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Abstract. In this paper we study a new notion of category weight of homology classes develop-
ing further the ideas of E. Fadell and S. Husseinhi [3]. In the case of closed smooth manifolds the
homological category weight is equivalent to the cohomological category weight of E. Fadell and
S. Husseini but these two notions are distinct already for Pd@mamplexes. An important advan-
tage of the homological category weight is its homotopy invariance. We use the notion of homo-
logical category weight to study various generalizations of the Lusternik—Schnirelmann category
which appeared in the theory of closed 1-forms and have applications in dynamics. Our primary
goal is to compare two such invariants @at¢) and cat(X, £) which are defined similarly with
reversion of the order of quantifiers. We compute these invariants explicitly for products of surfaces
and show that they may differ by an arbitrarily large quantity. The proof of one of our main results,
Theorenﬂs, uses an algebraic characterization of homology classé$ (X; Z) (whereX — X

is a free abelian covering) which are movable to infinityXofvith respect to a prescribed cohomol-

ogy classt e H1(X;R). This result is established in Part Il which can be read independently of
the rest of the paper.

Keywords. Lusternik—Schnirelmann theory, category weight, topology of closed 1-form, homol-
ogy classes movable to infinity

1. Introduction

In this paper we study various generalizations of the classical Lusternik—Schnirelmann
category cgtX) which arise in topology of closed 1-forms. They are homotopy invariants
of pairs(X, £) whereX is a finite polyhedron ané € H'(X; R) is a real cohomology
class. Several potentially different notions

cat(X, &) < cat(X, £) < Cat X, &) 1)

play different roles in application of the theory of closed one-forms to dynamics (see
[4], [7], [6]); each of these invariants turns into the classica{Xatwhené = 0. One
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of the objectives of the present paper is to show that(&att) can be distinct from
cat( X, &) and moreover their difference can be arbitrarily large. At the moment we have
no examples where G&, &) is distinct from cat(X, &).

It is well-known that a most effective lower bound for the classical Lusternik—Schni-
relmann category céX) is the cohomological cup-length, i.e. the largest number of coho-
mology classes of positive degree such that their cup-product is nontrivial. In our recent
preprint [9] we established cohomological cup-length type lower bounds feK cat
which use local systems of a special kind. In view[df (1) all lower bounds faxcg?
hold for cat(X, &) as well. In order to distinguish between these two invariants one needs
to have lower bounds for catx, £) which in general are not true for ¢&t, £). Such
lower bounds are found in the present paper.

Our main results are based on the idea of category weight which was initially intro-
duced by E. Fadell and S. Husseini who proposedlin [3] to attach “weights” to cohomol-
ogy classes so that classes of higher weight contribute more into the cup-length estimate;
see BR for more detail. We would like to mention also papers of Y. Rudyak [13] and
J. Strom[[15] who suggested a useful modification of this notion. In this paper we pro-
pose yet another variation of this idea: we attach weights to homology classes (and not to
cohomology classes as did the previous authors) and measure the “level of nonvanishing”
of a cup-producti1 U - - - U u, by evaluating it(u1 U - - - U u,, z) on homology classes of
different weight. We show that the notion of category weight of homology classes has an
important advantage of being homotopy invariant (unlike the weights of Fadell and Hus-
seini). We prove that for closed manifolds the category weight of a homology class equals
the category weight of Fadell and Husseini of the dual cohomology class. We also show
that this statement is false for Poineaiomplexes. The results about category weights of
homology classes occupy Part | which can be read independently of the rest of the paper.

Part Il also covers a story which may be read independently of Parts | and Ill. Here we
study free abelian coveys: X — X and homology classese H;(X; Z) which can be
realized by singular cycles lying arbitrarily far in a specified direction. Such “directions”
are parametrized by cohomology classes H1(X; R) with p*(£) = 0. Our result states
that this property of is equivalent to the existence of an infinite chelisuch thabc’ = ¢
andc’ is “automatically produced out of finite data” (see the discussion after Th¢grem 5).
The main result of Part Il generalizes Theorem 5.3 0f [5] which treats the case of rank
one cohomology classes. It also generalizes our previous result [8] covering the case of
homology classes with coefficients in a field;[ih [8] our arguments use a different algebraic
mechanism which fails to work over the integers.

In Part Ill we use the results of Parts | and Il to obtain new cohomological lower
bounds for cat(X, ). Our TheorenE]S gives in many cases stronger estimates than The-
orem 5.6 of [5]; note that the latter theorem applies only in the special case of rank one
cohomology classes although the results of the present paper are valid in full general-
ity and do not impose this restriction. In Part Il we also introduce a controlled version of
cat (X, £) which behaves better under cartesian products. Finally, we compUt& c&j
for products of surfaces as function of the cohomology dfass1(X; R). We compare
our results with the computations of the invariant &ats ) completed in[[9]. We conclude
that cat(X, £) may exceed céX, &) by an arbitrarily large amount.
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The following diagram illustrates dependence of parts of this paper:

Part | Part Il

N v
Part Il

Parts | and 1l can be read independently, the results of Parts | & Il are used in Part Ill.

Part I: Category weights of homology classes

Here we introduce and study the notion of category weight of homology classes which is
somewhat dual to the cohomological notion introduced by E. Fadell and S. Husseini [3];
the homological category weight has the advantage of being homotopy invariant. In Part
Il we use this notion to obtain improved cohomological lower bounds fdr &att).

2. Basic definitions

The classical cohomological lower bound for the Lusternik—Schnirelmann category
cat(X) states that caX) > n if there existn cohomology classes of positive degree
uj € H*(X; Rj), wherej =1, ..., n, such that their cup-produgt ...u, € H*(X; R)
is nontrivial. HereR; denotes a local coefficient system BrandR is the tensor product
R1® - ®Ry.

E. Fadell and S. Husseiriil[3] improved this estimate by introducing the notion of a
category weightwgt(u) of a cohomology class € H?(X; R). Here is their definition:

Definition 1. Letu € HY(X; R) be a nonzero cohomology class whetes a local
coefficient system oK. One says thatwgt(z) > k (wherek > Ois an integer) if for any
closed subset C X withcatyA < kone hast|4 = 0€ HY(A; R).

Recall that the inequality cgA < k means thatA can be covered by open subsets
U; C X such that each inclusiaii; ¢ X is null-homotopici =1, ..., k.

According to Definitior[ [l one has cwg!) > 0 in general and cwgi) > 1 for
any nonzero cohomology class of positive degree. As Fadell and Husseini [3] showed,
cwgt(u) > 1 in some special situations, which allows improving the lower estimate for
cat(X). Indeed, one has

n
cat(X) > 1+ ) cwgt(u;)
i=1
assuming that the cup-product. . . u,, is nonzero.

