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Abstract. Let (Fy),cn be a sequence of non-decreasing functions from-®) into [0, +o0).
Under some suitable hypotheses @m),,cn. We prove that ifg e LPRM), 1 < p < 400,

satisfies
L F,
I|m|nf/ / n(g() = 8D dxdy < +o0,
n—oo JrN JRN |x—y|N+l’

theng € wl?(®") and moreover

. Fu(lg(x) — g _ f p
nleoo/RN ./RN -y Nt drdy="En.p Rvag(X)l e

whereK y , is a positive constant depending only Srandp. This extends some results in J. Bour-

gain and H.-M. Nguyen [A new characterization of Sobolev spaces, C. R. Math. Acad. Sci. Paris
343, 75-80 (2006)] and H.-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct.
Anal. 237, 689—-720 (2006)]. We also present some partial results concerning the eageand
various open problems.

Keywords. Sobolev spaces

1. Introduction

In [[7], we established the following characterizations of Sobolev spaces:

Proposition 1 ([I7, Theorem 2]).Letl < p < +o0. Then

(a) There exists a constagty ,, depending only oV and p, such that

b4
f / —  — _ _dxdy<Cy p/ |IVg(x)|”dx, V&=>0,Vge WHP(RY).
RV JRV X — y[NTP RN

[g(x)—g()|>3
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(b) If g € LP(RV) satisfies
o dxd
sup / / —————dxdy < +09,
0<6<1 JRN JRN lx — )’|N+”
lg(x)—g(y)[>4

theng € WP (RV),
(c) Moreover, for anyg € WP (RN),

8P 1
lim —————dxdy=—-K v Pdx,
§—0 /RN/RN b — yN+r YT N,prNI g(x)|” dx
lg(x)—g(y)[>8
whereKy , is defined by
KNQPZ/ le-o|P do, (1.1)
SN-1

foranye € SN—1.

Proposition 2 ([[7, Theorem 3]).Letl < p < +o00. Then
(@) For everyg e WhP(RN),

_ pte 1
[ ], O e [
O<e<1l JRN JRN lx — y|V¥P RV JRN X — y[VTP

lg(x)—g(y)I<1 lg(x)—g(y)I>1

< cN,,,/RN Vg(0)|? dx,

whereCy , is a positive constant depending only &rmand p.
(b) If g € LP(RN) satisfies

elg(x) — pte 1
sup / / 180) ggf' dxdy + / / — dxdy < +o00,
0<e<1 JRN JRN |x — y[¥*P RN JRV X — |V TP
lg(x)—g(y)I=1 lg(x)—g(|>1

theng € wiP(RV),
(c) Moreover, for anyg € WP (RN),

i £lg(x) —g(MI"** /
lim dxdy =K v Pdx,
e—0 AA{N /;QN |x — y|Ntp xay N.p RN [Vg(x)|* dx

lg(x)—g(I=<1

whereKy , is defined by{L.1).

A sharper version of assertion (b) of Propositign 1 was established by J. Bourgain and
H.-M. Nguyen in [2]:
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Proposition 3 ([2, Theorem 1]).Letg € L?(RV), 1 < p < 400, be such that

S
sup f / ————dxdy < +o0 (1.2)
neN JRV JRN x — y|NtP

l§(x)—g(¥)[>8n
for some sequend@, ),y of positive numbers withm,,_, o 8, =0. Theng € W17 (RN).
Whenp = 1, we have

Proposition 4. Letg € L1(R") be such that

Sy
sup / / O dxdy < 400 (1.3)
neN  JRN SRV |x — y|NHL

[g(x)—g()>6n

for some sequendé, ), <y of positive numbers withm,,_, .. 8, = 0. Theng € BV (RY);
moreover, there exists a constat, depending only o, such that

o 8
liminf / / %dxdyzcjv/ |Vgldx. (1.4)
n—oo  JgN JrN |x — y|VF RN

18(x)—g()>8n

Remark 1. Proposition 4] is not stated explicitly in [2], but its proof is implicit
there (see the proof of [2, Theorem 1]).
The proof of Proposition [3]is much more involved than the one of Propositions|[T]

and [2] (see [2]).
In this paper, we generalize Propositiph§|1-3 as follows:

Theorem 1. Letl < p < +oo and (F,),cn be a sequence of functions frdfh +oo)
into [0, +o00) such that

() F,(¢) is a non-decreasing function with respectton [0, +00), for all n € N.
(i) fo Fu()~P*Ddr = 1foralln € N,
(iii) F,(¢t) converges uniformly t® on every compact subset (, +co0) asn goes to
infinity.
Then
(@) If g € WLP(RN), then for every: € N,

Fy - *
/ / Ue@) — 8D 4, 4y < CN,,/ Fn(z)r—u’“)dz/ Vg ()| dx,
rY JRY  |x —y[VEP "o RN
(1.5)

whereCy , is a positive constant depending only &rmand p.
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(b) If g € LP(RV) satisfies

Iiminf/ / Fullg) — WD, dy < +00, (1.6)
n—oo Jpv Jry  [x — y[N+P

theng € w7 (RY) and

F, —
Iiminf/ / (&) Ng(y)')dxdyzKN,,,/ Veo)|Pdx.  (L.7)
n—oo JpN JRN |x — y|N+P RN

(c) Moreover, if

o
limsup |  F,(0)~P*D dr < 400, (1.8)
n—o00 0
then
. F -
lim / / n(18(x) — g dxdy = KN,p/ IVg(x)|”dx, Vge Wl’p(RN),
n—oo JpN JRN |x — y|N+P RN

(1.9)
Here Ky, , is defined by(1.1)).

Remark 2. Many ideas used in the proof of Theorems [I] and [2] are borrowed from
the method of J. Bourgain and H.-M. Nguyen in [2].

Remark 3. Propositions [I] and [3] follow from Theorem [T by choosing
0 if0<t <4,

F,(t)=1 ps&f _ (1.10)
otherwise.
1-67

To deduce Proposition [2] we choose

eatPTen if0 <t <1,

F,@t) =
n(®) { &n otherwise.

Remark 4. We now make some comments about hypotheses (i)—(iii) on the se-
quence (F,). The conclusion of Theorem [1| may fail if we do not assume (i). For
example, let

ntPtl if0<r < 1/n, 1 if x| <1,

Fu(1) = { g(x) =

0 otherwise, " 10 otherwise.

Clearly,

F p—
/ / (s =8WD 4 gy —0 Wns1 vp =1,
RN JRN lx — y|N+p

but g ¢ WHP(RN) for all p > 1.
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Condition (ii) is a normalization condition. Indeed, if we assume

n—oo

1
lim / Fo()t~ P+ gt = 400,
0

then g is a constant function (see Corollary [I]).
Condition (iii) is also important. Indeed, the sequence F,(t) = tP*1 for all

n > 1 satisfies conditions (i) and (ii). However, condition (L.6) is equivalent to
g € WP/(P+D.pHLRN),

The analogue of assertion (b) in Theorigm 1 fo« 1 is the following

Theorem 2. Let (F,,),cn be a sequence of functions frgf +o0) into [0, +00) satis-
fying (i), (i) with p = 1 and (iii ). Assume thag € L*(RV) and g satisfies(T.6) with
p = 1. Theng € BV(RY). Moreover, there exists a constan, depending only o,
such that

F, —
Iiminf/ / (g() = 8D dxdy > CN/ |Vgldx. (1.12)
RV JRY = VL RN

n—oo
Comparing with[(1.]7), we have
Question 1. Can one replacey by Ky 1 in (L.11)?

The reader can find further questions in Sedtibn 4.

Remark 5. Proposition [ follows from Theorem [2 by choosing F,, as in (1.1Q) with
p=1

For what concerns the analogues of assertions (a) and (c), A. Ponce has con-
structed a function g € WL1(R) such that

. 1)
jim // 0 dxdy = +oo.
50 JrJr  x —y?

lg(x)—g(y)[>3d

Hence the analogues of these assertions for p = 1 do not hold (see [7]).

