| =1} (1.1)
We denote byrz the canonical projection frori? onto E. For 1 < m < d, we write

L., for the collection of subsets @ that are projections under: of affine lattices irzZ¢
generated byn distinct vectors of the canonical basis:

Ly = {F C E : forsomel C {1,...,d} with |I| = m, and some € Z¢,

F= nE<y + ZZel)}, (1.2)

iel

where as beIoSIei)lgiSd denotes the canonical basisRf.
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We let (6,),>0 and (F,),>0 stand for the canonical shift of and the filtration of
the canonical process. For C E, Hy andTy stand for the entrance time and exit time
inor fromU:

Hy=infln>0:X,eU}, Ty=infn>0:X,¢U}. (1.3)
We write ﬁU for the hitting time ofU:
Hy =infln>1:X, € U}. (1.4)

WhenU = {x}, we write as a subscript in place of{x}, for simplicity. GivenA C A
C E, we often consider the successive return times snd departures from:
R1=Hy, Di=Tjo6r + Ry, andfork>1,
Ri4+1 = Hp 00p, + Dy, Dxs1 = D100p, + Dy, sothat (1.5)
O<Ri<D1<-- SR <Dy =--- <00,

and P-a.s. the above inequalities are strict except maybe for the first one. We also set
Ro = 0 = Dg by convention. The transition density of the walk Bris denoted by

pk(x,y) = P[Xpy=y], k>0,x,yeE. (1.6)

We write PZ", or EZ, for x € Z¥, v > 1, to indicate the law or expectation for simple
random walk orZ" starting fromx. We otherwise keep the same notation as above. We
let g, (-) stand for the Green function of simple random walk&hv > 1, with a pole at

the origin:

g(2) = EZZV[Z 1{Xn=0}] for z e 2 (1.7)

n>0

(which of course is identically infinite unless > 3). As a direct consequence of the
geometric number of returns of the walk to the origin, one classically has

£ (0) =1—q)h (1.8)

where (cf. [(0.1p)y(v) = PZ"[Ho < oc] denotes the return probability to the origin.
We are now ready to begin and consider, foe> 1,

B=np(-N/8 N/8*NZ%) € B =np(—N/4 N/4* NZY), (1.9)
as well as (cf.[(1]5))
Ri, Di, k > 1, the successive returns Boand departures froms. (1.10)

The following estimates will be useful. We also prove the contfolg (0.5) on the probability
that a point belongs to the vacant set (see also (2.26) of [4]).
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Proposition 1.1. (d > 3)
P[Ri+ < uN?%] < cexp—cuN?=?}, (1.11)
P[Ry, > uN?] < cexp{—cuN92}, (1.12)

foru > 0, N > 1, withk* = [ciuN¢"?], ky = [couN92?], andcy > c». Moreover, for
u >0,

e~ < liminf P[0 ¢ X(o ,a] < iMSUPPIO ¢ Xig ] < e~ (1.13)
N

Proof. We begin with the proof of (1.11). As a direct consequence of the invariance prin-
ciple, we see thatfoN > 1,x € B,y € B,

Ex[exp{—%” <1l-—c, E},[exp{—%” <l-—c. (1.14)

Hence fork > 2 andx € E one finds, using the strong Markov property and induction,

ol )] - om o] 52
< (1-)%E, [exp{—R]\'}zl H <@,

As a result we see that (with the convention belpw](1.5))

E, [exp{—%” < cexp{—ck} fork >0, (1.15)

and therefore for > 0, N > 1,k > 0, we find
P[Ri < uN9 < cexpuN?=2? — ck}, (1.16)

from which [1.11) readily follows.
We now turn to the proof of (1.12). With similar arguments to the proof of Lemma
1.3 of [7], we see that

E, [exp{%HBH <2 E, [exp{%TEH <2 forN>1andx € E. (2.17)
Therefore by the strong Markov property and induction we find thak ferl,

E[exp{%RkH < ZE[exp{ %Dkl}] < 4E[exp{%7€k1” <4 (1.18)

It now follows that fork > 0,
P[Ri > uN?] < exp{—cuN?~? + 2(log 2)k}, (1.19)

from which [1.12) easily follows.
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We next prove (1.13). Using a comparison between the Green function of the random
walk killed when exitingB and of simple random walk i (see for mstanc-.O)
(I.13) in Lemma 1.2 of[7]), we have

C(x—yl+17“? < P[H, < Tg] <c(lx—y[+D"“? forN>1,xyeB.
(1.20)
Note that fork > 1, one has

{Ho > Dy} = {Ho > R1} N Qﬁi{Ho >TzN---N Gﬁi{Ho > Ty). (1.21)
Hence by the strong Markov property and the left-hand inequality of](1.20) we see that
P[Ho>Di] < (1—cN~“2)k fork > 1. (1.22)
Similarly we see thatfok > 1,0< ¢ < 1/8,
P[Hp > Dy] = P[Xo ¢ B(0,€eN), Ho > Dy]

k-1
Cc
|B(O, eN)|

= (L= eN~2Y A —c(eN) T2, (1 N

). (1.23)

We can now write, for largev,

P[Ho > uN“] < P[Ry, = uN%]+ P[Ho > Dy, _1]
(1.12),(1.22
<7 cexp—cuN?T + (1 — cN~@ )k 1 (1.24)

as well as

P[Ho > uN? > P[Hy > Di+, Ri= > uN?]

(1.11),(1.23
> —c eXp{—cuNd_z}

+ (L =N~ 211 _ ¢(eN)"D)1— N ¢ B(0,eN)|). (1.25)

Inserting the value of, andk* (see below{(1.12)), we can Iat tend to infinity in [1.24),
(1.28) and ther to 0 in (I.25), and find (1.13). O

We now come to the main result of this section that shows the ubiquity of segments of
logarithmic size in the vacant set left by the walk at times which are small multiples
of N?. As explained in the Introduction, the heuristics underlying this result stems from
the coupon-collector problem (cf. belov (D.8)). We refef[t0](0.3) for the definition of the
eventVg g, with K > 0,0< 8 < 1, > 0. Our main result is:

Theorem 1.2. (d > 4) ForanyK > 0,0< 8 <1,
Ii}r\p P[Vg gune] =1 forsmallu > 0. (1.26)
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Proof. We pick 1, 82 such that
O<Bor<Pr<B<1l and B1— B2 <8B. (1.27)

Using translation invariance and isotropy the cldim (JL.26) follows once we show that

lim N"P[ ﬂ {Hn+{0,1])e; < uNd}] =0 forsmallu >0, (1.28)
N O<m<NP

with the notationL = [K log N]. We now prove[(1.28), and for this purpose consider the
segmentss; in E defined by

S; = wp((2I[NP=P2] +10, LDe1), 1<i <t:=[NF1], (1.29)
and write
s=J s (1.30)
1<i<¢t

We want to show that whem > 0 is chosen small, with overwhelming probability &s
tends to infinity, some of the segmests1 < i < ¢, remain vacant up to timeN<“. With
the help of [(1.2]7)[(1.28) will then follow. We then introduce (Ef. (].10) for notation),

So=S8, mnu=inflk>1:Hsobr, <Tjo6bR,}

Ri=Hsobr, +7Ry, j1=theuniquej € (1,...,¢) suchthatXz € S;,
S1=8\S;;, mn=inflk>r11:Hg 00r, <Tjo6R,},

Ry =Hs, 00r, +Rr,  ja=theuniquej € {1,..., €} \ {j1} such that
X, € Sj,and soon until;_1 = S\ U S;, 7, Re and

) Jeljtsesje-1)
Jewith {1, ..., €} = {j1. ..., je} - (1.31)

In this fashion we label the successive excursions iand out of B giving rise to hits

of new segments, and for the time being disregard the fact that possibly more than one
segment may be hit during one such excursion. As a straightforward consequence of the
above definition, one has

Ei, 1<i <¢,are(F,)-stopping times
Jjm, L<m < i, arefy -measurable (1.32)

Dy =Tpobg + Ri,l1<i<¢, are(F,)-stopping times as well

By (1.20), we see that for largé, whenU C S,

forx € BN a(BC), (2.33)

U
PHy <15 < 2 1Y
2 Nd-2
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and using the reversibility of the walk ab,

PHy <Tgl <N~* 3 PdXp=y, Tz > K]
x€E, yeU, k>0

S S ) e

x€E, yeU, k>0 yeU
cz U]
= 5 Ni-2’ (1.34)

using the fact that supy E;[T5] < ¢N? (cf. the second inequality 07)), and in-
creasing if necessary the valuecgfin (1.33). We now introduce, fav C S,

nU) =inflk > 1:Hy oOr, < Tz o6R,}, (1.35)
and note that for > 0 and 2< i < ¢, as a result of the strong Markov property applied

attimeD,,_, (cf. (T.32)),

Elexp(—i(r — -0} | Fp, 1= D ¢ Py, [1(Si-1) =], (1.36)
k>1

where in the last expressidh_1 is a frozen variable]-‘pr,il-measurable).
Note that forz EC, UCS§S,

