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Abstract. One of the oldest and most fundamental problems in the theory of finite projective planes
is to classify those having a group which acts transitively on the incident point-line pairs (flags).
The conjecture is that the only ones are the Desarguesian projective planes (over a finite field). In
this paper, we show that non-Desarguesian finite flag-transitive projective planes exist if and only if
certain Fermat surfaces have no non-trivial rational points, and formulate several other equivalences
involving Fermat curves and Gaussian periods. In particular, we show that a non-Desarguesian flag-
transitive projective plane of orderexists if and only ifn > 8, the numbep = n2+n+1is

prime, and the square of the absolute value of the Gaussian pErl;gg)n % (¢ = primitive pth

root of unity, D,, = group ofnth powers inIF;) belongs toZ. We also formulate a conjectural
classification of all pairgp, n) with p prime andn | p — 1 having this latter property, and give

an application to the construction of symmetric designs with flag-transitive automorphism groups.
Numerical computations are described verifying the first conjecturgfer 4 x 1022 and the
second forp < 10.

1. Introduction

A finite projective planell of ordern, wheren € N, is a point-line incidence structure
satisfying the following conditions:

(i) each point is incident with (“lies on”y + 1 lines and each line is incident with
(“contains”)n + 1 points;

(ii) any two distinct lines intersect in exactly one point and any two distinct points lie on
exactly one line.

One also traditionally requires thabe > 2 to exclude the uninteresting cases of a single
line and a point not on it = —1), a single line and one point on it (= 0), or the

three vertices and three sides of a triangle<{ 1). This is equivalent to requiring that

IT contains an ordinary quadrangle (four points with no three on a line) as subgeometry.

K. Thas: Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2,
B-9000 Ghent, Belgium; e-mail: kthas@cage.UGent.be

D. Zagier: Max-Planck-Institutifr Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany, and
College de France, 3, rue d’'Ulm, F-75005 Paris, France; e-mail: zagier@mpim-bonn.mpg.de

Mathematics Subject Classification (2008LE15, 05E20, 11L05, 14G05



174 Koen Thas, Don Zagier

A flag of T is an incident point-line pair. It is easily seen that a finite projective plane of
ordern hasn? 4+ n 4 1 points,n? + n + 1 lines, andn + 1)(n? + n + 1) flags.

The obvious examples of finite projective planes are the projective pEiEs over
finite fieldsFF. In this case the order = |F| is a prime power, and in fact no examples of
finite projective planes of non-prime power order are known, though there are examples of
prime power order which are not isomorphid®®(F). A classical theorem of R. Moufang
(cf. [9]) states that a finite projective plane is isomorphic to s&h@) if and only if a
certain configurational property corresponding to the classical theorem of Desargues is
satisfied. Projective planes of this type are therefore often cBiés@rguesian

We call a projective planflag-transitiveif its group of automorphisms acts transi-
tively on the flags. Clearly Desarguesian planes have this property, since the automor-
phism group of the projective plarie?(F) over a finite fieldF of characteristicp is
the semi-direct produd®I'L3(IF) = PGL3(FF) x Gal(F/FF,) and already the subgroup
PGL3(IF) acts transitively on the flags. Conversely, itis an old and fundamental conjecture
in the theory of projective planes, first mentioned in D. G. Higman and J. E. McLaugh-
lin [B], that every flag-transitive finite projective plane is Desarguesian. The following
theorem, which is an amalgam of results from a large number of papers in the literature
(see e.gl[6]), strongly limits the possibilities for a counterexample to this conjecture.

Theorem 1.1. Let I1 be a finite flag-transitive projective plane of orderand suppose
thatIT is not Desarguesian. Then

(a) nis even;

(b) the numbep = n2 +n + 1is prime;

(c) the automorphism groupwut(IT) of IT acts regularly (simply transitively) on the flags
of IT.

Note that part (c) implies thgAut(IT)| = (n 4+ 1)(n? + n + 1), the number of flags.
This is in stark contrast to the Desarguesian case, where already the suB@bg(¥F)

of Aut(IT) has a much larger order. In fact,Iif is Desarguesian of order different from
2 or 8, then it is known [3] that A¢TT) containsno subgroup which acts regularly on the
flags ofI1.

Remark 1.2. In [4], W. Feit claims that ifl1 andn are as in Theorefin 1.1, thenis

not a power of 2, and in a recent paper![12], U. Ott claims that any flag-transitive fi-
nite projective plane has prime power order. Together with the above theorem, these two
results would imply the non-existence of non-Desarguesian flag-transitive finite projec-
tive planes. Unfortunately, both proofs appear to contain mistakes: Feit uses a lemma of
B. Gordon, W. H. Mills and L. R. WelcHh 7] (in the proof dfl[4, Theorem A]) which is
proved only under much more restrictive hypotheseslin [7], and there is a mistakeé in [12]
in deriving [12, formula (18)] from[[12, formula (17)], as pointed out[inl[15].

As already mentioned, Theorém 1.1 is a combination of a collection of difficult the-
orems from a number of different papers, but in fact a large part of it can be deduced in
one step from a later theorem of W. M. Kantor, since it is relatively easy to show that
any group which acts flag-transitively also acts point-primitively. (This is a corollary of
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a more general result inl[8].) Kantor’s result, whose proof invokes the classification of
finite simple groups, is as follows.

Theorem 1.3 (W. M. Kantor [10Q]). LetII be a finite projective plane of order. Sup-
pose that there is a group of automorphis@svhich acts primitively on the points of

and thatIT is not Desarguesian. Thenis evenyu? + n + 1is prime,G is a Frobenius
group, and|G| divides(n + 1)(n? + n + 1) or n(n? + n + 1).

