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Abstract. We consider random walk on a discrete torusE of side-lengthN , in sufficiently high
dimensiond. We investigate the percolative properties of the vacant set corresponding to the col-
lection of sites which have not been visited by the walk up to timeuNd . We show that whenu
is chosen small, asN tends to infinity, there is with overwhelming probability a unique connected
component in the vacant set which contains segments of length const logN . Moreover, this con-
nected component occupies a non-degenerate fraction of the total number of sitesNd of E, and any
point ofE lies within distanceNβ of this component, withβ an arbitrary positive number.

0. Introduction

We investigate random walk on ad-dimensional torus of large side-lengthN , and we
are interested in the set of points that have not been visited by the walk up to times of
orderNd . This time scale is much shorter than the typical time it takes the walk to cover
the discrete torus. Indeed, the cover time of the discrete torus is known to be of order
Nd logN whend ≥ 3, andN2(logN)2 whend = 2 (cf. [1], [2], [4], [5], [6], and the
references therein, for this and much more). In fact, whend ≥ 3, andu is an arbitrary
positive number, the probability that the walk visits a given point of the discrete torus up
to timeuNd remains bounded away from 0 and 1 asN tends to infinity. This makes the
time scaleNd an appropriate choice to discuss the percolative properties of the vacant
set left by the walk. Incidentally these questions are closely related to the analysis of the
disconnection time of a discrete cylinder by a random walk, recently investigated in [7],
[15]. The main object of this work is to discuss the typical presence of a well-defined giant
connected component in the vacant set left by the walk by timeuNd , for largeN , when
the dimensiond is large enough, andu suitably small. We expect a different behavior
whenu is large, but this work does not present results in this direction. We believe some
of our methods and results are pertinent to improved bounds of the disconnection time of
a discrete cylinder by a random walk recently derived in [7] (see also [15]).

Before discussing our results any further, we describe the model in more detail. We
considerd ≥ 3, N ≥ 1, and denote byE the d-dimensional discrete torus of side-
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lengthN :
E = (Z/NZ)d . (0.1)

We write P , resp.Px whenx ∈ E, for the law onEN endowed with the productσ -
algebraF , of simple random walk onE started with uniform distribution, resp. atx. We
letX. stand for the canonical process onEN, andX[0,t ] for the set of sites visited by the
walk up to time [t ]:

X[0,t ] = {z ∈ E : for some 0≤ n ≤ t, Xn = z} for t ≥ 0. (0.2)

Our main focus is on the percolative properties of the vacant setE \ X[0,uNd ] left by the
walk up to timeuNd , whenN is large andu > 0 is some fixed positive number. We show
that whend ≥ 4 andu is suitably small, the vacant set by timeuNd typically contains a
profusion of segments of logarithmic size inN , for largeN . More precisely, forK > 0,
0< β < 1, t ≥ 0, we define the event which specifies that for every point ofE there is in
each coordinate direction, withinNβ steps, a segment of length [K logN ] in the vacant
set left by the walk at timet :

VK,β,t = {for all x ∈ E, 1 ≤ j ≤ d, for some 0≤ m < Nβ ,

X[0,t ] ∩ {x + (m+ [0, [K logN ]])ej } = ∅}, (0.3)

where(ei)1≤i≤d stands for the canonical basis ofRd . We show in Theorem 1.2 that for
d,K, β as above,

lim
N
P [VK,β,uNd ] = 1 for smallu > 0. (0.4)

We also show in Proposition 1.1 that whend ≥ 3, foru > 0,

e−cu ≤ lim inf
N

P [0 /∈ X[0,uNd ] ] ≤ lim sup
N

P [0 /∈ X[0,uNd ] ] ≤ e−c
′u, (0.5)

with c, c′ suitable positive dimension dependent constants (more is known, see [2, Chap-
ter 3, Proposition 20 and Chapter 13, Proposition 8]). This feature motivates the interest
of the time scaleNd in the investigation of the vacant set left by the walk. We sharpen
this result by showing in Corollary 4.5 that

lim
N
P [e−cu ≤ |E \X[0,uNd ] |/N

d
≤ e−c

′u] = 1 for u > 0, (0.6)

where forA ⊆ E, |A| denotes the cardinality ofA.
When the dimensiond is suitably large, i.e.d ≥ d0 (cf. (2.41)), we introduce a di-

mension dependent constantc0, and eventsGβ,t ⊆ Vc0,β,t , increasing withβ ∈ (0,1),
such that for any suchβ:

(i) lim
N
P [Gβ,uNd ] = 1 for smallu > 0,

(ii) onGβ,t there is a unique connected componentO in E \X[0,t ]
which contains segments of lengthL0 = [c0 logN ]

(0.7)

(see (2.53) for a more general claim). The connected componentO is thus well-defined on
the nested eventsGβ,t . In view of (0.3) and sinceGβ,t ⊆ Vc0,β,t , the connected component
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O is ubiquitous onE. We refer to it as thegiant component. We also show in Corollary
4.6 that whenu is small,O typically has a non-degenerate volume inE. More precisely,
we prove that ford ≥ d0, β, γ ∈ (0,1),

lim
N
P [Gβ,uNd ∩ {|O| ≥ γNd

}] = 1 whenu > 0 is small. (0.8)

However, our results do not rule out the possible existence of other components of the
vacant set with non-degenerate volume as well (cf. Remark 4.7). In fact, the present work
raises many questions. How do percolative properties of the vacant set compare to the pic-
ture stemming from Bernoulli bond-percolation? Is there a smallu regime with typically
one single giant component and all other components of small volume and size, a large
u regime with only small connected components, and in between a critical regime (see
for instance [10] and references therein)? Simulations performed whend = 3,4,5,6,7
seem to support this picture, with a critical threshold located nearu = 3. If such a critical
regime can be extracted, do components in the vacant set in this regime inherit some of
the invariance properties of Brownian motion viewed as a scaling limit of simple random
walk? What are the relevant values of the dimensiond? It is maybe instructive to con-
sider these problems also on other graphs, such as expanders (where a smallu regime
with some giant component and a largeu regime with only small components can easily
be established), randomd-regular graphs, hypercubes etc. (see [3] for a study of percola-
tion on such graphs). These are just a few examples of the many questions raised by the
present article.

We now try to describe some of the ideas and methods involved in the proof of (0.4),
(0.7), (0.8).

Behind (0.4) lies a type of coupon-collector heuristics. We show in Proposition 1.1
that up to timeuNd about constuNd−2 excursions take place in and out of two concentric
balls centered at the origin with radius some suitable fraction ofN . At most constuNβ

of these excursions hit a given segment of lengthNβ starting at the origin. Chopping
this segment intoM = Nβ/[K logN ] segments of length [K logN ], and neglecting
the possible hits of more than one segment by one such excursion, a coupon-collector
heuristics (cf. Durrett [8, Chapter 2, Example 6.6]) makes it plausible that it takes about
M logM ∼ (β/K)Nβ such excursions to hit each of these segments. However, whenu is
chosen small, constuNβ

� (β/K)Nβ , and not all segments can be hit by the walk up to
timeNd . The above lines describe the intuition behind the proof of (0.4) in Theorem 1.2.

The key to the uniqueness statement in (0.7) is an exponential estimate proved in
Theorem 2.1. It shows in particular that whend ≥ 5, andλ > 0 is such that

e2λ
(

2

d
+

(
1 −

2

d

)
q(d − 2)

)
< 1, (0.9)

where for any integerν ≥ 1,

q(ν) = the return probability to the origin of simple random walk onZν, (0.10)

then forN ≥ N(d, λ) andu ≤ u(d, λ),

P [X[0,uNd ] ⊇ A] ≤ exp{−λ|A|} (0.11)
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for any subsetA of E contained in the canonical projectionF onE of a two-dimensional
affine plane generated by two coordinate directions inZd . Wheneλ > 7 can be achieved
(this is the requirement which specifiesd0, cf. (2.41)), the exponential bound (0.11) com-
bined with a Peierl-type argument yields in Corollary 2.5 the key uniqueness statement
behind (0.7). The claim (0.7) is then proved in Corollary 2.6. We also explain in Remark
2.4 why a restriction on the class of setsA that appear in (0.11) is needed. There is an
independent interest to the above exponential bound: a variation of it and of (0.4) should
lead to a sharpening of the lower bounds on the disconnection time of discrete cylinders
(Z/NZ)d × Z derived in [7], at least whend is large enough.

To prove (0.8), in essence we control fluctuations of the proportion of sites inE which
at timeuNd are connected by a vacant path in some two-dimensionalF , as below (0.11),
to sites at distance [c0 logN ]. Such sites belong to the giant componentO whenGβ,uNd
occurs (cf. (2.56)). This leads us to develop estimates on the covariance of “local func-
tions” of the vacant sites left by the walk up to time of orderuNd in the neighborhood
of two sufficiently distant point on the torus (see Proposition 4.2). Qualitatively similar
issues appear for instance in [6]. To this end we develop in Theorem 3.1 a bound on the
total variation norm between the law of a suitable “limit model” and the lawQu,w of a
recentered excursion of the walk. This excursion runs from the time of the first up to the
last visit toC(x1) ∪ C(x2), where theC(xi) are boxes of side-length 2L centered atxi ,
i = 1,2, inE, with mutual distance at least 2r+3, wherer ≥ 10L, and the walk is condi-
tioned to start at a pointu at distance at leastr from {x1, x2} and exit ther-neighborhood
of {x1, x2} at the pointw, and stop there. The “limit model” with lawQ corresponds to
excursions of the simple random walk onZd starting with the normalized harmonic mea-
sure viewed from infinity of the boxC centered at the origin with side-length 2L, stopped
at its last visit ofC. In Theorem 3.1 we show that

‖Qu,w −Q‖T V ≤ c
L2

r
, (0.12)

wherec is a dimension dependent constant and‖ · ‖T V the total variation norm. This
estimate is of independent interest and can be straightforwardly extended to the case of
finitely many pointsxi (cf. Remark 3.2). Our main control on fluctuations of spatial aver-
ages onE of local functions is then stated in Theorem 4.3, and enables us to show (0.6)
in Corollary 4.5, and (0.8) in Corollary 4.6. In Corollary 4.8 we also show that when
d ≥ 3, the largest cube contained in the vacant set at timeuNd typically has size of
order(logN)1/(d−2), for largeN . This should be contrasted with the case of Bernoulli
bond-percolation on the torus, where for largeN the largest cube contained in a cluster
typically has much smaller size of order(logN)1/d .

Let us now describe the organization of this article.
In Section 1, we introduce some further notation, and mainly provide the proof of

(0.4) in Theorem 1.2. On the way we show (0.5) in Proposition 1.1.
In Section 2 we prove a more general version of (0.11) in Theorem 2.1, and use it

in Corollaries 2.5, 2.6 to prove (0.7), and thereby construct the giant component in the
vacant set, which is shown to be typical whend ≥ d0 andu is small enough.
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In Section 3, we obtain the total variation estimate (0.12) in Theorem 3.1. This comes
as a preparation for the control of fluctuations of certain spatial averages of local functions
in the next section.

In Section 4, we show (0.8) in Corollary 4.6, the simpler (0.6) in Corollary 4.5, and
the controls on the largest cube contained in the vacant set in Corollary 4.8. The vari-
ance bounds of Proposition 4.2 make strong use of Theorem 3.1. Our general control on
fluctuations of averages of local functions appears in Theorem 4.3.

Finally, throughout the text,c or c′ denote positive constants which solely depend
ond, with values that change from place to place. The numbered constantsc0, c1, . . . are
fixed and refer to the value at their first place of appearance in the text. Dependence of
constants on additional parameters appears in the notation. For instance,c(K, β) denotes
a positive constant depending ond,K, β.

1. Ubiquity of vacant segments of logarithmic size

The main object of this section is to show that whend ≥ 4, for largeN , up to times that are
small multiples ofNd the vacant set left by the walk on the discrete torusE contains with
overwhelming probability segments of size of order logN in the vicinity of each point of
E (cf. Theorem 1.2 and (0.4)). We also prove the estimate (0.5) on the probability that a
point belongs to the vacant set up to timeuNd , with d ≥ 3 (cf. Proposition 1.1). We first
need some additional notation.