Y e Py =k =0A-e) e PnW) <k (1.37)
k>1 k>1

Moreover for largeV, with z andU as above,

P[nU) k] =1- P;[nU) > k]
=1—-PJ[Hyobr, >Tzo0gr, forl<m <k]

cs U] \*
51—(1—51\/‘[2) fork > 0, (1.38)
with the help of [[1.3B) and strong Markov property applied at tiRgs 1 < m < k. We
thus see that under,, n(U) stochastically dominates a geometric variable with success
probability
\U|

pU) =c3yq— (1.39)
(the factor 2 multiplying the expression subtracted from 1 under the parenthesis in (1.38)
is there in order to obtaif (1.41) below). Thus coming backto {1.37), we see that for large
N,U C S,z € B,

E[exp{—inU))] < Y e M pW)@— pw)*t
k>1
_ e pU)
S 1-Q1-pU)et

fora > 0. (1.40)
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In the same fashion, using (1|33), (1.34) (note thelis 06, < T 00x,] <c3lS|/N*2,
when bounding the termk = 1 in the expression corresponding to the second line of
(T:38)), we find that for largev,

e *p(S)
E[exp{—in(S)}] < 1= ps)e—r forx > 0. (1.41)

Hence by[(2.36)[ (1.40), (T.41), and the fact tRaa.s., for 1< i < ¢,

(139

=7 c3(L+ 1) —i+ N2, (1.42)
(1.3)

pi ‘= p(Si—1)

we find that for largeV and?¢’ < ¢, A > 0,

e’ pi
E — ATy _— 1.43
[exp{—Atp}] < 1<]1£/ Y — (1.43)
and hence with the notation below (1].12),
Plry < k] < exp{ak* — Al + lo ( Pi )} 1.44
[T( = ] = p{ 1SZZ§€, g pi + (1_ e—k)(l_ pl) ( )
We now specify’ and by setting (cf.[(1.2]7))
¢ =t —[NP, p::d—Z—'Bl—g'Bz (>0), r=N"". (1.45)
As aresult for largeV, by (1.42), [1.2]7), we have
1—e? —p L+1
i) 103 =Nr> " N @ bt
4 d—2
(i) 3>pi>p forl<ic<e, (1.46)
L+1 N7

As a result we see that for largé,

pi+A—e (A -pi) PN gy
Z Iog< - >2 Z / -

1<i<t/ pi 1<i<¢ Y Pi

© L+1 L+1 N~—P)dt
(142 / Z 1 cgij <t<c3 i +—1—. (147
0 o v<j Nd=2 !
—'<j<t

N2t
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From [1.46) it now follows that for large/, whens € (N=°/5, c3(L 4 1)¢/N¢~2), the
sum under the above integral is greater thalm» N?~2/L. As a result we see that for

large N, using [1.2), the definition af below [1.28), and (1.45),

. e M1 — »; d-2
> Iog(p’ +d-end p’)> > cN™P NL log(5e3(L + 1)eNP~—4=2)
pi

1<i<?

c c
> oNTE(Brtp— (d = 2) = - (BL— fNPFZ - (1.48)
Inserting this bound iff (1.44), by (1J45) we see that for lavge
Plty <k*] < exp{cluN(ﬁl-i-ﬁz)/Z _ %('31 _ ﬂz)N(ﬂ1+ﬂ2)/z}. (1.49)

We will now take care of the issue (cf. below (1.31)) of additional hits during the time
intervals [R;, Dy, ], 1 < i < ¢/, of segments not hit previously. With this objective in mind
we thus define, fork i < ¢/,

N; = Z 1{H5j o 91}*1, < T oGﬁi}, (1.50)

so thatN; is Fp, -measurable (cf@Z)). Note th&tta.s, X3 € S forl <i < ¢
(cf. (1.31)), and by the strong Markov property at tiig one finds

PIN; zm| Fgl < P | D UHs < T5) = 1+ m] < Pxg [Vio < T3l (15D)
1<j=¢

whereV,,, m > 1, denote the successive times of visit of the walk to distinct segments
Si,1<j=<Lt
It now follows from [1.20),[(1.29) that for larg¥, whenz € S,

P[Vi < Tg] <c(L+1)Y (kNFF2)==2 < ¢ IN~W=2P1FD) = p - (1.52)
k>1

Coming back to[(1.51) we thus see that by the strong Markov property, Whistarge,
P[N; =m|Fg] < p™ form =0, (1.53)

i.e. conditionally onF% , N; is stochastically dominated by a modified geometric distri-

bution with success parameter Therefore when’ is such that (cf.Z)QN p <1l we
find that for largeV, ' as above and ¥ i < ¢/,

- p
1—eVp

E[exph/Ni} | Fgl < > (1= p)p"e™ = : (1.54)

m>0
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so that using induction anfip, | < Fg, for2 <i < ¢’, we see in view of the measura-
bility of N; asserted belov (1.50) that for large

_ (e—1p\* as2 )
E[exp{lﬂzel N; }] < (1 + m) < exp{cl p}, (1.55)
and hence by (1.45), the value pin (1.53), and the fact that > 4,

-0 NP2
P[ > N = 5 }fexp{—TJrcz’p}

I<i<t/

B2

NP2 N
< exp{—T + cNﬁZLN_(d_3>(ﬂ1_ﬂ2)} < exp{—?}. (1.56)

To conclude the proof of (1.28), we observe that py ([1.31) for lavgeon the event
{ti.1 < k < 7;}, where 1< i < ¢ andzp = 0 by conventionX,, ¢ S;_1for Ry <n <
Ris+1. As aresult, on the evefiRy: > uN4} N {tp > k*} N {Dicico Ni < (€ —10")/2}

at least [¢ — ¢')/2] segmentsS;, 1 < i < ¢, have not been visited by the walk up to
time uN?, so that whenV is large the above event lies in the complement of the event

that appears irf (1.28). Collecting the bour{ds ({L.1T), {1.#9),](1.56), we (1.28). As
already explained, this yields our claiin (1.26), so that Thegrein 1.2 is now proved.

Remark 1.3. Concerning the larga regime, let us point out that wheh > 4, given
K > 0, the vacant set left by the walk at time/¢ typically for largeN does not contain
any segment of lengthk[ log N] if u is chosen large enough. Indeed, whén8 N, and
U C Bisthe segment/ = [0, L]e with |e¢| = 1, we obtain

Tz-1 Tz-1
PdHy < Tl = Ei| ) UX, € U}/ SULE)Ey[ > UX, e U)]
n=0 ye n=0

> CW foranyx € B, (1.57)
using the strong Markov property at tinf&; for the first inequality, and bounds on the
Green function of the walk killed when exiting for the second inequality (sele (1}20)
and also[(T.111) of|7]). From a straightforward modification[of (]L.24), we thus find that
when & < N andu > 0,
L \k-1
P[Hy > uN“] < cexpl—cuN%=2} + <1 — CW) <cexp{—cuL}, (1.58)
+

logN
u

using the value ok, given below). Hence choosidg= [c*
enough constant, we see that fot 0,

] with ¢, a large

. . . logN
limy P[X’[‘o N contains some segment of Ieng[hhk 09 H =0. (1.59)
su u

So for largeN the vacant set typically does not contain segments of lekdtig N if u
is chosen large enough. O
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The theorem we have just proved will enter as a step when showing in the next section
that the giant component we define, with overwhelming probability occurs in the regime
of parameters we consider.

2. Exponential bound and giant component

In this section we derive an exponential bound on the probability that the walk covers
certain subsets of by times that are small multiples d¥¢ (cf. Theore). This
bound plays an important role in the construction of the giant component typically present
in the vacant set left by the walk at such times. We also refer to Rgmdrk 2.4 where it is
explained why some restrictions are needed on the class of sets to which the exponential
bound applies.

We refer to[(1.R) for the definition of,,, 1 < m < d, and define for kx m < d,

A, = the collection of non-empty subsetsof E such thatA € F
for somerF < L,,. (2.1)

Clearly A,, increases withn, and.A, is the collection of non-empty subsets Bf We
will especially be interested inl>. We also recall the notatiop(v) in (0.10) and below
(L.8). The next theorem contains the key exponential estimate.