The proof of assertion (a) in Theoréfn 1 is similar to onéIn [7]; it is based on maximal
functions. We present two methods of proof of assertion (b) in Thejofem 1. The first one, is
based on Propositigr} 3. The second one which relies heavily on Léinma 2 below, is more
complicated but is interesting in its own right. For what concerns Thepfem 2, we are able
to apply the first method, but not the second due to lack of an analogue of LEmma 2
for p = 1. Lemmd D is closely related to Propositjgn 3; its proof uses many ideas of
J. Bourgain and H.-M. Nguyen froml[2]. The proof of assertion (c) in Thegrem 1 is also
much more delicate than the one of assertion (c) in Propositions[1 and 2.

The paper is organized as follows. In Secf{ipn 2 we will prove Theofgms [[Jand 2. In
Sectior] B we present another proof of assertion (b) in Thepfem 1. Finally, in Sglction 4 we
will discuss problems related 16-convergence.
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2. Proofs of Theoremg1l and2
2.1. Proof of assertion (a) in Theorém 1

Using the change of variables formula and Fubini's theorem, one gets

Fu(lg(x) — gD
/RN /RN |x — y|N+tP dxdy

© Fu(lg(x +ho) — g(x))) dhdxd
v Jan L xdo.

Consequently, to provg (1.5), it suffices to show that

/‘ /oo Fallgtx +ho) = gD 0 <c, /OO Fy (1)t~ PFD dt/ Vg ()P dx
RN hrtl 0 RN (2.1)

for all n € N, whereC, is a positive constant depending only pn

Without loss of generality we may assume that= ey. Sinceg € WL7(RN),
g(x’, ) € WLP(R) for almost every’ = (x1, ..., xy_1) € RV -1

Fix x' € R¥N~1 such thaig(x’, -) € WP (R). Then
xN+h

aa—g(x s)

lg(x + hew) — g(x)] < h][ ds < hMN( o )(x)

N

for almost every(xy, ) € R x (0, +00), whereMy (f) denotes the maximal function
of f with respect to the variabley in the positive direction, i.e.,
xN+h
My (f)(x", xy) = sup |f(x",5)|ds. (2.2)
h>0 XN

Hence, since ), (¢) is a non-decreasing function with respect to

Fo(lg(x +hey) —g(x)) < Fy (hMN< % )(x)) fora.e.(xy, h) € R x (0, +00),

which shows that
/ /"o Fo(lg(x + hey) — g(x)]) dhdxs/ / Fn(hMN(ag/axN)(x)) hdx.
RN Ry Jo

hptl hp+l

A direct computation yields

o Fn(lg(X+heN)—g(X)|)dhd
&Y Jo hpt+l

5/ MN(a )(x)
RN ax

o0
dx / F,(Wh~ "D gp.
0
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On the other hand, using the theory of maximal functions (see, [e.g., [9, Chapter 1)),

one finds
< )(x) dxydx' < C, f —(x) de dx'.
RN-1 RN-1 axy
Consequently,
ag

f My < >(x) dx pr/ [Vg(x)|? dx.

RN ax RN
Therefore[(Z]1) is proved and (1..5) follows. o

2.2. Proof of assertion (c) in Theorém 1

The following lemma is useful in the proof of assertion (c) in Thedrém 1.

Lemma 1. Assume thag € W17 (R) and (F,),y satisfies hypothes&s—(iii ) of The-

oremIand (1.8). Then
Iimf/oo Fullgt + 1) = 8@ dhdtz/ lg' (1|7 dt. (2.3)
R

n—NJr Jo hptl

Proof. Sinceg € W17 (R),

t+h
gt +h) —g@)| < h][ 1g'($)lds < hiMy(g)(1)| fora.e.(r,h) € R x (0, +00),

t
whereM, (g’) denotes the maximal function gf in the positive direction, i.e.,
t+h
Mi(g) () = EUS)][ lg'(s)]ds.
> t

Hence, sinceF, is a non-decreasing function, it follows that, for all measurable sets
A CR,

//"O Fa(lgt +1) — gD dhdr
0

hp+l

o0
<sup[  Funyh @+ an / Mo (HOP di.  (2.4)
neNJ0O A

On the other hand, singe € W1P(R) and 1< p < 400, applying the theory of
maximal functions (seé [9, Chapter 1]), one gefts(g’) € L?(R) and

/ |M4(g) ()P dx < C/ lg' ()P dx. (2.5)
R R
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Hereafter in this prool” will denote a positive constant depending only @nThus it
follows from (2.4) that for each € (0, 1), there exists a positive constant k() > 1

such that
=5 Jo hrt R\B

where
B = {r €[k, k]: |g' ()| < k}.

Set, for eachr > 0,

g +h) — g(@®)]

Ar={t€B;q(t)§ Y

<|g' ()| +y fora.e.n |0, ‘L’]},

wherey = ¢/k? andq(¢) is defined as follows:

2.7)

o) = lg'OI =y ifl1g'®] =y,
7V =109 otherwise

Sinceg € WLP(R), it follows from (Z:4) and[(25) that one can choassufficiently
small such that

/ / Fn(|g(t+h)l_g(t)|)dhdt+/ SO di <g/2. (2.8)
B\A, Jo hpt B\A,

On the other hand, sindg, is a non-decreasing function,

/ /’ Fo(lgt +h) —g®)) dha't</ /’ F.((1g' )]+ y)h) dh dt
.Jo “Ja Jo '

hpt1 hpt1

A direct computation yields

TR (¢ h (g’ O+t
n((lg ( )| + V) ) dhdt = (Ig’(t)| + y)I’ Fn(s)s_(p+l) dsdt.
. Jo hptt Ar 0

Moreover, sincefol F,(H)r~?*D dr = 1 andF, () converges uniformly to O on every
compact subset ab, +o00) asn goes to infinity,

n— oo

(g’ O+
lim / (Ig' @]+ y)? / Fu(s)s™ P dgdr = / (Ig' @)+ y)P dt.
Ag 0 A

Therefore,

Iimsup/ / F"(|g(t+h)_g(t)|)dhdt§/ (gD +y)Pdi.  (2.9)
A; JO Ar

n—00 hptl
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Furthermore,

TF,(lgt +h)—g@®) ,
fR(fo [Yas! dh—|g (t)l”) dt
T Fa(lgt+h) —g@))) ,
N /]R\B (,/o hp+l dh —|g (t)|p> dt

T Fu(lg(t+h) — g®))) /
" /B\A, (/0 hp+L dh —|g (t)|p> dt

+/ (/ Fullgt+m) —g@®D Ig’(t)l”) dr.
. 0

hp+1

Thus combining[(2]6)[(2}8), and (2.9) yields

//T F,(lgt +h) —g®)) dhdt—/ 1§ (O|P dt
R Jo ®

np+l

<34 fA (') +v)? — g OP)dr,  (2.10)

whenn > n,.
Since(a+y)? <aP(1+Cy/a)if y <aanda@+y)? <Cyifa <y <1,onehas

fA ((18'®) + y))P — 1§ OIP)di < Cyk” = Ce.

Here we use the fact that, C B and the choice of = ¢/k”. Hence it follows from

(2.10) that

T Fa(lgt +h) —g@®))) /
A;{/O hptl dhdt — /R lg'OPdt <Ce, Vn=>n,. (2.11)

Similarly,

//, Fo(1g(t +h) — g(®)]) dhdt_/ 18/ ()] d
R JO R

np+l

> 3+ / @) — 1O (2.12)
Ar

for all n > n.. Recall here that the functiop is defined by[(2]7). Sincéx — y)” +
CyaP~1>aP foralla > y > 0andA, C B, one deduces that

(g’ () — 18’ ®)IP)dt > —Cyk? = —Ce.
A

Thus, from [2.1P),

FFa(lg+h) —g@)) ,
fRfo ppil dhdt —leg O\ dt = —Ce,  Vn=n.. (2.13)
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Combining [2.1]L) and (2:13) yields
//’ El(lg(t+h)—g(t)|)dhdt_/ 1/ ()P dt
R JO R

o+l <Ce, Vn=n.. (214

On the other hand, sincg € W1P(R), it follows thatg < L (R). Thus since
F, (¢) converges uniformly to 0 on every compact subs&0pf-co), applying Lebesgue’s

dominated convergence theorem, one obtains

| " Fyllg(t + 1) — g(0))
"Il—’m°°/¢|<k/z Py dhdt =0, Vm>0.