In the paper of Feit cited above, it is proved that under the assumptions of THeolem 1.1
every divisord of n must satisfy/”+1 = 1 (modn?+n+1), and also that must be larger

than 14 400 008. An elementary proof of the first assertion is given in a recent paper by
the first author([14], which also contains a survey of the most important results on finite
flag-transitive projective planes since 1961 and some related problems.

2. Classification of flag-transitive projective planes

A general construction of potential examples of finite projective planes, known in the
literature as the method dfifference setsis as follows. Suppose we have a finite (not
necessarily abelian) group containing a subsé@? for which the map

D x D~ {diagona) - F ~ {e}, (x,y) > xy 1, 1)

is bijective, so thalF| = n + n + 1, where|D| = n + 1. Then we obtain a finite
projective plandl = I1(F, D) of ordern by taking both the set of points and the set of
lines of IT to be the elements af, with the incidence relation that a pointand a line
y are incident if and only ifyx ! belongs toD. We will be concerned with the special
case of this described by the following proposition, which is essentially a restatement of
a result of J. Fink[[5]. Before stating it, we make two definitions.

We call a prime number or prime powspecialif it has the formg = n® +n + 1 and
every element of the finite fiel, is a difference of two non-zeneth powers. We call a
finite projective plandlag-regularif it has a group of automorphisms that acts regularly
(simply transitively) on the flags.

Proposition 2.1. If ¢ = n%2 + n + 1is a special prime or prime power with > 1, then
M(F,, (F;)") is a flag-regular finite projective plane. Conversely[Tifis a flag-regular
finite projective plane of ordet, and if the numbep = n? + n + 1is prime, thenp is
special andT = T1(F,, E)M.

Remark 2.2. Note that, since the group law Bf; is addition, the expressiorny~1in the
general formulal]l) is to be interpretedsas- y when defining1(Fy, (F;)").

Remark 2.3. The restrictionn > 1 in the first part of the proposition is needed only
because this is a requirement in the definition of finite projective planes we are using;
axioms (i) and (ii) and the flag-regularity hold also foe= 1, p = 3.
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Proof of Proposition 2.1.Let D, = D, , denote the set oith powers (or equivalently,
of (n + st roots of unity) inF*. The fact that every element Ify, is a difference of
two elements ofD,, tells us that the map[Kl) witlh = D, andF = F, is surjective,
and since the two sides are finite sets of the same cardinality it must be a bijection. Hence
I(F,, D,) is afinite projective plane, and it is also clear that the permutatieprsax+b
(a € Dy, b € F,) of F, give automorphisms of this projective plane and that the group of
these automorphisms acts simply transitively on the flags.

Conversely, lef1 be a projective plane of orderfor which a group of automorphisms
G acts regularly on the flags. Lébo, Lo) be a fixed flag of1, so that by assumption every
flag can be written as(po, Lo) for a uniqueg € G. If H andK are the stabilizers gfg
andLg in G, then it follows thatH N K = {e} and that both the map

Hx(K~{e)xH—>G~H )

given by multiplication and the corresponding map with the roleg/oénd K inter-
changed are bijections. (To see the bijectivity[df (2), note first that the two sets have the
same cardinality, sincé + Dn(n + 1) = (n + )2 +n + 1) — (n + 1), so that it
suffices to prove surjectivity. I € G ~ H, then the line throughye and gpo has the

form kLo for someh € H, so the flagh~1gpo, Lo) equalsk(po, Lo) with k € K ~ {e},

and theng = hkh' with »’ € H.) We also mention the converseGfis any finite group
containing subgroupH andK for which both [2) and the analogous map whhand K
interchanged are bijections, then we obtain a finite projective plane h&vasya group

of automorphisms acting regularly on the flags by taking the points and lines to be the
left cosets ofH andK in G, respectively, and defining “incidence” to mean “non-empty
intersection.” For instance, two distinct “pointgh = g1H and p, = goH lie on the
unique “line” L = gK given byg = gihik = goho, whereg;tgr = hikhytis the
decomposition ogilgz € G \ H given by the bijectiorﬂZ).

If we now further assume that = n? + n + 1 is prime, then the Sylow theorems
and the fact thatG| = p(n + 1) with p > n + 1 imply thatG has a unique (and
hence normal) subgroup of order p. Since(|F|, |H|) = 1 and|F||H| = |G|, the map
F x H — G given by multiplication is a bijection, s6 is the semi-direct produdt x H.
Moreover, the action off on F by conjugation is faithful, because the uniqueness of the
decomposition irﬂ]Z) shows that there can never be a relgtiethgh = with 1 € H~ {e}
andg € G \ H. Identifying F with [, and observing that Adf,) = F is cyclic and
hasD, as its unique subgroup of order+ 1, we can make the further identifications
H =D, andG = F, x D, or, in a convenient matrix representation,

o=l Y 16D =1 9.

For the same reason the subgrakipof G is also cyclic, generated by some element
(4 bo) with ag a generator oD, andbo # 0, and conjugating all matrices 6fby (4 %)
with A = (ap — 1)/bo we can suppose

=10 )L
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Now the requirement that the ma@ (2) be an isomorphism says that every ifrfafr)x
witha € D, andb € IF; can be factored uniquely as

ai O\ faz ar»—1\ (a3 O
0 1)\0 1 0o 1)’

and multiplying this out we find that this is precisely equivalent to the requirement that
every element oF 7 is uniquely a difference of two elements Bf,. Hencep is special
andIl = I1(F,, D,). o

In Section 6, we will obtain a generalization of this result (for certain symmetric 2-
designs), with an entirely different proof.