We denote by|·| and|·|∞ the Euclidean and̀∞-distances onZd , or the corresponding
distances onE. We writeB(x, r) for the closed ball relative to| · |∞, with radiusr ≥ 0
and centerx in Zd or E. We denote byS(x, r) the corresponding| · |∞-sphere. We say
thatx, y in Zd orE areneighbors, resp.?-neighbors, if |x − y| = 1, resp.|x − y|∞ = 1.
The notions of connected or?-connected subsets ofZd orE are then defined accordingly,
and so are the notions of nearest neighbor path or?-nearest neighbor path onZd or E.
ForA,B subsets ofZd orE, we denote byA+ B the subset of points of the formx + y

with x ∈ A, y ∈ B. WhenU is a subset ofZd or E, we let|U | stand for the cardinality
of U , and∂U for the boundary ofU :

∂U = {x ∈ U c : ∃y ∈ U, |x − y| = 1}. (1.1)

We denote byπE the canonical projection fromZd ontoE. For 1 ≤ m ≤ d, we write
Lm for the collection of subsets ofE that are projections underπE of affine lattices inZd
generated bym distinct vectors of the canonical basis:

Lm =

{
F ⊆ E : for someI ⊆ {1, . . . , d} with |I | = m, and somey ∈ Zd ,

F = πE

(
y +

∑
i∈I

Zei
)}
, (1.2)

where as below (0.3),(ei)1≤i≤d denotes the canonical basis ofRd .
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We let (θn)n≥0 and(Fn)n≥0 stand for the canonical shift onEN and the filtration of
the canonical process. ForU ⊆ E, HU andTU stand for the entrance time and exit time
in or fromU :

HU = inf{n ≥ 0 :Xn ∈ U}, TU = inf{n ≥ 0 :Xn /∈ U}. (1.3)

We writeH̃U for the hitting time ofU :

H̃U = inf{n ≥ 1 :Xn ∈ U}. (1.4)

WhenU = {x}, we write as a subscriptx in place of{x}, for simplicity. GivenA ⊆ Ã

⊆ E, we often consider the successive return times toA and departures from̃A:

R1 = HA, D1 = TÃ ◦ θR1 + R1, and fork ≥ 1,

Rk+1 = HA ◦ θDk +Dk,Dk+1 = D1 ◦ θDk +Dk, so that

0 ≤ R1 ≤ D1 ≤ · · · ≤ Rk ≤ Dk ≤ · · · ≤ ∞,

(1.5)

andP -a.s. the above inequalities are strict except maybe for the first one. We also set
R0 = 0 = D0 by convention. The transition density of the walk onE is denoted by

pk(x, y) = Px [Xk = y], k ≥ 0, x, y ∈ E. (1.6)

We writePZν
x , orEZν

x , for x ∈ Zν , ν ≥ 1, to indicate the law or expectation for simple
random walk onZν starting fromx. We otherwise keep the same notation as above. We
let gν(·) stand for the Green function of simple random walk onZν , ν ≥ 1, with a pole at
the origin:

gν(z) = EZν
z

[ ∑
n≥0

1{Xn=0}

]
for z ∈ Zν (1.7)

(which of course is identically infinite unlessν ≥ 3). As a direct consequence of the
geometric number of returns of the walk to the origin, one classically has

gν(0) = (1 − q(ν))−1, (1.8)

where (cf. (0.10))q(ν) = PZν
0 [H̃0 < ∞] denotes the return probability to the origin.

We are now ready to begin and consider, forN ≥ 1,

B = πE([−N/8, N/8]d ∩ Zd) ⊆ B̃ = πE([−N/4, N/4]d ∩ Zd), (1.9)

as well as (cf. (1.5))

Rk,Dk, k ≥ 1, the successive returns toB and departures from̃B. (1.10)

The following estimates will be useful. We also prove the controls (0.5) on the probability
that a point belongs to the vacant set (see also (2.26) of [4]).
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Proposition 1.1. (d ≥ 3)

P [Rk∗ ≤ uNd ] ≤ c exp{−cuNd−2
}, (1.11)

P [Rk∗ ≥ uNd ] ≤ c exp{−cuNd−2
}, (1.12)

for u > 0, N ≥ 1, with k∗
= [c1uN

d−2], k∗ = [c2uN
d−2], andc1 > c2. Moreover, for

u > 0,

e−cu ≤ lim inf
N

P [0 /∈ X[0,uNd ] ] ≤ lim sup
N

P [0 /∈ X[0,uNd ] ] ≤ e−c
′u. (1.13)

Proof. We begin with the proof of (1.11). As a direct consequence of the invariance prin-
ciple, we see that forN ≥ 1, x ∈ B̃c, y ∈ B,

Ex

[
exp

{
−
HB

N2

}]
≤ 1 − c, Ey

[
exp

{
−
TB̃

N2

}]
≤ 1 − c. (1.14)

Hence fork ≥ 2 andx ∈ E one finds, using the strong Markov property and induction,

Ex

[
exp

{
−
Rk

N2

}]
≤ (1 − c)Ex

[
exp

{
−
Dk−1

N2

}]
≤ (1 − c)2Ex

[
exp

{
−
Rk−1

N2

}]
≤ (1 − c)2(k−1).

As a result we see that (with the convention below (1.5))

Ex

[
exp

{
−
Rk

N2

}]
≤ c exp{−ck} for k ≥ 0, (1.15)

and therefore foru > 0,N ≥ 1, k ≥ 0, we find

P [Rk ≤ uNd ] ≤ c exp{uNd−2
− ck}, (1.16)

from which (1.11) readily follows.
We now turn to the proof of (1.12). With similar arguments to the proof of Lemma

1.3 of [7], we see that

Ex

[
exp

{
c

N2
HB

}]
≤ 2, Ex

[
exp

{
c

N2
TB̃

}]
≤ 2 forN ≥ 1 andx ∈ E. (1.17)

Therefore by the strong Markov property and induction we find that fork ≥ 1,

E

[
exp

{
c

N2
Rk

}]
≤ 2E

[
exp

{
c

N
Dk−1

}]
≤ 4E

[
exp

{
c

N2
Rk−1

}]
≤ 4k. (1.18)

It now follows that fork ≥ 0,

P [Rk ≥ uNd ] ≤ exp{−cuNd−2
+ 2(log 2)k}, (1.19)

from which (1.12) easily follows.
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We next prove (1.13). Using a comparison between the Green function of the random
walk killed when exitingB̃ and of simple random walk inZd (see for instance (1.10),
(1.11) in Lemma 1.2 of [7]), we have

c′(|x − y| + 1)−(d−2)
≤ Px [Hy < TB̃ ] ≤ c(|x − y| + 1)−(d−2) for N ≥ 1, x, y ∈ B.

(1.20)
Note that fork ≥ 1, one has

{H0 > Dk} = {H0 > R1} ∩ θ−1
R1

{H0 > TB̃} ∩ · · · ∩ θ−1
Rk

{H0 > TB̃}. (1.21)

Hence by the strong Markov property and the left-hand inequality of (1.20) we see that

P [H0 > Dk] ≤ (1 − cN−(d−2))k for k ≥ 1. (1.22)

Similarly we see that fork ≥ 1, 0< ε < 1/8,

P [H0 > Dk] ≥ P [X0 /∈ B(0, εN), H0 > Dk]

≥

(
1 −

c

Nd−2

)k−1

P [X0 /∈ B(0, εN), H0 > TB̃ ]

≥ (1 − cN−(d−2))k−1(1 − c(εN)−(d−2))+

(
1 −

|B(0, εN)|

Nd

)
. (1.23)

We can now write, for largeN ,

P [H0 > uNd ] ≤ P [Rk∗ ≥ uNd ] + P [H0 > Dk∗−1]
(1.12),(1.22)

≤ c exp{−cuNd−2
} + (1 − cN−(d−2))k∗−1, (1.24)

as well as

P [H0 > uNd ] ≥ P [H0 > Dk∗ ,Rk∗ ≥ uNd ]
(1.11),(1.23)

≥ −c exp{−cuNd−2
}

+ (1 − cN−(d−2))k
∗
−1(1 − c(εN)−(d−2))(1 −N−d

|B(0, εN)|). (1.25)

Inserting the value ofk∗ andk∗ (see below (1.12)), we can letN tend to infinity in (1.24),
(1.25) and thenε to 0 in (1.25), and find (1.13). ut

We now come to the main result of this section that shows the ubiquity of segments of
logarithmic size in the vacant set left by the walk at times which are small multiples
of Nd . As explained in the Introduction, the heuristics underlying this result stems from
the coupon-collector problem (cf. below (0.8)). We refer to (0.3) for the definition of the
eventVK,β,t with K > 0, 0< β < 1, t ≥ 0. Our main result is:

Theorem 1.2. (d ≥ 4) For anyK > 0, 0< β < 1,

lim
N
P [VK,β,uNd ] = 1 for smallu > 0. (1.26)
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Proof. We pickβ1, β2 such that

0< β2 < β1 < β < 1 and 2β1 − β2 < β. (1.27)

Using translation invariance and isotropy the claim (1.26) follows once we show that

lim
N
NdP

[ ⋂
0≤m<Nβ

{H(m+[0,L])e1 ≤ uNd
}

]
= 0 for smallu > 0, (1.28)

with the notationL = [K logN ]. We now prove (1.28), and for this purpose consider the
segmentsSi in E defined by

Si = πE((2i[N
β1−β2] + [0, L])e1), 1 ≤ i ≤ ` := [Nβ1], (1.29)

and write

S =

⋃
1≤i≤`

Si . (1.30)

We want to show that whenu > 0 is chosen small, with overwhelming probability asN
tends to infinity, some of the segmentsSi , 1 ≤ i ≤ `, remain vacant up to timeuNd . With
the help of (1.27), (1.28) will then follow. We then introduce (cf. (1.10) for notation),

S0 = S, τ1 = inf{k ≥ 1 :HS ◦ θRk
< TB̃ ◦ θRk

},

R̃1 = HS ◦ θRτ1
+Rτ1, j1 = the uniquej ∈ {1, . . . , `} such thatXR̃1

∈ Sj ,

S1 = S \ Sj1, τ2 = inf{k > τ1 : HS1 ◦ θRk
< TB̃ ◦ θRk

},

R̃2 = HS1 ◦ θRτ2
+Rτ2, j2 = the uniquej ∈ {1, . . . , `} \ {j1} such that

XR̃2
∈ Sj , and so on untilS`−1 = S \

⋃
j∈{j1,...,j`−1}

Sj , τ`, R̃` and

j` with {1, . . . , `} = {j1, . . . , j`} . (1.31)

In this fashion we label the successive excursions inB and out ofB̃ giving rise to hits
of new segments, and for the time being disregard the fact that possibly more than one
segment may be hit during one such excursion. As a straightforward consequence of the
above definition, one has

R̃i, 1 ≤ i ≤ `,are(Fn)-stopping times,

jm, 1 ≤ m ≤ i, areFR̃i -measurable,

Dτi = TB̃ ◦ θR̃i + R̃i,1 ≤ i ≤ `,are(Fn)-stopping times as well.

(1.32)

By (1.20), we see that for largeN , whenU ⊆ S,

Px [HU < TB̃ ] ≤
c3

2

|U |

Nd−2
for x ∈ B ∩ ∂(Bc), (1.33)
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and using the reversibility of the walk onE,

P [HU < TB̃ ] ≤ N−d
∑

x∈E, y∈U, k≥0

Px [Xk = y, TB̃ > k]

= N−d
∑

x∈E, y∈U, k≥0

Py [Xk = x, TB̃ > k] = N−d
∑
y∈U

Ey [TB̃ ]

≤
c3

2

|U |

Nd−2
, (1.34)

using the fact that supz∈E Ez[TB̃ ] ≤ cN2 (cf. the second inequality of (1.17)), and in-
creasing if necessary the value ofc3 in (1.33). We now introduce, forU ⊆ S,

η(U) = inf{k ≥ 1 :HU ◦ θRk
< TB̃ ◦ θRk

}, (1.35)

and note that forλ > 0 and 2≤ i ≤ `, as a result of the strong Markov property applied
at timeDτi−1 (cf. (1.32)),

E[exp{−λ(τi − τi−1)} |FDτi−1
] =

∑
k≥1

e−λkPXDτi−1
[η(Si−1) = k], (1.36)

where in the last expressionSi−1 is a frozen variable(FDτi−1
-measurable).