Theorem 2.1. (d > 4,1 <m <d — 3) WhenA > 0is such that

X = eZ)‘(g + <1— %)q(d — m)> <1, (2.2)
then foru > 0,
lim sup sup |A|_1log(E[exp{A > UH, < uNd}”) < csu e~ 1, (2.3)
N Aed B B 1-x
m xX€A

and there exisiN1(d, m, A) > 1 anduy(d, m, A) > 0 such that forN > Ny,
P[Xj0,u,n) 2 Al < exp{—A[Al}  forall A € A,y (2.4)

We refer to Remark 2|4 below for an explanation on why some restriction on the class of
subsetsA that appear i (2]4) is needed.

Proof. We begin with the proof of (2]3). We considdr> 1,u > 0,A € A, 1 <m <
d — 3. Roughly speaking, we chop the time interval[JoN¢]] into successive intervals
of length N2, except maybe for the last one, and write, fos 0,

E[exp{k 3 1A, < uNd}”
X€eA
<Efepli Y Y UH < Nobel] = vave @9

kN2<yNd x€A
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where

ag = E[exp{z,\ 3 > 1{H, < N} oesz”,

k even kN2<uNd x€A

(2.6)
ap = E[exp{ZX Y Y us <N2}09kN2”.
k odd kN2<uNd x€A
We first boundz;. To this end we define
ko = max(k > 0: 2kN? < uN%}, (2.7)
6(2) = E, [exp{ZA 3 1H, < NZ}}] (>1) forzekE. (2.8)
xeA
Applying the strong Markov property at tin¥é,, we find
¢(z) < P,[Hy > N?] + E.[Hs < N2, ¢(Xpy,)] forzeE. (2.9)

By the simple Markov property applied at timgo'? and then at timg2ko — 1) N2, we
see that whekg > 1,

a1 = E[exp{Z/\ S Y LH, < N%o QZsz}EX(Zle)NZ [¢(XN2)]]. (2.10)

O<k<koxeA

Note that forz € E, one has

Ef¢(Xy2] Y pyz(z. ()

yeE
29 )
<14 pye(z MEy[Ha < N2, ¢(Xn,) — 1]
yeE
C

sl+570. > PlXee Allglo — 1)

YEE 0<k<N?

c [A]
< 1+ 5 lAlIele — 1) < exples (19llee — DY, (211)
where in the third line we have used the fact that
sup Ndez(x, y) <c, (2.12)

x,yeE

as follows from standard upper bounds on the transition density of simple random walk
onZ4 (cf. (2.4) of [9]). With an even simpler (and similar) argument we also have

A
Elp(Xo)] < exp{c%uwnw - 1)}. (2.13)
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Therefore using induction together wifh (2.11), gnd (R.13) to handle the term correspond-
ing tok = 0in (2.10), we see that

A
ai < eXp{(ko + 1)0%(”05”@ - 1)}- (2.14)

A similar bound holds fou, and by [(2.5) we thus find

elen]s Yo, <un)]] < efcunt 2+ 921 - ). @19
XeA

We will now seek an upper bound ¢ || oo -

Lemma2.2. d>41<m<d—-3,¢%m/d <1, N >2)

2)

e
<
I8l = Tz

where (with hopefully obvious notations)

<1— %)(1+qzv(lld)lloo — 1)), (2.16)

d—m
gy = PN [ Hy < N7 (2.17)
Proof. ConsiderF € £,, such thatA C F, and introduce (cf[(T]3))
Rp = HFOQTF—FTF, (218)

the return time ta~. SinceA C F, for z € E we find

b(2) < Ez[exp{2k<TF+l{RF < NZ}(Zl{Hx < NZ}OHRF)>”
xXeA

_ Ez[exp{ZkTF}<l{Rp > N2 +1{Rr < N2} exp{zx 3 1H, < NZ}OQRF])]

xX€A
= E [expl22Tr}(1+L{RF < N3} (¢(Xr,) —1))]
< E-[eXp{2nTr}] + E-[exp(27Tr} Px, [Hr < NN (I$lloc — 1), (2.19)

where we used the strong Markov property at tiyein the third line. Considering the
motion of X in the directions “transversal t86”, we have

forz € E, P-a.s., Py, [Hr < N’] < qn. (2.20)

Whenz € F, Tr has geometric distribution with success probability i /d, so that for
A as indicated above,

E.[exp{21TF}]
k-1 1
- ; (1 - %) (%) 2k _ 2 (1 - %) (1 - gmg) forzeF, (2.21)

whereasTr = 0 P;-a.s. whernz ¢ F. Hence coming back to the last line pf (2.19), we

obtain [2.16). O
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In the next lemma we relatgy of (2.17) tog(d — m) (cf. (0.10)).

Lemma 2.3.
limsupgy < g(d — m). (2.22)
N

Proof. We denote by¥ the discrete cube image bf:= [N /4, N /4]~ NZ4~" under
the canonical projection ont@/NZ)¢~™. We have

Z/NZy~ ZINZY=™ o (Z/NZY™
an = PN Ho < Tyl + BTV PGINYT [ Ho < NP

d—m
P Z(Z/NZ)

< q(d —m)+ sup [Ho < N?. (2.23)

zedW

One has the classical upper bound (cf. for instanceé (2.4) of [9]),
PE " x = 3] < U)o ly =+ fork > 1 Z4—m (2.24
o [Xe=y] < Wep—c( )T ork>1 x,ye€ (2.24)

(using the convention concerning constants stated at the end of the Introduction). Hence
for large N we obtain

d—m —m
sup PN Hy < N? = sup P2 [Hyga-n < N
ze0W zedV
(2.24)

Ny — '2
Ssup YN —k(z(mz/zexr){—c( iy 2 - d }

2€0V | cgd—m p<f < N2

N2 2

c(m) [Ny — z

< sup E / —exp{—c(m)—
eV | i 0 gd—m)/2 P

2
< sup c(m)N~U@m- 2)/ > s ’")/Zexp{ c(m)| wl }dt. (2.25)

we(@V)/N yeZdom

We can now split the sum under the integral, keeping on one han@ ¢~ with |y| >
c(m), so that

ly —wl? = e(m)ly'|? fory ey+[0,1]¢™ andw € (3V)/N(S [-1, 1]*™™),
and hence for € (0, 1], w € (3V)/N,
_ 2
3 gty exp{ —e(m) ly — wl }
t
[y|=c(m)

12
< Y f t_(d_’")/zexp{ c(m)|y| }dy’gc(m). (2.26)
yEdem }+[0 l](l—m t



150 Itai Benjamini, Alain-Sol Sznitman

On the other hand, we consider the finitely many terms corresponding toc(m). For
these terms we also have, in view of the definitiorVof

inf{ly —w|?:w e (@V)/N, y € Z4 "} > c¢(m) > 0,
so that forw € (0V)/N,

/

Thus coming back to the last line ¢f (2]25) we find, for large

a2
t*(d*m)/z exp{ _C(m) |y U)| } dt < c(m) (227)
[yl<e(m) '

d—m
P Z(Z/NZ)

sup [Ho < N3] < c(m)N~—@=m=2), (2.28)

zedW

and sinced — m — 2 > 1 by assumption, lettingv tend to infinity in [2.28) we find
(2.22). a]

From [2.16),[(2.2R), it follows by a straightforward computation that whenO satisfies
2.

25

(2.29)

limsup sup ([[¢llcc — 1) < 1 .
N AcA, —X

Coming back to[(2.15), taking logarithms and dividing [y, the claim [(2.B) readily

follows.
We now turn to the proof of (214). We pidikd, m, 1) > » andg(d, m, 1) > ¢ so that

1- ezx(% + (1 - %)a) - %(1— ). (2.30)
Applying (2.3) with (for which {2.2) holds) we see that far> 0, N > Na(d, m, i, u)
and anyA € A,,,

eZI -1
1—eZ(m/d + (L —m/d)q)

Choosinge = u1(d, m, ) small enough, and setting (d, m, \) = Na(d, m, A, uy), we
obtain [2.4). i

Remark 2.4. 1) Let us mention that it is straightforward to argue in Lenimg 2.3 that
liminfy gy > g(d —m), so that[(2.23) can be sharpened to

P[Xo,und) 2 Al = exp{—xlm + cu |A|}. (2.31)

although we do not use this sharpened limiting result here.