Moreover, since, is a non-decreasing function, it follows that

® F.(lgt+h) — gt * F,(lg | LphP=D/P
/ / n(lg( + )1 g1 dhdt §2k/ n(lIg lLr . )dh
[t|<k Jm hP+ m hP+

2k / o0 1
< =lg'l7, / Fu(t)e= Pt gy,
m 0

Hence using (1]8), one gets

n”_>moo/| k/ Fu(lg( ;lrpfi)l— g(m)dhdt:o. (2.15)
t|<k Jt

Therefore the conclusion of Lemrh 1 follows frgm (2.F), (2.14), and [2.15). O
Proof of assertion (c).We claim that

lim / / Fullge + ho) = g(0)1) dhdx = / |Vg(x)-o|? dx. (2.16)
n—oo RN 0 thrl RN

Without loss of generality, one may assume that ey. Takex’ € R¥~1 such that
g(x’, ) e WLP(R). Asin (2:3), one gets

//o" Fu(lg(x', xy +h) — g(x', xn)|) dh
R JO

hpt+1

de

o0
< / Fu(t)~ P+ dr / My (0g/9xn)(x', xy)|P dx.
0 R
Here My is defined by[(Z]2). On the other hand, by Lenjrha 1,

. ® Fu(lg(x’, xny +h) — g(x, xn)) / dg b
lim dhdxy = —(x’, dxy.
fR/o hptl ™= Jeloen ()| daw
(2.17)

Thus, applying Lebesgue’s dominated convergence theorem, one obtains

0 —
Iim/ f Fulls(x + hen) g(x)Ddhdx:/ IVg(x) - en|P dx.
n—o0 Jpn Jo hpt+1 RN

Therefore the conclusion of assertion (c) in Theofém 1 follows flom (4.1),](2.16) and
Lebesgue’s dominated convergence theorem. O

n—oo
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2.3. Proof of assertion (b) in Theordr 1

Without loss of generality, we may assume that

F,
Mi—14 sup[ / U0 = 8D 11 gy < 400,
neNJRN JRY [x — Pt

Thus sinceF,, (¢) is a non-decreasing function with respect to

1
supy | F,(2~**D) / / — = _dxdy <M. (2.18)
neN,; RN JRN |x — y[PtN
270D <|g(x)—g(y)|<27*

On the other hand, by (i)—(iii) it follows that for each > 0 there exists: such that
F,(s) > 0. Thus since, is a non-decreasing function,

1
/RN /RN md“@ < 400, Vs>0.
lg(x)—g(y)|>s

Hence

F. (2~ &+ / / L
1;1 ! ) RN JRV i — ey

2-k+D <|g(x)—g(y)|<27F

o0
=) F@ )

1 1
—  _dxdy — —  _dxdy).
X( /RN./RN i — yin fw/u; i — yoin y>

lg(x)—g(y)|>2-k+D lg(x)—g(y)|>27%

However, the right hand side above equals

o—(k+1)p
ZZ”("“)F (2-(+D) / f ——— - dxdy
RN JRN |x — y|P+N
lg(0)—g(y)|>2-*+D

_ pk (k+1)
Zz F,(2~k+D) / /}%N |x_y|p+Ndxdy

lg(x)—g(y)|>27%

_ k k (k+1)
ZZ”(F(Z) F, (2~ %ty /A;N |x_y|p+Ndxdy

lg(x)—g(y)|>27*

1
- F,(1/4 ——dxdy,
n(1/4) A;N/RN Xy N xdy
lg(x)—g(y)|>1/2
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and, from hypothesis (iii) oif,,
lim F,(1/4) =
n—od
Thus it follows from [2.IB) that

27kp
IlmsupZZ”k(F (2 %)= F, (2~ *+Dy) f / ——— —dxdy <M. (219
n—oo 1 RN JRN |x_y|p+

lg(x)—g(y)|>2-*

We claim that

2kp
liminf dxd . 2.20
oo /RN /]RN Jx —y|P+N Xdy < +00 (2.20)

lg()—g(y)|>27*
We prove [(2.2D) by contradiction. Suppose it does not hold. Then there kyists N
such that for alk > ky,,

/ / dxdy > 2P°M.
RV Jry  x — y[PtN
lg(x)—g(y)|>27F

Hence it follows from[(Z2.19) that

o0
limsup2?*2M Y 274 (F, (27 = F 27y <

n—o00 K=k

which shows that

o0
limsup > 274 (F,27%) — F,(27%tY)) <27 +2, (2.21)

n—oo P

On the other hand, singe> 1,

o o0 o
Yo M E@H - F@ %)= Y 2R - Y 22 VR
1 o0
>3 > 2%F,2h
k=1+kpy

and, sinceF), is a non-decreasing function,

J

2—(l+kM)
E,()t~PtD gt = / F, ()t~ PtD gt
k=Ltkpy 2—(k+1)

—k
< Z F,(275 =P+ gy
k=1tky 2—(k+1)
LS

<= Y 2FReh.

P =k
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Thus it follows from [2.2]1) that

2—(l+kM)
lim sup 2_(”+1)p/ Fo()t~ P gr < 2= (p+2),
n—00 0
This implies
2—(1+kM) 1
lim sup Fo()t~ Pt gr < 2. (2.22)
n—o00 0 2
However, by (ii) and (iii), one gets
2—(1+kpp)
lim / F, ()t~ PtD gt = 1.
n—0o0 0

This contradicts[(2.22), and proves (2.10). Thus by Propodiion 3, it followsgthat
whr@®N).
In order to prove[(1]7), we consider the sequence of functindefined by

Fo(r) if0<r<l,

Gn0) = { F,(1) otherwise

This sequence satisfies hypotheses (i)—(iii) of Thedrem 1[anfl (1.8). By assertion (c) of
Theorenf 1L,[(1]7) follows. o

2.4. Proof of Theorein| 2

Applying the same method as in Sectjon| 2.3, one can prove that

—k
lim inf ———dxdy < +oo.
k—o00 'A;N /RN |x — y|N+l Y +
lg(x)—g(y)|=>27*

Thus by PropositioE]4, one hgse BV(R") and

2—k
liminf —— —dxdy>c Ve|dx.
ko0 /%w/w =y N = /RN' ¢!
lg(x)—g(y)|>27F

Hereafter in this proot denotes a constant depending only 8nThus there exists a
constankg € N such that for alk > ko,

2—k
_ \Y .
/]RN/RN lx_y|N+1dxdyzc/RN| gldx

lg(x)—g(y)|>27F
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Applying the method of Sectidn 2.3, one gets

Fu(lg(0) — g0
./RN/RN Xy d“iyzc/o

1
F,(1/4 ———dxdy.
+ n(/) AN/]‘QN |)C—y|N+lxy
lg(x)—g()]>1/2

o—(l+kg)

Fn(r)fzdz/ |Vg|dx
RN

On the other hand, sindg, converges uniformly to 0 on every compact subs&0pf-oco)
and

1
/ F,()t 2dt = 1,
0

it follows that

2—(1+kg)
lim Fo()t~?dt = 1.
n—oo 0
Therefore
. F, -
hmmf/ f n(ls) = 8D dxdch/ \Ve|dx. 0
n—oo JpN JrN |x—y|N+1 RN

Theorem§]l arld 2 have the following interesting consequence. It is motivated by the work
of J. Bourgain, H. Brezis and P. Mironesculin [1] and [5].

Corollary 1. Letp > 1 and (F,),cn be a sequence of non-decreasing functions from
[0, +00) into [0, +00) such thatF;, (1) is bounded and

1
limsup | Fo():~ PV dr = +o0.

n—o00 0

Assume thag € L”(RV) and g satisfieg[I.§). Theng is a constant function.

Proof. Without loss of generality, one may assume that

1
lim / F, ()t~ Pt gt = +00.

n—oo 0

For eachn € N, set

F,(t .
fl n(()+1>d if0 <r<1,
F, )=+ dt
Guy=14"""" F,(1)
u otherwise

fol F,(t)t=(»+D gt

Then(G,),cn satisfies hypotheses (i)—(iii).



Further characterizations of Sobolev spaces 205

By Theorem$ |1 ar(d 2, there exists a constant > 0 such that

G _
cN,p/ [Vg|P dx < I|m|nf/ / (lex) g(y)|)dxdy,
RN =Y JrY

n—00 |x — y|Ntp

However,

Iiminf/ / Gn(lgx) — g dx dy
RN JRN

n— 00 |x—y|N+P

Fa(lg(x) — gD
< liminf / / dxdy =0.
n—00 f F,(O)t=@+D dr Jrv Jry  |x — y NP Y

Thus it follows that/py |Vg|? dx = 0. Thereforeg is a constant function. O

Remark 6. The conditions of Corollary [1| are satisfied by F,(¢t) = t? for alln € N
with p > 1. Hence any function g € L?(R") satisfying

// 18() —gWI” dy < +o0

|x — y[N+p
RN xRN

must be a constant. This was already observed in [5].