Note that forz ∈ B̃c, U ⊆ S,∑
k≥1

e−λkPz[η(U) = k] = (1 − e−λ)
∑
k≥1

e−λkPz[η(U) ≤ k]. (1.37)

Moreover for largeN , with z andU as above,

Pz[η(U) ≤ k] = 1 − Pz[η(U) > k]

= 1 − Pz[HU ◦ θRm
> TB̃ ◦ θRm

for 1 ≤ m ≤ k]

≤ 1 −

(
1 −

c3

2

|U |

Nd−2

)k
for k ≥ 0, (1.38)

with the help of (1.33) and strong Markov property applied at timesRm, 1 ≤ m ≤ k. We
thus see that underPz, η(U) stochastically dominates a geometric variable with success
probability

p(U) = c3
|U |

Nd−2
(1.39)

(the factor 2 multiplying the expression subtracted from 1 under the parenthesis in (1.38)
is there in order to obtain (1.41) below). Thus coming back to (1.37), we see that for large
N , U ⊆ S, z ∈ B̃c,

Ez[exp{−λη(U)}] ≤

∑
k≥1

e−λkp(U)(1 − p(U))k−1

=
e−λp(U)

1 − (1 − p(U))e−λ
for λ ≥ 0. (1.40)
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In the same fashion, using (1.33), (1.34) (note thatP [HS ◦θR1<TB̃ ◦θR1] ≤c3|S|/Nd−2,
when bounding the termm = 1 in the expression corresponding to the second line of
(1.38)), we find that for largeN ,

E[exp{−λη(S)}] ≤
e−λp(S)

1 − (1 − p(S))e−λ
for λ ≥ 0. (1.41)

Hence by (1.36), (1.40), (1.41), and the fact thatP -a.s., for 1≤ i ≤ `,

pi := p(Si−1)
(1.39)
=

(1.31)
c3(L+ 1)(`− i + 1)N−(d−2), (1.42)

we find that for largeN and`′ ≤ `, λ ≥ 0,

E[exp{−λτ`′}] ≤

∏
1≤i≤`′

e−λpi

1 − e−λ(1 − pi)
, (1.43)

and hence with the notation below (1.12),

P [τ`′ ≤ k∗] ≤ exp

{
λk∗

− λ`′ +
∑

1≤i≤`′

log

(
pi

pi + (1 − e−λ)(1 − pi)

)}
. (1.44)

We now specifỳ ′ andλ by setting (cf. (1.27))

`′ = `− [Nβ2], ρ := d − 2 −
β1 + β2

2
(> 0), λ = N−ρ . (1.45)

As a result for largeN , by (1.42), (1.27), we have

(i) 10−3p1 ≥ N−ρ
≥

1 − e−λ

2
≥
N−ρ

4
≥ 103c3

L+ 1

Nd−2
,

(ii) 1
2 ≥ p1 ≥ pi for 1 ≤ i ≤ `,

(iii ) (`− `′)c3
L+ 1

Nd−2
<
N−ρ

10
.

(1.46)

As a result we see that for largeN ,

∑
1≤i≤`′

log

(
pi + (1 − e−λ)(1 − pi)

pi

)
≥

∑
1≤i≤`′

∫ pi+N
−ρ/4

pi

dt

t

(1.42)
=

∫
∞

0

∑
`−`′<j≤`

1

{
c3
L+ 1

Nd−2
j < t < c3

L+ 1

Nd−2
j +

N−ρ

4

}
dt

t
. (1.47)
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From (1.46) it now follows that for largeN , whent ∈ (N−ρ/5, c3(L + 1)`/Nd−2), the
sum under the above integral is greater thancN−ρNd−2/L. As a result we see that for
largeN , using (1.27), the definition ofL below (1.28), and (1.45),

∑
1≤i≤`′

log

(
pi + (1 − e−λ)(1 − pi)

pi

)
≥ cN−ρN

d−2

L
log(5c3(L+ 1)`Nρ−(d−2))

≥
c

K
Nd−2−ρ(β1 + ρ − (d − 2)) =

c

K
(β1 − β2)N

(β1+β2)/2. (1.48)

Inserting this bound in (1.44), by (1.45) we see that for largeN ,

P [τ`′ ≤ k∗] ≤ exp

{
c1uN

(β1+β2)/2 −
c

K
(β1 − β2)N

(β1+β2)/2
}
. (1.49)

We will now take care of the issue (cf. below (1.31)) of additional hits during the time
intervals [̃Ri,Dτi ], 1 ≤ i ≤ `′, of segments not hit previously. With this objective in mind
we thus define, for 1≤ i ≤ `′,

Ni =

∑
j /∈{j1,...,ji }

1{HSj ◦ θR̃i < TB̃ ◦ θR̃i }, (1.50)

so thatNi is FDτi -measurable (cf. (1.32)). Note thatP -a.s,XR̃i ∈ Sji for 1 ≤ i ≤ `

(cf. (1.31)), and by the strong Markov property at timeR̃i , one finds

P [Ni ≥ m |FR̃i ] ≤ PXR̃i

[ ∑
1≤j≤`

1{HSj < TB̃} ≥ 1 +m
]

≤ PXR̃i
[Vm < TB̃ ], (1.51)

whereVm, m ≥ 1, denote the successive times of visit of the walk to distinct segments
Sj , 1 ≤ j ≤ `.

It now follows from (1.20), (1.29) that for largeN , whenz ∈ S,

Pz[V1 < TB̃ ] ≤ c(L+ 1)
∑
k≥1

(kNβ1−β2)−(d−2)
≤ c4LN

−(d−2)(β1−β2) =: p. (1.52)

Coming back to (1.51) we thus see that by the strong Markov property, whenN is large,

P [Ni ≥ m |FR̃i ] ≤ pm for m ≥ 0, (1.53)

i.e. conditionally onFR̃i , Ni is stochastically dominated by a modified geometric distri-

bution with success parameterp. Therefore whenλ′ is such that (cf. (1.52))eλ
′

p < 1, we
find that for largeN , λ′ as above and 1≤ i ≤ `′,

E[exp{λ′Ni} |FR̃i ] ≤

∑
m≥0

(1 − p)pmeλ
′m

=
1 − p

1 − eλ
′
p
, (1.54)



Giant component and vacant set for random walk on a discrete torus 145

so that using induction andFDτi−1
⊆ FR̃i for 2 ≤ i ≤ `′, we see in view of the measura-

bility of Ni asserted below (1.50) that for largeN ,

E
[
exp

{ ∑
1≤i≤`′

Ni

}]
≤

(
1 +

(e − 1)p

1 − ep

)`′
(1.52)
≤ exp{c`′p}, (1.55)

and hence by (1.45), the value ofp in (1.52), and the fact thatd ≥ 4,

P

[ ∑
1≤i≤`′

Ni ≥
`− `′

2

]
≤ exp

{
−
Nβ2

4
+ c`′p

}

≤ exp

{
−
Nβ2

4
+ cNβ2LN−(d−3)(β1−β2)

}
≤ exp

{
−
Nβ2

8

}
. (1.56)

To conclude the proof of (1.28), we observe that by (1.31) for largeN , on the event
{τi−1 < k < τi}, where 1≤ i ≤ `′ andτ0 = 0 by convention,Xn /∈ Si−1 for Rk ≤ n <

Rk+1. As a result, on the event{Rk∗ > uNd
} ∩ {τ`′ > k∗

} ∩ {
∑

1≤i≤`′ Ni < (`− `′)/2}

at least [(` − `′)/2] segmentsSi , 1 ≤ i ≤ `, have not been visited by the walk up to
time uNd , so that whenN is large the above event lies in the complement of the event
that appears in (1.28). Collecting the bounds (1.11), (1.49), (1.56), we obtain (1.28). As
already explained, this yields our claim (1.26), so that Theorem 1.2 is now proved.ut

Remark 1.3. Concerning the largeu regime, let us point out that whend ≥ 4, given
K > 0, the vacant set left by the walk at timeuNd typically for largeN does not contain
any segment of length [K logN ] if u is chosen large enough. Indeed, when 8L ≤ N , and
U ⊆ B is the segmentU = [0, L]e with |e| = 1, we obtain

Px [HU < TB̃ ] ≥ Ex

[ TB̃−1∑
n=0

1{Xn ∈ U}

]/
sup
y∈U

Ey

[ TB̃−1∑
n=0

1{Xn ∈ U}

]
≥ c

L

Nd−2
for anyx ∈ B, (1.57)

using the strong Markov property at timeHU for the first inequality, and bounds on the
Green function of the walk killed when exiting̃B for the second inequality (see (1.20)
and also (1.11) of [7]). From a straightforward modification of (1.24), we thus find that
when 8L ≤ N andu > 0,

P [HU > uNd ] ≤ c exp{−cuNd−2
} +

(
1 − c

L

Nd−2

)k∗−1

+

≤ c exp{−cuL}, (1.58)

using the value ofk∗ given below (1.12). Hence choosingL =
[
c∗

logN
u

]
with c∗ a large

enough constant, we see that foru > 0,

limN P

[
Xc

[0,uNd ]
contains some segment of length

[
c∗

logN

u

]]
= 0. (1.59)

So for largeN the vacant set typically does not contain segments of lengthK logN if u
is chosen large enough. �
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The theorem we have just proved will enter as a step when showing in the next section
that the giant component we define, with overwhelming probability occurs in the regime
of parameters we consider.

2. Exponential bound and giant component

In this section we derive an exponential bound on the probability that the walk covers
certain subsets ofE by times that are small multiples ofNd (cf. Theorem 2.1). This
bound plays an important role in the construction of the giant component typically present
in the vacant set left by the walk at such times. We also refer to Remark 2.4 where it is
explained why some restrictions are needed on the class of sets to which the exponential
bound applies.

We refer to (1.2) for the definition ofLm, 1 ≤ m ≤ d, and define for 1≤ m ≤ d,

Am = the collection of non-empty subsetsA of E such thatA ⊆ F

for someF ∈ Lm. (2.1)

ClearlyAm increases withm, andAd is the collection of non-empty subsets ofE. We
will especially be interested inA2. We also recall the notationq(ν) in (0.10) and below
(1.8). The next theorem contains the key exponential estimate.

Theorem 2.1. (d ≥ 4, 1 ≤ m ≤ d − 3) Whenλ > 0 is such that

χ := e2λ
(
m

d
+

(
1 −

m

d

)
q(d −m)

)
< 1, (2.2)

then foru > 0,

lim sup
N

sup
A∈Am

|A|
−1 log

(
E

[
exp

{
λ

∑
x∈A

1{Hx ≤ uNd
}

}])
≤ c5u

e2λ
− 1

1 − χ
, (2.3)

and there existN1(d,m, λ) ≥ 1 andu1(d,m, λ) > 0 such that forN ≥ N1,

P [X[0,u1N
d ] ⊇ A] ≤ exp{−λ|A|} for all A ∈ Am. (2.4)

We refer to Remark 2.4 below for an explanation on why some restriction on the class of
subsetsA that appear in (2.4) is needed.

Proof. We begin with the proof of (2.3). We considerN ≥ 1, u > 0,A ∈ Am, 1 ≤ m ≤

d − 3. Roughly speaking, we chop the time interval [0, [uNd ]] into successive intervals
of lengthN2, except maybe for the last one, and write, forλ > 0,

E
[
exp

{
λ

∑
x∈A

1{Hx ≤ uNd
}

}]
≤ E

[
exp

{
λ

∑
kN2≤uNd

∑
x∈A

1{Hx < N2
} ◦ θkN2

}]
≤

√
a1

√
a2, (2.5)
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where

a1 := E
[
exp

{
2λ

∑
k even, kN2≤uNd

∑
x∈A

1{Hx < N2
} ◦ θkN2

}]
,

a2 := E
[
exp

{
2λ

∑
k odd, kN2≤uNd

∑
x∈A

1{Hx < N2
} ◦ θkN2

}]
.

(2.6)

We first bounda1. To this end we define

k0 = max{k ≥ 0 : 2kN2
≤ uNd

}, (2.7)

φ(z) = Ez

[
exp

{
2λ

∑
x∈A

1{Hx < N2
}

}]
(≥ 1) for z ∈ E. (2.8)

Applying the strong Markov property at timeHA, we find

φ(z) ≤ Pz[HA ≥ N2] + Ez[HA < N2, φ(XHA)] for z ∈ E. (2.9)

By the simple Markov property applied at time 2k0N
2 and then at time(2k0 − 1)N2, we

see that whenk0 ≥ 1,

a1 = E
[
exp

{
2λ

∑
0≤k<k0

∑
x∈A

1{Hx < N2
} ◦ θ2kN2

}
EX

(2k0−1)N2 [φ(XN2)]
]
. (2.10)

Note that forz ∈ E, one has

Ez[φ(XN2)]
(1.6)
=

∑
y∈E

pN2(z, y)φ(y)

(2.9)
≤ 1 +

∑
y∈E

pN2(z, y)Ey [HA < N2, φ(XHA)− 1]

≤ 1 +
c

Nd

∑
y∈E

∑
0≤k<N2

Py [Xk ∈ A](‖φ‖∞ − 1)

≤ 1 +
c

Nd−2
|A|(‖φ‖∞ − 1) ≤ exp

{
c

|A|

Nd−2
(‖φ‖∞ − 1)

}
, (2.11)

where in the third line we have used the fact that

sup
x,y∈E

NdpN2(x, y) ≤ c, (2.12)

as follows from standard upper bounds on the transition density of simple random walk
onZd (cf. (2.4) of [9]). With an even simpler (and similar) argument we also have

E[φ(X0)] ≤ exp

{
c

|A|

Nd−2
(‖φ‖∞ − 1)

}
. (2.13)
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Therefore using induction together with (2.11), and (2.13) to handle the term correspond-
ing tok = 0 in (2.10), we see that

a1 ≤ exp

{
(k0 + 1)c

|A|

Nd−2
(‖φ‖∞ − 1)

}
. (2.14)

A similar bound holds fora2, and by (2.5) we thus find

E
[
exp

{
λ

∑
x∈A

1{Hx ≤ uNd
}

}]
≤ exp

{
c(uNd−2

+ 1)
|A|

Nd−2
(‖φ‖∞ − 1)

}
. (2.15)

We will now seek an upper bound on‖φ‖∞.