2) As we now explain there is no exponential bound of type| (2.4) valid uniformly for all
A € Ay (i.e. all non-empty subsets &) whenN is large, no matter how small > 0 is
chosen. Indeed, wheme (0, 1) andA; = ng([—L, L]d) with L = [N*], a calculation
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qualitatively similar to that in Proposition 2.7, Chapter 3[of [16] (see in particular p. 114;
the calculation in[[16] is performed in a Brownian motion setting) shows that for lsrge
T =[cL?logL], and forallx € Ay,

1
PX[X[O,T] 2 AL] = Px[X[O,T] DAL, TAzL > T] = EPX[TAZL > T]
A
> cexp{—éT} > cexp{ —c% IogL}. (2.33)
Moreover by standard transition density estimates|(cf] (2.4) of [9]), one has
, 1\4-2
ZIgfY P,[Hy, < N°] > C(ﬁ) ,

so that using the Markov property at time&2, one finds, for largev,

JRCEN L e Y
P[HAL > %Nd:| < <l—c<ﬁ> ) = (2.34)
As a result we see that for amy> 0 and O< p < 1,
lim in (1ALI“"2/Mlog|AL) " log P[X[g i) 2 AL] > —o0, (2.35)
and hence
lim sup |A|"tlog P[X}o ¢y 2 A] = 0. (2.36)
N AeAy '

This explains why some restriction on the class of subsetatering[(2.14) is needed.

We now turn to applications of Theordm P.1 to the construction of the giant compo-
nent in the vacant set left by the walk at times that are small multipl@é‘ofiwe recall
thatx-nearest neighbor paths have been defined at the beginning of Section 1, and write

a(n) = the cardinality of the collection of-nearest neighbor self-avoiding
paths orZ?, starting at the origin, with steps (2.37)

One has the easy upper bound
an) <8-7""1 forn>1. (2.38)
We now define, fov > 1, K > 0,¢ > 0, the event (cf[(1]2) for the notation)

Uk, = {forany F € L, and connected subses, O, of F \ X[o
with | - |o-diameter at least{ log N], O; and O are in
the same component &f \ X|o .} (2.39)

The above event will be useful in singling out the giant component. The next event will
be convenient in the derivation of lower bounds on the relative volume of the giant com-
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ponent in Section 4. FaW > 1, K > 0,x € E, t > 0, we define, using the notation of
the beginning of Section 1,

Ck x.+ = {for someF e L with x € F, there is a nearest
neighbor path inF \ X[g ;; from x to S(x, [K log N])}. (2.40)

We can now state

Corollary 2.5. There is a smallesty > 5 such that

T 49<dE + (1 - S)q(d - 2)) <1 ford > do. (2.41)

For d > dp, there is a constanty > 0 (cf. (2.47) such that
Iil(]n PlUgune] =1 forsmallu > 0, (2.42)
L!hjolimNinf P[Ceooune] =1 (2.43)

(and of courseP[C,, , ,ni] = P[Cqy 0.une] forall x € E).
Proof. One knows (cf. (5.4) in[14]) that(-) has the asymptotic behavior
qgv) ~ 2t asv — oo, (2.44)

so that[(2.4]1) straightforwardly follows. Now considér> do, and choose.o(d) such
that

2 2
M =774 (> 7), sothat eZM)(2 + (1— E)q(d - 2)) <1 (2.45)

WhenN is large, orulc(’uNd one can findF € £, and01, 02 C F \ X[0,uN4] that are
distinct connected components Bf\ Xg ,ya) With | - |co-diameter at leastq log N].
We can then introducé;, i = 1, 2, the inverse images @; under an “affine projection”
of Z? onto F. Considering separately the case when at least one @ithe= 1,2, has
bounded components (necessarily of,-diameter at least{ log N]), or both O; have
unbounded components, one can constrakehaarest neighbor self-avoiding pattwith
[K log N]stepsind 01N F ord O2NF (S FNXpg ,yq) (S€€ also Proposition 2.1, p. 387
in [11]). Therefore fo < ug = u1(d, m = 2, A = 1) (cf. (2.4)), we have, writing
for the set of points visited by,

limsupP[U ] <limsup > > P[X[g ,ona 2 Al
N ' Felp, T

24
P lim sup Y Y exp(—1olAl}
N

Fely, T
(2;8) lim sup Z gN271K 109 N]=1,,~0[K log N]
N Fel,
< limsupcN? (7e=0)lK 10gN], (2.46)
N
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where the sum over is taken over to the collection efnearest neighbor self-avoiding
paths with values irF with [K log N] steps. By[(2.44) we can thus choose

1 _l
co = 8d(|og —) , (2.47)
n

and find
lim P[U€
N

co,U

N"] =0 foru < uo, (2.48)

from which [2.42) follows. We now turn to the proof ¢f (2]43). Observe thaufor 0,
¢ > 1 and largeV, one has

P[CZo,O,uNd] = P[X[O,uNd] N By (0, £) # @]

+ PXpo.uni) N Boo (0. £) = 0, andCC  , al

<ct!'P0eXp,ngl+ D Y. PlXp.yag2Al (249
Fely 0eF ©

where we have used translation invariance in the last inequality, and the sumr over
runs ovem-nearest neighbor self-avoiding paths with valueg'in (B (0, [colog N]) \

B~ (0, £)), which disconnect 0 fron¥ N S(0, [colog N]), and start on the positive half
of the coordinate axis entering the definition Bfwith smallest label < {1, ...,d}.

As aboveA stands for the set of points visited by Summing over the different values

k € [¢+ 1, [colog N]] of the coordinate of the starting point af, we see that for smail

and sulfficiently largev,

Z Z P[Xj0,una) 2 A] < cZ Z 7 o~ hom

Fely, 0eF m k>C m>k

=c Z(7e—k0)’<(1 —Te ) = ¢(Te0) (1 = Te7*0) 2. (2.50)
k>t

Thus coming back tq (2.49), we see frqm (1.13) thatfor 0, ¢ > 1,

imSUPPICE, o, yal < c(L—e e 4 c(Te0) (1 = Te7%0) 2, (2.51)
; 0,

Lettingu tend to 0 and the# to infinity we obtain|[(2.48B). O
For0< B < 1 andr > 0, we now introduce the events (df. (0.3), (2.39))
Ggr =Ucg. N Ve (nON-decreasing ip). (2.52)

The above events encode properties which enable us to single out a giant component.
More precisely, with the notation of Corollgry 2.5 we have:

Corollary 2.6. (d > dp, 0 < B < 1) AssumeN > 2 s large enough so thaE has
| - |oo-diameter greater thanglog N. For ¢ > 0O, on the evengg ;,
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there is a unique connected componenxfat], denoted byO, which
contains connected setise A with | - |-diameterLg := [cglog N]

(in particular a segment of lengthp), (2.53)
forany F € £1, F N O contains a segment of lengily, (2.54)
the N#-neighborhood oD coincides withE. (2.55)
Moreover for anyx € E,
on the evengg ; N Cey .1, x belongs to0. (2.56)
Finally,
Ii](/n P[Gg ne]l =1 forsmallu > 0. (2.57)
Proof. We begin with the proof of (2.53)~(2F5). By (p.3), we see thagpn,
any F' € £; contains a segment of length included |nX[0 1 (2.58)

In particular given somé e L5, the above applies to all € £1 with F € F. By (2.39)
any two segments of lengthp in F \ X|o ;) belong to the same connected component of

F \ X[o0,s) (and hence oK[O t]) Now if f, fz € Lo,
WhenFl N F2 € L1, all segments of lengthg in (fl U fz) \ X[0,1]
are in the same connected componenXE‘gft]. (2.59)
Then considery € E. We can find a nearest neighbor pa!;h)o<l<m with yo = O,
Ym = Y. ConsiderF > Owith F e L>. We can construct a sequenE,ee L2,0<i <m,
such that
Fo=F,y; € Fifor0<i <m,and
eitherFi_1 = F, or Fi_1NF; e L1forl<i <m, (2.60)
as we now explain. Ify € Fo (= F), we setFy = Fo. Otherwise ifyy ¢ Fo, we choose
some canonical vector entering the definitionfgfand the canonical vector collinear to
y1— Yo, and definef”; as passing througiy and generated by these two vectors. Clearly
y1 € F1,andF1 N Fo € £1. We then continue the construction by induction.
With a similar argument we also see that whenF” € £, have a common point
in E, we can defing; € £5,0<i < 2, such that
Fo=F,F,=F, withy e F;,0<i <2, and
eitherF; = F;_10r F; N Fi_1 € Ly fori =1, 2. (2.61)

Comblnmg .) 1), we see that Gp, all segments of lengtio in X, ,, belong

to the same connected componenﬁ((?g . By (2.58) and the definitior@ 3), (2{39) of
the events entering the definition Gf ;, E ) readily follow. The clain (2.66)

is a direct consequence ¢f (2]53) ahd (2.40). As|for (2.57) it follows directly from|(1.26)
and [2.4D). o

In the following, on the everd , of (2.52), we will refer to the above uniquely defined
connected componeidt as thegiant component
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3. Excursions to small boxes in a large torus

The results of this section are preparatory for the next section, but also of independent
interest. We investigate excursions of the random walk to small boxes in the large torus
E = (Z/N7Z)? with d > 3. We consider two pointsy, x» in E at | - |-distance of
at least 2 + 3, as well as closefl- |-balls C(x;), i = 1, 2, with respective centers
x; and radiusL. < r/10. We are interested in suitably centered excursions of the walk
from the time it first hitsC(x1) U C(x2) up to the last visit toC(x1) U C(x2) before
leaving the closed-neighborhood ofx1, x2}, when the walk is conditioned to leave this
r-neighborhood at some poiat and start at a point outside this--neighborhood. Of
coursew determines whether the excursion lies in the neighborhoad afr x2, and
we center the excursion around 0 by subtracting the releyafitepending orw). As a
limit model we consider the excursions of simple random walkZérstarting with the
normalized harmonic measure viewed from infinity of a closef,-ball C of radiusL
and center the origin up to the last visit 6f Our main thrust is to derive quantitative
controls on the total variation norm between the centered excursions described above and
the limit model just explained. Our main result appears in Thegrein 3.1. Some of our
calculations are similar in spirit to|[6] (see in particular Lenjma 2.3). However, apart from
working in dimension/ > 3 in place ofd = 2, a feature of the results presented here is
that they pin-point a limit model for the centered excursions.