3. Another proof of assertion (b) in Theoren{1

First in Sectiori 3]1 we present a fundamental lemma. Then in S¢ctipn 3.2 we discuss a
new proof of assertion (b) in Theorérm 1.

3.1. Afundamental lemma

The following lemma will play an important role in this section.

Lemma 2 (Fundamental lemma)Letg € L?(RY), 1 < p < 4+o00. Assume that

// |N+1 dxdy < +oo, VK CC RN, Ve >0 (3.1)
Ig(X) g(y)|>s
and
liminf eP dnd (3.2)
imin _ . .
e—04 // |x — y|NtP xay < +00
RN xRN

e<|g(x)—g(MI<10e

Theng € WLP(RN).
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Remark 7. Condition (3.3) alone is not sufficient to show that g € WH?(RY) (in
contrast with condition (I.2)). For example

1 if x| <1,

) = 0 otherwise.

Surprisingly, the mild additional assumption (3.J) together with (3.2) implies that
g € WhrP(RN).

In order to prove Lemmp]2, we need some useful lemmas. The first lemma, which
was used inl[2], is a direct consequence of a result due to J. Bourgain, H. Brezis, and
P. Mironescu (see[1]).

Lemma 3. Letg be a measurable function on the interyal 5] (—oco < a < b < +00),
y € R, and$ > 0. Set

B ={x €a,b]; g(x) < y}.

Assume that
[[a, b] N B|
O < /<

— 1 (3.3)

and

b b 1
/ / ———>dxdy < +00. (3.4)
a a |x - y|
lg(x)—g(»)I>8

Then
[a,b)] N A;] >0, V1 >3,

whereA; :={x € [a,b]; y < g(x) <y +1}.

HereafterlA| denotes the Lebesgue measureldbr any measurable set C R.

Proof. We prove Lemma@|3 by contradiction. Suppose tfatb] N A;| = O for some
T > §. Then from[[3}4),

1
/ / —de dy < +o0.
B Jab\B 1X — Y|

This implies (se€ [1])
|B|=0 or |[a,b]\B|=0,

which contradicts (313). o

The following lemma will be useful to prove Lemrhé 5. Estimgte](3.6) was mentioned
and used in[[2]. Estimaté (3.7) was also hidden there. It will play a role in the proof of
Lemmd%. For the convenience of the reader, we will reproduce the proof.
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Lemma 4. Letg be a measurable function on the interyal 5] (—oco < a < b < +00),
yeR,r>0,5s >0,andt > § > 0. Set

B={xeR;, glx) <y}, A={xeR; y<gkx)<y+r}
Assume that
[[a, b] N B| [[a, b] N A|
—:r7 e S
b—a b—a

b rb 1
/ / dxdy < 4o0. (3.5)
a a

lx — y|?
lg(x)—g(y)>8

Then there exists a subinterval d] C [a, b] (¢ < ¢ < d < b) such that

N B NA
ealnBl_ -, lledna
d—c d—

s, r+s<1,

and

<s, (3.6)

and

d—c <4|[a,b]ﬂA|.
b—a ™ sb-—a)

Proof. Set [u1, b1] = [a, b]. Suppose that there existg.[ bi] C [a, b], kK > 1, such that

(3.7)

|[ax, bx] N B| — ' and [ax, bi] N A| <
by — ax br — ax
I [ar, b ] N A
[[ak, bk | > s/a
br — ax

then take ¢, d] = [ax, bi]. Otherwise, by Lemmf]3, one has

[[ak, bi] N A
—_—— <

0
= by — ax

s /4.

Takes; > 0 such that/s; € Z and

,bi] N A
[k, bi] |§Sk

sk/2 < (3.8)
by — ay
Then
Sk < 8/2. (3.9
Set ® )
— ag)s
Py % (3.10)

Consider the functionfy (¢) defined as follows:
V() = [t — Aot + ] N Bl Yt € [ag + Ak, b — M.

We claim that there existg € [ax + Ak, by — Ax] such thatyy (tx) /(2hg) = r.
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To see this, we argue by contradiction. Suppose that)/(2r;) # r forall ¢ €
[ak + Ak, by — Ag]. Sinceyr is a continuous function o + Ax, by — A¢], we assume as
well thatyy (1) /(2hx) < r forall t € [ar + Ar, by — Ai]. Since(by — ay)/(2Ahg) = s /s
€ Z, it follows that

br — ax

[[ak, bk] N B| < 2riy = r(br — ax).

This contradicts the fact thiftay, bx] N B|/(by — ax) = r.
Set 11, biy1] = [tk — Ax, i + Ak] C [ak, b]. Then
[ak+1, br+a] N B — and [[ar+1, brva] N A| < [ax, bx] N AI_
b1 — axt b1 — arta 2\,
Thus it follows from [[3:8) and (3:10) that
[ak+1, bera] VAL lak, el N Al [ak, be] N Al by — ax by — ax
< = < Sk = .

b1 — arta 2\, b — ax 2 T 20k
Moreover,
b1 —ar1 . 2 sk
by —ar by —ar s
Thus from [3.9), this implies
bpri—arr1 1
_ - < . 3.11
by—a, ~ 2 ( )
On the other hand,
by by 1 1
/ f ———5dxdy > // ——dxdy,
ay ay |X - y| |-x - y|
lg(x)—g(y)|>8 x€lar.blNB
velar, b ]\(AUB)
which shows
by by 1
/ / sdxdy =r(l—r—s). (3.12)
ay ay |-x - y|

lg(x)—g (1>
Combining [325),[(3:311), and (312) shows that the above process will stop at some
k€ Zy.Thenk,d] C[a, b] (¢, d] = [ak, bk]), and
NnB NnA
|[c, d] I:r, s/45|[c,d] |§s.
d—c d—c
If k > 2, then it follows from[(3:B) and (3:10) that
d—c - by —as _ 2)1 51 <2|[a,b]ﬂA|

b—a ~bi—ay bi—a1 s stb—a)
Otherwise k = 1), the estimatd (3] 7) holds clearly.
The proof is complete. O

The following lemma plays an important role in the proof of Lenjrha 6.
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Lemma 5. Letg be a measurable function on the interyal 5] (—oco < a < b < +00),
y € R,andt > § > 0. Set

Bi={xeR; gx) <y+jt}, .
’ . . VjeZ.
Aj=fxeR y+jr<gl) <y+({+Dr},
Assume that
l[a,b] N Bo] 1 |[a, b] N Ao| - 1
b—a 2 b—a 8
and
b b 1
/ / sdxdy < +oo. (3.13)
a Ja lx — yl

lg(x)—g(¥)I>6
Then for eachr > 8, there exisin € Z, 1, € Z, and[c, d] C [a, b] (c < d) such that

[lm| < 2m,
|[Cv d] N Alml |[Cv d] N Alm+2| - 1
d—c d—c — 4.8n+1lm+l’

d—c<d4"@8/r)y"m=D/2(p — q).
Proof. Setj; = 0. By Lemmd 4, there exista{, b1] C [a, b] such that

lar. bl O Bl _ 1 1 - |[a1, ba] N Aj | < 1
b1 —a 2 4.8 b1 — a1 8
Suppose that there exist[, b¢] and j; (k > 1) such that
ljkl < 2(k — 1),
1 %Y1 ab]nB, 1 %t
— -2 — < 7k 7k k! < — 2 —,
2 "8 h-—a 27" ;81 (3.14)
1 - lak, bkl N Aj, | - i
4.8 — by — ax - gk
Then we have the following cases:
Case 1:
[, K] N Ajal 1 and o, il O Aj—al 1 .
br — ay, - gkl br — ax - g+l
Set
m=k7 lm =Jk_1a [Cvd] Z[Clk,bk].
Then [e,d]N A | |[c,d]NA | 1 1
Ca lm C, lm+2
J_c J_c = grtigntl = 2. gniimil: (3.15)
Case 2:
lak, be] N Aj 41l 1 lax, bk] N Aj 1] 1