The proof of Proposition 2] 1 was self-contained. If we combine it with parts (a) and (b)
of Theorenj L]1, we obtain the following stronger resuilt:

Theorem 2.4. Letn be the order of a flag-transitive finite projective plafle Then at
least one of the following holds:

(a) n is a prime power andl = P2(F,);
(b) p =n?+n + 1is a special prime andl = (Ep, F;)").

Notice that the two alternatives occurring in the theorem are not necessarily exclusive: it
is possible that the numberis both a prime power and is associated to a special prime
p = n®+n+1, and in this case the projective plafief this order, while still unique, has
both formsP2(F,) and [T = (¥, (IF;)"). By the discussion following Theore A,
we know that this can happen for only two valuesiphamelyn = 2 (p = 7) andn =
(p = 73). Let us look in detail at these two exceptional cases to see how the isomorphism
between the two differently-defined projective plane structures works.

Consider first the case= 2. We define an automorphismof P2(F,) of order 7 by

A: (x:y: 20> (y:z:x+Y).

Then every point oP2(F,) has the formp; = A’(po) for a uniquei € Z/77, wherepg
is the point(1: 0: 0):

i 0 1 2 3 4 5 6
pi (1:0:0 (0:0:1) (0:1:00 (2:0:1) (0:2:1) 1:1:1) 1:1:0

and every line irfP2(FF,) has the formi; = A’ (Lo) for a uniquej € Z/77Z, whereLg is
the line{x = 0}:

j 0 1 2 3 4 5 6
i ¥*=0 x=z x+y+z=0 y=z x=y z=0 y=0

ThenL; = {p;ji1, pj+2, pj+4) for every j, so the correspondencg;, L;) — (i, j) de-
fines an isomorphism between the Desarguesian projective fpairgs inP2(F,), lines
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in P2(IF,), usual incidenciand the special projective plafiee F7, j € F7,i — j € D},
whereD = (]F7X)2 = (2) = {1, 2, 4}. The automorphism

B:(x:y:9)—>(x:y+z:y)

of P2(FF,) fixes po and L and sendg; to po; andL; to Ly;, and the group of automor-
phisms generated by and B, with the relationsA” = B® = 1, BAB™1 = A2, acts
regularly on the flags dP?(F>).

The casen = 8 is similar, but more complicated because now the group of auto-
morphisms ofP,(F,,) is not justPGL3(FF,,) but the extension of this group by the group
Gal(Fg/F») of order 3. We represeii asFo[«] wherea®+«a +1 = 0. Theno’ = 1 and
Fg ={lLa,....,a% ={L a,¢?, a+1 a?+a a?+a+1 a?+1}. The automorphism

A: (x:y:2) (a6x+azz:ot4x +a6y+a31:ot3y+z)

of P2(Fg) of order 73 acts simply transitively on lines and points, so every point is
uniquely representable as = A’(po) and every line uniquely representablelgs =
AJ(Lg), wherepg = (1 : 0 : 0) as before and.q is the linex + ®y + az = 0. The
points of Lg are p; withi € D = (IF7X3)8 = (2) = {1,2,4,8,16, 32 37,55, 64}, so

L; ={pi | i —j € D} and just as before the correspondefege L;) — (i, j) defines

an isomorphism between the Desarguesian projective [#4(i&) and the special pro-
jective planell(F73, D). The only difference is that the group of automorphisms acting
transitively on the flags dP?(Fg), generated byl and a second automorphissnof or-

der 9 satisfyingg AB—1 = A2, can no longer be realized RGL3(Fg) but only in the full
group of automorphismBI'L 3(Fg) of P2(Fg): the automorphisn® of P2(Fg) of order 9
fixing po andLg and sending; andL; to py; andLy; for everyi and; is given by

B: (x:y:2) > (x :a®% +y +a% o + ay),

wherex — x’ denotes the Galois automorphism of order Fgthat sends to 2.

We can summarize the results of this section as follows. Call a finite projective plane
specialif it has the formIT = I1(F,, (F;)") for some special primg = n?+n+1.
Then

(i) any flag-transitive finite projective plane is either Desarguesian or special;
(i) exactly two finite projective planes, of order 2 and 8, are both Desarguesian and
special.

Moreover, if there are any special projective planes other than the two in (ii), then they
must have orden > 1.44 x 10’ (p > 2 x 10*) by the result of Feit quoted in the
introduction, and from the computations on special primes described later in this paper
we can strengthen this to> 2 x 10 (p > 4 x 107?). It is thus highly unlikely that any
non-Desarguesian flag-transitive finite projective planes exist.
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3. Special primes, Fermat surfaces and Gauss periods

We have seen that a non-Desarguesian finite flag-transitive projective plane of:order
exists if and only ifp = n? + n + 1 is a special prime, i.e., if and only jf is prime and
every element of the finite field, is the difference of two elements &f = (IF;)”. In

this section we give a number of elementary number-theoretical statements:edoruait

p which are equivalent to this property. These involvefhemat surface

S Xh+ X5 =X+ X5, 3)

the Fermat curves
Fp: Xo—Xi=nX; meF)),

and theGaussian periods

a):ZCa=%Z§xn, Q:Z;‘xnzl—l—nw,

aeD xeFy xel,

where; = ¢, denotes a primitivepth root of unity. All of these are classical objects,
much studied in number theory. In particular, the Gaussian periods, which are defined
for any prime numbep and divisorn of p — 1 (and will be used in this generality in
Section 4), generate the unique subfield of degred the cyclotomic fieldQ(¢) and

were introduced for essentially this purpose by Gauss.

We will show: the primep = n? +n + 1 is special if and only if the Fermat surfaée
has no non-trivialF,-rational points (bytrivial points of & over F, we mean points
(x0, X1, x2, x3) € &(F,) with eitherxoxixoxz = 0 or {x, x7} = {x3, x5}); if and only if
the Fermat curves;, all have the same number Bf,-rational points; and if and only if
the absolute value of the Gaussian peuoid the square root of a rational integer.