Y. Rudyak [13] and J. Strom [15] studied a modification of cugt called the strict
category weight swgt). The latter has the advantage of being homotopy invariant. How-
ever, in some examples the strict category weight is considerably smaller than the original
category weight of Fadell and Husseini.
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In this paper we introduce and exploit a “dual” notion of category weight of homology
classes. It has the geometric simplicity and clarity of category weight as defined by Fadell
and Husseini but has a surprising advantage of being homotopy invariant.

Definition 2. Letz € H,(X; R) be a singular homology class with coefficients in a local
systemR and letk > 0 be a honnegative integer. We say thagt(z) > k if for any closed
subsetA C X with caty A < k there exists a singular cyclein X — A representing.. We
say thatcwgt(z) = k iff cwgt(z) > k andcwgt(z) # k+ 1

In other words, cwdt) > k is equivalent to the fact thatcan be realized by a singular
cycle avoiding any prescribed closed sub$et X with caty A < k.

For example, cwdt) > 1 iff z can be realized by a singular cycle avoiding any closed
subsetA ¢ X such that the inclusiod — X is homotopic to a constant map.

It will be convenient to define the category weight of the zero homology classas

Formally cwgtz) > k if z lies in the intersection

()Im[Hy (X — A; R) —> Hy(X: R)]
A
whereA C X runs over all closed subsets with gt < k.
The relation cwgtz) < k means that there exists a closed suldset X with caty A <

k + 1 such that any geometric realizationpintersectsA. In particular, we obtain the
following inequality:

cat(X) > cwgt(z) + 1 2

for any nonzero homology classe H,(X; R). The last inequality can also be rewritten
as

0 <cwgt(z) <catX) —1<dmX 3)

for any homology class.
Note that if X is path-connected andis zero-dimensional, i.e; € Hp(X), then
cwgt(z) = cat(X) — 1.

Lemmal. Let f : R — R’ be a morphism of local coefficient systems o¥eand
let f, : H,(X; R) — H,(X; R’) be the induced map on homology. Then for ang
H,(X; R) one has

CWGH(fx(2)) > CWgH(z). (4)
Proof. The result follows directly by applying the definition. O

Lemma 2. Assume thafX is a simplicial polyhedron. Theowgt(z) > k iff z can be
realized inX — A for any sub-polyhedrod c X withcaty A < k.
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Proof. We only need to show the ‘if’ direction. Les C X be closed with catA < k.
We need to show thatcan be realized by a cycle i — A. We haveA Cc U1 U --- U Uy
with eachU; open and null-homotopic iX. Passing to a fine subdivision af, we can
find a sub-polyhedro® c X with A c B c U1 U---U U. Then cag B < k andz can
be realized by acycle lyingix — B C X — A. O

Example 1. Assume thafX is a closed 2-dimensional manifold, i.e. a compact surface.
Let us show that any nonzero homology class H1(X) has cwgtz) > 1. Indeed, it is
easy to see that any closed subset X which is null-homotopic inX lies in the interior

of adiskD? C X; but H1(X — Int D?) — Hi(X) is an isomorphism.

3. Homotopy invariance ofcwgt(z)

Lemma3. Letf: X — Y andg : Y — X be two continuous maps witgho f ~ 1x.
Let R’ be a local coefficient system ovErand R = f*R’ be the induced local system
over X. Given a homology class € H,(X; R), definez’ € H,(Y; R") by z' = f.(2).
Then their category weights satisfy

cwgt(z') > cwgt(z). (5)

Proof. We start with the following well-known general remark. L&t C Y be a subset
which is null-homotopic in’. Then the seB = f~1(B’) c X is null-homotopic inX.

Indeed, since £ >~ g o f, the inclusionB — X is homotopic to the compositioB EA
B' > v £ X where the inclusion : B’ — Y is null-homotopic by assumption.
Definek = cwgt(z). Assume thatd’ C Y is a closed subset with gad’ < «.
ConsiderA = f~1(A’) c X. Since catA’ < k there exist open seg),...,U, CY
covering A’ with eachU; — Y null-homotopic. Then the sets; = f‘l(U{) c X
are open, covenA and are null-homotopic itX (by the above remark). This shows that
catyA < k.
Since cwgtz) > k, the clasg can be realized by a singular cycleXn— A. Then the
cyclec’ = fi(c) in Y represents the clagsand is disjoint fromA’ as f mapsX — A into
Y — A ]

As a corollary of the previous result we obtain homotopy invariance of the category
weight:

Theorem 1. If f : X — Y is a homotopy equivalence then for any homology class
z € Hy(X; R) one has
CWol(z) = cWgt(f«(2)). (6)

Here f.(z) € H,(X; R') whereR’" = g*R is the local coefficient system ovErinduced
by the homotopy inverse: Y — X of f.
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4. Further properties of the category weight

Theorem 2. Suppose thak is a metric space. Assumee H'(X; R), z € H,(X; R')
where R and R’ are local systems oveK. Then for the homology class N z ¢
H,_.(X; R ® R’) one has

cwgt(u N z) > cwgt(u) + cwgi(z). (7)

Herecwgt(z) is the category weight of the homology class defined above in this paper
andcwgt(u) is the category weight of as defined by Fadell and Husse[8].

Proof. Write k = cwgt(z), I = cwgt(u) and assume that C X is a closed subset with
catyA < k + /. We want to show that N z can be realized in the complemeXit— A.
There exists an open covarc U, U---U U4 C X with eachU; — X null-homotopic.
Find open subsetg c U; suchthatV; c U; andA € ViU --- U Viyy.

DefineB = V1 U---U V; and letC = A — B. Clearly C is closed and satisfies
catyC < k. Hencez can be realized by a cycle avoididg In other wordsz = i, (w)
wherew € H,(X — C; R).

Since cwgtu) > [ we haveu|z = 0 and thus: = j; (v) for somev € H" (X, B; R).
By statement 16 iri [14, Chapter 5, 86], one has

Je@Nz) = ju(jivNz) = v N jlizw) =0
wherej : X - (X, X —A),j: X - (X,X —C)andji : X — (X, B) are inclusions.
By exactnessj, (1Nz) = 0 implies thai:Nz lies in the image of,_, (X —A; R®R') —
Hy— (X; R®R). O

As a corollary we obtain:

Corollary 4. Suppose thak is a metric space and for some classes H,(X; R) and
u € H1(X; R’) the evaluationu, z) € R’ ® R is nonzero. Then

cat(X) > cwgt(z) + cwgt(u) + 1. (8)

Herecwgt(z) is the category weight of the homology class defined above in this paper
andcwgt(u) is the category weight of as defined by Fadell and Hussej8j.