We now introduce some notation. Throughout this section we assume th&t We
consider positive integer, L, r such that

L>1 r>10L, N =>4r+6. (3.1)
Forx € E we define (see the beginning of Section 1 for the notation)
C(x)=B(x,L), C(x)=B(x,r), (3.2)
as well as the subsets 3f,
C=B@O,L), C=B@O,r), (3.3)
and tacitly identifyC (0) with C andC (0) with C. We then consider two points i,
x1,x2 € E with  |x1 — x2]|00 > 2r + 3, (3.4)

so thatdC (xp N 85(x2) = ). We then introduce the successive return times te,) U

C (x2) and departures fromi (x1) U C(x2) (cf. )), which we denote bRy, Dy, k > 1.

In this section we will only need1, D1. We also introduce the times of last visits to
C(x1) U C(x2) after Ry and prior toDy:

Ly=supn >Ry : X, e C(x))UC(x2), n < Dy}, k=1 (3.5)

(and for the sake of completenebs is defined as-1 when the above set is empty, an
event which isP-negligible). In this section we only consideg. To describe the centered
excursions that interest us, we introduce the canonical space

W = the space of finite nearest neight#sr-valued pathss = (wy)o<k<r
With [Woleo = [Wrlee = L, (3.6)
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denote byy, all the canonical processes oW, and endow the countable spadéwith
theo-algebraAd consisting of all subsets /. Foru ¢ C(x1) U C(x2) andw € 9C (x;),
withi = 1 or 2, we define

Quw =the law onW of (X g,k — Xi)o<k<r,—r, UnderP,[- | Xp, = w], (3.7)

where it should be observed that the conditioning ey&nj, = w} has positive proba-
bility under P,, and thatP,[- | Xp, = w]-a.s.,,0< R1 < L1 < oo andX,, € C(x;) for
Ry < m < L1, with i as above[(3]7). So after identification Gfwith C(0), (3.7) is a
meaningful definition.

We now turn to the construction of the limit model for these centered excursions. We
first introduce the harmonic measure¥iewed from infinity and its mass, the capacity
of C (cf. Chapter 2, §2 of [12]):

P.[Hc = o0] if z € C (see[[Th) for the notation)

ec(z) = 0 ite ¢ cC. (3.8)
cap(C) = ec(Z), (3.9)
uc(z) = ec(z)/capC), (3.10)

which is the initial distribution of the limit law. We also define the time of last visi€to
Lc=sugn>0:X, € C}, (3.11)
with a similar convention as beloy (3.5) when the above set is empty, and introduce

Q = the law onW of (Xi)o<k<L underP#Zz,

(3.12)

WherePMZg stands for the law of simple random walk @A with initial distribution ¢ .
Note that for anyw = (wx)o<k<7 IN W,

oY =w) = E%Z[Xk =wi,0<k<T, andﬁc 0 0r = o0]
= cap(C) "tec (Wo) Pyo[ Xk = Wi, 0 < k < Tlec(wr), (3.13)

as a result of the simple Markov property ahd(3/8)—(3.10). We are now ready to state the
main result of this section.

Theorem 3.1. (d > 3) Assume tha), )hoId, andu ¢ U;_1,Cx), w €
Uiz123C(x). Then
12
1Quw — Qllrv < e (3.14)

where for a signed measureon W, |[vii7y = Y 5y [v(w)| denotes the total variation
of v.
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Remark 3.2. It will be clear from the proof that the same result holds for collections
xi, 1 < i < M, with [x; — xjlec = 2r + 3 wheneven # j, u ¢ (Jio;-p C(x),

w € Urejonm 85(x,-) (the 85(x,»), 1 <i < M, are pairwise disjoint due to the above
requirement), withL, r as in [3.1) andV > M (2r + 3). As will be clear from the proof
below, the constant corresponding [fo (3.14) does not depentd .oFor simplicity of
notation we however restrict to the cafe= 2.

Proof. We assumev € 3C(x1) and considen ¢ C(x1) U C(x2). The case where e
dC (x2) is treated analogously. Note that

QuwOV) =1, where (3.15)
W = (W = Wp)osk<r € W W € Cfor0<k < T}, (3.16)

and that forw € VT/,

Quuw(Y =w) = A@w)/ Y AW, (3.17)
wewW
with the notation

AW) = Py[Xp4k =x14+wi, 0<k <T,
X, ¢C(xp)forRi+T <n < Dy, Xp, =w]. (3.18)

In what follows, wherU is a subset of (resp.Z%), we writegg ¢/ (-, -) (resp.gza y (-, *))
to denote the Green function of the walk killed outsideso that

geu, ) =) PXp=y k<Tyl, xyE€E, (3.19)
k>0

with a similar formula forgzq WhererZd replacesP,, andx, y € Z4. We simply write
g74(-,-) whenU = Z¢. N

Summing over the values of the time of last visit(tgizL2 C(x;))¢ beforeDy, we
see that fow € W,

_ 1 _
AW) = Z 8E.(Urerz Clapy (s V) 5 By (D), (3.20)

where the above sum runs ouer v’ with v € 85(“), Vv e 5(xl), with the notation
By(w) = Py[Ri+T <Tg,,), Xpotk =Wk +x1, 0=k =T,
Xy ¢ C(xp)for R+ T <k < D1, Xp, = w]
= PZ'[He +T < Tz, Xpesx =W, 0<k < T,
Xp¢gCforHe +T <k < Tg, XTE«ZI/E], (3.21)
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wherez = z — x1, using translation invariance and the identificatiorft(t)) with C.
Summing over the values of the time of last visitdo\ C prior to Hc, we see that for
w € W, v’ as above,

_ ~ 1 _
By () =Zgzd,5\c(v’, y/)ngo[Xk =wy, 0<k<T,
y/
X g CforT <k <Tg, X7z = W]
o2 T 0<k 1 P!
= Z gzd,c\c(v ,y)szo[szwk, = ST]ggZd’C\C(Z,w)g

v, w'

(3.22)

wherey’, z’ run over the respective neighborsati of wo andwr, whereasy’ runs over

the neighbors i€ of w, and we have used the simple Markov property at tiffesl and

T, and summed over the values of the time of last visi€'tp C prior to the exit ofC in

w, to obtain the last expression. The next lemma contains a crucial decoupling estimate.