< < .
by — ai gk+1 by — ay gk+1
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Case 2.1:
[[ak, bi] N Aj 41l - 1
by — a gk+1”
Case 2.1.1:
[, bil 0 Aj2l 1
by — ag = pktle
Set
m=k, Ly,=ji [c d]=]ax, b].
Then e.d1 0 Ay | Ife d] 0 Ay 2] 1
c, 1,1 1[e. In+2
i o > . 3.16
d—c d—c — 4.8nt1lpmtl ( )
Case 2.1.2:
[ak, bi] N Aj 12l 1
by — ax rk+l’
Set
Jit1 = jk + 2. (3.17)
Then, from the first inequality of (3:14),
ljk+1l < 2k. (3.18)
Applying Lemmaﬂl withs = 1/8"*1 andB = Bj,,,, one getsdxi1, br+1] C [ax, bl
such that
[ak+1, beral O Bjyal _ llak, bl O By
bkt+1 — ak41 by — ay
1 axs1, b NA; 1
< [ak+1, b1l N Ajy iy <1 (3.19)
4.8+ bry1 — ax+1 g+
bis1—aky1 481
by — ay = pk+l
Thus from [3:1§) and (3:19),

k
k1, beral O Bjyal _ Mlar, K]0 Bl 1 22 i
-2 8

bry1 — a1 T bhi—a ~

and, sincejx+1 = ji + 2 (see[(3.117)),

lakt1, be+a] 0 By ol lak, bl N By 4
bri1 — arsa b — ax

_ Mak, be] N By, | . [ak, bi] N (Aj, U Aj 11|

b — ax by — ay

1 =1 o1 1
§§+22§+g+ﬁ.
1=
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Hence

k
1 |[ak+1’ bk+1] n Bjk+1|
= <1 (3.20)
Z & br+1 — ag+1 =3 Z

Therefore fromm&@O) and the last two estimate@3.19), one gets

|jk+1| < 2k,
k
_ ZZ |[ak+11 bk+1] N Bjk+]_| Z i’
bry1 — ar+1 =8
1 - [ak+1, br+1] NAj .l - 1 (3.21)
4.g+1 = il — dron = g1’
i1 —ar+1 _ 4 g+t
br — ax — pk+l
Case 2.2:
[[ax, bi] N Aj 41l 1 [ak, bk] N Aj, 1] 1
> and .
br —ar = g+l br —az < g+t
Case 2.2.1:
[[ax, bk] N Aj 2l -
by — ag = kLl
Set
m=k9 lm :]k_zv [Cvd]:[akabk]'
Then le.d]n Ay Ile.d] 0 Ay, ol 1
C, l c, In+2
i i > . 3.22
d—c d—c — 4.gntlpm+l ( )
Case 2.2.2:
[[ak, bi] N Aj, 2| 1
by — ay pkt1”
Set
Jkr1=jk— 2. (3.23)
Then from the first inequality of (3:14),
lje+1l < 2k. (3.24)

Applying Lemmeﬂl withs = 1/8*1 andB = Bj,,, one getsdk+1, bit1] C [ak, bi]
such that
|[ak+ls bk—l—l] N Bjk+1| |[ak, bk] N Bjk+1|
br+1 — ap+1 by — ai.
1 [ak+1, beral OV Ajl 1
4.g+1 = = g’

s

3.25
bry1— agsa ( )

brs1—agyr  4- 8L
by —ar — okl
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Thus from the second estimate [of (3.14),

k
I[ak+1, be+1] N Bj 4 < [ak, bx] N B, | - 1 . 22 1
bri1 — art by — ax 2 = 8

and, sincejr+1 = jr — 2 (see[(3:2B)),

k1, bera] O Bjgyal _ Ilak, bl O Bjy|
bk41 — ak+1 b — ay
_ Max, i) NV By | lak, bi] N (Aj—1U Aji —2)|
- by — ay by — ay
R | 1 1
25—2_2;@—@—,m
=
Hence

1 o1 llan bl NBiyl 1 &1

DS S Y 3.26

2 ; 8 bry1— ars1 2 ; 8 (3.26)

Therefore from[(3:24)[ (3:26) and the last two estimatef 0f[3.25), one has

ljk+1l < 2k,
k 4 k

3= 2y 1Mt bl DBl 1 2y )
2 i=1 g br+1 — ak+1 2 = g8

1 lart1, beaa] N Ajpal _ 1 (3.27)
4.8+~ bry1 — ary1 gl
bs1— axs1 _ 4- 81

bk — ag - rk+l :

On the other hand, from (3.114),

beopbe g 1
/ [ sdxdy > // sdxdy = 1. (3.28)
ay ay |)C - Y| |)C - Y|

lg(x)—g(y)>8 x€lar,br]NBj,
yE[ak,hk]\(Bjk UA]k)

Thus it follows from inequality[(3.28), the last inequalities[of (3.21) &nd {3.27),[and (3.13)
that this process will stop at somec Z., . Thus from [[3.1p)[(3.16) anfl (3122), it suffices
to show that (, d] = [am, bu])

d—c<4"@8/ry"" V2 — g). (3.29)
In fact, from the last inequality of (3.21) ar{d (3]27),

i
bi —aj < ——(bi-1—aj-1), V2=i=m,
r
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which shows, sincé — ¢ = b,,, — a,,,
d—c < 4m(8/r)m(m+l)/271(b _a) < 4m(8/r)m(m71)/2(b —Cl)
(the above inequality is evident when= 1).
The proof is complete. O

Lemma[% has the following consequence which is one of the main ingredients to estab-
lish Lemme 6.

Corollary 2. Letl < p < +oo. Under the hypotheses of Lemflahere exisin € Z
and/,, € Z such that

[lm| < 2m

and

1 1
R — p
// | 17 1 dxdy > cpm(b a)
x€la,b]NAy,

yela,blNAy, +2

for some positive constan} depending only omp.

Proof. Taker = 16. By Lemm4 b, there exist € Z,, [,, € Z, and [, d] C [a, b] such
that

lm] < 2m,
I[e.d] N Ay, | |[c,d] N Ay, 12l - 1
d—c d—c = 4.gntim+1’

d—c <4 @/ry"m=D/12(p — ).
Hence
[, d] N Ay, | l[c, d] N Ay, 12l - 1
(d —c)rtl = 4.gn+lpm+1

S
— 4. 8m+lrm+l

d—c)tr

4m(1-p) (r/s)m(mfl)(Pfl)/z(b _ a)lfp ,

which shows that (sincg > 1)

e, d] 0 Ay, llle, d] N Ay, 2l

(d —c)rtl > cpm(b —a)* ™"

for some positive constanj, depending only omp.

On the other hand,
1 [c, d] N Ay, | l[c, d]l N Ay, 12l
f/ —lx_y|p+1dxdy2 d — o .
x€lc,d]NAy,

yele,dlNAy, 12
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Therefore,

1 1-
- — p
// | E 1 dxdy > cpm(b a) . O
x€la,b]NAy,

vela,b]NAy, 12

The following lemma plays a crucial role in this section.

Lemma 6. Letg be a measurable function on a bounded intetWandl < p < +oo0.
Assume that

// R 1y|2 dxdy < 400, Ve>0. (3.30)
IxT
lg(x)—g()I>¢
Then
liminf // L dxdy >c ;(ess sug — essinfg)? (3.31)
6—0, x — y|ptl Pzt I

IxT
e<|g(x)—g(y)|<10e

for some positive constant depending only op.

Proof. Case 1f is bounded. We first follow the idea and the notations used in the proof
of [2, Lemma 1].

By rescaling, we may assunie = [0, 1]. Setsy = esssupg, s— = essinf g.
Rescaling and translating one may also assume

s+ =1 and s_ =0 (3.32)

(unlessg is constant orf in which case there is nothing to prove).
Take 0 < § « 1 small enough to ensure that there are (density) points_ <
[405, 1 — 408] C [0, 1] with

3 9
[ty — Tt + 7] N g>£—1r >§1:,

1 9 V0 < 1t < 408. (3.33)
[t_—r,t_+r]ﬂ|:g<ZiH >§T,

TakeK € Z such that
§<27K <25 (3.34)

and define
J={j el 1/4< j2=K < 3/4).