Proof. This follows from inequality[(R) combined with Theorér 2. O

Inequality [8) allows us to improve the classical cohomological lower bound for the cat-
egory catX) by taking into account the quality of the homology class
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5. Manifolds and Poincae complexes

In this section we prove that in the case of closed manifolds our notion of category
weight coincides with the cohomological notion of Fadell and Hussglni [3]. However,
for Poincaé complexes these notions are distinct as we show by an example.

Theorem 3. Suppose thak is a closedn-dimensional manifold, and € H,(X; R)

whereR is a local coefficient system. Lete H" " 9(X; R ® 7) be the Poincae dual
cohomology class, i.e.= u N [X] (see below). Then

cwgt(z) = cwgt(u). (9)

Herqi denotes the orientation local system Kni.e. for a pointx € X the stalk ofZ at
XiSZy = Hy(X, X — x; Z) (see[14]).

Proof. By the Poincaé duality theorem any homology classe H,(X; R) can be
uniquely written asx = u N [X] whereu € H" 9(X; R ® Z) and [X] € H,(X;Z)
is the fundamental class. Applying the inequality of Theofrém 2 we find

cwgt(z) > cwgt(u) + cwgt([ X]) = cwgt(u). (20)

To obtain the inverse inequality one observes thad ifc X is a closed subset with
catyA < cwgt(z) thenz can be realized by a singular cycle in the complenént A

and the usual intersection theory for chains in manifolds shows that the cocycle Roincar
dual toz vanishes om; hence cwgi) > cwgt(z). O

Example 2. Let X = RP”" be the real projective space. For the unique nonzero homology
classz € H,(X; Zp) one has cwdt) = n — ¢. Indeed, the dual cohomology class is
o1 € H" 9(X;Zy) wherea € HY(X;Z,) is the generator. Clearly, cwgt' ) =
n—gq.

Theorenj B implies:

Corollary 5. If X is a closed:-dimensional manifold then for any homology class
H,(X; R) withg < n one has

cwgt(z) > 1. (12)

Indeed, if < n then the dual cohomology clagdas positive degree and hence cugt
> 1.

Consider now the case whehis ann-dimensional Poinc&rcomplex. The first part
of the proof of Theorem]3 is still applicable giving inequalify |(10) between category
weights of the homology and cohomology classes. However, the second part of the proof
fails. The following example shows that Theorgln 3 is false for Poscamplexes. Itis a
modification of an argument due to D. Puppe showing that the notion of category weight
of cohomology classes is hot homotopy invariant.
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Example 3. Consider the lens spade = $2*t1/(Z/p) wherep is an odd prime and
7./ p acts freely ons?’*+1. Denote byr : §%*+1 — L the quotient map. LeX be the
mapping cylinder of, i.e.

X =LuSs¥ x[0,1]/~

where each pointx, 0) € $2+1 x [0, 1] is identified withr (x) € L. Clearly X is homo-
topy equivalent td. and so it is a Poincarcomplex. By a theorem of Krasnosels[di0],
the category oX equals 2 + 2. Hence forz = 1 € Ho(X; Z2) one has

cwgl(z) = catX) — 1=2n +1

(see above). The dual cohomology clasis the generaton € H2*t1(X; Z,). Let us
show that
cwgt(u) = 1.

Indeed, consider the sphefe= $2'*t1 x 1 ¢ X. The restrictioru|s € H2'T1(S; Z»)
coincides with the induced clas$(v) wherev € H?'t1(L; Z,) is the generator. Hence
the cohomology class|s is nonzero. However, the sphefdias category 2 and moreover
caty S = 2 (as the inclusior$§ — X is not null-homotopic).

The following simple construction gives non-manifolds for which the category weight
can be explicitly calculated.

Lemma6. Let X = X; v X, be the wedge of two polyhedrd; and X, and letz €
H,(X; R) be the sumz = z1 + z> wherez; € H,(X;; R;) andR; = R|x,;. Then

cwgt(z) = min{cwgt(za), cwgl(z2)}. (12)
Herecwgt(z;) is the category weight of viewed as a homology class ¥f.

Proof. The inequality cwgtz) < min{cwgt(z1), cwgt(z2)} is obvious. LetA C X be a
closed subset with caid < k wherek = min{cwgt(z1), cwgt(z2)}. ThenA = A1 Vv Ay
whereA; C X; and cag,; A; < k, wherei = 1, 2. One can realizg; by a cycle avoiding
A;. The sum of these two cycles is a cycle representintjich avoidsA. Thus we obtain
the opposite inequality cwgf) > k. O

6. Strict category weight

The notion of strict category weight was introduced[inl [13]; it is a homotopy invariant
variation of the category weight of Fadell and Husseihi [3]. We use this notion in this pa-
per and therefore recall the relevant definitions. We warn the reader that our terminology
differs from [13] by 1 and is consistent with|[3].

Definition 3. Given a continuous map : A — X, we say thatatl¢) < k if A can
be covered by open setsAy, ..., Ax such that each restrictiop| 4, is null-homotopic.
The strict category weighof a cohomology class € H?(X; R) (whereR is a local
coefficient system oK) is defined as the maximal integesuch thaip* (1) = 0 for any
continuous map : A — X with catl¢) < k.
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The strict category weight is denoted by swgt Clearly, one has

swgtu) < cwgt(u)
and swgtu) > 1 for any cohomology class € H?(X; R) of positive degreg > 0.

Definition 4. LetX be a closed smooth connectedimensional manifold. We define the
strict category weightf a homology class € H,(X; R) (denotedswgt(z)) as the strict

category weight of the dual cohomology class H"~%(X; R ® Z,).

A similar definition can be used in the case of Poigceomplexes, but we do not use it
in such generality.

Proposition 7. Letz; € Hy, (X;; R;) whereX; is a closed smooth orientable manifold of
dimensiom;, i = 1, 2. Consider the cross-product

71 X 22 € Hy(X1 x X2, R)
whereq = g1 + g2 andR is the external tensor produ® = R1 X R». Then
swgt(zy x z2) > SWgt(z1) + sSwgl(z2). (13)

Proof. Letu; € H"i~% (X;; R;) denote the dual of;, wherei = 1, 2. Then the dual of
71 X z2iSu1 x up € H" 1(X1 x X2; R) wheren = ny + no. Consider also the classes
ur xle HM 91 (X1 x Xo; R1X7Z) and 1x up € H"?2792(X1 x X2; Z X R»).