We denote byX (F) the set off-rational points of any varietx defined over a finite
field F and by|X (IF)| its cardinality.

Theorem 3.1. Suppose thap = n? +n + 1is prime. Then the following are equivalent:

(a) pis special;

(b) the mapg : D x D ~ (diagona) — F; sending(x, y) tox — y is bijective;
(c) the surfaceS has no non-trivial points over ,;

(d) |F,Fp)| > 3n for everyn € F};

(e) |F,(F,)| < 2n? + n for everyn € F;

(® |1F,(Fp)| = n?+ n or n? 4 2n for everyn € FX;
@) I6(F,)| < 2n* + 5n° + 4n;

(h) I8E,)| = 2n* + n® + 4n? + 4n;

() lof*eQ;

() lol=n;

(K) troe)(20% =n8+n’ — 2n* — 4n® — 5n2 — 3n.
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Proof. The proofs of the equivalences of (a)—(f) are elementary. By definitidcgspecial
if and only if the mapg in (b) is surjective. Since the domain and rangepdiave the
same cardinality, this is equivalent gobeing bijective or injective. The injectivity says
that the equationy — x5 = x3 — xg is possible for; € F; only if x{ = x5 andx3 = xg
orxj = x5 andxj; = xg, SO is equivalent to (c).

Forn € IF,, letz(n) denote the number of representations ab the difference of two
elements oD. Thent(0) = n+1andy_, . (1) = |D|2 = (n+1)?, so that the average

value oft (n) with n € F 7 is 1. This again gives the equivalence of (a)—(c), since (a) says
thats(n) > 1 for everyn € IF,, (b) thatr () = 1 for everyn € 5, and (c) that(n) < 1
for everyn € ;. We now claim that

n ifnelF* +n¢D,
|Fy(F )| =n’t(n) +{2n if tneD,-1¢ D, (4)
3n ifneD,-1eD.

To see this, we observe first that the numbeiFgfrational points(xg, x1, x2) on the
curveF, with xox1x2 = 0 equalsz, 2rn or 3 in the three cases given, while the number
of points withxox1xz # 0 is always divisible by:?, because the groug?)/u, (where
un C I is the subgroup ofth roots of unity and the action is diagonal) acts freely on
them. Moreover, the quotient &, (IF,) N (IE‘;):*/F; by this action is just the set of points
(Yo : Y1 : 1) with Yp, Y1 € D andY; — Yo = », so its cardinality i3 (). This proves (4)
and hence the equivalence of (a)—(c) with (d)—(f), since we will see below: timatst be
odd if p is special, so that the third option in (4) cannot then occur.

To prove the other equivalences, we define a numibey, thedefectof p, by

5= Y (“;)),

neF /{+D)

where+D = DU —D = uy,42. Using the fact that the average valuerof)) with
n € F7 is 1 and that the value ofn) depends only on the classpfn the quotient group
IE‘; /(£D), we obtain the alternative formula

1
5(p) = 5( Y m?- g)

nefy /{+D)

The Cauchy-Schwarz inequality and the fact that the average valuis dfthen show
that the defect is always non-negative and is zero if and onhjisfspecial.

Now observe thaEnde t(n)? is the number of 4-tuple@:, v, w, x) in D* for which
u+v = w+x, and by the formula just given this number is equakier 1) 2n+1+45 (p)).
Since there are already-+1)(2rn+1) trivial solutions, i.e., solutions witfu, v} = {w, x},
this shows again that is special if and only if there are no non-trivial solutions, which is
just (c), but it also shows that the number of rational point§&a$ given by

1G] = (2n + 1+ 45(p))n® + 4n?t (1) + 4n,
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which equalg2n + 1)n® + 4n? + 4n if p is special (since thed(p) = 0 andr(1) = 1)
and is> (2n + 5)n® + 4n if p is not special (since thel(p) > 1 ands(1) > 0). This
proves the equivalence of (g) and (h) with (a).

Finally, the equivalence of (i) and (j) with (a) follows from the observation it =
ek, ¢'™ which belongs td) if and only if # (n) is constant for 0 and is equal to
n if t1(n) equalsn + 1 forn = 0 and 1 otherwise, while the equivalence of (k) with (a)
follows from the calculation

1+ (p — DIS| = [{(x0, x1. X2, x3) € Fy | x§ +x} = x5 + x3}|

-, Xz

P=1aclF),

4 41 4
=p + ;tf@<z)/<@(|9| )-

This completes the proof of the theorem. O

4. A generalization and a conjecture

The above considerations can be generalized in the following way» betan arbitrary
prime number. Then any subgrouplif has the form

Dy={"|xeF}={xeF)|x =1

for some divisom of p — 1 andk = (p — 1)/n. We define the Gaussian periag as
before by

wp = Z ¢t =% Z ¢ = trQ()/k, (),

xeDy ()E[F;

where¢ is a primitive pth root of unity andk,, is the unique subfield d@(¢) of degree

n over Q. We further define, (n) for n € F, as the number of representationsnoés
the difference of two elements @, and call the pailp, n) specialif this number is
independent ofy for  # 0. SinceY", o1, (1) = |Dy|? — |D,| = k? — k, this common
value must then be equal té — 1)/n, which must therefore be an integer. In particular,
except in the trivial case wheén= 1 andn = p — 1, we always havé > n + 1 and

p > n? +n + 1, so that the case of special primés=£ n + 1, 1,(n) = 1) is extremal.
Using the same arguments as before, we can prove:

Theorem 4.1. Let p = nk + 1 be prime. Then the following are equivalent:

(a) the pair(p, n) is special,

(b) 1ty (n) = (k — 1)/nforall n #0;

(c) the surface3) in P® has precisely:k + n?(k — 1)2 + 4nk F,-rational points;
(d) |w,|? is a rational number;

(€) lwal? =k — (k = /n.