Lemma 2.2. (d ≥ 4, 1 ≤ m ≤ d − 3, e2λm/d < 1,N ≥ 2)

‖φ‖∞ ≤
e2λ

1 − e2λm/d

(
1 −

m

d

)
(1 + qN (‖φ‖∞ − 1)), (2.16)

where (with hopefully obvious notations)

qN := P
(Z/NZ)d−m
e1 [H0 < N2]. (2.17)

Proof. ConsiderF ∈ Lm such thatA ⊆ F , and introduce (cf. (1.3))

RF := HF ◦ θTF + TF , (2.18)

the return time toF . SinceA ⊆ F , for z ∈ E we find

φ(z) ≤ Ez

[
exp

{
2λ

(
TF +1{RF < N2

}

( ∑
x∈A

1{Hx < N2
}◦θRF

))}]
= Ez

[
exp{2λTF }

(
1{RF ≥ N2

}+1{RF < N2
} exp

{
2λ

∑
x∈A

1{Hx < N2
}◦θRF

})]
= Ez[exp{2λTF }(1+1{RF < N2

}(φ(XRF )−1))]

≤ Ez[exp{2λTF }] +Ez[exp{2λTF }PXTF
[HF < N2]](‖φ‖∞ −1), (2.19)

where we used the strong Markov property at timeRF in the third line. Considering the
motion ofX in the directions “transversal toF ”, we have

for z ∈ E, Pz-a.s., PXTF
[HF < N2] ≤ qN . (2.20)

Whenz ∈ F , TF has geometric distribution with success probability 1−m/d, so that for
λ as indicated above,

Ez[exp{2λTF }]

=

∑
k≥1

(
1 −

m

d

)(
m

d

)k−1

e2λk
= e2λ

(
1 −

m

d

)(
1 − e2λm

d

)−1

for z ∈ F, (2.21)

whereasTF = 0 Pz-a.s. whenz /∈ F . Hence coming back to the last line of (2.19), we
obtain (2.16). ut
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In the next lemma we relateqN of (2.17) toq(d −m) (cf. (0.10)).

Lemma 2.3.
lim sup

N

qN ≤ q(d −m). (2.22)

Proof. We denote byW the discrete cube image ofV := [−N/4, N/4]d−m∩Zd−m under
the canonical projection onto(Z/NZ)d−m. We have

qN ≤ P
(Z/NZ)d−m
e1 [H0 < TW ] + E

(Z/NZ)d−m
e1 [P (Z/NZ)d−m

XTW
[H0 < N2]]

≤ q(d −m)+ sup
z∈∂W

P
(Z/NZ)d−m
z [H0 < N2]. (2.23)

One has the classical upper bound (cf. for instance (2.4) of [9]),

PZd−m
x [Xk = y] ≤

c(m)

k(d−m)/2
exp

{
−c(m)

|y − x|2

k

}
for k ≥ 1, x, y ∈ Zd−m (2.24)

(using the convention concerning constants stated at the end of the Introduction). Hence
for largeN we obtain

sup
z∈∂W

P
(Z/NZ)d−m
z [H0 < N2] = sup

z∈∂V

PZd−m
z [HNZd−m < N2]

(2.24)
≤ sup

z∈∂V

∑
y∈Zd−m

∑
2≤k<N2

c(m)

k(d−m)/2
exp

{
−c(m)

|Ny − z|2

k

}

≤ sup
z∈∂V

∑
y∈Zd−m

∫ N2

0

c(m)

s(d−m)/2
exp

{
−c(m)

|Ny − z|2

s

}

≤ sup
w∈(∂V )/N

c(m)N−(d−m−2)
∫ 1

0

∑
y∈Zd−m

t−(d−m)/2 exp

{
−c(m)

|y − w|
2

t

}
dt. (2.25)

We can now split the sum under the integral, keeping on one handy ∈ Zd−m with |y| ≥

c(m), so that

|y − w|
2

≥ c(m)|y′
|
2 for y′

∈ y + [0,1]d−m andw ∈ (∂V )/N(⊆ [−1,1]d−m),

and hence fort ∈ (0,1], w ∈ (∂V )/N ,

∑
|y|≥c(m)

t−(d−m)/2 exp

{
−c(m)

|y − w|
2

t

}

≤

∑
y∈Zd−m

∫
y+[0,1]d−m

t−(d−m)/2 exp

{
−c(m)

|y′
|
2

t

}
dy′

≤ c(m). (2.26)
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On the other hand, we consider the finitely many terms corresponding to|y| < c(m). For
these terms we also have, in view of the definition ofV ,

inf{|y − w|
2 : w ∈ (∂V )/N, y ∈ Zd−m} ≥ c(m) > 0,

so that forw ∈ (∂V )/N ,∫ 1

0

∑
|y|<c(m)

t−(d−m)/2 exp

{
−c(m)

|y − w|
2

t

}
dt ≤ c(m). (2.27)

Thus coming back to the last line of (2.25) we find, for largeN ,

sup
z∈∂W

P
(Z/NZ)d−m
z [H0 < N2] ≤ c(m)N−(d−m−2), (2.28)

and sinced − m − 2 ≥ 1 by assumption, lettingN tend to infinity in (2.23) we find
(2.22). ut

From (2.16), (2.22), it follows by a straightforward computation that whenλ > 0 satisfies
(2.2),

lim sup
N

sup
A∈Am

(‖φ‖∞ − 1) ≤
e2λ

− 1

1 − χ
. (2.29)

Coming back to (2.15), taking logarithms and dividing by|A|, the claim (2.3) readily
follows.

We now turn to the proof of (2.4). We pick̃λ(d,m, λ) > λ andq̃(d,m, λ) > q so that

1 − e2̃λ
(
m

d
+

(
1 −

m

d

)
q̃

)
=

1

2
(1 − χ). (2.30)

Applying (2.3) withλ̃ (for which (2.2) holds) we see that foru > 0,N ≥ N2(d,m, λ, u)

and anyA ∈ Am,

P [X[0,uNd ] ⊇ A] ≤ exp

{
−̃λ|A| + cu

e2̃λ
− 1

1 − e2̃λ(m/d + (1 −m/d)̃q)
|A|

}
. (2.31)

Choosingu = u1(d,m, λ) small enough, and settingN1(d,m, λ) = N2(d,m, λ, u1), we
obtain (2.4). ut

Remark 2.4. 1) Let us mention that it is straightforward to argue in Lemma 2.3 that
lim infN qN ≥ q(d −m), so that (2.23) can be sharpened to

lim
N
qN = q(d −m), (2.32)

although we do not use this sharpened limiting result here.

2) As we now explain there is no exponential bound of type (2.4) valid uniformly for all
A ∈ Ad (i.e. all non-empty subsets ofE) whenN is large, no matter how smallλ > 0 is
chosen. Indeed, whenρ ∈ (0,1) andAL = πE([−L,L]d) with L = [Nρ ], a calculation
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qualitatively similar to that in Proposition 2.7, Chapter 3 of [16] (see in particular p. 114;
the calculation in [16] is performed in a Brownian motion setting) shows that for largeN ,
T = [cLd logL], and for allx ∈ AL,

Px [X[0,T ] ⊇ AL] ≥ Px [X[0,T ] ⊇ AL, TA2L > T ] ≥
1

2
Px [TA2L > T ]

≥ c exp

{
−
c

L2
T

}
≥ c exp

{
−c

|AL|

L2
logL

}
. (2.33)

Moreover by standard transition density estimates (cf. (2.4) of [9]), one has

inf
z∈E

Pz[HAL < N2] ≥ c

(
L

N

)d−2

,

so that using the Markov property at timeskN2, one finds, for largeN ,

P

[
HAL >

u

2
Nd

]
≤

(
1 − c

(
L

N

)d−2)[ u2N
d−2]

≤
1

2
. (2.34)

As a result we see that for anyu > 0 and 0< ρ < 1,

lim inf
N

(|AL|
(d−2)/d log |AL|)−1 logP [X[0,uNd ] ⊇ AL] > −∞, (2.35)

and hence
lim
N

sup
A∈Ad

|A|
−1 logP [X[0,uNd ] ⊇ A] = 0. (2.36)

This explains why some restriction on the class of subsetsA entering (2.4) is needed.

We now turn to applications of Theorem 2.1 to the construction of the giant compo-
nent in the vacant set left by the walk at times that are small multiples ofNd . We recall
that?-nearest neighbor paths have been defined at the beginning of Section 1, and write

a(n) = the cardinality of the collection of?-nearest neighbor self-avoiding
paths onZ2, starting at the origin, withn steps. (2.37)

One has the easy upper bound

a(n) ≤ 8 · 7n−1 for n ≥ 1. (2.38)

We now define, forN ≥ 1,K > 0, t ≥ 0, the event (cf. (1.2) for the notation)

UK,t = {for anyF ∈ L2, and connected subsetsO1,O2 of F \X[0,t ]
with | · |∞-diameter at least [K logN ], O1 andO2 are in
the same component ofF \X[0,t ]}. (2.39)

The above event will be useful in singling out the giant component. The next event will
be convenient in the derivation of lower bounds on the relative volume of the giant com-
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ponent in Section 4. ForN ≥ 1,K > 0, x ∈ E, t ≥ 0, we define, using the notation of
the beginning of Section 1,

CK,x,t = {for someF ∈ L2 with x ∈ F , there is a nearest
neighbor path inF \X[0,t ] from x to S(x, [K logN ])}. (2.40)

We can now state

Corollary 2.5. There is a smallestd0 ≥ 5 such that

µ := 49

(
2

d
+

(
1 −

2

d

)
q(d − 2)

)
< 1 for d ≥ d0. (2.41)

For d ≥ d0, there is a constantc0 > 0 (cf. (2.47)) such that

lim
N
P [Uc0,uNd ] = 1 for smallu > 0, (2.42)

lim
u→0

lim inf
N

P [Cc0,0,uNd ] = 1 (2.43)

(and of courseP [Cc0,x,uNd ] = P [Cc0,0,uNd ] for all x ∈ E).