Then
|J| =281 2~ 1/s. (3.35)
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For eachy, set

Aj={xel0,1]; -2 K <g) <j2 %} and B; =] 4;.
J'<i

SinceA; N Ay = @ for j # k, it follows from (3.3%) that
cardG) > 2K=2 -3~ 1/5, where G ={j e J; |4;] <27K+2). (3.36)
For eachj € G, setA; = |A;| and consider the functiop; (+) defined as follows:
Vi) =|[t —4xr;,t + 411 N B;|, Vit e[405,1— 405].

Then, from[(3.3B),
I//j(t+) < 4)\.]‘ and Wj(l‘,) > 4)"j-

Thus, sincey; is a continuous function on the interval Bl — 405] containing two
pointszy andz_, there exists; € [405, 1 — 405] such that

Iﬁj(l‘j) = 4)\,]'.

In the rest of the proof we introduce a new way to estimate the left side of| (3.31).
Sincer; < 4, it follows from Corollary[2 that there exist; € Z andl; € Z such that

lj — jI < 2m;
and 1
1—
// md}( dy > c[,mj8 p, (337)
XEZQAIJ.
yeINAy 42

for some positive constanf, depending only orp.
Setip = —1 and
Ci={jeG;l;=i}, Viel.
Foreachm > 1, if
{ieZ;i>i,—1+1andC; # @} # 0,

then set
in =inf{i € Z; i > i,_1+ 1andC; # @},

kn = max{m;; j € G andl; = iy,}.

Then
ky, 2 cardj € G; I; = in}.

Hence it follows from[(3.36) that

1
Z k, > cardG) ~ . (3.38)

n>1, k, exists 8
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On the other hand, from (3.37),

5P
/I/I lx —y[p~t dxdy = // Ierl drdy

2K <|g(x)—g(y)|<32K n=t k exists
}GIﬂAl,l-%—Z

>cp Y. kel (3.39)

n>1, k, exists
Therefore the conclusion of Lemiph 6 follows frgm (3.3B), (B.39), and(3.34).
Case 2 f is unbounded. By the method used in Case 1, one has
ep
ILrEiOrlf // mdxdy = +00. O
IxT

e<|g(x)—g(y)|<10e

Remark 8. It is interesting to compare Lemma@with Lemma 2 in [2] which asserts
that, for each p > 1, there exists a positive constant ¢, depending only on p such
that, for any bounded interval Z and for any measurable function g defined on Z,

1
o B D
liminf // |p+l dxdy > cp —|I|pil(es§su;g es% infg)?.

e—04
IxT
lg(x)—g(y)|>e

Obviously, Lemma [6] implies this assertion for the case p > 1.

We are now ready to prove Lemina 2.

Proof of Lemma@]2 Without loss of generality, we assume that

P
&n
sup / f 5" dxdy < 400 (3.40)
neN |x - y|p+N
RN xRN

en<|g(x)—g(y)|<10ey
for some sequence of positive numbeysuch that lim_, o, &, = 0.

Step 1: Proof of Lemm4d R whewv = 1. This proof is similar to the one of|[2, Theo-
rem 1] for the cas&/ = 1. We reproduce it here for the convenience of the reader.

Set

h _
(g (x) = g(x%)g(x),

For eachn > 2, takeK € R, such thatk# > m; then

VxeR, VO<h < 1.

(k+D)h
/ @ dx < 3 [ m@wir s,

k=—K
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Thus, since
a+h a+h
/ lth(g)(x)|P dx < / —| esssupg— essinf g|”dx,
a a x€(a,a+2h) x€(a,a+2h)
it follows from Lemmg § that, for some constanpt> 0,
/ml (@) d & drd (3.41)
T (g)(x x < c,Sup // —dx dy. .
—m pneN |X—Y|p+1
RxR
en<|g(x)—g(y)|<10ep
Sincem > 2 is arbitrary, we deduce frorp (341) that
p en
|th(g)(x)|P dx < c,sup // — " dxdy. (3.42)
AA% i neN [x — }’|p+1

en<|g(x)—g(y)|<10ey,

Therefore since[(3.42) holds for all @ i < 1, it follows thatg € W17 (R) (see [4,
Chapter 8]).

Step 2: Proof of Theorenf|l fotv > 2. Using the change of variables formula and
Fubini's theorem, one gets

o0 1
AQN./]RN |p+Ndxdy= /;NA/RN/O Wdhdxda.

e<|g(x)— g(y)\<10€ e<|g(x+oh)—g(x)|<10e

Hence, it follows from[(32) that

L o eP

liminf / / / dhdxdo < +oo.

e—>04 sv-1 JrN Jo hp+l
e<|g(x+oh)—g(x)|<10e

Applying Fatou’s lemma, one has
o
liminf dhdxd 00.
\/SN—I e—0g /I\QN’/O\ hp+1 rdo <+
e<|g(x+oh)—g(x)|<10e

Thus for almost every € SV—1,

o0
liminf /Nf hl’+1 dhdx < +o0. (3.43)

e—04
e<|g(x+oh)—g(x)|<10e

On the other hand, from (3.1),

—dhdxda<+oo Vr >0, Ve > 0.
/éN 1 ~/|x|<r / hpt1
lg(x+ho)—g(x)|>e
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Hence .
1
——dhdx < +00, Vr>0, Ve >0, (3.44)
-/|x<r -/(; hp+l
|g(x+ho)—g(x)|>e

for almost everyr € SV-1,
Fix o € SV—1 such that condition§ (3.#3) ar[d (3]44) are satisfied. We claim that

9
I8 ¢ LP@Y).
do

In fact, without loss of generality, suppose that= ey = (0,...,0,1). Then from

(3:43), we have

liminf — —dhdxydx' < +o0.
e—0 ‘/RN—l /ﬂg/(; hp+l N
e<|g(x’,xy+h)—g(x",xn)|<10e

Hence applying Fatou’s lemma, one gets

L P
/ liminf / / ————— dxy dyy dx’ < 400.
RN-1 &0 R JR lxny — ynI?
e<|g(x’,xn)—g(x',yn)|<10e

On the other hand (3.44) gives
el
// ———dxydyy <400, VK CCR,Ve >0,

lxy — yn|PHL
KxK

lg(x’ . xn)—g(x',yn)|>€

for almost every’ € R¥ 1. Therefore applying Lemnﬁ 2 for the ca¥e= 1, one has
g(x’, ) € WhP(R) for almost every’ € RN 1 and moreover (se&l[7]),

p
Jolaeeol = o)
RN RN-1JR

Sincedg/do € LP(RN) for almost everys € S¥~1, we conclude thag € W7 (RV).
This completes the proof of the fundamental lenifha 2. O

0g

g
—— (', xn)

—— )

p
dxy dx’ < +o0.
BxN

Remark 9. The constant 10 which appears in the condition “& < |g(x) — g(y)| <
10e” is a technical constant. We believe that 10 can be replaced by any positive
constant strictly greater than 1, but we have not been able to prove this.

Remark 10. Lemma [2] is only proved in the case 1 < p < +00. Lemma [2] clearly
implies Proposition

Whenp = 1 we have the following
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Question 2. Assume thag € L1(R") satisfies

// |N+1dxdy<+oo, VK ccRY, Ve >0
KxK
lg(x)—g(y)I>e
and
&
liminf —— —dxdy < +o0.
Aty /f oy e =
RN xRN

e<|g(x)—g(y)|<10e
Doesg belong toBV (RV)?

3.2. Proof of assertion (b) in Theordr 1

Without loss of generality, we may assume that

F,
M::l—i—sup/ f (g(x) = fl(vy)|)dxdy<+oo.
neNJRY JRY  |x — y|P

Thus sincefF;, () is a non-decreasing function with respect to

O 10~ P*+1)
supz 100 D E (10~ *+D) — _dxdy <M. (345
neN 1 RN JRN lx — y|p+N

10-*+D <|g(x)—g(y)|<107*

We claim that
10~ Pk+1)
Iknliorlf fRN /RN mdx dy < +o0. (3.46)
10-* D <|g(x)—g(y)|<107*
We prove [(3.4p) by contradiction. Suppose it does not hold. Then there kxists N
such that

10~ Pk+D
/ / —dxdy>2-10°"IM,  Vk > ky.
RN JRV lx — y|p*+N

10-*+D<|g(x)—g(y)|<107*
Hence [(3:4b) implies
sup2-10°tm Z 100 D E 10~ * Dy < 1,

neN k=ky

which shows that

o0
sup Z 10—(k+1) 10(k+2)(p+1) Fn(lo—(k+l)) <
neN p—ry,

(3.47)

NI =
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On the other hand, sincg, converges uniformly to O on any compact subset of
(0, +00) and

1
/ F,()r PtV qr =1
0

(see hypotheses (ii) and (iii) of,), one gets

lo—(kM+l) 10—(k+1)
1= lim / E, ()i~ PV dr = lim Z/ Fu(tt= P gy
0

n—00 n—00 Py 10-*+2)

o0
<limsup }_ 10~ *:+D10*20+D F, (10-*+D)

n—o00 .