182 Koen Thas, Don Zagier

The analogue of the construction given in 82 is now the following. Supppse) is
specialk = (p — 1)/n. Define a point-line incidence structureas follows: the points

of I' are the elements d,; the lines orblocksof I" also consist of the elements 6f;

and a pointr € IF,, is incident with a block8 € F, if and only ifoe — 8 € D,,. Thus there

are p points andp blocks, each point is incident withblocks and each block is incident
with k points, any two distinct points are contained in exa¢ktly- 1)/n distinct blocks,

and any two distinct blocks intersect in exacthy— 1)/n distinct points. Hencé" is a

2-(p, k, (k — 1)/n) symmetric block desigrit is clear that fora € D, andb € F, the

mapx — ax + b fromIF, to itself defines an automorphism Bfin a natural way and

that the group of these automorphisms acts regularly on the flags (= incident point-block
pairs) of I". To the knowledge of the authors, the only known examples of such designs
other than finite projective spaces (of dimension at least 3) follow from [2, 11, 13]. These
constructions are essentially covered by Thedrerp 4.2 (and Théorém 5.1) below, where
among other results the existence results o7 [2[11, 13] are re-proved in an alternative
fashion.

In view of these observations, and of the known difficulty of producing examples of
symmetric designs admitting a flag-regular automorphism group, it is of interest to find
examples of special pairg, n). These are provided by the following theorem, whose
proof will be given together with that of Theorém B.1 below.

Theorem 4.2. Let p be a prime and: | (p — 1). Then(p, n) is special in each of the
following five cases:

(@) n =1, p arbitrary, |w,|? = 1,

(b) n =2, p=3(mod4, |w,|* = (p+1)/4,

(c) n =4, p=4b*>+ 1withb odd,|w,|?> = (3p + 1)/16,

(d) n =8, p = 64b%+ 9 = 84% + 1 with b andd integral, |w,|?> = (7p + 1)/64,
(€) n = p—1, p arbitrary, |w,|2 = 1,

the corresponding values af, being given by

@) w1 = -1, -
0) vp= =T,

(©) ws= ﬁ4_1ii,/p+8ﬁ,

_Jp-1 r+3/r . |Jrp—1 p+3/p
(d) wg= 8 +\/ 3 +i 16 \/ﬁ— —

(e) wp—1=2¢.

Cases (a) and (e) of this theorem are trivial and do not lead to interesting designs, but the
families (b), (c) and (d) give us three infinite or potentially infinite classes of interesting
flag-regular symmetric designs. Note that the family (c) is quite sparse: the only primes up
to 40000 belonging to this class are 5, 37, 101, 197, 677, 2917, 4357, 5477, 8101, 8837,
12101, 15877, 16901, 17957, 21317, 22501, and 28901. The family (d), corresponding to
the prime solutions of a Pell's equation, is even thinner, though conjecturally still infinite:
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the first prime of this form is our old acquaintange= 73, withb = 1 andd = 3; the
next two are 104411704393 (= 40391,d = 114243) and 160459573394847767113
(b = 15834079814 = 4478554083), with 12 and 21 digits, respectively, and the next
four have 103, 119, 425, and 615 decimal digits, respectively.

The conjecture about the non-existence of non-Desarguesian flag-transitive projective
planes can now be generalized to the following:

Conjecture 4.3. The only special pairs are the ones listed in Theddegh

We have checked this conjecture by computer for all primes 10000000 and all
divisorsn of p — 1. (For the special case when= n? + n + 1, as already mentioned,

W. Feit's result verifies it for alp < 2x 104 and we have extended thispo< 4 x 1072.)

These numerical computations are described in an appendix. Apart from this, we have
only the partial results and evidence presented in the next section.

5. Special primes, Gauss sums and Jacobi sums

In this section we prove Theorgm §.2 and a partial converse.
Theorem 5.1. Assume thap = kn + 1is prime and that{ p, n) is special.

(&) If n > 1, thenn is even and is odd.
(b) If n < 10, then(p, n) belongs to one of the families of Theoldrd.

Proof. Let ¢ = ¢,, K, andw, be defined as at the beginning of the previous section.
Thenw, € K,, and it is well known thaty,, generate,, overQ. If k is even, then-1
belongs taD, sow, is a real number. But then? = |w,|? € Q, son = [Q(w,) : Q] < 2.
Thereforek must be odd if: > 2, in which case: is even sinceatk = p — 1 is even, and

k is also odd whem = 2 sincek = 1 (modn) for special(p, n). This proves (a).

To prove (b), we have to look at each value< 9 separately. The cage= 1 is of
course trivial, sinceD1 = F;, w1 = —1, so by virtue of part (a) we need only analyze
the casea = 2, 4, 6, and 8. This will at the same time provide the proof of Thegrein 4.2,
sincen < 8in all cases of that theorem except for the case p — 1, which is trivial.

All the proofs will involve Gauss sums, so we begin by recalling the main properties
of these. Suppose = nk + 1 withn even and odd (since by part (a) this is the only case
that can occur fotp, n) special) and ley : ]F; — C* be a character of order, which
we fix by sending some chosen generator of the cyclic gijuip a chosen primitiveth
root of unityA,,. To eachr € Z/nZ we associate th@auss sum

G, =G(xX) =Y x(x)¢* (r€Z/n).