Proof. One knows (cf. (5.4) in [14]) thatq(·) has the asymptotic behavior

q(ν) ∼ (2ν)−1 asν → ∞, (2.44)

so that (2.41) straightforwardly follows. Now considerd ≥ d0, and chooseλ0(d) such
that

eλ0 := 7µ−1/4 (> 7), so that e2λ0

(
2

d
+

(
1 −

2

d

)
q(d − 2)

)
< 1. (2.45)

WhenN is large, onUc
K,uNd

one can findF ∈ L2 andO1,O2 ⊆ F \ X[0,uNd ] that are
distinct connected components ofF \ X[0,uNd ] with | · |∞-diameter at least [K logN ].
We can then introducêOi, i = 1,2, the inverse images ofOi under an “affine projection”
of Z2 ontoF . Considering separately the case when at least one of theÔi , i = 1,2, has
bounded components (necessarily of| · |∞-diameter at least [K logN ]), or bothÔi have
unbounded components, one can construct a?-nearest neighbor self-avoiding pathπ with
[K logN ] steps in∂O1∩F or ∂O2∩F ( ⊆ F ∩X[0,uNd ]) (see also Proposition 2.1, p. 387
in [11]). Therefore foru < u0 = u1(d,m = 2, λ = λ0) (cf. (2.4)), we have, writingA
for the set of points visited byπ ,

lim sup
N

P [Uc
K,uNd

] ≤ lim sup
N

∑
F∈L2

∑
π

P [X[0,u0N
d ] ⊇ A]

(2.4)
≤ lim sup

N

∑
F∈L2

∑
π

exp{−λ0|A|}

(2.38)
≤ lim sup

N

∑
F∈L2

8N27[K logN ]−1e−λ0[K logN ]

≤ lim sup
N

cNd(7e−λ0)[K logN ], (2.46)
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where the sum overπ is taken over to the collection of?-nearest neighbor self-avoiding
paths with values inF with [K logN ] steps. By (2.44) we can thus choose

c0 = 8d

(
log

1

µ

)−1

, (2.47)

and find
lim
N
P [Uc

c0,uN
d ] = 0 for u < u0, (2.48)

from which (2.42) follows. We now turn to the proof of (2.43). Observe that foru > 0,
` ≥ 1 and largeN , one has

P [Cc
c0,0,uNd

] ≤ P [X[0,uNd ] ∩ B∞(0, `) 6= ∅]

+ P [X[0,uNd ] ∩ B∞(0, `) = ∅,andCc
c0,0,uNd

]

≤ c`dP [0 ∈ X[0,uNd ] ] +

∑
F∈L2,0∈F

∑
π

P [X[0,uNd ] ⊇ A], (2.49)

where we have used translation invariance in the last inequality, and the sum overπ

runs over?-nearest neighbor self-avoiding paths with values inF ∩ (B∞(0, [c0 logN ]) \
B∞(0, `)), which disconnect 0 fromF ∩ S(0, [c0 logN ]), and start on the positive half
of the coordinate axis entering the definition ofF with smallest labeli ∈ {1, . . . , d}.
As aboveA stands for the set of points visited byπ . Summing over the different values
k ∈ [`+ 1, [c0 logN ]] of the coordinate of the starting point ofπ , we see that for smallu
and sufficiently largeN ,∑

F∈L2,0∈F

∑
π

P [X[0,uNd ] ⊇ A] ≤ c
∑
k≥`

∑
m≥k

7me−λ0m

= c
∑
k≥`

(7e−λ0)k(1 − 7e−λ0)−1
= c(7e−λ0)`(1 − 7e−λ0)−2. (2.50)

Thus coming back to (2.49), we see from (1.13) that foru > 0, ` ≥ 1,

lim sup
N

P [Cc
c0,0,uNd

] ≤ c(1 − e−cu)`d + c(7e−λ0)`(1 − 7e−λ0)−2. (2.51)

Lettingu tend to 0 and theǹ to infinity we obtain (2.43). ut

For 0< β < 1 andt ≥ 0, we now introduce the events (cf. (0.3), (2.39))

Gβ,t = Uc0,t ∩ Vc0,β,t (non-decreasing inβ). (2.52)

The above events encode properties which enable us to single out a giant component.
More precisely, with the notation of Corollary 2.5 we have:

Corollary 2.6. (d ≥ d0, 0 < β < 1) AssumeN ≥ 2 is large enough so thatE has
| · |∞-diameter greater thanc0 logN . For t ≥ 0, on the eventGβ,t ,
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there is a unique connected component inXc[0,t ] , denoted byO, which

contains connected setsA ∈ A2 with | · |∞-diameterL0 := [c0 logN ]
(in particular a segment of lengthL0), (2.53)

for anyF ∈ L1, F ∩O contains a segment of lengthL0, (2.54)

theNβ -neighborhood ofO coincides withE. (2.55)

Moreover for anyx ∈ E,

on the eventGβ,t ∩ Cc0,x,t , x belongs toO. (2.56)

Finally,
lim
N
P [Gβ,uNd ] = 1 for smallu > 0. (2.57)

Proof. We begin with the proof of (2.53)–(2.55). By (0.3), we see that onGβ,t ,

anyF ∈ L1 contains a segment of lengthL0 included inXc[0,t ] . (2.58)

In particular given somẽF ∈ L2, the above applies to allF ∈ L1 with F ⊆ F̃ . By (2.39)
any two segments of lengthL0 in F̃ \X[0,t ] belong to the same connected component of

F \X[0,t ] (and hence ofXc[0,t ]). Now if F̃ , F̃2 ∈ L2,

whenF̃1 ∩ F̃2 ∈ L1, all segments of lengthL0 in (F̃1 ∪ F̃2) \X[0,t ]
are in the same connected component ofXc[0,t ] . (2.59)

Then considery ∈ E. We can find a nearest neighbor path(yi)0≤i≤m with y0 = 0,

ym = y. Consider̃F 3 0 with F̃ ∈ L2. We can construct a sequencẽFi ∈ L2, 0 ≤ i ≤ m,
such that

F̃0 = F̃ , yi ∈ F̃i for 0 ≤ i ≤ m, and

eitherF̃i−1 = F̃i or F̃i−1 ∩ F̃i ∈ L1 for 1 ≤ i ≤ m, (2.60)

as we now explain. Ify1 ∈ F̃0 (= F̃ ), we setF̃1 = F̃0. Otherwise ify1 /∈ F̃0, we choose
some canonical vector entering the definition ofF̃0 and the canonical vector collinear to
y1 − y0, and definẽF1 as passing throughy0 and generated by these two vectors. Clearly
y1 ∈ F̃1, andF̃1 ∩ F̃0 ∈ L1. We then continue the construction by induction.

With a similar argument we also see that whenF̃ , F̃ ′
∈ L2 have a common pointy

in E, we can definẽFi ∈ L2, 0 ≤ i ≤ 2, such that

F̃0 = F̃ , F̃2 = F̃ ′, with y ∈ F̃i , 0 ≤ i ≤ 2, and

eitherF̃i = F̃i−1 or F̃i ∩ F̃i−1 ∈ L1 for i = 1,2. (2.61)

Combining (2.58)–(2.61), we see that onGβ,t all segments of lengthL0 in Xc[0,t ] belong
to the same connected component ofXc[0,t ] . By (2.58) and the definitions (0.3), (2.39) of
the events entering the definition ofGβ,t , (2.53)–(2.55) readily follow. The claim (2.56)
is a direct consequence of (2.53) and (2.40). As for (2.57) it follows directly from (1.26)
and (2.42). ut

In the following, on the eventGβ,t of (2.52), we will refer to the above uniquely defined
connected componentO as thegiant component.
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3. Excursions to small boxes in a large torus

The results of this section are preparatory for the next section, but also of independent
interest. We investigate excursions of the random walk to small boxes in the large torus
E = (Z/NZ)d with d ≥ 3. We consider two pointsx1, x2 in E at | · |∞-distance of
at least 2r + 3, as well as closed| · |∞-ballsC(xi), i = 1,2, with respective centers
xi and radiusL ≤ r/10. We are interested in suitably centered excursions of the walk
from the time it first hitsC(x1) ∪ C(x2) up to the last visit toC(x1) ∪ C(x2) before
leaving the closedr-neighborhood of{x1, x2}, when the walk is conditioned to leave this
r-neighborhood at some pointw and start at a pointu outside thisr-neighborhood. Of
coursew determines whether the excursion lies in the neighborhood ofx1 or x2, and
we center the excursion around 0 by subtracting the relevantxi (depending onw). As a
limit model we consider the excursions of simple random walk onZd starting with the
normalized harmonic measure viewed from infinity of a closed| · |∞-ball C of radiusL
and center the origin up to the last visit ofC. Our main thrust is to derive quantitative
controls on the total variation norm between the centered excursions described above and
the limit model just explained. Our main result appears in Theorem 3.1. Some of our
calculations are similar in spirit to [6] (see in particular Lemma 2.3). However, apart from
working in dimensiond ≥ 3 in place ofd = 2, a feature of the results presented here is
that they pin-point a limit model for the centered excursions.

We now introduce some notation. Throughout this section we assume thatd ≥ 3. We
consider positive integersN,L, r such that

L ≥ 1, r ≥ 10L, N ≥ 4r + 6. (3.1)

Forx ∈ E we define (see the beginning of Section 1 for the notation)

C(x) = B(x, L), C̃(x) = B(x, r), (3.2)

as well as the subsets ofZd ,

C = B(0, L), C̃ = B(0, r), (3.3)

and tacitly identifyC(0) with C andC̃(0) with C̃. We then consider two points inE,

x1, x2 ∈ E with |x1 − x2|∞ ≥ 2r + 3, (3.4)

so that∂C̃(x1) ∩ ∂C̃(x2) = ∅. We then introduce the successive return times toC(x1) ∪

C(x2) and departures from̃C(x1)∪ C̃(x2) (cf. (1.5)), which we denote byRk,Dk, k ≥ 1.
In this section we will only needR1,D1. We also introduce the times of last visits to
C(x1) ∪ C(x2) afterRk and prior toDk:

Lk = sup{n ≥ Rk : Xn ∈ C(x1) ∪ C(x2), n < Dk}, k ≥ 1 (3.5)

(and for the sake of completenessLk is defined as−1 when the above set is empty, an
event which isP -negligible). In this section we only considerL1. To describe the centered
excursions that interest us, we introduce the canonical space

W = the space of finite nearest neighborZd -valued pathsw = (wk)0≤k≤T

with |w0|∞ = |wT |∞ = L, (3.6)
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denote byY. all the canonical processes onW, and endow the countable spaceW with
theσ -algebraA consisting of all subsets ofW. Foru /∈ C̃(x1) ∪ C̃(x2) andw ∈ ∂C̃(xi),
with i = 1 or 2, we define

Qu,w = the law onW of (XR1+k − xi)0≤k≤L1−R1 underPu[· |XD1 = w], (3.7)

where it should be observed that the conditioning event{XD1 = w} has positive proba-
bility underPu, and thatPu[· |XD1 = w]-a.s., 0< R1 < L1 < ∞ andXm ∈ C̃(xi) for
R1 ≤ m ≤ L1, with i as above (3.7). So after identification of̃C with C̃(0), (3.7) is a
meaningful definition.

We now turn to the construction of the limit model for these centered excursions. We
first introduce the harmonic measure ofC viewed from infinity and its mass, the capacity
of C (cf. Chapter 2, §2 of [12]):

eC(z) =

{
Pz[H̃C = ∞] if z ∈ C (see (1.4) for the notation),

0 if z /∈ C,
(3.8)

cap(C) = eC(Zd), (3.9)

µC(z) = eC(z)/cap(C), (3.10)

which is the initial distribution of the limit law. We also define the time of last visit toC:

LC = sup{n ≥ 0 :Xn ∈ C}, (3.11)

with a similar convention as below (3.5) when the above set is empty, and introduce

Q = the law onW of (Xk)0≤k≤LC underPZd
µC
, (3.12)

wherePZd
µC

stands for the law of simple random walk onZd with initial distributionµC .
Note that for anyw = (wk)0≤k≤T in W,

Q(Y = w) = EZd
µC

[Xk = wk,0 ≤ k ≤ T , andH̃C ◦ θT = ∞]

= cap(C)−1eC(w0)Pw0[Xk = wk, 0 ≤ k ≤ T ]eC(wT ), (3.13)

as a result of the simple Markov property and (3.8)–(3.10). We are now ready to state the
main result of this section.

Theorem 3.1. (d ≥ 3) Assume that(3.1), (3.4)hold, andu /∈
⋃
i=1,2 C̃(xi), w ∈⋃

i=1,2 ∂C̃(xi). Then

‖Qu,w −Q‖T V ≤ c
L2

r
, (3.14)

where for a signed measureν onW, ‖ν‖T V =
∑
w∈W |ν(w)| denotes the total variation

of ν.
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Remark 3.2. It will be clear from the proof that the same result holds for collections
xi , 1 ≤ i ≤ M, with |xi − xj |∞ ≥ 2r + 3 wheneveri 6= j , u /∈

⋃
1≤i≤M C̃(xi),

w ∈
⋃

1≤i≤M ∂C̃(xi) (the ∂C̃(xi), 1 ≤ i ≤ M, are pairwise disjoint due to the above
requirement), withL, r as in (3.1) andN ≥ M(2r + 3). As will be clear from the proof
below, the constant corresponding to (3.14) does not depend onM. For simplicity of
notation we however restrict to the caseM = 2.