Definek; = swgt(z;) = swgtlu;). Let¢p : A — X3 x X2 be a continuous map
with cat(¢) < k1 + k2. Then A is the union of open subsets = A; U Az such that
cat(p)|a, < ki. We thatp™(u1 x 1)|4, = 0 andg*(1 x u2)|a, = 0. This implies that the
classp™(u1 xuz) = ¢*(u1 x1)Ugp™* (1 x u2) vanishes. Hence sw@h x z2) > k1+ko. O

Corollary 8. Let X; be closed orientable manifolds and € H,, (X;; R;) whereg; <
dimX;fori =1,...,k.Consider = z1x---xz;x € Hy(X; R)whereX = X1x---x X,
g=q1+---+qgrandR =R X .--K R;. Then

cwot(z) > k. (24)

This corollary is a source of examples of homology classes having high category weight.

Part II: Moving integral homology classes to infinity

In Part Il we study conditions for an integral homology class H;(X:; Z) of a free
abelian covering{ — X to be movable to infinity with respect to a cohomology class
£ € HY(X;R). The case of homology classes with coefficients in a field was studied in
[8] using a different algebraic technique which is not applicable @ver
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7. Abel-Jacobi maps and neighbourhoods of infinity

For the convenience of the reader we recall in this section the language introduced in [8].
Let X be a connected finite cell complex apd X — X a regular covering having a free
abelian group of covering transformatiofs >~ Z". Write Hg = H ® R; it is a vector
space of dimension containingH as a lattice.

Proposition 9. There exists a canonical Abel-Jacobi map
A:X — Hp (15)

having the following properties:

(a) A is H-equivariant; hereH acts onX by covering transformations and it acts &
by translations.

(b) A is proper (i.e. the preimage of a compact subsetipfis compact).

(c) A is determined uniquely up to replacing it by a map: X — Hpg of the form
A" = A+ F o pwhereF : X — Hg is a continuous map.

This fact is well-known; we refer to [8] for a detailed proof.
Lets € HY(X; R) be a cohomology class with the property

i) =0e HYX; R).

Such a clasg can be viewed either as a homomorphism H — R or as a linear
functionalég : Hg — R.

Definition 5. A subsetV ¢ X is called aneighbourhood of infinityn X with respect to
the cohomology classif N contains the set

{x € X; £r(A(x)) > ¢} C N, (16)

for some realc € R. Here A : X — Hp is an Abel-Jacobi map for the covering
p:X—X.

See|[8] for more details.

8. Homology classes movable to infinity

Let G be an abelian group (the coefficient system). We mainly have in mind the cases of
G =ZorG =k afield.

Definition 6 (see [4, §5]).A homology class € H;(X; G) is said to bemovable to
infinity of X with respect to a nonzero cohomology clgss H1(X;R), p*&) = 0, if
in any neighbourhoodv of infinity with respect t& there exists a (singular) cycle with
coefficients inG representing.
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Equivalently, a homology classe H;(X; G) is movable to infinity with respect to €
H(X;R) if z lies in the intersection

(\ImH;(N; G) — H;(X; G)] (17)
N

whereN runs over all neighbourhoods of infinity i with respect tc. This can also be
expressed by saying thaties in the kernel of the natural homomorphism

H;(X;G) — lim H;(X,N;G) (18)

where in the inverse limitv runs over all neighbourhoods of infinity iki with respect
to&.

The following theorem proven in[8] gives an explicit description of all movable ho-
mology classes in the case whéh= k is a field. It generalizes the result of [4, 85]
treating the simplest case of infinite cyclic coversX — X.

Theorem 4. Let X be a finite cell complex angl: X — X be a regular covering having
a free abelian group of covering transformations ~ 7Z’. Leté € H(X;R) be a
nonzero cohomology class of ranlsatisfyingg™(¢) = 0. The following properties of a
nonzero homology clagse H;(X; k) (wherek is a field) are equivalent:

(A) zis movable to infinity with respect t

(B) Any singular cycle: in X realizing the clasg bounds an infinite singular chaief
in X containing only finitely many simplices lying outside every neighbourhood of
infinity N C X with respect tc.

(C) There exists a nonzero element k[ H] such thatc - z = 0.

Later in this paper (sed §9) we will describe the set of homology classes with integral
coefficients which are movable to infinity.

9. Integral homology classes movable to infinity

To get an analogue of Theorgm 4 in the case of integral coefficients, we need another
definition.

Definition 7. Let H be a group and: : H — R a homomorphism. A nonzero element
A € Z[H] is said to havet-lowest coefficient if A = (1 — y)h withh € H and
y =) ajgj, where theg; € H satisfyz(g;) > 0Oanda; € Z.

Theorem 5. Let X be a finite cell complex ang : X — X be a regular covering
having a free abelian group of covering transformatidis~ Z’. Leté € H1(X;R) be
a nonzero cohomology class of ranlsatisfyingp* (&) = 0. The following properties of
a nonzero integral homology classs H;(X; Z) are equivalent:

(A) zis movable to infinity with respect t



254 M. Farber, D. Schtz

(B) Any singular cycle: in X realizing the clasg bounds an infinite singular chaist
in X with integral coefficients containing only finitely many simplices lying outside
every neighbourhood of infinity ¢ X with respect tc.

(C) There exists a nonzero elemett € Z[H] with &-lowest coefficienfL such that
A-z=0.

This result improves Theorem 5.3 6f [5] which treats the case of rank one cohomology
classesy = 1. Movability to infinity of homology classes with coefficients in a field was
studied in[[4] ¢ = 1 case) and irL|8]{ > 1).

Note that the implications (€»(B)=(A) of Theorem[}$ are straightforward (see
below); the only nontrivial statement is the implication €£AJC). Let us explain why
(C)=(B). Suppose thah - z = 0 € H;(X;Z) whereA e Z[H] hasé&-lowest coeffi-
cient 1. Without loss of generality we may assume that 1 — y wherey € Z[H] is
£-positive, i.e.y is a finite sum of the forn} " a; g; whereg; € H,&(g;) > 0, anda; € Z.
Let ¢ be a chain representing the clas3hen the cycleA - ¢ bounds, i.e(1—y)-c = dc1
wherec is a finite chain inX. Set¢’ = c¢1 + yc1 + y%c1 + --- . Thende’ = ¢ and¢’
has finitely many simplices lying outside every neighbourhood of infiity- X with
respect tc.

The main part of the proof consists in establishing the vanishing of tHetérm in
the following exact sequence:

0= lim* Hy1(X, N: Z) — Hy(X; Z[H]:) — lim Hy (X, N Z) — 0. (19)

This exact sequence was described in 86/ 0f [8]. Formally, the proof of the exactness
of (19) given in [8] assumes that the ring of coefficients is a field but it works equally well
in the caseZ with no modifications. In the exact sequen@] (19) lim and lare taken
relative to the system of neighbourhoods of infinifyc X with respect t¢. The symbol
Z/[\H]s in ) denotes the Novikov completion of the group rifig] (see [11], [12]).
Recall that elements of the group rid@jH] are finite sums of the forn}_ a;g; where

a; € Z andg; € H; the rinngﬁ]g also includes all countable susa; g; having the
property lim_, 40 §(gi) = +00.