(sinceF,(r) is a non-decreasing function with respect YoThis contradicts (3.47), and
proves (3.46).

By (i)—(iii) it follows that for eachs > 0O there exists such thatF, (s) > 0. Hence
sinceF, is a non-decreasing function,

1
_A\QN AN mdx dy < +OO, Vs > 0 (348)
lg(x)—g()|>s
Therefore by Lemmp]2, it follows frorfi (3.46) arid (3.48) that W7 (RV). o

4. T"-convergence

In this section we investigate some questions relatingI"toonvergence. In[][8],
A. C. Ponce studied similar questions in the context bf [1].
We first recall the concept df-convergence (sekl[3] 6]). One says that a sequence of
functionals(/,,), with values in [Q +o0], I'-convergeso a functionall on L? (RY) when
the following two conditions are satisfied:

(A) For everyg e LP(RY), there exists a sequengg,),cy C L?(RY) converging tog
in L?(RY) and
limsupZ,(g,) < 1(g).

n—o00

(B) For everyg € L?(R"N) and for every sequendg, ),y C L”(R") converging tog
in L?(RY), we have
1(g) < liminf I,,(g,).
n—oQ

We now take

Ipn(8) = // |x—y|N+1’ dxdy

RN xRN
lg(x)—g(¥)|>dn
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for some sequenag@,,) converging to 0, and

K
N"’/ Vel? dx
L] PR
p(8) = if g € WLP(RN) for p > 1, resp.g € BV(RY) for p = 1,

+o0o otherwise

When 1< p < oo, property (A) is satisfied witlg, = g by Propositionf [L. A very
interesting open question is

Question 3. Whenl < p < oo, does({, ) I'-converge td, on LP(RN)?

In order to give a positive answer to Questign 3, it would suffice to prove property (B),
i.e., that one can takey , = (1/p)Ky,, in (4.3) below. This problem is open even for
N = 1. A partial answer is given in Theorgr 3 below.

The same question can be askedpoe 1:
Question 4. Does(/1,) I'-converge td; on LYRN)?

Here the situation is more delicate. As pointed out in Rerpfrk 5, there exists a function
g € WHL(R) such that lim _, o 11,,(g) = 400 (while I1(g) < +00). Hence we cannot
argue as above by taking = g to prove property (A). However, (A) is still true:

Proposition 5. Given anyg € BV (R") there exists a sequengg € C>°(R") converg-
ing to g in LY(RY) and such that

limsuply,(gn) < KN‘1/RN |IVgldx.

n—o0

Proof. Let (hi)ren be a sequence i6i2° (RM) converging tog in LY(R") and such that

Iim/ |th|dx=/ |Vg|dx. (4.2)
N RN

k—oo JR

Using the same method as in the proofiof [7, Lemma 3], one gets
lim I1(hg, 8) = KNJ/ |Vh|dx. (4.2)
§—0 RN
Thus there exists an increasing sequencsuch that for alkh > ny,
1
I1n(hi) < Kna [Vhildx + —.
RN k

Define the sequencg, by g, = hy if ny < n < ng41, whereng = 0. Then for all
N < n =< Ngyl,

1
I, (gn) < KN,l/ |Vhi|dx + =,
RN k
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which shows that
lim SUPZ1. (g0) < K1 / Vgl dx. 0
RN

n—o0

We now prove the following result which is a partial answer to Quesfipns 8land 4. It was
announced in]7] for the one-dimensional case.

Theorem 3. Let (g,),en be a sequence ih?(RY), 1 < p < 4o0, converging in
LP(RN) to someg € LP(RY), and (§,),en be a sequence of positive numbers with
lim,— o0 8, = 0. Suppose that

S
sup // ————dxdy < +o0.
neN lx — Y|N+‘n
RN xRN
187 (X)—8n (¥)|>8n

Theng € WL?(RM) if p > 1andg € BV(RY) if p = 1. Moreover,

o S
lim inf // — " dxdy > CN)p/ |Vg|? dx 4.3)
RN

n—00 |x — y|NtP
RN xRN
[gn (X)—8n (¥)|>6n

for some positive constany, .

We first prove a technical lemma which plays the same rolelas [2, Lemma 2] in the proof
of [2, Theorem 1]. Its proof is based on thatlof [2, Lemma 2] and Egorov’s theorem (see
e.g. [10]).

Lemma 7. LetZ be a bounded intervalg,),cn be a sequence ih?(Z),1 < p < +o0,
converging inL?(Z) to someg € L”(7), and(8,),en be a sequence of positive numbers
with lim,,_, » 8, = 0. Then

liminf o dxdy > 1 lesssu essinfg|”
oo I =yt XY = Coigppmr 1SS Sl — esp il
IxT
18n (X)—8n (¥)|>3n

for some positive constan} depending only omp.

Proof. Without loss of generality suppose that [0, 1], esssup g = s, essinf g =
§s_ (—o00 < s_,s54+ < 400),andsy —s_ = 1.

Take 0 < § <« 1 small enough to ensure that there are (density) points_ €
[408, 1 — 405] c [0, 1] with

4 4

[t+ - 4(}3, ty + 408] N [g > §S+ + ES] > 708,
4 1

[t— — 405, t— +405] N [g < g5- + gs+:| > 708.
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We will assume as well that, converges t@ for almost every € 7. Thus, by Egorov’s
theorem (see [10]), there exists a constayguch that for alh > ng, we haves, < § and

3 1
[ty — 408, 14 + 4051 N |:gn > Zs+ + Zs_:| > 605,
3 1
[t_ — 406, [ —|—405] N &n < ZS_ + ZS.;,_ > 605.
Fix n > no, takeK € Z, suchthas, < 2=X < 25, and set
. 3 1 L 3 1
J:{J €Z+; ZS7+ZS+<]2 K<ZS++ZS}. (44)

Then
|J| =281 _2~1/s,.

Define (for notational ease)

Aj={xel0.1: G-D2F <gx)<j2 X}, B =|JAy, VjeL
i'<i

Since the setd; are disjoint, it follows from[(4 }4) that

cardG) > 22 — 3~ 1/5,,
where (for notational ease)

G=1{jel;|Aj <27K2)
For eachj € G, sety; ; = |A;| and consider the functio; (+) defined as follows:

V(1) = |[t — 408, +405] N B;|, Vr e [405,1— 405].
Applying the same method as inl [2, Lemma 2], we deduce that therejgxist0 and
t; € [t — 408, t 4+ 405] such that
{ I[1j — 40%;, t; + 400;] N B;j| = 40%;,
Aj /A < |[tj — 40h;, 1 + 4001 N Aj| < A;.

It follows thati; < §,. The rest of the proof is similar to the one of [2, Lemma 2]. O

Proof of Theoreni[3.The proof is the same as that of [2, Theorem 1], with the use of
LemmdT in place of |2, Lemma 1]. The details are left to the reader. O

Finally, we present a special case whereltheonvergence of a sequence of functionals
can be established.
Consider the functionals, andJ on L? (R") defined as follows:

Fr(lg(x) — g(y)I)
J.(g) = A@N /RN =y dxdy, VneN, (4.5)
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and

Knp [ 1V dx

RN

T(9) = if g € WLP(RN) for p > 1, resp.g € BV(RY) for p = 1,
+o00 otherwise

(4.6)

forall g € LP(RY).
We have the following

Theorem 4. Letl < p < +4o0. AssumeF,, : [0, +00) — [0, +00) is convex on the
interval [0, 1] for all n € N, and satisfies hypothesé¥-(iii) of Theorenfll Then(J,)
I'-converges ta on L? (RV).