Proof. We assumew ∈ ∂C̃(x1) and consideru /∈ C̃(x1) ∪ C̃(x2). The case wherew ∈

∂C̃(x2) is treated analogously. Note that

Qu,w(W̃) = 1, where (3.15)

W̃ := {w = (wk)0≤k≤T ∈ W : wk ∈ C̃ for 0 ≤ k ≤ T }, (3.16)

and that forw ∈ W̃,

Qu,w(Y = w) = A(w)
/ ∑
w′

∈W̃
A(w′), (3.17)

with the notation

A(w) = Pu[XR1+k = x1 + wk, 0 ≤ k ≤ T ,

Xn /∈ C(x1) for R1 + T < n < D1, XD1 = w]. (3.18)

In what follows, whenU is a subset ofE (resp.Zd), we writegE,U (·, ·) (resp.gZd ,U (·, ·))
to denote the Green function of the walk killed outsideU , so that

gE,U (x, y) =

∑
k≥0

Px [Xk = y, k < TU ], x, y ∈ E, (3.19)

with a similar formula forgZd ,U wherePZd
x replacesPx , andx, y ∈ Zd . We simply write

gZd (·, ·) whenU = Zd .
Summing over the values of the time of last visit to(

⋃
i=1,2 C̃(xi))

c beforeD1, we
see that forw ∈ W̃ ,

A(w) =

∑
v,v′

gE,(
⋃
i=1,2C(xi ))

c (u, v)
1

2d
Bv′(w), (3.20)

where the above sum runs overv ∼ v′ with v ∈ ∂C̃(x1), v′
∈ C̃(x1), with the notation

Bv′(w) = Pv′ [R1 + T < TC̃(x1)
, XR1+k = wk + x1, 0 ≤ k ≤ T ,

Xk /∈ C(x1) for R1 + T < k < D1, XD1 = w]

= PZd
v̂′ [HC + T < TC̃, XHC+k = wk, 0 ≤ k ≤ T ,

Xk /∈ C for HC + T < k < TC̃, XTC̃ = ŵ], (3.21)



158 Itai Benjamini, Alain-Sol Sznitman

where ẑ = z − x1, using translation invariance and the identification ofC̃(0) with C̃.
Summing over the values of the time of last visit tõC \ C prior toHC , we see that for
w ∈ W̃, v′ as above,

Bv′(w) =

∑
y′

gZd ,C̃\C (̂v
′, y′)

1

2d
Pw0[Xk = wk, 0 ≤ k ≤ T ,

Xk /∈ C for T < k < TC̃, XTC̃ = ŵ]

=

∑
y′,z′,w′

gZd ,C̃\C (̂v
′, y′)

1

2d
Pw0[Xk = wk, 0 ≤ k ≤ T ]

1

2d
gZd , C̃\C(z

′, w′)
1

2d

(3.22)

wherey′, z′ run over the respective neighbors inCc of w0 andwT , whereasw′ runs over
the neighbors iñC of ŵ, and we have used the simple Markov property at timesT +1 and
T , and summed over the values of the time of last visit toC̃ \ C prior to the exit ofC̃ in
ŵ, to obtain the last expression. The next lemma contains a crucial decoupling estimate.

Lemma 3.3. (d ≥ 3, L ≥ 1, 10L ≤ r) For a ∈ C̃ ∩ ∂(C̃c), b ∈ ∂C,

gZd ,C̃\C(a, b) = PZd
b [TC̃ < HC ]gZd ,C̃(a,0)(1 + ψa,b), (3.23)

whereψa,b is defined by this equality and

|ψa,b| ≤ c6
L2

r
. (3.24)

Proof. For simplicity we writegU (·, ·) andg(·, ·) in place ofgZd ,U (·, ·) andgZd (·, ·).
Using the strong Markov property at timeHC , whenHC < TC̃ , and the symmetry of the
killed Green functions, one has

gC̃(a, b) = gC̃\C(a, b)+ EZd
b [gC̃(a,XHC ), HC < TC̃ ]. (3.25)

Therefore we find

gC̃\C(a, b) = EZd
b [gC̃(a, b)− gC̃(a,XHC ), HC < TC̃ ]

+ gC̃(a, b)P
Zd
b [HC > TC̃ ]

= gC̃(a,0)P
Zd
b [HC > TC̃ ] + (gC̃(a, b)− gC̃(a,0))P

Zd
b [HC > TC̃ ]

+ EZd
b [gC̃(a, b)− gC̃(a,XHC ),HC < TC̃ ]. (3.26)

Note thatgC̃(a, ·) is a non-negative harmonic function oñC \ {a}. By the Harnack in-
equality (cf. Theorem 1.7.2 of [12], p. 42), and a standard covering argument (due to the
fact that the cited theorem refers to Euclidean balls), we find

sup
|x|∞≤r/2

gC̃(a, x) ≤ cgC̃(a,0) ≤ cg(a,0). (3.27)
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Moreover by the gradient estimates in (a) of Theorem 1.7.1 of [12], p. 42, we see that

sup
|x|∞≤L,|e|≤1

|gC̃(a, x + e)− gC̃(a, x)| ≤
c

r
sup

|x|∞≤r/2
gC̃(a, x). (3.28)

Combining (3.27), (3.28), we see that for alla ∈ C̃ ∩ ∂C̃c,

sup
f∈C∪∂C

|gC̃(a, f )− gC̃(a,0)| ≤ c
L

r
gC̃(a,0). (3.29)

Inserting this inequality in (3.26) we see that

gC̃\C(a, b)− gC̃(a,0)P
Zd
b [HC > TC̃ ] =: R, with

|R| ≤ PZd
b [HC > TC̃ ]c

L

r
gC̃(a,0)+ c

L

r
gC̃(a,0)

≤ c
L2

r
gC̃(a,0)P

Zd
b [HC > TC̃ ],

(3.30)

where in the last step we have used the lower bound

PZd
b [HC > TC̃ ] ≥ PZd

b [HC > T2C ] · inf
x∈(2C)c

PZd
x [HC = ∞]

≥ cPZd
b [HC > T2C ] ≥ cPZ

1 [H0 > HL+1] ≥
c

L
.

Our claim (3.23), (3.24) now follows. ut

We now continue the proof of Theorem 3.1. Note that by the strong Markov property
applied at timeHC , and standard estimates on the Green function (cf. [12, p. 31]),

PZd
z [HC < ∞] ≤

∑
x∈C

gZd (z, x)
/

inf
y∈C

∑
x∈C

gZd (y, x)

≤ c

(
L

r

)d−2

for z ∈ C̃c. (3.31)

Also by similar estimates, and using if necessary the invariance principle to let the path
move away, we see by (3.1) that

sup
z∈C̃c

PZd
z [HC < ∞] ≤ c′ < 1. (3.32)

Hence forb ∈ ∂C, using the strong Markov property at timeTC̃ , we find that

0 ≤ PZd
b [HC > TC̃ ] − PZd

b [HC = ∞] = PZd
b [HC ◦ θTC̃ < ∞, HC > TC̃ ]

≤ PZd
b [HC > TC̃ ]c′

(
1 ∧ c

(
L

r

)d−2)
(with c′ < 1). (3.33)
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It thus follows that forb ∈ ∂C,

PZd
b [HC > TC̃ ] = PZd

b [HC = ∞](1 + εb) with

0 ≤ εb ≤ c

(
L

r

)d−2

≤ c7
L2

r
. (3.34)

We now assume for the time being (cf. (3.24), (3.34)) that

(c6 + c7)
L2

r
≤

1

2
. (3.35)

The case when (3.35) does not hold will be straightforwardly handled at the end of the
proof. We then define, fora ∈ C̃ ∩ ∂(C̃c), b ∈ ∂C, with the notations of (3.23), (3.34),

e0a,b = (1 + ψa,b)(1 + εb), so that

|0a,b|
(3.35)
≤ c

L2

r
, and gZd ,C̃\C(a, b) = PZd

b [HC = ∞]gZd ,C̃(a,0)e
0a,b .

(3.36)

Coming back to (3.20), (3.22), we see by (3.23), (3.34) that forw ∈ W̃,

A(w) =

∑
y′,z′

(
1

2d

)2

PZd
y′ [HC = ∞]PZd

w0
[Xk = wk, 0 ≤ k ≤ T ]PZd

z′ [HC = ∞]

×

{ ∑
v,v′,w′

(
1

2d

)2

gE,(C(x1)∪C(x2))
c (u, v)gZd ,C̃(v

′,0)gZd ,C̃(w
′,0)e0v′,y′+0w′,z′

}
, (3.37)

where in the above sumsy′, z′ run overCc with y′
∼ w0, z′ ∼ wT , v runs over∂C̃(x1),

v′, w′
∈ C̃ with v′

∼ v̂ (= v − x1), andw′
∼ ŵ = w − x1. As a result we see that for

w1, w2 ∈ W̃,

A(w1)

A(w2)
=
Ã(w1)

Ã(w2)
e0(w1,w2) with (3.38)

Ã(w) =

∑
y′,z′

(
1

2d

)2

PZd
y′ [HC = ∞]PZd

w0
[Xk = wk, 0 ≤ k ≤ T ]PZd

z′ [HC = ∞]

(3.8)
= eC(w0)P

Zd
w0

[Xk = wk, 0 ≤ k ≤ T ]eC(wT )

(3.13)
= cap(C)Q(Y = w) for w ∈ W̃, (3.39)

|0(w1, w2)| ≤ c
L2

r
. (3.40)

Inserting (3.38) into (3.17), we see that forw ∈ W̃,

Qu,w[Y = w] =
Q(Y = w)∑

w′
∈W̃ Q(Y = w′)e0(w

′,w)
=
Q(Y = w)

Q(W̃)
eG(w), (3.41)

where|G(w)| ≤ cL2/r.
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Note that by (3.12), (3.16), and the strong Markov property,

Q(W̃c) = PZd
µC

[HC ◦ θTC̃ < ∞]
(3.31),(3.32)

≤ c′
(

1 ∧ c

(
L

r

)d−2)
with c′ < 1. (3.42)

We thus find that

‖Qu,w −Q‖T V =

∑
w∈W̃

|Qu,w(Y = w)−Q(Y = w)| +Q(W̃c)

=

∑
w∈W̃

Q(Y = w)

Q(W̃)
|exp{G(w)} − 1 +Q(W̃c)| +Q(W̃c) ≤ c

L2

r
,

(3.43)

using (3.41), (3.42). As a result we have proved (3.14) under (3.35). On the other hand,
when (3.35) does not hold,L2/r ≥

1
2(c6 + c7)

−1, and

‖Qu,w −Q‖T V ≤ 2 ≤ 4(c6 + c7)
L2

r
,

so that adjusting the constant in (3.14) if necessary, we have completed the proof of
Theorem 3.1. ut

4. Volume estimate for the giant component

The main purpose of this section is to show that the giant componentO in the vacant
set left by the walk at timet = uNd (this component is well-defined on the eventGβ,t ,
cf. (2.53)) typically occupies a non-degenerate fraction of the volume of the torusE

whenN is large andu is chosen small. The statement (2.56) provides a local criterion,
depending on the configuration of vacant sites left by the walk in a neighborhood of order
const logN of a pointx ∈ E, which ensures, whenGβ,t occurs, thatx belongs toO.
By (2.57) this reduces the problem of proving the non-degeneracy of the volume ofO

to the question of showing that typically the asymptotic fraction of pointsx in E that
fulfill the local conditionCc0,x,uNd is non-degenerate whenu is small. By (2.4) this task
is further reduced to the control on the variance of this quantity. It turns out that it is
simpler to bound the variance of the fraction of points ofE that satisfy a modified local
condition where the fixed timet = uNd is replaced by a random time corresponding
to the completion of constu(logN)2(d−2) excursions of the walk to a neighborhood of
order(logN)2 of the point (cf. (4.22)). The controls of Section 3 are then instrumental
in bounding the variance of this modified ratio (cf. Proposition 4.2). Our main estimates
on averages of suitable local functions are expressed in a general form (not specifically
referring to (2.56)), and appear in Theorem 4.3, whend ≥ 3. The applications to the
vacant set, the giant component (whend ≥ d0, cf. Corollary 2.5), and the size of the
largest ball in the vacant set are given in Corollaries 4.5, 4.6, 4.8.
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We now begin with some additional notation. We considerd ≥ 3,L ≥ 1, r ≥ 10L,
N ≥ 10r, x ∈ E, and recall the definition ofC(x) ⊆ C̃(x) in (3.2). We consider some
functionφ, defined on the collection of subsets ofC(0):

φ : A ⊆ C(0) 7→ φ(A) ∈ [0,1]. (4.1)

Typical examples to keep in mind are for instance

φ0(A) = 1{0 /∈ A} for A ⊆ C(0), (4.2)

φ1(A) = 1{for someF ∈ L2 with 0 ∈ F , 0 is connected toS(0, L) in F \ A}, (4.3)

where we refer to (2.40) for the latter example. Withφ as in (4.1), we then define, for
x ∈ E andt ≥ 0,

h(x, t) = φ((X[0,t ] ∩ C(x))− x). (4.4)

Our chief task in this section consists in the derivation of appropriate lower bounds on
ratios of the type

0u =
1

Nd

∑
x∈E

h(x, uNd) with u > 0. (4.5)

Forx ∈ E we introduce, in analogy to (1.9), (1.10),

B(x) = x + B ⊆ B̃(x) = x + B̃ (soC(x)  C̃(x)  B(x)  B̃(x)) (4.6)

as well as the successive returns toB(x) and departures from̃B(x):

Rx
k ,D

x
k , k ≥ 1. (4.7)

We also consider (cf. (1.5)) the successive returns toC(x) and departures from̃C(x):