Proposition 10. Under the conditions of Theordfpne has

Liml H,(X,N;Z) =0, (20)

whereN runs over all neighbourhoods of infinity i¥i with respect t& partially ordered
by reverse inclusion.

Propositior] I gives the implication (A)(B) of Theoren{ b. Indeed, using Definition 6
combined with ) we see that a homology class H,(X; Z) is movable to infinity
with respect tct if and only if a cyclec € Cq()?) representing bounds a chain’ €

C,(X)® Z/[\H]g, i.e.9¢’ = c¢. HereC,(X) denote the cellular chain complex &fwith
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integral coefficients. One can viewas an infinite chain iX having finitely many terms
outside any given neighbourhood of infinity ¥awith respect tc .
To see that (B}»(C), let S¢ C Z[H] be the subset consisting of elements wjth

lowest coefficient 1 and\g = Sgl.Z[H] the localization. By[[6, Lemma 1.13] the in-

clusionAgs — Z/[\H]g is faithfully flat so that the change of coefficiert& (X; Ag) —
H.(X; Z/[\H]g) is injective as well. The result follows.

10. Proof of Theoren®

First we discuss some commutative algebra. Recall our notatidns: Z’ is a free
abelian group ang : H — R is an injective group homomorphism. We denoteAy
the Novikov ringZ/[\H]g and byAg its subringZ/[H\o]g whereHy = {g € H; &(g) > O}.
Elements of4q are countable formal sums of the fofy; a;¢; wherea; € Z andé(g;)
tends to+oo.

It is well-known thatA is a principal ideal domain butg is not. Our goal is to obtain
some partial results about properties of modules over the Aingesembling those of
modules over principal ideal domains.

Definition 8. Let M be anAg-module. A sequence of elements, ..., m; € M is a
guasi-basigor M if (1) for anym € M there existg € Hp such thatgm can be repre-
sented in the forrgm = )" a;m; wherea; € Ao, and(2) there are no nontrivial relations

Zajmj =0.

Lemmall. Let f : Ay — Ay be a homomorphism of finitely generated frég-
modules. Then there exist quasi-bages...,d, € Ay andes,...,e, € Ay and an
integeru < min{n, m} such that for anyj < u one has

f(d;) =ajej, where q; € Ag, a; #0, (22)
and f(d;) =0for j > pu.

Proof. Localizations ofAj and A7 with respect to the multiplicative séf lead to free
modules over the principal ideal domain Hence, applying the standard theory, we find
free basesl;, ..., d, € A" ande], ..., e, € A" and an integep < max{n, m} such
thatf(d]f) = a]’.e]’. forj <pu (Wherea; €A, a]f # 0) andf(dj/.) = 0for j > u. Choose

g € Hpsuch thatgdjf € Aj andge]’. € Ag forall j. Chooseg” € Hp such thatg’a]’- € Ag

for all j. Now setd; = gg'd;, e; = ge}, anda; = g'a;. We obtain quasi-bases ande;
and clearly the relation§ (P1) hold. |

Lemma 12. LetC, be a free finitely generatEh:hain complex oveAg. Then there exist

quasi-base®],ej.....ef € C, (whereq € Z andr, denotes the rank of,) and

1 By this we mean that eachy-moduleC, is finitely generated and only finitely many modules
C4 are nonzero.
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integersu, < min{r,, r,—1} such that the differential : C, — C,_1 is given by

q,9-1 .
d(e;-l) =14 fOI‘]- = Hq; (22)
0 for j > g,

and the elementﬁjq € Ap are nonzero.

Proof. The proof essentially repeats the arguments of Lemma 11. In the first step we
construct a basig‘j" of the localized chain compleg; = A ®4, C, over the princi-

pal ideal domainA such that all differentialg : C[] — C(;fl have the diagonal form
d(ffh) = ozj‘.’fj’rl with & € A. In the second step one multiplies the bagfsby a
suitable group element? € Hp so that (1) the elemena§’ = gquq lie in the original
complexC, and (2) the elements’ = g¢ (gq—l)—laj‘? lie in Ao. O

Lemma 13. LetC, be a free finitely generated chain complex oxgr Then there exists
a finitely generated free chain subcompx c C, such thatgC, C D, for some group
elements € Ho and H;(D,) is isomorphic to a finite direct sum of cy@e\o-modules.

Proof. Apply Lemma[I2 and take foD, C C, the Ag-submodule generated by the

elementsf, ..., e,‘?q. ]

Next we apply the above results to obtain the following corollary.

Corollary 14. Let C, be a free finitely generated chain complex ovey. Let C, =

A ®4, Cx be the localized chain complex and C. — C, the inclusion. Then for any
q there exists a group elemegpt= g? € Hp such that the kernel of the induced map
iy I Hy(C) — Hq(é) coincides with the kernel of multiplication lgyon H, (C).

Proof. As a preparation, consider a nonzero cydigmoduleMy = Ag/(aAp) and the
associatedi-moduleM = A/(aA). Herea € Ag is a noninvertible element. Write in
the forma = g(o + hB) whereg € Ho, ¢ € Z,« # 0, 8 € Ag andh € H is such that
&(h) > 0. Note thatM is trivial if and only if a is invertible in A, i.e. whena = +1.
Similarly, Mg is trivial iff a is invertible inAg, i.e. wheng = 0 ande = +1. We will say
that My is acyclic module of the firgtsecond kindif @« = +1 (or |a| > 1, respectively).
We see that for a cyclic moduldg of the first kind there exists € Hyp such thagMg =0
and the corresponding modulé is trivial. For a cyclic moduleVg of the second kind,
there is ag € H such thatgMo — M is injective. Indeed, witla = g(a + h8) as above
andMg = Ag/(aAp), we getgMo = Ag/(a + hBAp), which injects intoA /(« + hBA).
Apply Lemma] 13 to obtain a subcompléx, c C., such thatg’C. C D, for some
g € HpandH. (D) is afinite direct sum of cyclido-modules. One finds that® 4, D.. =
A®py Csx = CrandHy(C) = A ®a, Hy(C) = A ®4, Hy(D) sinceA is flat overAo.
Also, the kernel of the map restricted to the summands of cyclic modules of the second

2 That is, modules of the formo/(aAg) wherea € Ag.
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kind can be annihilated by multiplication with a suitable elemerfi@f Thus there exists
anh € Hp such that the kernel of the mdf, (D) — H, (C) coincides with the kernel of
h: Hy(D) — Hy(D). )

Now setg = hg’ € Hp. Let us show that the kernel ¢f : H,(C) — H,(C)
coincides with the kernel of multiplicatiop, : H,(C) — H,(C) by g. Consider the
following diagram:

/

H,(C) %5 Hy(D) 5 H,(D) — H,(C)

ol Ji

Hy(C) 25 H,0) L5 Hy(C) S Hy(©)
The composition of the upper horizontal row is multiplication fyi.e. the mapg, :
H,(C) — H,(C). Every map appearing in the lower horizontal row is an isomorphism.