Lemma3.3. (d>3,L>110L <r) Forae CNa(C),b e dC,

874 6\c(a.b) = PP [Tz < Helgga (@, 0L+ Vap), (3.23)
wherey, ;, is defined by this equality and
2

L
[Wapl < Co— (3.24)

Proof. For simplicity we writegy (-, -) and g(-, -) in place ofgza (-, -) and gza (-, -).
Using the strong Markov property at tinfé-, whenHc < T, and the symmetry of the
killed Green functions, one has
d
gz(a,b) = gz ca, b) + Ey [gz(a, Xne), He < Tg. (3.25)

Therefore we find

ge\cla.b) = EF'[gza.b) — ga(a. Xpe). He < T¢]
+ g(a. ) PE [He > Tg]
= g¢(a, 0 PL'[He > TZl + (gz(a, b) — gz(a, 0) PE [ He > T7]
+ E;,Zd[ga(a, b) — gg(a, Xne), He < Tg]. (3.26)
Note thatgx(a, -) is a non-negative harmonic function ﬁh\ {a}. By the Harnack in-

equality (cf. Theorem 1.7.2 of [12], p. 42), and a standard covering argument (due to the
fact that the cited theorem refers to Euclidean balls), we find

sup gg(a, x) <cggla,0) < cgla,0). (3.27)

[xloo=<r/2
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Moreover by the gradient estimates in (a) of Theorem 1.7.1 0f [12], p. 42, we see that

sup  gga,x +e) —gzla, x)| < < sup ggz(a, x). (3.28)

[¥loo<L,le]<1 P Ixloo<r/2
Combining[(3.2),[(3.28), we see that forale C N 3C*,

L
sup lgg(a, f) —gg(a, 0)] < c—gg(a, 0). (3.29)
feCuiC r

Inserting this inequality iff (3.26) we see that
8&\cla, b) — gz (a, O)Pth[HC > Tzl =R, with

« L L
IRl < Py [He > Tgle~ g2(a,0) + c~g(a. 0) (3.30)

L2 Zd
< cha(a, 0Py [Hc > T,

where in the last step we have used the lower bound

PE'[He > T) = PE'[He > Toc] - inf PZ'[He = oq]
xe(20)°
C
%
Our claim [3.:28),[(3.:24) now follows. O

We now continue the proof of Theorgm [3.1. Note that by the strong Markov property
applied at timef¢, and standard estimates on the Green function[(cf. [12, p. 31]),

> CPbZd[Hc > Toc] = cPE[Ho > Hpy1] >

PZZd[HC < o] < Zgzd(z,x)/yilgfc Zgzd(y,x)

xeC xeC

L d—2 -
< c<—> forz e C°. (3.31)

r

Also by similar estimates, and using if necessary the invariance principle to let the path
move away, we see bly (3.1) that

sup PP He <o) </ <1, (3.32)

zeC¢

Hence forb € 3C, using the strong Markov property at tiriig, we find that
0< PF'[He > Tgl — PE'[He = 0] = PE'[He 067, < 00, He > T7]

q L d-2
< PL'[Hce > T5]C’<1A c(7> ) (with ¢’ < 1). (3.33)



160 Itai Benjamini, Alain-Sol Sznitman

It thus follows that fob € 9C,

PE'[He > Tz) = PE'[He = 00](1+ ) with
L\“2 12
O<e < c(—) <cr—. (3.39
r

r

We now assume for the time being (¢f. (3.24), (3.34)) that

L2 1
(c6+c7)— < . (3.35)
r 2

The case wherj (3.85) does not hold will be straightforwardly handled at the end of the
proof. We then define, far € C N 3(C°), b € 9C, with the notations 034),

el = L+, (1+¢€), sothat
335 L2 d (3.30)
|Fa,b| < ¢—, and gZd,E\C(a’ b) = PbZ [HC = OO]gzd’E(a, O)era,b.

.
Coming back to[(3.20)[ (3.22), we see by (3.2B), (B.34) thatiter WV,

_ 1\? 4 d _ d
Aw) =) (Q) P [He = oo] PE[ Xk = Wy, 0 < k < T)PY [He = o]
v.7
1)? T, 4T
/ I YA, !
) {v;u (ﬁ) 8E.(COpUC e U, V)87a &V, 00874 F(w', O)e” v/ w'z } (3.37)

where in the above sumsg, z’ run overC¢ with y’ ~ wg, z/ ~ wr, v runs overdC (x1),
v, w' e C with v ~ v (= v — x1), andw’ ~ W = w — x1. As a result we see that for
w1, w2 € W,

A@) _ A@D 1,

— = = with (3.38)
A(w2) A(w?)

~ 1\? a d d
A =" (Q> PE [He = 00] PE [Xi =Wy, 0 < k < TIPY [He = o]

¥z

D o0 o) PZ Xy =Wy, 0 < k < Tlec(wr)
CL capc)o(r =w) forw e W, (3.39)
LZ
II'(w1, w2)| < c—. (3.40)
r
Inserting ) int7), we see that fore W,
Y=w Y=w _
Quuly =] = e o) CE=Dom,  (za1)

S O =)eF @D~ ()

where|Gw)| < cL?/r.
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Note that by[(3.12)[ (3.16), and the strong Markov property,

- (331),(332) L\%2 .
oW°) = ng[Hc 0 7= < 00] < c’(l A c(—) ) with ¢’ < 1. (3.42)
r

We thus find that
1Quw— Qllrv = Z [Quuw(¥ =w) — QY =w)| + QONV°)
weW
Y=w ~ ~ L2
= Y LU0 @) — 1+ 00F)] + 00 = ¢,
weW Q) :

(3.43)

using [3.41),[(3.42). As a result we have proved (8.14) urjder](3.35). On the other hand,
when 3.35) does not hold,?/r > (ce + c7)~%, and

L2
1 Quw — QliTv =2 < 4(ce + -

so that adjusting the constant jn (3.14) if necessary, we have completed the proof of
Theoren 311. ]

4. Volume estimate for the giant component

The main purpose of this section is to show that the giant compafentthe vacant

set left by the walk at time = uN¢ (this component is well-defined on the evént;,

cf. (2.53)) typically occupies a non-degenerate fraction of the volume of the #rus
when N is large and: is chosen small. The statemeint (2.56) provides a local criterion,
depending on the configuration of vacant sites left by the walk in a neighborhood of order
constlogV of a pointx € E, which ensures, whegig ; occurs, thate belongs toO.

By (2.57) this reduces the problem of proving the non-degeneracy of the volule of

to the question of showing that typically the asymptotic fraction of painis E that

fulfill the local conditionC,, , ,y« is NON-degenerate whenis small. By @) this task

is further reduced to the control on the variance of this quantity. It turns out that it is
simpler to bound the variance of the fraction of pointsfofhat satisfy a modified local
condition where the fixed time = uN? is replaced by a random time corresponding

to the completion of const(log N)%¢~2 excursions of the walk to a neighborhood of
order (log N)? of the point (cf. [(4.2R)). The controls of Section 3 are then instrumental
in bounding the variance of this modified ratio (cf. Proposifior} 4.2). Our main estimates
on averages of suitable local functions are expressed in a general form (not specifically
referring to [2.5p)), and appear in Theorfm| 4.3, wher 3. The applications to the
vacant set, the giant component (whér> do, cf. Corollary[2.5), and the size of the
largest ball in the vacant set are given in Corolldrie$[4.5[4.6, 4.8.
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We now begin with some additional notation. We considiet 3, L > 1, > 10L,
N > 10r, x € E, and recall the definition of (x) € C(x) in ). We consider some
function¢, defined on the collection of subsets®(f0):

¢p:ACCO— ¢(A) €][0,1]. (4.1)
Typical examples to keep in mind are for instance

Po(A) =1{0 ¢ A} for A C C(0), (4.2)
¢1(A) = 1{for someF € Lo with0 € F, Ois connectedt§(0, L) in F\ A}, (4.3)

where we refer to[ (2.40) for the latter example. Withas in [4.1), we then define, for
x € E andt >0,

h(x,t) = ¢((X[0,1 N C(x)) — x). (4.4)

Our chief task in this section consists in the derivation of appropriate lower bounds on
ratios of the type

1 d .
r, = Na Zh(x, uN%) withu > 0. (4.5)

xeE

Forx e E we introduce, in analogy tf (1.9), (1]10),
Bx)=x+BCBx)=x+B (s0C(x)cC(x) CBx) ¢ B(x)  (46)
as well as the successive returnsBix) and departures frorﬁ(x):
Y DY, k> 1 4.7)
We also consider (c.5)) the successive returrg(to) and departures from@ (x):
R{,Df, k=1 (4.8)

We begin with the following auxiliary result (note thatioes not appear on the right-hand
side of the inequalities):

Lemma4.l. d >3,L>1,r > 10L, N > 10r) There are constantg > cg > 0such
thatforu > 0, x € E,

P[R;*(u) <uN9 < ce= L with () = [cguLd_z], (4.9)
PID} o = uNU < ce X with  £,(u) = [cquL?7]. (4.10)
Proof. We begin with the proof of (4]9). We introduce, for 1,

Z; =) UR; <R, <Dj}=) UR; < Dy, <Dj}. (4.11)

m>1 m>1
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By the strong Markov property at time3,, and Hy(,,, we see that for > 0, ¢ > 2,
P-as.,

P[Z; > i |]'—73;] = PXR%‘[R;C‘H- < TE(x)]

i+1
< PXR;[HG(x) < TE(X)]( sup P[Hcy < TE(X)])H_
|z—x|co€{r,r+1}

i+1
— PARxLHC() B(x) z x B(x) i ’
= Px x [Hx ., < Tz,.,]( sup P [HC( y < T3 (4.12)

|z—X|co=r
Analogously we have, far > 0,

P[Z{ > i] < P[Hc < T3]( sup P[Hew) < Ty’ (4.13)

|z—X|oo=F

Using similar bounds t¢ (3.31], (3]32), we find thatfor 2,i > O, P-a.s.,

d—2 d—2\ i+l
X . / r / L H /
P[Z) > i |f73);] <c A <C<ﬁ) ) . {c A <c<7> )} with ¢/ < 1.