X
xelF,

Forr = 0 this equals-1, but according to Gauss for other values ofe havelG,| = ,/p
andG_, = (=1)"G, (the latter becausg (—1) = —1 sincek is odd). In particular,
Gl = (=1"?p (and in factG, /2 = +.,/p for n/2 even andG, ;2 = +i/p for n/2
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odd, as Gauss showed). The key property of the Gauss sums comes from the classical
calculation

G:Gy= Y xWxMTP = Y x@ Y x() et
x,yelFy zeF,, z#£-1 xeF}
if r, s andr + s are 0 (modn) (sety = zx and observe that the sum of the terms with
z = —1 vanishes); now substituting = x'(z + 1)~! we find thatG, G, = G, Jrs
where theJacobi sumJ, ; = ZZEJFPX ) ¥ (2)* x(z)"* is an element of the ring[A,]
of absolute valug/p. On the other hand, the Gaussian period and Gauss sums are related

by

1

wy = — Z G,,

n, (modn)
becausé_, (modn) x(x)" equals 0 ifx ¢ D,, andn if x € D,. These two facts together
combine to give sufficiently strong information abaut to contradict the hypothesis
lwa|? € Q in many cases. We now look at each case separately.
on =2 HereGy =i/p,sow; = 3(—1+i/p) and|wz? = (p + 1)/4 € Z for any
p = 3(mod 4, proving part (b) of the theorem (as well as part (b) of Thedrefin 4.2) in this
case, since we already know that, 2) can only be special far odd. We could also use
Gauss sums to show this latter fact without using part (a), sineedfl (mod 4 we have

wp = 3(~=1+ /p) and hencéwy|? = 2(p +1—2/p) ¢ Z.

en = 4. HereGo = —1,G2 = /p, G3 = —G1 andG2/G, = Ji1 € Z[i], where
J11= A+ Bi with A% + B2 = p andA = 3(mod 4 and B even. Hence

g —1HG1+GatGs _ Vp—1 . Jp— AP
4= 4 T4 g8

S0 168wal®> = 3p + 1 — 2(A + 1)./p. Clearly this is a rational number if and only if
A =—1,i.e. ifandonly ifp = B% + 1, corresponding to case (c) of Theo@ 4.2.

e n = 6. This time the relationship with the Jacobi sums gives

1/642, 1/652

G1=ip G2=pl/3oz,5, G3=ipl/2, G4=p1/3&p, Gs=ip

wherea® = (M + N/=3) is an element o[13] of norm p and p is a cube root
of unity. (In fact one hasy = 1(mod3 and N = 0(mod 3, andz is equal to 1 if
M = N =0 (mod2 and to(—1F i+/3)/2 if MN = +1 (mod 4, with the former case
occurring if and only if 2 is congruent to a cube modplobut we do not need to know
any of this.) Hence

6% (we) = —1+ 2pY3NR(@p), 6J(we) = /P + 2pY%NR ().

Write 2pY/3a 5 = y + i8 with y ands real. Theny is one of the three roots (all of which
are real) of the cubic equatigr® — 3py — pM = 0, ands = /4p — y2. Hence

y2—p 4p — y? +y\/12p — 3y?

6N(wg) =y —1, 63(wg) = —— oOF
NG 27
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depending on whether equals 1 or not. Using the equatigd — 3py — pM = 0, we
find
36lwsl> =2y2+ (M —2)y+p+1 or
Y2— (M +4y +8p+2+(y — M)y/12p — 3y2
> .

The first of these two expressions cannot be rational sincethesuld satisfy a quadratic
as well as a cubic equation and hence would belor@,toontradicting the fact thabg
has degree 6 ové. Hence the second equation must holdgf 6) is special, and since
we know from Theorerh 4}1(e) that @gs|2 = 5p + 1 in this case, we find
(p.6) is special= (y*— (M +4)y —2p)* = (y — M)*(12p — 3y?)

= (M?+2M +4— p)y?+2p(M — 1)y + p(p — 5M? — 2M) = 0,
where in the last line we have again used the equation 8incey has degree 3 ové),
this can only happenif/ = 1 andp = M2+ 2M +4=5M? +2M =17.
e n = 8. The analysis in this case is more complicated and we will be even sketchier than
before. As in the case = 4 we findG4 = /p, G = G2 andG3/Ga = A + Bi with
A% 4+ B2 = p, now withA = 3(mod 8 andB = 0(mod 4, so

\ p—1+2y N p+A/D
R(wg) = ‘/—T, v = R(Ga) = + T*/_
The odd-index Gauss sums are given®y= o1, Gz = —¢ot, G5 = ¢oT andGy

—o7, Wwheree = (=1)8/4, 62 = Gy, andt?2 = C + DV=2 withD = C - 5

&+ 1(mod8), so

(0 —eo)(t +¢7)
4

depending on whether= 1 or —1. This gives

163(w)* = (/P — 1) (/P + £C),
and combining this with the formula just given f@i(wg) we obtain
64wgl> =Tp+1+2(A—1+2:C)/p —4C + )y + 41 — &)y /p.

This is rational if and only if the coefficients Qfp, y andy ,/p all vanish, i.e., ife = 1,
C = —1andA = 1— 2¢C = 3, and this corresponds (with = 8b, D = 2d) exactly to
the conditiongy = 64b% 4+ 9 andp = 842 + 1 given in part (d) of Theorem 4.2. o

23 (wg) =

= J(e)N(r) or R()I(1),

As the proof makes clear, the analysis of the Gaussian periods becomes more and more
difficult asn increases, and we cannot hope to progress much further by these methods
(though a few more cases might still be tractable). On the other hand, the proof also makes
it clear that the conditions on the Gauss sums and Jacobi sums imposed by the assumption
that|w, |2 is rational become more and more restrictive: ascreases, with the condition

in the casen = 8 already strong enough to lead to a doubly exponentially thin set of
solutions, so that the conjecture that there are no other solutions than the ones we have
already found is at least quite plausible.
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6. Flag-regular symmetric designs withk dividing v — 1

In the examples of flag-regular symmetric 2-designs that we constructed via special pairs,
the parametet divided the number of points minus one. The following theorem describes
how, conversely, this (rather strong) algebraic assumption affects the design.