From the previous paragraph we know that (§gy = Ker(x.). Therefore, examining the
diagram, we find that Kér,.) = Ker(g,) as claimed. O

The vanishing of the lithterm of the exact sequende [19) (i.e. Proposltidn 10, see above)
would follow once one has the Mittag-Lefler condition (se€ [16, Prop. 3.5.7]), which in
our case states:

Proposition 15. For any neighbourhood of infiniti c X with respect tc there exists
a neighbourhood of infinit/ ¢ N such that for any neighbourhood of infinit{/’ ¢ N’
one has

Im[H, (X, N") — H,(X, N)] = Im[H,(X,N') — H,(X, N)]. (23)

The homology groups appearing jn [23) are with coefficienfs @amd all neighbourhoods
of infinity are with respect to a fixed cohomology clgss

The equality) can be expressed by saying that any cycleriiative toN which
can be refined to a cycle relative M can be refined to a cycle relative to an arbitrary
neighbourhood of infinittv” ¢ N’ C X.

Proof of Propositio.Let C,(X) denote the cellular chain complexiif Itis a com-
plex of finitely generated fre&[ H]-modules. LetN C X be a cellular neighbourhood
of infinity with respect toé as described in Lemma 3 adfl[8]. The cellular chain com-
plex C.(N) is free and finitely generated ovéf Ho] where Hp = {g € H; &(g) > O}.
Consider the completed chain complex@(N) = Ao ®zx, Cx(N) and C;(f() =

A ®71H] C.(X). Recall thatd = Z/[\H]g is the Novikov ring anddg = Z/[H\o]é. The
canonical inclusiong, (N) — CL(N) andC.(X) — C;(f() determine a chain homo-
morphism

F 1 Cy(X)/Cu(N) = CL(X)/CL(N) (24)

which is an isomorphism. Injectivity of is equivalent toC,(X) N C.(N) = C«(N)
(which is obvious) and surjectivity af is equivalent taC(X) + C,(N) = C,(X). The
latter follows from the equalit{ [ H] + Ao = A for subrings ofA.
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The short exact sequence of chain complexes dger
0— CL(N) = CL(X) — Cx(X)/Cx(N) — 0,

gives the exact sequence
. _ B )
coo > H)(N) 2 H)(X) > Hy(X,N) > H]_;(N) > ---

whereH(N) denotes the homology of the complék(N) and similarly forH.(X); the
symbol H, (X, N) denotest, (X, N; Z).

Applying Corollar to the subcompleX, (N) C C;(f() we find a group element
g € Ho such that Ket, : Hq’,_l(N) — Hq/_l(ff)] coincides with Ker, : Hq/_l(N) —
Hy _y(N)] = Ker[j. : H)_;(N) — H[;_l(g‘lN)]. Herej : N — g~ 1N is the inclu-
sion. SettingV’ = gN C N we obtain

Kerli, : H) _4(N') — H,_;(X)] = Keri. : H) _1(N") —> H]_1(N)]. (25)
Now, consider the following commutative diagram:

/ /(Y B %
H)(N) — H[(X) — Hy(X.N)

| | l-
Hy(N,N') = H,(X,N") % Hy(X, N)
L
Hy V) 5 Hy )
I :
Hq/—l(N) —> Hq/_l(X)

Clearly Img C Ima. The inverse inclusion I C Im g would follow once we know that
foranyx € H,(X, N') there existy € H,(N, N) such thabz(y) = d(x) € Héfl(N/).
Now, equality ) saysthatoo 109 =0is trivial, which (using exactness properties
of the diagram above) means that for ang H, (X, N’) an elemeny € H, (N, N’) with
the above mentioned property exists. This shows that knim 3, i.e.

Im[H, (X, N') - Hy(X, N)] = Im[H}(X) - Hy(X, N)]. (26)
For any neighbourhood of infinit/” c N’ one has the following diagram
Hy(X,N") — Hy(X,N'")
o e
H(X) - Hy (X, N)

which gives Img C Im y C Im «; but since we already know that kmand Img coincide
we obtain Imy = Ima;, i.e. (23).
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This completes the proof of Propositipn] 15 for the specially chosen neighbourhood
N.If N1 C X is an arbitrary neighbourhood of infinity with respecttthengiN C N
and we easily see that for ay’ C g1N’ one has ImiH, (X, N") — H,(X, N1)] =
Im[H, (X, g1N") — H, (X, N1)], i.e. ) is satisfied. O

Part Ill: Cohomological estimates for cat (X, &)

In Part Il we combine the results of Parts | and Il to obtain new cohomological lower
bounds for cdt(X, &). This allows us to compute explicitly dafX, £) in some exam-
ples. Finally, we compare c4fX, &) with the values of a similar invariant q&, £) and
conclude that their difference can be arbitrarily large.

11. Line bundles, algebraic integers and movability of homology classes

Let X be a finite cell complex anél € H1(X; R) be a nonzero cohomology clagsde-
termines the obvious homomorphigsi (X; Z) — R. Its kernel will be denoted Ké¥).
The factor groupH = H1(X; Z)/Ker(&) is a finitely generated free abelian group which
is naturally isomorphic to the group of periods&fThe rank ofH is equals the rank of
the class; it is denoted by = rk(&). Consider the covering : X — X corresponding
to Ker(¢). This covering hag{ as the group of covering transformations.

LetV: = (C*)" = Hom(H, C*) denote the variety of all complex flat line bundles
over X such that the induced flat line bund¥é L overX is trivial. If r1,....7 € Hisa
basis, then the monodromy bfe Ve alongy; is a nonzero complex numbey € C* and
the numbers, ..., x, € C* form a coordinate system ov:. Given a flat line bundle
L € Vg the monodromy representation bfis the ring homomorphism

Mon; : Z[H] — C (27)

sending each € H tox; € C*.

The dual bundleL* € V¢ is such thatL ® L* is trivial; if x1,...,x, € C* are
coordinates of. thenx{l, ..., x71 e C* are coordinates of *.

Any nonzero elemenP e Z[H] can be written as? = Zf;laih; whereq; € Z,
a; # 0,h; € Hand&(h1) < --- < &(hy). The nonzero integet;, is called thet-top
coefficientof P.

The following notion was introduced iql[6, Definition 1.53].