Using the inequality

P[HC(X) < Tg(x)]

< E[l;ol{Xk € C). k < Ty} ]/ inf Ey[;ol{xk € Clo), k < Ty )]
(4.14)

a similar upper bound t4) on the numerator and a lower bound of-fypen the
denominator with the help of the invariance principle, we find that

[\d-2
P[Hc@) < Tyl < C(ﬁ) ,

and it is also straightforward to argue, by applying the invariance principle and similar
arguments to the derivation df (3]32), that the above probability is bounded by some

¢’ < 1. Coming back tq (4.32)] (4.1.3), we thus see that
P[Z} > i| Frsl < pop'™,  PlZ{ >i] < pop'™ fori>=0,0>2,

' N 1\92 (4.15)
with po = c10A (¢ N , p=cion|c|— , c10 < 1.
r

By stochastic domination, we thus see thatfos 0 withe*p < 1, ande > 2,

A
. ok _ -1
E[exp(rZ}} | Fril <1 - pop + ) ™ pop A=p) =1+ pori—0,

k=1 (4.16)

E)L—

Elexp{rzil] <1
[expirZ1}] < +P0P1_ekp
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As aresult we find that with the notation beldw (1.12),

et —1\F
Pl[Z1+ -+ Zpx > n] < exp{—)»n}(l-i- pop—kp>

l-—e¢
r_1

< exp{—kn + k*pople—k}. (4.17)
—elp

Note thatk* pop < cuL9~2, and choosing. so thate*c10 = 3(1 + c10) (recall p < c10
< 1), we thus obtain

P[R} <uN“] < P[R}. <uN‘+ P[R}. > uN¢ > R]
(1.11),(4.17)
< cexpl—cuN??} + cexp{—in + cuL4?}, (4.18)

and [4.9) follows straightforwardly.

We now turn to the proof o 0). We use a bound from belowpHc(x) < T,
and P;[Hc(xy < Tj(,)] with a similar right-hand side to that i 14), except that inf is
replaced with sup, and in the case of the second probalility replaced withE, (see
also [1.5)). Then by standard Green function estimates (see for instance (1[11) of [7]),
we obtain

P-as.

1\4-2 1\4-2
P[Z; > 0| Fri] = c<ﬁ> fore =2, P[zZ7 >0]> c<ﬁ> . (4.19)

As aresult we see that far> 0, ¢ > 2,

[ \d-2
Elexp{-AZ;} | Fril =1- (1 - e_’\)0<ﬁ) ,

L d-2
Elexp(-2Z§})] <1—(1— e)‘)c<ﬁ> ,

so that forn > 1 (with the convention that the sum in the probability below vanishes
whenk, < 1),

d-2
PlZy+ -+ Zy,-1, <n] < exp{/\n — (ke — D4 (1— e‘ﬁc(%) } (4.20)

where(k, — 1)1 ¢(L/N)?~2 > cuL42 — ¢ (cf. below [1.1D)). We then see that

P[D; > uN’] < P[R}, > uN"]+ P[R{, <uN‘, D} > R{]
(112

< CEXp{—CLtNd_Z} + P[Z]_ + .-+ Z(k*,1)+ < n]
(4.20)
< cexpl—cuN??} + cexpiin — (1 — e *)cuL?~?}. (4.21)

If we choose\ so thate=* = 1/2, the claim ) follows straightforwardly. O
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We now introduce a modification &f, in (4.5), which is more convenient when bounding
its variance. Namely, using (4.1)), (#.4), and the notation fionj (4.9), we define

~ 1
T, = ~a Zh(x, Dj.(,) foru>0. (4.22)
xeE

Our main estimate on the variancelof comes in the next proposition. In what follows,
var and cov denote the variance and covariance uAder

Proposition 4.2. (d > 3,L > 1, N > 10r, r > 10L, under(4.7)))

~ r\! L?
var(I',) < c<<ﬁ> + u—) foru > 0. (4.23)
r

Proof. When¢*(u) = 0, with our conventions we see thﬁ,; =N Y epd(Cx) N
{Xo}—x), anon-random quantity as follows from translation invariance. The cJaim|(4.23)
is then trivially satisfied. We thus assume from now on &) > 1. We then consider

an integer as in [4.2B), and write

~ 1
varly) = 7 ), covthixy, D), hxz, D))
x1,x2€E

d
r
< C(ﬁ) + sup |COV(h()C1, DZCE-(M))’ h(x2’ sz(u)))l (424)

Ir1—x2loo>=2r+3
We recall the notation®y, Dy, k > 1, introduced below (3]4), and write, foe= 1, 2,
ny =inflk = 1: Xp, € C),
iy =inflk > n X, € Ca)},  j=1, (4.25)

The relation betweeR;’, D;’, k > 1, fori = 1,2, andRx, D, k > 1, is the following:
one hasP-a.s.,

R = Rnf, D, = Dnz-i fork>1,i =12 (4.26)
We then introduce the constant (¢f. (4.9), (4.10))
c11 = cg/cg > 1. (4.27)

We recall the definitior] (3]5) and denote &y(-) the P-a.s. well-defined centered excur-
sion

ex(m) = Xp4m —%i, O0<m<Ly— Ry, on{Xg €C(x)},i=12 - (4.28)

We recall our tacit identification of (0) € E with C in Z% (see below[(3]3)), so that
P-as.e () € W € W (cf. (3.9), [3.16)). We also consider theth excursion taC (x;),
after centering at the origin, which is al$ba.s. well-defined:

el() = ei(), k=1ie{l2} (4.29)
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as well as its trace

Si =Imej, (4.30)
where forw = (W )o<m=r € W, Imw = {wo, ..., wr} € Z4. With the above notation,
we see thaP-a.s.,

X[O,DZi(u)] n C()Cl’) —X; = (S:ll. J-.--uU Sé*(u)) N C’ (431)
h(xi, Dgiy) = G (e, ., €legy)  fOri=1,2, (4.32)

whereG is the function from/¢ @ into [0, 1] defined by (cf.[(4.]1))
G, ..., Weey) = G(AMWLU -+ UIMWye (i) N CO). (4.33)

We now consider two [01]-valued functiongG1, G2 on W @ (we are especially inter-
ested in the cas@; = G or G; = 1), and write

H; = Gi(e}. ... b)), =12 (4.34)
We see that for ¢ C(x1) U C(x2),

E[HiHp] =) E[HiHp, Agip)], (4.35)
K

where/C denotes the set of ordered pairstdtu)-uples of integers
(LEHwithl <k) <--- < Ez*(u) fori =12,
with all k} distinct for 1< j < €*(w),i = 1,2, (4.36)
and for(k1, k%) € K, we write
Agge = (my =k, forL<m < €*(u),i = 1,2}. (4.37)
We introduce ther-algebra
& =the P-completion ofo (Xp,, k > 1). (4.38)
Note thatn;, i € {1, 2}, m > 1, areE-measurable, so that
A €€ forany(k'. k%) e K. (4.39)

Using the strong Markov property at the timBg,, m < k := k/}*(u) \Y Eﬁ*(u), we see that
for (k*, k?) € IC, P-a.s. 0MA 11 72),

Ez[HlHZ | 5]

k
- / Gy, -, B, VG2, -, Tz, ) HlQXDH’XDm dW,), (4.40)
m=

where we have used the notatipn {3.7) and the conventign= z whenm = 1.
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_ We can now find, for each ¢ 5(x1) U 5(x2), w € aé(xl) U a(N?(xg), a coupling
Qu.w(dw,dw’) onW x W such that (se2))

under the first (resp. second) canonical coordinate the image of
Qu,w IS Qu,w (resp.Q), (4.41)

~ ., 1 314 L2
Qu,w(w#w/)=§IIQu,w—QIITv = o (4.42)

for the construction oﬁu,w see for instance Theorem 5.2, p. 19[0fI[13]. We thus see that
for (k1, k%) € K, P-a.s. OMA 1 72,

2 *
E[HiH|E] -] EC” "G

i=1
= Gi1(wz, ..., wn Go(wz2, ..., wp2
'/ 1( K kli*(u>) 2( K2 Iz

k
~ G1(Wpy. .. Wi VGo(Wa. . W ) [] Oxo, .0, @B, d),)
1 5 (u) 1 O R——"}
< 20*(w) sup Oxp,, 4 Xp, @ # W,,)

me{@ 1i=1,2, 1< <0*(u))

(4.42) L2 49 L4
< clf*lu)— < cu—. (4.43)
r r

Hence by((4.35)[ (4.39), we see that fog C(x1) U C(x2),

2 ®* (u) Ld
E.[H1H?] — l_[ E? [Gi]] < cu—,
i=1 r
and hence
|ELHH) 2 £ G| = o (1 e (4.44)
11412 _1_[ i =cC N +M , . .

i=1
ChoosingG; = G (cf. (4.33)) orG; = 1, we see by[ (4.32) that the last term in the second
line of (4.24) is smaller than((r/N)? +uL?/r). By (4.24), the claim (4.23) follows. 0

If the function¢ in (4.1) is decreasing, i.ex(A) > ¢(A") for A € A’ € C(0), then we
can easily transfer controls ah from controls orT".