Rxk ,D
x
k , k ≥ 1. (4.8)

We begin with the following auxiliary result (note thatr does not appear on the right-hand
side of the inequalities):

Lemma 4.1. (d ≥ 3, L ≥ 1, r ≥ 10L,N ≥ 10r) There are constantsc8 > c9 > 0 such
that foru > 0, x ∈ E,

P [Rx`∗(u) ≤ uNd ] ≤ ce−cuL
d−2

with `∗(u) = [c8uL
d−2], (4.9)

P [Dx`∗(u) ≥ uNd ] ≤ ce−cuL
d−2

with `∗(u) = [c9uL
d−2]. (4.10)

Proof. We begin with the proof of (4.9). We introduce, for` ≥ 1,

Zx` =

∑
m≥1

1{Rx
` ≤ Rxm ≤ Dx` } =

∑
m≥1

1{Rx
` ≤ Dxm ≤ Dx` }. (4.11)
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By the strong Markov property at timesDxm andHC̃(x), we see that fori ≥ 0, ` ≥ 2,
P -a.s.,

P [Zx` > i |FRx
`
] = PXRx

`
[Rxi+1 < TB̃(x)]

≤ PXRx
`
[HC̃(x) < TB̃(x)]( sup

|z−x|∞∈{r,r+1}

Pz[HC(x) < TB̃(x)])
i+1

= PXRx
`
[HC̃(x) < TB̃(x)]( sup

|z−x|∞=r

Pz[HC(x) < TB̃(x)])
i+1. (4.12)

Analogously we have, fori ≥ 0,

P [Zx1 > i] ≤ P [HC < TB̃ ]( sup
|z−x|∞=r

Pz[HC(x) < TB̃(x)])
i . (4.13)

Using similar bounds to (3.31), (3.32), we find that for` ≥ 2, i ≥ 0,P -a.s.,

P [Zx` > i |FRx
`
] ≤ c′ ∧

(
c

(
r

N

)d−2)
·

{
c′ ∧

(
c

(
L

r

)d−2)}i+1

with c′ < 1.

Using the inequality

P [HC(x) < TB̃(x)]

≤ E
[ ∑
k≥0

1{Xk ∈ C(x), k < TB̃(x)}
]/

inf
y∈C(x)

Ey

[ ∑
k≥0

1{Xk ∈ C(x), k < TB̃(x)}
]
,

(4.14)

a similar upper bound to (1.34) on the numerator and a lower bound of typecL2 on the
denominator with the help of the invariance principle, we find that

P [HC(x) < TB̃(x)] ≤ c

(
L

N

)d−2

,

and it is also straightforward to argue, by applying the invariance principle and similar
arguments to the derivation of (3.32), that the above probability is bounded by some
c′′ < 1. Coming back to (4.12), (4.13), we thus see that

P [Zx` > i |FRx
`
] ≤ p0p

i+1, P [Zx1 > i] ≤ p0p
i+1 for i ≥ 0, ` ≥ 2,

with p0 = c10 ∧

(
c

(
r

N

)d−2)
, p = c10 ∧

(
c

(
L

r

)d−2)
, c10 < 1.

(4.15)

By stochastic domination, we thus see that forλ > 0 with eλp < 1, and` ≥ 2,

E[exp{λZx` } |FRx
`
] ≤ 1 − p0p +

∑
k≥1

eλkp0p
k(1 − p) = 1 + p0p

eλ − 1

1 − eλp
,

E[exp{λZx1}] ≤ 1 + p0p
eλ − 1

1 − eλp
.

(4.16)
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As a result we find that with the notation below (1.12),

P [Z1 + · · · + Zk∗ ≥ n] ≤ exp{−λn}

(
1 + p0p

eλ − 1

1 − eλp

)k∗
≤ exp

{
−λn+ k∗p0p

eλ − 1

1 − eλp

}
. (4.17)

Note thatk∗p0p ≤ cuLd−2, and choosingλ so thateλc10 =
1
2(1 + c10) (recallp ≤ c10

< 1), we thus obtain

P [Rxn ≤ uNd ] ≤ P [Rx
k∗ ≤ uNd ] + P [Rx

k∗ > uNd
≥ Rxn ]

(1.11),(4.17)
≤ c exp{−cuNd−2

} + c exp{−λn+ cuLd−2
}, (4.18)

and (4.9) follows straightforwardly.
We now turn to the proof of (4.10). We use a bound from below onP [HC(x) < TB̃(x)]

andPz[HC(x) < TB̃(x)] with a similar right-hand side to that in (4.14), except that inf is
replaced with sup, and in the case of the second probabilityE is replaced withEz (see
also (1.57)). Then by standard Green function estimates (see for instance (1.11) of [7]),
we obtain

P [Zx` > 0 |FRx
`
]
P -a.s.
≥ c

(
L

N

)d−2

for ` ≥ 2, P [Zx1 > 0] ≥ c

(
L

N

)d−2

. (4.19)

As a result we see that forλ > 0, ` ≥ 2,

E[exp{−λZx` } |FRx
`
] ≤ 1 − (1 − e−λ)c

(
L

N

)d−2

,

E[exp{−λZx1}] ≤ 1 − (1 − e−λ)c

(
L

N

)d−2

,

so that forn ≥ 1 (with the convention that the sum in the probability below vanishes
whenk∗ ≤ 1),

P [Z1 + · · · + Z(k∗−1)+ < n] ≤ exp

{
λn− (k∗ − 1)+(1 − e−λ)c

(
L

N

)d−2}
, (4.20)

where(k∗ − 1)+c(L/N)d−2
≥ cuLd−2

− c (cf. below (1.12)). We then see that

P [Dxn ≥ uNd ] ≤ P [Rx
k∗

≥ uNd ] + P [Rx
k∗
< uNd , Dxn ≥ Rx

k∗
]

(1.12)
≤ c exp{−cuNd−2

} + P [Z1 + · · · + Z(k∗−1)+ < n]
(4.20)
≤ c exp{−cuNd−2

} + c exp{λn− (1 − e−λ)cuLd−2
}. (4.21)

If we chooseλ so thate−λ = 1/2, the claim (4.10) follows straightforwardly. ut
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We now introduce a modification of0u in (4.5), which is more convenient when bounding
its variance. Namely, using (4.1), (4.4), and the notation from (4.9), we define

0̃u =
1

Nd

∑
x∈E

h(x,Dx`∗(u)) for u > 0. (4.22)

Our main estimate on the variance of0̃u comes in the next proposition. In what follows,
var and cov denote the variance and covariance underP .

Proposition 4.2. (d ≥ 3, L ≥ 1,N ≥ 10r, r ≥ 10L, under(4.1))

var(0̃u) ≤ c

((
r

N

)d
+ u

Ld

r

)
for u > 0. (4.23)

Proof. When`∗(u) = 0, with our conventions we see that0̃u = N−d
∑
x∈E φ(C(x) ∩

{X0}−x), a non-random quantity as follows from translation invariance. The claim (4.23)
is then trivially satisfied. We thus assume from now on that`∗(u) ≥ 1. We then consider
an integerr as in (4.23), and write

var(0̃u) =
1

N2d

∑
x1,x2∈E

cov(h(x1,D
x1
`∗(u)), h(x2,D

x2
`∗(u)))

≤ c

(
r

N

)d
+ sup

|x1−x2|∞≥2r+3
|cov(h(x1,D

x1
`∗(u)), h(x2,D

x2
`∗(u)))|. (4.24)

We recall the notationsRk,Dk, k ≥ 1, introduced below (3.4), and write, fori = 1,2,

n
xi
1 = inf{k ≥ 1 :XRk ∈ C(xi)},

n
xi
j+1 = inf{k > n

xi
j : XRk ∈ C(xi)}, j ≥ 1,

(4.25)

The relation betweenRxik , Dxik , k ≥ 1, for i = 1,2, andRk,Dk, k ≥ 1, is the following:
one hasP -a.s.,

R
xi
k = R

n
xi
k
, D

xi
k = D

n
xi
k

for k ≥ 1, i = 1,2. (4.26)

We then introduce the constant (cf. (4.9), (4.10))

c11 = c8/c9 > 1. (4.27)

We recall the definition (3.5) and denote byek(·) theP -a.s. well-defined centered excur-
sion

ek(m) = XRk+m − xi, 0 ≤ m ≤ Lk − Rk, on {XRk ∈ C(xi)}, i = 1,2. (4.28)

We recall our tacit identification of̃C(0) ⊆ E with C̃ in Zd (see below (3.3)), so that
P -a.s.,ek(·) ∈ W̃ ⊆ W (cf. (3.6), (3.16)). We also consider thek-th excursion toC(xi),
after centering at the origin, which is alsoP -a.s. well-defined:

eik(·) = e
n
xi
k
(·), k ≥ 1, i ∈ {1,2}, (4.29)
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as well as its trace
S ik = Im eik, (4.30)

where forw = (wm)0≤m≤T ∈ W, Imw = {w0, . . . , wT } ⊆ Zd . With the above notation,
we see thatP -a.s.,

X[0,D
xi
`∗(u)

] ∩ C(xi)− xi = (S i1 ∪ · · · ∪ S i`∗(u)) ∩ C, (4.31)

h(xi,D
xi
`∗(u)) = G(ei1, . . . , e

i
`∗(u)) for i = 1,2, (4.32)

whereG is the function fromW`∗(u) into [0,1] defined by (cf. (4.1))

G(w1, . . . , w`∗(u)) = φ((Imw1 ∪ · · · ∪ Imw`∗(u)) ∩ C). (4.33)

We now consider two [0,1]-valued functionsG1,G2 onW`∗(u) (we are especially inter-
ested in the caseGi = G orGi = 1), and write

Hi = Gi(e
i
1, . . . , e

i
`∗(u)), i = 1,2. (4.34)

We see that forz /∈ C̃(x1) ∪ C̃(x2),

Ez[H1H2] =

∑
K
Ez[H1H2, A(k1,k2)], (4.35)

whereK denotes the set of ordered pairs of`∗(u)-uples of integers

(k1, k2) with 1 ≤ ki1 < · · · < ki`∗(u) for i = 1,2,

with all kij distinct for 1≤ j ≤ `∗(u), i = 1,2, (4.36)

and for(k1, k2) ∈ K, we write

A(k1,k2) = {nxim = kim for 1 ≤ m ≤ `∗(u), i = 1,2}. (4.37)

We introduce theσ -algebra

E = theP -completion ofσ(XDk , k ≥ 1). (4.38)

Note thatnxim , i ∈ {1,2},m ≥ 1, areE-measurable, so that

A(k1,k2) ∈ E for any(k1, k2) ∈ K. (4.39)

Using the strong Markov property at the timesDm,m ≤ k := k1
`∗(u) ∨ k2

`∗(u), we see that

for (k1, k2) ∈ K, P -a.s. onA(k1,k2),

Ez[H1H2 | E ]

=

∫
G1(wk1

1
, . . . , wk1

`∗(u)
)G2(wk2

1
, . . . , wk2

`∗(u)
)

k∏
m=1

QXDm−1
,XDm (dwm), (4.40)

where we have used the notation (3.7) and the conventionXD0 = z whenm = 1.
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We can now find, for eachu /∈ C̃(x1) ∪ C̃(x2), w ∈ ∂C̃(x1) ∪ ∂C̃(x2), a coupling
Q̃u,w(dw, dw

′) onW ×W such that (see (3.12))

under the first (resp. second) canonical coordinate the image of
Q̃u,w isQu,w (resp.Q), (4.41)

Q̃u,w(w 6= w′) =
1

2
‖Qu,w −Q‖T V

(3.14)
≤ c

L2

r
; (4.42)

for the construction of̃Qu,w see for instance Theorem 5.2, p. 19 of [13]. We thus see that
for (k1, k2) ∈ K, P -a.s. onA(k1,k2),

∣∣∣Ez[H1H2 | E ] −

2∏
i=1

EQ
⊗`∗(u)

[Gi ]
∣∣∣

=

∣∣∣∣ ∫ G1(wk1
1
, . . . , wk1

`∗(u)
)G2(wk2

1
, . . . , wk2

`∗(u)
)

−G1(w
′

k1
1
, . . . , w′

k1
`∗(u)

)G2(w
′

k2
1
, . . . , w′

k2
`∗(u)

)

k∏
m=1

Q̃XDm−1,XDm
(dwm, dw

′
m)

∣∣∣∣
≤ 2`∗(u) sup

m∈{kij : i=1,2,1≤j≤`∗(u)}

Q̃XDm−1,XDm
(wm 6= w′

m)

(4.42)
≤ c`∗(u)

L2

r

(4.9)
≤ cu

Ld

r
. (4.43)

Hence by (4.35), (4.39), we see that forz /∈ C̃(x1) ∪ C̃(x2),∣∣∣Ez[H1H2] −

2∏
i=1

EQ
⊗`∗(u)

[Gi ]
∣∣∣ ≤ cu

Ld

r
,

and hence ∣∣∣E[H1H2] −

2∏
i=1

EQ
⊗`∗(u)

[Gi ]
∣∣∣ ≤ c

((
r

N

)d
+ u

Ld

r

)
. (4.44)

ChoosingGi = G (cf. (4.33)) orGi = 1, we see by (4.32) that the last term in the second
line of (4.24) is smaller thanc((r/N)d +uLd/r). By (4.24), the claim (4.23) follows. ut

If the functionφ in (4.1) is decreasing, i.e.φ(A) ≥ φ(A′) for A ⊆ A′
⊆ C(0), then we

can easily transfer controls on0. from controls oñ0.