Definition 9. A flat line bundleL € V¢ is called a&-algebraic integeif the kernel of
the monodromy homomorphisikfon; : Z[H] — C contains a nonzero polynomial
P € Z[ H] havingé-top coefficientl.
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Theorem 6. Let L € V: be a complex flat line bundle ov&rwhich is not & -algebraic
integer. Suppose that for somec HY(X; L) andz € Hq(f(; 7Z) one has(v, p,(z)) #

0 € C wherep, : Hq()?; Z) — H,(X; L") is the obvious coefficient map. Then the class
z is not movable to infinity ok with respect tct.

Proof. We will show that if a homology class € H,(X; Z) is movable to infinity with
respect t thenp.(z) = 0 € H,(X; L*) for any L € V¢ which is not as-algebraic
integer. This statement clearly implies the theorem.

Let S: € A = Z[H] denote the set of all nonzero Laurent polynomi&lse A
having &-lowest coefficient 1. The monodromy homomorphism Mon A — C is
injective when restricted tS: (because of our assumption thiatis not a&-algebraic

integer). Hence Mopx : A — C extends to the localized ringe = SglA.
The homomorphismp, : H, (X:7Z) — H,(X; L*) can be decomposed as

ps Hy(X;Z) = Hy(X; A) 5 Hy(X; Ag) — Hy(X; L)

and the module in the middle equalls (X; Az) = S; 'Hy(X: Z). If z € Hy(X; Z) is
movable to infinity with respect t9 thenA - z = 0 for someA e Sg and hencex(z) = 0
andp.(z) = 0. O

12. Definition and properties ofcat (X, &)

Let X be afinite polyhedron ande H(X; R) a cohomology class with real coefficients.
Letw be a closed 1-form ol representing (seel[4] for the formalism of closed 1-forms
on topological spaces).

Definition 10. Let N be a positive integer. A subsétC X is said to beV-movable with
respect taw if there exists a continuous homotoppy : A — X, t € [0, 1], such that
ho : A — X is the inclusion and for any point € A we have

X
/ w >N
h1(x)

where the integral is calculated along the path> #1_,(x) € X, t € [0, 1].

Recall that forA C X, caty(A) denotes the Lusternik—Schnirelmann categoryt @i X,
i.e. the minimal integek such thatA can be covered by open sets irX each of which
is null-homotopic inX.

The following notion has been introduced lin [7].

Definition 11. Let X be a finite polyhedron and € H(X; R). Fix a closedl-form »

in £. The numbecat (X, &) is the minimal integek such that there exists a closed subset
A C X with caty (X — A) < k and such thatA is N-movable with respect to for any
positive integemv.
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By reversing the order of quantifiers one obtains another notion originally introduced
in [4].

Definition 12. Let X be a finite polyhedron and € H1(X;R). Fix a closedl-form w
in £. The numbecat(X, &) is the minimal integek such that for any positive intege¥
there exists a closed subsétc X which is N-movable with respect te and such that
caty (X — A) <k.

It is easy to see that neither &6X, £) nor catX, £) depend on the choice af. Fur-
thermore both notions are homotopy invariants of the p&ir¢) (see [[4[7]). Another
observation is that foE = 0 we get the ordinary Lusternik—Schnirelmann category
cat X, &) = catl(X, &) = catX).

It follows straightforwardly from the definitions that

cat( X, &) < cat(X, £) < catX).
We show later in this paper that for some pdiks &) one has
cat(X, £) < cat'(X, &)

and that the difference between@&, ) and catX, &) can indeed be arbitrarily large.

13. The main estimate

Theorem 7. Let X be a finite cell complex ande H(X; R). LetL € Ve be a complex
flat line bundle overX which is not a&-algebraic integer. Assume that for somee
HY(X;L) andz € H,(X; A) the evaluation(u, p.(z)) € C is nonzero where, :
Hy(X: A) — Hy(X: L*) is the coefficient homomorphism. THen

cat(X, &) > cwgt(z) + 1. (28)

Proof. Setk = cwgt(z) and assume the contrary, i.e. that'¢at £) < k. Then there
exists a closed subsdt ¢ X with catyA < k such that the complemetit = X — A
is N-movable for anyN > 0 with respect to a closed 1-form on X representing.
Applying the definition, we find that can be realized by a singular cyelin X — A = F
with coefficients in the local system.

Consider the covering : X — X corresponding to Ke&&). Viewed differently, the
cyclec is a usual singular cycle it lying in the setF = p~1(F). SinceF is N-movable
for any N we find that any cycle irf’ is movable to infinity with respect t&. Thus we
obtain a contradiction with Theoremh 6. O

3 The groupHy, (X; A) is naturally isomorphic tdd, (X; Z). However, the category weights of

z viewed as element off, (X; A) or of Hq(f(; Z) are in general different. In inequali@zS) the
symbol cwgtz) denotes the category weight:ofegarded as an elementHf, (X; A).
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Theorem 8. Let X be a finite cell complex ande H1(X; R). LetL e Ve be a complex
flat line bundle overX which is not at-algebraic integer. Suppose that for an integral
homology class € H, (X;7Z) = H,(X; A) and some cohomology classes HY(X; L)
andu; € H%(X;C), whered; > Ofori = 1,...,k, the evaluationlu U ug U --- U
ug, p«(z)) € Cis nonzero. Here,(z) € Hy(X; L*),g =d +d1 + --- + di. Then

cat (X, &) > cwgt(z) + & + 1. (29)

Here cwgtz) denotes the category weight pfviewed as a homology class af with
local coefficient system.

Proof. First observe that we may assume that the clagses ., u; are integral, i.e. lie
in H*(X; Z). Indeed, the produgt: U u1 U - - - U uy, p«(z)) is a multilinear function of
u1, ..., ug; since the integral conomology classes genefsitéX ; C), vanishing of this
function on all integral combinations would imply vanishing in general.

Definez’ = p*(u1U---Uup) Nz € Hy(X: Z) = Hy(X; A). Then

(U, ps@)) = (WUurU---Uuy, p(2)) #0 e C.

Applying the previous theorem we find &éX,, £) > cwgt(z’) + 1. Now, Theorerﬁ]z gives
cwgt(z’) > k + cwgt(z). This completes the proof. O

Remark. Consider the statement of Theor@in 8 in the special €ase 0. Then the
variety V¢ contains the trivial line bundlé = C only andL = C is not a&-algebraic
integer. Hence Theorem 8 gives the inequality

cat(X) > cwgt(z) + k + 1

under the assumption that
(urU---Uug,z) #0

whereu; € H%(X;C),d; > 0andz € Hy(X;C),d = di + - -- + di. This claim is a
special case of {8).