Theorem 6.1. LetI" be a symmetri@-(v, k, 1) design admitting a flag-regular automor-
phism groupG. Suppose that dividesv — 1. Then

(@) v = p" for some primep and natural numbef, and we can identify the point st
of I' with the points of thé-dimensional vector spadé; overF,;

(b) G = IE‘Z x H whereH is a subgroup ofsL,(F,) that is isomorphic taG, for any
pointx of I".

Proof. Sincel is a symmetric design, we have (see €.g. [1])
A —1) = k(k —1).

Together with the assumption thadividesv — 1, this implies thak dividesk — 1, so
that (A, k) = 1. But the number of blocks df incident with a point equals. By 8(b)
of [3l p. 80], it follows thatG acts as a Frobenius group on the points (and blocks) of
So the Frobenius kernél acts regularly on the points. Also, by 7(a) lof [3, p. 7@]acts
primitively on the points ofl". As the Frobenius kerndf is nilpotent, it is the direct
product of its Sylow subgroups, say

F =Sy x x5y,

where{ps, ..., pj} is the set of distinct primes dividing'. Let Z be the center o
(which is non-trivial). AsF < G, G acts on theZ-orbits of points, contradicting the
point-primitivity of G unlessZ = F. Since eacl$,, is a characteristic subgroup 6f, in
the same way we find thgt= 1. SoF is an abeliarp-group (p = p1). Now let A be the
unique maximal elementary abeliarsubgroup off'. ThenA is a characteristic subgroup
of F,soif A # F the A-orbits of points ofi” are non-trivial blocks of imprimitivity, again
a contradiction. Hencg is elementary abelian. PUE| = p". As F acts regularly on the
points of I, we can identify bothF and the point set of with the additive groung,
acting on itself by translation. This proves part (a). Sificg G, we also see that for any
pointx of I', G, acts as an automorphism group Biby conjugation. Ag" acts regularly
on the points of”, G, acts faithfully onF, so is isomorphic to a subgroup GiL , (IF,,).
Part (b) follows. O

Remark 6.2. Note that for symmetric designs, points and blocks play interchangeable
roles, so we could equally well formulate Theoren 6.1 with points replaced by blocks.

In the case when is prime the analysis is easier and leads to the same conclusion as
in the special cask = 1, namely, that the only flag-regular 2-designs with(v — 1) are
the ones constructed in Section 4. In fact, we need only the assumptian
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Theorem 6.3. LetT" be a symmetri-(p, k, A) design admitting a flag-regular automor-
phism groupG, with p prime andk < p. Thenk = (p — 1)/n, A = (k — 1)/n where
(p, n) is a special pair and" is isomorphic to the design constructed in Sectdon

Proof. The argument is essentially the same as in the proof of Propaositipn Z/1aifd

K are the stabilizers opg and Lo for some flag(po, Lo) of ', then it follows just as
before thatd N K = {e} and that both the map](2) and the corresponding map Hith
and K interchanged are exactly : 1, i.e., every elemerg € G . H has precisely.
representations dskh’ with 4, i’ € H ande # k € K (and similarly withH and K
interchanged). Sincgs| = kp andk < p, the Sylow theorems again imply that tpe
Sylow subgroupF' of G has orderp and is normal, so that we can again identify H
andG/K with F =), andH andK with the unique subgroup @ of orderk, which

is thenD,, = (F )" with n = (p — 1)/ k. Everything else goes through exactly as before:

we again have compatible isomorphistis= (% ), F = (3%7), H = (% 9) and

K = (37)H(31), and the fact that the map|(2) is: 1 translates directly into the
property that every element f; can be written in exactly ways as a difference of two

elements ofD,, i.e.,(p, n) is a special pair. O

Appendix. Numerical computations

In the text we mentioned several numerical results, specifically, that there are no special
primes less than 2 1072 and no special pairg, n) with p < 10’. We indicate briefly
how these calculations were carried out.

We start with the discussion of special pairs(jf ») is special, therp has the form
tn®+n+1for some > 1. By Dirichlet’s theorem the number of primps< X satisfying
p = n + 1 (modn?) with n fixed is asymptotically (n?)~1X/log X for X large, so the
total number of pairgp, n) with p < X of the formsn? + n + 1 is roughlyC X /log X
with C = 3%, p(n?)~! = 2.203856596437859 .. If we use the results of Section 5,
then we can assume thais even and larger than 8, which reduces the number of pairs
to be tested t@’ X /log X with
1 2 1 1 1

1
= — - — - — — — == = 0.14195282662358 .
2 )

2, n>8 @(n°) 5 2 8 12 32

C'=
a saving of a factor of about 16. We initially tested all pairs with 10°, finding only
solutions withn = 2, 4, 6 or 8. This led to the statements of Theoremk 4.2 afd 5.1. Once
they were proved, the tests in larger ranges were carried out only fomexet0.
Two methods were used to test whether a given @Qain), wherep = tn? +n +1is
prime, is special. The first uses part (e) of Theo@ 4.1, i.e., the equaliy = k — 1,
wherek = (p — 1)/n = tn + 1 as usual. To compute,, we choose a primitive root

g modulop and setG = g". ThenG generates the group, andw, = }_; mods) ¢Y,

where¢ = ¢27/P_ The corresponding program in GP/PARI is very short:
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{try(p,n)=z=exp(2*Pi*I/p); G=znprimroot(p)n;
om=sum(j=1,p \n,z7lift(G7})); kk=norml2(om);
if(@abs(n*kk-p+p \n)<.1,print(p," ",n," ",kK)) }

and is quite efficient for smap (for instance, the time to check the 5101 p&jsn) with

p < 10° andn > 3 on a SUN Sparc workstation was 34 minutes, and under 4 minutes
if one considered only the 1352 pairs witleven and> 8), but grows quadratically with

the size of the bound.