As a consequence of Theoréin 4, we have
Corollary 3. Let F, be defined as follows:

eatPten iff0<rt <1,
Fy(r) = .
&n otherwise
for some sequende,,) converging td). Then(J,) T'-converges td/.
In order to prove Theorefr] 4, one needs the following two lemmas.

Lemma8. Letl < p < 400 and F;, : [0, +00) — [0, +00) satisfy hypothesg$—(iii)
of Theorenfl] and (g.)sen C LP(R) N CA(R). Assume thag, converges tg in L7 (R)
andCZ(R). Then

o —
Iiminf// n(1gn(x +h) — gn(x)]) dhde/ lg'|P dx.
n—oo RJO hp+l R

We recall that
CZRY) = {g € C2RY); llgliL= + IIDgllz + |1 D?gll 1 < +00},
with the norm
lgllcz = llglz + IDglle + ID?glle, Vg € CFRY).

Proof. Fix ¢ > 0 arbitrary. Takéd > 0 such that
lg'|Pdx > (11— 8)/ 1’| dx, 4.7
As R

where
As = {x e R; |g'(x)| > 26}.

Sinceg, converges tg in C1(R), there exists some, € N such that

lgn(x)| > 8, Vx € As.
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Hence sincdg,) is bounded irCf(R), it follows that
lgn(x + 1) — ga(x)| = (L—e)h|g'(x)], VxeA;, YO<h <,

for somer > 0 and for alln > n,. Thus sinceF;, is non-decreasing, one gets

m —
Ilmmf// Fu(lgn(x Z‘p}j_)l gn(X)]) dh dx
T Fy((L— e)hlg!
zliminf/ / @-e 1'g"(x)') dhdx. (4.8)
n—>o0 Ju. Jo hpt+

On the other hand, from (i),

Iiminf/ /T Ful@ = 2)higy @D 4 1
As JO

n— 00 hptl

8/2
> liminf (1 — s)p/ lgn|” dx/ Fﬂ(,)f(])+l) dt.
n—>oo Aé 0

Thus it follows from (ii) and (iii) that
/ /°° Fu(Ign(x +h) — ga(x)D
RJO

lim inf il

n—o00

dhdx > (l—s)l’liminf/ g7 dx,
n—oo A5

which implies, from[(4]7),

0 —
“mmf// n(gn(x +h) — gn(x)]) dhdx > (1_8)p+1/ |g’|”dx.
n—oo Jr Jo hp+1 R

Therefore, since > 0 is arbitrary,

I *F, h) —
I|m|nf// n(18n(x +h) — gn(x)]) dhdxz/ 1¢'|P dx.
n—oo RJO hp+l R

Lemma9. Letl < p < 400 and F,, : [0, +00) — [0, +00) satisfy hypothesg$—(iii)
of Theorenfijandg € C2(RY). Then

. F —
i / / n(lg(x) — g dx dy :KNp/ |Vg|? dx.
n—>0o0 JRN JRN [x — y|p+l Ry

Proof. Without loss of generality, one may assume that
suppg C {x e RY; |x| < 1}. (4.9)

Using the change of variables formula one has

Fo(Jg(x) — g
/RN Aw oyt

_/ / /Oo Fu(lg(x + ho) — g(x)]) dhdx do
- sv-1 Jry Jo hp+1 ’




226 Hoai-Minh Nguyen

Thus by Lemma@[8 and Fatou’s lemma, one gets

_ F, -
I|m|nf/ / 2 (18(x) — gD dxdy > KNp/ Ve|? dx.
n—o0o Jpn JRN |x — y|ptl T JRN

Hence it suffices to prove that

[ee} F, h —
Iimsup/ / / n(lg(x + ho) — g(x)]) dhdxdo < KNp/ IVe|P dx.
n—oo JSN-1JRN Jo hp+l RN

Fix ¢ > 0 (arbitrary). Define
Ag = {(o,x) e SN RY; |Vg(x) - 0| > 2¢).
Choose 0< 7 < 1 such that||g| 2 < ¢2. Then
lg(x +ho) —gx)| < A+ e)h|Vgkx)-o|, V0<h<rt,V(o,x)€ A,

Thus it follows from (i) that

lim SUp/ /T Fullg(x +ho) = 8(91) dhdx do
A JO

n—00 hptl
TF,(@1 Vv .
§Iimsup/ / / n(d+e) f(x) ol dhdxdo,
n—oo JSN-1JRN Jo hpP+

which implies

T F h —
Iimsup// n(lsCr + "1) g(x)')dhdxdog(lﬂ)ﬁz(,v,,,/ IVel|P dx.
n—o00 Ag 0 h[7+ RN

On the other hand, from the choicexnf

T —_ T F,(3eh
/ / Fallge +ho) = gCOD 1 g 5/ / / ") g dx < ce?,
¢ Jo hp+ SN-1 Jix|<2 JO hr+

whereA¢ denotes the complement af in S¥~1 xRV . Hereafter in this proof; denotes
a constant independent @f Thus

Iimsup/ / /T Fallg(x 4 ho) = g()1) dhdx do
sv-1 Jry Jo

n— 00 hpt+1

< (1+e)”KN,p/N [Vg|?dx + CeP.  (4.10)
R

On the other hand, it follows from (jii) that

00 —
im / / / Fulls+00) = 8D 4y gvdo =0, (a10)
n—0o0 JgN-1 |x|§2 T ]’lp+
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From [4.9), one gets

® [ F3G+ho) — gD
dhdxd
frd f e

F,
/ / / (g th"”) dhdx do.
sv-1Jr Jix=2 hP+
Also, from (4.9),

F, h F,
/ / / (Lé’(xj‘1 U)Ddhd do < / / ﬂgflc)')dhdxdo.
SN-1 J Ix|>2 hP sN-1 J¢ RN hP

Thus ~ F N
Iim/ / / nlsx 7o) =8O ypardo =0 (4.12)
n—>o00 Jov-1 )y Jixi=2 hp
Combining [(4.1]L) and (4.12) yields
o0
F, —
Iim/ / / (g +ho) =80 1 4 do = 0. (4.13)
n—o0 Jsn-1 JrN J; hp+1

Hence it follows from([(4.10) andl (4.1.3) that

*F ho) —
Iimsup/ / / n(lgte +ho) =g 0 oo
n—oo Jsv-1 Jry Jo hp+1

=< (1+£)pKN,,,/‘ |[Vg|? dx + CéeP.
RN

Therefore, since > 0 is arbitrary, one has

. * F, ho) —
Ilmsup/ / / n(lstx +ho) = (D dhdxdo < Ky ,,/ [Vg|l?dx. O
n—oo JSN-1JRN Jo hrt+l RN

Proof of Theorerfi]4.

Step 1: Proof of property (A). By the same method as in the proof of Propoditjon 5,
property (A) follows from Lemma@]9.

Step 2:Proof of property (B). We use some ideas of A. Ponce in the pro6f of [8, Lemma
12.2). Let(g,) be a sequence converging goin L”(RY). Let (ps) be a sequence of
smooth mollifiers. Set

gn(x)  if|ga(0)| <k,
gnk(x) =1 kg,(x)

otherwise
|&n (X)]

forall k € N, and
8n.ks = 8nk *ps, YneN,VkelN
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Then, sinceF,, is convex on [01], it follows from (i) and (iii) that
liminf J,(gn.k.s) < liminf J,(gn.x). (4.14)
n—o0 n— oo

On the other hand, from Fatou’s lemma and Leniina 8, one gets

liminf J,(gnk.s) = J(hi5), (4.15)
n—oo
where
gx) ifjgx)| <k,
h =1k
k() 8 otherwise
F{€3]
and
his = hi * ps.
Thus, since

Iign igf J(hi,5) = J(hp),
it follows from (4.14) and[(4.75) that

liminf J,, (gnk) > J (hp).

n—o00

On the other hand, from (i),
Jn(gn,k) =< J(gn)

Therefore,
liminf J,(g,) > J(ht), VkeN.
n—oo

This implies
liminf J,(gx) > J(g). o
n— o0

However, without the assumption on the convexity(8f) on [0, 1] in Theoren{ #, one
has

Question 5. Assume thar), : [0, +00) — [0, +00) satisfies hypotheség—(iii) of The-
orem[l and J, and J are defined by{.5) and (4.6). Does(J,) I'-converge toJ on
LP@®RN) forall p > 1?
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