Example 4. Let X = ¥ be a closed orientable surface of gegus- 1 andé # 0 €
HY(X;R). Fix a flat line bundleL € V: which is transcendental (sele [9, §6]). Then
H(X; L) has dimension2—2 > 0. Pick a nonzero classe H'(X; L). By Proposition
6.5 from [9] there exists a homology classe Hi(X; A) such that(u, p.(z)) # O.
Since cwglz) > swglz) > 1 we get cat(=, £) > 2 by applying Theorerﬁ]?. Since
cat (X, £) < dim X in general forg # 0, we find

cat(z, &) =2 (30)

for any nonzerg € HY(Z; R).
Note that cat®, £) = 1 for anyé # 0 (see Theorem 12 inl[9]). This gives a first
instance where

cal(X, £) < cat(X, £). (31)
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14. A controlled version ofcaf (X, &)

We have seenin Exam@a 4 that@até) and cat(X, £) can indeed be different. In order
to show that the difference between them can be arbitrarily large, we have to introduce
a controlled version of citX, &) which behaves better under cartesian products. The
following discussion is very similar to [9, Section 9].

Let w be a continuous closed 1-form on a finite cell complexLet & = [w] €
H1(X;R) be the cohomology class representeddby

Definition 13. Let N andC be two positive integers. A subsetc X is N-movable with
respect tan with controlC if there exists a continuous homotaopy: A — X, ¢ € [0, 1],
such that(1) hp: A — X is the inclusion;(2) for any pointx € A one has

ha(x)
/ w < —N, (32)
X

where the integral is calculated along the path> 4,(x) € X, t € [0, 1], and (3) for
any pointx € A and for anyr € [0, 1] one has

he(x)
/ 0 < C. (33)

Definition 14. Fix a closedl-form w representing. The numbeccat (X, £) is the min-
imal integerk with the property that there exists > 0 and a closed subset C X with
caty(X — A) < k such thatA is N-movable with controlC with respect tav for every
positive integeiv.

Lemma 16. The following properties hold farcat (X, &).

(1) We havecatl(X, &) < ccat(X, &).

(2) If X is connected and # 0, thenccat(X, &) < cat(X) — 1.

(3) If € = 0, thenccat (X, &) = cat(X).

(4) If ¢ : Y — X is a homotopy equivalence ade H1(X; R), then

ccat(X, &) = ccat(y, ¢*¢).

Proof. The first assertion is obvious, the remaining assertions are obtained by repeating
the arguments given inf[4] and![9]. O

Remark 1. It is worth pointing out that the applications of &&X, &) to dynamics de-
scribed in [7] also hold with the potentially larger quantity é¢at £) (cf. [9, Re-
mark 9.9]).

The desired product inequality now reads as follows.
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Theorem 9. Let X and Y be finite cell complexes and le € H1(X;R) and&y €
HL(Y;R) be real cohomology classes. Assume that

ccat(X,&x) >0 or ccat(y,&y) > O. (34)

Then
ccat(X x Y, &) < ccat(X, &x) + ccat (Y, &y) — 1, (35)

where
E=Ex x1+ 1xéy. (36)

We skip the proof since it is fully analogous to the proof of the similar statement for
cca(X, &) givenin [9, Theorem 9].

15. Calculation ofcat'(X, &) for products of surfaces

Theorem 10. Let M denote the producE; x --- x X; where eachs; is a closed
orientable surface of genys > 1. Given a cohomology clagse H1(M%: R), one has

cat(M?, &) = ccat (M, &) = 1+ k+r 37)

wherer denotes the number of indicése {1, ..., k} such that the cohomology class
&y, € H(Z;; R) vanishes. In particular

cat(M?, &) = ccatM?*, &) =1+k (38)
assuming that|s, # 0 e HY(Z;;R) foranyi =1,...,k.

Proof. After rearranging the surfaces we may assumeéghat &|5x, is nonzero fori =
1,....,k—rand& =0fori >k —r.

Note that ccdt(X;, &) > Oforanyi = 1, ..., k. Indeed, otherwise applying Theorem
10 of [9] we would gety (X;) = 0, contradicting our assumptian > 0. Hence we may
apply the inequality of Theoreftj 9 several times to obtain

!
ccat (M, ) < chall(z,-, &) — (k — 1).
izl

By Examplg # and Lemnja [L6 we have

2 fi<k-—r,

ccat (5;, &) = cat (L. &) = {3 i k—r

and thus
ccat (M%&) <2tk —r) +3r —(k—1) = k+r+1 (39)
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Next we prove the opposite inequality {0 39). et V; be transcendental. Define
H = mi(M)/Ker(¢) andL; = L|x, andH; = m1(%;)/Ker(§;). It follows thatL; is also
transcendental. Choos¢ € HY(T;: L;) andz; € H1(%;; Z) such that(u}, p«(z;)) #0
asin Exampl€]4. Herg; : ; — %; is the covering space corresponding to grand
piy @ Ho(2i5Z) — H;(Z;; LY). Note that fori > k — r we simply haveX; = %; and
L; = C. Now, Kenp) x --- x Ker(&) c Ker(¢) so there is a covering map

g:T1x- x> M
whereM is the covering space af corresponding to Ke&k). Let
Z=z1x Xz € H(M; Z[Hy x -+ x Hi]) = Hp(S1 % -+ x E: 2),
7 = q+(Z) € Hy(M; Z[H]) = H(M; Z,).

It follows from Corollary[$ and Lemmp] 1 that cw@s > k (wherez is viewed as an
element ofH,(M; Z[ H])).
Define

u:u/lx xu;cfr x1x--- XlEHk_r(M;L),
ujzp,’{k_r+ju;{_r+jeH1(M;C), j=1...,r1
wherepi_,y; : M — X;_,4; is the projection. Notice that

k

(MUuiU---Uu,, pe(2)) = in(u;, Pi(zi)) #0.
i=1

Theorenj 8 and Corollafy] 8 apply and give
cat'(M, &) > cwgt(z) +r + 1>k +r + 1.
Combining this with[(3P) we obtain
catt(M, &) =ccat (M, &) =k +r+1
as claimed. O

We now want to compare the values of'gat, £) with the invariant catM, &) (see Def-
inition [I2) for products of surfaced = %1 x --- x X; where eachy; is a closed
orientable surface of genys > 1. It was shown in[[9, Thm. 17] that

cat(M,£) =1+ 2r (40)
wherer denotes the number of indices {1, ..., k} such tha&|y, = 0.
Corollary 17. Under the assumptions of Theor@iithe difference
catl(M, &) — cat(M, &) (41)
equals the number of indicess {1, ..., k} suchthat|s, #0 € H(Zi; R).

Corollary[I7 leads to the following statement which is one of the main results of this
paper:

Corollary 18. The differencg41]) can be arbitrarily large.
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