The second method, which is somewhat faster, is based on part (b) of THeofem 4.1,
i.e., on checking that the numbg(n) of representations of € Fyasa difference of two
elements oD, is always equal te. We can compute, () as the number of (modk)
for which (G7 4 n)* equals 1 (mogb), whereG = g" as before. This is done in PARI-GP
by the program

t(p,n,eta) = k=p \n; G=znprimroot(p)"n;
sum(j=1,k,(g7j+r)’k==1)

(A slightly different approach, of comparable speed for a single valug lofit more
efficient if one is going to computg,(n) for severaln’s for the samen and p, is to
precompute the subs®&, C Z/pZ by sorting the se{Gf}j (modk) and then to count the
number ofm € D, with m + n € D,. The sorting algorithm is included in PARI and
similar languages.) Checking the equalityn) = ¢ for all n € F; would be very time-
consuming, but we can of course abort the test as soon as it has failed for a single value
of n, and this leads to a considerable speeding-up. For instance, the peaE021 has
the formrn?2+n+1forn = 3,r = 113 and fom = 12,7 = 7, and sincez(1) = 111 and
t12(1) = 6 both pairs can immediately be eliminated. Of the 6702 aire) of the form
p=tn?+n+1withp <1Pand2<n < p — 1, only 147 pass the first tegt(1) = ¢
and only 27 satisfy,(n) =t for 1 < n < 6, and all but three of these are in fact special
pairs, the exceptions being, n, 1) = (601, 24, 1), (6079 3, 675 and(54679 3, 6075.
It is interesting to note that in each of these three cases, the non-zero valyep of
(for all n in the first two cases and for at least the first few thousaimdthe third) are all
the same up to sign, assuming only the vahiés+15 and+45, respectively. Moreover,
the set ofy’s for which#,(n) # ¢ also seems not to be random (e.g., in the three cases
mentioned one hag(n) = ¢ not only forn < 6, but for alln < 20 except 7, 11, 13,
14,17 and 19). These observations suggest that the distribution of the cardinalities of the
Fermat curves, may have some possibly interesting additional structure.

The total computational time with the second method fox 10° was about 16
minutes if we looked at all pairs with2 n < p — 1, and about 1 minute if we restricted
to evernm > 8, as opposed to 34 minutes and 4 minutes with the first method.

A further speeding up is obtained by noting that the number(p —n — 1)/n? must
have a specific parity in order for the pajr, n) to be special. Indeed, the numbgfl) is
the cardinality of the set of € D,, for which x 4+ 1 also belongs t®,,, and this set has an
involutionx — x~1 which is fixed-point free if 2¢ D, and has exactly one fixed point if
2 € D,. Hence, unless 2 belongs®, (which happens only rarely, with frequencyr,
the number,, (1) is even and hencemust also be even ifp, n) is special, and similarly
t must be odd in the remaining cases wher 2D,,. This eliminates about half of the
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possible pairgp, n) right away and hence speeds up the calculations roughly by a factor
of 2.

In the range 19 < p < 10’ we used only the second method and considered only
pairs with evem > 10 that passed the parity test. The running times were 20 minutes
up to 1¢ and 25 hours up to 70 Of the 92782 pairgp, n) with 10° < p < 107,

8 < n < p —1andn even, only 913 passed the first tggtl) = r and only two satisfied
ta(n) = ¢t for1 < n < 6, namely(226129 336) and (3041407,18), with = 2 and

t = 9387, respectively, and in both cases the test failed fer 7, so that these pairs are
also not special. (The above-noted constanay @f) — ¢ did not occur here.) This verifies
Conjecturg 43 for alip, n) with p < 10'.

We now turn to special primes. Here we could of course use the same methods, with
t = 1, but now there is a much faster way. By the parity observation above, a prime
p =n?+n+1canonly be special if 2 D,, i.e., if 22t1 = 1(modp). (This is a special
case of the fact mentioned in Section 1 thiat D, for every divisord of n.) This can be
tested extremely rapidly—so rapidly, indeed, that it is not even worth testing first whether
p is prime, since this actually takes longer. (Even the weaker pseudoprimality tests for
a large numbep involve calculating:?—1 or a?—1/2 for several values of, and here
we need only a single such calculation and with a smaller exponent.) We can speed up
the search even more by restrictindgo certain congruence classes, as indicated below,
but since it is so rapid to search for solutions 82 = 1(modn? + n + 1) we first did
this for all (even): up to 5x 10° (this took about four hours), finding only the following
seven solutions in this range:

n 2 8 24 90 512 134217728 297474474
p 7 73 601 8191 262657 18014398643699713 88491062979051151

The third, fourth and fifth of these can be checked directly not to be special. The sixth
can be eliminated becaugeis not prime (it factors as 2598 71119x 97685839) and

the seventh because it fails to satisfy the congruenee 8 (mod 24, which is a nec-
essary condition fo(n, p) to be special. (The divisibility of by 8 was proved by Feit

in the previously cited papef][4], and we must have= 2 (mod 3 because both3
andn"*1 are congruent to 1 modulp.) Hence in this range only the values= 2 and

n = 8 give special primes. Continuing the search up to 0!, now withx restricted to

the congruence class 8 (mod 24), led to no further solutions (computation time roughly
3 days), verifying the non-existence of non-Desarguesian flag-transitive projective planes
forn < 2 x 101, orp <4x 1072
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