Theorem 4.3. (d ≥ 3, L ≥ 1, N ≥ 100L) Assume thatφ in (4.1) is decreasing. Then
for u > 0, s > 0,

P [0u < E[0c11u] − c exp{−cuLd−2
} − s] ≤ c

σ 2
u,L,N

s2
+ cNd exp{−cuLd−2

}, (4.45)
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and

P [0u > E[0
c−1

11 u
] + c exp{−cuLd−2

} + s] ≤ c
σ 2
u,L,N

s2
+ cNd exp{−cuLd−2

}, (4.46)

wherec11 > 1 is defined in(4.27)and

σ 2
u,L,N := inf

{(
r

N

)d
+ u

Ld

r
: 10L ≤ r ≤

N

10

}
. (4.47)

Proof. Chooser as in (4.47) and definẽ0u as in (4.22). Sinceφ is decreasing, we see that

E[0u] − E[0̃u] =
1

Nd

∑
x∈E

E[h(x, uNd)− h(x,Dx`∗(u))]

≥ −
1

Nd

∑
x∈E

P [Dx`∗(u) < uNd ]
(4.9)
≥ −ce−cuL

d−2
,

and using the fact that̀∗(u/c11) = `∗(u) (cf. (4.27), (4.9), (4.10)), we also have

E[0̃u/c11] − E[0u] =
1

Nd

∑
x∈E

E[h(x,Dx`∗(u))− h(x, uNd)]

≥ −
1

Nd

∑
x∈E

P [Dx`∗(u) ≥ uNd ]
(4.10)
≥ −ce−cuL

d−2
.

As a result we find that

E[0c11u] − ce−cuL
d−2

≤ E[0̃u] ≤ E[0u] + ce−cuL
d−2

for u > 0. (4.48)

In the same fashion we also find that foru > 0,

P [0u < 0̃u] ≤ cNde−cuL
d−2
, P [0̃

c−1
11 u

< 0u] ≤ cNde−cuL
d−2
. (4.49)

Hence using the first inequalities in (4.48) and (4.49), we find that foru, s > 0,

P [0u < E[0c11u] − ce−cuL
d−2

− s] ≤ P [0̃u < E[0̃u] − s] + cNde−cuL
d−2

≤
var(0̃u)

s2
+ cNde−cuL

d−2
,

and by (4.23), optimizing overr, the claim (4.45) follows. Using the rightmost inequali-
ties of (4.49) and of (4.48), withc−1

11 u in place ofu, in the case of (4.48), we analogously
obtain (4.46). ut

Remark 4.4. In the applications we discuss below, we will chooseL = [(logN)2], so
that for givenu > 0 andN ≥ c(u),

σ 2
u,L,N ≤ cu

d
d+1L

d2
d+1N−

d
d+1 ≤ cu

d
d+1 (logN)

2d2
d+1N−

d
d+1 , (4.50)

as follows from a straightforward upper bound of the expression in (4.47).
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We now turn to the first application of Theorem 4.3 that sharpens (1.13) to an estimate
of the relative volume of the vacant set left by the walk at timeuNd .

Corollary 4.5. (d ≥ 3)

lim
N
P [e−cu ≤ |E \X[0,uNd ] |/N

d
≤ e−c

′u] = 1 for u > 0. (4.51)

Proof. We chooseL = [(logN)2] andφ = φ0 (cf. (4.2)), so that

0u
(4.5)
=

1

Nd
|E \X[0,uNd ] | for u > 0, (4.52)

and by translation invariance

E[0u] = E[h(0, uNd)] = P [0 /∈ X[0,uNd ] ]. (4.53)

Note that with the above choice forL, in view of (4.50),σu,L,N andNde−cuL
d−2

tend
to 0 asN tends to infinity. If we choose for instances =

√
σu,L,N , the claim (4.51)

follows straightforwardly from (4.45), (4.46) and our estimates in (1.13) onE[0c11u] and
E[0

c−1
11 u

]. ut

We recall that on the eventGβ,t defined in (2.52), the vacant set left by the walk at time
t contains a well-defined unique giant componentO (cf. (2.53)), andGβ,uNd is typical
underP for largeN whend ≥ d0 andu is small (cf. (2.57)). As we will now see, in this
regimeO also typically occupies a non-degenerate fraction of the volume ofE.

Corollary 4.6. (d ≥ d0, cf. (2.41)) For anyβ, γ ∈ (0,1), one has

lim
N
P [Gβ,uNd ∩ {|O|/Nd

≥ γ }] = 1 for smallu > 0. (4.54)

Proof. We chooseL = [(logN)2] ∨ [c0 logN ] (cf. Corollaries 2.5 and 2.6), and

φ(A) = 1{for someF ∈ L2 with 0 ∈ F , 0 is connected toS(0, L0) in F \ A} (4.55)

for anyA ⊆ C(0) (= B(0, L)), with L0 as in (2.53). In this case for largeN we have
(cf. (2.40), (4.4), (4.5))

0u =
1

Nd

∑
x∈E

1C
c0,x,uN

d

(2.56)
≤

|O|

Nd
onGβ,uNd , (4.56)

and by translation invariance we find

E[0u] = P [Cc0,0,uNd ]. (4.57)

As already mentioned below (4.53),σu,L,N andNde−cuL
d−2

tend to 0 asN tends to
infinity. We can chooses =

√
σu,L,N in (4.45), so that

lim
N
P [0u ≥ E[0c11u] − ce−cuL

d−2
−

√
σu,L,N ] = 1.

The claim (4.54) then follows from (2.43), (2.57), and (4.56). ut
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Remark 4.7. 1) Whend ≥ d0, the above corollary shows that for smallu > 0, when
N becomes large the giant component typically has non-degenerate volume inE. How-
ever, this does not rule out the existence of other components in the vacant set with non-
degenerate volume. Note that by the definition of the giantO (cf. (2.53)) such components
do not contain any connected setsA ∈ A2 of | · |∞-diameterL0 = [c0 logN ] and in par-
ticular any segment of lengthL0.

2) Whend ≥ 3 andu > 0, the set visited by the walk up to timeuNd typically constitutes
a giant component as well. Indeed, by Corollary 4.5 it typically occupies a non-degenerate
fraction of the volume ofE whenN is large. Moreover, by a straightforward modification
of (1.24) (see also Remark 1.3), we see that when 8L̃ ≤ N andu > 0,

P [HB(0,L̃) > uNd ] ≤ c exp{−cuNd−2
} + (1 − c(L̃/N)d−2)

k∗−1
+

≤ c exp{−cuL̃d−2
}, (4.58)

using the definition ofk∗ below (1.12). In particular, choosing

L̃ = L1 :=

[
c12

(
logN

u

)1/(d−2)]
,

we find that

lim
N
P [for somex in E, X[0,uNd ] ∩ B(x, L1) = ∅] = 0 for all u > 0. (4.59)

So the set visited by the walk is ubiquitous as well, and typically comes within distance
of order(logN)1/(d−2) from any point ofE. ut

In fact, holes in the vacant set of order(logN)1/(d−2) do occur as well. More precisely,
consider the maximal radius of an| · |∞-ball contained in the vacant set at timet :

L̂(t) = sup{m ≥ 0 : for somex in E,X[0,t ] ∩ B(x,m) = ∅}, (4.60)

with the convention that̂L(t) = 0 when the set on the right-hand side of (4.60) is empty.

Corollary 4.8. (d ≥ 3) There existsc13 (< c12) such that

lim
N
P [L2 ≤ L̂(uNd) ≤ L1] = 1 for u > 0, (4.61)

withL1 defined above(4.59)andL2 =
[
c13

( logN
u

)1/(d−2)]
.

Proof. In view of (4.59) we only need to prove the lower bound. The argument uses a
variation on the proof of Corollary 4.5. For̃L ≤ (logN)2 and largeN , by a straightfor-
ward modification of (1.25), we see that

P [HB(0,L̃) > uNd ] ≥ −c exp{−cuNd−2
} + c(1 − c(L̃/N)d−2)k

∗

≥ c exp{−cuL̃d−2
}, (4.62)
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using the definition ofk∗ below (1.12). Proceeding as in Corollary 4.5, we then choose
L = [(logN)2], and the decreasing function

φ : A ⊆ C(0) 7→ φ(A) = 1{B(0, L̃) ∩ A = ∅}.

With this choice we find that

0u
(4.5)
=

1

Nd

∑
x∈E

1{B(x, L̃) ∩X[0,uNd ] = ∅}.

SettingL̃ =
[
c13

( logN
u

)1/(d−2)] with c13 small enough, we see by translation invariance
that for largeN ,

E[0c11u] = P [HB(0,L̃) > c11uN
d ] ≥ N−1/6. (4.63)

We then chooses =
√
σu,L,N in (4.45), and note by (4.50) that for largeN , s =

√
σu,L,N

is much smaller thanN−1/6, and thatσu,L,N andNde−cuL
d−2

tend to 0 asN tends to
infinity. As a result we obtain

lim
N
P [0u ≤

1
2N

−1/6] = 0. (4.64)

This is more than enough to prove the lower estimate in (4.61). This concludes the proof
of Corollary 4.8. ut

The above result exhibits a different asymptotic behavior from that of Bernoulli bond-
(or site-) percolation onE, where for largeN the largest| · |∞-ball contained in a cluster
typically has size of order(logN)1/d , which is much smaller than(logN)1/(d−2).

Acknowledgements.We wish to thank Laurent Goergen and Roey Izkovsky for their simulations,
as well as David Windisch for his comments on a previous version of this work. Alain-Sol Sznitman
wants to thank Amir Dembo for helpful discussions.

References

[1] Aldous, D.: On the time taken by random walks on finite groups to visit every state.
Z. Wahrsch. Verw. Gebiete62, 361–374 (1983) Zbl 0488.60011 MR 0688644

[2] Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs. http://www.stat.
berkeley.edu/˜aldous/RWG/book.html.

[3] Alon, N., Benjamini, I., Stacey, A.: Percolation on finite graphs and isoperimetric inequalities.
Ann. Probab.32, 1727–1745 (2004) Zbl 1046.05071 MR 2073175

[4] Brummelhuis, M. J. A. M., Hilhorst, M. J.: Covering a finite lattice by a random walk. Phys.
A 176, 387–408 (1991) MR 1130067

[5] Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random
walks in two dimensions. Ann. of Math.160, 433–464 (2004) Zbl 1068.60018 MR 2123929

[6] Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Late points for random walks in two dimensions.
Ann. Probab.34, 219–263 (2006) Zbl 1100.60057 MR 2206347

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0488.60011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0688644
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1046.05071&format=complete
http://www.ams.org/mathscinet-getitem?mr=2073175
http://www.ams.org/mathscinet-getitem?mr=1130067
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1068.60018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2123929
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1100.60057&format=complete
http://www.ams.org/mathscinet-getitem?mr=2206347


172 Itai Benjamini, Alain-Sol Sznitman

[7] Dembo, A., Sznitman, A. S.: On the disconnection of a discrete cylinder by a random walk.
Probab. Theory Related Fields136, 321–340 (2006) Zbl 1105.60029 MR 2240791

[8] Durrett, R.: Probability: Theory and Examples. Wadsworth and Brooks/Cole, Pacific Grove
(1991) Zbl 0709.60002 MR 1068527

[9] Grigoryan, A., Telcs, A.: Sub-Gaussian estimates of heat kernels on infinite graphs. Duke
Math. J.109, 451–510 (2001) Zbl 1010.35016 MR 1853353

[10] Heydenreich, M., van der Hofstadt, R.: Random graph asymptotics on high dimensional tori.
Comm. Math. Phys.270, 335–358 (2007) Zbl pre05159687 MR 2276449

[11] Kesten, H.: Percolation Theory for Mathematicians. Birkhäuser, Basel (1982)
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