Theorem4.3.(d = 3, L > 1, N > 100L) Assume thap in (4.))is decreasing. Then
foru > 0,s > 0,

2
Gu,

LN 4 eNdexpl—cul??),  (4.45)
S

P[T, < E[T¢yqu] — ceXp[—cuLd_2} —s]<c
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and
0,2
P[T, > E[l"cl_llu] + cexp{—cuLdfz} +s]<c M’LZ’N +cN? exp{—cuLdfz}, (4.46)
s
wherecy; > 1is defined inf4.27)and
d d
5 o r LY N
atl,L,N = |nf{<N> +MT :10L <r< F)} (447)

Proof. Choose- as in [4.47) and defing, as in [4.2D). Since is decreasing, we see that

~,_ 1
E[N] = E[Tu] = 27 3 Elh(r, uN) = h(x, Djs,)]
X€E

1 @9 o Ld—2
d L
> N E P[Dg‘*(u) <uN%] = —ce™ ,

xeE

and using the fact that‘(u/c11) = £« (u) (cf. (4.27), [4.9),[(4.10)), we also have

~ 1
E[Tuje] = BN = +5 > E[h(x, D§ ) — h(x, uN‘)]

xeE
1 4+ 410 —enlLd-2
= —ya 2 PIDE gy = uN] = —eem
xeE
As a result we find that
E[Tep] — ce " < E[T,] < E[Tu] + ce = foru > 0. (4.48)
In the same fashion we also find that foe 0O,
P[T, < Fu] < cNde_C“Ld_z, P[Fc—lu <Iy] < eNe=eaul™™?, (4.49)
11

Hence using the first inequalities [n (4]48) ahd (4.49), we find that fer> 0,

P[T, < E[T.] —s] + cNdg=eul®?
var(T,)

= s2

P[Ty < E[Teyu] — ce =7 — 5]

IA

_ d—2
+ CNde culL ,

and by [4.2B), optimizing over, the claim [[4.4p) follows. Using the rightmost inequali-
ties of [4.49) and of (4.48), with; ;' in place ofu, in the case of (4.48), we analogously
obtain (4.46). O

Remark 4.4. In the applications we discuss below, we will chodse= [(log N)?], so
that for givenu > 0 andN > c(u),

2 A A2 d d 2% d_
0f, Ny S CUTHILHFIN~TH < cydri(log N) &I N~ a+, (4.50)

as follows from a straightforward upper bound of the expressidn in|(4.47).
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We now turn to the first application of Theorém}4.3 that shargens|(1.13) to an estimate
of the relative volume of the vacant set left by the walk at timé.

Corollary 4.5. (d > 3)
lim Pe™* < |E\ Xounagl/N¢ <"1 =1 foru > 0. (4.51)
Proof. We choosd. = [(log N)?] and¢ = ¢ (cf. )), so that
1
Fu = W'E \ X[O,uNd]| foru > 0, (452)
and by translation invariance
E[] = E[R(0, uN")] = P[0 ¢ Xg ,yay]. (4.53)

Note that with the above choice fdr, in view of ),cru,L,N and N4e—<L7? tend

to 0 asN tends to infinity. If we choose for instance= /o, v, the claim [4.5]L)

follows straightforwardly from[(4.45)[ (4.46) and our estimate$ in (1.13)pin.,,,, ] and

E[T 1] O
114

We recall that on the evells ; defined in @]2), the vacant set left by the walk at time
¢t contains a well-defined unique giant componeén(cf. ), andgg , va is typical
underP for large N whend > do andu is small (cf. [2.5F)). As we will now see, in this
regimeO also typically occupies a non-degenerate fraction of the volunie of

Corollary 4.6. (d > do, cf.(2.47)) For anyp, y € (0, 1), one has
lim P[Gy a0 {l0|/N? = y}] =1 forsmallu > 0. (4.54)

Proof. We choosd. = [(log N)?] v [colog N] (cf. Corollaried 2.5 anfl 2]6), and
¢ (A) = 1{for someF € Lo with 0 € F, 0is connected t6(0, Lo) in F\ A} (4.55)
foranyA € C(0) (= B(0, L)), with Lg as in [2.5B). In this case for largé we have

(cf. 2.40), [4.9).[(45)

1 256 0]
=g Z 1e i = ~va  on G und- (4.56)

xeE

and by translation invariance we find
E[TW] = P[Cpy0.und]- (4.57)

As already mentioned beI053n),,,,L,N and N9e—<“L’? tend to 0 asN tends to
infinity. We can choose = /o, 1 v in (4.43), so that

lim Py = E[Tey] - ce L _ o n] =1

The claim [4.5%) then follows fronp (Z.43), (2]57), aphd (4.56). O
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Remark 4.7. 1) Whend > dp, the above corollary shows that for small> 0, when

N becomes large the giant component typically has non-degenerate volutnéiow-

ever, this does not rule out the existence of other components in the vacant set with non-
degenerate volume. Note that by the definition of the giagtf. (2.53)) such components

do not contain any connected sdts Ay of | - |o-diameterLo = [colog N] and in par-

ticular any segment of lengthg.

2) Whend > 3 andu > 0, the set visited by the walk up to timeV¢ typically constitutes
agiant component as well. Indeed, by Corol[ary 4.5 it typically occupies a non-degenerate
fraction of the volume of: whenN is large. Moreover, by a straightforward modification

of (1.24) (see also Remdrk 1.3), we see that whens8N andu > 0,

P[HB(O,Z) > uNd] < ceXp{—cuNd_z} + Q- C(Z/N)d_z)ﬁj‘_1
< cexp{—cuzdfz}, (4.58)

using the definition ok, below [1.12). In particular, choosing
~ log N\ Y=
e ()]
u

Iilr\p P[for somex in E, Xg ,ye) N B(x, L1) =¥] =0 forallu > 0. (4.59)

we find that

So the set visited by the walk is ubiquitous as well, and typically comes within distance
of order(log N)¥/@=2 from any point ofE. O

In fact, holes in the vacant set of ordéog N)@—2 do occur as well. More precisely,
consider the maximal radius of &n|..-ball contained in the vacant set at time

Z(t) = supm > 0 : for somex in E, X[, N B(x, m) = @}, (4.60)
with the convention thak (r) = 0 when the set on the right-hand side[of (4.60) is empty.
Corollary 4.8. (d = 3) There existg13 (< c¢12) such that

lim P[Lz < LwN% <Li]=1 foru >0, (4.61)

with L1 defined abovéd.5d)and L, = [e15(%4)" 2],

Proof. In view of (4.59) we only need to prove the lower bound. The argument uses a
variation on the proof of Corolla@.S. Far < (logN)? and largeN, by a straightfor-
ward modification of[(1.25), we see that

PlHpo1) > uN = —cexpl—cuN"?} + c(1— c(L/N)"=2"
> cexpl—cuL4 2}, (4.62)
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using the definition ok* below [1.12). Proceeding as in Corollary]4.5, we then choose
L = [(log N)?], and the decreasing function

¢:ACCO) > ¢(A)=1BO,L)NA =0}

With this choice we find that

@5 1

Fu W

> 4B, L) N Xpg ,ne) = B}

xeE

SettingL = [clg("’%/v)l/(d_z)] with c¢13 small enough, we see by translation invariance
that for largenN,

E[Tcyu] = P[Hpo7) > c11iuN? > N7V, (4.63)

We then choose = ./, L v in @), and note b@O) thatforlarge s = /o, L.~v
is much smaller thav—%/8, and thato, ; v and Née—uL"% tend to 0 asV tends to
infinity. As a result we obtain

lim P, < iNYe =0 (4.64)

This is more than enough to prove the lower estimatg in [4.61). This concludes the proof
of Corollary[4.8. o

The above result exhibits a different asymptotic behavior from that of Bernoulli bond-
(or site-) percolation oif, where for largeV the largest - |-ball contained in a cluster
typically has size of ordeflog N)¥/¢, which is much smaller thagiog N)¥/(@=2
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